SCHEDULING WORK ZONES IN MULTI-MODAL NETWORKS

Pitu B. Mirchandani (PI), Sc.D.
Dening Peng, Ph.D.
School of Computing, Informatics, and Decision Systems Engineering
Arizona State University
Tempe, AZ 85287

This report is based on the PhD Dissertation of Dr. Dening Peng, who was partially supported by a subcontract from University of Nevada, Reno, to Arizona State University entitled Scheduling Work Zones in Multi-Modal Networks (Task B), under NDOT Agreement No: UNR-14-60.
DISCLAIMER:

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
EXECUTIVE SUMMARY

This research develops heuristics to manage mandatory network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows.

This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule.

Keywords: Multi-Modal Transportation Network, Work Zone Scheduling, Ramp Metering, User Equilibrium, System Optimum
TABLE OF CONTENTS

DISCLAIMER.. i

EXECUTIVE SUMMARY.. ii

LIST OF TABLES.. vi

LIST OF FIGURES.. vii

CHAPTER

1. INTRODUCTION... 1

 1.1 Overview.. 1

 1.2 Background and Research Focus... 3

 1.3 Summary of Chapters .. 9

2. LITERATURE REVIEW... 11

 2.1 Related Network Flows Models... 12

 2.1.1 Maximum Flow Model. .. 12

 2.1.2 Minimum Cost Flow Model... 13

 2.1.3 Multi-Commodity Flow Model.. 14

 2.1.4 Traffic Assignment Model... 15

 2.1.5 Traffic Equilibrium Model.. 24

 2.2 General Network Maintenance Planning ... 39

 2.3 Maintenance Planning in Transportation Networks ... 42

 2.4 Conclusion... 47
BIBLIOGRAPHY ... 119

APPENDIX

A FIVE RUNS OF RFO FOR TESTCASES SOLVED IN MS-NSV ... 150

B TEST CASES SOLVED IN MS-MMN .. 154
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2-i: MS-NSV Notations</td>
<td>56</td>
</tr>
<tr>
<td>3.4.3-i: RFO Vs CPLEX on Radial Network</td>
<td>68</td>
</tr>
<tr>
<td>3.4.3-ii: RFO Vs CPLEX on Grid Network</td>
<td>71</td>
</tr>
<tr>
<td>3.4.3-iii: RFO Vs CPLEX on Sioux Falls Network with 10% of Links to</td>
<td>73</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
</tr>
<tr>
<td>3.4.3-iv: RFO Vs CPLEX on Sioux Falls Network with 20% of Links to</td>
<td>74</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
</tr>
<tr>
<td>4.2-i: Notations for MS-MMN</td>
<td>82</td>
</tr>
<tr>
<td>4.3-i: Iterative UE-SO Assignment in Four-Node Network</td>
<td>96</td>
</tr>
<tr>
<td>4.3-ii: Iterative UE-SO Assignment in Sioux Falls Network</td>
<td>96</td>
</tr>
<tr>
<td>4.5-i: Results of Five Test Cases for Square Network with 10% of</td>
<td>108</td>
</tr>
<tr>
<td>Links to Repair</td>
<td></td>
</tr>
<tr>
<td>4.5-ii: Results of Five Test Cases for Square Network with 20% of</td>
<td>108</td>
</tr>
<tr>
<td>Links to Repair</td>
<td></td>
</tr>
<tr>
<td>4.5-iii: Results of Five Test Cases for Square Network with 30% of</td>
<td>108</td>
</tr>
<tr>
<td>Links to Repair</td>
<td></td>
</tr>
<tr>
<td>4.5-iv: Five Runs of Test Case I in 10% of Links to Repair Scenario</td>
<td>109</td>
</tr>
<tr>
<td>4.5-v: Five Runs of Test Case I in 20% of Links to Repair Scenario</td>
<td>109</td>
</tr>
<tr>
<td>4.5-vi: Five Runs of Test Case I in 30% of Links to Repair Scenario</td>
<td>110</td>
</tr>
<tr>
<td>4.5-vii: Sioux Falls Network with 10% of Links to Repair</td>
<td>110</td>
</tr>
<tr>
<td>4.5-viii: Sioux Falls Network with 20% of Links to Repair</td>
<td>111</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>2.1.4-i: Cost-Flow Relationship</td>
<td>16</td>
</tr>
<tr>
<td>3.2.1-i: Three-Lane Link Flow Cost Curve</td>
<td>52</td>
</tr>
<tr>
<td>3.4.1-i: Schedule Comparison</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1-ii: Flow Chart of RFO</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3-i: Radial Network</td>
<td>67</td>
</tr>
<tr>
<td>3.4.3-ii: Grid Network</td>
<td>70</td>
</tr>
<tr>
<td>3.4.3-iii: Sioux Falls Network</td>
<td>72</td>
</tr>
<tr>
<td>4.3-i: Total Travel Time Change in the Iterative UE-SO Assignment Process</td>
<td>94</td>
</tr>
<tr>
<td>4.3-ii: Iterative UE-SO Assignment Algorithm</td>
<td>94</td>
</tr>
<tr>
<td>4.4-i: Four-Point Crossover Example</td>
<td>105</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 Overview

A network is a collection of connected nodes and arcs, which are used to store, distribute and convey various kinds of entities. These nodes, arcs and entities represent disparate things in various applications. For example, in power transmission networks, nodes are power plants, substations, households and factories; arcs are power lines; and entity transmitted is power. In transportation networks, nodes are origins and destinations, arcs are the roads, and entities transported can be vehicles, people, commodities etc. Although the flow of entities in different networks obey different physical rules, normally the basic demand-supply relation among nodes, the flow conservation conditions and the capacity constraints on nodes and/or arcs are common.

Network maintenance is the activity conducted on nodes and/or arcs to restore or improve flow-related attributes like capacity, surface roughness (in transportation networks), outage duration (in power transmission networks), etc. so as to elevate the overall network performance. Just like decision problems of other large systems, the planning of network infrastructure maintenance can be categorized as strategic, tactical or operational.

Strategic planning of network maintenance mostly focuses on network-wide design to maintain the overall performance of the network over the long term. At this high level of planning, the impact of network capacity reduction caused by maintenance activity
is negligible, because the maintenance activity usually takes place over a very small portion of the planning horizon.

Tactical planning of network maintenance usually is the medium-term scheduling of maintenance work on the nodes and/or arcs with a network-wide perspective. Since the length of time period when the network is under maintenance is comparable to the tactical planning time horizon, network capacity reduction caused by maintenance work is an important factor to consider for maintenance scheduling.

As to operational planning of network maintenance, it considers short-term repair effects on a node and/or an arc when a network component is under repair during the maintenance operations. At this level of maintenance planning, the dynamics and specific maintenance procedures have substantial impact on the network entities. For example, barriers, traffic cones and heavy vehicles (i.e., pavers) will occupy a segment of road in transportation network for resurfacing work. Plans on the length of the sub-segments for the resurface work and the time to start each sub-segment directly impact the traffic flow during the resurfacing.

This research specifically investigates the network maintenance planning for arcs at the tactical level, where the arc capacity reduction caused by maintenance activity is considered. Since scheduling arc repairs is essentially scheduling the arc capacity reductions, the tactical planning of network maintenance is a network capacity management problem, which manages mandatory network capacity changes to optimally fulfill flow demand. The type of network considered in this research are transportation networks which have straightforward flow diversions in reaction to arc capacity reductions. The optimal scheduling of work zones for arc maintenance is one problem addressed in this research.
In transportation literature, term “link” is used more frequently to represent the actual road segments, while in classic mathematics literature on networks, term “arc” is used for the connection between nodes. In this proposal, terms arc(s) and link(s) are used interchangeably.

1.2 Background and Research Focus

Network maintenance planning can be formulated as multi-objective network design problems, with complex constraints based on the spatial and temporal scope of the maintenance planning. Despite the various factors, such as link/node downtime, congestion, and budget, that need to be considered in these problems, the ultimate goal of network maintenance is to improve the overall capability of the network so as to better serve the flows from the origins (O) to their destinations (D). Hence, the major concern in the research conducted is the performance of the network on fulfilling the flow demand during the maintenance, which can be translated into minimizing the temporal or monetary costs (such as total flow cost, total travel time, total time delay), by scheduling the network capacity changes during the maintenance period.

Maintenance work on the network can cause network topology changes (e.g., link capacity change, closed link, and/or disconnected node). For a feasible schedule of the maintenance projects within the planning time horizon, the network topology changes every time the status of an individual maintenance project is changed (for example, maintenance of a lane segment is started or completed). And each time when the network topology changes, the routing of the flows change accordingly so as to minimize the individual/total flow cost. Hence, there is a total flow cost over the planning time horizon associated with each feasible schedule. In summary, maintenance work zones interact with flows; the optimal scheduling of the maintenance work zones means deciding the
optimal sequence to carry out the projects, so that the network topology change patterns achieve the minimum total flow cost over the planning horizon, among all the feasible schedules.

The primary objectives of the research are (1) to develop optimization models that schedule network maintenance and manage network capacity changes considering the interaction between maintenance work and the flows, and (2) to design efficient solution approaches to solve them. Different network flows models will result in different maintenance schedules that are optimal to the specific network flows model. To give an example, the optimal maintenance schedule for a network with multi-commodity flows that take system optimized routing to minimize the total cost of all flows, will most likely be different from the optimal schedule for the same network but with flows that take user optimized routing to reach user equilibrium (Wardrop, 1952). Hence, this research studies network maintenance schedule for different types of network flows models. Also, it is possible that flows with different routing objectives share the same network. This results in not only the interaction between the flows and the maintenance schedule but also the interaction among flows of different types. And thus, the investigation of scheduling maintenance in networks with various flow types also falls into the scope of this research.

This research uses terminology “directed links” to represent roads, each of which consists one or more lanes. An incident on a link segment blocks one or more lanes, thereby decreasing the flow capacity for some lanes and thus of the link segment. Congestion effects of incidents is well researched (Chung, 2011; Corthout et al., 2009; Jeong et al., 2010; Lund and Pack, 2010; Sheu et al., 2004 and 2001), one focus of minimizing these effects is to detect the incident as quickly as possible (Baiocchi et al., 2015; Cheng et al., 2015; Kinoshita et al., 2015; Li et al., 2013; Liu et al., 2014; Lu et al., 2012a and 2012b; Wang et al., 2015; Xiao et al, 2014; Xiao et al., 2012; Zhang et al., 2015;
and Zheng et al., 2013), and subsequently send response vehicles as fast as possible to clear the incident (Hou et al., 2013; Huang and Pan, 2007; Kim et al., 2014; Lei et al., 2015; Lou et al., 2011; Ma et al., 2014a; Ma et al. 2014b; Pal and Bose, 2009; Zhu et al., 2012; and Zografos et al., 2002) and/or to quickly apply traffic controls like traffic signal phase adjustments, ramp meters activation, and traffic barricades to manage the congestion (Ahmed and Hawas, 2015; Gang and Yong, 2011; Liu et al., 2013; Long et al., 2012; Lu et al., 2015; Shen et al., 2007; Sheu, 2007; Sheu et al., 2003; and Zhang et al., 2011). Well-planned and scheduled maintenance could minimize the congestion impacts of maintenance activities even without the help of additional traffic controls.

The impairment of roads, the installation of new traffic management infrastructures (e.g., high occupancy vehicle lanes, tolled lanes, and ramp meters), and adding/improving links require the scheduling of the corresponding maintenance work. In general, maintenance activities change the topology of the transportation network and change the cost of the routes for origin-destination (OD) demands. Since traffic flows are composed of individual vehicles that make their own routing decisions, and with the extensive usage of navigation systems with real-time traffic information, OD demands are able to reactively re-route based on the changed network topology and the resultant cost of candidate routes. Traffic flows consist of different types of network users (i.e., commercial trucks, commuter cars, and motorcycles). These users, besides interacting with each other, react to network topology changes differently because of their distinct routing objectives and flow cost attributes. This makes the transportation network an ideal real-world application for methodology developed on the maintenance scheduling of flow networks.

Maintenance activities of transportation networks result in work zones, where some lane segments of links are out of commission for a predicted period of time until the
work is completed. The extent of the congestion impacts of a work zone, induced by the traffic that normally uses the lanes affected by the work zone, depend on the volume and mix of traffic. When a lane is blocked in a link segment, the “capacity”, in terms of vehicles per hour, of the link deceases for the duration of the work zone. If the volume of traffic using the work zone is very small, especially if there are many alternatives of equally good routes, then the congestion impacts are negligible. On the other hand, if the traffic volume is moderate to high then congestion impacts would not be negligible. Temporary link capacity reductions because of lane closures can result in significant delays for commuters and transport service vehicles. FHWA (2013) estimate that Americans lose 3.7 billion hours and 2.3 billion gallons of fuel every year sitting in traffic jams. Work zones are estimated to cause about 10% of overall congestion which translates into annual fuel loss of over 700 million US dollars.

The large majority of traffic using a road network consists of (1) commuter traffic, and (2) the traffic of service vehicles that includes trucks and vans delivering goods. The primary effect of a work zone on commuter traffic is a change in traffic equilibrium of the flows, because in a few days after the start of the work zone the traffic flows will equilibrate to a new user equilibrium according to the well-known Wardrop’s first principle (Wardrop, 1952). So one main idea of this research is to optimally schedule the planned work zones so that the resulting traffic delays for commuter traffic is minimized. When the network is normally not congested, the commuter traffic equilibrium would change little. But work zones could have significant impacts on the equilibrium pattern if the network is normally congested. On the other hand, traffic of service vehicles will be affected when a link that is used by many shortest delivery routes is impacted by the work zone.

It should be noted that for the work zone operations in practice, road construction companies and transportation management agencies do a reasonable job of coordinating
work zone activities after the work zone is initiated through appropriate task scheduling and work staging of day-to-day and week-to-week operations. These companies’/agencies’ goal is to contain the overall cost, while safety and traffic congestion is not overly affected during peak periods. In current practice, the state departments of transportation have work zone standards for single maintenance projects on state/local roads. These standards provide detailed guidelines and requirements for contractors to prepare bids, obtain the contract for the maintenance project, and conduct the maintenance work. However, the requirement on traffic control is often very vague. For example, the requirement document on traffic control for New Hampshire focuses more on the traffic safety and traffic control installations, and only briefly discusses about minimizing traffic interruption by avoiding maintenance work during peak hours, and by avoiding frequent and abrupt road capacity changes (e.g., lane narrowing, dropped lanes, lane shifting). (New Hampshire Department of Transportation, 2012). Also it does not discuss about the impact of work zones on the traffic in the neighborhoods, which may not be negligible since the temporary link capacity reduction caused by the work zones on the link being repaired will probably cause some traffic that was originally on the link to divert to other links.

In practice, for a single maintenance project along a highway stretch or a local arterial, the typical project cycle starts with the advertisements by a transportation agency. Contractors interested in the project prepare bid documents and submit the bids to the transportation agency to compete for the project. The agency evaluates the bids received on various criteria, especially on the proposed budget, and awards the contract to the contractor with the most competitive qualifying bid. The winning contractor then works on the maintenance project. In summary, the standards and work scope are only concerned with a single maintenance project on a highway stretch or a local arterial.
Consideration of coordinating multiple maintenance projects that may be located close to each other, is often ad-hoc.

Most past research conducted on maintenance scheduling in transportation networks fall into either the strategic planning of long-term network rehabilitation, or operational level of planning that decides the work zone length and short-term scheduling of activities for a single maintenance project. Little research has been done on the tactical level of planning that coordinates maintenance projects based on a network-level perspective and that considers the impact of maintenance work on traffic flows at the same time. More details on related past research are covered in the literature review in Chapter 2. While a single, or few widely scattered concurrent work zones, will not have a large effect upon daily traffic patterns, several work zones that are spatially and temporally close together, and which affect large flows of traffic, may result in traffic patterns that are both costly to commuters and vehicle-based services.

The maintenance of the transportation network is not the only cause for work zones. Work related to infrastructures (e.g., power transmission cables, street/highway lights, sewage pipes, communication cables/fibers) that are close by or under the roads may also result in work zones. The more the work zones that are spatially close to each other and with partially or entirely overlapping planning time horizon, the more critical it is to coordinate the active periods among the projects. A reduction of negative impacts can be expected through proper scheduling of work zones with respect to the spatial locations in the network and the time periods of the work zones.

Thus, this research addresses the network capacity management problem for the following three cases: (1) scheduling mandatory network capacity changes to minimize the total flow cost of service vehicles (e.g., delivery trucks) from multiple origins to destinations in the case of uncongested networks, and (2) scheduling mandatory network
capacity changes to minimize the total travel time for multi-modal traffic flows. The maintenance scheduling and capacity management in transportation networks is just one of the many areas where apply the methodological results of this research maybe applied. With few changes reflecting network dynamics and maintenance activity characteristics, the optimization models formulated can be adopted to the modeling of maintenance scheduling and capacity management of other types of networks.

1.3 Summary of Chapters

Chapter 2 starts with the review of network flows problems, whose optimization models and solution methods can be integrated into the network capacity management problem studied in this research. Maintenance scheduling models for networks other than the transportation network (e.g., power transmission networks, water pipe networks, bridge networks, and railroad networks) are also reviewed, so as to obtain the general understanding on how systematic maintenance planning is approached for different types of flow networks. This is followed by a detailed review on maintenance planning specifically for transportation networks.

Chapter 3 investigates the maintenance scheduling in networks of service vehicles (MS-NSV). In Chapter 3, it is assumed that if there are too many trucks traveling on a link, there will be a qualitative change of the relation between the link travel cost and the number of trucks traveling on the link. This change is captured by modeling the link travel cost as a piece-wise linear function of the number of trucks using the link. The problem studied is formulated as a mixed-integer linear program, and is solved by a randomized fix-and-optimize heuristic (RFO) developed. In contrast to solving the problem solely with a commercial solver (e.g., CPLEX), test results demonstrate a significant reduction in computation times when RFO is applied.
Chapter 4 extends the research in Chapter 3 to study maintenance scheduling in networks with multi-modal traffic flows (MS-MMN). Two travel modes are considered in MS-MMN and they are regular cars and autonomous vehicles. Every traveler driving a regular car takes the route that minimizes his/her own travel time to reach user equilibrium (UE), and travelers riding self-driving vehicles choose the route that minimizes the total travel time of all travelers to achieve system optimum (SO). The stationary flow assignment of this multi-modal traffic is the flow assignment that has regular car flows at UE and self-driving vehicle flows at SO. This stationary flow assignment is proven to exist and it can be obtained by the iterative UE-SO assignment algorithm developed. Due to the non-convexity of MS-MMN, the genetic algorithm is applied to obtain good maintenance schedules.

Chapter 5 summarizes the research conducted and outlines research opportunities for future work, which include various stochastic extensions to the problems studied in Chapter 3 and 4.
Chapter 2

LITERATURE REVIEW

The network maintenance planning has been studied with two major modeling approaches: network reliability modeling and network flows modeling. In research that adopt network reliability modeling approach, the deterioration process of links/nodes is modeled and the objective is to minimize the overall link/node failures (e.g., Bocchini and Frangopol, 2011; Hu et al., 2015; Marquez et al., 2013). The network flows modeling approach aims at managing the network capacity changes to better fulfil flow demands. This modeling approach uses network flows models (e.g., maximum flows model) to evaluate the networks for a specific maintenance schedule, so as to evaluate their optimality (e.g., Boland et al., 2012; Boland et al., 2015; Tawarmalani and Li, 2011). There also exists research that combines these two modeling approaches by associating the deterioration process with the amount of flows on the link (e.g., Hajibabai et al., 2014), or by modeling the link capacity as a function of the link states in the deterioration process (e.g., Chu and Chen, 2012).

Although research on network maintenance planning with the network reliability modeling approach is covered in the review, it is more focused on previous research that adopted the network flows modeling approach, since the research presented emphasizes the interaction between flows and network capacity changes caused either by maintenance activities or by traffic controls. And thus, the literature review starts with the review of several basic network flow models in Section 2.1, which can be used as the part of the optimization models developed that evaluates the optimality of a maintenance schedule or a traffic control mechanism. Section 2.2 reviews maintenance planning in general networks that can be the abstract of any virtual or physical networks. Research that
specifically studies transportation related networks (e.g., traffic networks, logistics distribution networks, and bridge networks) is reviewed in section 2.3. Section 2.4 reviews traffic control mechanisms that selectively reduces the capacity or increase the cost of some links to alleviate congestion and drive traffic flows toward more efficient flow patterns network-wide.

2.1 Related Network Flows Models

Based on the physical types and functions of the networks in application, various network flows models are used to evaluate the network capability of fulfilling flow demand. For example, maximum flow model and traffic equilibrium model are two of the models integrated in studying the impact of maintenance work on flows with a network-wide perspective (Boland et al., 2012; Boland et al., 2015; Lee, 2009; and Zheng et al., 2014). Section 2.1.1 to 2.1.4 review these network flows models and briefly discuss their applications.

2.1.1 Maximum Flow Model. The maximum flow problem tries to send as much flow as possible between two special nodes, the source node s and the sink t, through a capacitated network without exceeding the capacity of any link (Ahuja et al., 1993). In a directed network with node set N and link set E, let u_{ij} be the capacity of link $(i,j) \in E$, the linear programming formulation of this problem is:

Maximize v \hspace{1cm} (2.1.1a)

subject to (s.t.):

\[\sum_{(j,(i,j) \in E)} x_{ij} - \sum_{(j,(j,i) \in E)} x_{ji} = \begin{cases} v & i = s \\ 0 & \forall i \in N - \{s, t\} \\ -v & i = t \end{cases} \] \hspace{1cm} (2.1.1b)

\[0 \leq x_{ij} \leq u_{ij} \hspace{0.5cm} \forall (i,j) \in E \] \hspace{1cm} (2.1.1c)
Constraint (2.1.1b) is the flow conservation constraints enforcing all nodes other than the source node and sink node to send out the same amount of flows as they receive, and the sink node to receive the amount of flows sent out by the source node. (2.1.1c) is the set of link capacity constraints that ensure the amount of flow on each link not exceed its capacity. A vector $x = \{x_{ij}\}$ satisfying (2.1.1b) and (2.1.1c) is a feasible flow and the corresponding value of the scalar variable v is the value of the flow.

The maximum flow problem is an easy problem to solve since there exist algorithms that can solve it in polynomial time (e.g., shortest augmenting path algorithm, Dinic’s algorithm, and generic preflow-push algorithm). It has been applied to the modeling of both physical networks to maximize the throughput, and virtual networks which are the abstracts of problems in other areas like assignment problems and scheduling problems. It is also a fundamental network flows model that occurs as a subproblem in the solution of more difficult network problems.

2.1.2 Minimum Cost Flow Model. The minimum cost flow problem finds the cheapest way of sending given amount of flow from a node (or a set of nodes) to another node (or another set of nodes) through a network, where each link has its capacity and unit flow cost. Let $G = (N, E)$ be a directed network with a positive cost c_{ij} and a capacity u_{ij} associated with every link $(i, j) \in E$. Each node $i \in N$ is associated with a number $b(i)$ which indicates its supply or demand depending on whether $b(i) > 0$ or $b(i) < 0$. If $b(i) > 0$, then node i is a supply node; and if $b(i) < 0$, then node i is a demand node. Variable x_{ij} is the amount of flow on link (i, j). With these parameters and variables, the minimum cost flows problem can be formulated as (Ahuja et al., 1993):

\[
\begin{align*}
\text{Minimize} & \quad z(x) = \sum_{(i,j) \in E} c_{ij} x_{ij} \\
\text{s. t.:} & \quad \sum_{j \in \text{predecessor}(i)} x_{ij} - \sum_{j \in \text{successor}(i)} x_{ji} = b(i), \\
& \quad x_{ij} \leq u_{ij}, \\
& \quad x_{ij} \geq 0.
\end{align*}
\]
\[
\sum_{(j;(i,j)\in E)} x_{ij} - \sum_{(j;(j,i)\in E)} x_{ji} = b(i) \quad \forall i \in N
\]

(2.1.2b)

\[
0 \leq x_{ij} \leq u_{ij} \quad \forall (i,j) \in E
\]

(2.1.2c)

Objective (2.1.2a) calculates the total cost of all the flows on all links. Constraint (2.1.2b) is the set of flow conservation constraints that make sure supply (demand) nodes send (receive) the exact amount it can supply (receive), and all the nodes other than the supply and demand nodes will send out the amount of flows the same as the amount they receive. Constraint (2.1.2c) is the capacity constraints limiting the amount of flow on each link to be less than or equal to the link’s capacity.

Polynomial algorithms are also available to solve the minimum cost flow problem. As a category of problems that are pervasive in practice, minimum cost flow problems arise in almost all industries, including agriculture, communications, energy, manufacturing, medicine, retailing, transportation etc. It is also lays the foundation for more complex network flows problems like the multi-commodity flow problem.

2.1.3 Multi-Commodity Flow Model

In many application contexts, several types of entity flows share common network facilities and have their own origins and destinations. For example, in transportation networks vehicles from different origins travel to different destinations using the same transportation infrastructure. And each road has a capacity that restricts the total flow of all the vehicles using that road, regardless of their origins or destinations. To find an optimal flow in these cases, the problem needs to be solved in concert with all types of commodity flows (Ahuja et al., 1993). Thus arises the multi-commodity flow problem.

Let \(K \) be the number of commodity types, \(x_{ij}^k \) be the amount of flows of commodity \(k \) on link \((i,j) \), and \(b^k(i) \) be the supply/demand of commodity \(k \) at node \(i \). With other
notations used in Section 2.1.2, the node-link formulation of multi-commodity flow problem is shown below:

\[
\begin{align*}
\text{Minimize } & \quad z(\mathbf{x}) = \sum_{(i,j) \in E} c_{ij} \left(\sum_{k \in K} x_{ij}^k \right) \quad (2.1.3a) \\
\text{s. t.: } & \quad \sum_{\{j: (i,j) \in E\}} x_{ij}^k - \sum_{\{j: (j,i) \in E\}} x_{ji}^k = b_k(i) \quad \forall i \in N, \forall k \in K \quad (2.1.3b) \\
& \quad 0 \leq \sum_{k \in K} x_{ij}^k \leq u_{ij} \quad \forall (i,j) \in E \quad (2.1.3c)
\end{align*}
\]

The formulation above is very similar to the minimum flow cost model in Section 2.1.2, except that the total flow of all commodities on link \((i,j)\) are accounted in the objective (2.1.2a) and the link capacity constraint (2.1.1c), and the flow conservation constraints (2.1.2c) need to be defined for each commodity.

There is a wide variety of application contexts, such as vehicle fleet planning and production planning, which uses the multi-commodity flow problem. Since it is a strongly NP-hard problem (Even et al., 1975), there is no algorithm available that can solve it in polynomial time. But methods like Lagrangian Relaxation, column generation, and Dantzig-Wolfe decomposition can solve it within tolerable amount of time in some cases.

In the multi-commodity flow problem discussed in this section, the unit flow cost of each link is a constant that is independent of the amount of flows on the link. In the cases where the link unit flow cost increases as the amount of flows that are using the link increase, the multi-commodity flow problem evolves to the traffic assignment problem.

