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FOREWORD 

This report documents a study conducted to review the status of falling weight deflectometer 
(FWD) equipment, data collection, analysis, and interpretation, including dynamic 
backcalculation, and to develop enhanced analysis procedures and recommendations for the 
effective use of FWD technology as it relates to the flexible pavement models and procedures 
incorporated within the Mechanistic-Empirical Pavement Design Guide developed by the 
National Cooperative Highway Research Program and subsequently adopted by the American 
Association of State Highway and Transportation Officials. In this context, dynamic 
backcalculation refers to the modeling of the dynamic or impact nature of the FWD loading and 
resulting pavement response of in-service flexible pavements for pavement structural analysis 
and rehabilitation design. The research effort resulted in development analysis methodologies, 
software tools implementing those analysis methodologies and a potential list of 
recommendations for FWD equipment enhancements, all of which are detailed in this report. 
This report is intended for use by pavement engineers involved in structural evaluation and 
rehabilitation design of flexible pavements and researchers involved in development of new 
procedures for the modeling and analysis of in-service flexible pavements. 
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CHAPTER 1. INTRODUCTION 

This report describes the efforts undertaken to develop methodologies for the determination of 
the damaged master curve and unbound material properties of in-service pavements from 
enhanced falling weight deflectometer (FWD) data. 

BACKGROUND 

Pavement characterization is important for determining cost-effective treatment type and 
allocation of funds and resources to maintain and rehabilitate the deteriorating highway 
infrastructure. The key element in the success of any pavement management system responsible 
for making preventive and corrective decisions is a proper assessment of the present status and 
an accurate prediction of the future performance of pavement structure. Characterizing pavement 
properties plays a critical role in both activities. 

Nondestructive testing (NDT) is a well-recognized method for evaluating the structural capacity 
and integrity of highway and airfield pavements. The use of an FWD is one of the most 
frequently employed NDT methods for evaluating the structural integrity of an existing 
pavement. As its full name implies, the FWD is equipped with a falling mass mechanism capable 
of inducing an impact load on the pavement surface. Because of the nature of the impact load 
generated by a falling mass, the load typically has a short duration (usually 20 to 40 ms) and 
gives rise to a stress wave that propagates through the pavement structure. The resulting time-
dependent response of the pavement structure, or more specifically, the vertical deflection at the 
pavement surface resulting from the stress wave, is measured at various radial distances from the 
load and is recorded for the structural analysis of the pavement system. FWD testing enables the 
use of a mechanistic approach for pavement design and rehabilitation by allowing for 
backcalculating in situ material properties from the measured field surface deflections through 
appropriate analysis techniques. In deflection methods, pavement deflections represent an overall 
system response of the pavement layers and the roadbed soil to an applied load. Pavement 
surface deflections have traditionally been used as an indicator of its structural capacity.  

The need to accurately characterize the structural condition of existing pavements has increased 
with the recent development, release, and ongoing implementation of the Mechanistic-Empirical 
Pavement Design Guide (MEPDG).(1) A number of different material inputs are required in the 
procedure, and it is important that these be adequately characterized and defined. The analysis of 
deflection data collected by the FWD provides a fast and reliable way of characterizing the 
properties of the paving layers, as well as assessing the load-carrying capacity of existing 
pavement structures. With the release of the new MEPDG, there is a strong need for identifying 
and evaluating the way that FWD testing is operated and integrated in the new design procedure.(1) 

PROJECT SCOPE 

The MEPDG theoretical and empirical models predict response of flexible and rigid 
pavements.(1) The dynamic modulus (|E*|) master curve of asphalt concrete (AC) layer is a 
fundamental material property that is required as an input in MEPDG for a flexible pavement 
analysis. Knowledge of the |E*| master curve of an in-service pavement using FWD data can lead 
to more accurate estimation of its remaining life.  
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The overall objective of the research was to theoretically determine a static and dynamic 
viscoelastic flexible pavement response model and relevant FWD data inputs to be used in a 
backcalculation scheme for determining damaged E(t) master curve and unbound material 
properties of in-service pavements.  

PROJECT OBJECTIVES 

The objectives of the project are as follows:  

• Review the status of FWD equipment, data collection, analysis, and interpretation, 
including dynamic backcalculation, as they relate to the models and procedures 
incorporated in the MEPDG.(1) 

• Conduct theoretical analyses to identify suitable data requirements from FWD in light of 
current FWD technology and feasible equipment enhancements.  

• Develop methodologies for the determination of the damaged master curve and unbound 
material properties of in-service pavements from enhanced FWD data. 

• Develop recommendations for FWD equipment enhancements. 

REPORT STRUCTURE 

The remaining chapters of this report are organized as follows: 

• Chapter 2 reviews the status of FWD equipment, data collection, analysis, and 
interpretation, including dynamic backcalculation, as they relate to the models and 
procedures incorporated in MEPDG.(1) 

• Chapter 3 presents the detailed analysis of the Long-Term Pavement Performance (LTPP) 
Program database conducted to assess when dynamic effects and nonlinearity are prevalent.  

• Chapter 4 outlines the development of a quasi-static viscoelastic flexible pavement 
response model (LAVA) and a backcalculation scheme (BACKLAVA). 

• Chapter 5 describes a newly developed dynamic time-domain viscoelastic flexible 
pavement response model (ViscoWave-II) and a backcalculation algorithm 
(DYNABACK-VE). It presents the verification results for the developed algorithm. 
Verification was accomplished by comparing the simulation results from the developed 
algorithm to some of the other existing solutions. Then the iteration algorithms were 
tested using theoretically generated deflection time histories and field measured data.  

• Chapter 6 provides recommendations for FWD equipment enhancements. 

• Chapter 7 summarizes the work performed under this project, outlines the main research 
products developed, and presents the main findings of the study. 
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• Appendix A presents the results of the comparison between the LAVAN and the nonlinear 
finite element method (FEM) software MICHPAVE. The algorithm was compared for the 
cases when the unbound layer was considered as a single layer for nonlinearity calculations 
(Algorithm1) and when the layer was divided into two sections (Algorithm2).  

• Appendix B describes the detailed analysis on the effect of using multiple pulses on the 
backcalculation results. 

• Appendix C describes in detail the theoretical development of the new algorithm for 
ViscoWave-II. The theoretical development for the proposed methodology follows 
similar steps to those used for the development of LAMDA, the spectral element method, 
which used the discrete transforms for solving the wave equations.(2) However, the 
proposed solution uses the continuous integral transforms (namely Laplace and Hankel 
transforms) that are more appropriate for transient, nonperiodic signals.(3) 

• Appendix D presents the FWD site/field data collected as part of this project and used for 
backcalculation.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter presents a comprehensive review of the status of FWD equipment, market-
ready and prototype models, data collection, analysis, and interpretation as they relate to 
the models and procedures incorporated in the MEPDG.(1) 

REVIEW OF STATUS OF FWD EQUIPMENT 

The FWD is an impulse load deflection device. According to ASTM D-4694-96, the 
basic components of an FWD (figure 1) are the following:(4) 

• Load cell: The FWD releases known variable weights (from 3,000 to more than 
50,000 lbf ) from a given height onto a load plate resting on the pavement 
structure, producing a load on the pavement that is similar in magnitude and 
duration to that of a moving wheel load. The system should display and store load 
measurement with a 45-lbf resolution. 

• Linear variable displacement transducer (LVDT), geophones, and accelerometers: 
A series of sensors are located at fixed distances from the load plate, so that a 
deflection can be measured. The system should display and store deflection 
measurement with ±0.039 mil or less of resolution. The sensor spacing depends 
on the pavement surface being tested and the number of sensors on the FWD. For 
example, for basin testing, the LTPP FWD manual requires that the sensors 
should be placed at -12, 0, 8, 12, 18, 24, 36, 48, and 60 inches for a nine-sensor 
FWD and 0, 8, 12, 18, 24, 36, and 60 inches for a seven-sensor FWD.(5) 

• Infrared temperature gauges: pavement temperature, air temperature, surface 
temperature. 

• Electronic distance measurement. 

• Control/data acquisition unit. 

Most FWDs are either trailer-towed or vehicle-mounted systems.(6) Developed in the 
1970s, the FWD emerged in the 1980s as the worldwide standard for pavement deflection 
testing. The equipment of four FWD manufacturers―Grontmij Pavement Consultants, 
Dynatest®, Foundation Mechanics, Inc. (JILS™), and KUAB―are described in the 
following sections. The Federal Highway Administration (FHWA) has established four 
regional FWD calibration centers across the United States to provide annual calibrations 
of the FWD equipment to ensure the equipment is operating within allowable tolerances. 



 

6 

 
Figure 1. Diagram. FWD testing schematic. 

FWD Manufacturers and Equipment 

Grontmij Pavement Consultants 
The Grontmij Pavement Consultants Group (manufacturers of the Carlo Bro FWD) offers 
the following three types of FWDs with a modular equipment design ready for upgrade 
(figure 2): 

• The trailer-mounted FWD is mounted to the tow vehicle by a double-axle trailer, 
and it is supplied with a personal computer (PC), PRIMAX Data Collection FWD 
software (RoSy DESIGN), time-history module, transport lock, distance-
measuring instrument (DMI) integrated in the software, three temperature sensors, 
4-split load plate (12 or 18 inches), and 10 to 18 geophones. The system generates 
forces up to 78,600 lbf. 

• The vehicle-mounted FWD is identical to the trailer-mounted FWD except that it 
is integrated into a van and has up to 18 geophones. 

• The portable LWD is delivered with 4- and 12-inch-diameter loading plates, a 22-lb 
weight, integrated load cell and electronic box, and a center-mounted geophone. 
Extension with a beam for two extra geophones is possible. A portable PC or a 
personal digital assistant with a data collection program installed is required. 

Falling 
Mass

Rubber BufferBase Plate

Load Cell
Deflection 

Sensors
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Source: Grontmij A/S 

Figure 2. Photo. Grontmij Pavement Consultants FWDs. 

Dynatest® 
The Dynatest® FWD is a trailer-mounted system with an operations control computer 
located in the tow vehicle. The computer controls the complete operation of the FWD, 
including the lowering and raising of the load plate and deflection sensor bar as well as 
the sequencing of drop heights. Many FWDs are fitted with external cameras to help 
operators precisely align on selected testing locations.  

Figure 3 shows a comparison of the two Dynatest®FWD trailer-mounted models, the 8000 
and the 8082. The 8000 model supports drop masses from 110 to 770 lb, resulting in peak 
impact loads from 1,500 to 27,000 lbf, whereas the 8082 supports drop masses from 441 to 
1,543 lb, resulting in peak impact loads from 6,500 to 54,000 lbf.(7) Typical testing 
production rates range from about 200 to 300 points per day, depending on traffic control 
requirements and specific testing locations. 

Two different plate sizes can be used with the Dynatest® FWD—an 11.8-inch-diameter 
plate or a 17.7-inch-diameter plate. The smaller plate is typically used for street and 
highway pavements, whereas the larger plate is commonly used on airfield pavements 
(and generally on the heavy-weight FWD model 8082). 

The Dynatest® FWD is used in FHWA’s LTPP Program, for which pavement deflection 
measurements have been routinely collected on more than 900 pavement sections since the 
late 1980s. Dynatest® also performs calibrations at its facilities in Florida and California, 
and some State transportation departments also have their own calibration facilities. 
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Source: Dynatest® Consulting, Inc. 

Figure 3. Drawings. Comparison of two Dynatest® FWDs. 

JILS™ (Foundation Mechanics, Inc.) 
JILS™ produces three FWD systems: JILS-20, JILS-20HF, and JILS-20T with ground-
penetrating radar (GPR). The JILS-20 is a trailer-mounted FWD. It is mounted on a 
double axle trailer. Like the Dynatest® FWDs, the system includes a 12-inch loading 
plate, DMI, temperature measurement hardware, and a video monitoring system. It has a 
separate gasoline engine with a 12-V alternator. Also, up to 10 sensors could be mounted 
in the vehicle. The company also provides its FWD data collection software.(8) The 
JILS-20HF is a heavy-load FWD. It is designed for testing pavement such as airfields or 
thick highway pavements. The specifications are similar to the JILS-20. The JILS-20T is 
identical to the JILS-20 except that it incorporates a GPR system with the FWD.  

Applied Research Associates, Inc. (ARA) conducted an independent study to compare 
the JILS-20T and Dynatest® model 8002 FWDs.(9) Table 1 summarizes the key design 
and performance features of both FWDs. According to study findings, the two FWDs 
show similar trends. For AC pavement, the JILS™ FWD gave an average deflection 
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0.38 mil greater than the Dynatest® FWD, corresponding to a 2.4-percent average 
difference. In the case of chip seal, the average difference was 1.47 mil (3.4-percent 
difference). The study also compared backcalculated subgrade moduli, average deflection 
basins, and loading time history data. ARA concluded that both FWDs provided 
satisfactory data.(9)  

Table 1. Comparison of JILS™ and Dynatest® FWD features. 

Feature JILS™ Model 20T Dynatest® Model 8002 
Number and type of 
deflection sensors 

9 geophones available 9 geophones available 

Load column tilting 
mechanism 

Air bags Load plate swivel 

Load plate type and 
diameter 

12-inch solid plate 11.8-inch solid split plate 
and 17.7-inch solid plates 
are available as options 

Measured cycle duration 24 ms 35 ms 
 
KUAB (Engineering and Research International, Inc.) 
The KUAB FWD is a trailer-mounted dynamic impulse loading device that can be towed 
by any suitable towing vehicle.(10) Similar to other FWDs, the KUAB device has a 
loading system and series of deflection sensors. However, it also has its own defining 
characteristics, including a metal housing completely enclosing the loading system (see 
figure 4). A few other features include the following: 

• Two-mass configuration: The initial load mass is dropped onto an intermediate 
buffering system. It transmits the force to another buffering system, which in turn 
transmits the load to the load plate. The use of the two-mass system creates a 
smoother load pulse that simulates the actual effects of a moving vehicle.(11) 

• Segmented load plate: This type of plate ensures a uniform pressure distribution 
over the full area of the plate. 

• Seismometers: Seven seismometers contact the surface during testing and 
measure the deflection from the plate. One sensor is placed over the load, while 
the other six are situated behind and in front of the load to measure displacement 
at different distances from the plate. Each seismometer includes an LVDT. 
Compared with other FWD sensors, seismometers may provide more direct 
deflection readings and have a larger measurement range. The deflection 
measuring sensors have a range of 0 to 200 mil. 

Four KUAB models are available (KUAB 50, KUAB 120, KUAB 150, and KUAB 240), 
with the primary difference being the magnitude of the load that can be applied. The 
KUAB 50 is the lightest, with a standard load range of 3,000 to 14,000 lbf. It could be 
used on highway, street, and parking lot pavements. The KUAB 120 adds an 18-inch 
segmented load plate and has a standard load range of 1,500 to 27,000 lbf. The 
KUAB 150 model offers a standard load range of 3,000 to 33,000 lbf, making it a 
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suitable testing device for airport pavements, as well. The heaviest KUAB 240 device can 
impart a load of 66,000 lbf, making it suitable for use in airfield applications. All four 
models support up to seven deflection sensors. 

As with the Dynatest® FWD, the KUAB has two loading plates available: 11.8 or 
17.7 inches in diameter.  

 
Source: Engineering and Research International, Inc. 

Figure 4. Photo. KUAB FWD.(10) 

Evaluation of Impulse Load Equipment 

The FWDs described in the previous section have the ability to closely simulate the 
loading characteristics of a moving wheel load and to measure the deflection basin.(10) 
However, these FWDs are relatively complex electromechanical systems, require traffic 
control when performing testing, and have a high initial cost.(10) 

One characteristic that should be considered when interpreting FWD deflection data is 
the loading time. The loading time is important to consider when evaluating differences 
in backcalculated moduli of viscoelastic materials because shorter loading times 
generally result in higher backcalculated modulus values for hot mix asphalt (HMA)(11). 
The Dynatest® FWD produces a loading time of about 28 to 35 ms, whereas the JILS™ 
and KUAB devices produce a loading time of about 24 and 80 ms, respectively.(11) The 
Carlo Bro FWD produces a loading time of about 20 to 30 ms. 

REVIEW OF STATUS OF FWD DATA COLLECTION, ANALYSIS, AND 
INTERPRETATION 

Data Collection and Related Issues 

Typical testing patterns for FWD testing vary depending on the purpose of the testing. For 
network-level testing, deflection testing is conducted at 500 to 1,500 ft in a single traffic 
lane.(11) This level of testing is normally sufficient to provide a general indicator of 
structural adequacy of the pavement network. For project-level testing, the test point 
spacing should be adequate to capture the variability in structural capacity of the 



 

11 

pavement.(12) Typical project-level testing intervals for HMA pavements are between 
100 and 500 ft, with the shorter testing interval warranted for pavements in poorer 
condition and the larger testing interval appropriate for pavements in better condition. The 
recommended testing locations are on the outer wheel (OW) path of the outer traffic lane. 

The primary issues related to FWD data analysis and interpretation are (1) errors in 
measurement (relevant to static and dynamic backcalculation) and (2) signal noise and 
truncation (relevant for dynamic analysis only).  

FWD Data Errors 
According to Irwin, there are three main sources of errors in FWD data: seating errors, 
random errors, and systematic errors.(13) Irwin, Yang, and Stubstad showed that even very 
small deflection errors (on the order of 2 microns or less) can lead to very large errors in 
the backcalculated moduli.(14) Irwin found the following: 

• Seating errors: Seating errors were caused by the rough texture of pavements 
and were of more critical importance in the testing of HMA pavements. These 
errors could typically be eliminated by applying a seating drop at each new test 
point, allowing the deflection sensors to become seated. Seating drop data should 
not be used in analyzing the pavement structure. 

• Random errors: Random errors were associated with the analog-to-digital 
conversion of the deflections. They were on the order of ±2 microns.(14) Random 
errors could not be completely eliminated; however, they could be reduced by 
taking multiple readings and averaging the results. This reduction was 
proportional to the square root of the number of observations used in computing 
the mean. For example, if four replicate FWD drops (with the same height) at the 
same point were averaged, the random error would be reduced by half. Care must 
be taken to ensure that the multiple readings were random, i.e., that they were not 
consistently increasing or decreasing owing to liquefaction or compaction caused 
by the additional drops.(13) 

Systematic Errors 
Systematic errors are associated with the particular FWD equipment and its specific sensors. 
Systematic errors are on the order of ±2 percent. FWD specifications therefore call for an 
accuracy of ±2 percent or ±2 microns, whichever is greater. This specification combines the 
systematic error and the random error. Systematic errors can be reduced to 0.3 percent or 
less for each individual sensor, including the load cell, through calibration.(13)  

Noise and Truncation of FWD Sensor Signals 
The sensitivity of dynamic backcalculation solutions to signal noise is high. Basically, 
noisy data alter the error function surface enough to cause optimization errors. This can 
cause the search algorithm to diverge or to converge to a different modulus when 
regularization techniques are used. The remedy to noise is to preprocess the raw data by 
filtering out the high-frequency content of the signal (anything above 100 Hz) in 
deflection and load pulse data. Also, if synchronization problems occur, the dynamic 
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backcalculation algorithm may not work as well, although one could shift the signals 
similar to what was done in the quasi-static viscoelastic solution. 

Another issue that is relevant to dynamic analysis is signal truncation. This problem 
can lead to large errors in the backcalculated layer parameters when using a frequency-
based solution.(15) Therefore, signal truncation will affect the frequency-domain 
backcalculation. On the other hand, the time-domain backcalculation is not affected by 
FWD signals truncation. In fact, this is one of the major reasons the research team 
pursued development of a new time-domain dynamic viscoelastic solution. 

Integration Drift 
The use of numerical integration of acceleration or velocity information from inertial 
sensors to obtain position information inherently causes errors to grow with time, which is 
commonly known as “integration drift.” The main problem is that integrating a signal 
contaminated with noise and drift leads to an output that has a root mean square (RMS) 
value that increases with integration time even in the absence of any motion of the sensor. 
For a single integration, the errors are a function of the duration of the signal. For that 
reason, to correct for the drift, estimation of deflections using inertial sensors is usually 
performed with the help of externally referenced aided sensors or sensing systems or prior 
knowledge about the motion. With aided sensors or sensing systems, Kalman filters (KFs) 
or extended-Kalman filters (EKFs) are commonly used to fuse different sources of 
information in an attempt to correct for the drift. A more detailed discussion about the drift 
is presented in chapter 6, in the subsection entitled Effects of Numerical Errors and Drifts. 

Analysis and Interpretation of FWD Data 

Deflection measurements can be used for backcalculating the elastic moduli of the 
pavement structural layers and for estimating the load-carrying capacity for HMA 
pavements. A number of factors affect the magnitude of measured pavement deflections, 
which makes the interpretation of deflection results difficult. The major factors that affect 
pavement deflections can be grouped into the following categories: pavement structure 
(thickness), pavement loading (load magnitude and type of loading), and climate 
(temperature and seasonal effects). 

There are various approaches for FWD data analysis and interpretation. These can be grouped 
into two categories: (1) methods of analysis for calculating pavement response (forward 
analysis) and (2) methods for interpretation of pavement response (backcalculation).  

Forward Analysis 
Methods of calculating pavement response (forward calculation) include the following: 
(1) closed-form solutions based on Boussinesq’s original half-space solution, (2) layered 
elastic solutions based on Burmister’s original two- and three-layer solutions, and 
(3) FEM-based solutions.(16–18)  

The method of equivalent thicknesses is based on Odemark’s assumptions.(19) This 
closed-form solution is reported to produce results that are as good as or better than those 
from static layered elastic and FEM solutions.(19,20) The method can also be adapted to 
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handle nonlinear subgrade materials. However, the method cannot be used to determine 
the dynamic modulus master curve of an existing HMA layer. 

The layered elastic solutions are the most commonly used among all methods. They are 
generally restricted to linear elastostatic analysis. The basic assumptions of the solution 
are the following: 

• Surface load is uniformly distributed over a circular area. 
• All layers are homogeneous, isotropic, and linearly elastic. 
• Upper layers extend horizontally to infinity. 
• Bottom layer is a semi-infinite half-space. 

These solutions have been shown to produce good results if material behavior remains in 
the linear range; however, they cannot be used to determine the dynamic modulus master 
curve of an existing HMA layer. 

The available computer programs that use the layered elastic solutions include, but are 
not limited to, CHEVRON, ELSYM5, and BISAR, NELAPAV, PADAL, VESYS, and 
KENPAVE. (See references 21–27.) 

Finite element analysis (FEA) has also been used for pavement analysis, including three-
dimensional (3-D) general-purpose programs, such as SAP, ABAQUS, and ANSYS, and 
pavement-specific programs for two-dimensional (2-D) axisymmetric (e.g., ILLIPAVE 
and MICHPAVE) and 3-D solutions (CAPA-3D). The main advantage of FEA is the 
ability to handle material variability and nonlinearity in both vertical and horizontal 
directions and to include any number of sophisticated constitutive models. Some of these 
programs do allow dynamic and/or viscoelastic analyses. However, they are either 
restricted to a particular constitutive model that may not be suitable for the 
backcalculation of the dynamic modulus master curve, and/or they involve a large 
number of elements and input parameters and therefore are much more time consuming 
to set up and to run.  

In addition to the methods discussed here, efficient dynamic solutions were also used for 
pavement analysis. Computer programs for dynamic analysis of pavement systems use 
either dynamic damped-elastic finite-layer or FEM models for their forward solutions. 
The finite layer solutions are based on Kausel’s formulation, which subdivides the 
medium into discrete layers that have a linear displacement function in the vertical 
direction and satisfy the wave equation in the horizontal direction.(28) Examples of 
programs containing such solutions include UTDYNAF, UTFWD, GREEN, SAPSI, and 
SCALPOT. (See references 29–33.)  

Backcalculation Analysis 
The following paragraphs describe static and dynamic backcalculation methods.  

Static Backcalculation Methods: Most existing static backcalculation routines can be 
classified into three major categories, depending on the techniques used to reach the 
solution. The first category is based on iteration techniques, which repeatedly use a 
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forward analysis method within an iterative process. The layer moduli are repeatedly 
adjusted until a suitable match between the calculated and measured deflection basins is 
obtained. The second category is based on searching a database of deflection basins. A 
forward calculating scheme is used to generate a database, which is then searched to find 
a best match for the observed deflection basin. The third and final category is based on 
the use of regression equations fitted to a database of deflection basins generated by a 
forward calculation scheme. In principle, these three techniques can be applied to any of 
the forward analysis methods previously discussed. However, the iterative method is 
arguably the easiest to implement for dynamic backcalculation solutions.  

Most iterative solutions use a search algorithm that is achieved by minimizing an 
objective function of any set of independent variables (i.e., layer moduli, thicknesses, 
etc.), which is commonly defined as the weighted sum of squares of the differences 
between calculated and measured surface deflections, which minimizes to the equation 
shown in figure 5. 

 
Figure 5. Equation. Objective function for the search algorithm. 

Where: 

m = Number of sensors. 
wjm = Measured deflection at sensor j. 
wjc = Calculated deflection at sensor j. 
aj = Weighing factor for sensor j. 

The equation shown in figure 5 can be solved using nonlinear optimization methods, 
which locate the least value of the objective function. Many minimization techniques are 
available in the literature, including the following:(34) 

• Factored secant update method. 
• Modified Levenberg-Marquardt (LM) algorithm. 
• Modified Powell hybrid algorithm. 

One of the problems of this approach is that the multidimensional surface represented by the 
objective function may have many local minima. As a result, the program may converge to 
different solutions if a different set of seed moduli is used. Another problem is that the 
convergence can be very slow, requiring numerous calls to a forward analysis program. 

An example of an iterative program for static backcalculation is EVERCALC, which uses 
a modified LM algorithm.(35) The program seeks to minimize an objective function 
formed as the sum of squared relative differences between the calculated and measured 
surface deflections.  
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The search method can also take the form of solving the linear set of equations, as shown 
in figure 6.  

 
Figure 6. Equation. Search method using set of equations. 

Where: 

[F]k = kth iteration of the m by n matrix of partial derivatives fj/ Ei, where j = 1 to m and 
m is the number of deflections measured, and i = 1 to n where n is the number of layers in 
the pavement with unknown moduli. 
{d}k = kth iteration difference vector, Ei

k+1- Ei
k, between the new and old moduli. 

{r}k = kth iteration residual vector, wjc - wjm, between the most recently calculated and the 
measured surface deflections. 

An example of an iterative program using the above search method is MICHBACK, 
which uses the modified Newton-Raphson (also called secant) method. The method of 
least-squares is used to solve the over-determined system of equations (m equations in n 
unknowns, m > n) in figure 6. If desired, weighting factors can be used for each sensor 
measurement to emphasize some deflection measurements over others.  

Dynamic Backcalculation Methods: Most dynamic backcalculation methods use 
dynamic, damped-elastic finite-layer or FEMs for their forward solutions. Dynamic 
backcalculation methods are based on either frequency- or time-domain solutions. For the 
former procedure, the applied load and measured deflection time histories are 
transformed into the frequency domain by using the fast Fourier transform (FFT). 
Backcalculation of layer parameters is done by matching the calculated steady-state 
(complex) deflection basin with the frequency component of the measured sensor 
deflections at one or more frequencies. In time-domain backcalculation, the measured 
deflection time histories are directly compared with the predicted results from the 
forward analysis. One of the advantages of this method is that matching can be achieved 
for any time interval desired. Uzan compared the two methods and concluded that time-
domain backcalculation was preferred over frequency-domain backcalculation.(36)  

BACKCALCULATION COMPUTER PROGRAMS 

Static Backcalculation Programs 

Numerous computer programs for performing automated backcalculation have been 
developed. Some of the known static backcalculation computer programs and their 
characteristics are presented in table 2. Different versions of these programs exist, with 
improved and/or updated editions being periodically released. Most of the automated 
backcalculation programs rely on static analysis and a linear elastic layer program. 
Notable exceptions include ELMOD, which can use either Odemark’s method or the 
FEM in addition to the layered elastic solution, and MODCOMP and EVERCAL, which 
can handle nonlinear material properties.  
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Accuracy and Reliability 
Many of the programs developed for production purposes are intended to get to an 
“accurate” solution reliably. While most static backcalculation programs usually 
converge to a solution reasonably quickly and reliably, one cannot assert the uniqueness 
of the set of layer moduli derived from any search method. For this reason, many 
programs use various controls to guide the iterative search toward an “acceptable” set of 
layer moduli. These include making some assumptions about the type of pavement 
system being analyzed (e.g., assuming that layer moduli decrease with depth, that the 
subgrade modulus is constant with depth, that a rigid layer exists a certain depth, etc.) and 
limiting the acceptable range of moduli for each individual layer type. 

Required Inputs 
Required inputs typically include peak sensor deflections and their location, peak load values, 
the number of layers in the pavement system and their thicknesses, and assumed values for 
Poisson’s ratios. Most programs also require seed moduli as input, although some have 
methods that generate these from the measured deflections or from regression equations.  

Resulting Outputs 
Typical outputs include the measured and calculated deflections, the differences and 
percent differences, the final set of layer moduli, and the error sums. Most of the existing 
backcalculation programs allow for 3 to 5 layers; a notable exception is the MODCOMP5 
program, which allows up to 15 layers. 
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Table 2. Commonly available backcalculation computer programs for flexible pavements.  

Program 
Name Developer 

Forward 
Calculation 

Method 

Forward 
Calculation 
Subroutine 

Backcalculation 
Method 

Nonlinear 
Analysis 

Layer 
Interface 
Analysis 

Maximum Number 
of Layers Seed Moduli 

Range of 
Acceptable 
Modulus 

Ability to 
Fix 

Modulus 
Convergence 

Scheme 

Error 
Weighting 
Function 

BISDEF U.S. Army 
Corps of 

Engineers—
Waterway 

Experiment 
State (USACE-

WES) 

Multilayer 
Elastic 
Theory 

BISAR Iterative No Variable Number of 
deflections; best for 3 

unknowns 

Required Required Yes Sum of squares 
of absolute 

error 

Yes 

BOUSDEF Zhou et al. 
(Oregon State 

University) 

Method of 
Equivalent 
Thickness 

MET Iterative Yes Fixed 
(rough) 

At least 4 Required Required — Sum of percent 
errors 

— 

CHEVDEF USACE-WES Multilayer 
Elastic 
Theory 

CHEVRON Iterative No Fixed 
(rough) 

Number of 
deflections; best for 3 

unknowns 

Required Required Yes Sum of squares 
of absolute 

error 

Yes 

COMDEF USACE-WES Multilayer 
Elastic 
Theory 

BISAR Database No Fixed 
(rough) 

3 No No — Various No 

DBCONPAS Tia et al. 
(University of 

Florida) 

Finite 
Element 

FEACONS III Database Yes? Yes? — No No — — — 

ELMOD/EL
CON 

Ullidtz 
(Dynatest®) 

Method of 
Equivalent 
Thickness 

MET Iterative Yes 
(subgrade 

only) 

Fixed 
(rough) 

4 (exclusive of rigid 
layer) 

No No Yes Relative error 
of 5 sensors 

No 

ELSDEF Texas A&M, 
USACE-WES 

Multilayer 
Elastic 
Theory 

ELSYM5 Iterative No Fixed 
(rough) 

Number of 
deflections; best for 3 

unknowns 

Required Required Yes Sum of squares 
of absolute 

error 

Yes 

EMOD PCS/Law 
Engineering 

Multilayer 
Elastic 
Theory 

CHEVRON Iterative Yes 
(subgrade 

only) 

Fixed 
(rough) 

3 Required Required Yes Sum of relative 
squared error 

No 

EVERCALC Mahoney et al. Multilayer 
Elastic 
Theory 

WESLEA Iterative Yes Variable 5 Required (4 
and more 

layers) 

Required Yes Sum of 
absolute error 

Yes 

FPEDD1 Uddin Multilayer 
Elastic 
Theory 

BASINF? Iterative Yes Fixed 
(rough) 

— Program 
Generated 

— — — No 

ISSEM4 Ullidtz, 
Stubstad 

Multilayer 
Elastic 
Theory 

ELSYM5 Iterative Yes (finite 
cylinder 
concept) 

Fixed 
(rough) 

4 Required Required Yes Relative 
deflection 

error 

No 

MICHBACK Harichandran et 
al. 

