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ABSTRACT 

Many state agencies have recognized the importance of incorporating pavement structural 

conditions in the selection of maintenance and rehabilitation (M&R) strategies along with 

functional indices.  To measure in-service pavement structural capacity, surface deflection 

under a defined load has been typically used.  The Traffic Speed Deflectometer (TSD) has 

emerged as a continuous pavement deflection-measuring device as it operates at traffic speed 

and reduces lane closure and user delays.   

The research objective of this study was to assess the feasibility of using TSD measurements 

at the network-level for pavement conditions structural evaluation in Louisiana and in 

backcalculation analysis.  To achieve the objectives of the study, TSD and Falling Weight 

Deflectometer (FWD) measurements were collected in District 05 of Louisiana and data were 

available from experimental programs conducted at the MnROAD research test facility and 

in Idaho.  TSD measurements were compared with FWD deflection measurements to 

evaluate the level of agreement and difference between the two devices.  Based on this 

evaluation, a SN predictive model was developed and validated to assess the structural 

conditions of in-service pavements.  The model was then used to identify structurally sound 

and structurally deficient in-service pavements.  Furthermore, a methodology was developed 

and was validated to backcalculate the layer moduli from TSD measurements. 

Based on the results of the analysis, it is concluded that the deflection reported by both FWD 

and TSD for the same locations are statically different, which is reasonable given the 

differences in loading characteristics and load type between the two devices.  It is also 

concluded that surface roughness has a notable effect on TSD field measured deflections.  

The present study successfully developed a model to predict in-service SN based on TSD 

deflections at 0.01-mile interval of a road section.  The model was successfully developed 

and validated with SN calculated based on TSD and FWD deflection data obtained from two 

contrasting data sets from Louisiana and Idaho.  Furthermore, the estimated percentage loss 

in structural capacity from the model was in good agreement with the percentage loss 

calculated from FWD.  The importance of considering structural indices along with 

functional indices was demonstrated based on statistical analysis and extracted cores.  Core 

samples showed that the sections that were predicted to be structurally deficient suffered 

from asphalt stripping and debonding problems.  Yet, some of these sections were in very 

good conditions according to their functional indices. 

 



 

iv 

A methodology was developed to incorporate TSD measurements in backcalculation analysis 

and for predicting pavement layer moduli.  The proposed Artificial Neural Network (ANN) 

model showed acceptable accuracy in predicting the corresponding FWD deflections (TSD*) 

from TSD deflection measurements with a coefficient of determination of 0.90.  In addition, 

the backcalculated moduli from FWD and TSD* deflection measurements were in good 

agreement.  The Root Mean Square Error (RMSE) was 12.5%, 13.2%, and 10.2% for the AC 

moduli, base moduli, and subgrade moduli, respectively.  The ANN model was also validated 

by comparing the critical pavement responses, number of cycles for fatigue failure, and 

Structural Health Index (SHI) calculated from FWD and TSD* measurements.  
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IMPLEMENTATION STATEMENT 

Based on the findings and the results of this project, TSD measurements were found 

beneficial to the state Pavement Management System (PMS) by successfully identifying 

sections that were predicted to be structurally deficient and by addressing their repair needs 

based on their deficiencies.  Some of these sections were in very good conditions according 

to their functional indices.  The proposed SN model is implementation-ready in routine 

overlay design if TSD measurements are conducted regularly by the state. 
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INTRODUCTION 

In-service pavement conditions are typically described by a number of functional factors 

such as surface distresses, roughness, and rutting, which do not necessarily describe the 

structural conditions of a pavement.  As roads are being subjected to loads higher than the 

design traffic loads and to extreme weather events, the increasing rate of deterioration 

necessitates the incorporation of a structural capacity indicator in Pavement Management 

System (PMS) for effective rehabilitation and maintenance decision-making.  Structural 

capacity is a valuable input in the design of asphalt concrete (AC) overlays and for 

identifying structurally deficient pavements.  It also important in selecting treatment methods 

and in making cost-effective pavement maintenance and rehabilitation decisions [1-3].   

Pavement deflection under a given static or moving load is a fast and reliable method to 

evaluate pavement structural capacity.  Deflection is also an important measurement that is 

used in numerous pavement deterioration models [4].  Pavement deflection is typically 

measured by applying a defined load using the Falling Weight Deflectometer (FWD).  In 

FWD testing, an impact circular load is applied to the pavement surface at a predefined 

frequency.  This stationary device uses multiple sensors located at different distances from 

the load to measure pavement surface deflections.  Pavement layer moduli can be 

backcalculated from the deflection basin obtained from FWD testing [5, 6].  While FWD 

allows measuring deflections with a high accuracy, it requires lane closures causing traffic 

delays and safety concerns.  This has limited the use of FWD to project level applications 

and has led to the introduction of Traffic-Speed Deflection Devices (TSDD) including the 

Traffic Speed Deflectometer (TSD) and the Rolling Wheel Deflectometer (RWD) [7].  A 

recent Strategic Highway Research Program 2 (SHRP2) study identified the TSD and the 

RWD as the most promising continuous deflection measurement devices [8]. 

The traffic speed deflectometer was evaluated in the present study in assessing in-service 

pavement structural conditions at the network level.  The TSD can measure pavement 

deflection at traffic speeds, which enable large spatial coverage and can generate continuous 

deflection profiles rather than measuring deflection at discrete points [9].  Another advantage 

of TSD is, unlike RWD, it allows complete measurement of the deflection basin.  Since TSD 

allows the measurement of the complete deflection basin, it could also be used in the 

backcalculation analysis of layer moduli [10]. 

The present study was conducted to evaluate TSD based on deflection measurements 

obtained from three field-testing programs conducted in District 05 of Louisiana, at the 

MnROAD test facility in Minnesota, and in Idaho.  Based on these measurements, the study 
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evaluated the feasibility and effectiveness of TSD for structural pavement evaluation at the 

network-level.  The study also developed a methodology to predict in-service Structural 

Number (SN) and to incorporate TSD measurements in the backcalculation analysis of layer 

moduli.   

Literature Review 

 

Pavement-conditions data collection by DOTD evolved from windshield surveys in the 

1970s to videotaping the pavement surface in 1992, and then to automatic distress data 

collection in 1995.  At present, distress data are collected and analyzed every two years for 

the road network in Louisiana.  DOTD PMS data collection protocol includes collection of 

roughness, rutting, cracking, patching, and faulting data from all the nine districts of 

Louisiana.  Each control section is divided into 1/10th of a mile and distress data are collected 

and are reported at 0.1-mile interval along a control section.  An index scale that ranges from 

zero to 100 is then used to report and describe pavement surface conditions where a value of 

zero represents very poor conditions and a value of 100 indicates excellent conditions [2]. 

The need for considering pavement structural conditions along with functional conditions has 

been recognized in the past decade by various state agencies, which supported the 

incorporation of a structural condition index in PMS to assist in decision-making processes.  

The traffic speed deflectometer, a Doppler-laser based continuous deflection measurement 

device, has emerged as a promising method to measure vertical surface deflection velocity 

continuously along a road section.  The TSD consists of an articulated truck that uses a rear 

axle of 22,000 lbs. to load the pavement structure.  The operational speed of the device is up 

to 60 mph; the TSD concept is based on the measurement of the deflection velocity rather 

than the absolute deflection at the road surface [9, 11]. 

Overview of the Traffic Speed Deflectometer  

In early 2000s, the traffic speed deflectometer was introduced as a continuous deflection 

measuring device by Greenwood Engineering, which showed promising potential in 

assessing pavement structural conditions.  The TSD is a continuous laser-based deflection 

measurement device that loads the pavement and measures vertical deflection velocity using 

Doppler lasers at four or six points [9, 11].  At these discrete points, when the preliminary 

vertical surface deflection velocity collected by the Doppler lasers is divided by the 

instantaneous horizontal TSD vehicle speed, the deflection slope is obtained [12].  The 

deflection slope is then converted to actual pavement deflection by curve fitting or numerical 

integration [10].  Figure 1 illustrates the TSD vehicle used in the experimental program 

described in this study.   
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Figure 1 

TSD vehicle used in the experimental program in Louisiana 

 

As shown in Figure 1, the TSD consists of an articulated truck applying 22,000 lbs. on the 

rear axle; pavement response to the rear axle is measured as the vertical deflection velocity 

by fixed Doppler lasers mounted on a servo-hydraulic beam.  The servo-hydraulic beam can 

move with the movement of the trailer, which allows the Doppler lasers to maintain a fixed 

height from the surface of the pavement.  To address thermal fluctuations during testing, a 

constant 68°F (20°C) temperature is maintained in the servo-hydraulic beam.  The TSD can 

collect one measurement every 0.00001-mile (0.787 in.) of road section at a rate of 1000 Hz 

while travelling at a traffic speed of up to 60 mph [13].  The maximum temporal resolution 

of the TSD is 1-millisecond and typical spatial resolution after processing is 0.0006-mile 

[14].  In the United Kingdom, TSD data are commonly reported at 0.006-mile and are stored 

at 0.0006-mile (39.37 in.) averages [13].   

The operation of the TSD is based on the vertical deflection velocity measurements rather 

than the actual surface deflections [8, 15].  The measured deflection velocity depends on the 

speed of the TSD; this dependency can be eliminated by dividing the vertical deflection 

velocity by the instantaneous horizontal TSD speed, which allows obtaining the deflection 

slope at each location of TSD measurement.  The unit for measuring the deflection velocity 

and vehicle speed are millimeter per second and meters per second, respectively [16].  A 

good correlation has been reported by Simonin et al. between the center deflection and the 

calculated deflection slope [17]. 
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Along a pavement section, weak and sound locations can be identified through the deflection 

slopes but the estimation of the extent of weakness or soundness, which could assist in 

selecting maintenance and rehabilitation treatment methods, requires the pavement surface 

deflection.  Pavement surface deflection can be calculated at any point from the center 

deflection (deflection under load) up to a radial distance by integrating the deflection slopes.  

Structural condition indicators such as the Base Damage Index (BDI) and Surface Curvature 

Index (SCI) can also be calculated using the calculated surface deflection [18].   

Deflection Measuring Technique of FWD and TSD 

The deflection measuring techniques for FWD and TSD are quite different.  Even if both 

devices apply the same load magnitude, the measured deflection is conceptually different.  

The stationary FWD device applies an impact load to the surface of the pavement and 

measures the deflection at the center of the applied load and at multiple locations with 

varying distances from the center of the load.  The FWD uses a circular plate to load the 

pavement as shown in Figure 2(a).  In contrast, the TSD operates at a traffic speed up to 60 

mph and loads the pavement through its rear axle.  Over the right wheel, Doppler lasers are 

mounted to measure the deflection velocity between the dual tires.  Doppler lasers measure 

the deflection velocity at the midpoint between the tires as shown in Figure 2(b).     

 

(a) FWD testing using a circular plate (b) TSD measuring deflection velocity 

between the dual tires  

Figure 2 

Deflection measuring technique of FWD and TSD [19, 20] 

 

While FWD applies a circular loading with a uniform contact pressure, TSD applies an 

elliptical-shape loading using regular tires with non-uniform contact pressure.  Hence, 

pavement responses are expected to be different due to the different loading mechanisms for 

TSD and FWD [19].  It is also noted that a dynamic load of a five-axle truck-semitrailer can 

vary by almost 33% of the load of that truck when measured in a static scale [21].  As 
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previously noted, TSD measurements are reported as deflection slopes (calculated by 

dividing the vertical deflection velocity by the horizontal velocity of TSD), whereas FWD 

measures the actual vertical deflection.  The TSD deflection calculation procedure is further 

discussed in the “Methodology” section of this report. 

TSD and FWD Comparisons 

As previously noted, there is a fundamental difference between the TSD and FWD loading 

mechanisms, which could lead to notable differences in the measured deflection values 

obtained from these two devices.  With respect to loading operations, TSD operates with a 

moving load at traffic speeds, whereas, FWD load is stationary.  Furthermore, TSD measured 

deflections could be highly influenced by the irregularities in the surface such as roughness 

and other pavement distresses [8, 22].  Previous studies compared the SCI and BDI derived 

from TSD slope measurements and FWD deflection measurements [23].  The study found 

significant bias between these two devices and recommended using the Limit of Agreement 

(LOA) method to compare the measurements from the two devices [23].  In Australia and 

New Zealand, a research study found a strong correlation between TSD and FWD deflection 

measurements [24].  Another study compared between the TSD and FWD measured 

deflections in Virginia [25].  The comparison indicated a similar trend in deflections between 

the two devices. The study suggested that the structural conditions along the tested road was 

successfully reflected in the measurements of the two devices; see Figure 3. 

 

Figure 3 

Comparison of TSD and FWD D0 on I81 South in Virginia 

TSD Measurements Dependency on Speed  

In a previous study, the variation of TSD measurements with its operating speed was 

investigated [26].  TSD testing was conducted at two different traffic speeds of 30 and 45 
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mph on low volume roads (LVR) and at 45 and 60 mph on the Mainline.  Results indicated 

that the measured deflection is sensitive to speed of loading.  It was found that the 

coefficients of variation of the deflection slopes were about 24% less at 30 mph than at 45 

mph along the LVR and were around 38% greater at 60 mph than the COVs at 45 mph on the 

Mainline.  The developed graphs for the COVs in the LVR and Mainline are shown in Figure 

4 and Figure 5.  However, another research study concluded that TSD measures “real” 

pavement response, even at low speed (<20 mph) [27]. 