2.1.4 Traffic Assignment Model. In the modeling of networks with traffic flows (e.g., road networks, fiber networks, and power transmission networks), the congestion effect is commonly considered. And that means the cost of using a link does not only depend on
the capacity of the link, but also depends on the amount of flows using the link. The graph below illustrates the cost-flow relationship for a long link:

![Cost-Flow Relationship](image)

Figure 2.1.4-i: Cost-Flow Relationship

The horizontal axis represents the amount of flows using the link, and the vertical axis is the corresponding unit flow cost. \(f^0 \) is the base cost for a unit of flow traveling through the link when the link is not used by other flow units, and \(u \) is the link capacity.

In the context of traffic flow in transportation networks, Wardrop (1952) postulated two general principles to determine the distribution of traffic flows on the routes between each origin-destination (OD) pair, and they are:

1. Wardrop’s First Principle: The travel time between an origin-destination (OD) pair is the same on all routes used, and it is less than those which would be experienced by a single vehicle on any unused route.

2. Wardrop’s Second Principle: The trips or movements are routed so that the sum of the travel time for all the movements is a minimum.

These two alternative principles are applied widely to the modeling of traffic flows where traffic congestion effect is considered. In research literature on transportation
networks, the term “traffic assignment” is used for both system optimal traffic flows problem (multi-commodity flow problem with nonlinear flow-dependent cost) and user optimal traffic flows problem (user equilibrium).

Following the notation in Section 2.1.3, the traffic assignment problem is formulated as:

\[
\text{Minimize } z(\mathbf{x}) = \sum_{(i,j) \in E} f_{ij}(\sum_{k \in K} x_{ij}^k) \star (\sum_{k \in K} x_{ij}^k) \\
\text{s. t.:} \\
\sum_{(j,(i,j) \in E)} x_{ij}^k - \sum_{(j,(j,i) \in E)} x_{ji}^k = b^k(i) \quad \forall i \in N, \forall k \in K \\
0 \leq \sum_{k \in K} x_{ij}^k \leq u_{ij} \quad \forall (i,j) \in E
\]

The traffic assignment model is almost the same as the multi-commodity flow model shown in last section, except that \(c_{ij}\) is replaced by the unit flow cost function \(f_{ij}(\sum_{k \in K} x_{ij}^k)\) in objective (2.1.4a). In research related to traffic flows, \(f_{ij}(\sum_{k \in K} x_{ij}^k)\) is designed to be a convex increasing function of \(\sum_{k \in K} x_{ij}^k\), which is the total amount of flows traveling through link \((i,j)\). Branston (1976) reviewed cost-flow functions proposed by researchers at that time, which had been being used in research until today. Among those cost-flow functions the most widely used is:

\[
f_{ij}\left(\sum_{k \in K} x_{ij}^k\right) = f^0_{ij}\left(1 + \alpha \left(\frac{\sum_{k \in K} x_{ij}^k}{u_{ij}}\right)^\beta\right)
\]

where \(f^0_{ij}\) is the base cost, \(\alpha\) and \(\beta\) are parameters that usually take values of 0.15 and 4 respectively.

Sometimes the upper bound of the link capacity constraint (2.1.4c) is removed, since the link capacity information can be integrated into the unit flow cost function, such
that the unit flow cost increases to infinity as the amount of flows on the link approaches its capacity. To give an example, Boyce et al. (1981) designed the cost-flow function as:

\[
f_{ij} \left(\sum_{k \in K} x_{ij}^k \right) = f_{ij}^0 \left(1 + J \left(\frac{\sum_{k \in K} x_{ij}^k}{u_{ij} - \sum_{k \in K} x_{ij}^k} \right) \right)
\]

where \(J \) is a parameter reflecting the delay characteristics along a link.

As a complex nonlinear programming problem, the traffic assignment problem was commonly solved with nonlinear programming solution procedures, which are often combined with some type of decomposition method. Lin et al. (1997) applied the projected Jacobi method for the master problem and a dual Newton-type method to solve the multi-commodity flow quadratic subproblems. Commodity decomposition and arc decomposition were implemented in the dual Newton-type method designed respectively. Goffin et al. (1997) designed a potential reduction algorithm to solve the master problem with column generation technique, which defines a sequence of primal linear programming subproblems. Each subproblem generated finds a minimum cost flow between an origin-destination (OD) pair in a network with infinite link capacities. Lawphongpanich (2000) devised a simplicial decomposition procedure that used Dantzig-Wolfe decomposition for each subproblem. Lotito (2006) developed a disaggregated simplicial decomposition method with a column generation method, which solves a large number of quadratic knapsack subproblems with a Newton-like method. Other nonlinear solution procedures without decomposition include primal-dual interior-point method (Torres et al., 2009), modified analytic center cutting plane method (Babonneau et al., 2009), and alternating linearization bundle method (Kiwi, 2011) have also been proposed to solve the traffic assignment problem.
Despite the intricacy of the traffic assignment problem, there exists significant research that has studied the problem as a network flows problem, and solve it with available network flows algorithms. Petersen (1975) proposed a primal-dual algorithm which constructed the dual problem for the linear approximation of the primal problem. The solution to the dual problem were the node potentials for each commodity. The node with the largest potential among all commodities is selected and the corresponding minimum cost flow problem for the commodity is solved. The solution obtained for that commodity replaces its solution in the primal problem, and the dual problem based on the updated primal solution is constructed for next iteration. Ouorou et al. (2000) designed a minimum mean cycle cancelling algorithm which made descent steps that involved altering the flow vector of one commodity and the vector of total flows around a cycle. And the cycle was identified with minimum mean directed cycle algorithms in residual networks related to the commodities. These studies, instead of treating the traffic assignment as an application of the nonlinear optimization problem and solving it with generic nonlinear programming solution procedures, focused on analyzing the structure of the traffic assignment problem, and developed algorithms which were evolutions of similar network flows algorithms designed for simpler network flows problems.

The traffic assignment problem discussed so far assumes the origin-destination (OD) demand $b^k(i)$ does not change over time, and thus it is often referred as the static traffic assignment problem. In the cases where time-varying demand and/or the dynamic evolution of network traffic flows are considered, the problem escalates to the dynamic traffic assignment problem, which is studied particularly in the context of transportation networks. Hence in the following part of the review until the end of Section 2.1.4., “unit flow cost” is substituted by “travel time” and “flow units” is replaced with “vehicles”.

19
The **dynamic traffic assignment problem** keeps track of the status of all the links (i.e., number of vehicles currently on a link and the associated travel time) and vehicle flows at each point of time, and routes the vehicles that travel through the network over the planning time horizon so that the total travel time of all the vehicles is minimized. In the problem, routing decision needs to be made every time when a vehicle or a platoon of vehicles exit a link or a link segment, and link travel time is updated accordingly. In previous research, as the essential part of the dynamic traffic assignment modeling, the dynamic evolution of link traffic flow was described by four major types of models:

1. Lighthill-Whitham-Richards (LWR) model (kinetic wave model)
2. Point-Queue (PQ) model
3. Spatial-Queue (SQ) model
4. Cell transmission (CTM) model

Lighthill and Whitham (1955) and Richard (1956) modeled traffic flow as a compressible fluid of density \(d \) and fluid-velocity \(V \) (a function of \(d \)), and gave the fundamental equation of flow conservation in continuous time as:

\[
\frac{\partial d}{\partial t} + \frac{\partial (Vd)}{\partial x} = 0
\]

where \(t \) was the time point, \(x \) was the position along a link, and \(d \) was a function of \(t \) and \(x \). This kinetic wave model is commonly referred as the Lighthill-Whitham-Richards (LWR) model. It facilitated the modeling of the dynamic traffic assignment problem as optimal control problems, which were solved with augmented Lagrangian method (Wie et al., 1994; Wie, 1998), and heuristics based on marginal delays (Ghali and Smith, 1994).

Point-Queue (PQ) model is a deterministic queuing model. It assumes every link \((i,j)\) consists a free-flow segment with travel time \(\tau_{ij} \), and a queuing segment with capacity \(u_{ij} \) that restricts the number of vehicles exiting the link. A vehicle entering a link will first
travel through the free-flow segment and then join the queue waiting for its turn to exit the link. Denote λ^t_{ij} as the total number of vehicles in the queue to leave link (i,j) at the beginning of time period t, l^t_{ij} as the number of vehicles leaving link (i,j) at the end of time period t, and e^t_{ij} as the number of vehicles entering link (i,j) at the beginning of time period t. With the presumption that there is no vehicle traveling in the network at the beginning of time $t = 0$, λ^t_{ij} is updated as:

$$\lambda^t_{ij} = \begin{cases} 0, & \forall (i,j) \in E, t = 0, \ldots, \tau_{ij} - 1 \\ \lambda^{t-1}_{ij} + e^{t-\tau_{ij}}_{ij} - l^{t-1}_{ij}, & \forall (i,j) \in E, t = \tau_{ij}, \ldots, T \end{cases}$$

and l^t_{ij} is updated as:

$$l^t_{ij} = \min \{u_{ij}, \lambda^t_{ij}\}, \quad \forall (i,j) \in E, t = 0, \ldots, T.$$

P-Q model limits the number of vehicles leaving link (i,j) to be at most u_{ij} and assumes vehicles stack up vertically so that the queue won’t occupy physical length of the link. And thus there is no restriction on the number of vehicles (e^t_{ij}) that can enter a link.

Spatial-Queue (SQ) model updates the number vehicles waiting to leave a link (λ^t_{ij}) the same as the PQ model, but it is a more realistic model since it considers the fact that vehicle queue will occupy the physical space of the link. If the entire storage space of link (i,j), denoted as H_{ij}, is taken, then no more vehicles can enter the link. Consequently, with the presumption that there is no vehicle traveling in the network at the beginning of time $t = 0$, e^t_{ij} is updated as:

$$e^t_{ij} = \begin{cases} \min \{H_{ij}, u_{ij}\}, & \forall (i,j) \in E, t = 0, \ldots, \tau_{ij} - 1 \\ \min \{H_{ij} - (\lambda^{t-1}_{ij} - l^{t-1}_{ij}), u_{ij}\}, & \forall (i,j) \in E, t = \tau_{ij}, \ldots, T \end{cases}.$$

Unlike LWR, PQ and SQ which are whole-link models, the cell transmission model (CTM) divides each link (i,j) into M_{ij} cells with equal length of $V_{ij}\psi$, where V_{ij} is the free-
flow speed of link \((i, j)\) and \(\psi\) is the unit time interval. Daganzo (1994, 1995) showed that if the relationship between traffic flow \((q)\) and density \((d)\) is characterized by equation:

\[
q = \min\{V_{ij}d, q_{max}, b(d_{jam} - d)\}, \quad \forall 0 \leq d \leq d_{jam}
\]

in which \(q_{max}\) is the maximum flow (or capacity), \(b\) is the backward propagation speed, and \(d_{jam}\) is the jam density, then the LWR model can be approximated by a set of difference equations with current conditions which are updated at every time interval. And the numbers of vehicles entering and leaving a link are updated according to the vehicle flow status of the first and last cells of the link. Hence, CTM is the discrete solution scheme of the LWR model and it captures the congestion evolution within a link as LWR model does.

Let \(y_{ij(k,k+1)}^t\) be the number of vehicles transferred from the \(k^{th}\) cell to the \(k + 1^{th}\) cell on link \((i, j)\) during time \(t\), \(x_{ij(k)}^t\) be the number of vehicles staying in the \(k^{th}\) cell on link \((i, j)\), \(H_{ij(k)}\) be the storage space of the \(k^{th}\) cell on link \((i, j)\), and \(\delta\) be the percentage of vehicles in a congested cell that can leave the cell during a unit time interval. The flow dynamics on link \((i, j)\) can be described using the following equations:

\[
x_{ij(k)}^t = \begin{cases} 0 & \forall (i, j) \in E, k = 1, \ldots, M_{ij}, t = 0 \\ x_{ij(k)}^{t-1} + e_{ij}^t - y_{ij(k,k+1)}^t & \forall (i, j) \in E, k = 1, t = 1, \ldots, T \\ x_{ij(k)}^t - y_{ij(k,k+1)}^t & \forall (i, j) \in E, k = 2, \ldots, M_{ij} - 1, t = 1, \ldots, T' \\ x_{ij(k)}^{t-1} + y_{ij(k-1,k)}^t - l_{ij}^{t-1} & \forall (i, j) \in E, k = M_{ij}, t = 1, \ldots, T
\end{cases}
\]

\[
y_{ij(k,k+1)}^t = \min\{x_{ij(k)}^t, u_{ij}, \delta[H_{ij(k+1)} - x_{ij(k+1)}^t]\}, \quad \forall (i, j) \in E, i = 1, \ldots, M_{ij} - 1, t = 0, \ldots, T
\]

\[
e_{ij}^t = \min\{u_{ij}, \delta(H_{ij(1)} - x_{ij(1)}^t)\}, \quad \forall (i, j) \in E, t = 0, \ldots, T
\]

\[
l_{ij}^t = \min\{u_{ij}, x_{ij(M_{ij})}^t\}, \quad \forall (i, j) \in E, t = 0, \ldots, T
\]
Because of its realistic modelling on link traffic flow and relative simple model structure, CTM has facilitated the research on dynamic traffic assignment problem extensively, especially in single destination networks. Ziliaskopoulos (2000) proposed a linear programming model for dynamic traffic assignment problem in single-destination networks, and proved that the necessary and sufficient condition for system optimal dynamic traffic assignment is that every unit of flow follows the time-dependent least marginal cost path to the destination. Based on that research, Zheng and Chiu (2011) developed an augmenting path algorithm to solve the single destination dynamic traffic assignment problem. Shen and Zhang (2008) concluded the PQ, SQ and CTM models gave the same optimal minimal system cost based on the numerical examples tested. And as a step further, Shen and Zhang (2014) mathematically proved the conclusion drawn in Shen and Zhang (2008), and designed a solution procedure that fitted all three models for the dynamic traffic assignment problem in single-destination networks. As to research on dynamic traffic assignment on general networks, Waller et al. (2013) proposed a CTM based model that considered demand uncertainties. Qian and Zhang (2012) designed a path-based model that adopted PQ and LWR for link flows. And a path marginal cost based algorithm was developed to solve the model formulated.

Besides the four models discussed above, there are other dynamic link traffic flow models proposed in previous research, which are discrete-time models that assume the travel time for each link updates at the beginning of every time period, and stays the same until next time period begins. These models also assume that links can accept any amount of vehicles coming in regardless of the vehicles that are already on the link, and links have first-in-first-out vehicle flows. Lafortune et al. (1993) developed a dynamic programming model, in which the link travel time was a step function of the amount of flows in the time period, and the link flow states were propagated with state transition functions, which
scheduled future events based on current link flow status. Linear programming models were also developed through approximation schemes for the nonlinear objective function (Nahapetyan and Lawphongpanich, 2007), or through linearization of the link congestion function (Carey and Subrahmanian, 2000), or by modeling the travel time as piece-wise linear functions of the number of vehicles on the link (Kaufman et al., 1998).

Traffic assignment model is commonly applied to the modeling of networks with central controls on the traffic flows like railway networks. However, in networks without central control where flow units can choose their routes based on their individual objectives, a network flows model that adopts Wardrop’s first principle is needed, and that is, the traffic equilibrium model.

2.1.5 Traffic Equilibrium Model. If all the users of the network travel to their destinations non-cooperatively, that is, each user chooses the route that minimizes his/her own travel cost, then the equilibrium state in which no single user can reduce his/her travel cost through unilateral route change, will be eventually reached as described in Wardrop’s first principle. In traffic assignment problems, it is possible that some travelers are assigned to routes with higher cost than those assigned to others for the same OD pair, so as to achieve lower system wide total cost. This kind of flow pattern will not happen in traffic equilibrium problems.

As far as the literature reviewed, the existing traffic equilibrium models can be categorized with respect to the following aspects:

(1) whether to model the dynamic evolution of link traffic flow or not – dynamic traffic equilibrium vs static traffic equilibrium;

(2) whether to model the elasticity of demand or not – traffic equilibrium with elastic demand vs traffic equilibrium with inelastic demand;
whether to consider users’ perception errors on path cost or not – stochastic traffic equilibrium vs deterministic traffic equilibrium;

(4) whether to consider the multi-class composition of traffic flow or not – traffic equilibrium with heterogeneous flows vs traffic equilibrium with homogeneous flows.

The simplest traffic equilibrium model would be the one that does not consider the dynamic evolution of link traffic flow (static), and presumes users have perfect knowledge on the cost of all the routes (deterministic), demand does not change with route cost (inelastic demand), and the traffic flow only contains one class of users (homogeneous flow). Denote \(OD \) as the set of origin-destination demand, \(D_k \) as the demand of OD pair \(k \), \(x_i \) as the total flow on link \(i \) from all OD pairs, \(y_{ik} \) as the flow from OD pair \(k \) on link \(i \), and \(f_i(x_i) \) as the flow-dependent unit flow cost (link travel time) function of link \(i \), this **basic traffic equilibrium model** is formulated as:

\[
\text{Minimize } z(x) = \sum_{i \in E} x_i f_i(\omega) \quad \text{d}\omega
\]

\[
\text{s.t.:}
\]

\[
D_k = \sum_{(i:E_i^-=OD^-_k, i \in E)} y_{ik} - \sum_{(j:E_j^+=OD^-_k, j \in E)} y_{jk} \quad \forall k \in OD
\]

\[
D_k = \sum_{(i:E_i^+=OD^+_k, i \in E)} y_{ik} - \sum_{(j:E_j^-=OD^+_k, j \in E)} y_{jk} \quad \forall k \in OD
\]

\[
\sum_{(i:E_i^-=l, i \in E)} y_{ik} = \sum_{(j:E_j^+=l, j \in E)} y_{jk}, \forall l \in N, \forall k \in \{k: OD^-_k \neq l\} \cap \{k: OD^+_k \neq l\}
\]

\[
x_i = \sum_{k \in OD} y_{ik} \quad \forall i \in E
\]

\[
0 \leq x_i \leq u_i \quad \forall (i,j) \in E
\]

where \(E_i^- \) is the head node of link \(i \), \(E_i^+ \) is the tail node of link \(i \), and \(OD^-_k \) and \(OD^+_k \) are the origin node and destination node of OD pair \(k \) respectively. Constraints from (2.1.5b) to (2.1.5d) are flow conservation constraints, and constraints (2.1.5e) ensures the
total link flow is the summation of flows from all OD pairs on the link. Like in traffic assignment models, the link capacity constraint (2.1.5f) is usually omitted by modelling \(f_i(x_i) \) as a convex function that increases to infinity as \(x_i \) approaches \(u_i \).

Comparing to the link-based formulation presented above, a more straightforward formulation of the basic traffic equilibrium problem is the route-based formulation since the equilibrium condition is defined on route cost. Let \(L_k \) be the route set of OD pair \(k \), \(r_{lk} \) be the flow on route \(l \) of OD pair \(k \), and \(\delta_{ilk} \) be the binary parameter indicating whether link \(i \) is part of the route \(l \) for OD pair \(k \) or not, the route-based model is formulated as:

\[
\text{Minimize } z(\mathbf{x}) = \sum_{i \in E} \int_0^{x_i} f_i(\omega) \times d\omega \quad (2.1.5\text{a})
\]

\[
s.t.: \\
D_k = \sum_{l \in L_k} r_{lk} \quad \forall k \in OD \quad (2.1.5\text{g})
\]

\[
x_i = \sum_{(k \in OD)} \sum_{(l \in L_k)} r_{lk} \delta_{ilk} \quad \forall i \in E \quad (2.1.5\text{h})
\]

\[
0 \leq x_i \leq u_i \quad \forall (i,j) \in E \quad (2.1.5\text{f})
\]

\[
r_{lk} \geq 0 \quad \forall l \in L_k, \forall k \in OD \quad (2.1.5\text{i})
\]

where constraint (2.1.5g) makes sure the demand of each OD pair is satisfied and constraint (2.1.5h) calculates the total amount of flow on a link from all OD pairs. The disadvantage of the route-based formulation is that it requires explicit enumeration of paths between every OD pair to obtain the route set \(L_k \) and the binary parameter set \(\delta_{ilk} \). With these two parameter sets, the multi-commodity flow problem and traffic assignment problem reviewed in previous two subsections can also be formulated as route-based models.

With the route-based formulation, Sheffi (1984) demonstrated that the first-order conditions of the Lagrangian relaxation with respect to constraint (2.1.5g) were essentially the user equilibrium conditions, and subsequently proved that the user equilibrium
conditions were satisfied at the optimal point. Sheffi (1984) also proved the optimal point was unique by showing the feasible region and the objective function were convex.

The link-based traffic equilibrium problem can be efficiently solved with Frank-Wolfe algorithm (1956). Based on an initial set of feasible link flows, the algorithm repeatedly solves a linear programming problem to obtain auxiliary link flows, and performs a line search for the optimal convex combination of the auxiliary flows and the current link flows. Since the traffic equilibrium problem has a unique optimal solution, the convergence of Frank-Wolfe algorithm is assured because all search directions of line search are descent directions and all steps are descent steps. Besides line search, the method of successive average, which assigns weights of $1 - \frac{1}{n}$ and $\frac{1}{n}$ to the current flow and the auxiliary flow respectively, is also used to obtain the convex combination of flows. The convergence of Frank-Wolfe algorithm with successive average method was proven by Powell and Sheffi (1982). Even though the Frank-Wolfe algorithm with either line search or successive average method converges, the converging process is considered slow. To accelerate the convergence, Patriksson (1994) proposed a simplicial decomposition approach which stores all the auxiliary flow vectors generated in previous iterations and obtain the optimal convex combination of all these flow vectors as the resulting flow of current iteration.

If the OD demand is not fixed but considered as a decreasing function of the traveling cost between the OD pair, then the elastic demand is modeled in the traffic equilibrium problem. Let $Q_k^{-1}(\omega)$ be the inverse of the demand function associated with the travel cost of OD pair k, the route-based traffic equilibrium problem with elastic demand is formulated as:

$$
\text{Minimize } z(\mathbf{x}) = \sum_{i \in E} \int_0^{x_i} f_i(\omega) \ast d\omega - \sum_{k \in \text{OD}} \int_0^{D_k} Q_k^{-1}(\omega) d\omega
$$

(2.1.5j)
s. t.:

\[D_k = \sum_{l \in L_k} r_{lk} \quad \forall k \in OD \] \hspace{1cm} (2.1.5k)

\[x_i = \sum_{k \in OD} \sum_{l \in L_k} r_{lk} \delta_{ilk} \quad \forall i \in E \] \hspace{1cm} (2.1.5h)

\[0 \leq x_i \leq u_i \quad \forall (i, j) \in E \] \hspace{1cm} (2.1.5f)

\[r_{lk} \geq 0 \quad \forall l \in L_k, \forall k \in OD \] \hspace{1cm} (2.1.5i)

\[D_k \leq \overline{D}_k \quad \forall k \in OD \] \hspace{1cm} (2.1.5l)

where \(\overline{D}_k \) is the upper bound of the demand that can be generated from OD pair \(k \).

It should be noted in the formulation above is that \(D_k \) now is a variable instead of a parameter, and that is also why constraint (2.1.5l) is included to define the value range of \(D_k \). Sheffi (1984) constructed the Lagrangian of the problem with respect to constraint (2.1.5k), and proved the route-based formulation had unique optimal solution, and the optimal solution satisfies the user equilibrium condition with elastic demand.

With initial link traveling cost based on the presumption that there is no flow, and through iterative calculation of the path cost, corresponding demand, auxiliary link flows, and link traveling cost, method of successive averages can be adapted to solve the traffic equilibrium problem with elastic demand (Bell and Lida, 1997). Simple changes in the representation of the problem, such as the zero-cost overflow formulation and the excess-demand formulation, can also make the problem amenable for solution with fixed-demand equilibration algorithms (Sheffi, 1984).

The basic traffic equilibrium model and the model with elastic demand discussed above assume users have perfect information on route travel cost (e.g., travel time) over the entire network, and thus are referred as the deterministic models. In contrast to that, the **stochastic traffic equilibrium models** assume travelers do not know the actual cost of routes, and their perceived route cost is the actual route cost plus a random error.
Travelers choose the routes with the minimum perceived travel cost and eventually will reach the stochastic user equilibrium state, which is described as: no travelers can improve his or her perceived travel cost by unilaterally changing routes.

Denote \(p_{lk} \) as the probability that route \(l \) of OD pair \(k \) is chosen among all the routes connecting this OD pair, \(c_{lk} \) as the random variable representing the perceived travel cost on route \(l \) of OD pair \(k \), and \(f \) as the given set of measured travel costs (actual travel cost for each route), in the case that demand is inelastic, the stochastic user equilibrium (SUE) conditions can be characterized by the following equations:

\[
\sum_{l \in L_k} P_{lk} = D_k P_{lk} \quad \forall k \in OD, \forall l \in L_k
\]

\[
P_{lk} = P_{lk}(f) = P(C_{lk} \leq C_{l'k}, \forall l' \neq l, l' \in L_k, l \in L_k | f) \quad \forall k \in OD, \forall l \in L_k
\]

The route choice probability is interpreted as the probability of perceived travel cost of the chosen route being the least among all the routes between the OD pair. Therefore, at stochastic user equilibrium, the cost on all used paths is not going to be equal but will conform the SUE conditions listed above.

To describe the route choice probability function \(p_{lk}(f) \), various route choice models were proposed in previous research, and among them the multinomial logit (MNL) and multinomial probit (MNP) were the two earliest models. The multinomial logit model assumes the random error terms of the perceived travel cost are independently and identically distributed Gumbel variables, and derives the route choice probability as:

\[
p_{lk} = \frac{\exp(f_{r_{lk}})}{\sum_{l' \in L_k} \exp(f_{r_{l'k}})}
\]

where \(f_{r_{lk}} \) is the measured travel cost of route \(r_{lk} \). Even though the multinomial logit model gives the route choice probability in a nice closed form, it has two major deficiencies (Sheffi, 1984). First, it lacks sensitivity to network topology and this results in
assigning too much flow to partially overlapped routes. Second, it calculates route choice probabilities solely based on route cost differences, and does not consider the dependence of the perception variance on the measured route cost. Many extensions of the multinomial logit model, such as the C-logit, implicit availability/perception logit, path-size logit, paired combinatorial logit, cross-nested logit, generalized nested logit, and logit kernel (mixed logit), were developed to fix the deficiencies while preserving the analytical tractability of the logit-type model. Prashker and Bekhor (2004) gave a comprehensive review on these models and integrated them into the modeling of stochastic traffic equilibrium problem.

The multinomial probit model assumes the random error terms are normal random variables with zero mean, and consequently the joint density function of the error terms is a multivariate normal function. The variance-covariance matrix usually is constructed based on the measured route cost and the cost of overlapped part of two routes (Sheffi, 1984; Yai et al., 1997). The multinomial probit model does not have the two deficiencies as the logit model and thus generates flow patterns that are more reasonable. However, it requires high computational cost when there are more than two alternative routes, because the route choice probability function, which is the cumulative distribution function of a multinomial random variable, does not have a closed form. To evaluate the route choice probability, analytical approximation methods like numerical integration algorithms and successive approximation method, and Monte Carlo simulation were adopted in previous research, which were reviewed by Sheffi (1985) and Rosa and Maher (2002).