Multilayer 
Elastic 
Theory 

CHEVRONX Newton method No Fixed 
(rough) 

Number of 
deflections; best for 

3 unknowns 

Required Required Yes Sum of relative 
squared error 

— 

MODCOMP
5 

Irwin, Szebenyl Multilayer 
Elastic 
Theory 

CHEVRON Iterative Yes Fixed 
(rough) 

2 to 15 layers; 
maximum of 

5 unknown layers 

Required Required Yes Relative 
deflection 

error at sensors 

No 

MODULUS Texas 
Transportation 

Institute 

Multilayer 
Elastic 
Theory 

WESLEA Database Yes? Fixed? 4 unknown plus stiff 
layer 

Required Required Yes Sum of relative 
squared error 

Yes 
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Program 
Name Developer 

Forward 
Calculation 

Method 

Forward 
Calculation 
Subroutine 

Backcalculation 
Method 

Nonlinear 
Analysis 

Layer 
Interface 
Analysis 

Maximum Number 
of Layers Seed Moduli 

Range of 
Acceptable 
Modulus 

Ability to 
Fix 

Modulus 
Convergence 

Scheme 

Error 
Weighting 
Function 

PADAL Brown et al. Multilayer 
Elastic 
Theory 

— Iterative Yes 
(subgrade 

only) 

Fixed? — Required — — Sum of relative 
squared error 

— 

RPEDD1 Uddin Multilayer 
Elastic 
Theory 

BASINR Iterative Yes Fixed? — Program 
Generated 

— — — No 

WESDEF USACE-WES Multilayer 
Elastic 
Theory 

WESLEA Iterative No Variable 5 Required Required Yes Sum of squares 
of absolute 

error 

Yes 

RoSy 
DESIGN 

Grontmij 
Pavement 

LET — LET Yes No 4 in LET User setting No Yes — — 

PRIMAX-
design 

Grontmij 
Pavement 

Leaf and 
LET 

— Backfaa and LET Yes No 4 in LET and 10 in 
Backfaa 

User setting Yes user 
setting 

Yes — — 

— Indicates not applicable. 
LET =Linear elastic theory. 
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User Friendliness 
Because many of the backcalculation programs are developed for production purposes, they are 
user friendly, require minimum involvement from the user, and provide various features intended 
to be useful for project-level analysis. Conversely, those programs written for use in research 
tend to lack the features needed for production. They also usually allow and require significant 
involvement from the user. These include dynamic backcalculation programs that rely on 
dynamic analysis to calculate the deflection time histories and those that use available general-
use FEM programs. 

Advantages and Disadvantages 
Attempting to do a one-to-one comparison of different backcalculation programs for the purpose 
of identifying the best one is a difficult task. Each of these programs has pros and cons, and each 
may be particularly useful in a specific situation. Before making such comparisons, one should 
first define the purpose in doing backcalculation and the evaluation criteria that one will use. In 
general, the advantage of using simpler methods is that they are very fast and easy to use. Their 
disadvantage is that they are limited in their interpretation of the FWD data. For example, most 
static backcalculation programs are limited to five layers. This may not be sufficient to 
characterize realistic pavement profiles that comprise five or more layers, and such programs 
cannot be used to allow for variation in subgrade modulus with depth, for example. On the other 
hand, more advanced methods of backcalculation, which theoretically allow backcalculation of a 
larger number of parameters, are computationally expensive and time consuming. Also, they are 
not guaranteed to converge when using real field-measured data. For most State transportation 
departments, the ultimate purpose of backcalculation is to aid in rehabilitation design so that 
purpose should be a strong criterion for selecting a program. 

Dynamic Backcalculation Programs 

A number of computer programs have been developed for dynamic backcalculation of flexible 
pavement layer parameters. Each program employs a particular forward model and a specific 
backcalculation scheme. All of these programs require the time histories of the load and 
deflection sensors. Theoretically, because these time histories contain more information than just 
the peak values of load and deflection, dynamic backcalculation programs can backcalculate a 
larger number of parameters when using synthetically generated deflection time histories. 
However, there are serious challenges when using measured field data. For example, the 
frequency-domain solutions can lead to large errors if the measured FWD records are truncated 
before the motions fully decay in time.  

Time-domain backcalculation solutions present another set of challenges. For example, the time 
synchronization between the load and sensor records and the digitization of the response can be 
problematic. Noise in the data and the ill-posed nature of the inversion problem can be amplified 
when matching traces of time histories, requiring special filtering and regularization techniques 
that are not easy to implement. In addition, unlike frequency-domain analysis, where the 
properties are backcalculated at each frequency independently, time-domain backcalculation 
precludes making a choice on the behavior of material properties with frequency; that is, they 
either assume a constant HMA modulus (similar to static backcalculation) or a prescribed 
function of the HMA layer modulus with frequency (e.g., linear relation in the log-log space). 
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While this assumption may be acceptable for unbound materials, it may significantly affect the 
predicted response of the HMA layer because of its viscoelastic nature. Finally, none of these 
programs are considered ready for production mode, because they usually require a lot of 
involvement from the user, are computationally very expensive, and have not been fully 
evaluated for use with field-measured data. Some of the dynamic backcalculation computer 
programs and their characteristics are presented in table 3. A brief overview of the programs 
developed to date is also provided. 

Table 3. Dynamic backcalculation programs for flexible pavements.  

Program Domain Inverse Method 
Forward 
Program Reference 

BKGREEN Frequency Nonlinear least-square 
optimization 

GREEN 31 

No formal 
name 

Frequency/time Newton’s method UTFWIBM 37 

PAVE-SID Frequency System Identification (SID) SCALPOT 33 

FEDPAN Time Linear least squares SAP IV 38 

No formal 
name 

Frequency LM SAPSI 39 

No formal 
name 

Frequency Secant Update, LM, 
Powell Hybrid 

LAMDA 40 

No formal 
name 

Time Gauss-Newton method FEM 41 

DYNABACK Frequency/time Newton’s method with least-
square or singular value 
decomposition 

SAPSI 15, 42, and 43 

EVERCALCII Time Nonlinear least square 
optimization with Tikhonov 
regularization and 
continuation method 

FEM 44 

 
BKGREEN models the pavement as a layered elastic system in terms of dynamic Green 
flexibility influence functions using Kausel’s formulation of discrete Green functions for 
dynamic loads in linear viscoelastic layered media.(28,31) Backcalculation is done at multiple 
frequencies, and the set of layer moduli is determined using a nonlinear least squares technique. 
The solution can cause some computational difficulties at certain frequencies because of the 
numerical complications associated with implementing infinite integration in computer codes. 

Uzan presented two dynamic linear backcalculation procedures—one in the time domain and the 
other in the frequency domain.(37) Both approaches use the program UTFWIBM as the forward 
model and Newton’s method as the backcalculation solution. UTFWIBM uses the finite layer 
solutions (based on Kausel’s formulation), which subdivides the medium into discrete layers that 
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have a linear displacement function in the vertical direction and satisfy the wave equation in the 
horizontal direction. 

PAVE-SID is a computer program that uses the SCALPOT program to generate frequency 
response curves; a system identification technique is applied for matching computed frequency 
data to extract pavement properties.(33) SCALPOT computes the dynamic response of a 
horizontally layered viscoelastic half-space to a time-dependent surface pressure distribution.  

FEDPAN is a FEM program that can perform both static and dynamic backcalculation for three-
layer pavement systems using the CHEVDEF backcalculation algorithm.(38,45) This program can 
simulate the effects of pavement inertia and damping in the dynamic analysis and material 
nonlinearity in the static analysis.  

Losa used SAPSI as the forward program and a nonlinear least squares optimization technique 
(LM method) for multifrequency backcalculation.(32,39) The HMA and subgrade materials were 
assumed to be frequency dependent while the base/subbase material was assumed to be 
frequency independent. 

Al-Khoury et al. developed an axisymmetric layered solution as a forward model using the 
spectral element technique and used the modified LM and Powell hybrid methods for solving the 
resulting system of nonlinear equations.(2,40,46)  

Meier and Rix developed an artificial neural network (ANN) solution that has been trained to 
backcalculate pavement layer moduli for three-layer flexible pavement systems using synthetic 
dynamic deflection basins.(47,48) The dynamic pavement response was calculated using an 
elastodynamic Green function solution based on Kausel’s formulation.(28)  

Work by Chatti developed the DYNABACK computer program that allows for different 
dynamic backcalculation algorithms for both frequency-based and time-based solutions.(15,42,43) 
The DYNABACK program uses the SAPSI program as its forward solution and an expanded 
version of the modified Newton-Raphson algorithm in the MICHBACK program as its 
backcalculation solution.(32,49) The solution uses the least squares minimization technique to 
solve the over-determined set of equations, which are real-valued and correspond to the peak 
transient deflections and their corresponding time lags relative to the peak load. The 
DYNABACK program includes two basic solutions with several options for backcalculating 
different layer parameters: (1) frequency-domain backcalculation at one or multiple frequencies 
and (2) time-domain backcalculation using peak responses or time history traces. Theoretically, 
single frequency backcalculation can be used to backcalculate up to 8 parameters while multiple 
frequency backcalculation can be used to backcalculate up to 15 parameters. The same is true for 
time-domain backcalculation using peak responses and traces, respectively. However, when 
using measured deflection time histories, the number of backcalculated parameters must be 
reduced to fewer than eight. 

Finally, Turkiyyah has been developing an improved EVERCALCII program that uses the 
complete FWD sensor time histories to recover pavement layer moduli distribution and 
thicknesses using thin computational layers that discretize the profile.(44) In this solution, physical 
layer thicknesses can be obtained, after backcalculation of thin computational layer moduli, by 



 

22 

grouping thin layers of similar moduli values. Two regularization techniques are employed. One 
involves the absolute values of the moduli to prevent physically unrealistic solutions with large 
layer moduli, while the second controls the gradient of the moduli in the vertical direction to 
prevent convergence to profiles with neighboring layers that alternate between high and low 
moduli. In addition, a “continuation scheme” is used to control the weights on the regularization 
terms to overcome the ill-posed nature of the optimization problem. Because this solution relies 
on backcalculating the moduli of the relatively large number of elements that make up these thin 
computational layers, the computational effort for solving the inverse problem is very significant. 
Efforts are underway to speed up the forward (FEM) solution. 

MODELING ISSUES 

Several specific modeling issues must be considered when selecting backcalculation solutions, as 
described in the following subsections. 

Static Versus Dynamic Response 

The FWD test consists of dropping a large weight from a specified height, which creates a 20- to 
60-ms impulse load, simulating a moving wheel load. This creates waves in the pavement system 
and underlying subgrade soil. These elastic waves propagate with distance and are partly 
reflected at the interface between any given two successive layers, with the remaining wave 
energy penetrating and propagating to the next layer, and the process is repeated. These waves 
bounce up and down a few hundred times in a given test. The deflection time histories lag the 
load pulse, with the time lag increasing as the distance between the load plate and the sensor 
increases. So, clearly, the FWD test is a dynamic test. Therefore, to maximize the effective 
interpretation of FWD data, the forward solutions must be able to account for the following 
physical conditions encountered in FWD testing: 

• Transient nature of the FWD load (i.e., time varying pulse load of arbitrary shape). 

• Dynamic effects (i.e., ability to model viscous and inertial internal forces). 

• Wave propagation effects (i.e., the ability to model the propagation of the stress waves 
imparted by the FWD impulse in time and space). 

• Viscoelastic effects (i.e., the ability to incorporate a frequency-dependent HMA dynamic 
modulus or its viscoelastic equivalent, the time-dependent relaxation modulus). 

The difference between static response and dynamic response can be defined in terms of the internal 
forces involved. In static analysis, only elastic forces are considered. On the other hand, viscous and 
inertial forces are considered in addition to the elastic forces in dynamic analysis. The question 
therefore is whether the effects of viscous and inertial forces are significant enough that one cannot 
afford to ignore them when characterizing the in situ conditions of a pavement system under an 
FWD test. Most pavement engineers argue that backcalculation is an exercise that determines 
pavement parameters—not properties—that are to be used within a given mechanistic framework. 
Therefore, it is acceptable to use static analysis and to backcalculate parameters that are compatible 
with the current mechanistic-empirical design framework that is grounded in static and not dynamic 
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analysis. However, advocates for dynamic analysis maintain that such an approach takes advantage 
of more information provided by the test, which allows for backcalculating more parameters such 
as layer thicknesses or, perhaps more important, the modulus versus frequency curve of the HMA 
layer. Also, in certain cases, such in the presence of a stiff layer or water table at shallow depth, the 
effect of dynamics on pavement response is more important.  

Time-Domain Versus Frequency-Domain Backcalculation 

Uzan compared the two methods and concluded that time-domain backcalculation is preferred 
over frequency-domain backcalculation.(36) Measured field data from FWD tests using current 
technology contain several types of measurement and calibration errors, and thus the developed 
algorithms and computer programs for dynamic backcalculation, must address the following 
serious challenges: 

• Large errors can be introduced when the measured deflection signals are truncated before 
the motions fully decay in time. Such errors are observed when frequency-domain 
solutions are used.  

• The periodicity of the signal assumed in the discrete Fourier transform (DFT) algorithm 
cannot accurately disclose the frequency content of the transient FWD time histories with 
short duration. 

• The DFT is very sensitive to noise, which is always present in the FWD.(42,50,51) 

• The DFT is impractical for representing the fundamental properties of a viscoelastic 
material, such as creep compliance or dynamic modulus, because of a large number of 
harmonics necessary for modeling them.(52,53) This is also the reason most of the 
frequency-domain solutions use the damping ratio concept and hence fail to model and/or 
backcalculate the fundamental properties of a viscoelastic material. 

• The means of an FWD load pulse and corresponding deflection time histories are all 
nonzero. Dynamic solutions that have been developed in the context of soil dynamics and 
earthquake engineering take advantage of the FFT, which reduces computation time by 
orders of magnitude. However, the FFT algorithm assumes a zero mean function. This 
assumption is valid for earthquake records but not for an FWD pulse. By default, the 
output of the FFT algorithm is equal to (A*N)/2, where A is the amplitude of the input 
series except for the first element of the Fourier series (when the frequency is equal to 
zero). The standard magnitude of the DFT of the input series is equal to the FFT 
amplitude normalized such that the sum of the squares of the inputs is equal to the mean 
of the squares of the outputs (i.e., the total power determined from the time series equals 
the mean power determined from the spectrum) as shown in the equation in figure 7. 

 
Figure 7. Equation. Parseval theorem. 
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Where x[n] is the deflection time series; X[k] is the DFT of x[n], both of length N. With the 
normalization shown in figure 7, the DFT of a nonzero-mean function at zero frequency will be 
the equation shown in figure 8. 

 
Figure 8. Equation. DFT of a nonzero-mean function at zero frequency. 

However, when the input has a nonzero mean, the amplitude of the DFT at zero frequency should 
be the mean value of the input. Therefore, this normalization is correct only if the input series has a 
steady state component that is equal to the mean value. However, FWD loading is a transient 
loading with a mean value but not a steady state component. Also, functions with a nonzero 
average value may produce a zero frequency component that obscures more interesting 
components. Adding a large enough quiet zone to a transient nonzero mean signal is a workaround 
that is often used. However, doing so affects analysis time, and it may not be useful in this case. 

All the above issues emphasized the necessity of using a time-domain-based dynamic solution 
that is also able to model the viscoelastic response of the HMA layer(s).  

Linear Versus Nonlinear Material Response 

When pavement structures are thin enough or the applied loads and corresponding stresses are 
high enough, the subgrade material will likely exhibit stress-softening, nonlinear behavior (i.e., 
its response increases at a higher rate than the load or stress increases). This behavior translates 
to the subgrade modulus changing with depth and radial distance from the load. If the forward 
model uses a layered solution that assumes linear material behavior, it can only use one modulus 
value for an entire layer. Consequently, the backcalculated modulus to match the measured 
deflections is an averaged value. Typically, the backcalculated subgrade modulus is higher than 
the value obtained from laboratory measurement by a factor of 2 to 3, although this difference is 
not entirely caused by nonlinear material response. 

On the other hand, granular (cohesionless) materials used in bases and subbases are stress 
dependent in a different (positive) way (i.e., their modulus increases with increasing 
confinement). Similar to the subgrade modulus, this leads to a base/subbase modulus that varies 
with depth and radial distance from the load, and any linear backcalculation exercise can only 
lead to an averaged modulus value. The combination of these phenomena often leads to a base 
modulus that is lower than the subgrade modulus despite the base material being superior to the 
subgrade material. One way of addressing this problem is to introduce an artificial layer. 
However, a more direct way of addressing the problem is to treat the subgrade as a nonlinear 
elastic material with a stress-dependent modulus i.e., with a modulus that varies with stress.(54) 
Ullidtz argued that the effect of the positive nonlinearity in granular base/subbase layers on 
backcalculation results was less important.(54)  

Ideally, only the FEM can model the variation of moduli with depth and radial distance. 
However, some models based on layered elastic theory can handle nonlinear behavior 
approximately (e.g., NELAPAVE and KENPAVE). Ullidtz combined the method of equivalent 
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thickness with a stress-dependent subgrade modulus to handle material nonlinearity and reported 
that this approach was superior to FEM.(54) 

Bedrock or Stiff Layer Effect 

A stiff layer condition can exist if there is shallow bedrock, a stiff clay layer, or a groundwater 
table. The effect of a stiff layer at a shallow depth can be very significant. Assuming the 
subgrade layer to be a semi-infinite half-space, while in reality the subgrade layer is only a few 
yards thick, causes the backcalculated moduli for the upper pavement layers to be incorrect. 
Generally, when the stiff layer is deeper than about 39 ft, its presence has little or no influence on 
the backcalculated moduli. The depth to the stiff layer can be evaluated by using a relationship 
between the deflection, δZ, and 1/r, where r is the radius at which it occurs (see figure 9). Several 
regression equations for different HMA layer thicknesses can be used as a function of ro and 
deflection basin parameters.(55) 

  
Credit: Washington State Department of Transportation 

Figure 9. Drawing and Graph. Plot of inverse of deflection offset versus measured 
deflection.(55) 

An alternative and arguably better way to determine the depth to the stiff layer is to use the free 
vibration response from FWD deflection sensor measurements and one-dimensional wave 
propagation theory.(56) Chatti et al. modified Roesset’s equations to account for different conditions, 
as shown in the equations in figure 10 (for saturated subgrade with bedrock, use the first equation; 
for nonsaturated subgrade with bedrock or groundwater table, use the second equation).(42) 
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Figure 10. Equation. Calculation of the depth to the stiff layer using the modified Roesset’s 

equations. 

Where: 

Vs = S-wave velocity of subgrade material. 
Td = Natural period of free vibration (see figure 11). 
u = Poisson’s ratio of subgrade. 

 
Figure 11. Graph. Natural period Td from sensor deflection time histories. 

The procedure for estimating the depth to the stiff layer described above requires knowledge of 
the shear wave velocity of the subgrade Vs, which is a function of the modulus value as shown in 
figure 12. 

 
Figure 12. Equation. Shear wave velocity. 

However, in the analysis of field data, subgrade properties (shear-wave velocity, unit weight ( ), and 
Poisson ratio (u)) are not generally known and therefore need to be either measured or assumed. The 
method proposed by Lee et al. can be used for estimating the modulus of the subgrade Esg.(35) 
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Temperature and Moisture Effects 

Temperature and moisture conditions in the pavement vary over time. This variation occurs daily 
as well as seasonally. A pavement is strongest during the freezing season (in a freezing climate) 
because of the frozen state of the underlying materials. On the other hand, even in a freezing 
environment, the pavement can be at its weakest state during a thaw period, even if it is 
temporary (e.g., on a sunny day in late winter or during the warmest hours around midday). In 
areas where there is little or no freezing, seasonal variations can be very important in terms of 
moisture changes, which affect the modulus of the subgrade and to a lesser extent that of the base 
layer. For the HMA layers, hourly temperature variations during a given day need to be taken 
into account because temperature gradients exist in the pavement that can lead to modulus 
variation with depth. Also, seasonal variations can have a major effect on the modulus of an 
HMA layer. These effects must be considered when performing backcalculation. It is crucial to 
test the pavement at different times of the year to gain information about the seasonal variation. 
Testing should also be conducted at different times during the day to account for daily 
temperature variations. 

Other Effects 

Several other issues may need to be addressed in backcalculation analysis, including the following: 

• Major cracks in the pavement or testing near a pavement edge or joint can cause the 
deflection data to depart drastically from the assumed conditions. 

• Layer thicknesses are often not known, and subsurface layers can be overlooked.  

• Layer thicknesses are not uniform, and materials in the layers are not homogeneous. 

• Some pavement layers are too thin to be backcalculated in the pavement model. 

RELEVANCE TO MEPDG USE 

The required input material properties for HMA pavements in the new MEPDG that are relevant 
to the use of FWD data and backcalculation results are the following: (1) the time-temperature 
dependent dynamic modulus, E*, for the HMA layer(s), (2) the resilient moduli for the unbound 
base/subbase and subgrade materials, and (3) the elastic modulus of the bedrock, if present.(1) 
The MEPDG also provides an option for considering nonlinear material parameters for the 
unbound layers for level 1 analysis.(1) However, the performance models used in the software 
have not been calibrated for nonlinear conditions. 

HMA Materials 

For HMA materials, level 1 analysis requires conducting E* (complex modulus) laboratory 
testing at loading frequencies and temperatures of interest for the given mixture. Level 2 analysis 
does not require E* laboratory testing; instead, the user can enter asphalt mix properties 
(gradation parameters) and laboratory binder test data (from G* testing or other conventional 
binder tests).(4) The MEPDG software calculates the corresponding asphalt viscosity values; it 
then uses the modified Witczak equation to predict E* and develops the master curve for the 
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HMA mixture.(1) The same procedure is used for level 3 analysis to estimate the HMA dynamic 
modulus, except no laboratory test data are required for the binder. 

For rehabilitation design, the determination of the HMA layer dynamic modulus follows the 
same general concepts described above, except that the software allows for a modified procedure 
to account for damage incurred in the HMA layer during the life of the existing pavement. The 
procedure therefore determines a “field damaged” dynamic modulus master curve as follows: 

• For level 1 analysis, the MEPDG calls for the following procedure:(1) 

1. Conduct FWD tests in the OW path over the project to be rehabilitated; calculate the mean 
backcalculated HMA modulus, Ei, for the project, including cracked as well as uncracked 
areas; record the HMA layer temperature at the time of testing; and determine the layer 
thickness along the project from coring or GPR testing. 

2. Determine mix volumetric parameters and asphalt viscosity parameters from cores and 
follow the same procedure for determining binder viscosity-temperature properties as for 
new or reconstruction design. 

3. Develop an undamaged dynamic modulus master curve using the data from step 2 and the 
modified Witczak equation. 

4. Estimate damage, dj = Ei/E*, with Ei obtained from step 1 and E* obtained from step 3 at the 
same temperature recorded in the field. 

5. Calculate '= (1 – di) , where α is a function of mix gradation parameters. 

6. Determine the field damaged dynamic modulus master curve using ' instead of  in the 
modified Witczak equation. 

• For level 2 and level 3 analyses, no FWD testing is required. The level 2 procedure is 
similar to the level 1 procedure, except that the indirect resilient modulus, Mri, obtained 
from laboratory tests (NCHRP 1-28A) on specimens from field cores, is used in the 
damage parameter calculation, dj = Mri/E*.(57) For the level 3 procedure, no coring or 
testing is required; instead, typical estimates of HMA mix parameters are entered, and the 
software calculates the undamaged master curve. The damage factor dj is estimated from 
visual condition data. 

Unbound Materials 

For unbound materials (and bedrock), only level 1 analysis calls for FWD testing in 
rehabilitation and reconstruction designs. The resilient modulus, Mr, for each unbound layer 
(including the subgrade) can be either determined in the laboratory using cyclic triaxial tests or 
backcalculated using standard backcalculation procedures. As discussed in the previous section, 
while the MEPDG does allow for the generalized nonlinear, stress-dependent model in the 
design procedure, this approach is not recommended at this time because the performance 
models in the software have not been calibrated for nonlinear conditions; therefore, the MEPDG 
does not discuss the option of backcalculating the k1, k2, and k3 parameters in the nonlinear 
model. The discussion in MEPDG only includes the backcalculation and use of “effective” 
moduli that would account for any stress sensitivity, cracks, or any other anomalies in any layer 

α α 

α α 
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within the existing pavement. For level 2 analysis, correlations with strength test data are used. 
For level 3, the guide lists typical modulus values based on soil classification but warns that they 
are very approximate and strongly recommends some form of testing, especially using FWD 
testing and backcalculation (level 1).(1)  

The MEPDG notes that the reason for caution is related to using the wrong assumptions. Either a 
fairly strong subgrade material may be erroneously assumed to be semi-infinite while it may 
actually be less than 3 ft thick (e.g., as part of an embankment) or, conversely, a weak subgrade 
soil may be assumed to be semi-infinite while it may, in reality, be overlying a stronger soil or 
bedrock. The MEPDG also notes that for granular materials, moduli values that matched FWD 
backcalculated results were 50- to 70-percent higher than the typical laboratory-tested values, 
while for subgrade soils, they were two to three times the typical laboratory-determined values.(1) 

Cementitiously Stabilized Materials 

Similar to unbound materials, only level 1 analysis calls for FWD testing in rehabilitation and 
reconstruction designs. The modulus, E or Mr, for any cementitiously stabilized layer (including 
lean concrete and cement stabilized base, as well as lime/cement/flyash stabilized soils) can be 
either determined in the laboratory or backcalculated using standard backcalculation procedures. 
Layer thicknesses can be obtained by coring or using NDT techniques such as the GPR. The 
MEPDG recommends performing limited testing on cored lime-stabilized soil specimens to 
verify/confirm the backcalculated values and notes that backcalculation of modulus values for 
layers less than 6 inches thick located below other paving layers may be problematic, thus 
requiring laboratory testing. For level 2 analysis, correlations with strength test data are used. For 
level 3, the MEPDG calls for estimating the moduli based on experience or historical records and 
lists typical modulus values. The MEPDG also notes that semi-rigid cementitiously stabilized 
materials are more prone to deterioration due to repeated traffic loads when used in HMA 
pavements and suggests some typical (minimum) values for such deteriorated materials.(1) 

Using Static Backcalculation in the Current MEPDG Procedure 

It should be clear from the previous discussion that the analysis in the MEPDG software always 
uses an E* master curve and therefore does not accept a constant modulus value for the HMA 
layer(s). This is necessary because the analysis calculates different HMA moduli for the different 
sublayers comprising the HMA layer(s) as a function of depth, speed, and temperature, as 
explained in appendix CC of the MEPDG.(1) For rehabilitation of existing pavements, the current 
MEPDG procedure (level 1) calls for (static) backcalculation of layer moduli, which leads to 
constant backcalculated moduli for all layers, including the HMA layer. To maintain 
compatibility of backcalculated layer moduli with the forward analysis in the software, the 
MEPDG procedure calls for adjusting the HMA dynamic modulus using the damage factor dj 
(ratio of backcalculated HMA modulus to predicted E* value using Witczak equation). This 
effectively shifts the undamaged master curve down while essentially maintaining the variation 
with frequency as predicted by the Witczak equation. The procedure also calls for adjusting the 
master curve using the aged viscosity value in the predictive E* equation, which would shift the 
master curve upward; however, this upward shift would be negligible compared with the 
downward shift using the backcalculated modulus for the damaged HMA layer, Ei (as explained 
previously in the HMA Materials section). 



 

30 

Feasibility of Using Dynamic Backcalculation for Future Versions of MEPDG 

Ideally, one should be able to determine a curve of HMA layer moduli as a function of frequency 
using a (dynamic) frequency-based backcalculation algorithm. This would give a more direct 
estimation of the HMA layer modulus with frequency from actual field conditions as opposed to 
relying on a laboratory-derived curve such as the Witczak equation. However, care should be 
taken in interpreting and using such data with the existing MEPDG performance predictions 
because they have been calibrated using laboratory-derived moduli. Also, recent analyses 
showed that while dynamic backcalculation methods can backcalculate layer moduli and 
thicknesses accurately from synthetically generated FWD data for pavement systems with three 
or more layers, they must address some serious challenges when using field data.(43) The 
frequency-domain method can lead to large errors if the measured FWD records are truncated 
before the motions fully decay in time. Dynamic, time-domain backcalculation algorithms 
present another challenge in that they cannot directly determine the HMA modulus as a function 
of frequency. They either assume a constant HMA modulus (similar to static backcalculation) or 
a prescribed function of the HMA layer modulus with frequency.  

 



 

31 
 

CHAPTER 3. LTPP DATA ANALYSIS 

This chapter describes the results of the statistical analysis performed on a relatively large 
sample of FWD data from the LTPP database to assess the following: (1) prevalence of dynamic 
effects, (2) prevalence of nonlinear behavior; and (3) measurement issues based on evidently 
erroneous deflection sensor time histories. The data cover all climatic zones, seasons, and 
temperature ranges.  

PRELIMINARY STATISTICAL ANALYSIS OF LTPP FWD LOADING HISTORIES 

For this analysis, the research team randomly selected 1,224 tests (17 States, 6 sections per State, 
3 stations per section, and 4 load levels). Table 4 summarizes the data extracted from the LTPP 
database. The time-history plots for each test were visually reviewed, and then the sections were 
classified using the following criteria:  

• Dynamic behavior: Vibrations in the deflection histories. 
• Nonlinear behavior: The load-to-deflection ratio shows a consistent trend with load level. 

Table 4. LTPP sections used in the statistical analysis. 