 

Figure 4 

Comparison deflection slope COVs in LVR [26] 

 

 

Figure 5 

Comparison deflection slope COVs in the Mainline [26] 

TSD Measurement Dependency on Pavement Structure 

The correlation of TSD slope measurements to pavement stiffness and surface roughness was 

investigated in a previous study [26].  TSD slope measurements were collected for different 

pavement sections and the COVs of the deflection slopes were calculated for each section.  

The average FWD central deflection was also measured for these sections.  Pavement 

stiffness was represented by the FWD central deflection in the analysis; the greater the FWD 
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central deflection, the lower the pavement stiffness.  The authors reported that the COVs 

from the first four sensors decreased with the increase in FWD central deflection for the 

flexible pavement sections; see Figure 6.  For the rigid pavement sections, the COVs of the 

deflections slopes were found to be relatively higher than for the far sensor locations; see 

Figure 7.  However, it is our opinion that the reported trends were not strongly evident, 

possibly due to the variation in the pavement structure concurrently with the variation in 

surface roughness.  Pavement surface roughness was also correlated to the COVs of the TSD 

measurements.  However, no strong correlation was observed, as shown in Figure 8 and 

Figure 9. 

 

Figure 6 

TSD measurements variation with pavement stiffness on flexible pavement [26] 

 

 

Figure 7 

TSD measurement variation with pavement stiffness on rigid pavement [26] 
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Figure 8 

TSD measurement variation with pavement roughness of flexible pavement [26] 

 

  

Figure 9 

TSD measurement variation with pavement roughness of rigid pavement [26] 

 

As previously noted, axle load can be dynamically amplified due to vehicle suspension type, 

travelling speed, tire contact pressure, tire thread pattern, axle and wheel configuration, and 

pavement stiffness.  It was found that a rough pavement surface could cause a 50% increase 

in the static axle load, which explains the accelerated deterioration of rough pavements.  A 

number of studies used a Dynamic Load Coefficient (DLC) to represent the dynamic 

amplification of static axle load.  Statistically, DLC can be defined as one standard deviation 

from the mean static axle load.  The typical value for DLC has been reported as 0.05 to 0.4 

from previous studies [1].  For different vehicle suspension types and tire configurations, the 

DLC was correlated to different parameters as follows: 

DLC*=
κ*R*IRI

2
                       (1) 

where, 

DLC* = DLC value for the normal distribution of the axle load;  

κ = coefficient related mostly to the suspension type (assumed κ = 0.0016);  

R = truck speed [km/h]; and  
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IRI = International Roughness Index [m/km].  

 

From equation (1), it can be noticed that with the increase in IRI and traffic speed, the DLC 

also increases, which causes dynamic amplification of the load.  A probabilistic approach 

using 10,000 Monte Carlo simulation trials has been conducted to account for the random 

effects of pavement roughness.  A normal distribution of the dynamic axle load for TSD 

vehicle was developed using equation (1); see Figure 10.  Fstat is the average static axle load 

and Fleft and Fright accounts for the left and right side of the vehicle.  From this distribution, it 

is observed that the static axle load increases by around ± 20% due to surface roughness [1].  

 

 
 

 Figure 10 

Wheel dynamic load distribution caused by roughness [1] 

 

Prediction of Backcalculated Layer Moduli from TSD Data 

Pavement layer moduli can assist state agencies in making more informed decisions at the 

network level.  Through an online survey, it was reported that around 69% of the agencies 

commonly backcalculate pavement layer moduli from surface deflections [7].  Typical 

backcalculation tools generally assume linear elastic properties for the pavement layers and 

adopt only FWD loading characteristics to compute pavement responses.  Therefore, these 

conventional programs may not be appropriate for direct use with TSD data due to the 

difference in loading mechanisms; i.e., FWD generates an impact load on the pavement 

surface while TSD applies a moving load at varying traffic speeds [19].  However, very few 

research studies have been conducted to address this issue and the proposed approaches were 

not computationally practical for regular use by state agencies.  Yet, these studies are 

informative and useful to support further research on this issue.   
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Backcalculation of Layer Moduli Using TSD Deflection Velocities. In this 

approach, a 3D Move simulation was conducted to calculate the TSD deflection velocities.  

Important TSD testing features were incorporated in 3D Move such as the dynamic loading 

nature of TSD; i.e., non-uniform contact pressure distribution of tires, non-circular loaded 

area; vehicle speed, and viscoelastic properties of AC layer.  3D Move uses layer moduli as 

an input in the simulation.  In this approach, the inputs were altered by trial and error to 

match the 3D Move output deflections to the TSD measured deflections.  The trial and error 

process is certainly tedious, especially for network level pavement evaluation.  However, 

TSD loading characteristics were well defined and simulated in this approach. The main 

advantage of this approach is the use of TSD deflection velocities.  Since TSD deflection 

velocities are directly measured from TSD testing, this approach did not require the use of 

any algorithm to calculate the surface deflections and was independent of the error associated 

with the calculation.  However, the error associated with the calculation of surface deflection 

is generally small.  The results of this approach are shown in Table 1. 

Table 1 

Backcalculated pavement layer moduli from TSD and FWD data using deflection 

velocity method [19] 

 

Pavement Section 

ID 
Layer 

Backcalculated 

moduli from TSD 

deflection velocities 

(ksi) 

Backcalculated 

moduli from 

FWD deflections 

(ksi) 

MnROAD Cell 19 

AC 70-112* 178 

Base 16 17.3 

Subgrade 36 35.8 

Stiff Layer Fixed 1000 

MnROAD Cell 34 

AC 211-305* 525 

Base 7 5.1 

Subgrade 16 17.3 

Stiff Layer Fixed 1000 
* Dynamic modulus at 75ºF for frequencies ranging between 5 and 45 Hz. 

 

Linear Elastic Analysis Approach.  Another method was suggested by Nasimifar et 

al. using the Linear Elastic Approach (LEA), which uses TSD surface deflection instead of 

deflection velocities [19].  This approach was conducted using 3D Move but with more 

simplified assumptions of TSD characteristics such as circular loaded area and AC material 

simulated as linear elastic.  However, dual circular loads were used to account for TSD tires 

and non-uniform contact stress distribution.  The results obtained with this approach were 
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considered satisfactory by the authors.  The advantage of this approach is that the 

computational effort is significantly reduced as compared to the first approach.  The 

backcalculated moduli obtained from this approach are shown in Table 2. 

Table 2 

Backcalculated pavement layer moduli from TSD and FWD data using LEA approach 

[19] 

 

Pavement Section 

ID 
Layer 

Backcalculated 

moduli using LEA 

approach  

(ksi) 

Backcalculated 

moduli from 

FWD deflections 

(ksi) 

MnROAD Cell 19 

AC 133 178 

Base 14.7 17.3 

Subgrade 34.2 35.8 

Stiff Layer 1000 1000 

MnROAD Cell 34 

AC 364 525 

Base 5.9 5.1 

Subgrade 24.9 17.3 

Stiff Layer 1000 1000 

 

The referenced study also compared the aforementioned two approaches by backcalculating 

the layer moduli of two other pavement sections from Pennsylvania and Idaho.  The results 

using both approaches are presented in Table 3.  The study recommended using the LEA 

approach rather than the deflection velocity method because of the computational 

requirements of using trial and error using 3D Move in network level evaluation.  
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Table 3 

Further validation of the two approaches on Pennsylvania and Idaho pavement sections 

[19] 

 

Pavement Section ID Layer 

Backcalculated 

moduli using 

deflection velocity 

method (ksi) 

Backcalculated 

moduli using LEA 

approach (ksi) 

Penn Route 144 

Asphalt 181-267* 270 

Base 43 41 

Subgrade 22 20.5 

Stiff Layer 1000 1000 

Idaho State Highway 22 

Asphalt 325-480* 416 

Base 31 39 

Subgrade 12 11 

Stiff Layer 1000 1000 
* Dynamic modulus at 75ºF for frequencies ranging between 5 and 45 Hz. 

In the present study, a simple methodology was developed to backcalculate the layer moduli 

from TSD measurements. TSD measured deflections were converted using an Artificial 

Neural Network (ANN) model to the corresponding FWD deflections.  The ANN model 

output could then be used in the already established and easily available backcalculation 

software for predicting the layer moduli.  An overview of the ANN method is presented. 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are widely used as computational modelling tools; these 

networks work similar to the mechanism of the human biological nature of neurons to model 

practical complex world problems.  It is globally accepted and is widely used because of its 

unique features such as non-linearity, which allows fitting complex data, noise tolerance in 

the input data, adaptability with complicated data patterns, and ability to generalize data, 

which facilitates the implementation of the model to unlearned data.  Moreover, there are 

several types of ANNs, which can solve problems with various characteristics [28]. 

An ANN consists of a genetic flexible training algorithm that learns how to make decisions 

based on given information [29].  ANNs’ use has increased tremendously in solving complex 

civil engineering problems in the last three decades [30].  They can be very generic, accurate, 

and convenient mathematical models with high capability in simulating numerical model 

components [31].  ANN is useful with either small or large database; yet, large databases are 

preferable when modelling with ANNs.  Furthermore, ANN models can be continuously 

updated with the addition of new data [32].  
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The Feed-Forward ANN.  The feed forward ANN is mostly used for regression 

analysis and function approximation.  This type of ANN consists of an input layer (i), one or 

more hidden layers (j), and an output layer.  In the input layer, multiple independent variables 

can be defined; similarly, the output layer known as the target layer can be fed with one or 

more dependent variables.  The hidden layers adjust and update the weights to process the 

data until the desired output is produced [29].  Each of these layers may contain multiple 

processing units, which are known as “neurons,” and the neurons in a layer are linked with 

all other previous neurons layers [33].  A “weight” is assigned to each connection among 

these neurons and a “bias” is assigned to each of these neurons.  A general layout of a feed-

forward ANN is demonstrated in Figure 11. 

 

Figure 11 

Example of feed-forward neural network structures [2] 

 

ANN Back-Propagation. Learning or training of input data in ANN is the process 

where biases and weights are calculated to match the desired output data.  Back-propagation 

is the most common algorithm for error optimization in the learning and training phases of 

ANN.  Back-propagation algorithm uses the assigned weights and biases to each network 

connections and neurons to calculate the output.  The error is calculated by comparing the 

calculated output to the target values. This algorithm optimizes the error by changing the 

weights and biases and generates the output with the least possible errors depending on the 
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training and transfer functions considered in ANN [2]. The mechanism of back-propagation 

algorithm is shown in Figure 12.  Equation (2) illustrates the function used to calculate the 

error from the network output:  

E =  
1

2
 (t − y)2 =

1

2
[t − f(w, b, x)]2         (2) 

where, 

E= error function; 

y = network output;  

t = target value; 

w= network weights; 

b= network biases; and 

x= independent variables.  

 

 

Figure 12 

Back-propagation algorithm [2] 

 

Back-propagation procedure uses different training algorithms.  Each training algorithm has 

their individual characteristics of learning the data. Training algorithms also have different 
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data learning rate, storage requirements, and computational time. The selection of training 

function depends on the type of problem to be modeled and input sample characteristics.  A 

general overview of the most common training functions is shown in Table 4. 

Table 4 

Overview of the training functions in ANN [34] 

 

Training 

Functions 
Descriptions 

Gradient Descent with Variable Learning Rate 

TRAINGD 
This training function is used in incremental-mode training and is 

generally slow. 

TRAINGDM 
This back-propagation algorithm with momentum is used in incremental-

mode training and is generally faster than TRAINGD. 

TRAINGDX 
Gradient descendent with momentum and adaptive linear BP. Faster 

training than TRAINGD, but it can be used only in batch-mode training. 

TRAINGDA 
TRAINGDA is faster than TRAINGD and TRAINGDM and can be used 

in batch-mode training. 

Resilient BP 

TRAINR 
Random-order incremental update Resilient BP. Simple batch-mode 

training algorithm with fast convergence and minimal storage. 

TRAINRP 
Resilient BP (RPROp) used in batch-mode training, fast convergence, and 

minimal storage requirements. 

Conjugated Gradient Descent 

TRAINCGF Smallest storage requirement among the conjugate gradient algorithms. 

TRAINCGP Slightly larger storage requirements and faster than TRAINCGF.  

TRAINCGB Slightly larger storage requirements faster convergence than TRAINCGP  

TRAINSCG Very good general-purpose training algorithm. 

Quasi-Newton Algorithm 

TRAINBFG BFGS quasi-Newton method, fast convergence. 

TRAINOSS 
One-step secant BP method. Compromise between conjugate gradient 

methods and quasi-Newton methods. 

Levenberg-Marquardt 

TRAINLM Levenberg-Marquardt algorithm. fastest training algorithm for networks.  

Automated Regularization 

TRAINBR 
Bayesian regularization. Modification of the Levenberg-Marquardt training 

algorithm to produce networks that generalize well.  
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Transfer functions are used in ANN to learn the non-linearity of the data. Transfer functions 

are applied to the input neurons to generate output neurons. Three commonly used transfer 

functions are logistic sigmoidal function (logsig), tan sigmoidal function (tansig), and 

“hardlim” transfer functions. The output for each transfer function has different properties. 