More recently, Castillo et al. (2008) used Weibull distribution to model the random perception error terms, and proposed a multinomial weibit (MNW) route choice model to capture the route-specific perception variance. The MNW model has advantages
over the MNL and MNP models because it has a closed-form route choice probability function, and it is able to model perception variance as an increasing function of the measured route cost. Based on this, Kitthamkesorn and Chen (2013) designed a path-size weibit model which resolved the route overlapping issue with the introduction of a path-size factor. This path-size factor adjusts choice probabilities for routes with strong couplings so as to prevent too much flow being assigned to overlapping routes.

Without the integration of specific route choice models, Sheffi (1984) formulated the general stochastic traffic equilibrium problem as an optimization problem with the objective:

\[
\min_{x} z(x) = -\sum_{k \in OD} D_k \left(E \left[\min_{l \in L_k} \{C_{lk}\} | c_k(x) \right] \right) + \sum_{i \in E} x_i f_i(x_i) - \sum_{i \in E} \int_0^{x_i} f_i(\omega) d\omega
\]

where \(x \) is the set of route flows for all the OD pairs, \(c_k(x) \) is the actual cost of the routes connecting OD pair \(k \), and \(E \left[\min_{l \in L_k} \{C_{lk}\} | c_k(x) \right] \) is the expected perceived travel cost for OD pair \(k \). Represent the expected perceived travel cost function \(E \left[\min_{l \in L_k} \{C_{lk}\} | c_k(x) \right] \) by \(S_k[c_k(x)] \), since \(\frac{\partial S_k(c_k)}{\partial c_{lk}} = P_{lk} \) and \(\frac{\partial^2 S_k(c_k)}{\partial c_{lk}^2} = \frac{\partial P_{lk}(c_{lk})}{\partial c_{lk}} \leq 0 \) because routes with higher actual cost should have smaller probability of being perceived as the route with least perceived cost, \(S_k[c_k(x)] \) is concave with respect to \(c_k(x) \). With the properties of \(S_k[c_k(x)] \) regarding its first and second partial derivatives on \(c_k(x) \), Sheffi (1984) showed the first-order conditions of the optimization problem coincided with the SUE conditions and proved the optimal solution was the stochastic user equilibrium. Since \(f_i(x_i) \) is monotonic, the inverse \(x_i(f_i) \) exists. And thus the objective \(z(x) \) can be transformed as a function of link traveling cost \(f \) (which is \(z(f) \)) rather than link flows \(x \) (which is \(z(x) \)). This means \(z(f) \) and \(z(x) \) are monotonic transformation to each other, and each point of \(z(x) \) corresponds
to one and only one point of \(z(f) \). With this property of \(z(f) \) and \(z(x) \), Sheffi (1984) proved \(z(f) \) had a unique minimum by showing its Hessian matrix was positive definite, and proved \(z(x) \) also had a unique minimum which was the stochastic user equilibrium.

Based on the route choice models adopted in the stochastic traffic equilibrium problem, various solution approaches have been developed. Stochastic traffic equilibrium with logit-type route choice models can be solved with Powell-Sheffi algorithm (Powell and Sheffi, 1982), modified Frank-Wolfe algorithm (Akamastu, 1996), path-based partial linearization method (Chen et al., 2012), and self-adaptive gradient projection algorithm (Zhou et al., 2012). For stochastic equilibrium models based on MNP, the most commonly used approaches are based on Monte Carlo simulation (Sheffi, 1984; Clark et al., 2002). As to weibit stochastic user equilibrium models, Kitthamkesorn (2014) developed a link-based solution algorithm which obtained a search direction by solving a convex auxiliary problem (i.e., the first-order approximation of the objective function), and performed line search based on the search direction to calculate the step size and solution of current iteration.

Recent research also studied the modeling and solution methods for stochastic traffic equilibrium with elastic demand. Most of the research reviewed adopted logit-type route choice models (Ryu et al., 2014; Sun et al., 2015; Xu et al., 2013; Yu et al., 2014); only Meng et al. (2012) studied the problem with multinomial probit route choice model. Solution approaches proposed have been quite similar to those developed for the problem with inelastic demands. But there were also new solution methods like the predictor-corrector interior point algorithm designed by Yu et al. (2014).

Most of the research on stochastic traffic equilibrium assumes the actual link and route travel costs at free-flow conditions are deterministic. However, this assumption is
not realistic since the free-flow travel cost will be different in different weather and road
conditions, and will be affected by non-routine traffic delays. Mirchandani and Soroush
(1987) relaxed that assumption and proposed a generalized stochastic traffic equilibrium
model where the free-flow travel cost on a link is probabilistic, introducing another level
of randomness besides the random perception errors on travel cost. They studied the
problem with linear, exponential and quadratic disutility functions, and solved it with a
generalized incremental loading assignment technique.

Like the dynamic traffic assignment problem, in the cases where time-varying
demand and the dynamic evolution of link traffic flows are considered in the traffic
equilibrium study, the dynamic traffic equilibrium problem arises. To model the
dynamic evolution of link traffic flows, research on dynamic traffic equilibrium has used
LWR model (Bellei et al., 2005; Kachroo and Ozbay, 1998;), point-queue model (Gawron,
1998; Han, 2003; Tong and Wong, 2010; Iryo, 2015), spatial queue model (Balijepalli et
al., 2014), cell-transmission model (Balijepalli et al., 2014; Golani et al., 2004; Levin et al.,
2015a; Meng and Khoo, 2012; Qian and Zhang, 2013; Waller and Ziliaskopoulos, 2006),
and various other models with combinations of link performance functions and flow
conservation functions (Carey, 2009; Kachroo and Ozbay, 2005; Li et al., 2013a;
Papageorgiou, 1990; Varia and Dhing 2004; Wie et al., 1990; Yang et al., 2012).

Similar to the original version of Wardrop’s first principle that describes the static
traffic equilibrium, the dynamic generalization of Wardrop’s first principle is stated as:

“If, at each instant in time, for each origin-destination pair, the instantaneous
expected unit travel costs for all the paths that are being used are identical and
equal to the minimum instantaneous expected unit path cost, the
corresponding time-varying flow pattern is said to be user optimized.” (Wie et
al., 1990)
The generalized Wardrop’s first principle applies to the **dynamic deterministic traffic equilibrium problem**, which assumes every user has perfect knowledge on the path cost throughout the time horizon.

Based on the link traffic flow models adopted, the dynamic deterministic traffic equilibrium problem may have different solution properties. Szeto et al. (2006) gave a detailed comparison between point-queue models and spatial-queue models on route cost properties and solution properties. They showed that dynamic user equilibrium existed in point-queue models but might not exist in spatial-queue models, and both of these two types of models might have multiple equilibria. For point-queue models, the existence of dynamic equilibrium was mathematically proven by Mounce (2007), and multiple equilibria was shown by Iryo (2011). However, the solution properties of dynamic equilibrium solutions with the prevalent cell-transmission model have not been thoroughly investigated.

The dynamic deterministic traffic equilibrium problem has been studied with solution approaches from three disciplines: control theory, nonlinear programming, and simulation. Research that studied the dynamic user equilibrium as control problems commonly applied nonlinear optimal control methods (Papageorgiou, 1990) or feedback methodologies (Papageorgiou, 1990; Kachroo et al., 1998; Kachroo et al., 2005). In literature where dynamic user equilibrium was formulated as nonlinear programming problems, and combinatorial solution procedures have been proposed to solve the problem (Golani et al., 2004; Janson, 1991; Waller et al., 2006). Due to the convenience of describing the dynamic evolution of traffic flows, simulation methods have been the most popular approach to the dynamic equilibrium problem. It either is used as a platform to develop new and efficient traffic equilibrium assignment algorithms (Gawron, 1998; Levin et al., 2015; Varia et al., 2004; Yang et al., 2012) and mechanisms that improve the
efficiency of existing algorithms (Balijepalli et al., 2015; Levin et al., 2015; Tian et al., 2014), or provided results for solution procedures developed to compare with (Li et al., 2013). Besides solution approaches from those three disciplines, Carey (2009) proposed a bi-level dynamic user equilibrium framework, which separated the loading of flows on the time-space network from the modeling of flows and trip times of individual links.

The stochastic version of the dynamic traffic equilibrium problem relaxes the presumption that every user has perfect knowledge about route cost, and assumes users perceive route cost with a random perception error and choose the route with the minimum perceived cost at each time instant. Hence, at dynamic stochastic traffic equilibrium, for each OD pair and at each instant in time, no user can reduce his or her perceived route travel cost by unilaterally changing routes. Iryo (2015) showed the existence and uniqueness of dynamic stochastic equilibrium in a simple loop network with point-queue model for link traffic flows. Solution properties of dynamic stochastic equilibrium with other link flow models and route choice models have not been investigated yet.

The handful of papers found on the dynamic stochastic traffic equilibrium adopted either the basic multinomial logit model (Bellei et al., 2005; Han, 2003; Qian et al., 2013) or the multinomial probit model (Meng et al., 2012; Zhang et al., 2008) for the route choice probability function. The solution methods proposed include method of successive average (Han, 2003; Meng et al., 2012; Zhang et al., 2008), pure network loading (Qian et al., 2013; Han, 2003), diagonalization method (Han, 2003), quadratic interpolation (Han, 2003), Bather’s method (Bellei et al. 2005) and Ishikawa algorithm (Meng et al., 2012). Chong et al. (2014) modeled the dynamic route choice as the conditional joint distribution of route traffic given that the network was in dynamic stochastic equilibrium, and
developed a Metropolis-Hastings sampling scheme to solve the dynamic stochastic equilibrium problem.

Little research is available on models and solution approaches for dynamic traffic equilibrium with elastic demand (Guo et al., 2015). Because the dynamic traffic equilibrium problem has an additional temporal dimension than the static traffic equilibrium problem, it is natural to include more flexibility in demand modelling than merely accounting for the demand elasticity. Research has studied the demand variability by defining departure times as variables to be optimized, and to minimize route travel times at equilibrium (Han et al., 2011; Heydecker et al., 2005; Huang et al., 2002; Huang et al., 2002; Li et al., 2008; Lim et al., 2005; Long et al., 2015; Mahmassani et al., 1984; Mun, 2011). These research formulated the dynamic traffic equilibrium problem with departure time choices as nonlinear optimization problems, and proposed various heuristics and meta-heuristics (e.g., genetic algorithm) to solve the models developed.

Traffic equilibrium models discussed so far assume traffic flow is homogeneous. In transportation networks, flow homogeneity means all the vehicles or travelers are the same in all aspects (e.g., vehicle type, link travel time function, route choice behavior, etc.) except for their origins and destinations. However, it is common sense that traffic flow is composed of vehicles in different physical sizes and drivers with different driving behaviors. Hence, to model traffic equilibrium more realistically, it is necessary to consider the heterogeneity of traffic flow.

Numerous research studied the modelling of traffic equilibrium with heterogeneous flows in transportation networks. To deal with flow heterogeneity, these research divided travelers/vehicles into a number of classes, and assigned each class of users with different utility functions (Konishi, 2004), or value of time (Han and Yang, 2008; Huang and Li, 2007; Jiang et al., 2011; Lu and Mahmassani, 2008; Lu and
Numerous research studied the modelling of traffic equilibrium with heterogeneous flows in transportation networks. To deal with flow heterogeneity, these research divided travelers/vehicles into a number of classes, and assigned each class of users with different utility functions (Konishi, 2004), or value of time (Han et al., 2008; Huang et al., 2007; Jiang et al., 2011; Lu et al., 2008; Lu et al., 2009), or link travel cost/time (Bliemer et al., 2003; Mahmassani et al., 1988; Scrimali, 2014; Wu et al., 2006), or toll amounts (Ye et al., 2010).

In stochastic equilibrium problems, flow heterogeneity was also captured in route choice models, so that the routing behaviors of users in different classes were described by route choice models with different parameter values. For example, for logit-based route choice models, different classes of travelers have different dispersion parameters (Miwa et al., 2010) or different variances for route cost perception errors (Jaber et al., 2009). And for probit-based route choice models, travelers in different classes have different variance-covariance matrices (Connors et al., 2007; Lee, 2008; Zhang et al., 2013). Di et al. (2008) proposed a travel time budget model that differentiated travelers based on their risk-taking preferences. In that paper, travelers were categorized into three classes (i.e., risk averse, risk prone and risk neutral) and each class was assigned with a distinct travel time risk, which was the probability that a trip could not be completed within a certain amount of time given the probability density function of the trip time. The risk-based route disutility was calculated as the summation of the expected perceived trip time and a risk-factored term, which was the product of normalized quantile of completing the trip with class-specific risk value, the weight for route travel time variance, and the variance of the perceived route travel time. Based on the model proposed by Di et al. (2008), Nie (2011)
modeled the perceived trip travel time as the convolution of flow-dependent perceived link travel time and proposed a link-based model. Wu et al. (2013) devised an efficient gradient projection algorithm to solve the model proposed in Nie (2011), which avoided path enumeration through a column generation procedure based on a reliable shortest path algorithm. With the same classification of travelers based on the risk-taking preference, Xu et al. (2014) designed a mean-excess travel time model that did not only consider travel budget but also accounted for demand elasticity.

The multi-class traffic equilibrium problem has been studied in dynamic settings as well (Bliemer et al., 2003; Lee, 2008; Lu et al., 2008; Lu et al., 2009; Scrimali, 2014; Zhang et al., 2013). Compared to the static models, the dynamic models proposed described the traffic flow with more details. These models assumed overtaking behaviors could happen among vehicles in different classes, and vehicles in the same class still obeyed the First-In-First-Out rule while they were traveling in a link. The class-specific link flow status was updated and link travel cost was calculated based on the aggregated flow on the link for each class.

The equilibrium states of various models with heterogeneous traffic flows (i.e., static or dynamic, deterministic or stochastic, and elastic demand or inelastic demand) can be described similarly to the counterpart models with homogeneous flows. The solution approaches developed are also quite similar to the homogeneous flow cases except for specific considerations for class-specific travel cost calculation and route assignment.

As a conclusion for this subsection, the traffic equilibrium problem is a big topic with a broad scope. Traffic equilibrium is not only studied in the context of traffic flow modeling in transportation networks, but also in other subjects like the power transmission in power distribution networks and packets routing in fiber networks. This
subsection only reviewed fundamental and major equilibrium models that have been
extensively studied in previous research. Other types of traffic equilibrium models, such
as the model considering link interactions in which travel cost of a link also depends on
the flows on other links, and the equilibrium modeling of modal split where travel demand
can split and take different modes of transportation (e.g., cars, buses, and light rails), are
not covered in this review.

2.2 General Network Maintenance Planning

Network maintenance planning has been studied with applications in various
industries. Among the rich literature found, some researches have investigated this
problem with a network-wide perspective. They schedule the maintenance of network
components to achieve maximum overall network performance or minimum total
maintenance cost. Criteria that evaluate the maintenance plan on its impact on system-
wide network performance, such as network reliability, network operating cost, and
network flows disruption, have been adopted in previous research. This section reviews
the maintenance planning for networks other than the transportation network,
emphasizing the general modeling approaches adopted in literature.

The reliability modeling approach has been widely applied in the research of
maintenance planning for bridge networks (Bocchini and Frangopol, 2011; Bocchini and
Frangopol., 2013; Frangopol and Liu, 2007; Hu et al., 2015; Liu et al., 2005; Liu et al.,
2006; Morcous et al., 2005), power generation and transmission networks (Marquez et
al., 2013; Usberti et al., 2015), water distribution pipe networks (Luong et al., 2005), and
railroad networks (Zhang et al., 2013). With Markovian models (Luong et al., 2005;
Morcous et al., 2005; Orcesi et al., 2010) or reliability index profiles which are functions
of time and repair effectiveness (Bocchini et al., 2011; Bocchini et al., 2013; Hu et al., 2015;
Liu and Frangopol, 2005; Liu and Frangopol, 2006; Marquez et al., 2013; Usberti et al., 2012; Zhang et al., 2013b), the reliability modeling approach models the deterioration process and condition improvements after maintenance for each network component. The long-term network level reliability then is evaluated by objective functions that aggregate network components’ condition throughout the planning horizon.

The objective functions used in the literature reviewed can be categorized into three major types. The first type of objective functions calculate the weighted average based on the reliability indicators of individual network components. Exemplary objective functions in this type include the weighted average bridge condition (Morcous and Lounis, 2005), the total weighted long-run availability of all the pipes (Luong and Nagarur, 2005) and the expected number of power failures per year for each customer (Usberti et al., 2012). The second type of objective functions minimize the total maintenance cost over the planning horizon, which are constrained by required level of network reliability like the connectivity requirements in bridge networks (Bocchini and Frangopol, 2013; Liu and Frangopol, 2005; Liu and Frangopol, 2006). The third type of objective functions minimize the summation of total network usage cost and maintenance cost over the period of time under consideration. In the models where the third type of objective functions are applied, the unit cost of using the network components (e.g., links) depends on the condition of the component. And the objective function requires maintenance to be scheduled so that the maintenance cost is minimized, and the resulting condition of network components gives the minimum total users’ cost over the planning horizon (Hu et al., 2015; Orcesi et al., 2010).

In network operating cost modeling, the optimality of a maintenance plan is evaluated more directly. For bridge networks, Bocchini and Frangopol (2011) evaluated the maintenance schedule by the total flow cost at users’ equilibrium. For power
generation and transmission networks, based on the fact that the unit costs of power generation for different generators were different, Marwali and Shahidehpour (1998), Marwali and Shahidehpour (1999), and Niazi et al. (2015) developed models that minimized the total energy production cost during the maintenance period.

Among literature reviewed on bridge network maintenance planning, only Orcesi and Cremona (2010) considered the impact of bridge capacity reduction caused by maintenance activities on network flows. The rest of the literature assumed the bridge would not be closed or have capacity reduction during the maintenance, which could be a reasonable presumption if the planning time horizon for the entire network is much longer than the time period when the bridge is under maintenance. In power generation and transmission networks, more research was conducted on short-term maintenance scheduling. For safety reasons, generators or transmission lines have to be physically disconnected from the network for maintenance activities. To deal with the temporal unavailability of generators and transmission lines, Gomes et al. (2007) proposed a model to minimize the number of critical power transmission branches. In graph theory, the critical branch is defined as the only branch connected to the vertex point, the removal of which will disconnect the network. Goel et al. (2013) developed a workforce routing and scheduling model to minimize the total down time of transmission lines and the travel effort of maintenance crews. Efficient workforce routing is an important factor to consider in power transmission line maintenance planning since maintenance crews have to travel along the long stretches of transmission lines to maintain them. Similar types of workforce routing and scheduling models were proposed in literature on railroad network maintenance scheduling as well (Peng and Ouyang, 2012; Zhang et al., 2013b).

In research that adopted network flows modeling approach, the temporal capacity reduction or unavailability of network components, and its impact on network flows were
studied. Tawarmalani and Li (2011) proposed a mixed-integer programming model that scheduled link maintenance in abstract tree networks to minimize the total flow disruptions, which was the difference between the flow patterns before and during the maintenance. Boland et al. (2014) studied the network maintenance scheduling with the objective of maximizing the total flow over the planning time horizon, and investigated the problem as a maximum total flow problem with flexible link outages. Based on Boland et al., (2014), Boland et al. (2015) extended the research and developed continuous-time models that considered storage nodes. In that research, integer programming models based on time discretization were developed to provide primal bounds and dual bounds for the continuous time problem. Both Boland et al. (2014) and Boland et al. (2015) applied the models developed to the maintenance scheduling of a coal mine production network.

Research reviewed in this section studied maintenance planning in networks that had relatively simple network flows attributes (e.g., single OD demand, single commodity), and few research explicitly considered or modeled these attributes. In research on maintenance planning and scheduling for transportation networks, the flow demand constraints, flow conservation constraints, and equilibrium conditions were more commonly considered in models developed. And those studies are reviewed in next section.

2.3 Maintenance Planning in Transportation Networks

The repair and maintenance of road network results in “work zones”, where some lane segments of a link are closed for a predicted period of time until the work is completed. Work zone planning is a challenging task since there are multiple parties involved and more than many factors need to be taken into consideration. Bayraktar and Hastak (2009) reviewed the factors impacting the success of work zone projects. They modeled the
relationships between the goals of the project stakeholders and public satisfaction of the project using Bayesian belief networks. The model was aimed to assist highway agencies in developing suitable contracting strategies considering 52 interrelated factors impacting the success of work zone projects, which were grouped into four categories (contract characteristics, motorist issues, public issues, and resource issues). Despite the comprehensive list of factors taken into account, the model can only help prepare bids and not help to actually schedule the work zones.

Most of the literature related to the maintenance planning in transportation networks can be grouped into four categories. The first category includes research that investigated the long-term network rehabilitation planning problem with the objective of maintaining the roads in good condition with least cost in different aspects. For example, Smilowitz and Madanat (2000) proposed a linear programming model to determine the optimal maintenance activities for each link at each time interval that minimized the total maintenance cost and user cost over the planning time horizon. Both user cost and maintenance cost of a specific maintenance type were functions of the link states. And the link states were modeled as a Markovian process to capture the quality deterioration and maintenance effectiveness. To give another example, Chu and Chen (2012) developed a bi-level hybrid dynamic model in which the upper level problem decides the optimal threshold for each road that triggers maintenance action and the lower level problem solves the user equilibrium problem. These two levels of problems are connected by the road deterioration function which models the effects of traffic loads on a road and the impacts of road roughness on users’ traveling cost. This type of research considers network-wide maintenance planning over a relatively long period of time (a year or longer). By assuming the project period is much shorter than the planning horizon, they omitted the impact of temporary link capacity reductions on traffic flow caused by the maintenance
work. However, this assumption is not always reasonable especially for the maintenance work like resurfacing sets of links which would take months or longer. When the length of project period is comparable to the planning horizon, it is necessary to consider the effect of temporary link capacity reductions and to schedule the work zones in the way that minimizes the negative impacts on traffic flows.

Research in the second category focused on developing operational strategies for work zone scheduling on a highway segment or a local arterial. Some research in this category has studied the short-term work zone scheduling with time horizons less than a day. This research focuses on optimizing the work zone planning of a single link but does not consider the impact of possible diverting traffic resulted from work zones to other links that are connected to or close to the work zone; see e.g., works of Meng and Weng (2013), Tang and Chien (2008) and Jiang and Adeli (2003). However, in reality, as long as traffic congestion exists and there are alternative routes available, some portion of the traffic will divert to other routes which will affect the traffic on those alternative routes. Chien and Tang (2014) proposed a genetic algorithm to optimize the work zone length and start time in a day of the maintenance work on a highway stretch. The optimal schedule minimizes the total cost to the agencies conducting the maintenance plus the cost to the road users. Even though the temporary link capacity reductions, and resulting increased road user cost, and possible traffic diversion, were modeled, only one alternative route for the diverted traffic was considered. Often there are more than two lanes for some segments of highway, but Chien and Tang (2014) did not explicitly explore different lane closing scenarios. Schroeder and Rouphail (2010) compared different lane closure scenarios and discussed the operational impacts of freeway work zones on traffic. Their approach can only compare every limited number of scenarios since each scenario requires extensive analysis. Summarizing, the research in this category focuses on scheduling work zones on
single links and has very limited or no consideration on the impact of traffic diversion resulting from multiple link capacity reductions.

The third category consists research that studied the scheduling of network expansion projects. This type of research specifically considered the flow pattern changes caused by the increase of link capacities or the addition of new links over the planning time horizon. This research topic is closely related to the network design problem, which selects among a set of candidate links to be added to a network with budget constraints, so as to achieve lowest total cost at users’ equilibrium state or system optimum. It is an extension of the network design problem since the addition of the chosen links need to be scheduled, and possible traffic flow pattern changes need to be evaluated after the addition of each link. Fontaine and Minner (2014) developed a mixed-integer programming model to select and schedule network expansion projects with minimum total project cost and system optimum flow cost, and solved it using Bender’s decomposition. Bagloee and Asadi (2015) presumed the set of network expansion projects were given and only one of these projects could be worked on at a time, and studied the network expansion scheduling problem as a traveling sales man problem to determine the optimal sequence of the expansion projects. The inter-dependency of the expansion projects was evaluated using the artificial neural network model, so that the “cost” of “moving” from one expansion project to another could be computed. Gao et al. (2011) combined the problems of road maintenance and road expansion planning, and developed a mixed-integer, nonlinear, bi-level model that scheduled the repair or expansion of every road with budget constraints. In the model proposed, the road capacity increase after maintenance and expansion were considered, and the road degradation process was modeled. General Bender’s decomposition method was applied to obtain the optimal maintenance and expansion schedule that gave the minimum total users’ cost at equilibrium state. Although literature
reviewed in this category modeled the capacity increase after the maintenance or expansion, they did not consider the link capacity reductions during the time period when these activities were being performed.

Only a handful of works considered the impact on traffic over the network due to multiple work zones and they comprised the fourth category. Orabi and El-Rayes (2012) developed a complex model with three genetic algorithm based modules – scheduling, network performance, and user savings, to select and prioritize rehabilitation projects, subject to budget constraints. Lee (2009) proposed a work zone scheduling model which considered the routing-changing behavior of road users. The schedule was optimized with an ant colony algorithm, where the users’ equilibrium under each schedule scenario was obtained through simulations using VISSIM software. Hosseininasab and Shetab-Boushehri (2015) studied the work zone scheduling problem as a time-dependent network design problem. They formulated the problem as bi-level programming models, and used genetic algorithm to obtain the link maintenance schedule that gave the minimum total traveling cost at equilibria over the planning time horizon. All the three of Orabi and El-Rayes (2012), Lee (2009) and Hosseininasab and Shetab-Boushehri (2015) did not explicitly discuss partial link capacity reductions resulting from work zones. Zheng et al. (2014) assumed the link capacity would reduce by 50% in their decision model developed. However, a link might have more than two lanes and it is not always true or optimal to close half of the lanes at a time for maintenance. Ma et al. (2004) developed a hybrid simulation methodology with genetic algorithm to schedule multiple lane closures with minimum total traffic delay of the network. However, the flexible lane-level maintenance scheduling required high computation effort for the solution approach proposed in Ma et al. (2004). For a problem instance of scheduling the maintenance of 20 lanes, it took more than 120 hours.
In maintenance planning with network flows modeling approach, the network capacity reductions are mandatory since the maintenance work has to be completed before the due date. In cases when budget is not the major concern, optimal maintenance scheduling is essentially managing mandatory network capacity reductions so that the negative impacts on flows is minimized. Due to the existence of the well-known Braess’ Paradox when the user equilibrium principle is adopted, and link capacity drops when congestion occurs, network capacity management methods that intentionally reduce the capacity of some links, such as imposing link tolls and ramp metering, could also improve the overall performance of the network if the objective is to minimize total travel cost at users’ equilibrium. Hence, next section reviews research that studied the design of these network capacity management mechanisms, and how they help improve the overall network performance.

2.4 Conclusion

In tactical level of maintenance planning, the length of the time period when maintenance projects are being worked on is comparable to the length of the planning horizon. And the temporal network capacity reductions caused by maintenance activities and its impact on network-wide traffic diversions have to be considered. This induces the network capacity management problem of scheduling the maintenance so that flows are not overly affected by the mandatory temporal network capacity changes. It is a problem that has been investigated in very few literatures and will be addressed in the research presented.