State Section Date Time LTPP Code Climate Zone 

Alabama 

10101 20050428 16:00 SPS-1 WNF 
10102 20050429 9:00 SPS-1 WNF 
10103 20050429 13:30 SPS-1 WNF 
10505 20050421 9:00 SPS-5 WNF 
10504 20050420 15:00 SPS-5 WNF 
10504 20090324 16:00 SPS-5 WNF 

Arizona 

40502 20080915 13:37 SPS-5 DNF 
40506 20080915 11:00 SPS-5 DNF 
40509 20080915 10:00 SPS-5 DNF 
41003 20110326 11:45 GPS-6S DNF 
41006 20110223 10:00 GPS-6S DNF 
41024 20070116 11:00 GPS-6S DF 

Arkansas 

50113 20050512 11:00 SPS-1 WNF 
50115 20050511 11:15 SPS-1 WNF 
50117 20050511 13:30 SPS-1 WNF 
50118 20050510 14:00 SPS-1 WNF 
50122 20050510 9:30 SPS-1 WNF 
50123 20050510 10:30 SPS-1 WNF 
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State Section Date Time LTPP Code Climate Zone 

California 

62038 20110415 10:00 GPS-6B WNF 
62038 20100507 8:37 GPS-2 WNF 
67491 20101207 12:30 GPS-6S DNF 
68150 20100316 12:15 GPS-6B DNF 
68153 20090730 13:36 GPS-6B DNF 
68156 20110322 13:30 GPS-1 DNF 

Colorado 

81029 20101026 13:18 GPS-6 DF 
81053 20101027 12:30 GPS-6 DF 
87035 20101013 11:40 GPS-7 DF 
87780 20101015 12:35 GPS-6 DF 
87781 20110928 12:00 GPS-6 DF 
87783 20101021 12:14 GPS-6 DF 

Florida 

120101 20090506 12:00 SPS-1 WNF 
120105 20050117 13:45 SPS-1 WNF 
120161 20050117 10:15 SPS-1 WNF 
120502 20090504 10:30 SPS-5 WNF 
120508 20090504 15:00 SPS-5 WNF 
120509 20090504 17:00 SPS-5 WNF 

Georgia 

130502 20050503 13:00 SPS-5 WNF 
130508 20050503 10:00 SPS-5 WNF 
130566 20050505 10:00 SPS-5 WNF 
130563 20050505 9:00 SPS-5 WNF 
134096 20090331 9:30 GPS-2 WNF 
134420 20090514 11:00 GPS-6 WNF 

Idaho 

161001 20090410 10:15 GPS-1 DF 
161007 20110622 11:15 GPS-6 DF 
161020 20110428 12:00 GPS-1 DF 
161020 20111003 11:35 GPS-1 DF 
165025 20090422 8:40 GPS-7 DF 
169034 20110525 11:55 GPS-1 DF 

Illinois 

171002 20090408 13:40 GPS-1 WF 
171003 20050525 13:10 GPS-1 WF 
17A310 20040901 12:37 SPS-3 WF 
17B320 20040526 10:17 SPS-3 WF 
17A340 20040902 11:00 SPS-3 WF 
17B350 20040527 12:15 SPS-3 WF 
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State Section Date Time LTPP Code Climate Zone 

Louisiana 

220113 20100219 15:40 SPS-1 WNF 
220115 20100219 12:10 SPS-1 WNF 
220117 20100219 13:00 SPS-1 WNF 
220119 20100218 10:20 SPS-1 WNF 
220121 20100218 12:52 SPS-1 WNF 
220123 20100218 15:20 SPS-1 WNF 

Maryland 

240504 20090408 13:40 SPS-5 WF 
240505 20050525 13:10 SPS-5 WF 
240563 20050629 12:37 SPS-5 WF 
240903 20100622 10:17 SPS-9 WF 
242401 20101202 11:00 GPS-2 WF 
242805 20100623 12:15 GPS-6 S WF 

Michigan 

260115 20101110 12:40 GPS-6S WF 
260116 20101109 10:00 GPS-6S WF 
260118 20101108 9:30 GPS-6S WF 
260123 20101109 12:00 GPS-6S WF 
260124 20101109 11:00 GPS-6S WF 
260159 20101109 9:00 GPS-6S WF 

Montana 

300113 20100712 10:15 SPS-1 DF 
300115 20100712 11:15 SPS-1 DF 
300117 20100713 12:00 SPS-1 DF 
300121 20100714 8:40 SPS-1 DF 
300123 20100713 11:55 SPS-1 DF 
300119 20100713 11:35 SPS-1 DF 

Nevada 

320101 20090622 10:15 SPS-1 DF 
320102 20040331 11:15 SPS-1 DF 
320106 20090623 12:00 SPS-1 DF 
320108 20090623 11:35 SPS-1 DF 
320110 20050322 8:40 SPS-1 DF 
320112 20090623 11:55 SPS-1 DF 

Oklahoma 

400114 20100317 9:45 SPS-1 DNF 
400116 20100317 12:20 SPS-1 DNF 
400118 20100317 11:00 SPS-1 DNF 
400120 20100318 10:30 SPS-1 DNF 
400121 20100318 11:45 SPS-1 DNF 
400124 20100318 14:30 SPS-1 DNF 
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State Section Date Time LTPP Code Climate Zone 

Texas 

480901 20101005 9:50 SPS-9N DNF 
480903 20101005 12:00 SPS-9N DNF 
481092 20101006 14:15 GPS-1 DNF 
481096 20101006 10:00 GPS-1 DNF 
482108 20110131 14:00 GPS-2 WNF 
483865 20110715 10:45 GPS-1 DNF 

Washington 

530801 20110512 10:00 SPS-8 DF 
530801 20090415 9:48 SPS-8 DF 
530802 20110512 11:18 SPS-8 DF 
531005 20090408 9:53 GPS-6B DF 
536056 20100520 14:00 GPS-6A DF 
537322 20090413 12:18 GPS-6D DF 

SPS = Specific pavement studies. 
GPS = General pavement studies. 
WF = Wet freeze. 
WNF = Wet no-freeze. 
DF = Dry freeze. 
DNF = Dry no-freeze. 

Figure 13 and figure 14 show examples of FWD time histories exhibiting free vibrations 
(dynamic behavior) and no dynamic behavior, respectively. Figure 15 and figure 16 show 
examples of nonlinear behavior with stress stiffening and softening, respectively.  

The research team observed that dynamics were present in about 65 percent of the cases while 
nonlinearity could be prevalent in a range of as low as 24 percent of the cases to as high as 
65 percent of the cases, depending on severity level and sensor location. Nonlinearity was more 
prevalent for the sensors that were far from the center of the load. A more detailed analysis was 
performed to identify when dynamics and nonlinearity were prevalent.  
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Figure 13. Graph. Example of time histories showing dynamic behavior for LTPP section 

161020, station 1. 

 
Figure 14. Graph. Example of time histories showing no dynamic behavior for LTPP 

section 169034, station 3. 
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Figure 15. Graph. Example of stiffening behavior for LTPP section 81053, station 3. 

 
Figure 16. Graph. Example of softening behavior for LTPP section 87781 station 3. 
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DETAILED STATISTICAL ANALYSIS 

Dynamic Behavior 

As explained above, the time-histories plots for each test were visually reviewed, and then the 
sections were classified as follows: (1) season, (2) air temperature, (3) wet/dry, or (4) freeze/no 
freeze. Figure 17 shows the percentage of sections per category where dynamics were prevalent.  

The results showed no particular trend with season and temperature, and the sections in the dry 
and freeze climate zones appeared to be more prone to dynamic behavior. t-tests were performed 
to assess whether the means of the two groups (wet/dry and freeze/no freeze) were statistically 
different from each other. Table 5 shows the results of the t-tests. The analysis showed that the 
difference between dry and wet as well as freeze and no-freeze was statistically significant, with 
dynamics statistically more prevalent in dry freeze sections (figure 18). 
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Figure 17. Graphs. Preliminary results—evidence of dynamic behavior by climatic 
information: classification by season (top), temperature (middle), and climate zone 

(bottom). 
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Table 5. LTPP sections used in the statistical analysis. 

Statistics Wet Dry Freeze No-Freeze 
Mean percentage of dynamic cases 
(dynamic = 1; no dynamics = 0) 

0.46 0.84 0.79 0.55 

Variance 0.10 0.03 0.04 0.11 
Number of observations 51 51 49 53 
Hypothesized mean difference 0 0 
Degree of freedom 81 84 
t stat -7.15 4.54 
p-value1 0.00 0.00 

1Statistically significant if less than 0.05. 

 
Figure 18. Graph. Mean and standard deviation of percent of sections with dynamics for 

wet/dry and freeze/no freeze. 

Nonlinear Behavior 

The following two separate analyses were considered to determine when nonlinearity was 
prevalent: (1) using all the sections that showed a nonlinear behavior and (2) using only the sites 
that exhibited no dynamics. The purpose of the second analysis was to investigate the interaction 
between dynamic and nonlinear effects because both affect the farther sensors. However, the 
number of sections for the second analysis was small (91 sections) and did not cover all climatic 
zones, seasons, and temperature ranges, which made the results from the second analysis not 
reliable. Therefore, only the results from the analysis using all the data are reported. In the 
analysis, the sections were classified as follows according to the slope of the load-to-deflection 
ratio trend: 

• Softening: The slope is negative. 
• Stiffening: The slope is positive.  
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Table 6 and figure 19 show the distributions of load-to-deflection slope for all sensors. It can be 
seen that the slope was mainly within ±20-percent range and that it shifted from more positive 
(stiffening) to more negative (softening) with increasing sensor number, i.e., increasing sensor 
distance from the load. This means that, as expected, stress softening was more prevalent in the 
lower pavement layers. 

Table 6. Distribution of load-to-deflection slope by sensor. 

Slope 
(percent)1 

Frequency (percent) 
Sensor 

1 
Sensor 

2 
Sensor 

3 
Sensor 

4 
Sensor 

5 
Sensor 

6 
Sensor 

7 
Sensor 

8 
-40 0 0 0 0 0 0 1 1 
-35 0 0 0 0 0 0 1 1 
-30 0 0 0 0 0 1 1 1 
-25 0 0 0 1 2 1 3 3 
-20 0 1 2 3 4 4 4 4 
-15 3 4 5 7 8 6 6 6 
-10 8 9 12 13 14 16 15 15 
-5 17 16 16 16 20 26 23 23 
0 23 26 24 26 23 22 21 21 
5 26 22 19 16 16 13 17 17 
10 10 11 10 10 9 8 6 6 
15 7 7 7 5 3 1 3 3 
20 4 3 3 2 1 0 0 0 
25 1 1 1 0 0 0 0 0 
30 1 1 0 0 0 0 0 0 

1Stiffening when negative slope and softening when positive slope. 
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Figure 19. Graphs. Distribution of load-to-deflection slope by sensor. 
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To further examine the degree of nonlinearity observed, the research team filtered the data by 
varying the minimum threshold on the slope for defining when nonlinear behavior was observed. 
For example, if the threshold for nonlinear behavior was ±5 percent, then any section that 
exhibited a load-to-deflection slope of more than ±5 percent would be considered as exhibiting 
nonlinear behavior (stiffening if the slope was positive and softening if the slope was negative). 
The thresholds were set at 5, 6, 7, 8, 9, and 10 percent. Table 7, figure 20, and figure 21 show the 
percent of sections showing linear versus nonlinear behavior for the various thresholds and for 
each sensor. The table and figures also show the split between stiffening versus softening 
behavior (within those exhibiting nonlinear behavior).  

Table 7. Distribution of linear versus nonlinear behavior by sensor and percent slope. 
Threshold 

Slope 
(percent) Category 

Percent of Stations 
Sensor 

1 
Sensor 

2 
Sensor 

3 
Sensor 

4 
Sensor 

5 
Sensor 

6 
Sensor 

7 
Sensor 

8 

5 

Linear 48 47 43 41 39 35 36 38 
Nonlinear 52 53 57 59 61 65 64 62 
Stiffening 45 43 37 31 23 15 15 15 
Softening 55 57 63 69 77 85 85 85 

6 

Linear 55 53 50 49 47 42 44 43 
Nonlinear 45 47 50 51 53 58 56 57 
Stiffening 47 43 37 29 20 15 12 14 
Softening 53 57 63 71 80 85 88 86 

7 

Linear 63 59 56 55 54 49 50 50 
Nonlinear 37 41 44 45 46 51 50 50 
Stiffening 51 44 37 28 19 13 9 12 
Softening 49 56 63 72 81 87 91 88 

8 

Linear 69 65 61 58 58 57 58 56 
Nonlinear 31 35 39 42 42 43 42 44 
Stiffening 54 43 36 29 19 11 8 12 
Softening 46 57 64 71 81 89 92 88 

9 

Linear 72 69 66 63 62 66 64 62 
Nonlinear 28 31 34 37 38 34 36 38 
Stiffening 55 46 37 28 18 7 9 13 
Softening 45 54 63 72 82 93 91 87 

10 

Linear 76 74 69 68 68 69 69 67 
Nonlinear 24 26 31 32 32 31 31 33 
Stiffening 54 46 36 25 14 6 7 11 
Softening 46 54 64 75 86 94 93 89 
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Figure 20. Graphs. Distribution of linear versus nonlinear behavior for 5- to 7-percent 

threshold load-to-deflection slope. 
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Figure 21. Graphs. Distribution of linear versus nonlinear behavior for 8- to 10-percent 

threshold load-to-deflection slope. 

The results showed a trend of increasing nonlinearity and more softening as sensor number 
increased and as the sensor distance from the load increased. This means that, as expected, 
nonlinearity was more prevalent in the farther sensors, which reflected the behavior of the 
underlying deeper layers, and that these materials showed much more stress softening than stress 
stiffening behavior. 

Assuming a minimum slope of ±5 percent as a threshold for defining nonlinear behavior, the 
lowest percent of sections with nonlinear behavior was 52 percent (sensor 1) while the highest 
was 65 percent (sensor 6). Increasing the threshold to ±10 percent reduced these percentages by 
about half; the lowest percent of sections with nonlinear behavior became 24 percent, and the 
highest became 33 percent. 

Within the sections exhibiting nonlinear behavior, the percent of sections showing stress 
softening versus stress stiffening was fairly similar irrespective of the threshold on the slope. The 
split was about 50-percent softening and 50-percent stiffening for the close sensors and gradually 
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shifted to about 85- to 90-percent softening and 10- to 15-percent stiffening for the intermediate 
and most distant sensors. 

The sections were also classified by: (1) season, (2) temperature, (3) wet/dry, or (4) freeze/no 
freeze for each sensor, with the nonlinearity threshold slope set at ±5 percent. Figure 22 through 
figure 24 show the percentage of sections by season, temperature, and climatic zone, 
respectively, for each sensor where nonlinearity was prevalent. 

Figure 22 shows that the percent of sections that exhibited nonlinearity for sensors 1 through 5 
was generally highest for summer, followed by fall and spring, and lowest in winter. Sensors 6 
through 8 exhibited more nonlinear behavior in the fall. The trend with seasons suggests that 
nonlinearity is more prevalent when the pavement system is less stiff, as expected. This trend 
was also generally true with temperature, as shown in figure 23, although there was more 
variability in the data. Figure 24 shows that there was no particular trend with climatic zone, 
however. Nonlinear and linear behavior seems to have been evenly split between wet and dry 
climates and freeze and no-freeze climates. t-tests were performed to assess whether the means 
of the two groups (wet/dry and freeze/no freeze) were statistically different from each other for 
all the sensors. Table 8 shows the results of the t-tests. It appears that climate had no effect on 
the number of sections that exhibited nonlinearity. Table 9 show the distribution of load-
deflection slope by sensors in sections that exhibited nonlinearity. 
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Figure 22. Graphs. Percent of sections by season where nonlinear behavior was prevalent. 
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Figure 23. Graphs. Percent of sections by temperature where nonlinear behavior was 

prevalent. 
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Figure 24. Graphs. Percent of sections by climate zone where nonlinear behavior was 

prevalent. 
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Table 8. Results of the t-tests on nonlinearity for wet/dry and freeze/no freeze conditions 
for all sensors. 

Sensor 

Mean 
(percent) 

p-Value Significance 

Mean 
(percent) 

p-Value Significance Wet Dry Freeze 
No 

Freeze 
1 43.2 57.2 0.07 No 45.4 54.7 0.24 No 
2 51.0 56.9 0.47 No 53.9 54.0 0.99 No 
3 59.5 57.6 0.81 No 56.1 60.8 0.56 No 
4 64.6 56.9 0.33 No 57.1 64.1 0.38 No 
5 69.0 57.8 0.13 No 61.5 65.1 0.64 No 
6 71.8 64.3 0.26 No 69.6 66.6 0.65 No 
7 68.1 63.6 0.51 No 64.9 66.8 0.78 No 
8 67.5 60.6 0.30 No 62.3 65.7 0.61 No 

Table 9. Distribution of load-deflection slope by sensor. 
Slope1 

(percent
) 

Frequency (percent) 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 
-40 0 0 0 0 0 0 0 1 
-35 0 0 0 0 0 0 0 1 
-30 0 0 0 1 0 0 0 0 
-25 0 0 0 1 0 0 1 2 
-20 0 0 1 3 4 3 4 4 
-15 4 3 5 7 11 10 6 5 
-10 7 12 19 22 24 23 22 15 
-5 21 19 18 19 22 32 31 29 
0 32 35 36 36 25 21 21 22 
5 26 22 14 10 9 7 9 11 

10 8 7 5 1 3 1 4 5 
15 1 1 1 1 1 1 1 4 
20 1 1 1 0 0 0 1 0 
25 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 

1Negative slope means stress-softening; positive slope means stress-stiffening. 

MEASUREMENT ISSUES 

During the analysis of the LTPP FWD data, signs of measurement issues were also encountered 
in some tests. Figure 25 presents some samples of these errors. These issues included erroneous 
deflection sensors (middle row: section 130508 station 1 and section 130566 station 1) or drift 
(bottom row, left: section 260116 station 1), or data truncation (top row: section 220125 station 3 
and section 220125 station 6; and bottom row, left: section 482108 station 1).  
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Figure 25. Graphs. Examples of measurement issues. 

CONCLUSION 

In this chapter, detailed exploratory analyses on a relatively large sample of FWD test results from 
the LTPP database were conducted to assess (1) prevalence of dynamics, (2) prevalence of 
nonlinear behavior, and (3) measurement issues based on apparently erroneous deflection sensor 
time histories. The data covered all climatic zones, seasons, and temperature ranges. It was 
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observed that dynamics were present in about 65 percent of the cases, while nonlinearity could be 
prevalent in a range as low as 24 percent of the cases to as high as 65 percent of the cases, 
depending on severity level and sensor location. Nonlinearity was more prevalent for the sensors 
that were far from the center of the load. Because of the prevalence of dynamic behavior (in the 
form of free vibrations of deflection sensor time histories) observed in the large sample of LTPP 
FWD test data, it was hypothesized that in the great majority of the cases, the stiff layer condition 
might not correspond to the presence of shallow bedrock. Such bedrock would be highly unlikely 
given that it typically lies at much greater depths. Instead, the stiff layer condition could be 
manifested anytime the soils below the subgrade layer are stiffer than the subgrade layer itself. This 
could be caused by increased confinement with depth, overconsolidation, or existence of a shallow 
groundwater table, for example; these situations are very common in any soil profile. This would 
explain the high percentage of sections from the LTPP database that showed dynamic behavior. 



 

 



 

53 

CHAPTER 4. VISCOELASTIC APPROACH 

Flexible pavements are multilayered structures typically with viscoelastic AC as the top layer 
and with unbound/bound granular layers below it. The combined response of linear viscoelastic 
and elastic materials that are in perfect bonding is linear viscoelastic. Assuming there is full 
bonding between the asphalt layer and the underlying base and subgrade layers, the overall 
response of the entire pavement system becomes viscoelastic. The characteristic mechanistic 
properties of an isotropic-thermorheologically simple viscoelastic systems are the relaxation 
modulus E(t), the creep compliance D(t), the complex (dynamic) modulus |E*|, and the time-
temperature shift factors (aT(T)). These characteristic properties are often expressed at a specific 
reference temperature, in terms of a “master curve.” For thermorheologically simple materials, 
these characteristic properties can be generated at any time (or frequency) and temperature using 
the time-temperature superposition principle. It can be shown that if any of the three properties 
E(t), D(t), or |E*| is known, the other two can be obtained through an interconversion method 
such as the Prony series.(57) The dynamic modulus (|E*|) master curve of an AC layer is a 
fundamental material property that is required as an input in the MEPDG for a flexible pavement 
analysis. Knowledge of the |E*| master curve of an in-service pavement using FWD data can lead 
to a more accurate estimation of its remaining life and rehabilitation design.  

The specific objectives of this component of the project were to (1) develop a layered 
viscoelastic flexible pavement response model in the time domain; (2) investigate whether the 
current FWD testing protocol generated data that were sufficient to backcalculate the |E*| master 
curve using such a model; and (3) if needed, recommend enhancements to the FWD testing 
protocol to be able to accurately backcalculate the |E*| master curve as well as the unbound 
material properties of in-service pavements. Readers should note that the methods presented in 
this report were developed for a single AC layer. However, in-service pavements may be 
composed of multiple layers of different types of asphalt mixtures. In such cases, the present 
form of the backcalculation algorithms would provide a single equivalent |E*| master curve for 
the asphalt mixture sublayers. 

The models presented in this chapter can consider the unbound granular material as both linear 
elastic as well as nonlinear stress-dependent material. Depending on the assumed unbound 
granular material property, two generalized viscoelastic flexible pavement models were 
developed. The developed forward and backcalculation models for linear viscoelastic AC and 
elastic unbound layers are referred to as LAVA and BACKLAVA, respectively, in this report. 
The developed forward and backcalculation models for linear viscoelastic AC and nonlinear 
elastic unbound layers are termed LAVAN and BACKLAVAN, respectively, in the report. The 
LAVA and BACKLAVA algorithms assumed a constant temperature along the depth of the AC 
layer. The algorithms were subsequently modified for the temperature profile in the AC layer, 
and modified versions are referred to as LAVAP and BACKLAVAP in this report. The 
viscoelastic properties backcalculated from FWD data included two functions—a time function 
and a temperature function. The time function referred to the relaxation modulus master curve 
E(t,T0) in which t was physical time and T0 was the corresponding (constant) reference 
temperature. The temperature function referred to the time-temperature shift factor aT(T), which 
was a positive definite dimensionless scalar. In the present study, AC was assumed to be 
thermorheologically simple, which allowed applying E(t,T0) for any temperature level T 
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(different than T0) by simply replacing physical time with a reduced time tR = t/aT(T); therefore, 
aT(T) is a function of both T and T0, such that aT(T)=1 if T = T0.  

Typically, a load-displacement history of 60 ms is recorded in an FWD test (which constitutes 
25 to 35 ms of applied load pulse); it is generally observed that the later portion of deflection 
history (after the peak) is not reliable. This is due to the numerical error generated by velocity 
integration. (Most FWD sensors measure velocity or acceleration, which is integrated to obtain 
the deflections.) This can give only limited information about the time-varying E(t) behavior of 
the AC layer. However, in theory, it should be possible to obtain the two sought-after functions 
(i.e., E(t) and aT(T)). In this report, two different approaches are discussed to obtain the 
comprehensive behavior of asphalt: (1) using series of FWD deflection time histories at different 
temperature levels and (2) using uneven temperature profile information existing across the 
thickness of the asphaltic layer during a single or multiple FWD drops deflection histories.(59,60) 
Both of the models are presented in detail. Finally, the models were validated using frequency 
and FEM-based solutions. 

Further, the effect of FWD test temperatures and number of surface deflection sensors on 
backcalculation of the |E*| master curve were studied. These suitable FWD test data 
requirements are discussed in the key findings from the study. 

LAYERED VISCOELASTIC (LAVA) PAVEMENT MODEL 

Traditionally, flexible pavements are analyzed using analytic multilayered elastic models (e.g., 
KENLAYER, BISAR, and CHEVRONX), which are based on Burmister’s elastic solution of 
multilayered structures. (See references 21, 23, 27, and 61–64.) These models assume the 
material in each pavement layer is linearly elastic. However, the AC (typically the top layer) is 
viscoelastic at low strain.(60,65,66) As with any viscoelastic material, it shows properties dependent 
on time (or frequency) as well as temperature. 

In the proposed approach, the AC pavement system was modeled as a layered half-space, with 
the top layer as a linear viscoelastic solid. All other layers (base, subbase, subgrade, and 
bedrock) in the pavement were assumed linear elastic. Assuming there was full bonding between 
the AC layer and the underlying base and subgrade layers, the overall response of the entire 
pavement system became viscoelastic. Therefore, its response under arbitrary loading was 
obtained using Boltzmann’s superposition principle (i.e., the convolution integral) as shown in 
figure 26.(65,66) 

 
Figure 26. Equation. Boltzmann’s superposition principle. 
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Where: 

Rve(x,y,z,t) I = the linear viscoelastic response at coordinates (x,y,z) and time t. 
 = the (unit) viscoelastic response of the pavement system to a Heaviside step 

function input (H(t)). 
dI( ) is the change in input at time .  

It is worth noting that for a uniaxial viscoelastic system (e.g., a cylindrical AC mixture), if 
response Rve= (t) = strain, then  = D(t) = creep compliance and I(t) = (t) = stress. Using 
Schapery’s quasi-elastic theory, the viscoelastic response at time t to a unit input function was 
efficiently and accurately approximated by the elastic response obtained using relaxation 
modulus at time t as shown in figure 27.(67,68) 

 
Figure 27. Equation. Quasi-elastic approximation of a unit response function such as the 

creep compliance.. 

Where  is the unit elastic response at elastic modulus equal to relaxed modulus 
(E(t)). Flexible pavements are exposed to different temperatures over time, which in turn 
influence their response. For thermorheologically simple materials, this variation in response can 
be predicted by extending the equations shown in figure 26 and figure 27 to the equation shown 
in figure 28. 

 
Figure 28. Equation. Hereditary integral using quasi-elastic approximation of a unit 

response function such as the creep compliance.. 

Where: 

tR = t/aT(T). 
 is the shift factor at temperature T. 

Tref I = the reference temperature 
a1 and a2 are the shift factor’s polynomial coefficients. 

Using figure 28, the formulation for predicting vertical deflection of a linear viscoelastic AC 
pavement system subjected to an axisymmetric loading can be expressed as the equation shown in 
figure 29. 
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Figure 29. Equation. Hereditary integral using quasi-elastic approximation of unit vertical 

deflection at the surface. 

Where: 

 = the viscoelastic response of the viscoelastic multilayered structure at time t and 
coordinates (r,z). 

 i= the elastic unit response of the pavement system at reduced time tR 
due to the unit (Heaviside step) contact stress (i.e., (t )= 1). 

is the applied stress at the pavement surface. 

Detailed derivation of the equation in figure 29 can be found in Levenberg’s research and are not 
repeated here for brevity.(69) In this implementation, the vertical surface displacements, i.e., 

values at the points of interest, were computed using the CHEVRONX layered 
elastic analysis program. Then the convolution integral in figure 29 was used to calculate the 
viscoelastic deflection uve(t). A description of the algorithm is given in the following section. 

Layered Viscoelastic (Forward) Algorithm (LAVA) 

The algorithm steps were as follows: 

1. Define the geometric (layer thicknesses, contact radius) and material (E(t), Ebase, Esubgrade, and 
Poisson’s ratio) properties of a layered system similar to the one in figure 30. 

2. Select a stress versus time history ( (t)) and divide the data into Ns discrete intervals as 
shown in figure 31. 

 
Figure 30. Diagram. Typical flexible pavement geometry for analysis. 
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Figure 31. Graph. Discretization of stress history in forward analysis. 

3. Divide the relaxation modulus master curve into NE, the number of time steps in log scale. The 
relaxation modulus E(t) can be approximated with a sigmoid function as shown in figure 32. 

 
Figure 32. Equation. Sigmoid form of relaxation modulus master curve. 

Where tR is the reduced time (tR = t/aT(T)) and ci are sigmoid coefficients. The shift factor 
coefficients were computed using the second order polynomial given in figure 33. 

 
Figure 33. Equation. Shift factor coefficient polynomial. 

Where a1 and a2 are the shift factor coefficients. 

4. Calculate the elastic response (i.e., vertical surface deflections) of the structure to a unit 
stress using E(ti) evaluated at different reduced times (i.e., t1, t2, t3 ….tNE). In this 
implementation, the surface deflections at several radial distances to a circular plate load 
shown in figure 30 were of interest. Therefore, these surface deflections were computed 
using the CHEVRONX program with the AC modulus value corresponding to different times 
in figure 34 (i.e., E(t1), E(t2), E(t3), E(t4)… E(tNE)) as shown in figure 35.(67,68) 
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Figure 34. Graph. Discretization of the relaxation modulus master curve. 

 
Figure 35. Equation. Quasi-elastic approximation of unit vertical deflection at the surface. 

The equation in figure 35 is calculated using E(ti) where i = 1,2,3…NE. Figure 36 shows the 
 values calculated for points at different distances from the centerline of the circular load 

at the surface. These curves are called unit response master curves. 

 
Figure 36. Graph. Deflections calculated under unit stress for points at different distances 

from the centerline of the circular load at the surface. 

5. Calculate the viscoelastic response using the discrete form of figure 29 given in figure 37. The 
equation was evaluated at each discrete time t using the stress history shown in figure 38. 
Figure 38 illustrates the d ( j) in figure 37 for each time step j.  
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Figure 37. Equation. Discrete formulation. 

Where I = 1,2,…Ns. 

 
Figure 38. Graph. d ( j) for each time step j. 

To illustrate an example, the viscoelastic surface deflections of the three-layer pavement 
structure shown in figure 39 were computed. Figure 40 shows the vertical surface deflections at 
points located at different radial distances from the centerline of the load. Figure 40 clearly 
shows the relaxation behavior of deflection at each point. 

 
Figure 39. Diagram. Example problem geometry. 
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Figure 40. Graph. Examples of computed viscoelastic surface deflections at different radial 

distances from the centerline of the load. 

One of the primary reasons for implementing Schapery’s quasi-elastic solution is its extreme 
computational efficiency. Using a Pentium 2.66 GHz computer with 3.25 gigabytes (GB) of 
random access memory (RAM), the computation of the results shown in figure 40 took 1.96 s to 
calculate the solution for the three-layer system shown in figure 39 and NS = 50, NE = 50.  
Table 10 shows the computation times for different numbers of discrete time steps in the three-
layer system. 

Table 10. LAVA computation times for different numbers of discrete time steps. 

NS NE Computation Time (s) 
50 50 1.96 
24 100 2.88 
50 100 3.03 
100 100 3.05 
100 200 5.01 
200 200 5.13 

 
Verification of the Proposed Layered Viscoelastic Solution (LAVA) 

The layered viscoelastic algorithm was verified by using two pavement structures selected from 
the SPS-1 experiment of the LTPP database (table 11). Surface deflections at different radial 
distances due to a circular loading pulse of 0.045 s followed by 0.055-s rest period were 
calculated using two commonly known software packages, SAPSI and LAMDA, and compared 
with the layered viscoelastic solution implemented in this research. SAPSI is based on damped-
elastic layer theory and FEM, whereas LAMDA is based on the spectral element technique, 
axisymmetric dynamic solution.(32,2) These software packages were selected because they were 
known to provide robust dynamic solutions, and their algorithms were based on frequency-
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domain calculations. This allows truly independent verification because the layered viscoelastic 
solution is in the time domain, whereas SAPSI and LAMDA are in the frequency domain. 

Table 11. Pavement properties used in LAVA validation with SAPSI and LAMDA. 

Case No. Physical Layer Elastic Modulus 
Thickness 
(inches) Poisson’s Ratio 

116 
AC |E*|-fro 3.9 0.35 
TB base 29 ksi 12.0 0.40 
Subgrade (SS) 14.5 ksi Infinity 0.45 

120 

AC |E*|-fro 3.6 0.35 
PATB base 26.1 ksi 4 0.40 
GB base 21.8 ksi 8 0.40 
Subgrade (SS) 14.5 ksi Infinity 0.45 

TB = Treated base. 
SS = Sandy subgrade. 
PATB = Permeable asphalt treated base. 
GB = Granular base. 

Figure 41 and figure 42 show the comparison between the layered viscoelastic solution and 
solutions calculated with SAPSI and LAMDA. The figures clearly show that the layered 
viscoelastic result matched very well to the SAPSI and LAMDA solutions. Note that the layered 
viscoelastic algorithm did not consider the dynamics, whereas SAPSI and LAMDA did.  

The dynamic solution developed a time delay in response to wave propagation. However, 
because the scope of this portion of the project included the backcalculation of viscoelastic 
characteristics of the AC layer, the effect of dynamics was not considered. Therefore, the time 
delay in dynamic solutions was eliminated by shifting the deflection curves to the left such that 
the beginning of each sensor response matched.  
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VE = viscoelastic. 

Figure 41. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic 
solution for case 116. 
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VE = viscoelastic. 

Figure 42. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic 
solution for case 120. 

IMPLEMENTATION OF TEMPERATURE PROFILE IN LAVA  

Temperature in pavements typically varies with depth, which affects the response of the HMA to 
the applied load. As shown in figure 43, the temperature may increase with depth (profile 1—
linear, 2—piecewise, and profile 3—nonlinear) or decreasing with depth (profile 4—linear, 
profile 5—piecewise, and profile 6—nonlinear) depending on the time of the day. This variation 
in temperature with depth can be approximated with a piecewise continuous temperature profile 
function as shown in figure 43 (profiles 2 and 5). The advantage of using a piecewise function is 
that it can be used to approximate any arbitrary function.  
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Figure 43. Diagram. Schematic of temperature profile. 

An algorithm that considers HMA sublayers with different temperatures within the HMA layer was 
developed and is referred to as LAVAP (T-profile LAVA). The algorithm was compared with 
LAVA as well as ABAQUS. Comparison with LAVA was made for deflection response at all the 
sensors for constant temperature throughout all the sublayers. The pavement section and layer 
properties used in the forward analysis are shown in table 12. Figure 44 shows the response obtained 
from the temperature profile algorithm at 32, 86, and 122 °F matched very well with LAVA.  

Table 12. Pavement properties used in (T-profile LAVA) LAVAP validation with 
ABAQUS. 