For example, logsig produces output between zero to +1, tansig function produces outputs 

between -1 to +1 and hardlim function is used to make decision and classification of input 

sample data. Equations (3) and (4) define the ANN logsig and tansig transfer functions:    

logsig(x)=
1

1+e-x                                                                                                                  (3) 

tansig (x)= 
ex-e-x

ex+e-x                                                                                                              (4) 

 

Structural Capacity Indicator Models 

The need for considering structural conditions along with functional conditions in pavement 

management has been recognized in the past decade by various state agencies.  The FWD 

allows practitioners to assess the structural conditions of in-service pavements [1].  Research 

studies have also developed methodologies to evaluate the structural conditions of in-service 

pavement and its structural number based on surface deflections measured using FWD and 

RWD.  A recent pooled funded study has also developed a methodology for predicting the 

Effective Structural Number (SNeff) from TSD measurements using Rohde’s (1994) method 

[25, 35], which includes estimating the Structural Index of Pavement (SIP) using equation 

(5):  

SIP = D0 −  D1.5Hp           (5) 

 

where,  

D0 = peak deflection under the 9,000-lbs. load;  

D1.5Hp = deflection at lateral distance 1.5 times the pavement depth; and 

Hp = pavement depth (thickness of all layers above the subgrade).  

 

Afterwards, SNeff is predicted from the following equation (6): 

 

SNeff= K1 SIPk2  Hp
k3           (6) 

 

where, 

For asphalt pavements, k1 = 0.4728, k2 = −0.4810, and k3 = 0.7581.  
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In the developed methodology, D0 was corrected to a reference temperature of 68°F (20°C) 

using the procedure described by Lukanen et al. (2000) [36].  The pooled-fund study also 

developed thresholds for assessing pavement structural conditions based on the derived 

parameters, SCI300 and Deflection Slope Index (DSI), from TSD measured deflections. The 

thresholds were used to classify pavement conditions as good, fair and poor.  SCI300 and DSI 

were derived from TSD deflections based on equations (7) and (8): 

SCI300 = D0 − D300           (7) 

DSI = D100 − D300           (8) 

where, 

D0 = deflection at the point of load application (mid-point between the dual tires); 

D100 = deflections at 100 mm (3.93 in.) from the center of the applied load; and  

D300 = deflections at 300 mm (11.81 in.)  from the center of the applied load. 

 

SCI300 and DSI were corrected to a reference temperature of 70°F according to the 

methodology developed by Rada et al. [25]. The suggested thresholds for pavement 

conditions evaluation based on these parameters are shown in Table 5.  

Table 5 

Thresholds for SCI300 and DSI from TSD measurements 

Road 

Category 

AC layer 

thickness, 

in. 

Threshold for Poor Threshold for Fair 

SCI300 

(mil) 

DSI  

(mil) 

SCI300  

(mil) 

DSI  

(mil) 

Interstate >9 3.7 3.0 2.7 2.2 

Primary 6-9 6.2 5.2 4.9 4.0 

Secondary 3-6 9.7 7.7 7.3 5.8 

 

The pooled-fund study also compared the SNeff estimated from TSD deflections with the 

PMS SNeff from Pennsylvania and found significant discrepancy between TSD SNeff and 

PMS SNeff, see Figure 13.  Pennsylvania PMS SNeff is calculated according to the AASHTO 

1993 design method with a reduction of layer coefficients with pavement age.  As suggested 

by the authors, this may indicate that PMS SNeff does not accurately predict the effective 

pavement SN since good agreement was found between FWD and TSD deflections [25]. 
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Figure 13 

Comparison between TSD SNeff and Pennsylvania PMS SNeff 

 

The AASHTO equation for estimating the SN requires trial and error and numerical methods, 

which makes it complicated to use [37].  A SN model was developed by Gedafa et al. based 

on FWD center deflection measurements along with other performance indices data from 

PMS in Kansas.  The road network was divided into 23 categories and different regression 

models were developed for each of the road categories using the center deflection, pavement 

depth, and surface condition indices.  Afterwards, an overall SN model was proposed with a 

coefficient of determination (R2) of 0.77.  It was suggested that either RWD or FWD center 

deflection measurements could be used in the overall model: 

SN= 6.3763- 0.3364 d0 + 0.0062d0
2 – 0.0805D+0.01D2-0.0008(d0*D) - 0.4115 log (EAL)           

+ 0.1438 (log (EAL))2 + 0.0836ETCR-0.0091 EFCR+0.0004 EFCR2 -0.4061 Rut               (9) 

 

where, 

SN= pavement structural number; 

d0= center deflection (mils); 

D= pavement depth (in.); 

EAL = Equivalent standard daily traffic; 

EFCR/ETCR=equivalent fatigue/transverse cracking; and 

Rut=rut depth (in). 
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A SN-predictive model was developed by Elbagalati et al. based on the RWD average center 

deflection, deflection standard deviation along the pavement length at 0.1-mile interval, 

asphalt layer thickness, and traffic volume. The model accuracy was evaluated and indicated 

a Root-Mean Square Error (RMSE) of 0.8 and a coefficient of determination (R2) of 0.8.  The 

model was then used to identify structurally deficient pavement sections assuming a 50% 

loss in structural capacity [38].  Equation (10) presents the developed SN model based on 

RWD deflection measurements: 

SNRWD0.1= -14.72+27.55* (
Acth

D0
)

0.04695

-2.426* ln SD+0.29* ln ADTPLN             (10) 

where,  

Acth = Asphalt layer(s) thickness of the pavement structure (in.);  

D0 = Avg. RWD deflection measured each 0.1-mile (mils);  

SD = Standard deviation of the RWD deflection each 0.1-mile;  

ADTPLN= Average Annual Daily traffic per lane (vehicle/day); 

SNRWD0.1 = Pavement SN based on RWD measurements defined each 0.16 km (0.1 mi.). 

 

Schnoor et al. assessed flexible pavement structural conditions using a simple SN model, 

which was developed based on derived parameters from FWD deflection measurements; i.e., 

area under the pavement profile and the base layer index; see equation (11) [39]: 

SN =  e5.12AUPP
−0.78 BLI0.31                          (11) 

 

where, 

Aupp = Area under pavement profile; and 

BLI = Base layer index. 

 

Other noteworthy SN models were also developed based on FWD and RWD deflection 

measurements and are presented in Table 6 [39]. 
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Table 6 

Developed SN models based on FWD and RWD measurements 

 

Method  SN models Description 

FWD center 

deflection based 

SN model [37]  

SN =  6.3763 − 0.3364 d0 +  0.0062 ∗

d0
2 – 0.0805 ∗ D + 0.01 ∗ D2 −

0.0008(d0 ∗ D) − 0.4115 log (EAL) +
0.1438 ∗ (log(EAL))2 +  0.0836 ∗
ETCR − 0.0091 ∗ EFCR + 0.0004 ∗
EFCR2 − 0.4061 ∗ Rut   

SN= pavement structural number; 

d0= center deflection (mils); 

D= pavement depth (in.); 

EAL = equivalent standard daily 

traffic; 

EFCR/ETCR=equivalent 

fatigue/transverse cracking; and 

Rut=Rut depth (in). 

Backcalculated 

Moduli 

AASHTO NDT 

Method [39]  

SN = ∑ hi
n
i=1 ag (

Ei

Eg
)

1
3⁄

  

ag = layer coefficient of standard 

materials; 

Ei = layer resilient modulus 

(MPa); 

Eg = layer resilient modulus of 

standard materials (MPa); and 

hi = layer thickness (in.). 

 

AASHTO 

Method II [39]  

D0 =
1.5P

πlr
 (

(0.0045HP)3

SN3 [1 −
1

(1+(HP lr)⁄ 1 2⁄ ] +

1

ESG(1+
40000SN2

lr2E
SG
2 3⁄ )1 2⁄

) 

D0 = the peak FWD deflection 

(in.); 

P = FWD load (lbs.);  

Hp= layer thickness (in.); 

lr = load radius (in.); 

ESG = subgrade modulus (psi).  

 

Jameson’s 

formula [39]  
SN = 1.69 +  

842.8

(D0−D1500)
+  

42.94

D900
  

D0 = the peak deflection 

(microns);  

D900= Deflection at 900 mm from 

loading (microns); 

D1500= Deflection at 1500 mm 

from loading (microns). 

Asgari’s 

formula [39]  
SNC = a0 (D0)a1  

SNC = modified structural 

number; 

a0, a1 = Asgari coefficients; 

D0 = Peak deflection (mm). 

 

The Wimsatt 

formula [39]  
SNeff = 0.0045 (D)Ep

0.333  

D = Total layer thickness; 

Ep = Existing pavement modulus 

of the layers above subgrade. 

 

 

As the use of FWD is limited at the network level and with the acceptance of continuous 

deflection measurement devices in many countries, a model is needed to predict SN from 

continuous devices such as TSD.  The present study developed a SN-prediction model based 

on TSD deflections; the model can also be used to identify structurally deficient pavements.  
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Such information would benefit state agencies at the network-level in decision-making 

processes and in avoiding inaccurate selection of Maintenance and Rehabilitation (M&R) 

activities. 

Limit of Agreement Method 

Limit of Agreement (LOA) is a statistical method introduced by Bland and Altman, which is 

widely used to evaluate the difference between two sets of measurements by two independent 

devices [40].  The error between each set of measured data by the two devices can be 

calculated based on equations (12) and (13) as follows: 

yi1 − yi2 = (si1 − si2) + (ei1 − ei2)                   (12) 
 

where, 

yi1 = Measurement at location i obtained from device 1; 

yi2 = Measurement at location i obtained from device 2; 

si1 = Actual value at location i obtained from device 1; 

si2 = Actual value at location i obtained from device 2; 

ei1 = Error in measurement at location i for device 1; 

ei2 = Error in measurement at location i for device 2.  

 

Di = Bi + Ei                      (13) 
 

where, 

Di = Difference in measurements between two devices; 

Bi = Difference of systematic error of the two devices; 

Ei = Difference of the random error of the two devices. 

 

Bi can be considered constant for simple cases and if ei1, ei2 are normally distributed as N (0, 

σ1) and N (0, σ2) respectively, then Ei can also be assumed normally distributed, N (0, σ).  

Therefore, in such cases, Di will also be normally distributed as N (B, σ) where B is the 

constant difference of systematic error of the two devices and σ is the standard deviation.  

The standard deviation can be calculated as follows: 

B =  ∑
Bi

N

N
i=1                      (14) 

σ2 =  ∑
(B−Bi)2

N−1

N
i=1                     (15) 
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The plot of difference between the measurements is evaluated by Di versus the average 

measurements of the two devices.  This type of plot is very useful in identifying the lack of 

agreement between two device measurements and the relationship between true 

measurements and the error in device measurements.  However, if the true value is unknown, 

the mean of the two devices can be assumed as the mean value.  For example, for a set peak 

expiratory flow rate (PEFR) data measured by two flow-measuring meters, the plot in Figure 

14 presents the concept of the Limit of Agreement method.  According to this figure, one 

may conclude that the two meters show considerable lack of agreement up to a difference of 

800 l/min.  If there is no relationship between the measurement difference and the mean, the 

lack of agreement can also be summarized using the calculated bias from the two data sets.  

The difference between the two data sets are expected to be within the confidence limits 

constructed for the data set; typically, within d-2s and d+2s (Figure 14) or d-1.96s and 

d+1.96s for normally distributed differences, where d is the mean difference and s is the 

standard deviation of the differences [40].  

 

Figure 14 

Example of Limit of Agreement (LOA) method [39] 
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OBJECTIVES 

The objective of this study was to assess the feasibility of using TSD measurements at the 

network-level for pavement conditions structural evaluation in Louisiana and in 

backcalculation analysis.     
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SCOPE 

To achieve the objectives of the study, TSD and FWD measurements were collected in 

District 05 of Louisiana and data were available from experimental programs conducted at 

the MnROAD research test facility and in Idaho.  TSD measurements were compared with 

FWD deflection measurements to evaluate the level of agreement and difference between the 

two devices.  Based on this evaluation, a SN predictive model was developed and validated 

to assess the structural conditions of in-service pavements.  The model was then used to 

identify structurally sound and structurally deficient in-service pavements.  Furthermore, a 

methodology was developed and was validated to backcalculate the layer moduli from TSD 

measurements. 
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METHODOLOGY 

Figure 15 presents the general layout of the adopted methodology to achieve the objectives of 

this study.  Nondestructive testing of in-service pavements was conducted using both TSD 

and FWD in District 05 of Louisiana.  TSD and FWD measurements were also obtained 

through FHWA for recently conducted testing programs at the MnROAD test facility and in 

Idaho.  Soundness of TSD measurements was evaluated and data were processed and filtered 

to calculate the surface deflections.  After processing and filtering the TSD raw 

measurements, the deflection data were compared to the FWD deflection measurements to 

evaluate whether the two sets of measurements are statistically equivalent or different.  TSD 

deflection data were also used to develop a SN-predicting model and the model’s efficiency 

in identifying structural deficient pavement locations was evaluated by comparing the model 

prediction to the conditions of extracted cores from the pavement sections.  An artificial 

neural network model was then developed to convert TSD measured surface deflections to 

the corresponding FWD deflections.  The converted data were then used in ELMOD 

backcalculation software to predict the layer moduli directly from TSD deflection 

measurements.  Evaluation and validation of the proposed methodology was conducted by 

comparing the critical pavement responses and structural health conditions based on the 

backcalculated moduli from FWD and TSD measurements. 