In the reviewed literature that studied managing mandatory network capacity changes, network maintenance strategies were evaluated by a single type of network flows model. However, due to the heterogeneity of multi-modal traffic in urban transportation
networks, travelers choosing different travel modes may require disparate network flows models to evaluate a maintenance plan. To give an example, regular cars are the major users of the city road network, and their user-optimized routing pattern requires traffic equilibrium models to evaluate the impact of maintenance activities. Compared to regular cars, autonomous vehicles are equipped with the technology to decide its route without the interference of riders, and is a new travel mode that will be available in the near future. And thus, this new travel mode is expected to play an important role in reducing traffic congestion by taking routes that minimize the total travel time of all travelers with some incentives. Hence the autonomous vehicle flows can be modeled as the system optimum (SO) flows. Enlightened by this vision, investigating the optimal maintenance planning for a mixture of traffic flows with different routing objectives is another aspiration of this research.
Chapter 3

MAINTENANCE SCHEDULING IN NETWORKS OF SERVICE VEHICLES (MS-NSV)

3.1 Introduction

Although service vehicles (i.e., commercial trucks) are not the major users of the city transportation network, they are always one of the travelers’ and city planners’ major concerns because of their large sizes, heavy weights, and enormous fuel consumption and emission. Besides service vehicles, temporal changes on the transportation network, which are resulted from work zones, also induce negative impacts on traffic flows. Since work zones reduce visibility and mobility, they reduce road capacity and safety significantly. Hence, it is not surprising to see that the combination of service vehicles and work zones exacerbates the traffic condition -- although large trucks accounted for only 4% of all registered vehicles in the United States, 27% of work zone fatal crashes involved at least one large truck (FWHA, 2013).

In the presence of several work zones that are spatially close to each other, traveling through work zones one after another is stressful. These work zones cause extensive traffic delays and compound safety concerns, especially for service vehicles because of their large sizes and heavy weights. It would be ideal if work zones could be scheduled one after another so that only one work zone is active at any point of time. However, due to the budget and resource limitations, a common completion deadline is usually imposed on a group of work zones. And thus, the investigation of how to schedule multiple work zones, subject to a common due date, and with considerations of network-
wide origin-destination (OD) flow routing of service vehicles, is of great benefit to all the road users.

The research presented in this chapter treats the traveling cost of a link as the cost in general sense, which can be interpreted as combinations of travel time, monetary cost, and road unsafety. The total link traveling cost is designed to be piece-wise linear with respect to the number of service vehicles using that link, so that the expensive extra flow cost will be incurred if the available link capacity is exceeded. The piecewise linear cost function approximates the nonlinear relation between the traffic delay and unsafety, and the number of service vehicles traveling on that road. A mixed integer linear programming model is formulated to schedule work zones subject to a common deadline and OD demand of service vehicles. A randomized fix-and-optimize heuristic is developed to solve the model efficiently and tested with different networks.

3.2 MS-NSV Model

3.2.1 Piecewise Linear Cost Structure

In networks with service vehicle flows, linear flow cost structure is commonly used, where the cost of travelling on a link is set linear with respect to the total flow amount on that link when the amount of flows is smaller than or equal to the available capacity of the link. In applications where the demand on a link is more than the available capacity, the excess flow is either detoured or given a very high cost for using the link thereby circumventing the hard capacity constraint. In this chapter we will use the latter approach by modeling the link cost function piece-wise linear, so as to approximate the traffic condition aggravation effect in service networks. With the piece-wise linear cost functions, the work zone scheduling model developed later can be solved
by commercial solvers like CPLEX, the performance of which can be used to compare with the new heuristic developed later in the chapter.

In the work zone scheduling model, it is assumed that there are Origin-Destination (OD) flow demands of service vehicles (e.g. trucks) every time period (e.g., peak period of a day). Each service vehicle can choose its own route to minimize its travel cost, and is treated as a unit of flow. In this chapter, we assume the minimum scheduling unit of a work zone is a lane of a link regardless of its length. When a link is under maintenance, one or more lanes are closed and this leads to the temporary link capacity reductions. That is likely to cause the current flow on the link to exceed the available link capacity, incurring the expensive extra flow cost. The available link capacity can be interpreted as the threshold of the traffic condition degradation effect. When the number of service vehicles on the link is smaller than the available link capacity, the traffic condition worsens at a relatively slow rate. However, if the number of service vehicles traveling on the link exceeds the available link capacity, the traffic condition degradation effect will have a qualitative change, and each additional service vehicle on that link will worsen the traffic condition much more severely. The threshold (available link capacity) is designed to be positively related to the number of lanes open to serve the traffic flows. For example, for a link with multiple lanes, if the threshold is u when a link only has one lane open, then the threshold becomes $2u$ when two lanes of the link are open.

Suppose a link has three lanes and all three lanes have the same “flow capacity” u, Figure 3.2.1-i on the next page illustrates the relation between the flow units traveling on the link in a time period and the total flow cost in different lane closure scenarios. When two lanes are closed for maintenance, the available capacity of the link is u. If the units of flows using the link are more than u during the time period, then the extra flow cost will
be incurred. This is why the slope of the cost curve is much steeper when the flow units are more than \(u \) for the two-lane closure case. Similar, cost curve pattern can be observed in the cases of no-lane closure and one-lane closure. When some of the lanes in a link is closed for maintenance, some of the flows that are originally on this link may divert to other links to reach the destination with lower total cost, and that means the network flows are reactive to the maintenance schedules.

![Three-Lane Link Flow Cost Curve](image)

Figure 3.2.1-i: Three-Lane Link Flow Cost Curve

3.2.2 Model Formulation. The MS-NSV model possesses the features of both scheduling models and multi-commodity flows models. The objective of the model is to schedule the lane closures so that all links that need maintenance are repaired before a given completion date for the whole network, while the total flow cost for all the OD pairs, which includes regular flow cost and extra flow cost, is minimized over the project period. This section describes the MS-NSV model in detail.

Denote \(c_i \) as the regular unit flow cost of link \(i \), \(y_{ikt} \) as the flow units of OD pair \(k \) that flow through link \(i \) on day \(t \), and \(z_{it} \) as the difference between flow units of all the OD pairs that flow through link \(i \) and the available capacity of link \(i \) on day \(t \), the objective
function is formulated as \(\min \sum_{i \in E} \{ \sum_{t=1}^{T} [c_i \cdot (\sum_{k \in OD} y_{ikt}) + z_{it} \rho c_i] \} \), where \(E \) is the set of links, \(OD \) is the set of OD demand, and \(T \) is the common completion date of all the maintenance work. \(\rho \) is the congestion flow cost multiplier which makes the extra unit flow cost \(\rho c_i \) much larger than the regular unit flow cost \(c_i \). The first part \(\sum_{i \in E} \sum_{t=1}^{T} [c_i \cdot (\sum_{k \in OD} y_{ikt})] \) calculates the total regular flow cost for all the OD pairs on all the links over the project period, and the second part \(\sum_{i \in E} \sum_{t=1}^{T} z_{it} \rho c_i \) calculates the total congestion flow cost for all the links over the project period. Both \(y_{ikt} \) and \(z_{it} \) are non-negative continuous variables. Note that \(z_{it} \) is non-negative in the sense that it will have positive value only when the total flow units on link \(i \) exceed the available capacity and it will be zero otherwise.

Binary variables \(s_{imt} \) are introduced as the flag variables indicating whether the repair of the \(m^{th} \) lane of link \(i \) starts on day \(t \), and \(s_{imt} = 1 \) if it is. The MS-NSV model assumes once a lane is closed for repair, it cannot open to serve the flows until its repair is completed. Hence we have the constraints \(\sum_{t=1}^{T} s_{imt} = 1 \) for \(\forall i \in R \) and \(\forall m \in [1, n_i] \), where \(R \) is the set of links that need repair and \(n_i \) is the number of lanes in link \(i \). This set of constraints force every lane of all the links that need repair to have one and only one repair start date.

To indicate whether \(m^{th} \) lane of link \(i \) is closed for maintenance on day \(t \), binary variables \(x_{imt} \) are added to the model. \(x_{imt} \) equal to 1 if the \(m^{th} \) lane of link \(i \) is closed for maintenance on day \(t \). Let \(p_i \) be the number of days needed to repair a lane of link \(i \), we formulate the constraints \(\sum_{t=1}^{T} x_{imt} = p_i \) for \(\forall i \in R \) and \(\forall m \in [1, n_i] \) to ensure the repair on all the links be completed by the common completion date \(T \). Since each lane of the links needing maintenance have one and only one repair start date and the number of days needed to repair a lane is given, whether a lane is closed or not on a day is determined.
once the repair start date of that lane is determined. And thus, we develop the set of constraints \(x_{imt} = \sum_{a=t}^{a=t} s_{ima} \) for \(\forall i \in R \), \(\forall t \in T \) and \(\forall m \in [1, n_i] \) to make sure that once a lane is closed for repair, it will not open to serve the flows until the repair work on this lane is finished and that it will be open on other dates. Constraints \(\sum_{t=1}^{t=T} s_{imt} = 0 \) for \(\forall i \in R \), \(\forall m \in [1, n_i] \) and \(\sum_{t=1}^{t=T} x_{imt} = 0 \) for \(\forall i \in R \) and \(\forall m \in [1, n_i] \) are added to the model so that all the lanes of links that do not need repair will not have maintenance start date and will be open to serve the flows throughout the project period.

For each OD pair on each day, flow conservation constraints, consisting of three groups, are needed. The first group of constraints makes sure the total incoming flow units minus the total outgoing flow units equal to the OD demand for the origin node of the OD pair. Let \(D_k \) be the demand of OD pair \(k \), the first part is formulated as \(D_k = \sum_{i: E_i = OD_k-} y_{ikt} - \sum_{j: E_j = OD_k+, j \in E} y_{jkt} \) for \(\forall k \in OD, \forall t \in [1, T] \), where \(OD_k- \) is the origin node of OD pair \(k, E_i- \) is the head node of link \(i \) and \(E_j+ \) is the tail node of link \(j \). The second group ensures the total outgoing flow units minus the total incoming flow units equal to the demand of OD pair \(k \) for its destination node and is formulated as \(D_k = \sum_{i: E_i = OD_k+, j \in E} y_{ikt} - \sum_{j: E_j = OD_k-, j \in E} y_{jkt} \) for \(\forall k \in OD, \forall t \in [1, T] \), where \(OD_k+ \) is the destination node of OD pair \(k, E_i+ \) is the tail node of link \(i \) and \(E_j- \) is the head node of link \(j \). For the rest of the nodes, other than origin and destination nodes of OD pair \(k \), the total incoming flows on the node from the origin of OD pair \(k \) should equal to the total outgoing flows from the node to the destination of the OD pair \(k \). This is the third group of the flow conservation constraints and it is formulated as \(\sum_{i: E_i = l, i \in E} y_{ikt} = \sum_{j: E_j = l, j \in E} y_{jkt} \) for \(\forall l \in N, \forall t \in [1, T], \forall k \in \{ k: OD_k- \neq l \} \cap \{ k: OD_k+ \neq l \} \), where \(N \) is the set of nodes in the network.
In addition, binary variables v_{imt} are introduced to calculate the increased lane capacities and v_{imt} equals to 1 if lane m of link i is repaired before day t, since it is obvious that when a segment of road is repaired, the road condition should be improved and the capacity should increase. Constraints $v_{imt} = \sum_{a=1}^{a=t-p_i} s_{ima}$, for $\forall i \in R, \forall m \in [1,n_i]$ and $\forall t \in [p_i + 1,T]$ determine the values of v_{imt} by values of s_{ima}. In the constraints, the date ranges from $p_i + 1$ to T since the lane will be repaired and open to serve the flows on day $p_i + 1$ the earliest, because even if the maintenance starts on day 1, it would take p_i days to complete the repair work for this lane. Constraints $v_{imt} = 0$, for $\forall i \in R, \forall m \in [1,n_i]$ and $\forall t \in [1,p_i]$ make sure each lane of the links that need maintenance stay in the status of not repaired in the first p_i days. And constraints $v_{imt} = 0$, for $\forall i \not\in R, \forall m \in [1,n_i]$ and $\forall t \in [1,T]$ force lanes of links that do not need repair stay in the status of not repaired throughout the project period.

Let θ be the percentage increase in lane capacity after the lane is repaired, and let u_i be the capacity of a lane of link i, the available capacity of link i on day t is $(n_i - \sum_{m=1}^{n_i} x_{imt} + \sum_{m=1}^{n_i} \theta v_{imt})u_i$. Hence the values of z_{it} are determined by constraints $\sum_{k\in OD} y_{ikt} - (n_i - \sum_{m=1}^{n_i} x_{imt} + \sum_{m=1}^{n_i} \theta v_{imt})u_i \leq z_{it}$ and $z_{it} \geq 0$ for $\forall i \in E$ and $\forall t \in [1, T]$, where $\sum_{k\in OD} y_{ikt}$ are the total flow units from all OD pairs on link i on day t. Because of the introduction of z_{it}, flows can exceed the available capacity. Hence it is needed to make sure there won’t be flows on links with all lanes closed for maintenance, that is, entirely closed links cannot serve any flow. For this reason, the set of variables w_{it} are added into the model, the values of which equal to 1 if all the lanes of link i are closed on day t. Constraints $\sum_{k\in OD} y_{ikt} \leq \sum_{k\in OD} D_k (n_i - \sum_{m=1}^{n_i} x_{imt})$ for $\forall i \in R$ and $\forall t \in [1, T]$ make sure when all the lanes of link i are closed on day t, link i does not serve any flows. $\sum_{k\in OD} D_k$ serves as a large number in this constraint and ensures flows from all OD pairs can use
link i as long as it has at least one lane open. The sets, parameters and variables of the MS-NSV model are presented in Table 3.2.2-i:

Table 3.2.2-i: MS-NSV Notations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Node set of the network</td>
</tr>
<tr>
<td>E</td>
<td>The set of existing links in the network</td>
</tr>
<tr>
<td>R</td>
<td>The set of existing links that need to be repaired in the network, $R \subseteq E$</td>
</tr>
<tr>
<td>OD</td>
<td>The set of Origin-Destination pairs of flows</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Completion date for all the maintenance work (the earliest start date of a work zone is Day 1)</td>
</tr>
<tr>
<td>n_i</td>
<td>Number of lanes of link i</td>
</tr>
<tr>
<td>u_i</td>
<td>Capacity of a lane of link i</td>
</tr>
<tr>
<td>c_i</td>
<td>The regular flow cost incurred by one unit flow on link i per day</td>
</tr>
<tr>
<td>p_i</td>
<td>The number of days needed to repair a lane of link i</td>
</tr>
<tr>
<td>ρ</td>
<td>Extra flow cost multiplier, ρc_i is the extra flow cost incurred by the available link capacity being one unit less than the flow on link i</td>
</tr>
<tr>
<td>θ</td>
<td>Percentage of lane capacity increased after maintenance</td>
</tr>
<tr>
<td>D_k</td>
<td>Flow demand of OD pair k</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>s_{imt}</td>
<td>Binary variable indicating whether to repair the m^{th} lane of link i starts on day t. If repair work starts on day t, $s_{imt} = 1$; otherwise, $s_{imt} = 0$</td>
</tr>
<tr>
<td>x_{imt}</td>
<td>Binary variable indicating whether the m^{th} lane of link i is closed for maintenance on day t, if it is closed, $x_{imt} = 1$; otherwise $x_{imt} = 0$</td>
</tr>
<tr>
<td>y_{ikt}</td>
<td>The flow units incurred by the Origin-Destination (OD) flow of OD pair k on link i on day t</td>
</tr>
</tbody>
</table>
Flow units on link i exceeding the available capacity of the link on day t. If the available capacity of link i on day t is less than the total flow units on link i, z_{it} equals to the difference between the available capacity and total flow on link i; otherwise $z_{it} = 0$.

Binary variable indicating whether the m^{th} lane of link i is repaired before day t, if it is, $v_{imt} = 1$, otherwise 0; for all the links that don’t need maintenance, $v_{imt} = 0$ all the time.

The complete model of scheduling work zones in networks of service vehicles (MS-NSV) can now be written as:

$$\text{MS-NSV: } \min \sum_{i \in E} \{ \sum_{t=1}^{T} [c_{it} \cdot (\sum_{k \in OD} y_{ikt}) + z_{it} \cdot \rho_{ci}] \}$$ \hspace{1cm} (1)

$$\sum_{t=1}^{T} s_{imt} = 1, \quad \forall i \in R, \forall m \in [1, n_i]$$ \hspace{1cm} (2)

$$\sum_{t=1}^{T} x_{imt} = p_i, \quad \forall i \in R, \forall m \in [1, n_i]$$ \hspace{1cm} (3)

$$x_{imt} = \sum_{a=t}^{a_{max}} \cdot (t-p_i+1) \cdot s_{ima}, \quad \forall i \in R, \forall t \in T, \forall m \in [1, n_i]$$ \hspace{1cm} (4)

$$\sum_{t=1}^{T} s_{imt} = 0, \quad \forall i \not\in R, \forall m \in [1, n_i]$$ \hspace{1cm} (5)

$$\sum_{t=1}^{T} x_{imt} = 0, \quad \forall i \not\in R, \forall m \in [1, n_i]$$ \hspace{1cm} (6)

$$D_k = \sum_{i \in E_i^{-} = OD_k^{-}, i \in E} y_{ikt} - \sum_{j \in E_j^{-} = OD_k^{-}, j \in E} y_{jkt} \quad \forall k \in OD, \forall t \in [1, T]$$ \hspace{1cm} (7)

$$D_k = \sum_{i \in E_i^{+} = OD_k^{+}, i \in E} y_{ikt} - \sum_{j \in E_j^{+} = OD_k^{+}, j \in E} y_{jkt} \quad \forall k \in OD, \forall t \in [1, T]$$ \hspace{1cm} (8)

$$\sum_{i \in E_i^{-}, i \in E} y_{ikt} = \sum_{j \in E_j^{+}, j \in E} y_{jkt}, \quad \forall l \in N, \forall t \in [1, T]$$ \hspace{1cm} (9)

$$v_{imt} = \sum_{a=1}^{a_{max}} \cdot t-p_i \cdot s_{ima}, \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in [p_i+1, T]$$ \hspace{1cm} (10)

$$v_{imt} = 0, \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in [1, p_i]$$ \hspace{1cm} (11)

$$v_{imt} = 0, \quad \forall i \not\in R, \forall m \in [1, n_i], \forall t \in [1, T]$$ \hspace{1cm} (12)

$$\sum_{k \in OD} y_{ikt} - (n_i - \sum_{m=1}^{n_i} x_{imt} + \sum_{m=1}^{n_i} \theta v_{imt})u_i \leq z_{it}, \quad \forall i \in E, \forall t \in [1, T]$$ \hspace{1cm} (13)

$$\sum_{k \in OD} y_{ikt} \leq \sum_{k \in OD} D_k (n_i - \sum_{m=1}^{n_i} x_{imt}), \quad \forall i \in R, \forall t \in [1, T]$$ \hspace{1cm} (15)
\[s_{imt}, x_{imt}, v_{imt} \in \{0, 1\}, \quad \forall i \in E, \forall m \in [1, n_i], \forall t \in [1, T] \] \hspace{1cm} (16)

\[z_{it} \geq 0, \quad \forall i \in E, \forall t \in [1, T] \] \hspace{1cm} (17)

\[y_{ikt} \geq 0, \quad \forall i \in E, \forall k \in OD, \forall t \in [1, T] \] \hspace{1cm} (18)

3.3 Computational Implementation

The MS-NSV model is programmed in C++ with IBM® ILOG® CPLEX® Concert Technology. As a mixed-integer program that does not have unimodular coefficient matrix for the constraints that involve scheduling variables, the MS-NSV is unlikely to be polynomially solvable and cannot be solved by CPLEX within a tolerable amount of time. Using a computer of 3.7 GHz quad-core CPU and 24.0 GB memory for the computation work of a small problem instance with 16 nodes, 48 links, 108 lanes, 16 OD pairs, and 27 days to repair 50% of the links, CPLEX still has a 32% optimality gap after 14 hours of computation. Therefore, it is clear an efficient heuristic to solve the problem quickly with satisfactory accuracy is needed.

3.4 Solution Approach

3.4.1 Randomized Fix-and-Optimize (RFO) Heuristic

There are two levels of problems that constitute the problem of work zone scheduling in networks of service vehicles. The upper level is the scheduling problem which decides the repair start date for each lane of the links that need maintenance. The lower level is a series of multi-commodity flow problems based on the available capacities of links on each day, which is determined by the current lane closures. Once the schedule is set, solving the multi-commodity flow problems for each day is a relatively easy problem since the flow variables are all continuous variables. And thus the solution approach proposed in this chapter focuses on the upper level of obtaining good work zone schedules.
To motivate the heuristic, suppose at a point in the algorithmic process we obtain a feasible schedule that has some aspects similar to the optimal schedule. For example, Figure 3.4.1-i gives a comparison between the Gantt charts of the optimal schedule and one of the feasible schedules obtained for a small test network of 4 nodes, 12 links and 12 OD pairs. The vertical axis shows the lanes of links that need maintenance and the horizontal axis shows the date during the project period. Each bar represents the time period when a lane is closed for maintenance and cannot be used to serve the OD flows.

Figure 3.4.1-i: Schedule Comparison
For example, in the optimal schedule, Lane 1 of Link 2 is closed on Day 1 and will be reopen on Day 8, and Lane 2 of Link 2 will be closed from Day 7 to Day 13. Hence this two-lane link will have one lane available from Day 1 to Day 6 and from Day 8 to Day 13. On Day 7 Link 2 is not available to serve any flows since both of the two lanes are closed. From the Gantt chart we can see that the feasible schedule has lane closures of Link 1, 3, 7, and 12 different from the optimal schedule. If we only optimize the lane closure schedules of these four links and fix the schedules of all the other links, the problem size will be much smaller and the time needed to solve the problem instance will reduce dramatically since there are much fewer integer variables to go through in the branch-and-bound process performed by solvers like CPLEX. This observation leads to the adoption of the fix-and-optimize heuristic as the core of the solution approach.

The fix-and-optimize heuristic was first introduced by Helber and Sahling (2010). It is an iterative optimization-based heuristic developed to solve the multi-level capacitated lot sizing problem which is a mixed-integer program. The basic process of the fix-and-optimize heuristic is to partition the integer variables into subsets, based on an initial solution, and then optimize the values of a subset of integer variables together with all continuous variables while the values of the other integer variables in other subsets are fixed (this is called a subproblem of the fix-and-optimize procedure). If the new objective function value is better than current best objective value, then the current candidate optimal values are updated; iterate this process for other subsets of variables until a specified stopping criteria is met. The percentage of integer variables in each subset of all the integer variables ranged from 0.5% to 10% based on the difficulty and size of the problem instances tested in Helber's paper. For each specific problem instance, the number of integer variables in a subset was fixed. Also, the integer variables were decomposed into subsets based on the descending order on cost of each product in the lot-
sizing problem, since usually a quite reasonable schedule was found after the first round of the product-oriented decomposition.

In the problem of scheduling work zones in networks of service vehicles, the relation among work zones is more complex than that among products in the capacitated lot-sizing problem. Products just compete with each other for resources (machine hours) in the capacitated lot-sizing problem. On the other hand, in the MS-NSV problem there are no resource constraints that work zones compete for, but instead the work zones affect the capacity of the network to serve the OD demands which in turn compete for this capacity. Therefore, only the schedules that consider all or many work zones will have the lowest increase in total flow cost, because OD demands happen over the whole network and each OD pair has network-wide minimum cost routing. This means applying fix-and-optimize heuristic with small subsets of work zones (one or two links) will hardly find satisfactory schedules since it is only considering the maintenance of a few links at a time.

However, if the size of the work zone subsets is large, the size of each fix-and-optimize subproblem will also be large and it would take long time to solve. To mitigate the conflict between solution quality and solving time length, we develop the fix-and-optimize procedure with varying subset sizes and use a truncated branch-and-bound method.

Initially, CPLEX tries to solve the entire problem within a given time limit (e.g. 60 seconds). If the problem is solved optimally, then the optimal schedule will be output and the program will terminate. If the problem is not solved optimally, the best feasible schedule obtained so far will be stored and used as the initial feasible solution for the fix-and-optimize procedure. A feasible schedule should be able to both complete all the maintenance work before the specified completion date and make sure each OD pair won’t be disconnected because of possible entire-link closures throughout the project period.
This situation of disconnecting an OD pair is likely to happen when large portion of links need to repair within a very short project period. To meet the maintenance completion deadline, the time windows of many work zones may overlap which could lead to many links being entirely closed at the same time, and this may result in no path can be found for one or more OD pairs. If no schedule can meet the completion deadline and the OD flows requirements at the same time, then the preset project completion deadline is too tight and needs to be extended to obtain feasible schedules.

The randomized fix-and-optimize (RFO) iteration starts with randomly dividing links that need maintenance into two subsets and solving each fix-and-optimize subproblem (FO subproblem) with a specified time limit. A RFO iteration is finished when the schedules of all the generated subsets of links are optimized. The RFO will be performed for a preset number of iterations and if any of the FO subproblems is not solved within the time limit in the last iteration, the RFO will enter a new stage where the number of subsets which the links to repair are randomly divide into is three. The RFO proceeds similarly in stages with more subsets of links and each RFO iteration is performed the same way as it is in the initial stage when there are only two subsets.

The reason of randomly grouping links that need maintenance into subsets is because we do not know the set of links with schedules that are different from the optimal schedule since we do not have the optimal schedule. Also, consideration of various OD demand patterns, and flows being reactive to network capacity changes, makes it formidable to pin-point the links that can have better schedule through classical network flows optimization models. Hence random grouping is applied to explore various combinations of links for better schedules. Both the decomposition of the links based on the required number of days to repair and decomposition based on links’ unit flow cost are tested, but both of them have inferior performance compared to the random grouping.
approach. Through the iterative randomized fix-and-optimize process, the work zone schedule change gradually towards the optimal schedule.

The detailed procedure of RFO is summarized on the next page:

Randomized Fix-and-optimize Heuristic

1. Solve the entire problem with time limit $timeLimitSV$
 - If optimal solution obtained, proceed to Step 4
 - Otherwise store the best feasible schedule and objective value, and go to Step 2
2. Set number of subsets $numBat = 2$
3. Randomly divide links to repair into $numBat$ groups
 3.1. Fix (v,s,x,w) for links in $numBat - 1$ groups, $LonSolTime = 0$, set iteration number $iterNum = 1$
 3.2. Solve the FO subproblem with time limit $timeLimitFO$ for the subset (n) of links the (v,s,x,w) values of which are not fixed
 - If optimal solution is not obtained in $timeLimitFO$ proceed to Step 3.2.1
 - 3.2.1. Store the current best feasible schedule and objective, and set $LonSolTime = 1$
 - Otherwise directly proceed to Step 3.3.
3.3. If the objective obtained in current FO subproblem is lower than the best objective of the FO subproblems obtained so far ($TotalCostFO$), update the $TotalCostFO$ and the schedule of links in subset n
 - Otherwise directly proceed to Step 3.4
3.4. Check whether there are subsets of links of which the FO subproblems are not solved
 - If there are, proceed to Step 3.4.1.
 - 3.4.1. Choose one of the subsets to be subset n and go back to Step 3.1
 - Otherwise proceed to Step 3.4.2
3.4.2. If $TotalCostFO < TotalCost$ (best objective overall), proceed to Step 3.4.2.1
 - 3.4.2.1. Update the value of $TotalCost$ with the value of $TotalCostFO$, increase $iterNum$ by 1, go back to Step 3
 - Otherwise proceed to Step 3.4.2.2
3.4.2.2. If $iterNum < iterLimit$, proceed to Step 3.4.2.2.1
 - 3.4.2.2.1. Increase $iterNum$ by 1, go back to Step 3
 - Otherwise proceed to Step 3.4.2.2.2
3.4.2.2.2. If $LonSolTime = 1$, proceed to Step 3.4.2.2.2.1
 - 3.4.2.2.2.1. If numLinpBat > 3 proceed to Step 3.4.2.2.1.1
 - 3.4.2.2.1.1. Increase subsets number $numBat$ by 1, set iteration number 1, go back to Step 3
Otherwise proceed to Step 4.