Property Constant Temperature 
Temperature Profile 

(Three-Step Function) 
Thickness 
(inches) 

AC sublayers 6  2, 2, 2  
Granular layers 20, infinite 20, infinite 

Poisson ratio {layer 1, 2, 3…} 0.35, 0.3, 0.45 0.35, 0.3, 0.45 
Eunbound {layer 2, 3…}, psi 11,450, 15,000  11,450, 15,000  
Total number of sensors 8 
Sensor spacing from the center of 
load (inches) 

0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, 60 

E(t) sigmoid coefficient {AC} 0.841, 3.54, 0.86, -0.515 0.841, 3.54, 0.86, -0.515 
a(T) shift factor polynomial 
coefficients {AC} 

4.42E-04, -1.32E-01 4.42E-04, -1.32E-01 
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Figure 44. Graphs. Comparison of response calculated using (T-profile LAVA) LAVAP 

and original LAVA. 

To qualitatively examine the response of flexible pavement predicted using the (T-profile LAVA) 
LAVAP algorithm, the response obtained under temperature profile was compared with the 
response obtained under constant temperatures. As an example, a comparison of the response 
under a temperature profile of {104, 86, 68} °F, with that corresponding to a constant temperature 
of 104, 86, and 68 °F for the entire depth, is shown in figure 45, figure 46, and figure 47, 
respectively. It can be seen from the figures that the effect of AC temperature was most prominent 
in sensors closer to the load center (sensors 1 through 4). For sensors away from the loading 
center (sensors 5, 6, 7, and 8), the deflection histories were not influenced by the AC temperature. 
Figure 48 shows the region of the E(t) master curve (at 66.2 °F reference temperature) used by the 
(T-profile LAVA) LAVAP algorithm in calculating time histories.  
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Figure 45. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at 
temperature profile {104, 86, 68} °F and original LAVA at constant 104 °F temperature.  

 
Figure 46. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at 

temperature profile {104, 86, 68} °F and original LAVA at a constant temperature of 86 °F. 
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Figure 47. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at 
temperature profile {104, 86, 68} °F and original LAVA at a constant temperature of 68 °F. 

 
Figure 48. Graph. Region of E(t) master curve (at 66.2 °F reference temperature) used by 

(T-profile LAVA) LAVAP for calculating response at temperature profile {104, 86, 68} °F . 

As expected, for a condition of higher temperature at the top and lower temperature at the 
bottom, the response with a higher constant temperature was always greater than the response 
with a temperature profile. The response with a lower constant temperature was always less than 
the response with a temperature profile. The response with a medium constant temperature may 
or may not be less than the profile response, depending on the temperature profile and thickness 
of the sublayering. 
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Next, the LAVA algorithm was validated against a well-known FEM software, ABAQUS, where 
the temperature profile in the AC layer was simulated as two sublayers of AC with different 
temperatures. For this purpose, two different HMA types were considered, Terpolymer and 
SBS 64-40. The viscoelastic properties of these two mixes are shown in figure 49. As shown in 
table 13, for both mixes, the AC layer was divided into two sublayers, with temperature in the 
top and bottom sublayer assumed to be 66 and 86 °F, respectively.  

 
Figure 49. Graphs. Relaxation modulus and shift factor master curves at a reference 

temperature of 66 °F. 

Table 13. Pavement section used in (T-profile LAVA) LAVAP validation. 

Layer Modulus (E(t) or E) 
Thickness (inches) 
(Temperature °F) 

Poisson’s 
Ratio 

AC Mix 1: Terpolymer (E(t) see figure 49) 
Mix 2: SBS 64-40 (E(t) see figure 49) 

Sublayer1 = 3.94 inches (66 °F) 
Sublayer2 = 3.94 inches (86 °F) 

0.45 

Base 15,000 psi (linear elastic) 7.88 inches 0.35 
Subgrade 10,000 psi (linear elastic) Infinity 0.45 
 
Figure 50 and figure 51 show a comparison of surface deflection time histories measured at radial 
distances of 0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, and 60 inches for mixes 1 and 2. From the 
figures, it can be observed that the results obtained from LAVAP and ABAQUS matched well.  
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Figure 50. Graph. Comparison between LAVAP and ABAQUS at a temperature profile of 

{66, 86} °F (terpolymer). 

 
Figure 51. Graph. Comparison between LAVAP and ABAQUS at a temperature profile of 

{66, 86} °F (SBS 64-40). 

As expected, it can be seen from table 14 that for both mixes, surface deflection in the pavement 
section at the two-step AC temperature profile of {66, 86} °F was between the deflections 
obtained for constant AC temperatures of 66 and 86 °F.  

Table 14. Peak deflections at temperature profile {66, 86}°F and at a constant temperature 
of 86 °F using LAVA. 

Mix Temperature (°F) 
Sensor Deflection (mil) 

1 2 3 4 5 6 7 8 

Terpolymer 
Constant: 66 28.1 24.7 22.5 19.5 16.8 12.4 9.3 7.2 
Profile: 66, 86 33.0 28.1 24.9 20.7 17.3 12.2 9.1 7.0 
Constant 86 38.4 30.9 26.8 21.8 17.8 12.2 8.9 6.9 

SBS 64-40 
Constant 66 35.2 29.1 25.7 21.3 17.6 12.3 9.1 7.0 
Profile: 66, 86 40.9 32.5 27.7 22.0 17.7 12.0 8.8 6.9 
Constant 86 47.6 35.1 29.2 22.7 17.9 12.0 8.7 6.8 
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LAYERED VISCOELASTIC NONLINEAR (LAVAN) PAVEMENT MODEL 

This section presents a computationally efficient layered viscoelastic nonlinear model called 
LAVAN. LAVAN can consider linear viscoelasticity of AC layers as well as the stress-
dependent modulus of granular layers. The formulation was inspired by quasilinear-viscoelastic 
(QLV) constitutive modeling, which is often used in analyzing nonlinear viscoelastic materials. 
In the literature, the various forms of the model are also called Fung’s model, Schapery’s 
nonlinearity model, and modified Boltzmann’s superposition. (See references 70–75.)  

LAVAN combines Schapery’s quasi-elastic theory with generalized QLV theory to predict the 
response of multilayered viscoelastic nonlinear flexible pavement structures. Before introducing 
the generalized QLV model, a brief overview of granular nonlinear pavement models is 
presented. This is followed by development of a generalized QLV model for a multilayered 
system and numerical validation in which the response of flexible pavements under the FWD test 
was analyzed. The model was validated against the general-purpose FEM software, ABAQUS. 

Layered Nonlinear Elastic Solutions 

Under constant amplitude cyclic loading, granular unbound materials exhibit plastic deformation 
during the initial cycles. As the number of load cycles increases, plastic deformation ceases to 
occur, and the response becomes elastic in further load cycles. Often, elastic response in a 
triaxial cyclic loading is defined by resilient modulus (MR) at that load level, which is expressed 
as shown in figure 52. 

 
Figure 52. Equation. Resilient modulus. 

Where: 

d = ( 1 – 3), is the deviatoric stress in a triaxial test. 
rε  = recoverable strain.  

If the granular layer reaches this steady state under repeated vehicular loading, then further 
response can be considered recoverable, and figure 52 can be used to characterize the material. 
The MR value shown in figure 52 is affected by the stress state (or load level). Typically, 
unbound granular materials exhibit stress hardening, i.e., MR increases with increasing 
stress.(76,77) As shown in figure 53, Hicks and Monismith related bulk stress and the resilient 
modulus obtained in figure 53 to characterize the stress dependency of the material.(78)  

 
Figure 53. Equation. Resilient modulus as a function of stress invariant. 
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Where: 

 = the sum of principal stresses (i.e.,  = 1 + 2 + 3) 
k1 and k2 = regression constants.  

The model suggested by Uzan and by Witczak and Uzan (figure 54 and figure 55, respectively) 
incorporated the distortional shear effect into the model using deviatoric and octahedral stresses, 
respectively.(79,80) 

 
Figure 54. Equation. Uzan’s nonlinearity model. 

Where: 

pa = atmospheric pressure. 
 = the sum of principal stresses (i.e.,  = 1 + 2 + 3). 
d = deviatoric stress. 

k1, k2, and k3 = regression constants. 

 
Figure 55. Equation. Witczak and Uzan’s nonlinearity model. 

Where: 

oct = octahedral shear stress. 
pa = atmospheric pressure.  

 = the sum of principal stresses (i.e.,  = 1 + 2 + 3). 
d is deviatoric stress. 

k1, k2, and k3 = regression constants.  

The model has been further modified by various researchers. Yau and Von Quintus analyzed 
LTPP MR test data using the generalized form of the Uzan model expressed as the equation in 
figure 56.(76,79) 

 
Figure 56. Equation. Generalized Uzan’s model. 
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Where k1, k2, k3, k6, k7 are regression constants. They found that parameter k6 regressed to zero 
for more than half of the tests, and hence the coefficient was set to zero for the subsequent 
analysis. The modified equation is shown in figure 57.  

 
Figure 57. Equation. MEPDG model for resilient modulus.  

Although the resilient modulus, MR, is not the Young’s modulus (E), when formulating granular 
material constitutive equations, it is often used to replace E in the equation in figure 58.(81) 

 
Figure 58. Equation. Elasticity constitutive equation. 

Where: 

E = Young’s modulus 
v = Poisson’s ratio. 

ij is the stress tensor. 
ij is the strain tensor.  
kk = ( 11 + 22 + 33). 
ij is the Kroenecker delta. 

Nonlinear MR in flexible pavements has been implemented in many FEM-based models, 
assuming AC layer to be elastic. These include GTPAVE, ILLIPAVE, and MICHPAVE.(82–84) 
Typically, FEM-based nonlinear pavement analysis is performed by choosing a user-defined 
material (UMAT) in FEM-based software packages such as ABAQUS and ADINA.(10,85,86) 
However, although FEM-based solutions are promising, they are computationally expensive.  

An approximate nonlinear analysis of pavement can also be performed using Burmister’s 
multilayered elastic based solution.(62,63) However, because the multilayer elastic theory assumes 
each individual layer is both vertically and horizontally homogeneous, it can be used to depict 
nonlinearity only through approximation. For incorporating variation in modulus with depth, 
Huang suggested dividing the nonlinear layer into multiple sublayers.(27) Furthermore, he 
suggested choosing a representative location in the nonlinear layers to evaluate modulus based 
on the stress state of the point. He showed that when the midpoint of the nonlinear layer under 
the load was selected to calculate modulus values, the predicated response near the load was 
close to the actual response. However, the difference between actual and predicted response 
increased at points away from the loading. Zhou studied stress dependency of base layer 
modulus obtained from base layer mid-depth stress state.(87) He analyzed FWD testing at 
multiple load levels on two different pavement structures. The study showed that reasonable 
nonlinearity parameters k1 and k2 (figure 53) can be obtained, regressing backcalculated modulus 
with stress state at mid-depth of the base layer.  
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In the present study, the elastic nonlinearity was solved iteratively assuming an initial set of 
elastic moduli. The stresses computed at mid-depth of each nonlinear layer using the initial 
values of modulus were used to compute the new set of moduli. The iteration was continued until 
E computed from the stresses predicted by the layered solution and the E used in the layered 
solution converged. Note that the appropriate stress adjustments were made because unbound 
granular material cannot take tension. This means that in such a case, either residual stress would 
be generated such that the stress state obeyed a yield criterion or the tensile stresses would be 
replaced with zero. 

The algorithm developed to obtain response in a nonlinear system was compared with a robust 
nonlinear FEM software—MICHPAVE. The algorithm was compared for the cases when the 
unbound layer was considered as a single layer for nonlinearity calculations (Algorithm1) and 
when the layer was divided into two sections (Algorithm2). The analysis results are presented in 
appendix A. From the results, it was observed that subdividing the unbound base layer into two 
layers for computing nonlinearity did not produce much improvement in the results, hence it was 
decided to use the base layer as a single layer in further analysis. 

Proposed Layered Viscoelastic Nonlinear (LAVAN) Pavement Model  

Mechanistic solutions for nonlinear viscoelastic materials exhibit variation depending on the type 
of nonlinearity present. Typical nonlinear viscoelasticity equations involve convolution integrals 
that are based on unit responses (e.g., relaxation modulus and creep compliance), which are a 
function of stress or strain. Figure 59 and figure 60 show typical forms of such expressions. 

 
Figure 59. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus 

is a function of strain. 

 
Figure 60. Equation. Nonlinear viscoelastic formulation for strain. 

Where: 

 = strain. 
 = stress. 

E(t, ) = strain-dependent relaxation modulus. 
D(t, ) = stress-dependent creep compliance.  

Typically, in many nonlinear materials, the shape of the relaxation modulus of the material is 
preserved, even though the material presents stress or strain dependency.(74,87) Such nonlinear 
viscoelastic (NLV) problems are solved by assuming that time dependence and stress (or strain) 
dependence can be decomposed into two functions as shown in figure 61 and figure 62. 
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Figure 61. Equation. Nonlinear creep compliance formulation. 

 
Figure 62. Equation. Nonlinear relaxation modulus formulation. 

Where: 

g( ) = a function of stress. 
Dt(t) = the (only) time-dependent creep compliance. 
f( ) = a function of strain. 
Et(t) = the (only) time-dependent relaxation modulus.  

For such materials, the expression in figure 63 has been typically used in NLV formulations to 
develop the convolution integral. 

 
Figure 63. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus 

is separated from strain dependence function. 

Where Et is a relaxation function that remains unchanged at any strain level and f( ( )) is a 
function of strain, such that df( ( ))/d  represents the elastic tangent stiffness.  

These models are designated as Fung’s nonlinear viscoelastic material models, which were first 
proposed by Leaderman in 1943.(70) A generalized form of this nonlinearity model was presented 
by Schapery using thermodynamic principles.(71) Yong et al. used the model to describe 
nonlinear viscoelastic viscoplastic behavior of asphalt sand, whereas Masad et al. used the model 
to describe nonlinear viscoelastic creep behavior of binders.(72,73) The model suggests that the 
nonlinear relaxation function can be expressed as a product of the function of time (Et(tR – )) 
and the function of strain df( ( ))/d . In figure 63, nonlinearity was introduced by the elastic 
component, df( ( ))/d , and the viscoelasticity comes from Et. 

Concepts of nonlinear viscoelastic material behavior can be used to develop formulations for a 
layered system where the unbound layer is nonlinear and the AC layer is linear viscoelastic. If 
the previous argument is directly adopted, then the corresponding QLV analysis of viscoelastic 
nonlinear multilayered analysis can be represented as shown in figure 64.  

 
Figure 64. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus 

is separated from strain dependence function and when formulation is applied to a 
multilayered pavement structure. 
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Where Et(x,y,z,tR) is the relaxation function, and f(x,y,z, ( )) is a function of strain ( ) at 
location (x,y,z). Alternatively, to obtain vertical surface deflection in pavements, figure 64 can be 
expressed in terms of vertical deflection response to Heaviside step loading as shown in figure 65.  

 
Figure 65. Equation. Nonlinear viscoelastic formulation for deflection. 

Where: 

uve(t) = the surface (nonlinear viscoelastic) displacement. 
 = the unit nonlinear elastic response due to a unit stress. 

g( ) = a function of stress, which can be expressed as shown in figure 66. 

 
Figure 66. Equation. Nonlinear viscoelastic formulation. 

Where is the nonlinear elastic unit displacement due to a given stress ( ). For 
Fung’s theory to hold (i.e., figure 63 through figure 66), g( ) must be purely a function of stress. 
To investigate this, the g( ) values were computed using figure 66 and plotted against surface 
stress and relaxation modulus (i.e., time). The LAVA algorithm was modified to implement an 
iterative nonlinear solution for the granular base, which was assumed to follow the following two 
nonlinearity expressions: MR = k1( /pa)k2 and MR = k1( /pa)k2( oct/pa + 1)k3. Analysis using the  
k- -τ model is presented here whereas the k-  model is presented in appendix A. The pavement 
section properties and material properties are shown in table 15 and figure 67. 

Table 15. Pavement geometric and material properties for nonlinear viscoelastic pavement 
analysis. 

Property Value 
Thickness (inches) 5.9 (AC), 9.84 (base), infinity (subgrade) 
Poisson ratio (ν) 0.35 (AC), 0.4 (base), 0.4 (subgrade) 
Density (pci) 0.0752 (AC), 0.0752 (base), 0.0752 (subgrade) 
Nonlinear Ebase (psi) k0 = 0.6; k1 = 3,626; k2 = 0.5; k3 = -0.5 
Esubgrade (psi) 10,000 
AC: E(t) sigmoid coefficient (ci) 1.598, 2.937, 0.512, -0.562 
Haversine stress: 35 ms Peak stress = 137.79 psi 
Sensor spacing from the center of 
load (inches) 

0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, 60 
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Figure 67. Diagram. Flexible pavement cross section for nonlinear viscoelastic pavement 

analysis. 

The in figure 66 was calculated at a range of stress values from 0.1 to 140 psi and 
using E(t) values for AC from 10-8 to 108 s. Then,  was calculated for unit stress, and 
g( ) was calculated using figure 66. Figure 68 shows the variation of g( ), where the g( ) values 
decrease with increasing stress ( ).  

 
Figure 68. Graph. Variation of g( ) with stress and E(t) of AC layer. 

This is expected behavior for a nonlinear material because as the stress increases, the unbound 
layer moduli also increase. However, figure 68 also illustrates that the g( ) varies with change in 
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E(t). This means that g( ) is not solely based on the stress, and, as a result, Fung’s model cannot 
be used in a layered pavement structure. This is meaningful because the change in the stress 
distribution within the pavement layers due to viscoelastic effect (as E(t) varies) imposes 
changes in the behavior of stress-dependent granular layer. Note that as shown in appendix A, 
similar results were obtained when nonlinearity of k-  type model was assumed. Hence, even 
though the viscoelastic layer in a nonlinear multilayered system is linear, it cannot be formulated 
as a Fung’s QLV model. The QLV model can still be formulated as a convolution integral, 
provided the stress-dependent relaxation function of the multilayered structure under all the load 
levels is known. Such a generalized QLV model for a multilayered structure can be expressed as 
nonlinear viscoelasticity equations involving the convolution integrals of unit response function 
of the structure, which is a function of stress or strain as shown in figure 69. 

 
Figure 69. Equation. Generalized nonlinear viscoelastic formulation. 

Where: 

Rve(x,y,z,t) = the nonlinear viscoelastic response of the layered pavement structure. 
= the unit response function that is both a function of time. 

input I( ) = stress applied at the surface of the pavement.  

Note that in this formulation, unlike Fung’s QLV model, time dependence and stress (or strain) 
dependence were not separated. 

Forward Algorithm: Numerical Implementation of the Proposed Model (LAVAN) 

Figure 69 can be rewritten in terms of vertical surface deflection under axisymmetric surface 
loading (see figure 67) as shown in figure 70. 

 
Figure 70. Equation. Generalized nonlinear viscoelastic formulation for deflection. 

Where: 

is the vertical deflection at time t and location (z,r). 

 where  is the nonlinear 
response of the pavement at a loading stress level of .  

The model in figure 70 can be expressed in discretized formulation as shown in figure 71. 
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Figure 71. Equation. Discretized nonlinear formulation. 

Where 1 = 0, N = t. The 
 
values are computed via interpolation using the two-

dimensional matrix pre-computed for  (which was computed at a range of stress 
values and E(t) values). The developed model has been referred to as LAVAN (short for LAVA-
Nonlinear) in this report. The following step-by-step procedure can be used to numerically 
compute the response: 

1. Define a discrete set of surface stress values: k = 0.1 to 140 psi. 
2. Calculate nonlinear elastic response ue(tRi, k) at a range of tRi values, by using EAC = E(tRi) 

for each tRi value. Recursively compute Ebase until the stress in the middle of the base layer, at 
a radial distance r, results in the same Ebase as the one used in the layered elastic analysis 
(within acceptable error). For this step, the nonlinear formulation shown in figure 72 is 
assumed for the base. 

 
Figure 72. Equation. Resilient modulus. 

Where: 

 = 1 + 2 + 3 + yz(1 + 2K0) (where K0 is the coefficient of earth pressure at rest).  
oct = octahedral shear stress. 

k1, k2, and k3 = regression constants. 
pa = atmospheric pressure.  

3. Calculate the nonlinear unit elastic response . 

4. Perform convolution shown in figure 71 to calculate the nonlinear viscoelastic response. 

Verification of the LAVAN model  

To validate the LAVAN algorithm, ABAQUS was used. A flexible pavement was modeled as a 
three-layer structure, with a viscoelastic AC top layer over a stress-dependent granular base layer 
on an elastic half-space (subgrade). Figure 67 shows the geometric properties of the pavement 
structure used in the validation, where hAC = 5.9 inches and hbase=9.84 inches. The viscoelastic 
properties of two HMA mixes, called crumb rubber terminal blend (CRTB) and control (two 
materials from FHWA’s Accelerated Load Facility 2002 experiment) were used for the AC layer 
in the analysis as case 1 and 2, relaxation modulus master curve for the two mixes are shown in 
figure 73.(89) These curves were computed from their |E*| master curves by following the 
interconversion procedure suggested by.(58) The pavement properties in the analysis for each test 
case were the same, as shown in figure 15. 
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Figure 73. Graph. Relaxation moduli of mixes used in LAVAN validation. 

In ABAQUS, the viscoelastic properties of the HMAs were input in the form of normalized bulk 
modulus (K) and normalized shear modulus (G).(90) For the unbound nonlinear layer, a UMAT 
was written, incorporating the nonlinear constitutive modeling as explained in the previous 
section. ABAQUS requires that any UMAT have at least two main components: (1) update of the 
stiffness Jacobian Matrix and (2) stress increment. Figure 74 and figure 75 show the 
mathematical expressions for these two operations implemented in the UMAT.  

 
Figure 74. Equation. ABAQUS Jacobian formulation. 

 
Figure 75. Equation. ABAQUS stress update formulation. 

Where J is the Jacobian matrix;  is the updated stress; and i, j, k, and l represent r, z, t, and  
in the cylindrical coordinate system. For nonlinear analysis using LAVAN, the unbound modulus 
was calculated using the stress state at the midpoint of the unbound base layer (vertically). 
Because LAVAN cannot incorporate nonlinearity along the horizontal direction, for comparison, 
modulus values were calculated using stress at r = 3.5a (r shown in figure 67). In ABAQUS, the 
FE domain size of 133R in the vertical direction and 53R in the horizontal direction was found to 
produce stable surface deflection (with less than 1-percent error at the center). For the selected 
domain size, the FEM mesh refinement of 0.4 inch in the AC layer and 1 inch in the base layer 
were used. ABAQUS took approximately 17 min to analyze a haversine loading of 138 psi and 
35 ms, whereas LAVAN could generate the results in 3.6 min. 

Comparison of surface deflection between LAVAN and ABAQUS for the control mix  
(figure 76) and CRTB mix (figure 77) shows good predictability of LAVAN. As expected, the 
stiffer mix (control) generated a lower response compared with the softer mix (CRTB) under the 
same geometric and loading conditions. The top graph in figure 76 shows the results when stress 
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at r = 0 is used in LAVAN and was provided for comparison purposes. The bottom graph in 
figure 76 shows the results when stress at r = 3.5a was used in LAVAN. Note that S1, S2, S3, 
S4, S5, S6, S7, and S8 in the figures correspond to surface deflection Sensor-1 (r = 0 inches), 
Sensor-2 (r = 8 inches) etc. Sensors 1 through 8 were 0, 8, 12, 18, 24, 36, 48, and 60 inches away 
from the centerline of the load. 

 
Figure 76. Graphs. Surface deflection comparison of ABAQUS and LAVAN for the control 

mix. 
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Figure 77. Graphs. Surface deflection comparison of ABAQUS and LAVA for the CRTB 

mix. 

The difference between ABAQUS and LAVAN was quantified using the two variables shown in 
figure 78 and figure 79. 

 
Figure 78. Equation. Error in peak deflection. 
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Figure 79. Equation. Average error in normalized deflection history. 

Where:  

PEpeak = Percent error in the peaks. 
 = Peak deflection predicted by ABAQUS. 

 = Peak deflection predicted by LAVAN. 
PEavg = Average percent error in normalized deflection history. 

ABAQUS(ti) = Deflection predicted by ABAQUS at time ti. 
LAVAN(ti) = Deflection predicted by LAVAN at time ti. 

N = Number of time intervals in the deflection time history.  

Because the model integrates both viscoelastic and nonlinear material properties, both peak 
deflection and creeping of deflection should be predicted with accuracy. PEavg was used to 
examine the model performance in creeping. 

As shown in figure 80 and figure 81, the PEpeak and PEavg values for the control mix showed a 
slight improvement in the results when r = 3.5a was used. However, from figure 82 and figure 83, 
it can be seen that PEpeak and PEavg values for CRTB mix showed more sensitivity to the location 
of the stress state. 

In general, for the deflection basin at farther sensors, a better match between the ABAQUS and 
LAVAN results was found when stress state at r = 3.5a was used while incorporating nonlinearity. 
However, note that r = 0 also produced relatively good results, especially in the first four to five 
sensors. Also, note that, for the structure in table 15, the procedure leads to r = 2.8a when the 
trapezoidal stress distribution with (0.5 horizontal slope and 1 vertical slope) is assumed.(27) 

 
Figure 80. Graph. Percent error (PEpeak) calculated using the peaks of the deflections for 

LAVAN-ABAQUS comparison (control mix). 
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Figure 81. Graph. Average percent error (PEavg) calculated using the entire time history for 

the LAVAN-ABAQUS comparison (control mix). 

 
Figure 82. Graph. Percent error (PEpeak) calculated using the peaks of the deflections for 

the LAVAN-ABAQUS comparison (CRTB mix). 

 
Figure 83. Graph. Average percent error (PEavg) calculated using the entire time history for 

the LAVAN-ABAQUS comparison (CRTB mix). 
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BASICS OF GENETIC BACKCALCULATION ALGORITHM  

Backcalculation of pavement properties using FWD data is essentially an optimization problem. 
The analysis is based on formulating an objective function, which is minimized by varying the 
pavement properties. Response obtained from the forward analysis is matched with response 
obtained from the FWD test, and the difference is minimized by adjusting the layer properties of 
the system until a best match is achieved. Typically, the existing backcalculation methods either 
use RMS or percentage error of peak deflections as the objective function. However, because the 
viscoelastic properties are time dependent, the entire deflection history needs to be used. Hence, 
the primary component of the proposed backcalculation procedure was a layered viscoelastic 
forward solution. Such a solution should provide accurate and rapid displacement response 
histories owing to a time-varying (stationary) surface loading. For a linear viscoelastic pavement 
model, the research team used the computationally efficient layered viscoelastic algorithm 
LAVA to support the backcalculation algorithm called BACKLAVA, whereas for viscoelastic 
nonlinear pavement model, the team used the computationally efficient layered viscoelastic 
algorithm LAVAN to support the backcalculation algorithm called BACKLAVAN.(65)  

Whenever mechanical properties are derived with inverse analysis, it is desirable to minimize the 
number of undetermined parameters by using an economical scheme. Such an approach is both 
advantageous from a computational speed perspective and addresses the non-uniqueness issue, i.e., 
test data may not be detailed, accurate, or precise enough to allow calibration of a complicated 
model. Moreover, it is beneficial to have some inherent “protection” within the formulation, 
forcing the analysis to a meaningful convergence—fully compliant with the physics of the 
problem. Therefore, as discussed before, the relaxation modulus (E(t)) master curve (figure 32) 
was initially assumed to follow a sigmoid shape defined by the equation in figure 84: 

 
Figure 84. Equation. Sigmoid form of relaxation modulus curve. 

Where ci are the sigmoid coefficients and tR is the reduced time, which is defined as tR = t/aT(T) 
(or log(tR) = log(t) – log(aT(T)), where, as discussed before (Figure 33), aT(T) is the shift factor 
coefficient, which is a function of temperature (T) and t is time. The shift factor coefficients has 
been defined as a second-order polynomial of the form log(aT(T)) = a1(T2–Tref

2) + a2(T – Tref), 
where a1 and a2 are the shift factor coefficients. As shown by the relaxation modulus and shift 
factor equations, a total of six coefficients were needed to develop the E(t) master curve, 
including the temperature dependency (i.e., the shift factor coefficients). 

In theory, it should be possible to obtain these six coefficients in two ways: (1) using data 
containing time-changing response at different temperature levels and (2) using uneven 
temperature profile information existing across the thickness of the asphaltic layer during a 
single drop containing time changing response data. 

Reliability and accuracy of the backcalculated results depend on the optimization technique used. 
In the present work, several optimization techniques were tried to formulate a procedure to 
backcalculate these six viscoelastic properties along with unbound material properties. These 

 

 

log E(t)( ) = c1 +
c2

1+ exp(−c3 − c4 log(tR ))
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optimization techniques can be broadly classified as classical methods and evolutionary methods. 
In this study, simplex-based classical optimization method was performed using MATLAB® 
function fminsearch, whereas, genetic algorithm (GA)-based evolutionary optimization method 
was performed using the MATLAB® function ga. The objective function, which is based on 
deflection differences in the current work, is a multidimensional surface that can include many 
local minima. In elastic backcalculation methods, the modulus of the AC layer is defined using a 
single value. However, in the present problem, the AC properties were represented by a sigmoid 
containing four parameters for E(t) and by a polynomial containing two parameters for aT(T). 
Hence, it was naturally expected that the probability of number of local minima would increase. 
In traditional methods, because of the presence of multiple local minima, selection of different 
initial solutions may lead to different subsequent solutions. Typically, classical optimization 
methods (such as the fminsearch) have the following issues: 

• Solution may depend on initial seed values. 
• Convergence can be achieved at a local minimum. 

These disadvantages  do not mean that classical methods cannot be used in the backcalculation 
procedure. In fact, the classical methods can be hybridized along with evolutionary optimization 
techniques in developing more effective backcalculation procedures.  

It is important to develop a backcalculation process such that FWD data obtained at a relatively 
small range of pavement temperatures can be sufficient to derive the viscoelastic properties of 
AC. Among various optimization techniques, GA was chosen because of its capability to 
converge to a unique global minimum solution, irrespective of the presence of local  
solutions.(91–93) GA was implemented using MATLAB® function ga. In general terms, GA 
performs the following operations: (1) initialization, (2) selection, (3) generation of offspring, 
and (4) termination. In initialization, GA generates a pool of solutions using a subset of the 
feasible search space, the so-called “population.” Each solution is a vector of feasible variable 
values. In the selection process, each solution is evaluated using an objective function, and the 
best fitted solutions are selected. The selected solutions are then used to generate the next 
generation population (offspring). This process mainly involves two operators: crossover and 
mutation. In crossover, a new solution is formed by exchanging information between two parent 
solutions, which is done by swapping a portion of parent vectors. In mutation, a new solution is 
formed by randomly changing a portion of the parent solution vector. The newly generated 
population is evaluated using the objective function. This process is repeated until a termination 
criterion is reached. Through guided random search from one generation to another, GA 
minimizes the desired objective function.  

Formulation of the optimization model using GA is shown in figure 85. 

 
Figure 85. Equation. Optimization model. 
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Where:  

m = Number of sensors. 
di = Input deflection information obtained from field at sensor k. 
do

k = Output deflection information obtained from forward analysis at sensor k. 
n = Total number of deflection data points recorded by a sensor. 
ci = Sigmoid coefficients. 
Eb and Es = Base and subgrade moduli. 
ai = Shift factor polynomial coefficients. 
l = Lower limit. 
u= Upper limit. 

This model is also subject to the following constraints: 

• . 
• . 
• . 
• . 

and  

• . 
• . 
• . 
• . 

To obtain the lower and upper limits of ci and ai, values of sigmoid and shift factor coefficients 
of numerous HMA mixtures were calculated. Table 16 shows these limits, which were used in 
the GA constraints shown in figure 85. Limits to the elastic modulus were arbitrarily selected 
(based on typical values presented in the literature). Note that the sigmoid obtained by using the 
lower or upper limits of the coefficients gave a larger range compared with the actual range of 
E(t). This could potentially slow down the backcalculation process. Therefore, as described later 
in the report, additional constraints were defined to narrow the search window. 

Table 16. Upper and lower limit values in backcalculation. 