  



 

28 

 

 

 

Figure 15 

General layout of the developed methodology 
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Field Testing Program  

 

Traffic speed deflectometer and falling weight deflectometer measurements were conducted 

in Louisiana in May 20 to 21, 2016.  FWD and TSD measurements were conducted 

successfully with no significant problems to report.  Due to the size limitations of the data 

collected in Louisiana, data were also obtained from FHWA for two recently completed 

testing programs conducted at the MnROAD test facility in Minnesota and in Idaho.     

TSD Testing Program in Louisiana 

In 2016, a TSD device operated by the Australian Road Research Board (ARRB), known as 

iPAVe, was used to measure vertical deflection velocity, horizontal speed of the vehicle, air 

temperature, and pavement surface temperature in six parishes of District 05 in Louisiana.  

Measurements were collected for 13 control sections at 0.01-mile interval.  FWD 

measurements were also collected for the same control sections at 0.1-mile interval for the 

evaluation and comparison with TSD measurements.  The 13 selected sites in District 05 are 

presented in Figure 16. 

 

Figure 16 

Locations of the TSD road segments in Louisiana (District 05) 
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The pavement surface and air temperature were recorded to an accuracy of +/-1°F and were 

reported within the TSD dataset.  These measurements were made with a calibrated air 

temperature probe situated beneath the trailer chassis, above the ballast weight for the 

ambient air, and a calibrated infrared temperature sensor that measures pavement surface 

temperature in the outer wheel path location.  The load is ‘static’ and is comprised of the base 

trailer mass itself, plus the mass of a main ballast weight of 7220 lbs. located under the belly 

of the trailer, and a small ballast weight of 475 lbs. situated underneath the rear of the trailer.   

These weights are balanced to provide a suitable center of gravity for the trailer road 

handling, as well as the nominal equal load over each wheel set.  Figure 17 shows a typical 

arrangement of loading in the TSD device.  It is to be noted that for the testing in Louisiana, 

the rear ballast weight (475 lbs.) was removed to comply with axle weight regulations, which 

resulted in a reduced load of 10,000 lbs. on each wheel set.  Strain gauges were mounted on 

the rear axle to measure the bending moment on the loaded axle on both the left and right 

side.  The load data were collected continuously and were averaged over the selected report 

interval, and were converted into a mass measurement, for both left and right side axles.  The 

mass measure was derived from a load vs. signal equation derived from the strain gauge 

outputs, and was not a direct load cell weight or force measurement.  The tolerance between 

actual and measured strain (weight) in a static setting is ± 440 lbs., which is acceptable 

considering the weight of the trailer, air pressure and suspension balancing valving, and 

engineering tolerance in the iPAVe chassis/suspension construction. 

 

Figure 17 

Typical loading configurations in the TSD device 
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The nominal load was set at 20,000 lbs. on the axle and was distributed on the left and right 

sides depending on the movement of the trailer Center of Gravity (CoG), the cross fall, and 

the grade of the road.  Therefore, it varied dynamically within a range of a few percentages 

as the TSD travelled down the road.  High-resolution horizontal velocity measurements (i.e., 

the travel speed of the iPAVe) are critical to deflection slope calculations.  Distance and 

velocity are measured using a specialized odometer wheel assembly.  Having a dedicated 

Distance Measuring Instrument (DMI) increases accuracy and limits error induced due to 

physical factors, such as tire loading, tracking, tire pressure, and thermal expansion.  The 

overall accuracy of the DMI is defined with an error less than +/-0.1% and subsequent bias of 

less than 0.1%.  The same odometer pulse count is used for all distance measurements within 

the iPAVe system.  Measurements were reported for the 13 control sections at 0.01-mile 

intervals.  FWD measurements were also collected for the same control sections at 0.1-mile 

intervals for the evaluation and comparison with TSD measurements.   

TSD Loading Conditions for Louisiana 

Travelling at normal traffic speed, TSD loads the pavement using its rear axle tires.  The 

articulated Doppler lasers over the right wheel of the rear axles measures the deflection 

velocity along the midline between these dual tires.  The applied load for these tires was 

reported through strain gauge measurements.  TSD loading variation under static and 

dynamic conditions is discussed in this section. 

TSD Load and Tire Pressure. The applied load by the TSD, loaded area of 

pavement surface, and tire contact pressure at static conditions, were measured.  As shown in 

Figure 18, TSD applied a load of 20,360 lbs. on its rear axle and distributed this load evenly 

over its left and right dual tires producing a load of 9,800 lbs. and 10,560 lbs. on the left and 

right sides, respectively; see Figure 18.  The contact tire pressure was reported at 115 psi in 

static conditions.  It is to be noted that the ARRB TSD used in the testing program was 

intentionally slightly biased towards the right dual tire with a greater load to increase the 

deflection since it measures the deflection along the midline between the right dual tires. 
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Figure 18 

Load distribution between tires in the rear axle 

 

Assuming the load on the right and left dual tire configurations is evenly distributed over 

each tire, the load on each tire shown in Table 7 can be calculated. 

Table 7 

Loads on each tire of the TSD 

 

Tire location Loads (lbs.) 

Outer Left 4,900 lbs. 

Inner Left 4,900 lbs. 

Outer Right 5,280 lbs. 

Outer Right 5,280 lbs. 

 

The loaded area and tire dimensions were calculated by measuring the footprint from the 

outside the tire as shown in Figure 19.  Tire longitudinal dimension (travel direction) was 

measured at 7.48 in. (190 mm) and at 9.45 in. (240 mm) in the transverse direction; see 

Figure 19.  The spacing between the two tires was measured at 4.33 in. (110 mm). 
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(a)TSD tire dimensions in transverse direction 

(b)TSD tire dimensions in longitudinal (traffic) direction 

Figure 19 

Measured TSD tire dimensions 

 

As previously noted, TSD loading, tire pressure, and loaded area vary significantly in 

dynamic conditions at the time of deflection velocity measurements.  The loading profile for 

each processed data point was obtained through the strain gauges measurements.  

FWD Testing Program in Louisiana 

FWD testing was conducted in Louisiana within 24 hours of the TSD measurements to 

maintain the consistency in pavement and environmental conditions.  FWD measurements 

were reported for the 13 test sites at an interval of 0.1-mile.  Two loading drops were 

conducted for FWD at all test locations.  The two drops varied within a load range of 9,700 
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to 10,200 lbs. and 24,200 to 24,700 lbs., respectively.  The obtained deflections due to the 

drop with a load of 9,700 to 10,200 lbs. were used in this study and were normalized to a 

load of 9,000 lbs.  Along with the deflection, FWD also measured the surface temperature 

during testing.  Table 8 presents the details of the 13 test sections evaluated in the Louisiana 

testing program. 
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Table 8 

General descriptions of the 13 test sites in Louisiana 

Site ID 
Control 

Section 
Route Parish 

Pavement 

Type 
Type of Treatment 

Last Treatment 

Year 

TSD Test Site 

Log-miles 
Traffic 

1 067-08 LA 34-1 Ouachita Asphalt A7- Asph Surf Treat 2003 5.55 - 6.95 2,400 

2 067-09 LA 34-2 Ouachita Asphalt A3- Asph Ovly Pvmt 2001 3.35-4.75 11,714 

3 451-05 I-20 eb Lincoln Composite A3- Asph Ovly Pvmt 2005 22.25 - 23.95 35,528 

4 326-01 LA 594-2 Ouachita Asphalt Z1- RCND AGGR SURF 2003 5.05 - 6.45 3,800 

5 324-02 LA 616 Ouachita Asphalt A1-Asphalt New Pvmt 1995 3.55 - 4.95 11,000 

6 831-05 LA 821 Lincoln Asphalt A3- Asph Ovly Pvmt 2009 2.05 - 3.25 1,030 

7 071-02 US 425 Richland Asphalt 
A5- AC Ovly/In-place 

Base 
2008 1.00 - 2.50 3,700 

8 069-03 LA 33 Union Asphalt A7- AC Surf Treat 2006 3.05 - 4.45 2,536 

9 315-02 LA 143 Ouachita Asphalt A3- Asph Ovly Pvmt 2004 6.00 - 7.50 4,100 

10 333-03 LA 582 E Carroll Asphalt 
ZA- Asphalt Pavement 

Rehab 
2003 3.00 - 4.50 4,60 

11 862-14 LA 589 W Carroll Asphalt 
A5- AC Ovly/In-place 

Base 
2009 4.00 - 5.50 3,20 

12 326-01 LA 594-1 Ouachita Asphalt A3- Asph Ovly Pvmt 2006 2.00 - 3.50 3,800 

13 451-08 I-20 wb Madison Composite 
A6- AC Ovly Rubblized 

Pvmt 
2013 29.3-30.8 25,600 

Note: All sites were tested in the Primary direction except Site ID 2 and 13.  
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Table 8 – Continued. 

ID Surface Type Base Type 

Layer Thicknesses (in.) 
Pavement 

Group 

Core  

Conditions 

IRI [2015] 

in./mile 
PCI [2015] 

Condition 

(PCI) Layer 1 

(Surface) 

Layer 2 

(Base) 

Layer 3 

(Subbase) 

1 Asphalt Stabilized Granular 8.5 9 0 Thick ˗˗˗ 111.6 77.9 Fair 

2 Asphalt Stabilized Granular 10 8 5 Thick Stripping 68.8 89.3 Good 

3 Asphalt 
PCC+AC+Cement 

Stabilized 
4 22.75 0 Medium ˗˗˗ 43.6 99.7 Very good 

4 Asphalt Stabilized Granular 4 7.5 0 Medium ˗˗˗ 55.6 97.6 Very good 

5 Asphalt Cement Stabilized 5 5 0 Medium ˗˗˗ 101.3 80.8 Fair 

6 Asphalt Granular 5 8 0 Medium Stripping 87.3 92.7 Good 

7 Asphalt Stabilized Granular 8.5 8.5 0 Thick ˗˗˗ 72.8 92.5 Good 

8 Asphalt 
Crushed Gravel 

w/sand 
7 3 8 Thick ˗˗˗ 95.3 83.5 Fair 

9 Asphalt 
Cement Stabilized 

Sand Clay Gravel 
9.5 13.5 0 Thick Separation 56.0 92.7 Good 

10 Asphalt Granular 9.5 8.5 0 Thick Stripping 221.1 67.9 Poor 

11 Asphalt Stabilized Granular 1.75 15.75 0 Thin ˗˗˗ 95.0 91.0 Good 

12 Asphalt Stabilized Granular 8.5 8 19.5 Thick ˗˗˗ 67.5 90.2 Good 

13 Asphalt PCC+AC+Granular 5.25 18 0 Medium Stripping 49.8 95.8 Very good 
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Idaho Testing Program 

In September 2015, TSD measurements were conducted in Idaho by Greenwood Engineering 

of Denmark under FHWA pooled funded project TPF 5(282) [41]. TSD and FWD 

measurements were conducted for one road segment that was 13.4 mile in length. TSD 

measurements were reported at 0.006-mile interval and FWD measurements were reported at 

100-ft. (0.02-mile) interval.  Data were reported in one direction and six Doppler lasers were 

located at a distance of 3.9, 7.9, 11.8, 23.6, and 59 in. ahead of the rear axle of the vehicle to 

measure deflection velocity at different offsets.  Another sensor, acting as a reference laser, 

was placed at a distance of 138 in. from the rear axle, which is beyond the deflection basin 

distance.  Lasers were positioned on a beam that moved up and down in the opposite 

direction of the trailer movement to maintain a constant height from the road surface.  A 

constant trailer temperature of 68°F (20°C) was maintained by a temperature control system 

in order to prevent thermal distortion of the steel beam. 

The objective of the FWD testing program was to compare the measured deflections to TSD 

measurements.  FWD measurements were collected within a month of the TSD survey using 

a Dynatest truck-mounted deflectometer.  FWD testing was conducted on a 2-mile long road 

segment resulting in more than 100 FWD data points with an interval of 100 ft.  Five load 

drops were conducted at each test location of the selected road segment.  Out of the five 

drops, three were conducted at 12,000 lbs. and the remaining two were conducted at 9,000 

lbs.  Vertical deformation of the pavement surface due to the FWD drops was measured by 

seven sensors located at 0, 8, 12, 18, 24, 36, and 60 in. from the center of the load.  

Temperature of the pavement surface and air temperature, and GPS data were also collected 

to assist in the analysis.  

MnROAD Testing Program 

FWD and TSD measurements were collected at the MnROAD facility in Minnesota [2].  The 

surveyed road network consisted of a 3.5-mile mainline roadway (ML) with 45 sections and 

with “live traffic” as part of Interstate 94 near Albertville, Minnesota.  In addition, a 2.5-mile 

closed-loop low volume roadway (LVR) consisting of 28 sections was also surveyed; the 

section lengths were typically about 500 ft.  In addition to the test sections along the mainline 

and low volume road of the MnROAD, an 18-mile segment in Wright County was also 

tested.  The segment is located about 20 miles from the MnROAD facility and was divided 

into nine sections. 