4. Output the best schedule and flows obtained

The flow chart of the RFO is displayed below:

![Flow Chart of RFO](image)

Figure 3.4.1-ii: Flow Chart of RFO
3.4.2 Parameters Affecting the Performance of RFO. The randomized fix-and-optimize heuristic has two levels of computation procedures. The first level randomly decomposes the links that need maintenance into a specific number of subsets and the second level optimizes the repair schedules of each link subset with the schedules of links in other subsets fixed (FO subproblem) within a specified time limit. Hence the efficiency of RFO heuristic is mostly determined by two parameters: the number of iterations RFO performs for a specific number of groups which the links to repair are randomly partitioned, and the time limits for the initial attempt on solving the entire problem and for the attempts on each FO subproblem.

More RFO iterations means that the heuristic can solve FO subproblems for more combinations of links to repair for a specific subset size and is more likely to obtain better feasible solutions with objectives that are closer to the optimal solution. However, after a considerable amount of experimentation, we found that increasing the number of iterations does not effectively improve the solution quality. This is because there are too many possible combinations of links to repair for any specific subset size, and the chance is little that the links, which have schedules different from the optimal schedule, are in the same subset through random decomposition. Fewer subsets with more links in each subset can increase the chance of grouping together the links with repair schedules different from the optimal schedule. However, the time needed to find better schedules for each FO subproblem will be longer since now the FO subproblem has large number of integer variables. Thus, performing large number of iterations with fewer subsets with many links in one group will either result in poor solution quality with low time limit for each FO subproblem, or result in very long solving time with high time limit for each FO subproblems. As default values, we set the number of iterations the same as the specified number of link groups (e.g. perform 2 RFO iterations when the number of groups is 2),
and the Computational Experiments in next section will show the RFO gives good feasible solutions within reasonable amount of time.

We also need the time limits for the initial attempt on solving the entire problem and for attempts on each FO subproblem. Problem instances with a few work zones have less integer variables, and is more likely to obtain a feasible solution that is close to the optimal solution (solution with less than 5% relative optimality gap) in a short time during the initial attempt to solve the entire problem. For each FO subproblem, if there is a feasible schedule that is better than the current best feasible schedule, the solver should be able to find it very quickly since the FO subproblem has even less integer variables. As long as a feasible schedule is found that is better than the current best feasible schedule, it can be used as the initial schedule for the next RFO iteration. Increasing the time limit in this case is pointless since a better schedule is already found and increased time will be wasted on improving the lower bound to prove the solution is optimal for the FO subproblem or the entire problem.

As the number of work zones increases, the dramatic increases in the number of combinations of integer variables complicates the branch-and-bound process substantially. This makes it nearly impossible to quickly obtain a feasible solution that is close to the optimal solution in the initial attempt on the entire problem. Improving the quality of initial feasible solution through increasing the time limit is not wise since it is very likely that the relative optimality gap is still larger than 5% after hours of calculation. With an initial feasible solution which is not close to the optimal solution to start the RFO process, it would also be challenging for the solver to find feasible solutions that are much better than the current best feasible solution found in a short time in the FO subproblem. Therefore, increasing the time limit on solving the FO subproblem will be much more effective in finding better solutions since the FO subproblem has much fewer integer
variables. And thus, both the time limits on the initial attempt on the entire problem and on the attempts on each FO subproblem should be relatively higher to allow the solver to spend more time on searching for better feasible solutions.

3.4.3 Computational Experiments. The randomized fix-and-optimize heuristic is tested on three representative networks: a radial network, a grid network, and the Sioux Falls network. For each network, the links that need maintenance are randomly selected based on the preset percentage of links to repair. For each network with the set of links to repair selected, test cases vary by the parameter T, which is the completion date for all the maintenance work. The extra flow cost multiplier ρ is set to 10000 and the percentage of lane capacity increase after repair θ is set to 20% for all the test cases. The computer used to run these tests cases is the same computer mentioned in Section 3.3.

![Figure 3.4.3-i: Radial Network](image)

We begin the test on the heuristic designed with a radial network. Radial transportation network structure is commonly found in large cities with long history like London and Paris. The radial network tested is a small network with 6 nodes, 20 links and 20 OD pairs (network is shown in Figure 3.4.3-i). Among the 20 links, 10 are randomly
selected as the links that need maintenance resulting in a total number of 30 work zones to be scheduled (since a link has multiple lanes and each lane is an independent work zone). The time limits for solving the entire problem initially and for each FO subproblem are both 60 seconds. The performance comparison between solving the test cases by randomized fix-and-optimize heuristic (RFO) and solely by CPLEX is shown in Table 3.4.3-i.

Table 3.4.3-i: RFO VS CPLEX on Radial Network

<table>
<thead>
<tr>
<th>Completion Date (T)</th>
<th>Solving Time</th>
<th>Objective Value</th>
<th>Objective Value Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFO</td>
<td>MIP</td>
<td>RFO</td>
</tr>
<tr>
<td>12</td>
<td>1.89 sec</td>
<td>1.89 sec</td>
<td>489892</td>
</tr>
<tr>
<td>13</td>
<td>4.37 sec</td>
<td>4.37 sec</td>
<td>404316</td>
</tr>
<tr>
<td>14</td>
<td>10.70 sec</td>
<td>10.70 sec</td>
<td>318741</td>
</tr>
<tr>
<td>15</td>
<td>1.53 min</td>
<td>29.75 min</td>
<td>233166</td>
</tr>
<tr>
<td>16</td>
<td>3.69 min</td>
<td>>4.87 hr.</td>
<td>170591 (UB) 167322 (LB)</td>
</tr>
<tr>
<td>17</td>
<td>6.13 min</td>
<td>>40.82 hr.</td>
<td>101516 (UB) 92039 (LB)</td>
</tr>
<tr>
<td>18</td>
<td>6.12 min</td>
<td>>2.69 hr.</td>
<td>25833</td>
</tr>
<tr>
<td>19</td>
<td>7.03 min</td>
<td>>2.54 hr.</td>
<td>19188</td>
</tr>
<tr>
<td>20</td>
<td>7.39 min</td>
<td>>15.73 hr.</td>
<td>10189 (UB) 3320 (LB)</td>
</tr>
<tr>
<td>26</td>
<td>4.62 sec</td>
<td>4.62 sec</td>
<td>623.34</td>
</tr>
<tr>
<td>36</td>
<td>49.79 sec</td>
<td>49.79 sec</td>
<td>856.62</td>
</tr>
<tr>
<td>46</td>
<td>1.88 min</td>
<td>1.07 hr.</td>
<td>1090.17</td>
</tr>
</tbody>
</table>

For the solving time of CPLEX that has “>”, it means CPLEX is not able to solve the test case optimally after a long time and the solving process is terminated manually with the best upper bound and lower bound obtained recorded. The upper bound is the objective value of the best feasible solution obtained at the time of terminating the solving process. The optimality gap is calculated as the objective obtained by RFO minus the objective (or upper bound if solving process is terminated manually) obtained by CPLEX and divide the difference by the objective (or upper bound) obtained by CPLEX. These
result display formats are the same for the illustration on the experiments on the grid network and Sioux Fall network later.

The solving time of RFO and CPLEX for some test cases are the same because CPLEX was able to solve the entire problem in 60 seconds and the randomized fix-and-optimize procedure did not start. Since the grouping of links that need maintenance is random for each RFO iteration, the time needed to solve the same test case for each run will be different and the best solution obtained in each run may also be different from each other. We run RFO to solve each test case that are not solved optimally by CPLEX in 60 seconds for five times, take the average of the solving times and the objective values from the five runs, and compare them with the objective and solving time of CPLEX. The objective values and solving times of five runs of each test case are listed in Appendix A.

From Table 3.4.3-i we can see that even for a 20-link radial network with 50% of the links need maintenance, CPLEX is not able to solve some of the test cases in tolerable amount of time. Also, the RFO heuristic is able to obtain optimal or near-optimal solutions within little amount of time compared to CPLEX. Notice that for the test case when $T = 19$, the objective value from RFO is better than the best feasible solution obtained by CPLEX. To obtain the best feasible solution of this test case, RFO takes less than 7 minutes and the solution dominates the best feasible solution from CPLEX after nearly 3 hours of computation.

A larger network tested is a grid network with 16 nodes, 48 links and 24 OD pairs (network is shown in Figure 3.4.3-ii). Grid transportation network structure is frequently found in large modern cities like Phoenix and Vancouver, and their central business districts. The grid network tested also has 50% of links randomly selected as the links to be repaired and the total number of work zones to be scheduled is 52. The time limits set
for solving the entire problem initially and for the FO subproblems are both 60 seconds. RFO is used to solve each test case for five times and the objective values and solving times for each solution run for each test case are listed in Appendix A. The comparison between the average performance of RFO and the performance of CPLEX is displayed in Table 3.4.3-ii below:

![Grid Network Diagram]

Figure 3.4.3-ii: Grid Network

Table 3.4.3-ii shows that RFO is much more efficient than CPLEX on solving the test cases of the grid network, especially when the test case is difficult to solve. And the solution quality of RFO is also quite good. Usually the percentage of links that need maintenance in a network won’t be as much as 50%. The reason we set the percentage of links to repair 50% for the radial network and grid network tested is because we would like to show how difficult the MS-NSV problem can be and how efficient the RFO is compared to solving the test cases solely by CPLEX.
We also test the randomized fix-and-optimize heuristic on the Sioux Falls network which is a real network with 24 nodes, 76 links and 87 OD pairs. There are two sets of problem instances created for the Sioux Falls network, the first set of test cases are based on the scenario that 10% of the links are randomly selected as the links that need maintenance which results in a total number of 16 work zones need to be scheduled. The percentage of links to repair in the second set of test cases is 20% and the total number of work zones to be scheduled is 25. The time limits on solving the entire problem initially
and on solving each FO subproblem are both 40 seconds for first set of test cases, and both are 120 seconds for the second set of test cases.

Figure 3.4.3-iii: Sioux Falls Network

Table 3.4.3-iii and Table 3.4.3-iv on the next two pages give the performance comparison between RFO and CPLEX on the first and second set of test cases respectively. Again, RFO solves each test case five times, and the objective values and solving time of each run are listed in Appendix A.
Table 3.4.3-iii: RFO VS CPLEX on Sioux Falls Network with 10% of Links to Repair

<table>
<thead>
<tr>
<th>Completion Date (T)</th>
<th>Solving Time</th>
<th>Objective Value</th>
<th>Objective Value Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFO</td>
<td>MIP</td>
<td>RFO</td>
<td>MIP</td>
</tr>
<tr>
<td>18</td>
<td>33 sec</td>
<td>33 sec</td>
<td>232233.88</td>
</tr>
<tr>
<td>19</td>
<td>3.33 min</td>
<td>1.92 min</td>
<td>237499.4</td>
</tr>
<tr>
<td>20</td>
<td>3.384 min</td>
<td>2.22 min</td>
<td>242533.2</td>
</tr>
<tr>
<td>21</td>
<td>2.44 min</td>
<td>1.1 min</td>
<td>247323.4</td>
</tr>
<tr>
<td>22</td>
<td>2.788 min</td>
<td>57.67 sec</td>
<td>252177</td>
</tr>
<tr>
<td>23</td>
<td>3.464 min</td>
<td>1.12 min</td>
<td>260322</td>
</tr>
<tr>
<td>24</td>
<td>3.73 min</td>
<td>2.11 min</td>
<td>268560.4</td>
</tr>
<tr>
<td>25</td>
<td>5.544 min</td>
<td>3.85 min</td>
<td>277241.2</td>
</tr>
<tr>
<td>26</td>
<td>5.176 min</td>
<td>6.21 min</td>
<td>285831.4</td>
</tr>
<tr>
<td>27</td>
<td>6.168 min</td>
<td>3.16 min</td>
<td>294679.2</td>
</tr>
<tr>
<td>28</td>
<td>7.308 min</td>
<td>16.39 min</td>
<td>303283</td>
</tr>
<tr>
<td>29</td>
<td>7.512 min</td>
<td>12.8 min</td>
<td>311629.4</td>
</tr>
<tr>
<td>30</td>
<td>7.89 min</td>
<td>13.27 min</td>
<td>320744.6</td>
</tr>
<tr>
<td>31</td>
<td>9.556 min</td>
<td>18.85 min</td>
<td>329453.2</td>
</tr>
<tr>
<td>32</td>
<td>10.066 min</td>
<td>11.79 min</td>
<td>338659.2</td>
</tr>
<tr>
<td>33</td>
<td>5.598 min</td>
<td>12.82 min</td>
<td>348635.4</td>
</tr>
<tr>
<td>34</td>
<td>9.208 min</td>
<td>17.7 min</td>
<td>357030.2</td>
</tr>
<tr>
<td>35</td>
<td>10.23 min</td>
<td>23.64 min</td>
<td>366264.4</td>
</tr>
<tr>
<td>36</td>
<td>9.654 min</td>
<td>16.4 min</td>
<td>375561.2</td>
</tr>
<tr>
<td>37</td>
<td>10.74 min</td>
<td>16.12 min</td>
<td>380249</td>
</tr>
<tr>
<td>38</td>
<td>10.99 min</td>
<td>24.18 min</td>
<td>395848.2</td>
</tr>
</tbody>
</table>

From Table 3.4.3-iii we see that when the completion date is small the RFO takes more time to give the final solution than CPLEX does. This is because the problem instance of Sioux Falls network with 10% of links to repair is relatively easy to solve especially when the completion date is small, since the number of integer variables are not large. As the completion date gets larger, the problem instance has more integer variables and gets
harder to solve. As a result, the solving times of test cases with larger completion dates are much longer for CPLEX. As a comparison, the solving times for RFO on these test cases increase slightly and the objectives obtained are close to the optimal objectives given by CPLEX.

Table 3.4.3-iv: RFO VS CPLEX on Sioux Falls Network with 20% of Links to Repair

<table>
<thead>
<tr>
<th>Completion Date (T)</th>
<th>Solving Time</th>
<th>Objective Value</th>
<th>Objective Value</th>
<th>Objective Value Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFO</td>
<td>MIP</td>
<td>RFO</td>
<td>MIP</td>
</tr>
<tr>
<td>28</td>
<td>44,086 min</td>
<td>2.15 hr.</td>
<td>446506.6</td>
<td>443226.27</td>
</tr>
<tr>
<td>29</td>
<td>48.692 min</td>
<td>2.37 hr.</td>
<td>451906.4</td>
<td>451397.57</td>
</tr>
<tr>
<td>30</td>
<td>41.016 min</td>
<td>3.22 hr.</td>
<td>462594.8</td>
<td>459098.29</td>
</tr>
<tr>
<td>31</td>
<td>1.0915 hr.</td>
<td>2.39 hr.</td>
<td>468561.2</td>
<td>466737.54</td>
</tr>
<tr>
<td>32</td>
<td>1.0075 hr.</td>
<td>3.68 hr.</td>
<td>475069.6</td>
<td>474657.98</td>
</tr>
<tr>
<td>33</td>
<td>51.396 min</td>
<td>3.14 hr.</td>
<td>486382.2</td>
<td>483550.96</td>
</tr>
<tr>
<td>34</td>
<td>1.258 hr.</td>
<td>4.37 hr.</td>
<td>495743.8</td>
<td>492508.96</td>
</tr>
<tr>
<td>35</td>
<td>1.398 hr.</td>
<td>>1.29 hr.</td>
<td>502681.4</td>
<td>502912.96 (UB) 445782.53 (LB)</td>
</tr>
<tr>
<td>36</td>
<td>1.234 hr.</td>
<td>>1.37 hr.</td>
<td>513386.2</td>
<td>511092.08 (UB) 469690.32 (LB)</td>
</tr>
<tr>
<td>37</td>
<td>1.29 hr.</td>
<td>>1.38 hr.</td>
<td>522632.2</td>
<td>521498.54 (UB) 459461.32 (LB)</td>
</tr>
<tr>
<td>38</td>
<td>36.59 min</td>
<td>>1.4 hr.</td>
<td>549474.2</td>
<td>529503.64 (UB) 464731.92 (LB)</td>
</tr>
<tr>
<td>39</td>
<td>36.944 min</td>
<td>10.4 hr.</td>
<td>548756.8</td>
<td>537251.06</td>
</tr>
<tr>
<td>40</td>
<td>42.258 min</td>
<td>>1.42 hr.</td>
<td>562862</td>
<td>547592.55 (UB) 469568.44 (LB)</td>
</tr>
<tr>
<td>41</td>
<td>43.08 min</td>
<td>>1.4 hr.</td>
<td>568607</td>
<td>555430.09 (UB) 52061.60 (LB)</td>
</tr>
<tr>
<td>42</td>
<td>50.53 min</td>
<td>>1.43 hr.</td>
<td>585013</td>
<td>566841.84 (UB) 482454.42 (LB)</td>
</tr>
</tbody>
</table>

Data in Table 3.4.3-iv shows that when 20% of links need maintenance, solving time of CPLEX increase significantly. RFO has pretty good performance in solving most of the problem instances because it gives near-optimal solutions with much less time compared to CPLEX. For problem instances with completion dates of 38, 40, and 42, the optimality gaps are relatively large compared to those of other problem instances. This means the parameters of RFO are not appropriately set for these problem instances, and
adjustments like increasing the time limits of the FO subproblems and/or changing the RFO iterations to be performed can improve the performance of RFO.

Notice that in Table 3.4.3-iii and 3.4.3-iv the objective obtained by RFO for some test cases is better than the optimal objective obtained by CPLEX. For example, in Table 3.4.3-iii for the test case when $T = 23$, the objective obtained by RFO is 260302, which is less than the optimal objective 260489.83 from CPLEX. This is because the relative MIP gap tolerance is set to 0.5% for the CPLEX and FO subproblems. CPLEX stops solving process as soon as the relative optimality gap (which is calculated as upper bound minus lower bound and then divide the difference by the upper bound) is under 0.5% and uses the best feasible solution obtained as the optimal solution, which is same for FO subproblems. But because of the randomized grouping of links that need repair, it is possible for a FO subproblem start with a branching node that leads to a better upper bound when the 0.5% relative optimality gap is reached, and this node is not selected or reached by CPLEX in the regular branch-and-bound process. So when the 0.5% relative optimality gap is reached, the upper bound obtained by CPLEX is not as good as the one obtained by RFO. If we reduce the relative MIP gap tolerance to 0.1% or smaller for CPLEX, CPLEX should be able to obtain the same final solution but certainly with much more time spent on the branch-and-bound process.

3.5 Conclusion

In this chapter, a mixed-integer linear programming model is formulated to schedule work zones in networks of service vehicles (MS-NSV). The model schedules work zones with network-wide perspective to achieve minimum total flow cost of all OD demands throughout the project period. The MS-NSV problem is very challenging and
CPLEX cannot solve it efficiently. To give an example, CPLEX is not able to obtain the optimal solution for a small network with 20 links after hours of computation on a personal computer. The randomized fix-and-optimize heuristic (RFO) is developed to solve the problem efficiently, which can obtain optimal or near-optimal solutions with much less time compared to solving the MS-NSV problem solely with CPLEX. The performance of RFO and CPLEX are compared on various tests cases to illustrate the advantage that RFO has over CPLEX.

Since to schedule the work zones (lane closures) is essentially to manage the mandatory network capacity changes to achieve the minimum negative impacts on service vehicle flows, the MS-NSV problem is a network capacity management problem. The network flows model used in the MS-NSV problem is the multi-commodity flow model with system optimum as the objective, where link capacity reductions absolutely cannot reduce the total flow cost. The next chapter will briefly introduce the proposed research aimed at addressing the network capacity management problem in networks with user-optimized flows, where selective link capacity reductions may reduce the total flow cost. It also briefly discusses the proposed research that studies the maintenance planning in networks with both the flow type with system optimum as the objective, and the flow type conforming the user equilibrium principle.
MAINTENANCE SCHEDULING IN MULTI-MODAL NETWORKS
(MS-MMN)

4.1 Introduction

In large cities, people often have the options of traveling to their destinations through different transportation modes, such as private cars, buses, light-rails, ride-sharing cars/vans, autonomous vehicles (in the near future), etc. Different travel modes serve portions of the origin-destination (OD) demands and/or compete for the same transportation infrastructure (i.e., road network). For the multi-modal traffic that competes for the road capacity, numerous studies have investigated the mixed flows of cars and trucks (e.g., Bliemer, 2000; Chanut and Buisson, 2003; Ferrari, 2009; Ferrari, 2011; Mesa-Arango and Ukkusuri, 2014; Wu et al., 2006; Zhang et al., 2002; etc.). As greater traffic of electric vehicles and self-driving cars being predicted, more research attention has been drawn to the multi-modal traffic consisting gasoline vehicles and electric vehicles (e.g., Agrawal et al., 2016; Jiang and Xie, 2014; Xu et al., 2017), and the mixed flows of human-driving vehicles and autonomous vehicles (e.g., Davis, 2007; Mahmassani, 2016). These studies, albeit innovative, are limited to the assumption that all traffic flows of different travel modes are user equilibrium (UE) flows as described in Wardrop’s First Principle (Wardrop, 1952), where every traveler routes through the network to minimize his/her own travel time.

This chapter studies the mixed flow of two travel modes where the travelers of each mode have distinct routing objectives. Travelers of the first travel mode (i.e., private cars) choose the routes that minimize individual travel times and reach user equilibrium. And
the travelers of the second travel mode choose the routes that minimize the overall travel
time of all travelers and achieve system optimum (SO). One example of such travel mode
is autonomous vehicles mode where the route to take passengers may be decided centrally.

As discussed in Section 2.3, literature reviewed on maintenance scheduling in
transportation networks only considered single mode traffic flows -- either pure UE flows
or pure SO flows. This chapter makes the first attempt to investigate the maintenance
scheduling problem with the consideration of multi-modal traffic flows that consist of both
UE flows and SO flows. To approach this problem, a bi-level optimization model is
developed in the next section, where the upper level is a scheduling problem and the lower
level are a series of UE flow and SO flow assignment problems for each day in the planning
horizon based on a feasible schedule. An iterative UE-SO assignment algorithm is
developed for the lower level problem in Section 5.3. Section 5.4 applies the genetic
algorithm to solve the problem of maintenance scheduling in multi-modal networks (MS-
MMN). The computational experiments conducted on various test cases are summarized
in Section 5.5. The research findings presented in this chapter are summarized in Section
5.6.

4.2 MS-MMN Model

In the problem of maintenance scheduling in multi-modal networks (MS-MMN),
a set of links need to be repaired before a common due date and each lane of these links
can constitute an independent work zone to be scheduled. Once a lane is closed for repair,
it cannot open to serve flows until it is repaired. Upon maintenance completion, lanes will
have a small capacity increase since it is commonsense that the road condition should be
improved and the capacity should increase after maintenance. The available capacity of
the links may change from day to day due to closing lanes for repair and reopening lanes
that are repaired. On each day in the planning horizon, there are some OD flows which are
UE flows and other OD flows that are SO flows. They route through the network based on
the available link capacities on each day. The objective of the MS-MMN problem is to
schedule lane closures so that all maintenance work can be completed before the common
due date, and the total travel time of all OD flows are minimized in the planning time
horizon.

The MS-MMN is formulated as a bi-level mixed integer nonlinear program. The
upper level is the scheduling problem that obtains lane closure schedules. Denote y_{it} as
the total flow from all OD demand on link i on day t, and $c_i(y_{it})$ as the travel time function
of link i evaluated at y_{it}, the objective of the upper level problem, which is also the
objective of the MS-MMN, is $\text{minimize} \sum_{t \in [1,T]} \sum_{i \in E} c_i(y_{it}) \ast y_{it}$, where T is the
maintenance completion date and E is the link set in the network.

Binary variables s_{imt} are introduced to indicate whether the repair of the m^{th} lane
of link i starts on day t, and $s_{imt} = 1$ if it is. Hence, we have the constraints $\sum_{t=1}^{T} s_{imt} = 1$
for $\forall i \in R$ and $\forall m \in [1,n_i]$, where R is the set of links that need repair and n_i is the
number of lanes in link i. This set of constraints force every lane of all the links that need
repair to have one and only one repair start date.

To indicate whether m^{th} lane of link i is closed for maintenance on day t, binary
variables x_{imt} are added to the model and it equals to 1 if the lane is closed. Let p_i be the
number of days needed to repair a lane of link i, constraints $\sum_{t=1}^{T} x_{imt} = p_i$ for $\forall i \in R$ and
$\forall m \in [1,n_i]$ are formulated to ensure the repair on all the links be completed by the
common due date T. Since each lane of the links that need maintenance have one and only
one repair start date and the number of days needed to repair a lane is given, whether a
lane is closed or not on a day is determined once the repair start date of that lane is
determined. And thus, we develop the set of constraints $x_{imt} = \sum_{a=\max(t-p_i+1,1)}^{a=t} s_{ima}$ for $\forall i \in R, \forall t \in T$ and $\forall m \in [1, n_i]$ to make sure that once a lane is closed for repair, it will not open to serve traffic flows until the repair work on this lane is finished and that it will be open on other dates. Constraints $\sum_{t=1}^{t=T} s_{imt} = 0$ for $\forall i \notin R, \forall m \in [1, n_i]$ and $\sum_{t=1}^{t=T} x_{imt} = 0$ for $\forall i \notin R$ and $\forall m \in [1, n_i]$ are added to the model so that all the lanes of links that do not need repair will not have maintenance start date and will be open to serve the flows throughout the project period.

In addition, binary variables v_{imt} are introduced to calculate the increased lane capacities and v_{imt} equals to 1 if lane m of link i is repaired before day t. Constraints $v_{imt} = \sum_{a=t-p_i}^{a=t} s_{ima}$, for $\forall i \in R, \forall m \in [1, n_i]$ and $\forall t \in [p_i+1, T]$ determine the values of v_{imt} given the values of s_{imt}. In the constraints, the date ranges from $p_i + 1$ to T since $p_i + 1$ is the earliest day that the lane can open and serve traffic flows, because even if the maintenance starts on day 1, it would take p_i days to complete the repair work for this lane. Constraints $v_{imt} = 0$, for $\forall i \in R, \forall m \in [1, n_i]$ and $\forall t \in [1, p_i]$ make sure each lane of the links that need maintenance stay in the status of not repaired in the first p_i days. And constraints $v_{imt} = 0$, for $\forall i \notin R, \forall m \in [1, n_i]$ and $\forall t \in [1, T]$ force lanes of links that do not need repair stay in the status quo throughout the project period.