Limit c1 c2 c3 c4 a1 a2 E1 E2 
Lower 0.045 1.80 -0.523 -0.845 -5.380E-04 -1.598E-01 10,000 22,000 
Upper 2.155 4.40 1.025 -0.380 1.136E-03 -0.770E-01 13,000 28,000 
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BACKCALCULATION OF RELAXATION MODULUS MASTER CURVE USING A 
SERIES OF FWD TESTS RUN AT DIFFERENT TEMPERATURES 

The duration of a single pulse of an FWD test is very short, which limits the portion of the E(t) 
curve used in the forward calculation using LAVA. As a result, it was not possible to 
backcalculate the entire E(t) curve accurately using deflection data of such short duration. The 
longer the duration of the pulse, the larger portion of the E(t) curve used in LAVA in the forward 
calculation process. Therefore, one may conclude that FWD tests need to produce a long-
duration deflection-time history. However, owing to the thermorheologically simple behavior of 
AC, the time-temperature superposition principle can be used to obtain longer duration data by 
simply running the FWD tests at different temperatures and using the reduced time concept 
described at beginning of this chapter. 

Before discussing into the details of the required number of FWD test temperatures and 
magnitudes, an analysis on the effects of different FWD deflection sensor data on the 
backcalculated E(t) master curve is presented in the following section. 

Sensitivity of E(t) Backcalculation to the Use of Data From Different FWD Sensors 

This section presents an analysis of the contribution of individual and a group of sensors on the 
backcalculation of the E(t) master curve. Note that the analysis was based on a real coded GA, 
which uses double vector variables. All the existing applications of GA in pavement inverse 
analysis were based on a binary coded GA, and hence the GA parameters suggested in these 
references were not applicable to the approach presented in this section.(91–93) As a result, a new 
set of optimum parameters was determined. The backcalculation process was run using a 
population and generation of 70 and 15, respectively (selected after trying various combinations), 
using FWD time histories obtained at a temperature set of {32, 50, 68, 86, 104, 122, 140, 158, and 
176} °F. The pavement properties used (see table 17) were kept the same throughout the study. 

Table 17. Pavement properties in viscoelastic backcalculation of optimal number of 
sensors. 

Property Case 1 
Thickness (AC followed by granular layers) (inches) 10, 20, infinity 
Poisson ratio {layer 1,2,3…} 0.35, 0.3, 0.45 
Eunbound {layer 2,3…} (psi) 11,450, 15,000 
E(t) sigmoid coefficient {layer 1} 0.841, 3.54, 0.86, -0.515 
a(T) shift factor polynomial coefficients {layer 1} 4.42E-04, -1.32E-01 
Sensor spacing from the center of load (inches) 0, 8, 12,18,24, 36,48, 60 

 
Convergence was evaluated based on the backcalculated moduli of the base and subgrade layers 
as well as the E(t) curve of the AC layer. Average error in the moduli of base and subgrade are 
defined as shown in figure 86.

 

 

 
Figure 86. Equation. Average error in backcalculated moduli of base and subgrade layers. 

𝜉𝜉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = ��
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𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎
�� × 100 
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Where: 

=Absolute value of the error in the backcalculated unbound layer modulus. 
Eact and Ebc are the actual and backcalculated moduli (of the unbound layer), respectively.  

The variation of error in the backcalculated E(t) at different reduced times is defined as shown in 
figure 87. 

 
Figure 87. Equation. Error in backcalculated relaxation moduli at different reduced times. 

Where: 

AC(ti) = E(t) error at reduced time ti, where i ranges from 1 to n such that t1 = 10-8 and tn = 108 s. 
n = Total number of discrete points on the E(t) curve. 
Eact(ti) = Actual E(t) value at point i. 
Ebc(ti) = Backcalculated E(t) value at i.  

Finally, average error in E(t) is defined as shown in figure 88. 

 
Figure 88. Equation. Average error in backcalculated relaxation moduli.  

Where  is the average error in the E(t) of the AC layer. 

Figure 89 shows the variation of unbound when data from different FWD sensors are used. As 
shown, the error decreased as data from farther sensors were incorporated in the backcalculation. 
This may be because at farther sensors, the deflections were primarily, if not solely, due to 
deformation in the lower layers.  
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Figure 89. Graph. Error in unbound layer modulus in optimal number of sensor analysis. 

Figure 90 shows the actual and backcalculated E(t) curve, which is only based on data from 
sensor 1 (at the center of load plate). As shown, there was a very good match between the 
backcalculated and actual curves. Figure 91 shows the variation of percentage error in E(t) 
(calculated using figure 87) with time. The magnitude of percent error ranged from about  
-9  to 23 percent and increased with reduced time. This was expected because the E(t) in longer 
durations (> 10-6 s) were not used in the forward computations. Note that the result is shown over 
a time range of 10-8 to 108 s. However, the forward calculations were actually made using 
temperatures ranging from 32 to 176 °F, which corresponded to a reduced time range of 
approximately 10-6 to 106 s.  
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Figure 90. Graph. Backcalculated and actual E(t) master curve at the reference 

temperature of 66 °F using FWD data from only sensor 1. 

 
Figure 91. Graph. Variation of error when using FWD data from only sensor 1. 
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To investigate whether using just the farther sensors improved the backcalculated Eunbound values, 
backcalculations were performed using data from different combinations of farther sensors. 
Figure 92 shows the error in backcalculation of the modulus of the base (layer 2) and the 
subgrade (Layer 3), when data from only further sensors were used. As shown, for layer 3, error 
ranged between 0.27 to 1.43 percent, with no specific trend. The error in the modulus of the base 
(layer 2) was higher, ranging from 1 to 8.96 percent. However, a clear trend was not observed. 
By comparing with figure 89, one can conclude that using all the sensors produces the least error 
in Eunbound. 

 
Figure 92. Graph. Error in unbound layer modulus using FWD data from only farther  

sensors. 

Effect of Temperature Range of Different FWD Tests on Backcalculation 

It is typically not feasible to run the FWD test over a wide range of temperatures (e.g., from 32 to 
176 °F). Depending on the region and the month of the year, the variation of temperature in a day 
can be anywhere between 50 and 86 °F during the fall, summer, and spring when most data 
collection is done. This means that the performance of the backcalculation algorithm needs to be 
checked for various narrow temperature ranges. The purpose of the study explained in this 
section was to determine the effect of different temperature ranges on the backcalculated E(t) 
values. Further, it was recognized that the results obtained from GA might not be exact but only 
an approximation of the overall solution. Hence a local search method was carried out through 
fminsearch using the results obtained from GA as seed. Figure 93 shows the error in the 
backcalculated elastic modulus values of base and subgrade when different pairs of temperatures 
were used. As shown, in most cases, the error was less than 0.1 percent. Note that the errors 
shown in figure 93 were less than the ones shown in figure 89 (when all sensors were used). This 
was because in figure 89, only GA was used, whereas in figure 93, fminsearch was used after the 
GA, which improved the results. 
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Figure 93. Graph. Variation of error in backcalculated unbound layer moduli when FWD 
data run at different sets of pavement temperatures are used. 

Figure 94 shows the average error in E(t) (i.e.,  given in figure 88), where a pattern was
observed. The error was the least when intermediate temperatures (i.e., {50-68}, {50-68-86}, 
{68-86-104}, {86-104}, {86-104-122} °F) were used. At low temperatures, the error seemed to 
increase. This was meaningful because at low temperatures, a small portion (upper left in  
figure 90) was used in BACKLAVA. Therefore, the chance of mismatch at the later portions of 
the curve (lower right in figure 90) was high. At high temperatures, error also seemed to 
increase. Theoretically, the higher the temperature, the larger the portion of the E(t) curve that 
was used because of the nature of the convolution integral, which starts from zero (figure 29). 
However, if only the high temperatures were used, the discrete nature of load and deflection time 
history led to a big jump from zero to the next time ti, during evaluation of the convolution 
integral. This jump occurred because when the physical time at high temperatures was converted 
to reduced time, actual magnitudes became large and, in a sense, a large portion at the upper left 
side of the E(t) curve was skipped during the convolution integral. At intermediate temperatures, 
however, a more balanced use of the E(t) curve in BACKLAVA improved the results. 

 avg
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Figure 94. Graph. Error in backcalculated E(t) curve in optimal backcalculation 

temperature set analysis minimizing percent error. 

When results from GA were used as seed values in fminsearch, it was observed that in general, 
error in E(t) was reduced. Figure 95, figure 96, and figure 97 show backcalculated E(t) master 
curve using GA and corresponding backcalculated E(t) master curves obtained using GA and 
fminsearch. As shown, combined use of GA and fminsearch resulted in improved backcalculation. 
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Figure 95. Graphs. Results for backcalculation at {50, 86} °F temperature set: left side—

only GA used, right side—GA+fminsearch used. 
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Figure 96. Graphs. Results for backcalculation at {86, 104} °F temperature set. 
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Figure 97. Graphs. Results for backcalculation at {86, 104, 122} °F temperature set. 

Table 18 shows the time it takes to run the GA for population-generation size of 70 to 15, 
followed by fminsearch. The results are shown for a computer that has Intel Core 2, 2.40 GHz, 
and 1.98 GB RAM. 

Table 18. Backcalculation runtime for GA-fminsearch seed runs. 

Number of Temperature 
Data 

Backcalculation 
time (min) 

Two (e.g., {50, 86}°F) 30 
Three (e.g., {50, 68, 86} °F) 40 
Seed run (fminsearch) 15–20 

 
Normalization of Error Function (Objective Function) to Evaluate Range of Temperatures 

In the analysis presented in the previous sections, percent error between the computed and 
measured displacement was used as the minimizing error. However, the deflection curve 
obtained from the field often includes noise, especially after the end of load pulse. If percent 
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error is used as the minimizing objective, it may lead to overemphasis of lower magnitudes of 
deflections at the later portion of the time history, which typically includes noise and integration 
errors. Hence, another fit function was proposed in which the percent error was calculated with 
respect to the peak of deflection at each sensor. This approach penalized the tail data by 
normalizing it with respect to the peak, as shown in figure 98. 

 
Figure 98. Equation. Normalized error in deflection history. 

Where: 

{dk}max = Peak response at sensor k. 
m = Number of sensors. 
di

k = Measured deflection at sensor k. 
do

k = Output (calculated) deflection from forward analysis at sensor k. 
n = Total number of deflection data points recorded by a sensor. 

The limits considered for E(t) so far were the limits on the individual parameters of the sigmoid 
curve (table 16). The E(t) curves obtained by considering the upper and lower limits of the 
parameters represent curves well beyond the actual data base domain. To curtail this problem, 
constraints were introduced putting limits shown in figure 99 on the sum of the sigmoid 
coefficients c1 and c2. 

 

Figure 99. Equation. Constraints in optimization model.  

Where s1 and s2 are arbitrary constants. 

The arbitrary constants s1 and s2 were obtained by calculating maximum and minimum values of 
the sum of sigmoid coefficients c1 and c2 from numerous HMA mixes. Alternatively, the 
problem was reframed by incorporating the constraints in limit form by redefining the variables 
as shown in figure 100. 

 
Figure 100. Equation. Sigmoid variables in optimization model. 

Where c1 through c4 are sigmoidal function coifficents, and xu and x1 are the upper and lower limits 
of c1 + c2, respectively. The problem was then resolved after replacing the inequality constraint 
with limits on the variables. The new function gave good results at temperature sets of {50, 86} °F, 
{86, 104} °F, {50, 68, 86} °F, {68, 86, 104} °F, and {86, 104, 122} °F. The backcalculated E(t) 
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curves were then converted to |E*| using the interconversion relationship given in Kutay et al.(65) 
Mathematically, the dynamic modulus can be defined as shown in figure 101: 

 
Figure 101. Equation. Dynamic modulus in complex form. 

Where f is frequency, E'(f) is storage modulus, and E"(f) loss modulus, which can be obtained for 
a generalized Maxwell model using the following equations shown in figure 102 and figure 103: 

 
Figure 102. Equation. Real component of dynamic modulus. 

 
Figure 103. Equation. Imaginary component of dynamic modulus. 

Where: 

φ = the phase angle. 
|E*| = the absolute value of the complex E* function (figure 101). 
Ei = modulus of each Maxwell spring. 

 = /Ei = relaxation time 
 = the viscosity of each dashpot element in the generalized Maxwell model as shown in  

figure 104.  

 
Figure 104. Equation. Dynamic modulus and phase angle. 

Backcalculated E(t) and |E*| master curves were compared with the actual curves for temperature 
sets {50, 86} °F and {50, 68, 86} °F in figure 105 and figure 106, respectively. 
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Figure 105. Graph. Backcalculated |E*| master curve using FWD data at temperature set 

{50, 86} °F, minimizing normalized error. 

 
Figure 106. Graph. Backcalculated E(t) master curve using FWD data at temperature set 

{50-68-86} °F, minimizing normalized error. 

It can be seen from figure 107 that the results obtained for E(t) errors over temperature sets 
showed a distinct pattern. The E(t) and Eunbound errors with respect to temperature sets showed a 
trend similar to that observed in the case of percentage error (figure 93 and figure 94, 
respectively). The error was observed to be high at sets of low ({32, 50} °F) and high 
({122, 140} °F, {104, 122, 140} °F, {122, 140, 158} °F) temperatures. This is because the 
backcalculated E(t) at lower temperatures represents the left portion of the sigmoidal E(t) curve 
and higher temperatures represents the right. As explained earlier, both regions are fairly flat and 
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hence represent constant values of E(t), which may not optimize to the actual E(t) curve. Better 
results were obtained for the temperature range of {50, 68} °F to {86, 104, 122} °F (figure 108). 
The backcalculated E(t) master curves and corresponding errors obtained at {50, 86} °F and 
{68, 86, 104} °F for the proposed backcalculation model are shown in figure 109.  

 

Figure 107. Graph. Variation of  at different FWD temperature sets.  

 
Figure 108. Graph. Variation of  at different FWD temperature sets.  
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Figure 109. Graphs. Backcalculation results obtained using modified sigmoid variables. 

Backcalculation of Viscoelastic Properties Using Various Asphalt Mixtures 

In the previous sections, analyses were performed using only a single mix. To verify the 
conclusions made in the previous sections regarding the optimum range of temperatures of FWD 
testing, backcalculations were performed on nine typical mixtures. Actual viscoelastic properties—
relaxation modulus and shift factors of the selected mixtures—are shown in figure 110. 
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Figure 110. Graphs. Viscoelastic properties of field mix in optimal temperature analysis. 

Comparison of the average error in the backcalculated relaxation modulus function calculated 
over three time ranges—10-5 to 1 s, 10-5 to 102 s, and 10-5 to 103 s—as shown in figure 111. It 
can be seen from the figure that, for all the mixes, relaxation modulus curve can be predicted 
close to less than 15 percent over a range of relaxation time less than 10+3 s. Furthermore, it can 
be seen that, as suggested, the backcalculated relaxation modulus prediction provided a good 
match over an approximate temperature range of 50 to 86 °F. 
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Figure 111. Graphs. Variation of error calculated over three ranges of reduced time—top = 

10-5 to 1 s, middle = 10-5 to 102 s, and bottom = 10-5 to 103 s.  

Theoretical Analysis on Multiple-Pulse FWD in Backcalculation 

In theory, it should be possible to obtain a relaxation modulus master curve if data containing the 
time-changing response at different temperature levels were known. The available analysis 
window in the current FWD devices is short, extending up to 25 to 35 ms of stress pulse, which 
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could be used to infer part of the relaxation function. Although series of FWD tests at different 
temperatures could be useful in developing the entire master curve, in theory, the prediction could 
be improved if information at different rates of loading or over a larger time interval were known. 

As shown in figure 112, a load of four successive pulses with a duration of 35 ms followed by 
four pulses with 10s duration each was simulated to generate the deflection basin. This example 
was used to investigate whether a different loading history could result in better estimation of 
E(t). Figure 113 shows the backcalculated E(t), where a good fit is visible. Note that the accuracy 
of the backcalculated E(t) depended on the duration of the stress pulse, where longer duration 
allowed calculation of E(t) at longer durations. It is also important to apply a high-frequency 
(short duration) pulse load to increase the accuracy of E(t) at very short times. Note that 
backcalculation of E(t) for this example took less than 5 min in the MATLAB® optimization 
tool fminsearch. These possibilities are explored in detail in appendix B. 

 
Figure 112. Graphs. Applied stress and resulting deflection basin for multiple pulse loading 

analysis. 
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Figure 113. Graph. Backcalculated E(t) and deflection histories using the multiple stress 

pulses.  

BACKCALCULATION OF RELAXATION MODULUS MASTER CURVE USING A 
SINGLE FWD TEST AND KNOWN PAVEMENT TEMPERATURE PROFILE  

The uneven temperature profile existing across the thickness of the AC layer during a single 
FWD drop can theoretically be used to backcalculate the E(t) master curve and the shift factor 
coefficients (aT(T)). The AC layer can be divided into several sublayers with same viscoelastic 
properties but with different temperature levels. Two different approaches of backcalculation are 
discussed in this section. In the first approach, all the unknown variables (sigmoid coefficients, 
shift factor coefficients, and unbound modulus) in the forward algorithm were varied during 
backcalculation. In the second approach, a two-staged backcalculation procedure was adopted. 
The two-stage method involved static backcalculation in the first stage (unbound modulus 
assuming elastic AC layer) followed by viscoelastic backcalculation in the second (sigmoid and 
shift factor coefficients). Both approaches were explored in the present study. 

Linear Viscoelastic Backcalculation Using Single Stage Method 

As discussed earlier, a total of six coefficients are needed to represent the relaxation properties of 
the AC layer, including the temperature dependency. The backcalculation procedure used was 
same as used in the previous section (i.e., BACKLAVA), except the forward analysis was 
replaced by LAVAP, which can consider varying temperature along the depth of the AC layer. 
Subsequently, the new backcalculation algorithm was referred as BACKLAVAP. For executing 
the GA, the same lower and upper limits of ci and ai (sigmoid and shift factor coefficients) and 
other specifications were retained.  

As a first step, the backcalculation algorithm was validated with a synthetic FWD deflection 
history, under two different temperature profiles. The data were generated using LAVAP and 
then used in BACKLAVAP for backcalculation of E(t). The AC layer was divided into three 
equal sublayers with three different temperatures. Pavement section, properties, and temperature 
used in the forward analysis are shown in table 19. 
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Table 19. Details of the pavement properties used in single FWD test backcalculation under 
a known temperature profile. 

Property 

Asphalt Concrete Layer 
Granular 

Base Subgrade 
Sublayer 

1 
Sublayer 

2 
Sublayer 

3 
Thickness (inches) 2 2 2 20  Semi-infinite 
Temperature 
(°F) 

Case 1 68 59 50 N/A N/A 
Case 2 86 77 68 N/A N/A 

Poisson’s ratio 0.35 0.4 0.45 

Relaxation modulus E(t) coefficients (c1, c2, c3, c4) 
backcalculated 

Backcalculated Backcalculated 

Time-temperature 
shifting coefficients 

(a1, a2) backcalculated N/A N/A 

Sensor spacing from the center of load (inches): 0, 8, 12, 18, 24, 36,48, 60 
N/A = Not applicable. 

For the case of backcalculation using a temperature profile, the GA parameters—population size 
and generation numbers—were again selected after several trials of combinations. It was 
observed that at population size of 300, improvement in the best solution was marginal after 
12 to 15 generations, and the population converged to the best solution at about 45 generations. 
Similarly, for a population size of 400, improvement in the best solution was marginal after 10 to 
15 generations. Figure 114 shows the backcalculation results at the temperature sets given in 
table 19, where a good match was visible. Error in the backcalculated E(t) was quantified relative 
to the actual E(t) using )( iAC tξ , given in figure 87. The calculation was performed over a 

reduced time interval from 10-8 to 10+8 s. Then, the average error ( ) was computed using 
figure 88. The average error level for the first temperature profile was found to be 5.2 percent, 
and for the second, it was 4.4 percent.  

To further investigate the effect of the magnitude of the pavement temperature profile on 
backcalculation of E(t) master curve, synthetic FWD deflection histories were generated. The 
synthetic data were then used in backcalculation. The structure was divided into three layers with 
different temperatures, and E(t) was backcalculated using these data. The pavement section 
properties used in the study were same as shown in Table 19. 

Backcalculation was performed assuming the temperature of the top, middle, and bottom 
sublayers of the asphalt layer as {68, 59, 50} °F, {86, 77, 68} °F, {104, 95, 86} °F, and  
{122, 113, 104} °F. It was again observed that the problem converged well with 300 GA 
populations at 45 GA generations. The results shown in figure 115 did exhibit a trend, suggesting 
that there was a good potential for backcalculation of E(t) using a single FWD response for the 
lower temperature ranges, assuming that the temperature profile of the pavement was known. 

 )( iAC tξ
 avg
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Figure 114. Graphs. Comparison of actual and backcalculated values in backcalculation 

using temperature profile. 
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Figure 115. Graph. Error in backcalculated E(t) curve for a three-temperature profile. 

Backcalculation of the Viscoelastic Properties of the LTPP Sections Using a Single FWD 
Test With Known Temperature Profile 

The BACKLAVAP algorithm was next used with field data to backcalculate the viscoelastic 
properties of nine LTPP sections. With the exception of sections 10101, 300113, and 340801, 
selection of the sites was done based on the following rules:  

• Section comprised three layers with only one AC layer. 
• Total number of constructions of the section was one. 
• Section was an SPS section type (experiment number 1 and 8) 
• Section was flexible pavement.  

Table 20 and table 21 contain general and structural information about each selected LTPP site. 
As shown in table 21, section 10101 had a total of four layers, including two AC layers. 
However, because the D(t) of the two AC layers reported in the LTPP database were very close, 
the section was included in the list, treating the two layers as a single AC layer in the analysis. 
Section 300113 comprised two AC layers of thickness 0.2 and 5.8 inches. Because the top AC 
layer of the section was very thin compared with the second AC layer, the AC layers were 
treated as a single layer. Furthermore, the sectional composition of sections 300113 and 340801 
were not changed during various constructions; therefore, they were included in the analysis. 
However, it is not clear from the LTPP database whether the D(t) was measured before or after 
the constructions were done. 
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Table 20. List of LTPP sections used in the analysis. 

State Section 
Year of 

Construction 
Total Number of 

Constructions 
Section 
Type 

Experiment 
Number 

1 0101 4/30/1991 1 SPS 1 
6 A805 5/1/1999 1 SPS 8 
6 A806 5/1/1999 1 SPS 8 
30 0113 9/18/1997 5 SPS 1 
34 0801 1/1/1993 2 SPS 8 
34 0802 1/1/1993 1 SPS 8 
35 0801 9/11/1995 1 SPS 8 
35 0802 9/11/1995 1 SPS 8 
46 0804 1/1/1992 1 SPS 8 

Table 21. Structural properties of the LTPP sections used in the analysis. 

State 
Code Section 

Total 
Number 
of Layers 

Number 
of AC 
Layers 

AC Layer 
Thickness 
(inches) 

Base Layer 
Thickness 
(inches) 

1 0101 
4 2 AC1 = 1.2, 

AC2 = 6.2 
7.9 

6 A805 3 1 3.9 8.2 
6 A806 3 1 6.8 12.1 

30 0113 
4 1 AC1 = 0.2, 

AC2 = 5.8 
8.4 

34 0801 3 2 3.6 7.8 
34 0802 3 1 6.7 11.6 
35 0801 3 1 4.2 9.7 
35 0802 3 1 7 12.7 
46 0804 3 1 6.9 12 

 
In the LTPP Program, each section is tested according to a specific FWD testing plan, which 
consists of one or more test passes. Both SPS 1 and SPS 8 are tested, along two test passes (test 
pass 1 and test pass 3) using test plan 4 in LTPP. Test pass 1 data include FWD testing 
performed along the midlane (ML) whereas test pass 2 data includes FWD testing performed 
along the OW path. Because testing with the ML test pass represents the axisymmetric 
assumption better, it was used here in the analysis. Furthermore, for each section, testing was 
done at several longitudinal locations (in the direction of traffic) in every test pass. Typically, for 
a 500-ft test section, FWD testing is performed at every 50 ft longitudinally along the test pass. 
In the LTPP testing protocol, temperature gradient measurements are taken every 30 min, plus or 
minus 10 min. The necessary temperature profile data were obtained by interpolating the 
temperature measured during the FWD testing. The AC layer was divided into three equal 
sublayers, and a constant temperature for each sublayer was estimated. Table 22 shows the 
interpolated temperatures at the middle of the three sublayers. From the table, it can be seen that 
the maximum temperature difference (between sublayer 1 and sublayer 3) was 11.2 °F in 
section 350801 and the minimum 5.3 °F in section 6A805. 
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Table 22. AC temperature profile during LTPP FWD test. 

State 
Code Section 

Test 
Date 

Temperature Profile (°F) 
Sublayer 1 Sublayer 2 Sublayer 3 

1 0101 04/28/05 100.0 92.5 91.6 
6 A805 11/16/11 73.6 69.1 68.2 
6 A806 11/16/11 79.2 75.2 71.2 
30 0113 07/12/10 84.7 80.1 79.2 
34 0801 08/26/98 102.4 98.8 93.6 
34 0802 08/26/98 79.3 83.3 86.5 
35 0801 04/09/05 74.1 65.1 63.0 
35 0802 05/26/00 89.8 84.4 83.3 
46 0804 05/02/01 75.9 70.7 67.5 

 
Except for section 350801, the FWD deflection data obtained showed no or minimal waviness at 
the end of the load pulse, which indicated that there was no shallow stiff layer. The FWD 
deflection data obtained from section 350801 showed some waviness at the end of the load pulse. 
This indicated the possibility of a medium-depth stiff layer or high water table. The presence of a 
stiff layer was further evaluated using a graphical method suggested by Ullidtz.(94) The method 
involves plotting peak deflections obtained from FWD testing versus the reciprocal of the 
corresponding sensor location (measured from the center of loading).(95) Depths of stiff layer in 
each LTPP section estimated using Ullidtz’s method are shown in table 23.(94) Note that negative 
depth to the stiff layer was interpreted as absence of the stiff layer in the method. The results 
indicate that stiff layers were generally deeper than 18 ft (except section 350801). It was 
suggested by Lei that if the stiff layer was below 18 ft, the effect of dynamics was not observed 
on the surface deflections.(96) Section 350801 was also included in the analyses because the depth 
of the stiff layer was close to the limit of 18 ft. 

Table 23. Depths of stiff layer in each LTPP section estimated using Ullidtz’s method. 

State 
Code Section 

Depth of Stiff Layer From Surface (ft) 
Drop 1 Drop 2 Drop 3 Drop 4 

1 0101 86.9 32.7 109.8 26.6 
6 A805 70.4 No stiff layer No stiff layer No stiff layer 
6 A806 No stiff layer No stiff layer No stiff layer No stiff layer 
30 0113 96.4 45.3 49.9 35.6 
34 0801 38.7 38.9 37.9 38.4 
34 0802 No stiff layer No stiff layer 284.5 63.8 
35 0801 15.5 15.6 15.5 15.2 
35 0802 No stiff layer No stiff layer No stiff layer No stiff layer 
46 0804 232.2 183.1 61.2 31.6 

 
Section properties used for elastic and viscoelastic backcalculations were the same (see table 20) 
except that the modulus of the AC layer in the elastic backcalculation was assumed constant 
(modulus unknown). For elastic backcalculation, an in-house genetic algorithm was developed. 
The Poisson’s ratio for AC, granular base, and subgrade layers were assumed to be 0.3, 0.4, and 
0.45, respectively. As noted above, the results obtained from elastic backcalculation were used to 



 

111 

define bounds for base and subgrade moduli in BACKLAVAP. Table 24 shows the elastic 
backcalculation results obtained using data from each FWD drop. With the exception of 
section 350802, the static backcalculated base modulus values varied between 8,425 psi and 
64,479 psi, and the subgrade modulus values varied between 16,142 psi and 42,615 psi.   

Table 24. Elastic backcalculation results for LTPP sections. 

State 
Code Section 

Drop 1 (psi) Drop 2 (psi) Drop 3 (psi) Drop 4 (psi) 
Ebase Esubgrade Ebase Esubgrade Ebase Esubgrade Ebase Esubgrade 

1 0101 34,129 46,835 29,941 45,478 36,065 42,122 22,264 42,615 
6 A805 44,302 19,612 44,985 19,533 44,176 19,707 64,479 19,599 
6 A806 32,252 23,219 29,063 23,281 34,932 22,511 43,687 22,636 
30 0113 10,908 26,856 10,030 26,754 9,617 27,328 8,425 27,690 
34 0801 19,853 20,918 19,446 21,150 26,287 21,392 26,063 22,062 
34 0802 59,182 43,534 51,674 42,828 53,932 43,013 56,114 42,112 
35 0801 25,508 23,061 20,762 22,567 20,995 21,738 22,113 21,649 
35 0802 83,664 35,574 74,723 34,993 83,675 34,619 84,015 34,552 
46 0804 19,699 16,142 23,137 16,207 18,359 16,282 13,676 16,545 

 
Next, the viscoelastic backcalculation was performed. The backcalculated unbound layer moduli 
for the sections obtained from viscoelastic backcalculation are presented in table 25. For the 
viscoelastic backcalculation, the GA algorithm in BACKLAVAP used 300 populations in each 
of the 15 generations, except for sections 10101 and 350801, where a 400 population and 
15 generations were used. However, Note that, for backcalculation, the search approximately 
converged after 10 generation for 300 populations. As shown in table 25, with the exception of 
section 350802, the static backcalculated base modulus values varied between 10,292 and 
64,466 psi, and the subgrade modulus values varied between 17,114 and 44,906 psi. Comparing 
table 24 and table 25, it can be seen that the elastic and viscoelastic backcalculation predict 
similar modulus values for the unbound layers.   

Table 25. Viscoelastic backcalculation results for LTPP sections. 

State 
Code Section 

Drop 1 (psi) Drop 2 (psi) Drop 3 (psi) Drop 4 (psi) 
Ebase Esubgrade Ebase Esubgrade Ebase Esubgrade Ebase Esubgrade 

1 0101 28,799 44,906 26,431 44,035 28,026 42,682 25,621 41,470 
6 A805 44,377 17,523 44,929 17,114 44,928 18,234 43,871 18,436 
6 A806 26,977 21,273 24,441 20,724 28,809 20,903 29,150 22,615 
30 0113 10,491 24,972 10,292 26,127 10,391 26,253 11,257 26,254 
34 0801 22,337 20,569 20,282 19,901 18,243 20,569 14,824 22,710 
34 0802 64,466 41,648 61,782 38,700 62,967 40,227 48,242 42,904 
35 0801 22,337 20,569 20,282 19,901 18,243 20,569 14,824 22,710 
35 0802 84,339 37,787 84,338 33,631 84,339 32,521 84,825 32,653 
46 0804 26,191 14,746 17,922 14,827 15,427 15,125 12,575 16,373 

 
Figure 116 shows example backcalculated (and measured) deflection time histories for 
sections 10101 and 350801, where section 10101 exhibited a better match than section 350801. 
This was attributed to the stiff layer being close to the 18-ft limit in section 350801. 
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To validate the backcalculated results, creep compliance data available in the LTPP database 
were converted into relaxation modulus E(t). Creep data were available in tabulated form at three 
temperatures—14, 41, and 77 °F—and seven different times—1, 2, 5, 10, 20, 50, and 100 s. 
Assuming the classical power law function for the creep compliance (figure 117), the available 
data were fitted separately to each temperature. 

 
Figure 116. Graphs. Backcalculated and measured deflection time histories for LTPP 

sections 10101 and 350801. 

 
Figure 117. Equation. Creep compliance power law.  

The associated relaxation modulus was then obtained using the mathematically exact formula 
given in figure 118.(85) 

𝐷𝐷(𝑡𝑡) = 𝐷𝐷1𝑡𝑡𝑛𝑛  
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Figure 118. Equation. Relaxation modulus and creep compliance relationship. 