Testing was conducted using the TSD, RWD, and the Euro-consult Curvimeter.  FWD was 

also conducted and was used as a reference for comparison and evaluation purposes.  Tested 

sections varied between flexible pavements, rigid pavements, and composite pavement 



 

38 

 

 

sections.  Yet, the present study focused on the use of the TSD measurements in conducting 

backcalculation analysis of flexible pavements layer moduli, therefore, only TSD and FWD 

data collected on flexible pavements were considered.  The flexible pavement test segments 

at which both FWD and TSD measurements were conducted consisted of 16 sections; six in 

the main line and 10 in the low volume roadway.  The TSD and FWD deflection data for 

MnROAD were reported as an average over the 16 sections while the other testing program 

measurements were reported at a log-mile interval; hence, were analyzed separately. 

 

Figure 20 

MnROAD road facility in Minnesota 

 

TSD Raw Measurements Processing 

The TSD measures the velocity of the surface deflection under load using Doppler lasers 

rather than measuring the displacement directly.  It collects vertical velocity (Vv) and 

horizontal velocity (Vh) continuously at a 0.001-mile interval as shown in Figure 21.  The 

deflection slope was calculated at each measurement point by dividing the vertical deflection 

velocity by the horizontal velocity.  Horizontal velocity is equivalent to the measured speed 

of the TSD. 
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Figure 21 

Schematic of Doppler lasers mechanism 

 

Collected raw measurements (vertical deflection velocity and actual horizontal speed) of the 

TSD device were used to calculate the deflection basin at each milepost according to the 

methodology known as “Area under the Curve (AUTC)” proposed by Muller and Roberts 

[10].  According to this method, the vertical deflection velocity is divided by the actual speed 

of the vehicle to get the deflection slope; slopes are then plotted against TSD sensor 

locations; see Figure 22.  Afterwards, the plotted curve is numerically integrated assuming 

the deflection slope is zero at locations 0 and 137.8 in. (3500 mm) from the load as shown in 

Figure 22.  The slope value was then calculated at the selected locations with adequate curve 

fitting using the Piecewise Cubic Hermite function as suggested by the AUTC method.  The 

deflections were then calculated at nine locations (i.e., 0, 8, 12, 18, 24, 36, 48, 60, 72 in. from 

the center of the load). An example of deflection basin computation is shown in Figure 23. 
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Figure 22 

Numerically integrated slope over the offset distances 

 

 

(a) AUTC method for calculating TSD deflection 
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(b) Calculated deflection basin 

 

Figure 23 

Deflection basin computation 

  

Temperature Correction for FWD and TSD measurements. FWD and TSD 

deflections were corrected to a reference temperature of 20°C.  The Bells equation was used 

to calculate the pavement temperature at asphalt mid-depth [36].  Pavement surface 

deflections at radial offsets were then corrected using the methodology described in 

equations (16) to (18) based on the approach proposed by Kim and Park [42]. 

 

                                                        λ𝑤 =
𝑤𝑇0

𝑤𝑇
                  (16) 

 

where, 

wT0 = the deflection corrected to temperature T0; 

wT = the deflection at temperature T; and 

λw = the deflection correction factor calculated as follows: 

 

                                                    λ𝑤 = 10−𝐶(𝐻𝑎𝑐)(𝑇−𝑇0)                                                                    (17) 
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Hac = Asphalt layer thickness; and 

C = Regression constant calculated as follows: 

 

                                                 𝐶 =  −𝐴𝑟 + 𝐶0                                                                     (18) 

where, 

 r = the radial distance from the center of the load; and 

A = - 5.26x10-8 for U.S. Central Region; and 

C0 = 5.80x10-5 for U.S. Central Region. 

 

Evaluation of TSD Measurements 

 

Collected TSD and FWD measurements from the Louisiana experimental testing program 

were processed and filtered as described in the previous section for precise comparison and 

thorough evaluation.  TSD measures deflections at 0.01-mile interval along a pavement 

sections while FWD measured deflections were reported at an interval of 0.1-mile.  Hence, to 

match the data points where FWD deflection measurements were available, TSD deflections 

were also processed at 0.1-mile interval at the exact same locations of FWD testing.  

Furthermore, FWD deflections were measured at a distance of 0, 8, 12, 18, 24, 36, 48, 60 and 

72 in. from the center of the plate load.  Therefore, TSD deflections were processed from the 

deflection slopes at the same offset distances from the center of the load, which involves 

numerical integration of the slopes and subsequently, area under the curve computations.  

Two separate statistical methods were used to demonstrate and to evaluate the comparison of 

TSD and FWD deflections (i.e., significance test considering 95% confidence level and the 

Limit of Agreement Method [39]).  Furthermore, the potential factors that could influence 

the TSD field measurements such as pavement roughness were evaluated by calculating the 

coefficient of variation (COV) within each section.  

Development of a Methodology to Predict Layer Moduli Based on TSD Data 

 

As part of the research activities in this study, a methodology was developed to utilize TSD 

measurements in the backcalculation of layer moduli for flexible pavements.  There are clear 

differences between TSD and FWD such as difference in loading mechanisms and shape.  

Furthermore, backcalculation programs (e.g., Modulus and ELMOD) assume the load to be 

applied through a circular plate, which is not the case for the TSD.  Therefore, the use of the 
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TSD deflection “as is” in a backcalculation software would not be realistic.  In the present 

study, an ANN model was developed to convert the TSD deflection basin to a corresponding 

FWD deflection basin, which was referred to as TSD*.  TSD and FWD measurements were 

obtained from the testing programs conducted in Louisiana and the MnROAD facility in 

Minnesota and were used to develop and to validate the ANN model.   

Figure 24 presents a general overview of the adopted methodology to utilize TSD 

measurements in the backcalculation analysis.  First, the TSD deflection velocity 

measurements were used to calculate the deflection basins through numerical integration.  

Then, both TSD and the FWD deflections were corrected to a reference temperature of 68°F 

(20°C).  An ANN model with a topology of 9-5-9 was developed to establish a correlation 

between FWD and TSD deflection basins.  Deflections obtained from the ANN model 

(TSD*) were then used to conduct the backcalculation analysis using ELMOD6 software.   

 

Figure 24 

General overview of the ANN procedure 
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Evaluation and Validation of the Proposed Backcalculation Methodology. The use of 

the TSD-based backcalculated moduli was evaluated by conducting a comparison with the 

FWD-based backcalculated moduli in the following pavement analysis applications: 

 Calculating critical pavement responses (stress-strain analysis); 

 Pavement fatigue life prediction; and 

 Structural health monitoring.   

 

Development of TSD-Based Structural Capacity Indicators 

 

This study developed a non-linear regression model for the prediction of in-service pavement 

SN and structural-deficiency at 0.01-mile interval.  The proposed model was developed 

based on TSD surface deflection measurements calculated from the deflection slope by the 

AUTC method.   

Measured deflections at nine offset distances referred as D0, D8, D12, D18, D24, D36, D48, D60, and 

D72 were initially used as independent variables along with the corresponding pavement total 

thickness (Tth), and the Average Daily Traffic (ADT).  The SN calculated from the AASHTO 

1993 method based on FWD and TSD deflections was used as the dependent variable in the 

development of the model.  To ensure accuracy, several statistical analyses were conducted; 

i.e., pairwise correlation, significance testing using regression analysis, and multi-collinearity 

testing among all the independent variables.  The model was successfully validated based on 

data points obtained from TSD and FWD measurements in Louisiana and Idaho.  The 

validation and performance evaluation of the model was conducted by comparing its 

prediction with the SN calculated from FWD deflection measurements.  Furthermore, model 

validation was conducted by evaluating SN prediction accuracy and residual plots. Extracted 

cores and functional indices data collected from the DOTD PMS were also used for 

evaluation of the model’s ability in identifying structurally deficient locations.   
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DISCUSSION OF RESULTS 

Assessment of TSD Measurements 

 

TSD measurements were assessed based on FWD measurements conducted at the same test 

locations.  Two analysis methods were conducted to identify if measurements from both 

devices are statistically equivalent (i.e., ANOVA and Limit of Agreement). 

FWD and TSD Comparisons Using ANOVA  

To compare FWD and TSD measured deflections, an Analysis of Variance (ANOVA) was 

conducted.  TSD and FWD deflections were compared at the same locations within a control 

section at an interval of 0.1-mile.  Before comparing the deflection measurements from FWD 

and TSD, both data sets were corrected to a reference temperature of 20°C (68°F).  

Afterwards, ANOVA was conducted using the SAS 9.4 software package.  A 95% 

confidence level was assumed to identify significant differences; therefore, a P-value less 

than 0.05 would indicate significant difference between the measurements of the two devices.  

The results from the ANOVA are presented in Table 9 with their corresponding P-values.  

Significant differences were referred as “S;” whereas, non-significant differences were 

referred as “NS” in Table 9.  Measurements were compared within each section and results 

indicated that significant differences exist between the measured deflections of TSD and 

FWD in most of the sections and at the different sensor locations.  Yet, some of the 

comparisons showed non-significant differences between FWD and TSD measurements.   

Therefore, results should be compared concurrently with the findings of the Limit of 

Agreement, which is presented in the following section. 
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Table 9 

Statistical differences between FWD and TSD using ANOVA 
.   

Note: Non-significant relationships are marked in Yellow with P-value greater than 0.05. 

Limit of Agreement Method 

The Limit of Agreement Method is suitable to identify statistical differences between two 

device measurements at the same locations as suggested in the literature.  As shown in the 

previous section, using typical statistical analysis, results showed significant differences at 

some locations while being statistically equivalent at other locations.  Therefore, the Limit of 

Agreement (LOA) method was conducted to compare FWD and TSD measurements.  

According to the LOA method, the difference between FWD and TSD measurements were 

plotted against the mean of two measurements at each location. Since no true deflection 

value for those locations are known, the mean of the measurements were used in the 

developed plots.  A consistent bias was used to summarize the agreement between these two 

device.  The linear bias was calculated by taking the average of all differences in the 

measurement for the two devices.  The upper and lower confidence limit was constructed 

using a 95% confidence level. The upper and lower confidence limits were calculated using 

equations (19) and (20): 

Control 

Section 

(Pr > |t|) 

D0 D8 D12 D18 D24 D36 D48 D60 D72 

067-08 
S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0005) 

S 

(0.0049) 

NS 

(0.1482) 

NS 

(0.3126) 

067-09 
S  

(.0059) 

NS 

(0.2473) 

NS 

(0.2944) 

S 

(.0126) 

S 

 (.0009) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

451-05 
S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0132) 

S 

(0.0005) 

326-01 
S 

(<0.0001) 

S 

(<0.0001) 

S 

(<0.0001) 

S 

(0.0063) 

NS 

(0.1186) 

NS 

(0.7469) 

S 

(0.0220) 

S 

(<.0001) 

S 

(<.0001) 

324-02 
S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0003) 

831-05 
NS 

(0.5973) 

NS 

(0.4818) 

S 

(0.0123) 

S 

(0.0011) 

S 

(0.0010) 

S 

(0.0013) 

S 

(0.0024) 

NS 

(0.0621) 

NS 

(0.5675) 

071-02 
S 

(0.0003) 

S 

(0.0022) 

S 

(0.0161) 

NS 

(0.3616) 

NS 

(0.9920) 

NS 

(0.2486) 

S 

(0.0193) 

S 

(<.0001) 

S 

(<.0001) 

069-03 
S 

(0.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0007) 

NS 

(0.1792) 

315-02 
S 

(0.0148) 

NS 

(0.5158) 

NS 

(0.7624) 

NS 

(0.7590) 

NS 

(0.7921) 

NS 

(0.7663) 

NS 

(0.7009) 

NS 

(0.5202) 

NS 

(0.3252) 

333-03 
NS 

(0.5380) 

NS 

(0.6981) 

NS 

(0.7078) 

NS 

(0.2445) 

S 

(0.0168) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0007) 

NS 

(0.7355) 

862-14 
S 

(<0.0001) 

S 

(0.0002) 

S 

(0.0028) 

NS 

(0.1576) 

NS 

(0.3733) 

NS 

(0.9903) 

NS 

(0.2982) 

S 

(0.0035) 

S 

(<.0001) 

326-01 
S 

(0.0203) 

S 

(0.0104) 

S 

(0.0052) 

S 

(0.0253) 

NS 

(0.0960) 

NS 

(0.4229) 

NS 

(0.9348) 

NS 

(0.0703) 

S 

(<.0001) 

451-08 
S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(<.0001) 

S 

(0.0006) 

S 

(0.0475) 

NS 

(0.5107) 
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95% Lower Confidence Limit: Lower CL = B − 1.96 ∗ σ               (19) 

95% Upper Confidence Limit: Upper CL = B + 1.96 ∗ σ               (20) 

where,  

B= Bias, σ = Standard Deviation. 

Plots were constructed combining all the data points at each offset distance from the applied 

load.  The results shown in Figure 25 indicate statistical differences between the 

measurements by FWD and TSD.  A significant number of data points deviated from the 

linear bias line and some data points exceeded the constructed upper and lower confidence 

limits.  Hence, it can be concluded that the deflection reported by both FWD and TSD for the 

same locations are statically different, which is reasonable given the differences in loading 

characteristics and load type between the two devices.  