Let θ be the percentage of capacity increase after a lane is repaired, and let u_i be the lane capacity of link i, then the available capacity of link i on day t is $(n_i - \sum_{m=1}^{n_i} x_{imt} + \sum_{m=1}^{n_i} \theta v_{imt})u_i$. Although there is no constraint based on link capacity being explicitly formulated in MS-MMN, link overflow is contained by adopting link travel time functions that increase exponentially once the link flow exceeds the link available capacity. One example of this type of link travel time function is the function developed by Bureau of Public Roads (BPR), which is:
\[c_i(y_{it}) = c_i^0 \left[1 + \alpha \left(\frac{y_{it}}{u_i n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt}} \right)^\beta \right] \]

where \(c_i^0 \) is the free-flow travel time on link \(i \) and \(\alpha \) and \(\beta \) are parameters. This BPR function is adopted as the link travel time function for in this chapter.

Denote \(y_{it}^{UE} \) as the total flow from all OD pairs that generate UE flows, and denote \(y_{it}^{SO} \) as the total flow from all OD pairs that generate SO flows, the flow consistency constraints \(y_{it} = y_{it}^{UE} + y_{it}^{SO} \) are formulated for \(\forall i \in E, \forall t \in [1, T] \) with the presumption that each unit of UE flow has the same effect on the link travel time as each unit of SO flow does. Denote \(D_k^{UE} \) as the UE flow and \(D_k^{SO} \) as the SO flow generated by OD pair \(k \) respectively, constraint \(y_{it} \leq (\sum_{k \in OD^{UE}} D_k^{UE} + \sum_{k \in OD^{SO}} D_k^{SO}) (n_i - \sum_{m=1}^{n_i} x_{imt}) \) is added for \(\forall i \in R, \forall t \in [1, T] \) to ensure entirely closed links not to serve any flows.

The lower-level UE flow assignment problem and SO flow assignment problem are formulated for each day in the planning horizon. For a specific day, the objective of the UE assignment problem is the Beckmann’s function minimize \(\sum_{i \in E} \int_{0}^{y_{it}^{UE}} c_i(\omega) d\omega \) that ensures the UE flow condition. The flow consistency constraint \(y_{it}^{UE} = \sum_{k \in OD^{UE}} y_{ikt}^{UE} \) is added for \(\forall i \in E \) so that the UE flows from all OD pairs are accounted for the total UE flow on link \(i \).

For each OD pair that generates UE flows on each day, flow conservation constraints, consisting of three groups, are needed. The first group of constraints makes sure the total incoming UE flow units minus the total outgoing UE flow units equal to the OD demand for the origin node of the OD pair. The first part is formulated as \(D_k^{UE} = \sum_{i: E_i^- = OD_k^{UE-}, i \in E} y_{ikt}^{UE} - \sum_{j: E_j^+ = OD_k^{UE-}, j \in E} y_{jkt}^{UE} \) for \(\forall k \in OD^{UE} \), where \(y_{jkt}^{UE} \) is the UE flow of OD pair \(k \) on link \(j \) on day \(t \), \(OD_k^{UE-} \) is the origin node of OD pair \(k \) that generates the UE flow, \(E_i^- \) is the head node of link \(i \) and \(E_j^+ \) is the tail node of link \(j \). The second group
ensures the total outgoing UE flow units minus the total incoming UE flow units equal to the demand of OD pair \(k \) for its destination node, and is formulated as \(D^\text{UE}_k = \sum_{(i; E_i^+ = OD_k^\text{UE}^+, i \in E)} Y^\text{UE}_{ikt} - \sum_{(j; E_j^- = OD_k^\text{UE}^+, j \in E)} Y^\text{UE}_{jkt} \) for \(\forall k \in OD \), where \(OD_k^\text{UE}^+ \) is the destination node of OD pair \(k \) that generates the UE flow, \(E_i^+ \) is the tail node of link \(i \) and \(E_j^- \) is the head node of link \(j \). For the rest of the nodes, other than origin and destination nodes of OD pair \(k \), the total incoming UE flows on the node from the origin of OD pair \(k \) should equal to the total outgoing UE flows from the node to the destination of the OD pair \(k \).

This is the third group of the flow conservation constraints and it is formulated as \(\sum_{(i; E_i^- = l, i \in E)} Y^\text{UE}_{ikt} = \sum_{(j; E_j^+ = l, j \in E)} Y^\text{UE}_{jkt} \) for \(\forall l \in N, \forall k \in \{k: OD_k^\text{UE}^- \neq l\} \cap \{k: OD_k^\text{UE}^+ \neq l\} \), where \(N \) is the set of nodes in the network.

As to the SO assignment problem on each day, the objective function is minimize \(\sum_{i \in E} c_i(y_{it}) \cdot y_{it} \), which is to have the SO flows to choose the routes that will minimize the total travel time of all the OD flows. It has flow consistency constraints and flow conservation constraints that are similar to those of the UE assignment problem, but are formulated with respect to the SO flows and OD pairs that generate SO flows.

The aforementioned sets, parameters, variables and functions are listed in Table 4.2 – i:

Table 4.2-i: Notations for MS-MMN

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>Node set of the network</td>
</tr>
<tr>
<td>(E)</td>
<td>The set of existing links in the network</td>
</tr>
<tr>
<td>(R)</td>
<td>The set of existing links that need to be repaired in the network, (R \subset E)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>The set of Origin-Destination pairs of UE flows</td>
</tr>
<tr>
<td>OD</td>
<td>The set of Origin-Destination pairs of SO flows</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Completion date for all the maintenance work (the earliest start date of a work zone is Day 1)</td>
</tr>
<tr>
<td>n_i</td>
<td>Number of lanes of link i, $i \in E$</td>
</tr>
<tr>
<td>u_i</td>
<td>Capacity of a lane of link i, $i \in E$</td>
</tr>
<tr>
<td>θ</td>
<td>The percentage of capacity increase after a lane is repaired</td>
</tr>
<tr>
<td>c_i</td>
<td>The free-flow travel time on link i, $i \in E$</td>
</tr>
<tr>
<td>p_i</td>
<td>The number of days needed to repair a lane of link i, $i \in R$</td>
</tr>
<tr>
<td>E_i^-</td>
<td>Start node of link i, $i \in E$</td>
</tr>
<tr>
<td>E_i^+</td>
<td>End node of link i, $i \in E$</td>
</tr>
<tr>
<td>OD</td>
<td>Origin node of OD pair k, $k \in OD_{UE}$</td>
</tr>
<tr>
<td>OD</td>
<td>Destination node of OD pair k, $k \in OD_{UE}$</td>
</tr>
<tr>
<td>OD</td>
<td>Origin node of OD pair k, $k \in OD_{SO}$</td>
</tr>
<tr>
<td>OD</td>
<td>Destination node of OD pair k, $k \in OD_{SO}$</td>
</tr>
<tr>
<td>D</td>
<td>Flow demand of OD pair k, $k \in OD_{UE}$</td>
</tr>
<tr>
<td>D</td>
<td>Flow demand of OD pair k, $k \in OD_{SO}$</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>s_{int}</td>
<td>Binary variable indicating whether to repair on the m^{th} lane of link i starts on day t. If repair work starts on day t, $s_{int} = 1$; otherwise, $s_{int} = 0$</td>
</tr>
</tbody>
</table>
\(x_{imt} \) Binary variable indicating whether the \(m^{th} \) lane of link \(i \) is closed for maintenance on day \(t \), if it is closed, \(x_{imt} = 1 \); otherwise \(x_{imt} = 0 \)

\(y_{ikt}^{UE} \) The flow units incurred by the UE flow of OD pair \(k \) on link \(i \) on day \(t \)

\(y_{it}^{UE} \) The flow units from all UE flows on link \(i \) on day \(t \)

\(y_{ikt}^{SO} \) The flow units incurred by the SO flow of OD pair \(k \) on link \(i \) on day \(t \)

\(y_{it}^{SO} \) The flow units from all SO flows on link \(i \) on day \(t \)

\(y_{it} \) The total amount of flows on link \(i \) on day \(t \) from all UE and SO OD pairs

\(v_{imt} \) Binary variable indicating whether the \(m^{th} \) lane of link \(i \) is repaired before day \(t \), if it is, \(v_{imt} = 1 \); otherwise 0; for all the links that don't need maintenance, \(v_{imt} = 0 \) all the time

\(c_i(y_{it}) \) Travel time on link \(i \) when the flow on the link is \(y_{it} \). BPR function is used, for

\[
\forall i \in E \setminus R, \quad c_i(y_{it}) = c_i^0 \left[1 + \alpha \left(\frac{y_{it}}{u_{imt}} \right)^\beta \right] \quad \text{for} \quad \forall i \in R, \quad c_i(y_{it}) = c_i^0 \left[1 + \alpha \left(\frac{y_{it}}{u_{imt}} \right)^\beta \right], \quad \forall i \in R
\]

With the notations above, the complete MS-MMN model is presented below:

MS-MMN:

Upper Level:

\[
\text{minimize} \quad z(s) = \sum_{i \in E} \sum_{t=1}^{T} c_i(y_{it}) \cdot y_{it} \tag{1}
\]

s.t.

\[
\sum_{t=1}^{T} s_{imt} = 1, \quad \forall i \in R, \forall m \in [1, n_i] \tag{2}
\]

\[
\sum_{t=1}^{T} s_{imt} = 0, \quad \forall i \notin R, \forall m \in [1, n_i] \tag{3}
\]

\[
x_{imt} = \sum_{a=t}^{\max(t-p_i+1,1)} s_{ima}, \quad \forall i \in R, \forall t \in T, \forall m \in [1, n_i] \tag{4}
\]

\[
\sum_{t=1}^{T} x_{imt} = p_i, \quad \forall i \in R, \forall m \in [1, n_i] \tag{5}
\]

\[
\sum_{t=1}^{T} x_{imt} = 0, \quad \forall i \notin R, \forall m \in [1, n_i] \tag{6}
\]

\[
v_{imt} = \sum_{a=1}^{p_i} s_{ima}, \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in [p_i + 1, T] \tag{7}
\]

\[
v_{imt} = 0, \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in [1, p_i] \tag{8}
\]
\(v_{int} = 0, \quad \forall i \not\in R, \forall m \in [1, n_i], \forall t \in [1, T]\) \quad (9)

\(s_{int}, x_{int}, v_{int} \in \{0, 1\}, \quad \forall i \in E, \forall m \in [1, n_i], \forall t \in [1, T]\) \quad (10)

\(y_{it} = y_{it}^{UE} + y_{it}^{SO}, \quad \forall i \in E, \forall t \in [1, T]\) \quad (12)

\(y_{it} \leq \left(\sum_{k \in OD^{UE}} D_k^{UE} + \sum_{k \in OD^{SO}} D_k^{SO}\right)(n_i - \sum_{m=1}^{n_i} x_{int}), \forall i \in R, \forall t \in [1, T]\) \quad (13)

Lower Level – UE Flow Assignment:

For \(\forall t \in [1, T]\):

\[
\text{minimize } \sum_{i \in E} y_{it}^{UE}^* c_i(\omega, y_{it}^{SO}) d\omega
\]

\[
\text{s.t.}
\]

\(y_{it}^{UE} = \sum_{k \in OD^{UE}} y_{ikt}^{UE}, \quad \forall i \in E\) \quad (15)

\(D_k^{UE} = \sum_{i: E_i^- = OD_k^{UE-}, i \in E} y_{ikt}^{UE} - \sum_{j: E_j^+ = OD_k^{UE-}, j \in E} y_{jkt}^{UE}, \quad \forall k \in OD^{UE}\) \quad (16)

\(D_k^{UE} = \sum_{i: E_i^+ = OD_k^{UE+}, i \in E} y_{ikt}^{UE} - \sum_{j: E_j^- = OD_k^{UE+}, j \in E} y_{jkt}^{UE}, \quad \forall k \in OD^{UE}\) \quad (17)

\(\sum_{i: E_i^- = l, i \in E} y_{ikt}^{UE} = \sum_{j: E_j^+ = l, j \in E} y_{jkt}^{UE}, \quad \forall l \in N, \forall k \in \{k: OD_k^{UE-} \neq l\} \cap \{k: OD_k^{UE+} \neq l\}\) \quad (18)

\(y_{ikt}^{UE} \geq 0, \quad \forall i \in E, \forall k \in OD^{UE}\) \quad (19)

Lower Level – SO Flow Assignment:

For \(\forall t \in [1, T]\):

\[
\text{minimize } \sum_{i \in E} c_i(y_{it}^{SO}, y_{it}^{UE})^* (y_{it}^{SO} + y_{it}^{UE})
\]

\[
\text{s.t.}
\]

\(y_{it}^{SO} = \sum_{k \in OD^{SO}} y_{ikt}^{SO}, \quad \forall i \in E\) \quad (21)

\(D_k^{SO} = \sum_{i: E_i^- = OD_k^{SO-}, i \in E} y_{ikt}^{SO} - \sum_{j: E_j^+ = OD_k^{SO-}, j \in E} y_{jkt}^{SO}, \quad \forall k \in OD^{SO}\) \quad (22)

\(D_k^{SO} = \sum_{i: E_i^+ = OD_k^{SO+}, i \in E} y_{ikt}^{SO} - \sum_{j: E_j^- = OD_k^{SO+}, j \in E} y_{jkt}^{SO}, \quad \forall k \in OD^{SO}\) \quad (23)

\(\sum_{i: E_i^- = l, i \in E} y_{ikt}^{SO} = \sum_{j: E_j^+ = l, j \in E} y_{jkt}^{SO}, \forall l \in N, \forall k \in \{k: OD_k^{SO-} \neq l\} \cap \{k: OD_k^{SO+} \neq l\}\) \quad (24)

\(y_{ikt}^{SO} \geq 0, \quad \forall i \in E, \forall k \in OD^{SO}\) \quad (25)

The MS-MMN model formulated is a challenging bi-level mixed-integer nonlinear program that has two parallel subproblems in the lower level. Currently there is no
commercial solver available to handle this type of problem. Based on the bi-level structure of MS-MMN, the solution methods developed in the following two sections address the upper level scheduling problem and the lower level UE and SO assignment problems separately.

4.3 Solution Approach for the Lower Level Problem

Although the UE flow assignment problem and the SO flow assignment problem are two separate problems in the lower level of MS-MMN, they are connected by the link travel times. Given the schedule of lane closures on a certain day, the UE assignment will change if the SO assignment changes because link travel times have changed, and vice versa. Hence, one intuitive solution to the lower level of MS-MMN is the iterative UE-SO assignment algorithm developed in this section, which repetitively fixes the SO flows and solves the UE assignment problem, then fixes the UE flows obtained and solves the SO flow assignment, until the UE flows meet the UE condition and at the same time the SO flows minimizes the total travel time of all the flows. This section first proves the existence of the converged UE-SO flows, and then presents the iterative UE-SO assignment algorithm.

The converged UE and SO flow is the stationary status that both the UE flows and the SO flows are at their optimality for the UE assignment problem and the SO assignment problem respectively. That means the combined UE and SO flows result in the link travel times that satisfy both the UE condition for the UE flows and the SO condition for the SO flows. The existence of this stationary status is stated in the following lemma.

Lemma 4.3-1:

Given link available capacities and the origin-destination (OD) demand for user equilibrium (UE) flows and system optimum (SO) flows, there exists a routing pattern for
all the OD demand that both UE flows and SO flows are at their optimality.

Proof of Lemma 4.3-1:

Besides the link-based formulation for the UE assignment problem shown in the previous section, there is an equivalent path-based formulation:

Lower Level – UE Flow Assignment (Path-based Formulation):

\[
\text{minimize } \sum_{i \in E} \int \gamma_{it}^{UE} c_i(y_{it}^{SO}, \omega) \, d\omega
\]

s.t.

\[
\sum_{p \in P_k} f_{p}^{k,t} = D_k^{UE} \quad \forall k \in OD^{UE} \tag{26}
\]

\[
\gamma_{it}^{UE} = \sum_{k \in OD^{UE}} \sum_{p \in P_k} f_{p}^{k,t} \delta_{i,p}^{k} \quad \forall i \in E \tag{27}
\]

\[
f_{p}^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{28}
\]

\[
\gamma_{it}^{UE} \geq 0 \quad \forall i \in E \tag{19}
\]

On any specific day \(t \), variable \(f_{p}^{k,t} \) is the amount of flows of OD pair \(k \) that travel on path \(p \). \(\delta_{i,p}^{k} \) is the parameter indicating whether link \(i \) is along path \(p \) for OD pair \(k \). \(\delta_{i,p}^{k} = 1 \) if it is and \(\delta_{i,p}^{k} = 0 \) otherwise. \(P_k \) is the path set of the OD pair \(k \). Constraint (26) makes sure all OD demands are satisfied. Constraint (27) ensures the flows from all OD pairs that generate UE flows are accounted for the total UE flow on the link.

Since another way to interpret the UE principle is that paths being used by flows have the same path travel time, and it equals to the minimum travel time between the OD pair, the UE condition can be ensured by a set of linear constraints with the introduction of binary variables instead of using Beckmann’s function as the objective. For day \(t \) in the planning horizon, denote \(c_{p}^{k,t} \) as the travel time on path \(p \) of OD pair \(k \), and \(c_{min}^{k,t} \) as the minimum travel time of all the paths of OD pair \(k \). Introduce binary variable \(w_{p}^{k,t} \) for \(\forall k \in OD, \forall p \in P_k \), which equals 1 if path \(p \) has longer travel time than the minimum travel time.
between OD pair \(k \) and 0 otherwise, the UE condition can be ensured by the following constraints:

\[
c_p^{k,t} = \sum_{i \in E} \delta_{i,p}^k c_i(y_{it}^{SO}, y_{it}^{UE}) \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{29}
\]

\[
c_{\text{min}}^{k,t} \leq c_p^{k,t} \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{30}
\]

\[
c_p^{k,t} - c_{\text{min}}^{k,t} \leq Mw_p^{k,t} \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{31}
\]

\[
f_p^{k,t} \leq M(1 - w_p^{k,t}) \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{32}
\]

\[
c_p^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{33}
\]

\[
c_{\text{min}}^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{34}
\]

\[
w_p^{k,t} \in \{0,1\} \quad \forall k \in OD^{UE}, \forall p \in P_k \tag{35}
\]

Constraint (29) calculates the path travel time and constraint (30) ensures \(c_{\text{min}}^{k,t} \) is the minimum travel time between OD pair \(k \). Constraint (31) and (32) make sure paths will not be used by flows of OD pair \(k \) if its travel time is longer than the minimum travel time between the OD pair, and only paths with travel time equal to the minimum travel time can have flows on them. Hence the UE assignment problem is equivalent to finding a feasible solution to the set of constraints from (26) to (35). Therefore, the UE flow assignment problem and the SO flow assignment problem in the lower level can be combined as one optimization problem:

Lower Level: UE-SO Flow Assignment

For \(\forall t \in [1,T] \):

minimize \(\sum_{i \in E} c_i(y_{it}^{SO}, y_{it}^{UE}) \ast (y_{it}^{SO} + y_{it}^{UE}) \) \tag{20}

s.t.

\[
y_{it}^{SO} = \sum_{k \in OD^{SO}} y_{ikt}^{SO} \quad \forall i \in E \tag{21}
\]

\[
D_k^{SO} = \sum_{(i:E_i^+ = OD_k^{SO}, i \in E)} y_{ikt}^{SO} - \sum_{(j:E_j^- = OD_k^{SO}-, j \in E)} y_{jkt}^{SO} \quad \forall k \in OD^{SO} \tag{22}
\]

\[
D_k^{SO} = \sum_{(i:E_i^+ = OD_k^{SO}+, i \in E)} y_{ikt}^{SO} - \sum_{(j:E_j^- = OD_k^{SO}+, j \in E)} y_{jkt}^{SO} \quad \forall k \in OD^{SO} \tag{23}
\]
\[
\sum_{i \in E} y_{it}^{SO} = \sum_{j \in E} y_{jt}^{SO}, \quad \forall l \in N, \forall k \in \{k: OD_{k}^{SO-} \neq l\} \cap \{k: OD_{k}^{SO+} \neq l\} \quad (24)
\]

\[
\sum_{p \in P_k} f_{p}^{k,t} = D_{k}^{UE} \quad \forall k \in OD^{UE} \quad (26)
\]

\[
y_{it}^{UE} = \sum_{k \in OD^{UE}} \sum_{p \in P_k} f_{p}^{k,t} \delta_{i,p}^{k} \quad \forall i \in E \quad (27)
\]

\[
c_{p}^{k,t} = \sum_{i \in E} \delta_{i,p}^{k} c_{i}^{SO}(y_{it}^{SO}, y_{it}^{UE}) \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (29)
\]

\[
c_{p}^{k,t} = c_{min}^{k,t} \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (30)
\]

\[
c_{p}^{k,t} - c_{min}^{k,t} \leq Mw_{p}^{k,t} \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (31)
\]

\[
f_{p}^{k,t} \leq M(1 - w_{p}^{k,t}) \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (32)
\]

\[
f_{p}^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (28)
\]

\[
y_{it}^{SO} \geq 0 \quad \forall i \in E, \forall k \in OD^{SO} \quad (25)
\]

\[
y_{it}^{UE} \geq 0 \quad \forall i \in E \quad (19)
\]

\[
c_{p}^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (33)
\]

\[
c_{min}^{k,t} \geq 0 \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (34)
\]

\[
w_{p}^{k,t} \in \{0, 1\} \quad \forall k \in OD^{UE}, \forall p \in P_k \quad (35)
\]

The UE-SO flow assignment problem is feasible since it does not have contradicting constraints. Also, the feasible region is bounded and closed, because all variables are bounded by the OD demand either directly or indirectly, and the feasible space defined by each constraint contains its boundary. Hence, there exist optimal solutions to the UE-SO flow assignment problem. Because at the optimality the SO flows \((y_{SO}^{SO})\) minimize the total travel time of all flows and the UE flows \((y_{UE}^{UE})\) must satisfy the UE condition ensured by constraint (31) and (32), there exists a routing pattern for all the OD demand that UE flows satisfy the UE condition and SO flows are at their optimality. □

The iterative UE-SO assignment solves the UE assignment and the SO assignment alternately. The algorithm adopted for the UE assignment problem is the Traffic Assignment with Paired Alternative Segments (TAPAS) algorithm developed by Bar-Gera
When the UE assignment is being solved, the SO flows are considered fixed. And thus, the link travel time function in the objective of the UE assignment becomes:

\[c_i(y_{it}^{UE}) = c_i^0 \left[1 + \alpha \left(\frac{y_{it}^{SO} + y_{it}^{SO}}{u_i(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right] \]

where \(y_{it}^{SO} \) (\(\forall i \in E \)) are the fixed SO flows and \(x_{imt} \) and \(v_{imt} \) have known values derived from a given lane closure schedule. Since the convergence of TAPAS algorithm is proved in Bar-Gera (2010), the UE flows will converge given fixed \(y_{it}^{SO} \).

The SO assignment problem with fixed \(y_{it}^{UE} \) is a convex optimization problem because its objective function is convex since its Hessian is a positive definite diagonal matrix, and the feasible region is a convex set since it is defined by linear constraints. Hence, the SO assignment given fixed \(y_{it}^{UE} \) can be solved by the Bi-conjugate Frank-Wolfe (BFW) algorithm adopted in Chapter 4 with a minor adjustment in the direction-finding subproblem and step size subproblem. The objective function for the SO assignment with fixed \(y_{it}^{UE} \) is:

\[\text{minimize } z(y^{SO}) = \sum_{i \in E} c_i^0 \left[1 + \alpha \left(\frac{y_{it}^{SO} + y_{it}^{SO}}{u_i(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right] (y_{it}^{SO} + y_{it}^{UE}) \]

where \(y_{it}^{SO} \), \(x_{imt} \) and \(v_{imt} \) are all treated as parameters.

Suppose at \(n^{th} \) iteration, feasible flows \(y_{it}^{SO}(n) \) for \(\forall i \in E \) are obtained, the gradient of the objective function is:

\[\nabla z(y_n^{SO}) = c_i^0 \left[1 + \alpha (\beta + 1) \left(\frac{y_{it}^{SO}(n) + y_{it}^{SO}}{u_i(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right], \forall i \in E \]

where \(y_n^{SO} \) is the vector of \(y_{it}^{SO}(n) \) \(\forall i \in E \). Let \(w_n \) denote the descending direction for the feasible solution \(y_n^{SO} \), the direction-finding subproblem is:
minimize \(w_n^T \nabla z_t(y_n^{SO}) = \sum_{i \in E} c_i^0 \left(1 + \alpha(\beta + 1) \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_{it}(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right) w_{it}(n) \)

s.t.:
\[
\begin{align*}
 w_{it} &= \sum_{k \in OD^{SO}} w_{ikt} \quad \forall i \in E \\
 D_k^{SO} &= \sum_{(i:E_i^-=OD_k^{SO-},i \in E)} w_{ikt} - \sum_{(j:E_j^+=OD_k^{SO+},j \in E)} w_{ikt} \quad \forall k \in OD^{SO} \\
 D_k^{SO} &= \sum_{(i:E_i^-=l,i \in E)} w_{ikt} - \sum_{(j:E_j^+=l,j \in E)} w_{ikt} \quad \forall k \in OD^{SO} \\
 \sum_{(i:E_i^-=l,i \in E)} w_{ikt} &= \sum_{(j:E_j^+=l,j \in E)} w_{ikt}, \forall l \in N, \forall k \in \{ k: OD_k^{SO-} \neq l \} \cap \{ k: OD_k^{SO+} \neq l \} \\
 w_{ikt} &\geq 0 \quad \forall i \in E, \forall k \in OD^{SO}
\end{align*}
\]

This direction-finding subproblem can be perceived as a series of min-cost flow problems for the OD pairs with fixed unit flow cost \(c_i^0 \left(1 + \alpha(\beta + 1) \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_{it}(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right) \) \(\forall i \in E. \) Since there is no hard link capacity constraint, \(y_n \) can be obtained by all-or-nothing assignment based on the “skewed” link cost \(c_i^0 \left(1 + \alpha(\beta + 1) \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_{it}(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right), \) which finds the shortest path for each OD pair and then sends all flows of the OD pair along that path. As a comparison, the true link travel time is \(c_i^0 \left(1 + \alpha \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_{it}(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right), \)

Let \(\bar{w}_n \) be the descending direction obtained from the direction-finding subproblem, the **step size subproblem** is:
\[\text{minimize } z_t(\lambda) \]
\[
= \sum_{i \in E} c_{it}^0 \left(1 + \alpha \left(\frac{y_{it}^{SO}(n) + \frac{w_{it}}{y_{it}^{UE}} + \lambda(w_{it}(n) - y_{it}^{SO}(n))}{u_i(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right) \\
\quad \times \left[(y_{it}^{SO}(n) + \frac{w_{it}}{y_{it}^{UE}} + \lambda(w_{it}(n) - y_{it}^{SO}(n))) \right],
\]
\[\text{s.t.: } \lambda \in (0, 1) \]

which is,
\[\text{minimize } z_t(\lambda) \]
\[
= \sum_{i \in E} c_{it}^0 \left(1 + \alpha \left(\frac{y_{it}^{SO}(n) + \lambda(w_{it}(n) - y_{it}^{SO}(n))}{u_i(n_i - \sum_{m=1}^{n_i} x_{imt} + \theta \sum_{m=1}^{n_i} v_{imt})} \right)^\beta \right) \\
\quad \times \left[(y_{it}^{SO}(n) + \lambda(w_{it}(n) - y_{it}^{SO}(n))) + \frac{w_{it}}{y_{it}^{UE}} \right],
\]
\[\text{s.t.: } \lambda \in (0, 1) \]

We do not need the flow feasibility constraints since both \(y_{it}^{SO}(n) \) and \(w_{it}(n) \) satisfy the flow feasibility constraints and \(y_{it}^{SO}(n) + \lambda(w_{it}(n) - y_{it}^{SO}(n)) \) is their convex combination. The quadratic approximation algorithm is applied to solve the step size subproblem. For detailed execution procedure of the Frank-Wolfe algorithm and the discussion on its convergence, please refer to Section 4.4.2 in Chapter 4. Since it has been proven that the FW will converge (Frank and Wolfe, 1956), the SO flow assignment will converge with \(y_{it}^{UE} \) fixed.