Where D1 and n are the power function coefficients of D(t). The discrete relaxation modulus 
functions were then shifted to obtain a relaxation modulus master curve. Two different relaxation 
master curves were calculated. The first relaxation modulus master curve approximation was 
obtained when the time-temperature shift factors determined from the measured creep data were 
used to develop the relaxation master curve (labeled as “Measured 1”). The second relaxation 
modulus master curve approximation was obtained when the time-temperature shift factors 
determined from backcalculation were used to develop the relaxation master curve (labeled as 
“Measured 2”). This was done because laboratory creep compliance tests are usually not reliable 
in determining time-temperature superposition properties because a perfect stress-step function is 
very difficult to achieve in the laboratory and also because the results are contaminated with 
viscoplasticity, especially at the high temperatures and long creep times. Finally, for comparison, 
dynamic modulus and phase angle master curves were calculated from the relaxation modulus 
via interconversion.(65) For further verification, the estimated dynamic modulus obtained from 
ANN-based model ANNACAP was also compared. In the present work, all the estimated 
dynamic modulus master curve and time-temperature shift factors obtained from ANNACAP 
were based on the MR model in ANNACAP.(97) From the results, it was found that the dynamic 
modulus curves estimated using the ANNACAP model, especially at higher frequencies, agreed 
well with the dynamic modulus curves obtained through interconverted creep data. 
Backcalculated E(t) and aT(T) for the sections are shown in figure 119 to figure 127, and 
backcalculated dynamic modulus and phase angle are shown in figure 128 to figure 136. It can 
be seen from the figures that in general, the independent test drops within each section resulted 
in very similar predicted curves. Note that each FWD drop had a different load level and load 
history. Although the results were encouraging, backcalculated curves for sections 06A806, 
350801, and 350802 showed noticeable disagreement with values derived from creep. However, 
although the dynamic modulus master curve predicted by ANNACAP matched well at the higher 
frequencies, it typically predicted higher values at reduced frequencies of less than 10-2 Hz.  

 
Figure 119. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 10101. 

𝐸𝐸(𝑡𝑡)𝐷𝐷(𝑇𝑇) =
𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝜋𝜋
𝑛𝑛𝜋𝜋
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Figure 120. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 6A805. 

 
Figure 121. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 06A806. 

 
Figure 122. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 300113. 
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Figure 123. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 340801. 

 
Figure 124. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 340802. 

 
Figure 125. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 350801. 
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Figure 126. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 350802. 

 
Figure 127. Graphs. Comparison of measured and backcalculated E(t) and aT(T) for LTPP 

section 460804. 

 
Figure 128. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 10101. 
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Figure 129. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 6A805. 

 
Figure 130. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 6A806. 

 
Figure 131. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 300113. 
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Figure 132. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 340801. 

 
Figure 133. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 340802. 

 
Figure 134. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 350801. 
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Figure 135. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 350802. 

 
Figure 136. Graphs. Comparison of measured and backcalculated |E*| and phase angle for 

LTPP section 46804. 

As shown in figure 119, for section 10101, the relaxation modulus master curves matched very 
well when the time-temperature shift factor obtained from backcalculation was used (to shift the 
discrete relaxation modulus functions obtained through LTPP creep data) to develop a measured 
master curve (labeled as “Measured 2” in figure 119 (left)). On the other hand, when the time-
temperature shift factors were determined from the measured creep data to develop the relaxation 
master curve (labeled as “Measured 2” in figure 119 (left)), there was a change from the 
backcalculated curves. The backcalculated time-temperature shift factors were compared with 
creep and ANNACAP-computed results in figure 119 (right). It can be seen from the figure that 
the backcalculated time-temperature shift factor functions for all the drops showed a good match 
over the temperature range of 50 to 131 °F. As shown in figure 128 (left), the backcalculated and 
measured dynamic modulus curve obtained from Measured 2 also matched well over the entire 
frequency range. The backcalculated phase angles were compared with measured results in 
figure 128 (right). The phase angles showed some deviation at frequencies less than 10-2 Hz. 
This was further verified by the dynamic modulus master curve estimated using ANNACAP, 
which showed a good match over a reduced frequency greater than 10-2 Hz.  
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For section 6A805, the backcalculated relaxation modulus master curves were compared with 
those measured in figure 120 (left). As shown in the figure, a better match with the 
backcalculated curves was found when the time-temperature shift factor obtained from the 
measured creep data was used to develop the measured master curve (labeled as “Measured 1” in 
figure 120 (left)). On the other hand, when the time-temperature shift determined from the 
backcalculation data was used to develop the relaxation master curve (labeled as “Measured 2” 
in figure 120 (left)), there was a change from the backcalculated curves. This disagreement in the 
time-temperature shift can also be seen in the time-temperature shift factors in figure 120 (right) 
and dynamic modulus and phase angle curves in figure 129. 

Relaxation modulus and time-temperature shift factor curves for section 6A806 were compared 
in figure 121 (left) and figure 121 (right), respectively. For this section, the measured relaxation 
modulus master curves predicted higher values compared with the backcalculated results, which 
increased with reduced time. Both the predicted aT(T) curved obtained from ANNACAP and 
backcalculation deviated from the measured results. From figure 130 (left) and figure 130 (right), 
it can be seen that the deviation in relaxation modulus values with time was reflected in dynamic 
modulus and phase angle curves at lower frequencies. 

Relaxation modulus and time-temperature shift factor curves for section 06A806 were compared 
in figure 122 (left) and figure 122 (right), respectively. Although the predicted aT(T) curve at 
drop 1 for section 300113 showed some deviation after 86 °F, both the backcalculated E(t) and 
aT(T) curves showed good agreement with laboratory results as well as ANNACAP data. 
Although the dynamic modulus predicted for drop 1 (see figure 131) showed lower values at 
frequencies greater than 102 Hz, an agreement in backcalculated relaxation modulus curves was 
also reflected in the dynamic modulus and phase angle curves. 

Relaxation modulus and time-temperature shift factor curves for sections 340801 and 340802 
were compared in figure 123 and figure 124, respectively. Although the predicted E(t) curves for 
sections 340801 and 340802 showed some deviation at reduced time greater than 10 s, in 
general, the two curves showed good agreement with the measurement. Comparison of the 
backcalculated aT(T) curves for both sections 340801 and 340802 (see figure 123 (right) and 
figure 124 (right)) show a good agreement with ANNACAP and measured curves over the 
temperature range of 50 to 104 °F. Further, it can be seen from figure 132 and figure 133 that 
although the dynamic modulus and phase angle curves predicted by individual drops were the 
same, deviation at reduced time greater 101 s in relaxation modulus was reflected at frequencies 
greater than 10-1 Hz. 

Figure 125 shows the backcalculated E(t) and aT(T) functions for section 350801. Similar results 
were obtained using drops 1, 3, and 4, whereas E(t) from drop 2 deviated from the other drops. 
The reason for this deviation may be the relatively low base modulus (20,241 psi) backcalculated 
using this drop, as seen in table 25. The average of base moduli in drops 1, 3, and 4 was 
28,468 psi, which is about 40-percent higher than the above base modulus value of drop 2. As 
shown in figure 126 (left) and figure 126 (right), comparison of backcalculated E(t) and aT(T) 
curves with measured and ANNACAP results for section 350802 showed complete 
disagreement. As shown in figure 135 (left) and figure 135 (right), similar discrepancies were 
reflected in the dynamic and phase angle curves. 
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For section 46804, the backcalculated relaxation modulus master curves were compared with 
measured results in figure 127 (left). It can be seen from the figure that the relaxation modulus 
master curves matched very well when the time-temperature shift factor obtained from 
backcalculation was used to develop the measured master curve (labeled as “Measured 2” in 
figure 127 (left)). On the other hand, when the time-temperature shift determined from the 
measured creep data was used to develop the relaxation master curve (labeled as “Measured 1” 
in figure 127 (left)), the backcalculated modulus values at reduced time less than 10-1 s were 
found to be low. Further, although the predicted aT(T) curve for drop 1 showed some deviation 
after 86 °F, the curves showed good agreement with laboratory as well as ANNACAP data. A 
comparison of backcalculated and measured dynamic modulus and phase angle for section 
460804 is shown in figure 136 (left) and figure 136 (right), respectively. Dynamic modulus 
values predicted using backcalculation were higher at frequencies greater than 1 Hz, and a better 
prediction was observed with a frequency greater than 1 Hz.  

Note that although measured creep data were used for comparison in the present study, it is not 
clear from the LTPP database whether D(t) was measured before or after the FWD tests were 
conducted. 

Backcalculation of Linear Viscoelastic Pavement Properties Using Two-Stage Method 

In the previous backcalculation process, viscoelastic and unbound properties were calculated 
during the same step; however, in this section, a two-stage linear viscoelastic backcalculation 
scheme is presented. The first stage was to perform linear elastic backcalculation of unbound 
material properties, which was followed by linear viscoelastic backcalculation (using 
BACKLAVA/BACKLAVAP) of AC layer viscoelastic properties (E(t) sigmoid coefficients c1, 
c2, c3, and c4 and shift factor aT(T) coefficients a1 and a2). Details of stage 1 and stage 2 steps are 
presented in the following sections. 

Stage 1: Elastic Backcalculation for Unbound Layer Properties 
It is important to verify that the elastic backcalculation (stage 1) gives unbound granular modulus 
values close to the actual values. If this is verified, the backcalculated Eunbound values can be fixed 
in viscoelastic backcalculation (stage 2) and only the six unknowns of the AC layer can be 
backcalculated. Known and unknown variables in the first and second stages of backcalculation 
are listed in table 26. In stage 1, elastic backcalculation was performed assuming the AC layer 
was linear elastic. In the stage 2, viscoelastic backcalculation was performed keeping the 
unbound granular layer modulus values obtained in the first stage fixed.  

To perform the verification, first, various synthetic deflection time histories were obtained by 
running LAVA on the structure shown in table 27 at various temperature profiles (also shown in 
table 27). These synthetic deflections were used in stage 1, which computed Eunbound values. Then 
these backcalculated Eunbound values were compared with the original Eunbound values used in the 
original layered viscoelastic forward computation. 
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Table 26. Variables in two-stage linear viscoelastic backcalculation analysis. 

Stage Known Parameters Unknown (Backcalculated) Parameters 
1 Thickness and Poisson’s ratio of each 

layer 
Eac, elastic modulus of AC layer 

FWD parameters (contact radius, 
pressure, locations of the sensors, etc.) 

Eunbound (i), unbound layer moduli, i = 1…NL, 
NL = number of unbound layers 

2 Thickness and Poisson’s ratio of each 
layer and FWD parameters 

E(t) sigmoid coefficients: c1, c2, c3, and c4 

Eunbound (i), unbound layer moduli 
backcalculated in stage 1 

Shift factor aT(T) coefficients a1 and a2 

Table 27. Pavement properties in two-stage linear viscoelastic backcalculation analysis. 

Property Values 
Thickness (AC followed by granular layers) 
(inches) 

6, 20, infinite 

Poisson ratio {layer 1, 2, 3…} 0.35, 0.3, 0.45 
Eunbound {layer 2, 3…} (psi) 25,560, 11,450  
E(t) sigmoid coefficient {layer 1} 0.841, 3.54, 0.86, -0.515 
aT(T) shift factor polynomial coefficients 
{layer 1} 

4.42E-04, -1.32E-01 

Total number of sensors 8 
Sensor spacing from the center of load 
(inches) 

0, 8, 12, 18, 24, 36, 48, 60 

AC layer temperature profile {T1-T2} or 
{T1-T2-T3} (°F) 

{50-32}, {59-50}, {68-50}, {68-59}, {77-68}, 
{86-68}, {86-77}, {95-86}, {59-50-141},  
{68-59-50}, {77-68-59}, {86-77-68},  
{95-86-77}, {104-95-86} 

  
Figure 137 and figure 138 show the average base and subgrade modulus values obtained by 
elastic backcalculation of two- and three-step temperature profile, respectively. Error bars in the 
figures represent the standard deviation of 10 GA runs performed for each temperature set. 
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subg = subgrade. 

Figure 137. Graph. Elastic backcalculation of two-step temperature profile FWD data, 
assuming AC as a single layer in two-stage backcalculation. 

 
subg = subgrade. 

Figure 138. Graph. Elastic backcalculation of three-step temperature profile FWD data, 
assuming AC as a single layer in two-stage backcalculation. 

The analysis results shown in figure 137 and figure 138 were based on elastic backcalculations 
that assume a single AC layer. However, in the LAVA forward computations, because of different 
temperatures with depth, multiple layers of AC (two layers for Figure 137 and three layers for 
Figure 138 analysis) were used. To investigate whether selection of the number of AC layers 
affected the results for the elastic backcalculation, the computations were repeated assuming the 
AC layer consisted of two or three independent elastic layers. Average backcalculated base and 
subgrade modulus values for two-step and three-step temperature profiles are shown in figure 139 
and figure 140, respectively. Comparing figure 137 with figure 139 and figure 138 with figure 
140, it can be seen that assuming single or multiple AC layers did not significantly affect 
backcalculation of base and subgrade elastic modulus. From these analyses (figure 137 through 
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figure 140), it can be concluded that it is possible to first perform elastic backcalculation (stage 1) 
for the unbound layer properties and fix these in stage 2.  

 

 
subg = subgrade. 

Figure 139. Graph. Elastic backcalculation of two-step temperature profile FWD data, 
assuming two AC sublayers in two-stage backcalculation. 

 
subg = subgrade. 

Figure 140. Graph. Elastic backcalculation of three-step temperature profile FWD data, 
assuming three AC sublayers in two-stage backcalculation. 

Stage 2: Viscoelastic Backcalculation for E(t) of AC Layer 
After fixing the unbound layer modulus values, the AC layer properties (E(t) sigmoid 
coefficients: c1, c2, c3, and c4 and shift factor aT(T) coefficients a1 and a2) were backcalculated 
using the viscoelastic backcalculation algorithm (BACKLAVA). Note that for viscoelastic 
backcalculation, as done earlier, a set of FWD test data at different temperature can be used for 
backcalculation. This is because even though the temperatures are different, the characteristic 
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properties of the AC layer (E(t) or |E*| master curves) remain the same. In this stage, viscoelastic 
backcalculation was performed on a set of temperature profiles keeping the actual unbound 
modulus values constant. 

Average errors (over reduced times from 10-8 to 108 s) in the E(t) master curve, obtained from a set 
of two two-step and two three-step temperature profiles, are shown in figure 141 and figure 142, 
respectively. It can be observed from figure 141 that, for all the cases of the presented two-step 
temperature profile sets, average error in backcalculated E(t) was below 10 to 12 percent except 
for the FWD test at {86-68} and{104-86} °F. It can be observed from figure 142 that, for all the 
cases presented for the three-step temperature profile sets, average error in backcalculated E(t) was 
below 5.5 percent except for the FWD test at {86-77-68} and {77-68-59}°F. Subfigures in each of 
the figures were included to illustrate how the given percent error relates to the actual E(t) curves 
that were being compared. These results indicate that the two-stage algorithm worked well in 
backcalculating the E(t) of the AC layer. From figure 141 and figure 142, it can be observed that 
E(t) errors obtained in the two-stage backcalculation are less when compared with single-stage 
backcalculation (figure 120). However, note that results presented in figure 141 and figure 142 are 
from backcalculation using a set of two FWD test data each obtained at different temperature 
profiles, whereas results in figure 120 are from backcalculation using single FWD datum. 
However, the result does indicate that backcalculation using a set of FWD test data each obtained 
under a different temperature profile may improve the accuracy.  

 
Figure 141. Graphs. Error in backcalculated E(t) curve from two-step temperature profile 

FWD test data in two-stage backcalculation. 
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Figure 142. Graphs. Error in backcalculated E(t) curve from three-step temperature 

profile FWD test data in two-stage backcalculation. 

DEVELOPMENT OF A BACKCALCULATION ALGORITHM TO DERIVE 
VISCOELASTIC PROPERTIES OF AC AND NONLINEAR PROPERTIES OF 
UNBOUND LAYERS 

In the previous sections, the backcalculation scheme and results were developed for a 
viscoelastic multilayer pavement model consisting of a linear viscoelastic AC layer and linear 
elastic unbound layers. This section describes a backcalculation scheme (called BACKLAVAN) 
that was developed for the layered viscoelastic-nonlinear pavement model consisting of a linear 
viscoelastic AC layer and nonlinear elastic unbound layers. Because of computational limitations 
of the current version of the LAVAN algorithm, it can take a very long time to compute all the 
parameters (i.e., c1, c2, c3, and c4 of the AC and k1, k2, and k3 of the unbound layer) during the 
backcalculation stage. Therefore, a two-stage backcalculation scheme was proposed to 
backcalculate viscoelastic as well as nonlinear unbound layer properties of the pavement layers. 
The two-stage nonlinear backcalculation model was very similar to the two-stage linear 
backcalculation model discussed in the earlier section. In the nonlinear model, the first stage 
involved nonlinear elastic backcalculation of the properties (i.e., k1, k2, and k3) of the unbound 
granular layer. In the second stage, the backcalculated unbound properties (i.e., k1, k2, and k3) 
were fixed, and the layered viscoelastic-nonlinear model (LAVAN) was used to backcalculate 
the linear viscoelastic properties of AC layer. Details of known and unknown properties used 
during these two stages are shown in table 28. Note that the current forward algorithm (LAVAN) 
can easily be extended to include the nonlinearity of subgrade layers. However, when such 
forward solution was used in a backcalculation algorithm, computational efficiency decreased 
significantly. Typically, the effect of surface stress in the subgrade was limited (stress “bulb” 
effect) and assumption of linear elastic subgrade, with increasing E (due to geostatic stress) with 
depth may be sufficient for most design purposes. 
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Table 28. Pavement properties and test inputs in two-stage nonlinear viscoelastic 
backcalculation. 

Property 
Stage 1: 

Nonlinear Elastic 
Stage 2: 

Nonlinear Viscoelastic 
Thickness (inches) Known (AC), known (BASE), 

infinite (SUBGRADE) 
Known (AC), Known (BASE), 
infinite (SUBGRADE) 

Poisson ratio Known (AC), known (BASE), 
known (SUBGRADE) 

Known (AC), Known (BASE), 
Known (SUBGRADE) 

Ebase (psi) Unknowns (k1, k2, k3) Obtained from stage 1 
Egsubgrade(psi) Unknown Obtained from stage 1 
E(t)AC (psi) Unknown (E(t)  = constant) Unknown (sigmoid coefficient) 

Test Inputs 
Surface loading (psi) Known peak stress Known load history 
Surface deflection 
(inches) 

Known peak deflection Known deflection history 

 
The algorithm was used to backcalculate two HMA mixes, namely, Control and CRTB (for mix 
properties, refer to table 29), on a 35-ms haversine load (synthetic FWD pulse load). The section 
properties were as shown in table 29. Stresses at distance r = 0 (center of loading) and layer mid-
depth were used in calculating unbound base modulus value for both forward calculation and 
backcalculation of synthetic data. 

Table 29. Pavement geometric and material properties in two-stage nonlinear viscoelastic 
backcalculation. 

Property Value 
Thickness (inches) 5.9 (AC), 9.84 (base), infinite (subgrade) 
Poisson ratio (ν) 0.35 (AC), 0.4 (base), 0.4 (subgrade) 
Density (pci) 0.0752 (AC), 0.0752 (base), 0.0752 (subgrade) 
Nonlinear Ebase (psi) Ko = 0.6; k1 = 3,626; k2 = 0.5; k3 = -0.5 
Esubgrade (psi) 10,000 
AC: E(t) sigmoid 
coefficient (psi) (ci) 

Control: 1.598, 2.937, -0.272, -0.562 
CRTB: 0.895, 3.411, 0.634, -0.428 

Shift factor 
coefficients (ai) 

Control: 5.74E-04, -1.55E-01 
CRTB: 4.42E-04, -1.32E-01 

Haversine stress 
35 ms (psi) 

Peak stress = 137.79 psi 

Sensor spacing from the center of load (inches): 0, 8, 12, 18, 24, 36, 48, 60 
 
Stage 1: Nonlinear Elastic Backcalculation 

Nonlinear elastic model is based on the assumption that the structure is time independent, with 
the AC layer assumed to be elastic and the unbound base layer assumed to be a stress-dependent 
nonlinear material. Each FWD test was generally composed of four independent test drops, 
where each drop corresponded to a different stress level. Typical ranges of stress levels in each 
drop are shown in table 30.  
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Table 30. Typical FWD test load levels. 

Load Level 
Allowable Range for 11.81-inch 

Diameter Plate (psi) 
Used Surface 

Load (psi) 
Drop 1 49–60 55 
Drop 2 74–96 80 
Drop 3 99–120 110 
Drop 4 132–161 137.8 

 
In stage 1, peak stress and deflection values during all the test drops (drop 1 through 4) were 
used as input. Peak stress values in each drop (drops 1 through 4) for synthetic haversine FWD 
loading used in the present analysis were 55, 80, 110, and 138 psi, respectively (refer to table 
30). The AC layer modulus and unbound layer properties (k1, k2, and k3) backcalculated from 
synthetic deflection at different temperatures are shown in figure 143 and figure 144, 
respectively. 

 
Figure 143. Graph. Nonlinear elastic backcalculated AC modulus for control and CRTB 

mixes using FWD data at different test temperatures. 
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Figure 144. Graphs. Nonlinear elastic backcalculated unbound layer properties for control 

and CRTB mixes, using FWD data at different test temperatures. 

As expected, for both control and CRTB mixes, the backcalculated elastic AC modulus values 
dropped with increase in temperature. Note that the forward solutions for the FWD surface 
deflections were computed using the LAVAN (layered viscoelastic-nonlinear) algorithm. The 
horizontal dashed lines in figure 144 show the actual inputs used in the LAVAN forward 
computation. As shown, the coefficients were close to the actual values but they were generally 
underpredicted by the backcalculation algorithm. 

Stage 2: Nonlinear Viscoelastic Backcalculation 

In stage 2, the backcalculated unbound layer properties from stage 1 were used as known fixed 
values, and the viscoelastic layer properties of the AC layer were obtained using viscoelastic-
nonlinear backcalculation. The performance of the backcalculation algorithm was checked for 
the set of FWD data at temperatures ({50, 68}, {68, 86}, {86, 104}, {104, 122}°F) to determine 
the effect of different temperature ranges on the backcalculated E(t) values. The backcalculated 
unbound layer properties obtained in stage 1 at each independent temperature were averaged 
when a set of temperatures was used in viscoelastic backcalculation. Average error in the 
backcalculated E(t) master curve (refer to figure 145 and figure 146), (backcalculated in the 
second step) were calculated using figure 87. The error was calculated over four time ranges: 
(1) 10-5 to 10+1 s, (2) 10-5 to 10+2 s, (3) 10-5 to 10+3 s, (4) and 10-5 to 10+5 s. From figure 145 and 
figure 146, it can be seen that for lower temperatures, the backcalculated E(t) master curve 
showed some deviation at higher reduced time, whereas, for higher temperatures, the 
backcalculated E(t) master curve showed some deviation at lower reduced time. The 
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backcalculated results for the mixes showed good predictability of the E(t) master curve using 
the two-stage nonlinear backcalculation scheme. 

 
Figure 145. Graphs. Control mix backcalculation results from two-stage nonlinear 

viscoelastic backcalculation. 

 
Figure 146. Graphs. CRTB mix backcalculation results from two-stage nonlinear 

viscoelastic backcalculation. 

BACKCALCULATION OF LTPP SECTION USING TWO-STAGE NONLINEAR 
VISCOELASTIC BACKCALCULATION METHOD 

The developed two-stage backcalculation algorithm was next used with field data to 
backcalculate the viscoelastic properties of the LTPP section 0101 from State 1 (Alabama). 
Section 10101 was tested consecutively in 2004–2005, with the two tests separated by more than 
68 °F (refer to table 31 and table 32). Further, because the section was not modified between the 
two tests, it was selected for the analysis. 
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Table 31. FWD test data from LTPP section 10101 for 2004–2005. 

Test Date 
Drop 
Level 

Peak Stress 
(psi) Deflection (mil) 

2/23/2004 1 54.1 5.00 4.25 3.70 2.99 2.44 1.57 1.10 
2 83.5 8.11 6.93 6.10 4.92 4.06 2.56 1.81 
3 113.3 11.65 10.00 8.82 7.13 5.87 3.78 2.60 
4 148.7 16.14 13.90 12.17 9.92 8.19 5.24 3.62 

4/28/2005 1 52.2 8.90 6.46 5.04 3.54 2.48 1.46 0.94 
2 80.2 13.98 10.47 8.50 5.83 4.17 2.40 1.73 
3 111.2 20.20 15.55 12.91 8.90 6.38 3.74 2.76 
4 139.1 26.06 20.28 16.93 11.81 8.39 4.84 3.50 

 
Stage 1: Nonlinear Elastic Backcalculation 

In stage 1, peak stress and deflection values during all the test drops in table 31 were used as inputs 
in nonlinear elastic backcalculation. The backcalculation results in table 32 show that the unbound 
base properties (k1, k2, and k3) were found to be very close; it also shows that although the AC was 
affected by the temperature of the test, the effect on the unbound layer was not significant. As 
expected, the backcalculated elastic AC modulus values dropped with increase in temperature. 

Table 32. Nonlinear elastic backcalculation results for LTPP section 10101. 

Results 
FWD Test Year 

2004 2005 
Average AC temperature (°F) 53.4  95.4 

Properties 

AC modulus (psi) 941,526 227,346 
k1 17,984 15,972 
k2 0.16 0.17 
k3 -0.59 -0.58 
Esubg 29,832 26,097 

 
Stage 2: Nonlinear Viscoelastic Backcalculation 

Unbound layer material properties may vary depending on environmental factors (seasons). 
However, because the unbound layer properties obtained for the two tests in stage 1 were found to 
be very close, they were used in the second stage of the backcalculation without any correction. 
Stage 2 uses the nonlinear viscoelastic forward algorithm during backcalculation of the E(t) of the 
AC layer. Note that viscoelastic backcalculation requires the entire time history for 
backcalculation. For the LTPP section test in year 2004, the entire deflection history was 
available only for drop 1, hence the backcalculation was performed using only drop 1. Figure 147 
and figure 148 show results obtained by two independent backcalculation attempts using data 
from 2 years of field testing. As shown, a very good match was seen in E(t), and a reasonable 
match was seen in the shift factor function. The measured viscoelastic properties in the figures 
were obtained using D(t) data available in the LTPP database (refer to figure 117 and figure 118). 
As explained earlier (refer to figure 101 through figure 104), the dynamic modulus and phase 
angle master curve for the backcalculated E(t) were calculated at 66 °F.  
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Figure 147. Graphs. Comparison of nonlinear viscoelastic backcalculated and measured 

E(t) and aT(T) for LTPP section 10101.  

 
Figure 148. Graphs. Comparison of nonlinear viscoelastic backcalculated and measured 

|E*| and phase angle for LTPP section 10101.  

SUMMARY AND CONCLUSIONS 

This chapter presented two methodologies for determining the E(t)/|E*| master curve and 
unbound material properties of in-service pavements. As part of this effort, two multilayered 
viscoelastic algorithms were developed. The first algorithm, called LAVA/LAVAP (LAVA can 
consider constant AC layer temperature, and LAVAP can consider a temperature profile for the 
AC layer), assumed the AC layer was a linear viscoelastic material and the unbound layers was 
linear elastic. The second algorithm (called LAVAN) also assumed the AC layer was a linear 
viscoelastic material; however, it can consider the nonlinear (stress-dependent) elastic moduli of 
the unbound layers. These two models were used to develop two genetic algorithm-based 
backcalculation algorithms (called BACKLAVA/BACKLAVAP for the linear model and 
BACKLAVAN for the nonlinear model) for determining E(t)/|E*| master curve of AC layers and 
unbound material properties of in-service pavements. 
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The following conclusions can be drawn regarding the FWD data collection: 

• Careful collection of FWD deflection data is crucial. The accuracy of the deflection time 
history needs to be improved. As a minimum, a highly accurate deflection time history at 
least until the end of the load pulse duration is needed for E(t) or |E*| master curve 
backcalculation. The longer the duration of the deflection time history, the better. 

• The temperature of the AC layer needs to be collected during the FWD testing. 
Preferably, temperatures should be collected at every 2 inches of depth of the AC layer. 

• Either a single FWD run on AC with a large temperature gradient or FWDs run at 
different temperatures can be sufficient to compute the E(t)/|E*| master curve of AC 
pavements. 

• For backcalculation using multiple FWD test datasets, tests should be conducted at a 
minimum of two different temperatures, preferably 18 °F or more apart. FWD data 
collected at a set of temperatures between 68 and 104 °F will maximize the accuracy of 
the backcalculated E(t)/|E*| master curve up to less than a 10-percent error. 

• For backcalculation using a single FWD test dataset at a known AC temperature profile, the 
FWD test should be conducted under a temperature variation of preferably ± 9 °F or more. 

• An FWD configuration composed of multiple pulses (as presented in the appendix B) 
will improve the accuracy of the E(t) master curve prediction. However, to obtain the 
time-temperature shift factor coefficients, either temperature variation with depth needs 
to be measured (and included in the analysis) or the FWD test (with multiple pulses) 
needs to be run at different pavement temperatures (e.g., different times of the day).  

• Study of the effect of FWD sensor data on backcalculation indicates that the influence of 
unbound layer properties increases with incorporation of data from farther sensors and 
with increase in test temperature. Further, it can be concluded that all sensors in the 
standard FWD configuration are needed for accurate backcalculation of the viscoelastic 
AC layer and unbound layers. 

The following conclusions can be drawn for the backcalculation procedure: 

• Viscoelastic properties of AC layer can be obtained using a two-stage scheme. The first 
stage is an elastic backcalculation to determine unbound layer properties, which is 
followed by viscoelastic backcalculation of E(t) of the AC layer while keeping the 
unbound layer properties fixed.  

• The examples presented in this study show that, in the case of the presence of 
considerable dynamic effects, the algorithms (BACKLAVA/BACKLAVAP and 
BACKLAVAN) should be used with caution. The algorithms presented in this chapter 
predict the behavior of flexible pavement as a viscoelastic damped structure, assuming it 
to be massless.  
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• For the GA-based backcalculation procedures, the following population and generation 
sizes are recommended: 

o For the BACKLAVA model, use a set of FWD tests run at different (but constant) 
AC layer temperatures with a population size of 70 and 15 generations. 
 

o For the BACKLAVAP model, use a single FWD test with a known AC temperature 
profile and a population size of 300 and 15 generations. 
 

o For the BACKLAVAN (nonlinear) model, use FWD tests run at different (but 
constant) AC layer temperatures and a population size of 100 and 15 generations. 
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CHAPTER 5. DYNAMIC VISCOELASTIC TIME-DOMAIN ANALYSIS 

The prevalence of dynamic conditions shown in the LTPP database, as discussed in chapter 3 
and in the FWD tests conducted on Waverly Road (near Lansing, MI) as part of this project, 
emphasized the necessity of using a time-domain based dynamic solution that could also model 
the viscoelastic response of the HMA layer(s). A new forward dynamic viscoelastic time-domain 
solution was implemented based on the solution developed by Lee.(98) The new code was written 
in-house by the research team using the MATLAB® environment and coded for parallel 
processing to achieve better computational efficiency. This new version of the program is 
referred to as ViscoWave-II. In addition, a dynamic backcalculation program using 
ViscoWave-II as its forward engine was developed with GA as its search core. This was done to 
ensure uniqueness of the backcalculated solution from the search algorithm. This new dynamic 
backcalculation program with viscoelastic AC layers and damped elastic unbound layers is called 
DYNABACK-VE.  

This chapter first describes in detail the mathematical development of the dynamic viscoelastic 
time-domain algorithm. It then presents the verification results for the developed algorithm by 
comparing the simulation results from the developed algorithm to some of the other existing 
solutions. Later, this chapter describes different backcalculation schemes using the new forward 
solution developed in this research. Finally, this chapter reports on the backcalculation 
algorithms tested using theoretically generated deflection time histories and field-measured FWD 
data collected as part of this project. Note that the current forward solution (ViscoWave-II) can 
be extended to include nonlinearity of unbound layers. However, when such a forward solution 
was used in the backcalculation algorithm, computational efficiency decreased significantly and 
became unreasonable. Therefore, although nonlinearity of unbound layers was considered in 
chapter 4, it was not investigated in the dynamic analysis for two reasons: (1) unreasonable 
computational time and (2) lack of development time.  