(a) Comparison of FWD D0 and TSD D0 
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(b) Comparison of FWD D8 and TSD D8 

 

 

(c) Comparison of FWD D12 and TSD D12 
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(d) Comparison of FWD D18 and TSD D18 

 

(e) Comparison of FWD D24 and TSD D24 
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(f) Comparison of FWD D36 and TSD D36 

 

(g) Comparison of FWD D48 and TSD D48 
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(h) Comparison of FWD D60 and TSD D60 

 

 

(i) Comparison of FWD D72 and TSD D72 

Figure 25 

Comparison of FWD and TSD measurements using LOA method 

  

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

D
if

fe
re

n
ce

 b
et

w
ee

n

F
W

D
 D

6
0

 &
 T

S
D

 D
6

0
 (

m
il

s)

Mean of FWD D60 & TSD D60 (mils)

95% Lower

Confidence Limit

95% Upper

Confidence Limit

Linear (Bias)

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0.00 1.00 2.00 3.00 4.00 5.00

D
if

fe
re

n
ce

 b
et

w
ee

n

F
W

D
 D

7
2

 &
 T

S
D

 D
7

2
 (

m
il

s)

Mean of FWD D72 & TSD D72 (mils)

95% Lower

Confidence Limit

95% Upper

Confidence Limit

Linear (Bias)



 

52 

 

 

FWD and TSD Comparisons for Different Functional Conditions 

FWD and TSD measured deflections were compared for different road functional conditions. 

Roads were divided into four road categories (Poor, Fair, Good, Very Good) based on PCI; 

see Table 8.  Figure 26 shows that TSD and FWD measurements correlated well with more 

uniform measurements for roads in good functional conditions and more scatterings for roads 

in poor functional conditions.  Similar findings were reached in a previous RWD study in 

Louisiana [20].  

 

 

(a) 
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(b) 

 

(c) 

Figure 26 

TSD and FWD comparison plots at different road conditions 
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Effect of Pavement Roughness in TSD Field Measurements 

According to the literature and previous studies in the topic, the effect of pavement 

roughness is debatable.  Studies showed considerable effect of surface roughness in moving 

load amplification, which would influence the deflection measurements reported by TSD.  

Yet, studies also found no significant correlation between TSD measurements variation with 

International Roughness Index (IRI) [1, 26].   

In the present study, surface roughness was obtained for the Louisiana sections in terms of 

IRI and at 0.1-mile interval.  To analyze the variation in TSD measurements with IRI, the 

coefficient of variation (%) for TSD deflection measurements was calculated for each test 

section.  Since FHWA categorizes the pavement section based on IRI as Good if IRI is less 

than 95 and acceptable if IRI is less than 170, the analysis was conducted by categorizing the 

control section based on FHWA IRI specifications.  Figure 27 indicates that there is a 

noticeable difference in COV (%) for the two roughness categories.  As shown in this figure, 

the COV (%) was relatively greater for the sections with IRI<170 than the sections with 

IRI<95.  The difference is COV (%) was found to be the largest for the deflections under 

load (D0) and the lowest for the far distance deflections (D60 and D72).  Therefore, it can be 

reasonably concluded that surface roughness has a notable effect on TSD field measured 

deflections. 

 

Figure 27 

COV(%) comparison for TSD deflections for two roughness categories  
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Figure 28 presents the variation in COV (%) of loading for each section against the average 

IRI.  As shown in Figure 28, the two variables appear to be correlated with an R2 of 0.62.  It 

is also noted that the COV (%) in load variation was relatively small with a maximum COV 

of 4.5%, which can be attributed to the technology advancements in TSD in the last few 

years.  Recent upgrades have introduced new fast acting responsive dynamic servo systems, 

climate control systems, beam temperature and gyroscopic compensation, significantly 

improved horizontal velocity measurement, and advancements in laser calibration processes, 

as well as improved software.  

 

Figure 28 

Loading variation with IRI  
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Effect of TSD Speed on Measured TSD Deflections 

In a previous study, it was found that the variation of TSD measurements (i.e., COV) were 

higher at higher TSD speeds [26].  In the present study, the experimental program was 

conducted at only one speed for every section; therefore, the effect of TSD speed variation 

could not be assessed with field measurements.  Yet, the effect of speed on surface 

deflections was evaluated using 3D Move simulation.  3D-Move software was selected as it 

has been shown effective in simulating deflections due to a moving load while considering 

the vehicle speed and viscoelastic material properties.  Deflection variation with speeds was 

studied at a single location.  TSD loading condition and dynamic modulus for AC layer were 

incorporated as inputs in 3D Move to calculate the corresponding surface deflection at 

different radial offsets.  Simulated deflections were in good agreement with the field-

measured deflection at a speed of 25.1 mph.  Simulation was conducted at five different 

speeds.  From the simulated results, the increase in vehicle speed caused a decrease in the 

majority of the deflections, as shown in Table 10 and Figure 29.  For a comprehensive 

evaluation of TSD measurements variation with speed, additional field-testing is 

recommended. 
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Table 10 

3D Move simulation results with different speed 

 

Speeds 

(mph) 

D0 

(mils) 

D8 

(mils) 

D12 

(mils) 

D18 

(mils) 

D24 

(mils) 

D36 

(mils) 

D48 

(mils) 

D60 

(mils) 

D72 

(mils) 

15  10.85 9.38 8.39 6.99 5.74 3.72 2.30 1.34 0.69 

25.1*  10.63 9.13 8.15 6.77 5.55 3.59 2.23 1.28 0.65 

30  10.57 9.11 8.14 6.78 5.52 3.61 2.25 1.29 0.66 

45  10.43 9.39 8.53 7.23 6.02 3.99 2.51 1.49 0.79 

60  10.33 9.01 8.10 6.80 5.58 3.68 2.31 1.34 0.68 

* Represents the actual testing speed in this section. 

 

Figure 29 

Deflection basin obtained from 3D Move simulation at different speeds  

 

Artificial Neural Network Backcalculation Procedure 

 

A multilayered, feed-forward ANN using a back-propagation error algorithm was selected 

with a tan-sigmoid transfer function.  The network architecture consisted of three layers: an 

input layer of nine neurons; a hidden layer of five neurons; and a target layer of nine neurons.  

The input layer was fed with the TSD deflections at the nine aforementioned radial distances 

while the target layer was fed with the FWD measurements normalized to a load level of 

9,000 lbs., as shown in Figure 30.  A total of 1,467 data points were used in the model 

development phase.  The data were divided into 70% for training, 15% for validation, and 

15% for testing.  Training was halted when the validation set error stopped decreasing to 
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avoid overfitting and to increase the generalization ability of the network.  The testing data 

set had no effect on the training, so it was used to provide an independent measure of the 

network performance.   

 

 

D0 to D8 are deflections at the predefined FWD offsets   

 

Figure 30 

General layout of the Artificial Neural Network model 

 

The output of the ANN model is the corresponding corrected and normalized FWD 

deflection basin based on TSD measurements, which were referred to as TSD*.  The 

regression plots of the ANN model for the training, validation, testing, and overall sets are 

shown in Figure 31.  All data processing was performed off-line using a commercial software 

package (MATLAB R2013a, The MathWorks, Inc.).  The MATLAB code is provided in 

Appendix A for future use of this model.  Table 11 shows the root mean square error (RMSE 

%) values at each radial offset, which were calculated as follows:   
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RMSE = 100 ∗ √
∑ [Predicted value (TSD∗)−measured value (FWD)]2n

1

n
/ 

∑ measured value  n
1

n
            (19) 

 

 

 

Figure 31 

Regression plots of the TSD* vs. the FWD deflection 
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Table 11 

RMSE (%) between FWD and TSD* 

 

Offset 

Distance, mm 
0 203.2 304.8 457.2 609.6 914.4 1219.2 1524 1828.8 

RMSE, % 5.4 5.1 4.9 4.7 3.8 5.3 5.3 5.3 5.2 

 

An example of the correlation between FWD, TSD, and TSD* deflections are presented in 

Figure 32.  As shown in this figure, the ANN model was successful in converting the TSD 

deflection basin to a corresponding FWD deflection basin.   

 

Figure 32 

Deflection basins of the FWD, TSD, and TSD* at Station (0+00) Section 67-08 

 

Model Validation 

The generalization ability of the presented ANN model was tested and validated using 

measurements obtained from the testing program conducted at MnROAD.  TSD data from 16 

flexible pavement testing cells were used as inputs to predict TSD* using the proposed ANN 

model.  The resulted TSD* basin values were then compared with the measured FWD 

deflections.  As shown in Figure 33, the model showed acceptable accuracy with a 

coefficient of determination (R2) of 0.9. 
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Figure 33 

Validation of the ANN model using MnROAD data 

 

Backcalculation Analysis 

The Dynatest software ELMOD 6 was used in this study to perform the backcalculation 

analysis.  The ELMOD 6 program provides three methods for conducting the backcalculation 

of layer moduli (radius of curvature, deflection basin fit, and finite element based method).  

For the present study, the deflection basin method was used in the backcalculation analysis.  

The analysis was conducted until a RMSE of 2% or less was achieved.   

The backcalculation analyses were conducted using the FWD measurements and the TSD* 

deflection values.  The analyses were conducted for the entire experimental data set (i.e., 13 

sections tested in Louisiana and 16 tested in Minnesota).   Figure 34 shows the correlation 

between the backcalculated moduli using the FWD and the TSD*.  As shown in this figure, 

there was a good agreement between the backcalculated moduli from FWD and TSD 
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deflection measurements.  The RMSE was 12.5%, 13.2%, and 10.2% for the AC moduli, 

base moduli, and subgrade moduli, respectively. 

 

(a) HMA layer 

 

(b) Base layer 
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(c) Subgrade layer 

Figure 34 

Correlation between backcalculated layer moduli Using FWD measurements and TSD*  

 

Comparison of Critical Pavement Responses 

To further investigate the proposed approach, critical pavement responses were calculated 

using 3D Move software for the 16 road segments tested in Minnesota.  These responses 

included the horizontal tensile strain at the bottom of the AC layer (εt) and the vertical 

compressive strain on the top of the subgrade (εv).  These calculations were conducted using 

the backcalculated moduli based on FWD measurements and using the backcalculated 

moduli based on the predicted TSD* values.  A static load of 18,000 lbs. was applied on a 

single axle dual-tire assembly.  While the tire pressure was assumed 100 psi, the contact area 

was considered circular, and the distance between the two tires, center to center, was 

assumed 14.57 in.    Critical pavement responses (εt and εv) were calculated at three radial 

offsets; under the center of the tire, under the mid-distance between the tires, and under the 

tire edge in the Y-Z plane as shown in Figure 35.  In the X-Z plane, εt and εv were calculated 

under the center of the tire. 
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Figure 35 

Selected locations for pavement response analysis in the Y-Z plane 

 

From the 3D Move analysis, critical pavement responses calculated based on the FWD 

measurements, showed good correlation with responses calculated based on the predicted 

TSD* values.  Figure 36 presents these correlations for εt at the bottom of the AC layer and 

for εv on the top of the subgrade, both calculated under the center of the tire.  Table 12 

summarizes the error and the correlation between the pavement responses obtained from the 

3D Move analysis. 
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(a) 

 

 

(b) 

 

Figure 36 

Correlation between pavement responses calculated under the center of the tire based 

on FWD measurements and TSD* (a) εt (b) εv  
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Table 12 

Statistics of predicted pavement distresses 

 

 Location 

Criterion Tire Center Tire Edge Between Tires 

Response εt εv εt εv εt εv 

R2 0.92 0.96 0.85 0.96 0.88 0.96 

RMSE % 13.8 5.6 18.9 5.3 19.3 5.4 

 

Comparison of Number of Cycles for Fatigue Failure  

The calculated tensile strain at the bottom of the HMA layer (εt) and the backcalculated 

HMA moduli (EHMA) were incorporated in the bottom-up fatigue model utilized in Pavement 

ME [43]: 

  Nf=Kf1C.CHβf1 (
1

εt
)

kf2βf2

(
1

EHMA
)

kf3βf3

 (21) 

                                                    

 C = 10M                                                                                         (22) 

 

 M=4.84 (
Vb

VaVb
-0.69)  (23) 

 

 

hac

H

e

C

49.302.111

003602.0
000398.0

1




                                                       (24)      

 

where, 

Nf = Number of cycles for fatigue failure; 

Kf1, Kf2, Kf3 = Global calibration coefficients (Kf1= 0.007566, Kf2=3.9492, Kf3=1.281); 

Βf1, βf2, βf3 = Local calibration factors (set to 1.0); 

Vb= Effective binder content by volume (assumed to be 10%); 

Va = Air voids after construction (assumed to be 7%); and 
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hac = thickness of HMA layers. 

Equation (21) was utilized to calculate the number of cycles for fatigue failure considering 

the results obtained from FWD measurements and the results from TSD* values.  The 

comparison showed an RMSE of 16.0% and an R2 of 0.99.  A comparison between Nf based 

on FWD measurements and TSD* values is shown in Figure 37. 