Suppose a feasible solution is obtained for the UE-SO assignment problem on day \(t \) and it is \(y_{it}^{SO} \) and \(y_{it}^{UE}^* \) (\(\forall i \in E \)). The star in the superscript means the flows are optimal for the lower level UE assignment problem. This feasible solution satisfies all the constraints in the integrated UE-SO assignment model including the UE condition.
constraints, but is sub-optimal since the SO flows are not optimized. If the UE flows are fixed at y_{it}^{UE} and the SO flows are optimized based on the fixed UE flows, a new solution to the UE-SO assignment problem can be obtained. Suppose it is \bar{y}_{it}^{SO} and \bar{y}_{it}^{UE} ($\forall i \in E$), where the star in the superscript means the flows are optimal for the lower level SO assignment problem, and the double bars indicate the SO flows are different from the previous y_{it}^{SO}. However, the combination of \bar{y}_{it}^{SO} and \bar{y}_{it}^{UE} ($\forall i \in E$) is an infeasible solution to the integrated UE-SO assignment problem since \bar{y}_{it}^{UE} ($\forall i \in E$) no longer satisfy the UE condition constraints because the link travel times have changed. And thus \bar{y}_{it}^{SO} and \bar{y}_{it}^{UE} ($\forall i \in E$) is an infeasible solution to the UE-SO assignment problem. Hence, the iterative UE-SO assignment algorithm switches between the solutions obtained from UE assignment that are feasible and sub-optimal to the UE-SO assignment problem, and the solutions obtained from SO assignment which are infeasible, and eventually reaches the flow pattern that is optimal to the integrated UE-SO assignment problem.

Figure 4.3-i on the next page demonstrates the evolution of the mixed flow pattern over the iterative UE-SO flow assignment process. The horizontal axis represents the iterative UE-SO flow assignment iterations, the vertical axis is the total travel time of all flows. The horizontal dashed line is the total travel time associated with the optimal UE-SO flow assignment, where UE flows satisfy the UE conditions and SO flows are optimal at the same time. Compared with the total travel time of the optimal UE-SO flows, initially the total travel time of the mixed flows where UE flows meet the UE conditions but SO flows are sub-optimal is much higher, and the total travel time of the mixed flows where SO flows are optimal but UE flows don’t satisfy the UE conditions is much lower. But as the iterative UE-SO assignment proceeds, the total travel time of the mixed flows is getting closer to that of the optimal UE-SO flows and eventually will be the same.
Figure 4.3-i: Total Travel Time Change in the Iterative UE-SO Assignment Process

This iterative UE-SO flow assignment procedure is illustrated in Figure 4.3-i:

1. Solve for γ_{it}^{UE} (\(\forall i \in E\)) without SO flows
2. Fix γ_{it}^{UE} (\(\forall i \in E\)), solve for γ_{it}^{SO} (\(\forall i \in E\)), obtain total travel time for all flows $totalTime$
3. Are $totalTime$ and $totalTime'$ close enough?
4. Fix γ_{it}^{SO} (\(\forall i \in E\)), γ_{it}^{UE} (\(\forall i \in E\)), obtain total travel time for all flows $totalTime'$

Figure 4.3-ii: Iterative UE-SO Assignment Algorithm

The computation procedure of the iterative UE-SO assignment algorithm is summarized as follows:

Iterative UE-SO Assignment Algorithm

Step 1: Solve the UE assignment problem without the SO flows.

Step 2: Fix the UE flows and solve the SO assignment problem. Record the travel time for all the flows $totalTime$.

Step 3: Fix the SO flows and solve the UE assignment problem. Record the travel time for all the flows $totalTime'$.

Step 4: Check whether $totalTime = totalTime'$. If it is, exit the algorithm; otherwise go back to Step 2.

The iterative UE-SO assignment algorithm, which contains the TAPAS algorithm for the UE assignment and the BFW algorithm for the SO assignment, is programmed in C++ and tested on two networks: the simple four-node network shown in Figure 4.3.1-i in Chapter 4 and the Sioux Falls Network shown in Figure 3.4.3-iii in Chapter 3. The total OD demand in each network does not change but a certain percentage of the demand are SO flows and the rest of the demand are UE flows. The test cases are generated by varying the percentage of the demand that are SO flows. For example, if the SO flow percentage is 0%, all the demand are UE flows; and if the SO flow percentage is 100%, all the demand are SO flows.

Table 4.3-i gives the total travel time of converged UE-SO flows associated with different SO flow percentages in the simple four-node network. All five instances are solved within a second. It can be observed that as the SO flow percentage increases, the
total travel time decreases. This is expected since the SO flow pattern is more efficient than the UE flow pattern.

Table 4.3-i: Iterative UE-SO Assignment in Four-Node Network

<table>
<thead>
<tr>
<th>SO Flow Percentage</th>
<th>0</th>
<th>10%</th>
<th>50%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>63700</td>
<td>3066.</td>
<td>3066</td>
<td>2990</td>
<td>2901</td>
</tr>
<tr>
<td></td>
<td>3066</td>
<td>34698</td>
<td>53732</td>
<td>53731</td>
<td></td>
</tr>
</tbody>
</table>

The total travel time and computation time for test cases generated based on the Sioux Falls network is summarized in Table 4.3-ii below. Again, it can be observed that the total travel time decreases as the percentage of SO flows increases.

Table 4.3-ii: Iterative UE-SO Assignment in Sioux Falls Network

<table>
<thead>
<tr>
<th>SO Flow Percentage</th>
<th>0</th>
<th>10%</th>
<th>50%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>7480226.09</td>
<td>7467535.71</td>
<td>7299283.73</td>
<td>7216487.21</td>
<td>7194258.54</td>
</tr>
<tr>
<td>Computation Time</td>
<td>1.671 sec</td>
<td>2.709 sec</td>
<td>63.97 sec</td>
<td>86.215 sec</td>
<td>11.667 sec</td>
</tr>
</tbody>
</table>

To obtain the total travel time resulted from a lane closure schedule, the UE-SO assignment needs to be solved for each day in the planning horizon based on the link available capacities. The travel time of the UE and SO flows on each day then will be summed up over the planning horizon to obtain the total travel time associated with the schedule.

4.4 Solution Approach for the Upper Level Problem

With the iterative UE-SO assignment algorithm to evaluate lane closure schedules in the lower level, this section develops the solution method for the upper level to obtain the schedules. But before that, the convexity of the objective function and the feasible region of MS-MMN is explored. The following lemma shows the convexity of the objective function of MS-MMN.
Lemma 4.4-1:

The objective function of the MS-MMN problem is convex if the link travel time function is the BPR function.

Proof of Lemma 4.4-1:

For a certain day \(t \) in the planning horizon, take the first derivative of the objective function with respect to the UE flows and SO flows on link \(i \), we obtain:

\[
\nabla c_i(y_{it}^{SO}, y_{it}^{UE}) \ast (y_{it}^{SO} + y_{it}^{UE})
= \left[\frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{SO}} \ast (y_{it}^{SO} + y_{it}^{UE}) + c_i(y_{it}^{SO}, y_{it}^{UE}) \right] + \left[\frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{UE}} \ast (y_{it}^{SO} + y_{it}^{UE}) + c_i(y_{it}^{SO}, y_{it}^{UE}) \right]
\]

Then take the second derivative of the objective function with respect to the UE and SO flows on link \(i \), we have:

\[
H[c_i(y_{it}^{SO}, y_{it}^{UE}) \ast (y_{it}^{SO} + y_{it}^{UE})] =
\left[\frac{\partial^2 c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{SO} \partial y_{it}^{SO}} \ast (y_{it}^{SO} + y_{it}^{UE}) \right] + 2 \frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{SO}} \frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{UE}} \ast (y_{it}^{SO} + y_{it}^{UE}) + \frac{\partial^2 c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{UE} \partial y_{it}^{UE}} \ast (y_{it}^{SO} + y_{it}^{UE}) + 2 \frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{SO}} \frac{\partial c_i(y_{it}^{SO}, y_{it}^{UE})}{\partial y_{it}^{UE}}
\]

Since BPR function is adopted as the link travel time function, the second derivative (i.e, the Hessian matrix) is simplified to:

\[
H[c_i(y_{it}^{SO}, y_{it}^{UE}) \ast (y_{it}^{SO} + y_{it}^{UE})] =
\left[\alpha(\beta + 1) \beta \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_i(n_i - \sum_{m=1}^{n_i} x_{int} + \theta \sum_{m=1}^{n_m} v_{int})} \right)^{\beta - 1} \right] \quad \left[\alpha(\beta + 1) \beta \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_i(n_i - \sum_{m=1}^{n_i} x_{int} + \theta \sum_{m=1}^{n_m} v_{int})} \right)^{\beta - 1} \right]
\]

After a few elementary row operations, it becomes:

\[
H[c_i(y_{it}^{SO}, y_{it}^{UE}) \ast (y_{it}^{SO} + y_{it}^{UE})] = \left[\alpha(\beta + 1) \beta \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_i(n_i - \sum_{m=1}^{n_i} x_{int} + \theta \sum_{m=1}^{n_m} v_{int})} \right)^{\beta - 1} \right] \quad \left[\alpha(\beta + 1) \beta \left(\frac{y_{it}^{SO} + y_{it}^{UE}}{u_i(n_i - \sum_{m=1}^{n_i} x_{int} + \theta \sum_{m=1}^{n_m} v_{int})} \right)^{\beta - 1} \right]
\]
Combining the Hessian of all the link flow variables for the objective function, it is concluded that the Hessian matrix of the objective function is positive semidefinite because it is a diagonal matrix with the elements along the diagonal either have positive values or are zeros. Hence, the objective function is convex.

To find out whether the feasible region of MS-MMN is convex or not, the feasible region of the UE-SO assignment problem, which is the lower level of MS-MMN, is investigated first. □

Lemma 4.4-2:

The linear relaxation of the UE-SO assignment model has a non-convex feasible region.

Proof of Lemma 4.4-2:

Since only $w_p^{k,t}$ for $\forall k \in OD^{UE}, \forall p \in P_k$ are not continuous variables, these variables are relaxed from being binary to taking values in $[0, 1]$. After the relaxation, all constraints in UE-SO assignment model are linear constraints with continuous variables except Constraint (29), which is a nonlinear equality constraint with all feasible points on the surface. Suppose we have two sets of feasible UE-SO flows \bar{y}_{it}^{UE} and \bar{y}_{it}^{SO}, and \overline{y}_{it}^{UE} and \overline{y}_{it}^{SO} for $\forall i \in E$, from Constraint (29) we have:

$$c_p^{k,t} = \sum_{i \in E} \delta_{l,p} c_i(\bar{y}_{it}^{SO}, \bar{y}_{it}^{UE})$$

and

$$\overline{c}_p^{k,t} = \sum_{i \in E} \delta_{l,p} c_i(\overline{y}_{it}^{SO}, \overline{y}_{it}^{UE})$$

Since $c_i(\bar{y}_{it}^{SO}, \bar{y}_{it}^{UE})$ is the nonlinear BPR function with $\beta > 1$, it is obvious that for $\lambda \in [0, 1]$.

98
\[\lambda c_{kp}^{k,t} + (1 - \lambda)c_{kp}^{k,t} \neq \sum_{i \in E} \delta_{i,p}^k c_i(\lambda y_{it}^{SO} + (1 - \lambda)y_{it}^{SO}, \lambda y_{it}^{UE} + (1 - \lambda)y_{it}^{UE}) \]

Therefore, the feasible region defined by Constrain (29) is not convex and thus the feasible region of the linear relaxation of UE-SO assignment model is not convex.

Lemma 4.3-2 below and shows the linear relaxation of the MS-MMS problem has a non-convex feasible region:

Lemma 4.4-3:

The linear relaxation of the MS-MMN model has a non-convex feasible region.

Proof of Lemma 4.4-3:

With the UE-SO assignment model developed in Section 5.2, the MS-MMN model can also be formulated as a single-level optimization problem by duplicating the UE-SO assignment model for each day in the planning horizon and with the addition of the scheduling variables and constraints, because both models have the same objective of minimizing the total travel time of UE flows and SO flows. The single-level MS-MMN model is shown below:

Single-Level MS-MMN

\[
\begin{align*}
\text{minimize } & \quad z(s) = \sum_{i \in E} \sum_{t=1}^{T} c_i(y_{it}) \cdot y_{it} \\
\text{s.t. } & \quad \sum_{t=1}^{T} s_{imt} = 1 \quad \forall i \in R, \forall m \in [1, n_i] \\
& \quad \sum_{t=1}^{T} s_{imt} = 0 \quad \forall i \notin R, \forall m \in [1, n_i] \\
& \quad x_{imt} = \sum_{a=1}^{a_{max(t-p_i+1,1)}} s_{ima} \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in T \\
& \quad \sum_{t=1}^{T} x_{imt} = p_i \quad \forall i \in R, \forall m \in [1, n_i] \\
& \quad \sum_{t=1}^{T} x_{imt} = 0 \quad \forall i \notin R, \forall m \in [1, n_i] \\
& \quad v_{imt} = \sum_{a=1}^{a_{max(t-p_i+1,1)}} s_{ima} \quad \forall i \in R, \forall m \in [1, n_i], \forall t \in [p_i + 1, T]
\end{align*}
\]
After relaxing all the binary variables, all the constraints are linear constraints with continuous variables except Constraint (29) which is a nonlinear equality constraint.
Follow the same logic in the proof of Lemma 5.4-2, it is concluded that the feasible region of the linear relaxation for the single-level MS-MMN model is non-convex.

Because of the non-convexity of the linear relaxation for MS-MMN, it is not easy to find the global optimal solution for MS-MMN, nor to prove a solution obtained is global optimal. Hence, the well-established genetic algorithm (GA) is applied to solve the MS-MMN. The genetic algorithm was first introduced by Holland in 1975. It is a metaheuristic that solves complex optimization problems through bio-inspired operators, such as selection, crossover and mutation. Because implementing GA is relatively easy and requires little knowledge about the problem structure, GA has been applied to solve difficult optimization problems in a broad range of disciplines. Since the MS-MMN is a challenging bi-level mixed-integer nonlinear program with its linear relaxation being non-convex, GA is considered a suitable solution method for the MS-MMN. Here are the key components of the GA for MS-MMN:

Decimal Encoding for GA

The genes of a member in a generation are the repair start dates of each lane in the links that need repair, instead of the binary variables s that indicate whether the repair of a lane starts on a certain day. Thus, the GA for MS-MMN has decimal encoding. Given the repair start dates, the values of variables x and v can be determined, and so are the link available capacities on each day in the planning horizon.

Initial Population for GA

The genes of members in the first generation are generated randomly. For each lane, the repair start date is a random number generated between day 1 and its latest possible repair start date. The latest possible repair start date for a lane is the date that if the repair starts on that day, this lane will be repaired on due date T. For an example, if
each lane of link i requires $p_i = 5$ days to repair and the maintenance due date for all the
maintenance work is $T = 18$, then the latest possible repair start date for all the lanes in
link i is day 14 since otherwise the repair will not be completed on time if it starts on
days later than day 14. Hence, the latest repair start date for the lanes in link i is calculated
as $T - p_i + 1$. To ensure the population in each generation is large enough have all possible
repair start dates of a lane be present in the same generation, the population size (N) is
determined as:

$$N = T - \min_{i \in k} \{p_i\} + 1 \quad (5.4\text{-a})$$

since the lane that requires the least number of days to repair has the most choices
of repair start dates.

Selection Rules for GA

The fitness of a member is evaluated based on the total travel time over the
planning horizon associated with the member’s gene, which essentially is a schedule of
lane closures. The less the total travel time is, the fitter the member is. After the
computation of the total travel time associated with each member in a generation, these
members are ranked in ascending order with respected to their total travel times. Suppose
there are N members in a generation, rank_N is the member whose gene results in the
largest total travel time in current generation and rank_1 is the member whose gene results
in the least total travel time. The fitness of a member with the j^{th} rank is calculated as:

$$\text{Fitness}_{\text{rank}_j} = \text{totalTravelTime}_{\text{rank}_N} - \text{totalTravelTime}_{\text{rank}_j} + 1 \quad (5.4\text{-b})$$

which is one plus the difference between the largest total travel time in current
generation and the total travel time of the member with rank j. The reason to add one in
the fitness calculation is to ensure the member with the largest total travel time can also
be selected for crossover with a positive probability. The probability of the member with rank j being selected for crossover is:

$$selecProb_{\text{rank}j} = \frac{\text{Fitness}_{\text{rank}j}}{\sum_{a=1}^{N} \text{Fitness}_{\text{rank}a}}$$

(5.4-c)

In the computation procedure, a random number r will be generated between ($0, 1$]. If $r < selecProb_{\text{rank}1}$, then the member with the least total travel time will be selected for crossover; if $\sum_{a=1}^{a=j-1} selecProb_{\text{rank}a} < r \leq \sum_{a=1}^{a=j} selecProb_{\text{rank}a}$ $\forall j \in [1, N]$, then the member with rank j is selected for crossover.

Handling Entire Link Closures and Infeasible Schedules

Since BPR function is used as the link travel time function and it has link available capacity in the denominator, the available capacity cannot be zero. Thus, if a link is entirely closed on a certain day, the available link capacity is set to 10^{-6} instead of 0 and the free-flow travel time of the link is set to 10^{30}, so that all the paths that contain this link have travel times that are much longer than other paths. As a result of this manipulation, no flow will use these paths and effectively this link is entirely closed.

If one or more links are entirely closed on a certain day, it is possible that some OD pairs may not be able to find a path connecting the origin and destination to send the flows, rendering the maintenance schedule infeasible. But in our computational procedure the schedule is still “feasible” since all those entirely closed links still have the available capacity of 10^{-6}. Therefore, the UE-SO assignment problem can still be solved but the total travel time will be drastically larger than those of the feasible schedules. Since the members with less total travel times are fitter and have a better chance of being selected for crossover, the members whose genes result in drastically large total travel times (i.e., infeasible schedules) will be eliminated in the computational procedure.
Crossover in GA

The GA for MS-MMN applies the multi-point crossover scheme, and the number of crossover points $nbCPoints$ is determined as:

$$nbCPoints = \frac{totalWZ}{\max\{n_i\}}$$

that is, the total number of lanes to repair ($totalWZ$) divided by the largest number of lanes in a link among the links that need repair. Since too few crossover points will limit the flexibility of the crossover operation on finding better combinations of genes, and too many crossover points will result in offspring not very different from the parents and unnecessarily increasing the computations, it is desirable to have more link-level schedule swaps between the two members selected for crossover because UE-SO flows route through the network based on the link travel times. With the number of crossover points determined by 5.4-d, a total of $nbCPoints$ random numbers are generated between $[1, totalWZ]$ to determine the exact loci to start the gene swap for the members selected for crossover. Preliminary experiments indicate that this method can have more link-level schedule swaps on average.

To demonstrate the crossover procedure, suppose in a network the links that need repair have a total of 16 lanes. Among these links, link 5 has 4 lanes which is the most number of lanes. The number of crossover points in this case is $nbCPoints = 16/4 = 4$. Suppose the four crossover points randomly generated between $[1, 16]$ are 2, 6, 9, 13, Figure 4.4-i on the next page illustrates the crossover operation for this case:
Figure 4.4-i: Four-Point Crossover Example

Mutation in GA

The mutation rate is designed to decrease gradually from a pre-specified upper bound ($MuUB$) towards the lower bound ($MuLB$) from one generation to the next. Suppose the maximum number of generations to be computed is NG, the mutation rate of generation ng is calculated as:

$$Mu_{ng} = MuUB - \frac{MuUB - MuLB}{NG} \times ng$$ \hspace{1cm} (5.4-e)

The changing mutation rate helps GA explore the solution space for better schedules in the early stage and accelerate the convergence in the later stage.

To determine the loci for mutation, a total of $\lceil Mu_{ng} \times totalWZ \rceil$ random numbers are generated between $[1, totalWZ]$. Each of these random numbers represent the locus where the mutation happens. For each of these loci, the repair start date of the lane will be an integer number randomly generated between the first day of the planning horizon and the latest possible repair start date for the lane. All the offspring generated from the crossover operation will go through this mutation process before becoming members in
the next generation. To retain the best schedule obtained so far, the member with the best
fitness in current generation will be directly put into the next generation without mutation.

Stopping Criteria for GA

The GA for MS-MMN will stop if the pre-specified maximum number of
generations have been computed, or the best schedule hasn’t changed for the past 10
consecutive generations.

The combination of the GA and the iterative UE-SO flow assignment algorithm
completes the solution approach for MS-MMN. The overall computation procedure to
solve MS-MMN is described below:

- **Step 1:** Initial population is randomly generated
- **Step 2:** Evaluate the members in current generation
 - **Step 2.1:** For a member, on each day in planning horizon, calculate the link available
capacities, and perform the iterative UE-SO assignment algorithm to obtain the
 UE-SO flow travel time
 - **Step 2.2:** Sum the travel time over the planning horizon to obtain the total travel time
 associated with the member
- **Step 3:** If the number of generations computed reach the pre-specified limit, or the best member
 hasn’t changed for the last 10 consecutive generations, exit the solution procedure.
 Otherwise continue to Step 4
- **Step 4:** Calculate the probability for each member to be selected for crossover
- **Step 5:** Repetitively select two members to perform multi-point crossover, until the number of
 offspring is \(N - 1 \)
- **Step 6:** Perform mutation on the \(N - 1 \) offspring produced
- **Step 7:** Add the member with the best fitness in the parent generation to the offspring generation,
 and go back to Step 2
4.5 Computational Experiments

The solution approach developed for MS-MMN is programmed in C++ and tested with three problem instances based on the square network shown in Figure 4.3.1-ii in Chapter 4. In the first problem scenario, 10% of the links are randomly selected to be the links that need repair. And the percentage of links to repair are 20% and 30% respectively in the other two problem scenarios. All three scenarios have the same OD demand and the same SO flow percentage of 10%, which means 10% of the demand for each OD pair will route through the network to achieve system optimum, and the rest 90% of the demand will route through the network to reach user equilibrium. All the maintenance works are due in 18 days for all the three scenarios. Since the square network is a specially designed network that can have severe Braess Paradox effect, for each scenario, five test cases are created to make sure the aggregated test results align with commonsense, that is, in general the more links need to be repaired during the same period of time, the higher the total travel time would be because of the network capacity is reduced. The detailed information of these test cases can be found in Appendix C.

Setting the upper bound of mutation rate 20% and the lower bound 10% for the GA, and using a personal computer with 3.7 GHz CPU and 24 GB memory for the computation work, the results of the three repair scenarios are summarized in Table 4.5-i, Table 4.5-ii and Table 4.5-iii respectively. As it can be observed from these three tables, the average computation time gets longer as more links need to be repaired. Also, as more links with lanes closed for maintenance during the same period of time, the total travel time of all flows gets longer since the available capacity of links are less, which leads to longer link travel times and longer travel times in general.
Table 4.5-i: Results of Five Test Cases for Square Network with 10% of Links to Repair

<table>
<thead>
<tr>
<th></th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
<th>Case V</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>198287018</td>
<td>228115451</td>
<td>198006312</td>
<td>199017203</td>
<td>200042655</td>
<td>204693727.8</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>1.74</td>
<td>5.85</td>
<td>2.36</td>
<td>2.24</td>
<td>3.28</td>
<td>3.09</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>27</td>
<td>46</td>
<td>26</td>
<td>24</td>
<td>18</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 4.5-ii: Results of Five Test Cases for Square Network with 20% of Links to Repair

<table>
<thead>
<tr>
<th></th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
<th>Case V</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>199755215</td>
<td>253964706</td>
<td>207756792</td>
<td>201070121</td>
<td>200019555</td>
<td>212513277.8</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>6.13</td>
<td>6.11</td>
<td>4.76</td>
<td>1.42</td>
<td>4.12</td>
<td>4.56</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>21</td>
<td>34</td>
<td>26</td>
</tr>
</tbody>
</table>

Table 4.5-iii: Results of Five Test Cases for Square Network with 30% of Links to Repair

<table>
<thead>
<tr>
<th></th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
<th>Case V</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>219824173</td>
<td>207171576</td>
<td>211923696</td>
<td>235200590</td>
<td>199572821</td>
<td>214738571.2</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>5.53</td>
<td>7.11</td>
<td>10.29</td>
<td>12.15</td>
<td>4.08</td>
<td>7.83</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>16</td>
<td>14</td>
<td>47</td>
<td>29</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>
Because of the randomness of GA, to show the performance of the solution method developed, a test case is selected from each scenario and is solved five times and the computation results are averaged over the five runs. The results of the test cases selected are summarized in Table 4.5-iv, 4.5-v, 4.5-vi respectively. It is obvious that as more links are required to be repaired during the same period of time, GA takes longer to solve the problem instance.

Table 4.5-iv: Five Runs of Test Case I in 10% of Links to Repair Scenario

<table>
<thead>
<tr>
<th>Run</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>198287958</td>
<td>198318282</td>
<td>198287018</td>
<td>198277517</td>
<td>198263262</td>
<td>198286807</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>1.79</td>
<td>0.70</td>
<td>1.74</td>
<td>1.74</td>
<td>2.35</td>
<td>1.66</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>26</td>
<td>12</td>
<td>27</td>
<td>28</td>
<td>40</td>
<td>26.6</td>
</tr>
</tbody>
</table>

Table 4.5-v: Five Runs of Test Case I in 20% of Links to Repair Scenario

<table>
<thead>
<tr>
<th>Run</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>199585929</td>
<td>199885561</td>
<td>199755215</td>
<td>199719781</td>
<td>199591233</td>
<td>199707543.8</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>6.93</td>
<td>5.32</td>
<td>6.13</td>
<td>8.59</td>
<td>3.8</td>
<td>6.15</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>31</td>
<td>22</td>
<td>24</td>
<td>37</td>
<td>15</td>
<td>26</td>
</tr>
</tbody>
</table>
Table 4.5-vi: Five Runs of Test Case I in 30% of Links to Repair Scenario

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>219824173</td>
<td>220572965</td>
<td>219586053</td>
<td>218746178</td>
<td>219424194</td>
<td>219630712</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>5.53</td>
<td>10.82</td>
<td>18.78</td>
<td>10.04</td>
<td>9.4</td>
<td>10.91</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>16</td>
<td>26</td>
<td>49</td>
<td>24</td>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>

The solution approach is also tested with two problem instances generated based on the Sioux Falls network shown in Figure 3.4.3-iii in Chapter 3. The percentage of the links that need repair in these two problem instances are 10% and 20% respectively. All maintenance works are due in 21 days and the SO flow percentage is 10% for both problem instances. The detailed information of these two test cases can be found in the Appendix C, and the total demand of UE and SO flows for each OD pair is the same as the Sioux Falls network test case, which can be found online. With the same mutation rate settings and the same computer for the computation work, the results are summarized in Table 5.5-vii and Table 5.5-viii.