NEW TIME-DOMAIN DYNAMIC (FORWARD) SOLUTION (VISCOWAVE-II)  

The time-domain dynamic solution (ViscoWave) developed by Lee was selected as the forward 
solution.(98) The theoretical development for the proposed methodology followed steps similar to 
those of the spectral element method, which uses the discrete transforms for solving the wave 
equations.(2,40) However, the new solution used continuous integral transforms (namely Laplace 
and Hankel transforms) that were more appropriate for transient, nonperiodic signals in the time 
domain.(3) The new algorithm code was written in both MATLAB® and C++ and coded for 
serial and parallel processing with and without multithreading to achieve better computational 
efficiency. This new version of the program is referred to as ViscoWave-II. The new algorithm 
represents the master curve using Prony series of 14 elements, not including E∞, instead of the 
power law used in ViscoWave. The algorithm also was changed so that it accepts the input of 
temperature profile along the viscoelastic layer. Appendix C describes in detail the mathematical 
development of the new algorithm. 
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Implementation and Preliminary Validation of Algorithm 

The algorithm was first implemented in MATLAB® so that the computation would run serially. 
Then, to speed up the computations, two different parallelization schemes were coded and tested 
using: (1) a local cluster of 8 and 12 cores and (2) a cluster of 60 computers in the High 
Performance Computing Center (HPCC) network of Michigan State University using the 
Message Passing Interface (MPI). Subsequently, as is described later in this chapter, the code 
was rewritten in C++ to speed the computations even further. 

The algorithm was used to simulate the behavior of elastic and viscoelastic structures subjected 
to an FWD loading. In addition, other available solutions were used to simulate the response of 
the same pavement structures for validation of the ViscoWave-II algorithm. The results of these 
numerical simulations and the preliminary validation efforts are presented. For viscoelastic 
simulation, the master curve was fitted using a Prony series of 14 elements, not including E∞.  

Simulation of an Elastic Pavement Structure 
The properties of the pavement layers used for the elastic analysis are shown in table 33. The FWD 
loading was idealized to be a half-sine load distributed over a circular area of with a radius of 
6 inches, a peak magnitude of 9,000 lb, and a duration of 26 ms. The surface deflections were 
calculated at radial distances of 0, 8, 12, 18, 24, 36, and 60 inches from the center of the 
loading plate. 

To verify the results from ViscoWave-II, the elastic simulation was also conducted using the 
axisymmetric spectral element algorithm LAMDA, which was already verified through a 
comparison with the 3-D FEA solution.(2) A summary of the theory behind LAMDA is presented 
in chapter 2. The time histories for the resulting surface deflections are shown in figure 149. The 
figure indicates that ViscoWave-II and LAMDA showed almost identical results, validating the 
algorithm behind ViscoWave-II. 

Table 33. Layer properties for elastic simulation using LAMDA and ViscoWave-II. 

Layer 
Elastic Modulus 

(ksi) Poisson’s Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt 145 0.35 6 145 
Base 30 0.4 10 125 
Subgrade 15 0.45 Infinity 100 
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Figure 149. Graphs. Comparison of surface deflections of a layered elastic structure using 

ViscoWave-II and LAMDA.  

Simulation of Viscoelastic Pavement Structures 
The viscoelastic simulation was carried out for thin, medium, and thick pavement structures. The 
layer parameters considered/assumed are presented in table 34. The FWD loading used in this 
simulation is presented in figure 150, and it was assumed to be uniformly distributed over a 
circular area with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. 
The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 
72 inches from the center of the loading plate. The viscoelasticity of the AC layer was modeled 
using a Prony series of the simulated master curve presented in figure 151. The results are shown 
in figure 152.  
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Table 34. Layer properties for viscoelastic simulation using ViscoWave-II. 

Layer 
Thickness 
(inches) 

Modulus 
(ksi) 

Poisson 
Ratio 

Unit Weight 
(pcf) 

AC (thin) 3 Master Curve 0.35 145 
AC (medium) 6 
AC (thick) 10 
Base 15 25.0 0.40 125 
Subgrade Infinity 7.0 0.45 100 

 

 
Figure 150. Graph. Simulated FWD load.  

 
Figure 151. Graph. AC layer master curve for viscoelastic simulation.  
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Figure 152. Graphs. Results from ViscoWave-II for viscoelastic simulations of thin (top), 

medium (middle), and thick (bottom)pavements.  

Another viscoelastic simulation was carried out using the same pavement structure that was used 
for the previous elastic simulation (table 33) with a couple of exceptions. The viscoelasticity of 
the AC was modeled using two different creep compliance functions: one that represents 
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low-temperature behavior (figure 153 (left)) and the other representing high-temperature 
behavior in which the viscoelastic effects are more pronounced (figure 153 (right)). In addition, 
for each of the creep compliance functions shown in figure 153, the subgrade layer was first 
modeled to be a half-space (infinite thickness) and then with a shallow bedrock (infinite 
stiffness) located 10 ft below the pavement surface (figure 154). To verify the results of the 
viscoelastic simulation from ViscoWave-II, a commercially available FEA package, ADINA, 
was used to simulate the dynamic response of the viscoelastic pavement subjected to the FWD 
loading. Figure 155 shows the geometry and the FEA mesh that was used for the analysis. The 
simulations using ADINA were reported by Lee.(98) Although the elements in ViscoWave-II 
assumed that the elements extend to infinity in the horizontal direction and also in the vertical 
direction for the one-noded element, the FEA simulation was inevitably conducted with a finite 
geometry. More specifically, the FEA model only extended to 20 ft in the horizontal direction 
and 41.3 ft in the vertical direction for the simulation of the half-space (figure 155 (top)).  

 
Figure 153. Graphs. Low- (left) and high- (right) temperature AC creep compliance curves 

used for ViscoWave-II simulation.  

 

Figure 154. Diagrams. Schematic of the pavement structure with half-space (left) and 
bedrock (right).  
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Figure 155. Diagrams. Axisymmetric FEM geometry (top) and FEM mesh (bottom) used 

for simulation of pavement response under FWD loading. 

The FEA mesh was generated in such a way that finer meshes were used near the loaded area, 
and coarser meshes were used near the geometric boundaries. A total of approximately 
8,600 axisymmetric elements, each consisting of 9 nodes, were consistently used for all FEA 
simulations. The results of the simulations are presented in figure 156 through figure 159. This 
further verified the implementation of the ViscoWave-II program. 
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Figure 156. Graphs. Surface deflections of a layered viscoelastic structure with a half-space 

at low temperature simulated using ViscoWave-II and ADINA.  

 
Figure 157. Graphs. Surface deflections of a layered viscoelastic structure with a bedrock 

at low temperature simulated using ViscoWave-II and ADINA.  
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Figure 158. Graphs. Surface deflections of a layered viscoelastic structure with a half-space 

at high temperature simulated using ViscoWave-II and ADINA.  

 
Figure 159. Graphs. Surface deflections of a layered viscoelastic structure with a bedrock 

at high temperature simulated using ViscoWave-II and ADINA.  

Simulation of Viscoelastic Pavement Structures With Stiff Soils 
The analyses in chapter 3 showed a prevalence of dynamic behavior (in the form of free 
vibrations of deflection sensor time histories) observed in a large pool of LTPP FWD test data. A 
sensitivity analysis was then conducted to show that the stiff layer condition did not necessarily 
correspond to the presence of shallow bedrock, which often lies at much greater depths. Instead, 
the stiff layer condition can manifest anytime the soils below the subgrade layer are stiffer than 
that subgrade layer. In this section, the research team describes the investigation using an 
increasing subgrade modulus with depth instead of a single stiff layer at a fixed depth. The 
rationale behind this analysis was that in reality, soil profiles generally exhibited increasing soil 
modulus with depth. This can be due to increased confinement with depth for sands or 
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consolidation level with depth in clay—these situations are very common in any soil profile. 
This is a commonly observed behavior in the geotechnical engineering profession. 

The viscoelastic simulation was carried out using the pavement structure presented in table 35. 
The FWD loading used in this simulation was assumed to be uniformly distributed over a 
circular area with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. 
Two cases of stiff soils modeling were simulated. The subgrade layer was first modeled to be 
with a shallow stiff layer (2,000,000 psi) located at about 9 ft below the pavement surface (base 
case scenario), and then with soils having E-values increasing with depth (figure 160). The 
surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 
72 inches from the center of the loading plate. The viscoelasticity of the AC was modeled using a 
Prony series of the master curve presented in figure 161 (top). The AC layer was divided into 
two layers with different temperatures as shown in figure 161 (bottom). In addition, the roadbed 
soil was divided into 11 sublayers of 50 ft total depth (a 2-ft top layer representing the 
compacted subgrade layer and 10 sublayers of 4.8 ft each with stiffness increasing as a function 
of depth). The results of the simulations are presented in figure 162. The results indicate that 
(1) the deflection amplification was higher when a stiff layer modulus was fixed as a high value 
as opposed to increasing with depth, and (2) the free vibrations (at the tail of the deflection 
pulses) were lower when the soil modulus was gradually increasing with depth. 

Table 35. Layer properties for viscoelastic simulation of structure with stiff soils. 

Layer 
Elastic Modulus 

(psi) Poisson’s Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt Master curve 0.35 4 145 
Base 20,000 0.4 6 125 
Subgrade 13,500 0.45 600 100 
 

 
Figure 160. Diagram. Pavement structure with soils having E-values increasing with depth.  
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Figure 161. Graph and Diagram. AC layer parameters. 
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Figure 162. Graphs. Surface deflections of pavement structure with shallow stiff layer and 

soils having E-values increasing with depth. 

Computational Efficiency of the New Algorithm 

All the simulations previously described in this chapter were run both serially (ViscoWave) and 
using parallel computing (ViscoWave-II). Note that the efficiency of ViscoWave-II using the MPI 
parallelization scheme was only an estimate. Because the program was written in MATLAB®, the 
parallelization relied totally on the MATLAB® distributed computing server, which was known to 
have problems with long jobs. To overcome this problem, the research team re-implemented the 
algorithm using a low-level programming language (C++). The new code was tested on a four-core 
centraol processing unit (CPU) computer, and the runtime with t = 0.2 ms was reduced from 
9 min (540 s) to 0.5 min (30 s) in serial (CPU) computing. This represented an 18-fold reduction in 
computational time. Table 36 presents the computation time for each simulation. It is clear that 
significant computational savings were achieved when using parallel computation. ViscoWave-II 
is 8 times faster when using 8 cores, 12 times faster when using 12 cores, and 60 times faster when 
using 60 cores (available only through the HPCC housed in the Michigan State University College 
of Engineering). Also, the reduction in computation time by using the code written in C++ 
language and rather than MATLAB® is significant (almost half). Computation time could be 
further reduced by using a 64-bit machine. The computational efficiency went from 5 min (300 s) 
to 2.5 min (153 s) in a two-core CPU machine without multithreading. 
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Table 36. ViscoWave-II computational efficiency. 
Time 
Step 
(ms) Simulation 

Serial 
Computation1 (s) 

Parallel Computation (s) 
MATLAB® C++ With Multicore C++ With Multithreading 

2 cores2 4 cores3 8 cores3 2 cores2 4 cores3 8 cores3 2 cores4 4 cores4 8 cores4 

0.1 

Elastic 1,800 900 450 225 500 75 38 250 38 20 
Viscoelastic three-layer system 2,100 1,050 525 262 584 88 45 295 45 22.5 
Viscoelastic with shallow stiff 
layer 

2,593 1,297 649 325 720 108 53 360 54 27 

Viscoelastic with soils 
stiffening with depth 

3,342 1,670 836 418 928 139 70 465 70 35 

0.2 

Elastic 840 420 210 105 230 35 19 115 17 8.5 
Viscoelastic three-layer system 1,080 540 270 135 300 45 22.5 150 22.5 11.5 
Viscoelastic with shallow stiff 
layer 

1,210 605 304 153 336 50 25 169 26 13 

Viscoelastic with soils 
stiffening with depth 

1,560 780 390 195 435 66 34 218 33 17 

1Only MATLAB® was used for serial computation. 
2Intel core 2 duo CPU with 2.5 GHz (32-bit CPU). 
3Intel core 4 duo CPU with 3.5 GHz (32-bit CPU). 
4Two threads per core. 
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Dynamic Analysis of Waverly Test Section  

As part of this project, FWD tests were conducted at Waverly Road test sections. The FWD was 
provided by FHWA. Testing included the following: 

1. Morning set: Four different sections and four different load levels. 
2. Afternoon set: Four different sections and four different load levels. 
3. Evening set: Four different sections and four different load levels. 
The top AC layer configurations of the four different sections selected for FWD are presented in 
table 37.  

Table 37. Waverly Road pavement section information. 

Station Number Layer 1 (Thickness) Layer 2 (Thickness) 
1 Crumb rubber modified asphalt 

(4E03a—CRTB) 
(2 inches) 

Crumb rubber modified asphalt 
(4E03—CRTB) 
(2 inches) 

2 Crumb rubber modified asphalt 
(4E03—CRTB) 
(2 inches) 

Control 4E03 
(2 inches) 

3 Control 4E03 
(2 inches) 

Control 4E03 
(2 inches) 

4 Control LVSPb 

(2 inches) 
Control LVSPb 
(2 inches) 

a4E03 = MDOT 4E03 Superpave mix 
bLVSP = Low-Volume Superpave mix.  

During the test, different loads were dropped, and deflection histories at each load level were 
measured. To measure deflection histories, sensors were kept at specified spacing measured from 
the loading unit. The FWD test loading system and deflection sensors are shown in figure 163. 

 
Figure 163. Photos. FWD used during the field tests. 

Temperature in pavements typically varies with depth, which may significantly affect pavement 
response. Holes at depths 2, 4, 6, 8, and 10 inches were drilled to measure temperature. The drills 
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were made close to the testing location as shown in figure 164. Temperature measurements were 
taken each time the test was run. The test load levels, deflection sensor locations, temperature 
profile, and the peak FWD deflection measurements at stations 1 and 3 are given in appendix D. 
The research team used only stations 1 and 3 because stations 2 and 4 have an asphalt base with 
a different mix. Use of the latter would cause a problem for the backcalculation algorithm 
because it was not designed to backcalculate the modulus of more than one AC layer in the 
pavement structures with different mixes. The same is true if there were multiple subgrade layers 
with similar modulus values. 

 
Figure 164. Photo. Illustration of temperature measurement at different depths of the 

pavement. 

Comparison of Theoretical and Measured Deflection Time Histories 

In this analysis, the ViscoWave-II program was used to analyze the response under the FWD test 
for the Waverly Road site (stations 1 and 3). The purpose of the exercise was to verify the 
observations from measurements with theory. To minimize the trials for a reasonable match, the 
AC dynamic modulus curves from laboratory tests on cores obtained from the field (and 
presented in appendix D in the section entitled Laboratory-Measured Results for Waverly Road) 
were used. The corresponding relaxation modulus curves were fitted with appropriate Prony 
series. The average AC layer temperature measured in the field was used. The depth to the stiff 
layer was estimated at 8 ft using the Ullidtz analysis procedure (described in chapter 4 in the 
section entitled Backcalculation of the Viscoelastic Properties of the LTPP Sections Using a 
Single FWD Test With Known Temperature Profile).(94) Initially, the stiff layer modulus was set 
at 2 million psi, which was the value used for the static and viscoelastic backcalculation 
described earlier. The moduli of the unbound layers were varied until a reasonable match was 
obtained. Table 38 and table 39 show the final pavement stations used in the analysis for  
stations 1 and 3, respectively. The same pavement cross sections with identical layer properties 
were then used for running the program LAVA for comparison purposes. 
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Table 38. Pavement properties used in dynamic analysis of station 1 with ViscoWave-II. 

Layer 
Modulus 

(psi) 
Poisson’s 

Ratio 
Mass Density 

(pcf) 
Thickness 
(inches) 

HMA Master curve 0.35 145 4 
Base 20,000 0.4 125 6 
Subgrade 13,500 0.45 100 96 
Stiff Layer 2,000,000 0.2 125 Infinity 

Table 39. Pavement properties used in dynamic analysis of station 3 with ViscoWave-II. 

Layer 
Modulus 

(psi) 
Poisson’s 

Ratio 
Mass Density 

(pcf) 
Thickness 
(inches) 

HMA Master curve 0.35 145 4 
Base 15,000 0.4 125 6 
Subgrade 12,500 0.45 100 96 
Stiff Layer 2,000,000 0.2 125 Infinity 

 
Figure 165 and figure 166 show the predicted deflection time histories from ViscoWave-II and 
LAVA together with measured ones for stations 1 and 3, respectively. Figure 167 shows 
comparisons of ViscoWave-II and LAVA solutions with measured deflections for station 1 in 
terms of peak deflections (top graph); ratio of predicted to measured deflections (bottom graph). 

The following useful observations were made: 

• The theoretical predictions from ViscoWave-II show very good agreement with the 
measured deflection time histories. In particular, it is worthwhile noting that both theory 
and measurement show very clearly that the most distant sensors (6 through 8) indicated 
a slight rebound at the beginning of the signal (inside the dashed circle). The fact that 
both theory and measurement showed the same behavior was proof that these 
observations were physically real. While this might be construed as a detail and may not 
be ultimately critical in the practical implications of the backcalculation exercise, it is an 
important fact that reinforces the belief that (1) a comprehensive model that takes into 
account viscoelasticity of the AC layer, damping in the unbound layers, and dynamics in 
terms of inertial and wave propagation effects, can explain the measured data with all its 
complexities; and (2) the FWD sensor measurements appear to be quite reliable in 
showing the physical behavior for most of the time range, with the exception of the drift 
problems at the tail of the records (previously mentioned in chapter 3). 

• The layered viscoelastic solution (LAVA program) cannot simulate the true deflection 
time histories because it cannot account for inertial and wave propagation effects. As 
such, it cannot predict the time delays in the response, the initial rebounds of the farther 
sensors, and the free vibrations after the load is applied. Also, the viscoelastic solution 
mostly follows the shape of the applied load (typical waviness observed in the Dynatest® 
load signal). In terms of peak response, the solution will significantly underestimate the 
deflections when a stiff layer is presented. This is because it cannot account for the 
dynamic amplification due to the wave energy trapped in the unbound layers when a stiff 
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layer condition exists. In fact, it will further reduce the deflection because the stiff layer 
has a very high modulus (similar to a static solution). Therefore, in the context of 
backcalculation when a stiff layer condition exists, using the layered viscoelastic program 
as a forward solution will force the backcalculation algorithm to compensate by either 
overestimating the depth to the stiff layer, or if the user fixes this depth to a more 
reasonable estimate it will underestimate layer moduli. 

 
Figure 165. Graphs. Comparison of deflection response from ViscoWave-II and LAVA 

predictions for station 1. 
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Figure 166. Graphs. Comparison of deflection response from ViscoWave-II and LAVA 

predictions for station 3. 
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Figure 167. Graphs. Comparison of ViscoWave-II and LAVA solutions with measured 

deflections for station 1. 

Sensitivity Analysis on the Effect of Stiff Layer Modulus Value 

Because of the prevalence of dynamic behavior (in the form of free vibrations of deflection 
sensor time histories) observed in the large sample of LTPP FWD test data (as shown in 
chapter 3 of this report), it was hypothesized that in the great majority of the cases, the stiff layer 
condition may not correspond to the presence of shallow bedrock. Such bedrock would be highly 
unlikely given that it typically lies at much greater depths. Instead, the stiff layer condition could 
manifest anytime the soils below the subgrade layer are stiffer than the subgrade layer itself. This 
could be caused by increased confinement with depth, overconsolidation, or existence of a 
shallow groundwater table for example; these situations are very common in any soil profile. 
This would explain the high percentage of sections from the LTPP database that showed 
dynamic behavior. 

Given that argument, the research team decided to conduct a small sensitivity analysis on the 
value of the stiff layer modulus. This value was reduced from the initial value of 2 million psi, 
first in 200,000-psi increments (i.e., 1.8 million, 1.6 million psi, etc.), then in 20,000-psi 
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increments below 200,000 psi (i.e., 180,000, 160,000 psi, etc.), and finally used a minimum 
value of 10,000 psi, which was lower than the subgrade modulus (taken as 13,500 psi).  

Figure 168 shows example deflection time histories with the stiff layer modulus decreasing from 
2 million to 10,000 psi. The figure shows that the sensors close to the load were mostly not 
affected by the stiff layer modulus value while those farther from the load were. Free vibrations, 
while decreasing in magnitude and delayed further, will occur even at low values of the stiff 
layer modulus, as long as this value is higher that the subgrade modulus value. 

Figure 169 and figure 170 summarize the sensitivity analysis results for all sensors in terms of 
(1) the ratio of predicted to measured peak deflection values and (2) the amplification factor 
relative to the base case of 2 million psi. The figures show that only the farther sensors (6 through 
8) were affected by the stiff layer modulus value and that the effect became visible when the stiff 
layer modulus was 200,000 psi or lower (compared with the base case of 2 million psi). The effect 
is significant for the farther sensors, with up to a 50-percent error in the ratio of predicted to 
measured value and up to a factor of 2 for the amplification ratio, for the lower stiff layer modulus 
values. Even though these observations used one structure, they could be generalized. 

Summary of Findings From Dynamic Analyses 

The results of the above analyses clearly showed the superiority of a fully dynamic solution with 
a viscoelastic AC layer modulus in predicting deflection responses that were in line with the 
physical reality, as evidenced by the close match in the details of the deflection time histories 
between theory and observation.  
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Figure 168. Graphs. Example time histories from ViscoWave-II with decreasing stiff layer 

modulus and measured sensor deflections for station 1. 
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Figure 169. Graph. Effect of stiff layer modulus on ratio of predicted to measured sensor 

deflections for station 1.  

 
Figure 170. Graph. Effect of stiff layer modulus on predicted sensor deflection 

amplification for station 1.  
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BACKCALCULATION USING GA  

As discussed in chapter 4, one of the problems with gradient-based methods is that the 
multidimensional surface represented by the objective function may have many local minima. As 
a result, the program may converge to different solutions for different sets of seed moduli, as is 
discussed later in this chapter. The key disadvantages of gradient-based methods are precisely 
the strengths of the other two categories. In principle, GAs and direct search methods find a 
global optimum. The key disadvantage is that they can converge very slowly, especially near an 
optimum, requiring numerous calls to the dynamic forward solution. A second weakness is that 
determining a termination criterion is not straightforward. 

These strengths and weaknesses are considered in choosing an optimization algorithm. A key 
tradeoff is between the possibility of converging to a local minimum using gradient-based 
methods and the high computational cost of the GA. The more frequently the algorithm is to be 
used, the more beneficial the gradient-based algorithm becomes. Therefore, the research team 
decided to use a hybrid approach—use GA to obtain a good set of seed values that would then be 
used by the modified LM gradient-based algorithm to backcalculate the master curve of HMA 
layers and the layer properties for base and subgrade.  

The forward solution used a Prony series with 14 coefficients to model the master curve in the 
Laplace domain. Considering the Prony coefficients as unknown parameters during the 
backcalculation increased the search domain; thus, it may take a longer time to converge. 
Therefore, during the backcalculation, Prony series was first fitted to a sigmoidal function using 
nonlinear least squares optimization. The equation shown in figure 171 presents the fitting 
steps.(98) Using this approach, the research team had 6 unknowns instead of 17 for the master 
curve. Table 40 identifies the type of variables for the backcalculation. The equation shown in 
figure 172 presents the formulation of the optimization problem. 

 
Figure 171. Equation. Fitting steps of the Prony series. 

Table 40. Known and unknown parameters. 

Known Parameters Backcalculated Parameters 
Thickness of each layer Master curve coefficients (c1, c2, c3, c4) 
Poisson’s ratio of each layer Master curve shift factors (a1, a2) 
FWD load and setup Moduli of base, subbase, subgrade, stiff layer 
Mass density of each layer Thickness of subgrade if stiff layer exists 
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Figure 172. Equation. Optimization problem. 

Where: 

m = Number of sensors 
di = Input deflection information obtained from field at sensor k. 
do

k = Output deflection information obtained from forward analysis at sensor k. 
n = Total number of deflection data points recorded by a sensor. 
ci = Sigmoid coefficients. 
Eb and Esg = Base and subgrade moduli. 
ai = Shift factor polynomial coefficients.  

The superscript l represents the lower limit, and u superscript represents the upper limit. Table 41 
presents bounds of the variables used as input to the backcalculation algorithm.  

Table 41. Bounds of the variables. 

Variable Lower Limit Upper Limit 
c1 0.045 2.155 
c2 1.800 4.400 
c3 -0.523 1.025 
c4 -0.845 -0.380 
a1 -0.00053801 0.00113610 
a2 -0.159792 -0.077 
a3 1.656202 2.763 

Ebase (psi) 10,000 30,000 
Esubgrade (psi) 5,000 20,000 

 
Theoretical Verification of DYNABACK-VE 

To check the accuracy and robustness of the backcalculation using the new dynamic forward 
solution, the research team first used only GA and did not focus on the computational efficiency 
of the algorithm. The verification and evaluation of the new backcalculation program 
DYNABACK-VE was carried out for the following: 

• Simulated deflections using ViscoWave-II. 
• Field FWD test data from Waverly Road stations and LTPP sections. 
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Backcalculation Using Simulated Deflections 
This section describes the results of backcalculation using simulated deflections. 

Sensitivity Analysis: Sensitivity analysis was conducted to assess the optimal number of 
populations and generations to be used for backcalculation. The pavement structure used in that 
sensitivity analysis is presented in table 42. The population-generation combinations used were 
30/15, 70/15, 100/15, 200/15, and 300/15. Figure 173 and table 43  summarize the results of the 
backcalculation. Based on the sensitivity analysis, the optimal population/generation 
combination was 200/15. Therefore, all the following backcalculations were performed using a 
population size of 200 with 15 generations. Because the optimal numbers of populations and 
generations were affected by the number of unknown variables and how smooth the objective 
function was, the recommendation to use a population size of 200 with 15 generations held true 
for all cases with 10 or fewer unknowns.   

Table 42. Layer properties for the simulated pavement structure. 

Layer Elastic Modulus (psi) 
Poisson’s 

Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt Master curve (figure 161 (top)) 
(86.9 °F, 79.3 °F) 

0.35 4 145 

Base 20,000 0.4 6 125 
Subgrade 13,500 0.45 96 100 
Stiff layer 2,000,000 0.25 Infinity 125 

 

 
Figure 173. Graph. Backcalculated master curve for different population-generation 

combinations optimization problem. 
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Table 43. Backcalculated layer moduli.  

Layer 
Elastic 

Modulus (psi) 
Backcalculated Moduli (psi) for Various Population Sizes 

35 70 100 200 300 
Base 20,000 13,857 15,315 16,281 16,736 20,246 
Subgrade 13500 6,886 11,027 13,928 13,548 13,559 
Stiff layer 2,000,000 1,381,454 1,473,155 1,573,994 1,824,154 1,591,451 
 
Backcalculation of Layer Moduli Only: The viscoelastic simulation was carried out using the 
same pavement structure presented in table 42. The FWD loading used in all simulations was 
assumed to be uniformly distributed over a circular area with a radius of 6 inches, a peak 
magnitude of 9,000 lb, and a duration of 35 ms (same pulse as figure 150). Two cases of stiff 
soils modeling were simulated. The subgrade layer was first modeled to be with a shallow stiff 
layer (2 million psi) located at about 8 ft below the pavement surface (figure 174 (left)) and then 
with subgrade having E-values increasing with depth (figure 174 (right)). The surface deflections 
were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of 
the loading plate. The viscoelasticity of the AC was modeled using a Prony series of the master 
curve presented in figure 175 (left). The AC layer was divided into two layers with different 
temperatures as shown in figure 175 (right). In the backcalculation, the two AC layers were 
considered to have the same master curve coefficients but different shift factors (computed using 
the same shift factor coefficients and different temperatures). In addition, for the case where 
E-values are increasing with depth (figure 174 (right)), the subgrade layer was divided into 
11 sublayers of 50-ft total depth (a 2-ft top layer representing the compacted subgrade layer and 
10 sublayers of 4.8 ft each with stiffness increasing as a function of depth). The semi-infinite 
layer in the case where the subgrade had E-values increasing with depth was a half-space. 
Therefore, the modulus of the half-space was the same as the lowest sublayer. 

 
Figure 174. Diagrams. Schematic of the pavement structure with stiff soils. 



 

161 

 
Figure 175. Graph and Diagram. AC layer master curve and temperature profile. 

Table 44 shows the viscoelastic dynamic backcalculation results of the pavement structure 
presented in table 42. Figure 176 shows the errors in deflection time histories. Figure 177 shows 
the backcalculated relaxation modulus master curve and the corresponding error. Note that the 
symbols in the plot show the useful range of reduced time for the temperatures in the upper and 
lower halves of the AC layer. The results were quite reasonable, except for the tail end of the E(t) 
curve (longer reduced time range). Note that the next section of this chapter describes the results 
when the research team ran a second backcalculation using the best 100 populations from run 1 as 
seed values in run 2—the backcalculation of the AC relaxation modulus curve greatly improved.  

Table 44. Backcalculated layer moduli.  

Parameter Simulation Backcalculated 
c1 1.271 1.55083 
c2 2.883 2.64494 
c3 0.22 0.04296 
c4 -0.497 -0.441535 
a1 0.000442 0.000483158 
a2 -0.132 -0.139815 
a3 2.34 2.68989 

Ebase (psi) 20,000 20,246 
Esubgrade (psi) 13,500 13,559 

Estiff (psi) 2,000,000 1,591,450 
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Figure 176. Graphs. Error in the backcalculated time histories by sensor—backcalculation 

of layer moduli only.  
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Figure 177. Graphs. Backcalculation results of the master curve—backcalculation of layer 

moduli only. 

Backcalculation of Layer Moduli and Subgrade Thickness: This section presents the results 
of the team’s effort to backcalculate the depth to the stiff layer in addition to the stiff layer 
modulus. The previous profile was used with similar input parameters with the exception of the 
subgrade thickness, which was unknown and needed to be backcalculated. The backcalculation 
algorithm was run twice. The final population of the last run was input as the initial population 
for the second run. Table 45 shows the viscoelastic dynamic backcalculation results. Figure 178 
shows the percent error of the deflection time histories. Figure 179 shows the backcalculated 
relaxation modulus master curves and the corresponding percent error. It was clear that running a 
second backcalculation using the results from the first run as seed populations led to a much 
improved backcalculated AC modulus master curve. Note that the curves with circular and 
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triangular symbols in figure 177 show the useful range of reduced time for the temperatures in 
the upper and lower halves of the AC layer. 

Table 45. Backcalculated layer moduli and subgrade thickness. 

Parameter Simulation Backcalculated  
c1 1.271 1.304318 
c2 2.883 2.950314 
c3 0.22 0.107608 
c4 -0.497 -0.40963 
a1 0.000442 0.000489292 
a2 -0.132 -0.15225078 
a3 2.34 2.948735039 

Ebase (psi) 20,000 20,568 
Esubgrade (psi) 13,500 13,372 

hsubgrade (inches) 96 95.5 
Estiff (psi) 2,000,000 2,281,374 

 

 
Figure 178. Graphs. Error in the backcalculated time histories by sensor—backcalculation 

of layer moduli and subgrade thickness.  
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Figure 179. Graphs. Backcalculation results of the AC master curve—backcalculation of 

layer moduli and subgrade thickness.  

Backcalculation Using Field Data 
This section provides an evaluation of the new dynamic viscoelastic backcalculation program 
DYNABACK-VE using the field FWD test results from the Waverly Road tests conducted as 
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part of this study and from two LTPP sections. As discussed previously, the forward solution 
used a Prony series with 14 coefficients to model the master curve in the Laplace domain. To 
reduce the number of backcalculated variables, it was decided to reduce the number of 
coefficients for the shift factor by one using a simple mathematical transformation.(99) The 
equations in figure 180 show the old and new equations for shift factor. Figure 180 shows the 
formulation of the optimization problem.  

 
Figure 180. Equation. New and old shift factor equations.  

For figure 181, it was decided to constraint the sum of the first two coefficients of the master 
curve instead of constraining the two coefficients to reduce the search domain as explained in 
chapter 4. 

 
Figure 181. Equation. New optimization problem.  

Where:  

m = the number of sensors. 
di = the input deflection information obtained from the field at sensor k 
do

k = the output deflection information obtained from forward analysis at sensor k. 
n = the total number of deflection data points recorded by a sensor. 
ci = the sigmoid coefficients. 
Eb and Esg = base and subgrade modulus. 
ai = the shift factor polynomial coefficients.  