 

Figure 37 

Comparison between Nf calculated based on FWD and TSD* deflection measurements 

 

Structural Health Index Comparison 

A recent study conducted by the authors introduced the Structural Health Index (SHI) 

calculated based on pavement backcalculated layer moduli [44].  The SHI was defined based 

on the estimated loss in SN; it was scaled logistically from zero to 100.  A sigmodal function 

was selected to represent the correlation between the loss in SN (%) and the SHI:   

SHI=  
100

1+e0.15 (SN loss %-30)
                                                                        (25) 

 

Fitting parameters in the sigmodal model were selected such that pavement sections with loss 

in SN greater than 50% would have an SHI value close to zero, and sections with minimal or 

no loss in SN will have an SHI value near 100.  The SHI evaluation and validation 

demonstrated that it responded realistically to sections in poor and in good structural 

conditions.  More details about the development and validation of the SHI have been 

presented elsewhere [44].  In the present study, the SHI was calculated for the MnROAD 16 

Road segments based on both FWD measurements and the TSD* values; the average RMSE 

was found to be 4.6%.  Figure 38 presents a comparison between the SHI values for 
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segments in the main line.  As shown in Figure 36, both approaches agreed reasonably well 

in predicting the SHI. 

 

Figure 38 

SHI comparison for Main Line segments   

 

Structural Capacity Prediction Model Development 

 

The SN prediction model development along with its validation procedure is discussed in this 

section. Model development was followed by several statistical analyses to ensure selection 

of appropriate independent variables and to evaluate their effectiveness in the model.  After 

development, model validation was conducted based on an independent data set. 

Pairwise Correlation 

Pairwise correlation was conducted among the independent variables to avoid using collinear 

or multi-collinear independent variables in the model, which may increase the variance of the 

estimated regression coefficients.  All the possible independent variables that may have an 

influence on the prediction of SN were subjected to pairwise correlation analysis.  The 

correlation coefficient is an indication of the level of collinearity among the independent 

variables [45, 46].  The coefficient is called Pearson’s correlation coefficient, which ranges 

from -1 to +1.  A large absolute value indicates high collinearity between those variables.  

The positive or negative sign represents the positive or negative relationship between the 

variables. The results of the pairwise correlation analysis is presented in Table 13.   A 

Pearson’s coefficient that is greater than 0.6 was considered highly collinear in this analysis.   
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As shown in this table, most of the deflection measurements were correlated, which was 

expected as surface deflections tend to increase or to decrease concurrently with the 

exception of far distance deflections (i.e., D60 and D72), which may indicate weakness in the 

underlying layers and the subgrade.  It is worth noting that the final model did not include 

D60 or D72 because the use of these variables would limit the application of the model since 

some TSD surveys do not measure far distance deflections from the load. Moreover, the 

prediction accuracy was satisfactory with the use of D48, which was deemed more reasonable 

than the use of D60 or D72, even though they showed a better correlation with SNFWD. Based 

on the results of the analysis, collinear variables were not used.  Different combinations of 

non-collinear variables were considered in the regression analysis. 

Table 13 

Pearson correlation coefficients 

 

 SNFWD D0 D8 D12 D18 D24 D36 D48 D60 D72 Tth ADT 

SNFWD 1.00 -0.53 -0.33 -0.18 0.02 0.20 0.36 0.40 0.42 0.46 0.80 0.76 

D0 -0.53 1.00 0.95 0.88 0.74 0.58 0.38 0.29 0.21 0.10 -0.24 -0.42 

D8 -0.33 0.95 1.00 0.98 0. 90 0.78 0.61 0.53 0.44 0.32 -0.11 -0.24 

D12 -0.18 0.88 0.98 1.00 0.97 0.89 0.75 0.67 0.58 0.46 0.01 -0.10 

D18 0.02 0.74 0.90 0.97 1.00 0.97 0.89 0.83 0.75 0.64 0.14 0.08 

D24 0.20 0.58 0.78 0.89 0.97 1.00 0.97 0.93 0.87 0.77 0.25 0.24 

D36 0.36 0.38 0.61 0.75 0.89 0.97 1.00 0.99 0.96 0.89 0.32 0.39 

D48 0.40 0.29 0.53 0.67 0.83 0.93 0.99 1.00 0.99 0.93 0.34 0.43 

D60 0.42 0.21 0.44 0.58 0.75 0.87 0.96 0.99 1.00 0.95 0.33 0.45 

D72 0.46 0.10 0.32 0.46 0.64 0.77 0.89 0.93 0.95 1.00 0.35 0.50 

Tth 0.80 -0.24 -0.11 0.01 0.14 0.25 0.32 0.34 0.33 0.35 1.00 0.52 

ADT 0.76 -0.42 -0.24 -0.10 0.08 0.24 0.39 0.43 0.45 0.50 0.52 1.00 

Note: Highly collinear relationships are marked as bold and dark colored.   
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Regression Analysis and Variance Inflation factor (VIF) 

To assess the significance of the independent variables (D0, D8, D12, D18, D24, D36, D48, D60, D72, 

Tth, and ADT) on the prediction of the dependent variable (SN), regression analysis was 

conducted.  Independent variables with no significance on the dependent variable were 

removed from the model to avoid overfitting of the dependent variable.  When overfitting 

occurs, the regression model becomes tailored to fit the random noise in the data set rather 

than reflecting the actual trends in the measurements.  A regression analysis was conducted 

on several combinations of independent variables using SAS 9.4 software.  With 95% 

confidence level, a P-value less than 0.05 would represent a significant effect.  The 

combination of independent variables that had significant effect on the dependent variable is 

presented in Table 14.   

Table 14 

Results of regression analysis and multi-collinearity test 

 

Variable Pr > |t| Interpretation 
Variance Inflation    

(VIF) 

Intercept <.0001 Significant 0 

D0 <.0001 Significant 1.86 

D48 <.0001 Significant 1.94 

Tth <.0001 Significant 2.22 

ADT <.0001 Significant 1.43 

 

To further filter out the multi-collinear independent variables, a second statistical factor 

known as the ‘Variance Inflation Factor (VIF)’ was used.  Even after pairwise correlation 

analysis between two variables, there is a possibility of multi-collinearity resulting from the 

combination of one variable with more than one variable.  To address this issue, the most 

used statistical factor is the variance inflation factor.  Because of multi-collinearity, an 

inflation can occur in the standard error, which is measured by VIF.  A maximum VIF value 

of 5 to 10 is recommended in the literature [47]. In this study, the VIF values for the selected 

independent variables were within the acceptable range (Table 14), which indicates that no 

multi-collinear independent variables have been used in the model.   
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Non-Linear Regression Model Development 

A non-linear regression model was developed using SAS 9.4 to predict the SN of in-service 

pavement.  The structural number, which is referred to as SNTSD, was predicted based on the 

statistically significant TSD deflections (D0 and D48), ADT, and total pavement thickness 

(Tth).  About 70% of the data points from Louisiana and 30% of the data points from Idaho 

were used in the development phase to fit the model; the remaining data points from 

Louisiana and Idaho were used to validate the fitted model.  The model demonstrated an 

acceptable accuracy with a Coefficient of determination (R2) of 0.92 in the development 

phase and with a RMSE of 0.88 as shown in Figure 39. The proposed model is illustrated in 

equation (26): 

𝑆𝑁𝑇𝑆𝐷 = 18.67 ∗ 𝑒(−0.013∗𝐷0) + 8.65 ∗ (𝐷48)0.11 + 0.18 ∗ (𝑇𝑡ℎ) + 0.31 ∗ 𝐿𝑛 (𝐴𝐷𝑇) − 24.28 

                      (26) 

where, 

SNTSD = SN based on TSD measurements; 

D0 = Deflection of pavement under loaded tire or Center Deflection (mils); 

D48 = Deflection at 48 in. distance from Center Deflection (mils); 

Tth = Total layer thickness of pavement (in.); and 

ADT = Average Daily Traffic (veh/day). 

 

Figure 39 

Model fitting in the development phase 
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Model Validation 

An independent TSD and FWD data set was used to validate the model.  The use of Idaho 

data points in the model validation demonstrated the model’s compatibility with different 

climatic regions and construction practices.  The model performed satisfactorily in the 

validation phase with an R2 of 0.88 and with a RMSE of 1.06, as shown in Figure 40.  A 

good agreement was also found when the average SNTSD for each road section was compared 

with the average SNFWD; see Figure 41.   

 

 

Figure 40 

Model fitting in the validation phase 
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Figure 41 

Average SN comparison between TSD and FWD for each section 

 

Table 15 shows the calculated RMSE for each section.  It should be noted that the concept of 

SN is not used for composite pavements in the AASHTO 93 pavement design method; 

therefore, the tested composite sections (Site ID 3 and 13) were not used in the development 

and the validation of the model.  As shown in this table, RMSE obtained from the model’s 

output was satisfactory within each section.  

Table 15 

Section wide comparison between predicted and measured SN 

 

Control Section Route Log-mile SN RMSE 

067-08 LA 34-1 5.55 - 6.95 0.581 

067-09 LA 34-2 3.35 – 4.75 0.168 

326-01 LA 594-2 5.05 - 6.45 0.840 

324-02 LA 616 3.55 - 4.95 0.607 

831-05 LA 821 2.05 - 3.25 0.967 

071-02 US 425 1.00 - 2.50 1.029 

069-03 LA 33 3.05 - 4.45 1.189 

315-02 LA 143 6.00 - 7.50 0.708 

333-03 LA 582 3.00 - 4.50 0.827 

862-14 LA 589 4.00 - 5.50 1.743 

326-01 LA 594-1 2.00 - 3.50 1.268 

IDAHO ID-SH22 Seg 05 0.793 

R² = 0.9291
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The residual plots are shown in Figure 42 with each independent variable used in the model. 

The residuals were calculated as the difference between the measured and predicted SN. The 

plots were drawn for both data sets used in the development and validation phases.  As 

illustrated, the residuals were reasonably scattered and no clear trend is visible in the plots; 

therefore, the model’s estimation can be assumed random with the model inputs. 

 

(a) 

 

(b) 
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(c) 

 
(d) 

Figure 42 

Residual Plots for the developed model 

 

Longitudinal Profile Comparison 
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variability was noted in the Idaho section, possibly due to higher roughness and cracking at 

the surface as suggested by the lower SN predicted for this section.  Past studies concluded 

that both FWD and RWD test methods resulted in a greater average deflection and scattering 

in sites in poor conditions [48]. 

 

Figure 43 

Longitudinal comparison of SNTSD and SNFWD for Louisiana  

 

 

Figure 44 

Longitudinal comparison of SNTSD and SNFWD for Idaho 
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Sensitivity Analysis 

A sensitivity analysis was conducted for the proposed model’s output as a function of the 

model’s inputs.  Sensitivity of the dependent variable (SNTSD) was tested for different input 

parameters varied within their maximum and minimum values.  The average of each of the 

input parameters was used as the baseline in the sensitivity analysis.  From the results of the 

sensitivity analysis, it was found that the predicted SNTSD was most sensitive to D0 among all 

other parameters and the least sensitive to ADT.  The change in the predicted SNTSD with the 

varying input parameters is shown in Figure 45. 

 

 

Figure 45 

Sensitivity analysis for the SNTSD model 

 

Correlation of Structural Capacity with PMS Functional Indices 

 

An Analysis of Variance was conducted with the measurements from the Louisiana control 

sections to evaluate the degree of influence of functional indices on in-service structural 

capacity at a confidence level of 95%.  Functional indices considered in the comparison with 

SNTSD were alligator cracking (ALCR), random cracking (RNDM), patching (PTCH), rutting 

index (RUT_IND), roughness (RUFF), and Pavement Condition Index (PCI).  Road sections 

were divided into five categories based on asphalt layer(s) thickness and type of base layer 

(treated and untreated) as shown in Table 16 [38]. Thick sections were those that had an AC 
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thin sections were those with AC layers less than 3 in. It is noted that there was no thin 

untreated section tested using TSD in the present study.  

Table 16 

Classification of the control sections 

 

Asphalt layer thickness Base layer type 

> 6 in.–  Thick                   If Stabilized – Treated 

3 in. < thickness < 6 in. – Medium                If not stabilized- Untreated 

< 3 in. – Thin  

 

The correlation between each of the aforementioned functional indices and structural indices 

(SNTSD) was evaluated using P-value obtained from the statistical analysis.  Since 95% 

confidence limit was used, a P-value less than 0.05 would represent significant correlation 

between the condition indices and vice-versa.  As shown by the results in Table 17, non-

significant statistical relation was found between functional indices and SN in four of the five 

road categories.  Therefore, one may assume that considering a structurally based index in 

PMS would allow for the identification of road segments that are in need of structural repair 

and that are not currently identified by the functional indices. 

Table 17 

Significance of functional indices on SN   
 

 

Road 

Category 

Functional Indices (Pr > |t|) 

ALCR RNDM PTCH RUT_IND RUFF PCI 

Thick 

(Treated) 
0.7457 0.0002 0.4741 0.5430 0.7276 0.2646 

Thick 

(Untreated) 
0.0010 0.2563 0.9565 0.3777 0.7837 0.4982 

Medium 

(Treated) 
0.2943 0.0729 0.0014 0.1078 0.8731 0.1786 

Medium 

(Untreated) 
0.4792 0.6867 NA 0.7065 0.7834 0.8272 

Thin 

(Treated) 
0.2205 0.6867 NA NA 0.1645 0.2347 

Note: Non-significant relationships are marked in yellow.  NA=Not Available. 
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Performance Evaluation of the Developed Model 

 

The model’s precision and adequacy were evaluated by comparing the percentage loss in 

SNTSDeff and SNFWDeff.  The proposed model’s ability in identifying structurally deficient 

sections was also evaluated as compared to structural deterioration identified from extracted 

cores and from FWD.  Since cores were only available for the Louisiana data set, this 

analysis was exclusively conducted for the Louisiana road sections. 