Table 4.5-vii: Sioux Falls Network with 10% of Links to Repair

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time</td>
<td>173595710</td>
<td>174214938</td>
<td>173513915</td>
<td>174169416</td>
<td>174244662</td>
<td>173947728.2</td>
</tr>
<tr>
<td>Computation Time (in hours)</td>
<td>26.42</td>
<td>12.51</td>
<td>24.94</td>
<td>12.94</td>
<td>17.80</td>
<td>18.92</td>
</tr>
<tr>
<td>Number of Generations Computed</td>
<td>40</td>
<td>19</td>
<td>43</td>
<td>19</td>
<td>27</td>
<td>30</td>
</tr>
</tbody>
</table>
The test cases generated based on the Sioux Falls network take much longer to solve than those generated based on the square network. And the reason is because Sioux Falls network is larger and requires longer computation time for the UE-SO flow assignment to obtain the converged UE-SO flow. Also, the longer planning horizon means the UE-SO flow assignment needs to be performed for more days for a schedule. And the larger problem size generally requires larger population, which means more schedules must be evaluated in a generation. From the five problem instances tested, it can be perceived that in general the MS-MMN takes a long time to solve. This is because the iterative UE-SO assignment algorithm needs to be performed repetitively for each day in the planning horizon and for all the schedules generated in GA.

4.6 Conclusion

With the fast-evolving technologies of self-driving cars, people will start traveling with these new transportation modes in the near future. Thus, the traffic flows in the road network would become more multi-modal flow, where travelers driving human-operated cars choosing the routes that minimize individual travel times, and travelers with self-
driving cars selecting routes that minimize the total travel time of all the travelers. This multi-modal traffic flow essentially is a mixture of UE flows and SO flows.

This chapter investigates the maintenance scheduling problem in multi-modal networks (MS-MMN), where a set of links need to be repaired before a common due date, each lane of these links is an independent work zone to be scheduled, and there are mixed UE-SO flows routing through the network every day based on the link available capacities. A bi-level mixed-integer nonlinear program is formulated for this problem with the upper level to find schedules, and the lower level to obtain the converged UE-SO flows for the schedules obtained in the upper level.

The existence of the converged UE-SO flow is proved, and this converged flow can be obtained by the iterative UE-SO assignment algorithm developed in this chapter. Given link available capacities and OD demand, the iterative UE-SO assignment algorithm iteratively fixes the UE flows and solves the SO assignment problem, and fixes the SO flows and solves the UE assignment problem. This iterative procedure stops when the UE flows are optimal to the UE assignment problem and at the same time the SO flows are optimal to the SO assignment problem.

Since the MS-MMN is a challenging non-convex optimization problem, GA is applied to find good schedules that will result in less total travel time over the planning horizon. However, in general the MS-MMN takes a long time to solve since the UE-SO flow assignment need to be performed for each day in the planning horizon and for each schedule in the generation. One possible way to reduce the computation time is to use parallel computing techniques for GA. Since most computers nowadays are equipped with a multi-core CPU and each core has two threads that can work on different tasks independently, by assigning each member in a generation to one of the available threads, the computation of total travel times associated with the members can be done in parallel.
Then, these threads will perform the UE-SO assignment for each day in the planning horizon for the member assigned, and return the associated total travel time. Once all members in the generation have been evaluated, the crossover and mutation can also be done in parallel in the same fashion.

A direction for future research is to further differentiate the autonomous vehicle flows and the connected vehicle flows in MS-MMN. Since travelers using connected vehicles still are the decision makers on route choices, the connected vehicle flow most likely will not be the exact SO flow, but a flow pattern that is somewhere between the UE flow pattern and the SO flow pattern. Thus, future research topics include (a) how to model the connected vehicle flow, (b) whether there exists a converged multi-modal flow of these three travel modes (i.e., human-operated cars, self-driving cars, and connected vehicles), (c) how to obtain the converged multi-modal flow if it exists, and (d) how this multi-modal flow will react to the work zone schedules.
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In transportation networks, both non-recurring events (e.g., road maintenance) and recurring events (i.e., demand surges during rush hours) can cause traffic congestion. To alleviate the traffic congestion caused by these two types of events, this research develops solution from the supply side with a network-wide perspective. It builds optimization models to manage mandatory network capacity change to minimize the congestion caused by road maintenance activities.

The research on maintenance planning for various types of physical networks has been mostly focused on the long-term planning and the short-term planning. The long-term maintenance planning addresses the research question of how to maintain the network for a certain level of reliability or service quality with minimum maintenance cost. And the short-term planning schedules maintenance activities on a link to minimize the flow disruptions locally. Although maintenance work changes the network layout temporally and will impact the routing of OD flows, the long-term maintenance planning omits this effect because the planning horizon is much longer than the period when the network is under maintenance. And the short-term maintenance planning does not consider the flow diverted from the link being repaired to the neighborhood links since the scope of the problem is limited to the link being repaired. However, more often than not maintenance work needs to be performed on a set of links that are close to each other in a relatively short period of time (medium term). In these situations, the scheduling and
coordination of these maintenance works are critical to the network capability on serving the flows. And this is particularly true for transportation network since each unit of flows (i.e., vehicles) can change its route on its own in response to changed network layouts.

The medium-term maintenance planning hasn’t drawn much attention from researchers until last decade. Among the handful research that has investigated the medium-term maintenance planning with the consideration of network-wide OD flow diversions, most research did not consider partial link closures or assumed links under maintenance would have 50% of capacity decrease. Chapter 3 and Chapter 5 fill this blank and investigate the lane-based maintenance scheduling problem, where there are a set of links to repair before a common due date, and each lane of these links is an independent work zone to be scheduled.

Considering the exacerbation of traffic mobility and safety caused by the combination of work zones and service vehicles (e.g., trucks), Chapter 3 develops a mathematical model to optimize maintenance schedules particularly for service vehicle flows. These service vehicles are assumed to route through the network based on available link capacities every day to achieve system optimum (SO). The link travel cost function is designed to be piece-wise linear to approximate the nonlinear relation between the travel cost and the number of trucks traveling on the link. Because of the introduction of piece-wise linear link travel cost function, the problem of maintenance scheduling in networks of service vehicles (MS-NSV) is formulated as a mixed-integer linear program (MIP). Although there are commercial solvers available for MIPs, they are not able to solve MS-NSV instances within a tolerable amount of time because the solution space explodes as the problem size gets larger. Fortunately, this issue can been handled well by the randomized fix-and-optimize (RFO) heuristic developed. With a feasible schedule, RFO will randomly decompose the links that need repair into groups and optimize the work
zone schedules for one group with schedules of other work zones fixed. RFO is an effective mechanism to limit the number of integer variables to be solved at a time. Computational experiments on various test cases show that RFO is able to obtain good quality solutions within much less time than solving the problem instances solely by CPLEX.

Chapter 5 extends the work in Chapter 3 to study the maintenance scheduling in networks with multi-modal traffic flows (MS-MMN). The travel modes considered in Chapter 5 include private cars and autonomous vehicles. Every traveler that drives a private car will take the route that minimizes his/her own travel time to reach user equilibrium (UE), and the travelers riding autonomous vehicles will choose the routes that minimize the total travel time of all the travelers to achieve system optimum (SO). Since flows of different travel modes share the road network, they compete for the limited capacity on the links. MS-MMN is formulated as a bi-level mixed-integer nonlinear program. The upper level of MS-MMN searches for the schedule that minimizes the total travel time of all travelers over the planning horizon, and the lower level finds the mixed UE-SO flow assignment for each day in the planning horizon based on a feasible schedule.

The lower level of MS-MMN contains two optimization problems: the UE assignment problem for travelers using private cars and the SO assignment problem for travelers riding autonomous vehicles. The optimal solution for the lower level is the UE-SO flow assignment where UE flows satisfy the UE condition and SO flows minimize the total travel time of all flows at the same time. Given the link available capacities and OD demand for UE flows and SO flows on a certain day, the existence of the optimal solution for the lower level UE-SO assignment problem is proved. The iterative UE-SO assignment algorithm is developed solve the lower level problem. It iteratively fixes the UE flows and solves the SO assignment problem, and fixes the SO flows and solves the UE assignment problem, until the total travel time between two iterations are the same. With the Bureau
of Public Road (BPR) function adopted as the link travel time function, the non-convexity of MS-MMN is shown and the upper level scheduling problem is solved by the genetic algorithm with multi-point crossover. Since for each schedule evaluation the iterative UE-SO assignment has to be performed for each day in the planning horizon, it takes a long time to solve MS-MMN instances in moderate-size.

In summary, this research develops optimization methods to manage both mandatory and optional network capacity changes. The computational experiments on real network test cases indicate the solution methods developed are efficient and reliable.

5.2 Future Work

Since the problems studied in Chapter 3, and Chapter 4 do not involve any uncertainties, investigating these problems in stochastic settings would be a major extension to this research. Uncertainties can stem from all aspects of the problems studied. For example, instead of assuming travelers have perfect information about the path travel times, it is more realistic to model travelers’ perception of the path travel times as the true path travel time plus a random perception error. With travelers’ perception error modeled, the UE assignment problem in the lower levels of MS-MMN evolve to the stochastic UE assignment problem, which has been well researched in the literature as reviewed in Section 2.1.5 in Chapter 2. Correspondingly, the SO assignment problem in MS-NSV and MS-MMN becomes the stochastic SO assignment problem, and can be solved by the methods developed in literature for the stochastic UE assignment with some alteration.

Another way to involve uncertainty is to consider stochastic OD demand. The OD demands are assumed to be known in this research but actually they are random variables, whose distributions can be estimated from historical data. With stochastic OD demand modeled, the three problems studied can be formulated as typical two-stage stochastic
programs (Shapiro et al., 2009), where the first stage is to decide the schedule of lane
closures in MS-NSV and MS-MMN, and the second stage solves the flow assignment
problems. Since MS-NSV is a mixed-integer linear program, it can be solved by a
progressive hedging method (Watson and Woodruff, 2011), which is a solution approach
based on scenario decomposition of the stochastic parameters. Although the progressive
hedging method has been used to handle nonlinear stochastic programs, the non-
convexity of MS-MMN would require extra caution when progressive hedging is applied
as a meta-heuristic to solve MS-MMN.

The stochastic programs investigated in literature only involve uncertainties in the
follower problem, and all attributes of the decisions in the leader problem are
deterministic. For example, in the MS-NSV and MS-MMN with stochastic OD demands,
the uncertainty is considered in the lower level flow assignment problems but there is no
uncertainty involved in the upper level scheduling problem, that is, it is assumed that the
maintenance work on a lane of link i will last exactly p_i days. However, it is common for a
road maintenance project to finish either earlier or later than the planned completion date
due to various reasons (e.g., unexpected good/severe weather condition, work zone
accidents, addition/failure of machines, etc.). Hence, the number of days required to
repair a lane is a random variable and its distribution can be estimated from historical
data. The MS-NSV and MS-MMN that involve uncertainty in project durations introduce
a new category of stochastic program, where some attributes of the decisions in the leader
problem are random variables. How to address this new type of stochastic program would
be another interesting and challenging future research problem.

Bell, M. G. H., & Lida, Y. (1997). *Transportation Network Analysis*. Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd.

Research Part C-Emerging Technologies, 55, 166-178. doi:10.1016/j.trc.2015.01.008

Marquez, A. C., Gomez, J. F., Leon, P. M. d., & Rosique, A. S. (2013). Modelling on-line reliability and risk to schedule the preventive maintenance of repairable assets in

Niazi, A. N., Badri, A., & Khoshnoud, S. (2015). Annual coordinated generation and transmission maintenance scheduling considering network constraints and

Intelligent Transportation Systems, 18(4), 339-351. doi:10.1080/15472450.2013.806753

Zhang, K., Mahmassani, H. S., & Lu, C.-C. (2013). Dynamic pricing, heterogeneous users and perception error: Probit-based bi-criterion dynamic stochastic user
equilibrium assignment. Transportation Research Part C-Emerging Technologies, 27, 189-204. doi:10.1016/j.trc.2012.05.001

APPENDIX A

FIVE RUNS OF RFO FOR TESTCASES SOLVED IN MS-NSV
Table 1: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Radial Network

<table>
<thead>
<tr>
<th>Completion Date (T)</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
</tr>
<tr>
<td>15</td>
<td>233166</td>
<td>1.6 min</td>
<td>233166</td>
<td>1.45 min</td>
<td>233166</td>
</tr>
<tr>
<td>16</td>
<td>170591</td>
<td>3.25 min</td>
<td>170591</td>
<td>2.85 min</td>
<td>170591</td>
</tr>
<tr>
<td>17</td>
<td>101516</td>
<td>8.35 min</td>
<td>101516</td>
<td>4.93 min</td>
<td>101516</td>
</tr>
<tr>
<td>18</td>
<td>25644.7</td>
<td>7.1 min</td>
<td>25644.7</td>
<td>6.5 min</td>
<td>26547.7</td>
</tr>
<tr>
<td>19</td>
<td>19668.1</td>
<td>4.92 min</td>
<td>19067.3</td>
<td>12.87 min</td>
<td>19067.3</td>
</tr>
<tr>
<td>20</td>
<td>10889.6</td>
<td>6.15 min</td>
<td>10389.2</td>
<td>6.56 min</td>
<td>9888.26</td>
</tr>
</tbody>
</table>

Table 2: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Grid Network

<table>
<thead>
<tr>
<th>Completion Date (T)</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
</tr>
<tr>
<td>14</td>
<td>143230</td>
<td>4.9 min</td>
<td>144071</td>
<td>4.2 min</td>
<td>143030</td>
</tr>
<tr>
<td>15</td>
<td>105997</td>
<td>3 min</td>
<td>105997</td>
<td>6.5 min</td>
<td>105991</td>
</tr>
<tr>
<td>16</td>
<td>67527.2</td>
<td>3.05 min</td>
<td>68704.6</td>
<td>5.43 min</td>
<td>67711.7</td>
</tr>
<tr>
<td>17</td>
<td>51773.6</td>
<td>5.87 min</td>
<td>51773.7</td>
<td>4.1 min</td>
<td>51773.7</td>
</tr>
<tr>
<td>18</td>
<td>37350</td>
<td>9.95 min</td>
<td>37350.5</td>
<td>4.53 min</td>
<td>37348.3</td>
</tr>
<tr>
<td>19</td>
<td>26921.2</td>
<td>7.53 min</td>
<td>26671.2</td>
<td>6.56 min</td>
<td>26921.4</td>
</tr>
<tr>
<td>20</td>
<td>15989.2</td>
<td>6.68 min</td>
<td>15988.9</td>
<td>5.22 min</td>
<td>15989.5</td>
</tr>
<tr>
<td>21</td>
<td>7809.33</td>
<td>4.48 min</td>
<td>7810.41</td>
<td>7.67 min</td>
<td>7809.9</td>
</tr>
<tr>
<td>26</td>
<td>1915.95</td>
<td>2.13 min</td>
<td>1915.51</td>
<td>2.17 min</td>
<td>1914.49</td>
</tr>
<tr>
<td>36</td>
<td>2631.65</td>
<td>2.6 min</td>
<td>2630.52</td>
<td>2.6 min</td>
<td>2631.65</td>
</tr>
<tr>
<td>Completion Date (T)</td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 3</td>
<td>Run 4</td>
<td>Run 5</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
</tr>
<tr>
<td>19</td>
<td>237459</td>
<td>2.68 min</td>
<td>237494</td>
<td>4.03 min</td>
<td>237515</td>
</tr>
<tr>
<td>20</td>
<td>242532</td>
<td>4.67 min</td>
<td>242542</td>
<td>2.2 min</td>
<td>242518</td>
</tr>
<tr>
<td>21</td>
<td>247317</td>
<td>2.17 min</td>
<td>247325</td>
<td>2.63 min</td>
<td>247325</td>
</tr>
<tr>
<td>22</td>
<td>252140</td>
<td>2.57 min</td>
<td>252201</td>
<td>2.38 min</td>
<td>252201</td>
</tr>
<tr>
<td>23</td>
<td>260386</td>
<td>3.05 min</td>
<td>260302</td>
<td>2.87 min</td>
<td>260302</td>
</tr>
<tr>
<td>24</td>
<td>268500</td>
<td>2.87 min</td>
<td>268570</td>
<td>2.97 min</td>
<td>268498</td>
</tr>
<tr>
<td>25</td>
<td>277223</td>
<td>6.87 min</td>
<td>277258</td>
<td>3.35 min</td>
<td>277170</td>
</tr>
<tr>
<td>26</td>
<td>285841</td>
<td>7.65 min</td>
<td>285791</td>
<td>3.13 min</td>
<td>285841</td>
</tr>
<tr>
<td>27</td>
<td>294744</td>
<td>7.07 min</td>
<td>294744</td>
<td>4.75 min</td>
<td>294744</td>
</tr>
<tr>
<td>28</td>
<td>302933</td>
<td>7.92 min</td>
<td>303279</td>
<td>8.27 min</td>
<td>303278</td>
</tr>
<tr>
<td>29</td>
<td>311643</td>
<td>7.37 min</td>
<td>311643</td>
<td>8.82 min</td>
<td>311691</td>
</tr>
<tr>
<td>30</td>
<td>320849</td>
<td>5.45 min</td>
<td>320798</td>
<td>8.7 min</td>
<td>320522</td>
</tr>
<tr>
<td>31</td>
<td>329555</td>
<td>9.12 min</td>
<td>329368</td>
<td>10.77 min</td>
<td>329476</td>
</tr>
<tr>
<td>32</td>
<td>338608</td>
<td>10.93 min</td>
<td>338334</td>
<td>10.35 min</td>
<td>338860</td>
</tr>
<tr>
<td>33</td>
<td>349090</td>
<td>8.18 min</td>
<td>349265</td>
<td>2.67 min</td>
<td>347910</td>
</tr>
<tr>
<td>34</td>
<td>357086</td>
<td>8.43 min</td>
<td>357090</td>
<td>8.63 min</td>
<td>357045</td>
</tr>
<tr>
<td>35</td>
<td>366209</td>
<td>11.55 min</td>
<td>366280</td>
<td>9.47 min</td>
<td>366242</td>
</tr>
<tr>
<td>36</td>
<td>375665</td>
<td>9.62 min</td>
<td>375585</td>
<td>9.38 min</td>
<td>375633</td>
</tr>
<tr>
<td>37</td>
<td>385649</td>
<td>10.08 min</td>
<td>385649</td>
<td>11.1 min</td>
<td>385649</td>
</tr>
<tr>
<td>38</td>
<td>395879</td>
<td>10.53 min</td>
<td>395879</td>
<td>11.17 min</td>
<td>395879</td>
</tr>
<tr>
<td>Completion Date (T)</td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 3</td>
<td>Run 4</td>
<td>Run 5</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
<td>Solving Time</td>
<td>Objective Value</td>
</tr>
<tr>
<td>26</td>
<td>429644</td>
<td>20.63 min</td>
<td>419612</td>
<td>19.38 min</td>
<td>429673</td>
</tr>
<tr>
<td>27</td>
<td>441983</td>
<td>24.33 min</td>
<td>439772</td>
<td>28.43 min</td>
<td>440444</td>
</tr>
<tr>
<td>28</td>
<td>446741</td>
<td>1.03 hr</td>
<td>446946</td>
<td>25.7 min</td>
<td>446316</td>
</tr>
<tr>
<td>29</td>
<td>451943</td>
<td>44.5 min</td>
<td>451798</td>
<td>1.06 hr</td>
<td>452415</td>
</tr>
<tr>
<td>30</td>
<td>461263</td>
<td>37.18 min</td>
<td>462005</td>
<td>53 min</td>
<td>465685</td>
</tr>
<tr>
<td>31</td>
<td>468504</td>
<td>1.17 hr</td>
<td>468668</td>
<td>52.93 min</td>
<td>468724</td>
</tr>
<tr>
<td>32</td>
<td>474658</td>
<td>1.2 hr</td>
<td>475698</td>
<td>33.17 min</td>
<td>475486</td>
</tr>
<tr>
<td>33</td>
<td>486761</td>
<td>47.63 min</td>
<td>485102</td>
<td>1.11 hr</td>
<td>487580</td>
</tr>
<tr>
<td>34</td>
<td>495096</td>
<td>1.3 hr</td>
<td>496514</td>
<td>1.25 hr</td>
<td>496356</td>
</tr>
<tr>
<td>35</td>
<td>502656</td>
<td>1.43 hr</td>
<td>502775</td>
<td>1.48 hr</td>
<td>502704</td>
</tr>
<tr>
<td>36</td>
<td>513889</td>
<td>1.5 hr</td>
<td>513445</td>
<td>1.04 hr</td>
<td>512527</td>
</tr>
<tr>
<td>37</td>
<td>523158</td>
<td>1.41 hr</td>
<td>521056</td>
<td>1.27 hr</td>
<td>523197</td>
</tr>
<tr>
<td>38</td>
<td>547711</td>
<td>39.32 min</td>
<td>550335</td>
<td>38.5 min</td>
<td>535769</td>
</tr>
<tr>
<td>39</td>
<td>543698</td>
<td>26.23 min</td>
<td>544046</td>
<td>40.72 min</td>
<td>553827</td>
</tr>
<tr>
<td>40</td>
<td>568072</td>
<td>56.52 min</td>
<td>563160</td>
<td>38.82 min</td>
<td>575092</td>
</tr>
<tr>
<td>41</td>
<td>569869</td>
<td>43.07 min</td>
<td>562826</td>
<td>31.43 min</td>
<td>561137</td>
</tr>
<tr>
<td>42</td>
<td>571838</td>
<td>49.55 min</td>
<td>594626</td>
<td>1.02 hr</td>
<td>567858</td>
</tr>
</tbody>
</table>
APPENDIX B

TEST CASES SOLVED IN MS-MMN
Table 5: Square Network Test Cases for 10% of Links to Repair

<table>
<thead>
<tr>
<th>Initial node</th>
<th>Terminal node</th>
<th>Days Required to Repair a Lane</th>
<th>Need to Repair in Case I?</th>
<th>Need to Repair in Case II?</th>
<th>Need to Repair in Case III?</th>
<th>Need to Repair in Case IV?</th>
<th>Need to Repair in Case V?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 6: Square Network Test Cases for 20% of Links to Repair

<table>
<thead>
<tr>
<th>Initial node</th>
<th>Terminal node</th>
<th>Days Required to Repair a Lane</th>
<th>Need to Repair in Case I?</th>
<th>Need to Repair in Case II?</th>
<th>Need to Repair in Case III?</th>
<th>Need to Repair in Case IV?</th>
<th>Need to Repair in Case V?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 7: Square Network Test Cases for 30% of Links to Repair

<table>
<thead>
<tr>
<th>Initial node</th>
<th>Terminal node</th>
<th>Days Required to Repair a Lane</th>
<th>Need to Repair in Case I?</th>
<th>Need to Repair in Case II?</th>
<th>Need to Repair in Case III?</th>
<th>Need to Repair in Case IV?</th>
<th>Need to Repair in Case V?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in Case I?</td>
<td>Need to Repair in Case II?</td>
<td>Need to Repair in Case III?</td>
<td>Need to Repair in Case IV?</td>
<td>Need to Repair in Case V?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 8: OD Demand for Square Network

<table>
<thead>
<tr>
<th>OD</th>
<th>Origin Node</th>
<th>Destination Node</th>
<th>Total Demand of UE and SO Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>13</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>19</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>19</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>19</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>7</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>13</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>19</td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>25</td>
<td>200</td>
</tr>
</tbody>
</table>
Table 9: Sioux Falls Network Test Case

<table>
<thead>
<tr>
<th>Initial node</th>
<th>Terminal node</th>
<th>Capacity</th>
<th>Number of Lanes</th>
<th>Free Flow Time</th>
<th>B</th>
<th>Power</th>
<th>Days Required to Repair a Lane</th>
<th>Need to Repair in 10% Repair Case?</th>
<th>Need to Repair in 20% Repair Case?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>25900.2</td>
<td>4</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>11</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>25900.2</td>
<td>4</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4958.181</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>17110.52</td>
<td>3</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17110.52</td>
<td>3</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>17782.79</td>
<td>4</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>4908.827</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>17782.79</td>
<td>4</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4947.995</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>10000</td>
<td>2</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4958.181</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4947.995</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4898.588</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7841.811</td>
<td>2</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>23403.47</td>
<td>4</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4898.588</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>7841.811</td>
<td>2</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>5050.193</td>
<td>1</td>
<td>10</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>5045.823</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10000</td>
<td>2</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>5050.193</td>
<td>1</td>
<td>10</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>13915.79</td>
<td>3</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Capacity</td>
<td>Number of Lanes</td>
<td>Free Flow Time</td>
<td>B</td>
<td>Power</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in 10% Repair Case?</td>
<td>Need to Repair in 20% Repair Case?</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>13915.79</td>
<td>3</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>10000</td>
<td>2</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>13512</td>
<td>3</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>4854.918</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>4993.511</td>
<td>1</td>
<td>8</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>4908.827</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10000</td>
<td>2</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4908.827</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>4876.508</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>4908.827</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>25900.2</td>
<td>4</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>25900.2</td>
<td>4</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>5091.256</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>4876.508</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>5127.526</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>4924.791</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>13512</td>
<td>3</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>5127.526</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>14564.75</td>
<td>3</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>9599.181</td>
<td>2</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>5045.823</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>4854.918</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>5229.91</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>19679.9</td>
<td>4</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>4993.511</td>
<td>1</td>
<td>8</td>
<td>0.15</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>5229.91</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Initial node</td>
<td>Terminal node</td>
<td>Capacity</td>
<td>Number of Lanes</td>
<td>Free Flow Time</td>
<td>B</td>
<td>Power</td>
<td>Days Required to Repair a Lane</td>
<td>Need to Repair in 10% Repair Case?</td>
<td>Need to Repair in 20% Repair Case?</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>-------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>4823.951</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>23403.47</td>
<td>4</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>19679.9</td>
<td>4</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>14564.75</td>
<td>3</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>4823.951</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>5002.608</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>23403.47</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>5002.608</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>5059.912</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>5075.697</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>5059.912</td>
<td>1</td>
<td>6</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>5229.91</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>4885.358</td>
<td>1</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>9599.181</td>
<td>2</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>5075.697</td>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>5229.91</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>5000</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>4924.791</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>5000</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>5078.508</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>13</td>
<td>5091.256</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>4885.358</td>
<td>1</td>
<td>3</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>5078.508</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>