Calculation of Loss in In-Service SN  

To determine the percentage loss in in-service SN, the AASHTO design SN during 

construction was calculated using equation (27): 

SN = a1 ∗ D1 + a2 ∗ m2 ∗ D2 + a3 ∗ m3 ∗ D3                      (27) 

 

where,  

a1 = asphalt layer coefficient, a2 = base layer coefficient, a3 = subbase layer coefficient; 

D1 = asphalt layer thickness (in.), D2 = base layer thickness (in.), and D3 = subbase layer 

thickness (in.); and 

m2 = base layer drainage coefficient and m3 = subbase layer drainage coefficient. 

 

The values of the layer coefficients were selected in accordance with LaDOTD design 

standards: a1 = 0.42; a2 = 0.28 for treated (cement stabilized) base and 0.07 for untreated 

base; a3 = 0.11 for cement treated subbase and 0.04 for untreated subbase. The values of m1 

and m2 were considered 1.0 in all cases. 

After calculating the design SN of the sections during construction, SNTSD was corrected 

according to the findings of a study conducted by Wu and Gaspard to account for design and 

construction practices in the State as follows [49, 50]:   

SNeff = 2.58 ln (SNFWD) -0.77                  (28) 

 

Since the SNTSD model was developed and validated based on SN calculated from  

FWD deflections, the predicted SNTSD of the road sections were also adjusted through the 

same model using equation (29): 
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SN TSDeff =  2.58 ln (SNTSD)  − 0.77                 (29) 

 

The loss in SNTSDeff was then calculated at every 0.1-mile interval using equation (30): 

  

Loss in SN(%) =  
Design SN−SNTSDeff

Design SN
∗ 100                   (30) 

 

The percentage loss in SNTSDeff was compared with SNFWDeff at each extracted core location.  

It is noted that the only control sections considered in this comparison were the ones, which 

had the cores extracted at almost the same location to ensure precise evaluation of the SN 

model.  The average SN over 1.5-mile was also calculated and compared.  As shown in 

Figures 46 and 47, the estimated percentage loss from the model was in good agreement with 

the percentage loss predicted from SNFWD. 

 

 

Figure 46 

Comparison of loss in in-service SN at core location 
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Figure 47 

Comparison of loss in average in-service SN 

 

Analysis of the Extracted Cores 

In this section, the model’s efficiency in identifying structural deficient sections was 

evaluated.  Past studies by the authors used 50% loss of AASHTO SN as the threshold to 

identify structurally deficient locations [38].  In the present study, model’s evaluation in 

identifying structurally deficient locations was also based on a 50% loss in structural 

capacity.  The extracted cores were compared with the estimated loss in SN (%) along with 

the functional indices at the same locations.  A detailed evaluation of four typical road 

section is presented in the following sections. 

Control Section 831-05.  The control section is located in Route LA 821 with a 

length of 8.18-mile located at Lincoln parish in Louisiana District 05.  The total layer 

thickness of this control section from extracted core was found to be 13 in. consisting of 

three AC layers of 5 in. and a granular base layer of 8 in.  After assessment of the extracted 

core, deterioration (stripping) was detected in the third asphalt layer, which was 2 in. thick as 

shown in Figure 48.  The percentage loss in SNTSDeff at the core location and the average SN 

(%) loss over 1.5-mile was found 55.3% and 61.4%, respectively.  The average Pavement 

Condition Index (PCI), a combined functional index, for this control section was 92.7 over 

1.5 mile and the PCI at the core location was 90.3 indicating excellent functional conditions.  

Given the average SN loss (%) is greater than 50%, this control section was identified as 

structurally deficient even with a sound PCI rating. 
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Figure 48 

 Control Section 831-05 

 

Control Section 315-02.  The control section is located in Route LA 143 with a 

length of 9.26-mile located at Ouachita parish in Louisiana District 05.  The total layer 

thickness of the control section from extracted core was 23 in. consisting of two AC layers of 

9.5 in. on top of a cement stabilized sand clay gravel base layer of 13.5 in.  After assessment 

of the extracted core, debonding was detected between the bottom AC layer and the 

underlying base layer, as shown in Figure 49.  It is to be noted that poor drainage conditions 

were also detected in this road section.  The average percentage loss in SNTSDeff over 1.5-mile 

and at the core location was 33.4% and 35.1%, respectively.  The average PCI for this control 

section was found to be 92.7 over 1.5 mile and 96.7 at the core location indicating excellent 

function conditions.  Though the predicted structural capacity loss was less than 50%, the 

model predicted a loss in SN possibly related to the detected debonding between the AC and 

the base layers. 

 

  

Figure 49 

Control Section 315-02 
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Control Section 333-03.  The control section is located in Route LA 582 with a 

length of 6.83-mile located at E Carroll parish in Louisiana District 05.  The total layer 

thickness of this control section from the extracted core was 18 in. consisting of five AC 

layers of 9.5 in. and a granular base layer of 8.5 in.  After assessment of the extracted core, 

deterioration (stripping) was found in the bottom AC layer that was 1.5 in. thick, as shown in 

Figure 50.  The average percentage loss in SNTSD over 1.5-mile was calculated as 36.6% and 

17.8% at the core location.  Upon further assessment of the control section, it was found that 

a new overlay was applied since the core extraction and functional survey explaining the 

adequate structural capacity of the control section.  Hence, the model’s estimated loss in SN 

can reasonably be justified. The average PCI in 2015 for this control section was found to be 

67.9 over 1.5 mile and the PCI at the core location was 73.6, which was prior to the new 

overlay. 

 

  

Figure 50 

Control Section 333-03 

 

Summary of the Model’s Structural Efficiency Prediction 

 

As discussed in the previous section, the proposed model can reasonably estimate the average 

loss in in-service SN (%) as compared with the extracted cores. While functionally sound, a 

number of control sections were identified as structurally deficient as summarized in Table 

18. 
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Table 18 

Model’s performance evaluation based on extracted cores 

Note: N/A = not applicable 

Control 

Section 

Avg.  

PCI 

Type of 

deterioration 

in Cores 

Note 
Avg.  loss in 

SNTSDeff (%) 

Remarks on Model’s 

efficiency 

831-05 92.7 Stripping N/A 61.4 
Identified structurally 

deficient section 

      

315-02 92.7 Separation Cement 

stabilized base 

layer 

33.4 Predicted loss in 

structural capacity due 

to debonding 

      

333-03 67.9 Stripping New overlay 

applied since 

core extraction 

36.6 Reasonable estimation 

as new overlay was 

applied 
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CONCLUSIONS 

The research objective of this study was to assess the feasibility of using TSD measurements 

at the network-level for pavement conditions structural evaluation in Louisiana and in 

backcalculation analysis.  To achieve the objectives of the study, TSD and FWD 

measurements were collected in District 05 of Louisiana and data were available from 

experimental programs conducted at the MnROAD research test facility and in Idaho.  TSD 

measurements were compared with FWD deflection measurements to evaluate the level of 

agreement and difference between the two devices.  Based on this evaluation, a SN predictive 

model was developed and validated to assess the structural conditions of in-service 

pavements.  The model was then used to identify structurally sound and structurally deficient 

in-service pavements.  Furthermore, a methodology was developed and was validated to 

backcalculate the layer moduli from TSD measurements.  Based on the results of the 

analysis, the following conclusions may be drawn.  

TSD Measurements Evaluation and Comparison with FWD 

 

 Based on ANOVA and Limit of Agreement plots, it can be concluded that the 

deflection reported by both FWD and TSD for the same locations are statically 

different, which is reasonable given the differences in loading characteristics and load 

type between the two devices. 

 It is concluded that surface roughness had an effect on TSD loading variation and 

subsequent field measured deflections. From simulation results conducted using 3D 

Move, it is also concluded that the increase in vehicle speed caused a decrease in the 

deflections. 

 

Development of a Methodology to Predict Layer Moduli from TSD Data 

 

 The development of a methodology to incorporate TSD measurements in the 

backcalculation analysis for predicting pavement layer moduli was successful.  The 

proposed ANN model showed acceptable accuracy in predicting the corresponding 

FWD deflections (TSD*) from TSD deflection measurements with a coefficient of 

determination of 0.90.  
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 The backcalculated moduli from FWD and TSD* deflection measurements were in 

good agreement.  The RMSE was 12.5%, 13.2%, and 10.2% for the AC moduli, base 

moduli, and subgrade moduli, respectively. 

 The ANN model was successfully validated by comparing the critical pavement 

responses, number of cycles for fatigue failure, and Structural Health Index (SHI) 

calculated from FWD and TSD* measurements.  

 

Development of a TSD-Based SN Prediction Model 

 

 The present study successfully developed a model to predict in-service SN based on 

TSD deflections at 0.01-mile interval of a road section.  The non-linear regression 

model showed an acceptable prediction accuracy with a coefficient of determination 

of 0.92 and RMSE of 0.88 in the development phase and a coefficient of 

determination of 0.88 and a RMSE of 1.06 in the validation phase.  The model was 

successfully developed and validated with SN calculated based on TSD and FWD 

deflection data obtained from two contrasting data sets from Louisiana and Idaho. 

 The importance of considering structural indices along with functional indices was 

demonstrated based on ANOVA analysis and extracted cores.    

 The estimated percentage loss in structural capacity from the model was in good 

agreement with the percentage loss calculated from FWD. 

 Core samples showed that sections that were predicted to be structurally deficient 

suffered from asphalt stripping and debonding problems.  Yet, some of these sections 

were in very good conditions according to their functional conditions.    
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RECOMMENDATIONS 

Based on the results and findings of this project, the study recommends the following course 

of actions for future studies: 

 Additional TSD and FWD comparison testing is recommended to be conducted 

throughout the state of Louisiana to validate and fine-tune the models and procedures 

presented in this report.  

 Research should develop a methodology to incorporate TSD measurements in PMS 

decision-making processes and in pavement design. 

 With the availability of additional measurements, the effects of surface roughness and 

vehicle speed should be further investigated. 

 Cost-effectiveness of TSD measurements should be investigated in future studies. 
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ADT   Average Daily Traffic 

AASHTO  American Association of State Highway and Transportation  

                                    Officials 

AC   Asphalt Concrete  

ALCR   Alligator Cracking Index 

ANOVA  Analysis of Variance 

ANN   Artificial Neural Network 

ARAN   Automatic Road Analyzer 

ARRB   Australian Road Research Board 

COV   Co-efficient of Variation 

D0   Maximum Surface Deflection 

DOTD   Department of Transportation and Development 

FHWA   Federal Highway Administration 

ft.    foot (feet) 

FWD   Falling Weight Deflectometer 

GPR   Ground Penetrating Radar 

HMA   Hot Mix Asphalt 

IRI   International Roughness Index 

in.    inch(es) 

ksi   Kilo pounds per square in. 

lbs.   pound(s) 

LOA   Limit of Agreement 

LTRC   Louisiana Transportation Research Center 

LVR   Low Volume Road 

NHS   National Highway of Significance 

PCC   Portland Cement Concrete 

PCI      Pavement Condition Index 

PMS   Pavement Management System 

psi  Pounds per square in. 

PTCH              Patching Index 

RC   Rehabilitation/Reconstruction 

RHS   Rural Highway of Significance 

RI   Rolling Wheel Deflectometer Index 

RM   Restorative Maintenance 
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RMSE   Root Mean Square Error 

RNDM  Random Cracking Index 

RUFF   Roughness Index 

RUT   Rutting Index 

RWD                           Rolling Wheel Deflectometer 

SCI   Structural Condition Index 

SIP   Structural Index of Pavement 

SHI   Structural Health Index 

SHRP   Strategic Highway Research Program 

SN   Structural Number   

SHS              State Highway of Significance 

TSD   Traffic Speed Deflectometer  

TSDD   Traffic Speed Deflection Devices 

VIF   Variance Inflation Factor 
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APPENDIX A 

MATLAB Code for the proposed ANN model: 

 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created 16-Oct-2017 10:18:54 

% 

% This script assumes these variables are defined: 

% 

%   TSD - input data. 

%   FWD - target data. 

  

x = TSD; 

t = FWD; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = {'removeconstantrows','mapminmax'}; 
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net.output.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean Squared Error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

    'plotregression', 'plotfit'}; 

  

% Train the Network 

[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 
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valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 

  

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

    % Generate MATLAB function for neural network for application 

    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

    % tools, or simply to examine the calculations your trained neural 

    % network performs. 

    genFunction(net,'myNeuralNetworkFunction'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a matrix-only MATLAB function for neural network code 
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    % generation with MATLAB Coder tools. 

    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a Simulink diagram for simulation or deployment with. 

    % Simulink Coder tools. 

    gensim(net); 

end 
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