The superscript l represents the lower limit, and u represents the upper limit. Table 46 presents 
the bounds of the variables used as input to the backcalculation algorithm.  

  

Old shift factor: 𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎) = 𝑎𝑎1 × 𝑇𝑇2 + 𝑎𝑎2 × 𝑇𝑇 + 𝑎𝑎3 
New shift factor: 𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎) = 𝑎𝑎1 × (𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)2 + 𝑎𝑎2 × (𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
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Table 46. Bounds of the variables. 

Variable Lower Limit Upper Limit 
c1 0.045 2.155 

c1 + c2 3.239 4.535 
c3 -0.523 1.025 
c4 -0.845 -0.380 
a1 -0.000536829 0.00113638 
a2 -0.140735 -0.097358 

Ebase (psi) 10,000 30,000 
Esubgrade (psi) 5,000 20,000 

 
Waverly Road: The pavement structure used in the backcalculation is presented in table 47. The 
AC layer was assumed to have a two-step piecewise temperature profile. Figure 182 shows the 
two-step temperature profile assumed along the AC layer at station 1 (based on measurement in 
the field). The field data collected for drop 2 section 1 at 9 a.m. and 1 p.m. were used as input to 
the GA algorithm in DYNABACK-VE to search for the layer moduli as well as the subgrade 
thickness. Figure 183 shows the collected data. Using the morning and afternoon data together 
increased over-determinacy of the problem. However, trying to fit more data at the same time 
using GA would require increasing the variability in the initial population of the GA; which 
would mean increasing the number of populations and generations. This would have led to an 
increase in the computational time of the backcalculation algorithm. Therefore, the research team 
decided to use only the morning test data in the first run to obtain a good initial population; then 
the afternoon test data was input to the GA in DYNABACK-VE during the second run, using the 
final population of the first run, taking advantage of elitism.  

Table 47. Known layer properties for Waverly Road. 

Layer Elastic Modulus 
(psi) Poisson’s Ratio Thickness 

(inches) 
Unit Weight 

(pcf) 
Asphalt — 0.35 4 145 
Base — 0.4 6 125 
Subgrade — 0.45 — 100 
Stiff layer — 0.25 Infinity 125 

— Indicates unknown value. 

 
Figure 182. Diagrams. Waverly Road section 1 temperature profile at 9 a.m. and 1 p.m.  
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Figure 183. Graphs. Waverly Road FWD time histories for section1 collected at 9 a.m. and 

1 p.m.  

Table 48 shows the backcalculated layer parameters from the DYNABACK-VE backcalculation. 
The results were very promising, indicating good stability and realistic values. The following 
two interesting facts are worth noting:  

• The depth to the stiff layer was estimated at about 8 ft using DYNABACK-VE. This 
agreed with the predictions using the Ullidtz method, which suggested presence of a 
shallow stiff layer at about 8 to 10 ft.(94)  

• The backcalculated stiff layer modulus was 795,304 psi, which was much closer to what 
would be expected from stiff soils. Also, the results from the described in the Sensitivity 
Analysis section earlier in this chapter showed that the amplification on the peak 
deflection was not sensitive to a stiff layer with modulus higher than 200,000 psi. 

Table 48. Backcalculated layer parameters for drop 1 section 1—Waverly Road.  

Parameter 
Laboratory Test/ 

Estimation Backcalculated 
c1 1.482 1.58391 
c2 2.642 2.57049 
c3 0.417 0.3894 
c4 -0.569 -0.55199 
a1 -6.85E-05 0.000916 
a2 -1.06E-01 -0.1126 

Ebase (psi) 20,000 20,482 
Esubgrade (psi) 13,500 12,987 

hsubgrade (inches) 96 (1/r method) 98.7 
Estiff (psi) — 795,304 

— Indicates value was not measured. 
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Figure 184 shows the backcalculated relaxation modulus master curve and the measured laboratory 
master curve from laboratory testing on field cores. Figure 185 shows the corresponding percent 
error. Figure 186 and figure 187 show the measured and predicted deflection time histories and the 
corresponding percent errors for the 1 p.m. test, respectively. The backcalculation results were 
very good. Running a second backcalculation using the results from the first run as seed 
populations led to a much improved backcalculated AC modulus master curve.  

 
Figure 184. Graph. Backcalculated master curve forWaverly Road.  

 
Figure 185. Graph. Error in the backcalculated master curve for Waverly Road.  
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Figure 186. Graphs. Predicted versus measured deflection time histories by sensor for 

1 p.m. test for Waverly Road.  
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Figure 187. Graphs. Error in the backcalculated deflection time histories by sensor for 

1 p.m. tests for Waverly Road.  

The significant practical implications from these results are the following:  

• Conducting two FWD tests in the field with a pavement temperature difference of 18 to 
27 °F between the two tests (in this case one test at 9 a.m. at about 59 to 61°F and a 
second test at 1 p.m. at about 79 to 86 °F) seemed to be sufficient to backcalculate the 
damaged AC modulus master curve accurately, without the need to change the FWD load 
pulse duration; this was possible by conducting two successive dynamic backcalculation 
runs, where the results from run 1 were used as seed populations for the GA in the 
second run. 

• Inaccuracies at the tail end of the sensor deflection time histories did not appear to 
compromise the ability of the dynamic viscoelastic backcalculation program 
DYNABACK-VE to accurately prediction all in situ layer properties, including the 
damaged AC modulus master curve, the depth to the stiff layer, and the stiff layer modulus. 

LTPP Section 350801 Station 1: The Strategic Highway Research Program ID of the selected 
section is 0801 in New Mexico (State 35). The section was selected because the deflection time 
histories showed free vibrations at the end of the load pulse, suggesting that there were dynamic 
effects (the existence of stiff layer) and that the LTPP database included creep data for these sites 
to allow verification of the backcalculated results. In this analysis, the research team sought to 
backcalculate the depth to the stiff layer in addition to the stiff layer modulus using DYNABACK-
VE. The backcalculation algorithm was run in two steps. The final population of the first step was 
entered as the initial population to the second step. Table 49 shows the pavement structure of 
section 350801. The AC layer was assumed to have a two-step piecewise temperature profile, as 
shown in figure 188. The measured deflection time histories are presented in figure 189. The FWD 
deflection data obtained from section 350801 showed some waviness at the end of the load pulse 
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suggesting the existence of a stiff layer. Table 50 shows the backcalculated layer parameters from 
the DYNABACK-VE backcalculation after all the steps of the algorithm. The results, as shown in 
figure 190 through figure 192 were very promising, indicating good stability and realistic values.  

Table 49. Known layer properties for LTPP section 350801. 

Layer 
Elastic Modulus 

(psi) Poisson’s Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt — 0.35 4.2 145 
Base — 0.4 9.7 125 
Subgrade — 0.45 — 100 
Stiff layer — 0.25 Infinity 125 

— Indicates unknown value. 

 
Figure 188. Diagram. Temperature profile for LTPP section 350801.  

 
Figure 189. Graph. Measured FWD time histories for LTPP section 350801.  
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Table 50. Backcalculated layer parameters for drop 1, station 1—LTPP section 350801. 

Parameters Backcalculated 
c1 1.09999 
c2 3.401333 
c3 1.024748 
c4 -0.50124 
a1 0.001096 
a2 -0.0926 

Ebase (psi) 20,822.38 
Esubgrade (psi) 18,857.25 

hsubgrade (inches) 193.32 
Estiff (psi) 236,363.82 

 

 
Figure 190. Graph. Backcalculation results of the AC master curve for LTPP section 

350801.  
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Figure 191. Graph. Error in the backcalculated master curve for LTPP section 350801.  

 
Figure 192. Graphs. Error in the backcalculated time histories by sensor for LTPP section 

350801.  
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The following two interesting observations are worth noting:  

• The depth to the stiff layer is estimated at about 16 ft; this agrees with the predictions 
from Ullidtz method, which suggested presence of a shallow stiff layer at about 15 ft.(94)  

• The backcalculated stiff layer modulus from run 2 is 236,363 psi, which is much closer to 
what would be expected from stiff soils. Figure 190 shows the backcalculated relaxation 
modulus master curves. Figure 191 shows the corresponding percent error. It is clear that 
running a second backcalculation using the results from the first run as seed populations 
led to a much improved backcalculated AC modulus master curve. Figure 192 and figure 
193 show the measured and predicted deflection time histories and the corresponding 
percent error, respectively. The backcalculation results are good, although relatively large 
errors are seen in the most distant deflection sensors. Running a second backcalculation 
using the results from the first run as seed populations leads to a much improved 
backcalculated AC modulus master curve. 
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Figure 193. Graphs. Backcalculated versus measured deflection time histories by sensor for 

LTPP section 350801, station 1.  

LTPP Section 350801 Station 8: The deflection time histories of section 350801 station 8 also 
showed free vibrations at the end of the load pulse. The approach described in the previous 
section was used to backcalculate the master AC master curve, the moduli of the unbound layers, 
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and the depth to the stiff layer. Table 49 shows the pavement structure of section 350801. For 
this section, the AC layer was assumed to have a three-step piecewise temperature profile, as 
shown in figure 194. The measured deflection time histories are presented in figure 195. 

Table 51 shows the backcalculated layer parameters from the DYNABACK-VE backcalculation. 
Recall that the algorithm is minimizing the error on (c1 + c2). Therefore, the evaluation of the 
backcalculation algorithm should be based on (c1 + c2). The results were very promising, 
indicating good stability and realistic values. Figure 196 shows the backcalculated relaxation 
modulus master curves. Figure 197 shows the corresponding percent error. It was clear that 
running a second backcalculation using the results from the first run as seed populations led to a 
much improved backcalculated AC modulus master curve. Figure 198 shows the measured and 
predicted deflection time histories. The backcalculation results were good, although relatively 
large errors were seen in the farther deflection sensors. The error results were good compared with 
the results presented in the previous section for station 1. The backcalculation results for station 8 
were significantly better than those for station 1. The error was less than 20 percent for reduced 
times up to 104 s (laboratory value of 20,000 psi versus backcalculated value of 24,000 psi at 
104 s). Figure 198 shows very good agreement between the measured and predicted deflection 
histories for station 8, although there was a larger time shift for sensors 6 through 8. It is believed 
that this could be due to a synchronization problem between the load and deflection measurements. 

To summarize, the backcalculation results were very promising, indicating good stability and 
realistic values. The backcalculation results for the LTPP section, while reasonable, were not as 
good as those for the Waverly Road section because only one temperature profile was available; 
using the morning and afternoon data in the Waverly test increased the over-determinacy of the 
optimization problem.  

 
Figure 194. Diagram. Temperature profile for LTPP section 350801.  
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Figure 195. Graphs. Measured FWD load and deflection time histories for LTPP section 

350801.  

Table 51. Backcalculated layer parameters for drop 1 station 8 for LTPP section 350801. 

Parameter Laboratory Backcalculated 
c1 0.120 0.804351 
c2 4.049 3.350811 
c3 1.112 0.905003 
c4 -0.423 -0.48508 
a1 6.66E-05 0.0011361 
a2 -1.41E-01 -0.13538745 

Ebase (psi) — 26,183 
Esubgrade (psi) — 21,579 

hsubgrade (inches) 180 (1/r method) 185.93 
Estiff (psi) — 714,658 

— Indicates data were not available. 
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Figure 196. Graph. Backcalculation results of the AC master curve for LTPP 

section 350801.  

 
Figure 197. Graph. Error in the backcalculated master curve for LTPP section 350801.  
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Figure 198. Graphs. Backcalculated versus measured deflection time histories by sensor for 

LTPP section 350801, station 8.  

Effect of Pulse Width on Backcalculation Results 

The previous section included a discussion of how conducting two FWD tests in the field with a 
pavement temperature difference of 50 to 59 °F between the two tests seemed to be sufficient to 
backcalculate the damaged AC modulus master curve accurately without the need to change the 
FWD load pulse duration. However, for budgetary and time constraints, it might be impractical 
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to conduct two FWD tests. For these reasons, the research team investigated the effect of 
increasing the pulse width to increase the useful time range and improve the backcalculation 
results. However, the team also considered the temperature profile along the AC layer to be able 
to backcalculate the shift factor coefficients. The effect of using multiple pulses is discussed in 
appendix B. 

The dynamic viscoelastic simulation was carried out using the pavement structure presented in 
table 52. The FWD loading used in this simulation was assumed to be uniformly distributed over 
a circular area of a radius of 6 inches, a peak magnitude of 9,000 lb, and pulse durations of 35, 
40, 45, and 50 ms (figure 199). The subgrade layer was modeled to be with a shallow stiff layer 
(2 million psi) located at about 9 ft below the pavement surface (figure 200). The surface 
deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from 
the center of the loading plate. The viscoelasticity of the AC was modeled using a Prony series of 
the master curve presented in figure 201 (left). The AC layer was divided into two layers with 
different temperatures as shown in figure 201 (right). The results of the simulations are presented 
in figure 202.  

Table 52. Layer properties for dynamic viscoelastic simulation.  

Layer Elastic Modulus (psi) Poisson’s Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt Master curve (86.9 °F) 0.35 2 145 
Asphalt Master curve (79.3 °F) 0.35 2 145 
Base 20,000 0.4 6 125 
Subgrade 13,500 0.45 96 100 
Stiff layer 2,000,000 0.25 Infinity 125 

 

 
Figure 199. Graph. Simulated FWD load pulses with various durations.  
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Figure 200. Diagram. Schematic of the pavement structure with bedrock.  

 
Figure 201. Graph and Diagram. AC layer parameters.  
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Figure 202. Graphs. Surface deflections of pavement structure for different widths of load 

pulses. 

The analysis shows that increasing the width of the FWD pulse would improve the 
backcalculation of the master curve. However, it would not improve the backcalculation of 
unbound layer moduli. In the previous section, it was shown that running a second 
backcalculation using the results from the first run as seed populations not only led to a much 
improved backcalculated AC modulus master curve but also to much closer base and subgrade 
moduli. This was because running the second backcalculation after replacing half of the 
population with random strings increased not only the diversity of the population but the number 
of generations. As the number of generation increased, the individuals in the population got 
closer together and approached the minimum point. For all these reasons, the research team 
recommends increasing the size of the population to 300 when increasing the pulse width instead 
of testing at different temperatures. Table 53 shows the viscoelastic dynamic backcalculation 
results of the pavement structure presented in table 52. Figure 203 through figure 206 show the 
error in the deflection time histories.  
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Table 53. Backcalculated layer parameters for different pulse durations.  

Parameter Simulation 
Backcalculated 

35 ms 40 ms 45 ms 50 ms 
c1 1.271 1.606 1.501 1.404 1.359 
c2 2.883 2.405 2.550 2.677 2.796 
c3 0.22 0.323 0.302 0.286 0.152 
c4 -0.497 -0.595 -0.582 -0.574 -0.526 
a1 0.00109568 1.12E-06 0.000163 0.000574 0.001516 
a2 -0.0925978 -0.08675 -0.12647 -0.09447 -0.09126 

Ebase (psi) 20,000 20,373 20,744 20,546 20,386 
Esubgrade (psi) 13,500 15,235 16,311 17,667 14,289 

hsubgrade (inches) 96 103.1 110.1 121.4 100.4 
Estiff (psi) 2,000,000 773,111 607,944 701,243 898,816 

 

 
Figure 203. Graphs. Error in the backcalculated time histories by sensor for a pulse width 

of 35 ms.  
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Figure 204. Graphs. Error in the backcalculated time histories by sensor for a pulse width 

of 40 ms.  

 
Figure 205. Graphs. Error in the backcalculated time histories by sensor for a pulse width 

of 45 ms. 
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Figure 206. Graphs. Error in the backcalculated time histories by sensor for a pulse width 

of 50 ms.  

Figure 207 shows the backcalculated relaxation modulus master curve. Figure 208 shows the 
corresponding error using different pulse widths. The results were quite reasonable, except for 
the tail end of the E(t) curve (longer reduced time range).  
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Figure 207. Graph. Backcalculation results of the AC master curve for different pulse 

widths.  
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Figure 208. Graph. Error in the backcalculated master curve for different pulse widths.  

To conclude, the research team concluded that increasing the pulse width will improve the 
backcalculation of the master curve, which can be used instead of having to test at multiple 
temperatures. However, the team also concluded that including a temperature profile is important 
to be able to backcalculate the shift factors. Two major studies looked at a method to predict the 
temperature profile using air and pavement surface temperatures. The empirical relationships 
provided in the LTPP guide and in the Ongel and Harvey study reported errors of 9 and 18 °F, 
respectively.(5,100) The analysis conducted as part of the current project showed that the 
temperature gradient in the AC layer is 18 °F at most, which is the same order of magnitude as 
the error reported by both studies. Therefore, using predicted temperature with depth using such 
models does not lead to reliable results. It is recommended at this point to use the LTPP manual 
to manually measure the temperature profile.(5) 

Computational Efficiency 

Table 54 presents the computation efficiency of the backcalculation algorithm for all the 
previously discussed analyses. Note that the efficiency of the backcalculation using the MPI 
parallelization scheme is only an estimate. The algorithm written in MATLAB® was used in 
all runs.  
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Table 54. Backcalculation algorithm computational efficiency using GA only. 

Backcalculation Computational Efficiency 
Analysis Type Characteristics Eight Cores MPI1 

Sensitivity 35/15 5 0.67 
70/15 11.5 1.5 
100/15 17 2.25 
200/15 33 4.4 
300/15 50 6.5 

Simulation Stiffness and thickness run 1 43 5.6 
Stiffness and thickness run 2 44 5.8 

Slope run 1 75 10 
Slope run 2 74.5 9.9 

Field data Waverly run 1 43.5 5.8 
Waverly run 2 44 5.8 

1Estimated using equal distribution between cores. 

BACKCALCULATION USING THE HYBRID APPROACH (DYNABACK-VE) 

In this part of the project, the research team first used GA to obtain a good seed value and to 
make sure that the algorithm did not converge to a local minimum. Then, the team used the 
gradient-based LM algorithm to obtain the final results.  

Evaluation of the Dynamic Backcalculation Scheme (DYNABACK-VE) 

Sensitivity Analysis 
The research team conducted a sensitivity analysis to select the optimal population/number of 
generations for the GA and maximum iteration for the LM algorithm. The viscoelastic simulation 
was carried out using the pavement structure presented in table 55. Figure 209 presents the 
simulated master curve for the asphalt layer along with the temperature profile. The FWD loading 
used in all simulations was assumed to be uniformly distributed over a circular area of a radius of 
6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. Figure 210 (left) presents the 
simulated FWD load pulse. The subgrade layer was modeled to have a shallow stiff layer 
(250,000 psi) located at about 8 ft below the pavement surface. The surface deflections were 
calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the 
loading plate. Figure 210 (right) shows the simulated deflections time histories for all sensors.  

Table 55. Layer properties for the simulated pavement structure. 

Layer Elastic Modulus (psi) 
Poisson’s 

Ratio 
Thickness 
(inches) 

Unit Weight 
(pcf) 

Asphalt Master curve (86.9 °F) 0.35 2 145 
Master curve (79.3 °F) 0.35 2 145 

Base 20,000 0.35 6 125 
Subgrade 13,500 0.45 96 120 
Stiff layer 250,000 0.30 Infinity 145 
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Figure 209. Graph and Diagram. AC layer master curve and temperature profile.  

 
Figure 210. Graphs. Simulated FWD pulse and deflection time histories.  

Table 56 presents the information for all 60 runs (19 LM method runs, 25 hybrid method runs, 
and 16 GA method runs). The last column for each method shows the total number of calls to the 
forward solution (ViscoWave-II) and hence gives an indication of computational cost, i.e., the 
higher the number the higher the computational cost.  

It was observed during the sensitivity analysis that the convergence of the backcalculation using 
only the LM algorithm was not guaranteed. The algorithm was very sensitive to the seed values. 
If the seed values were close to the real values, the algorithm converged very fast (about 
25 iterations). However, when the seed values were picked randomly inside the search domain, 
the algorithm converged fast to a local solution or sometimes it diverged as shown in figure 211. 
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Table 56. Runs information for the sensitivity analysis. 

Method 
Run 

Number 
Population 

Size 
Number of 

Generations 
Number of 
Iterations 

Number of Calls 
to ViscoWave-II 

LM 1 — — 100 100 
2 — — 150 150 
3 — — 200 200 
4 — — 250 250 
5 — — 300 300 
6 — — 350 350 
7 — — 400 400 
8 — — 450 450 
9 — — 500 500 
10 — — 550 550 
11 — — 600 600 
12 — — 650 650 
13 — — 700 700 
14 — — 750 750 
15 — — 800 800 
16 — — 850 850 
17 — — 900 900 
18 — — 950 950 
19 — — 1,000 1,000 

GA+LM 20 50 5 100 350 
21 50 5 150 400 
22 50 5 200 450 
23 50 5 250 500 
24 50 5 300 550 
25 75 5 100 475 
26 75 5 150 525 
27 75 5 200 575 
28 75 5 250 625 
29 75 5 300 675 
30 100 5 100 600 
31 100 5 150 650 
32 100 5 200 700 
33 100 5 250 750 
34 100 5 300 800 
35 150 5 100 850 
36 150 5 150 900 
37 150 5 200 950 
38 150 5 250 1,000 
39 150 5 300 1,050 
40 200 5 100 1,100 
41 200 5 150 1,150 
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Method 
Run 

Number 
Population 

Size 
Number of 

Generations 
Number of 
Iterations 

Number of Calls 
to ViscoWave-II 

42 200 5 200 1,200 
43 200 5 250 1,250 
44 200 5 300 1,300 

GA 45 35 5 — 175 
46 50 5 — 250 
47 75 5 — 375 
48 100 5 — 500 
49 150 5 — 750 
50 200 5 — 1,000 
51 250 5 — 1,250 
52 300 5 — 1,500 
53 35 15 — 525 
54 50 15 — 750 
55 75 15 — 1,125 
56 100 15 — 1,500 
57 150 15 — 2,250 
58 200 15 — 3,000 
59 250 15 — 3,750 
60 300 15 — 4,500 

— Indicates not applicable. 

  
Figure 211. Graph. Average error in the backcalculated AC layer master curve for all runs 

in LM method. 

The average error (over reduced times from 10-8 to 108 s) in the E(t) master curve was defined in 
figure 211. The runs in which the algorithm diverged were repeated. Figure 212 shows the results 
in terms of average errors in E(t) from the DYNABACK-VE. Figure 213 through figure 216 show 
the results for base, subgrade, and stiff layer moduli as well as the depth to the stiff layer. 

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

Number of iterations

A
ve

ra
ge

 E
rr

or
 in

 th
e 

Re
la

xa
tio

n 
M

od
ul

us
 (%

)



 

193 

 
Figure 212. Graph. Average error in the backcalculated AC layer master curve for all 

runs. 

 
Figure 213. Graph. Average error in the backcalculated base layer modulus for all runs.  
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Figure 214. Graph. Average error in the backcalculated subgrade modulus for all runs.  

 
Figure 215. Graph. Average error in the backcalculated stiff layer modulus for all runs.  
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Figure 216. Graph. Average error in the backcalculated depth to the stiff layer for all runs.  

It can be observed from figure 212 that the average error in backcalculated E(t) was below the 
maximum acceptable level (American Association of State Highway and Transportation Officials 
threshold of 7.5 percent) as defined in figure 87 when any of the following options are true:(1) 

• Option 1: At least 350 iterations (run 6 and up) using only the LM algorithm. 

• Option 2: At least 75 populations, 5 generations, and 300 iterations (run 29 and up) when 
using the hybrid approach. 

• Option 3: At least 100 populations and 15 generations (run 56 and up) when using the 
GA algorithm only.  

Next, assuming a maximum tolerable error of 20 and 10 percent for the remaining parameters 
(base and subgrade layer moduli, stiff layer modulus and depth to the stiff layer, as seen in  
figure 212 through figure 216), the optimal runs and corresponding minimum number of 
computations to arrive at an acceptable solution for each search method are shown in table 57. It 
can be seen that the hybrid GA+LM approach is the best approach; it is guaranteed to converge 
within the search domain and is the most computationally efficient.  
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Table 57. Optimal runs for the various search methods. 

Search 
Method 

10-Percent Error Tolerance 20-Percent Error Tolerance 
Optimal Run 

Number 
Number of Calls 
to ViscoWave-II 

Optimal Run 
Number 

Number of Calls 
to ViscoWave-II 

LMa 17 900 16 850 
GA+LMb 35 850c 30 600c 
GAb 59 3,750 56 1,500 

aConvergence is not guaranteed (depending on seed values). 
bConvergence is guaranteed (within the search domain). 
cComputationally most efficient. The time to run ViscoWave-II depends on the speed and number of processors 
(cores) used during the backcalculation.  

Figure 217 and figure 218 show the measured and predicted deflection time histories for 
GA+LM runs 30 and 32, respectively, for comparison purposes. Table 58 shows the 
backcalculation results. The backcalculation results were good, although relatively large errors 
were seen in the farther deflection sensors. Figure 219 shows the backcalculated relaxation 
modulus master curves for both combinations. Figure 220 shows the corresponding percent error. 
Running a GA algorithm along with the LM algorithm led to a much improved backcalculated 
AC modulus master curve that was achieved faster and more efficiently. 

 
Figure 217. Graphs. Error in the backcalculated deflections for run 30.  
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Figure 218. Graphs. Error in the backcalculated deflections for run 35.  

Table 58. Backcalculated layer parameters for the simulated structure. 

Layer Simulated Run 35 Run 30 

AC 
Master Curve 

Coefficient 
Master Curve 

Coefficient 
Error 

(Percent) 
Master Curve 

Coefficient 
Error 

(Percent) 
c1 1.271 1.296 1.96 1.112 -12.5 
c2 2.883 2.883 0.01 3.085 7.1 
c3 0.22 0.145 -33.9 0.291 32.2 
c4 -0.497 -0.512 3.1 -0.427 -14.2 
a1 0.001096 0.000647 -40.9 0.000448 -59.1 
a2 -0.0926 -0.09686 4.6 -0.1317 42.3 

Base, subgrade, 
and stiff layer 

Elastic Modulus 
(psi) 

Elastic Modulus 
(psi) 

Error 
(Percent) 

Elastic Modulus 
(psi) 

Error 
(Percent) 

Ebase (psi) 20,000 21,769.7 8.8 23,797 19.0 
Esubgrade (psi) 13,500 14,464.4 7.1 14,473 7.2 

Estiff (psi) 200,000 331,313 32.5 349,894 40.0 
hsubgrade (inches) 96 103.5 7.8 106.0 10.4 
 

0 0.05
0

1

2

Time (sec)
Er

ro
r (

%
)

sensor 1

0 0.05
0

0.5

1

Time (sec)

Er
ro

r (
%

)

sensor 2

0 0.05
0

0.5

1

Time (sec)

Er
ro

r (
%

)

sensor 3

0 0.05
0

0.5

1

Time (sec)

Er
ro

r (
%

)

sensor 4

0 0.05
0

1

2

Time (sec)

Er
ro

r (
%

)

sensor 5

0 0.05
0

2

4

Time (sec)

Er
ro

r (
%

)

sensor 6

0 0.05
0

2

4

Time (sec)

Er
ro

r (
%

)

sensor 7

0 0.05
0

2

4

Time (sec)

Er
ro

r (
%

)
sensor 8

0 0.05
0

5

Time (sec)

Er
ro

r (
%

)

sensor 9



 

198 

 
Figure 219. Graph. Backcalculated master curves for runs 30 and 35.  
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Figure 220. Graph. Percent error in the backcalculated master curves for all combinations.  

Backcalculation Using Field Data 
This section presents the evaluation of the new dynamic viscoelastic backcalculation program 
DYNABACK-VE using the field FWD test results from six LTPP sections. The details of the 
identified sections are presented in table 59. Table 60 shows the pavement structure of all the 
identified sections. These sections were identified based on the following criteria: 

• Creep or E* master curve data were available in the LTPP database. 
• The AC layer was at least 2 inches thick. 
• The pavement structure of the section did not include an AC treated base. 
• One subgrade layer was present. 
• One construction occurred. 
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Table 59. Identified LTPP sections for the verification of DYNABACK-VE. 

State 
Code Section 

Date of 
Construction 

Total Number of 
Constructions 

Section 
Type 

Experiment 
Number 

Test 
Date 

Test 
Time 

1 0101 04/28/05 1 SPS 1 04/28/05 15:59 
6 A805 11/16/11 1 SPS 8 11/16/11 12:23 
6 A806 11/16/11 1 SPS 8 11/16/11 13:50 
30 0113 07/12/10 5 SPS 1 07/12/10 09:39 

 

Table 60. Layer properties for LTPP sections. 

Section Property 

Asphalt Concrete Layer 

Granular Base Subgrade Stiff Layer 
Layer 

1 
Layer 

2 
Layer 

3 
10101 Thickness (inches) 2.47 2.47 2.47 6 Semi-infinite No stiff layer 

Temperature (°F) 100.0 92.5 91.6 N/A N/A 
Poisson’s ratio 0.35 0.40 0.45 
Unit weight (pcf) 145 125 100 

Relaxation modulus E(t) coefficients (c1, c2 ,c3, 
c4) Backcalculated 

Backcalculated Backcalculated 

a(T) coefficients (a1, a2)—Backcalculated N/A N/A 
6A805 Thickness (inches) 1.3 1.3 1.3 8.2 Backcalculated Semi-infinite 

Temperature (°F) 73.6 69.1 68.2 N/A N/A N/A 
Poisson’s ratio 0.35 0.4 0.45 0.2 
Unit weight (pcf) 145 125 100 125 
Relaxation modulus 
(ksi) 

E(t) coefficients (c1 ,c2, c3, 
c4) Backcalculated 

Backcalculated Backcalculated Backcalculated 

a(T) coefficients (a1, a2) Backcalculated N/A N/A N/A 
6A806 Thickness (inches) 2 2 2.8 12.1 Backcalculated Semi-infinite 

Temperature (°F) 79.1 75.1 71.2 N/A N/A N/A 
Poisson’s ratio 0.35 0.4 0.45 0.2 
Unit weight (pcf) 145 125 100 125 
Relaxation modulus 
(ksi) 

E(t) coefficients (c1, c2, c3, 
c4) Backcalculated 

Backcalculated Backcalculated Backcalculated 

a(T) coefficients (a1, a2) Backcalculated N/A N/A N/A 
300113 Thickness (inches) 2 2 2 No stiff layer Semi-infinite No stiff layer 

Temperature (°F) 84.7 80.1 79.2 N/A N/A 
Poisson’s ratio 0.35 0.4 0.45 
Unit weight (pcf) 145 125 100 
Relaxation modulus 
(ksi) 

E(t) coefficients (c1 ,c2, c3, 
c4) Backcalculated 

Backcalculated Backcalculated 

a(T) coefficients (a1, a2) Backcalculated N/A N/A 
N/A = Not applicable. 

In this analysis, the research team sought to backcalculate the depth to the stiff layer in addition 
to the stiff layer modulus using DYNABACK-VE. The backcalculation algorithm was run in two 
steps. The final population of the first step was input as initial population to the second step. The 
AC layer was assumed to have a three-step piecewise temperature profile for all the sections, as 
shown in table 60. 



 

201 

LTPP Section 10101: The measured deflection time histories from all the drops for section 10101 
are presented in figure 221. The deflection time histories did not show waviness at the end of the 
signal, which indicated that there was no stiff layer or that the depth to the stiff layer was greater 
than 15 ft. The presence of a stiff layer was further evaluated using the graphical method suggested 
by Ullidtz.(94) The method involves plotting peak deflections obtained from FWD testing versus 
the reciprocal of the corresponding sensor location (measured from the center of loading). The 
analysis showed that a stiff layer existed at 86.9, 32.7, 109.8, and 26.6 ft using the deflection 
histories from drops 1 through 4, respectively. Even though the 1/r method suggested that there 
was no stiff layer, the research team decided to include a stiff layer in the pavement structure. The 
backcalculation results from all the drops are presented in table 61. Figure 222 shows the 
backcalculated master curves. Figure 223 shows the backcalculated time-temperature shift factors. 
For section 10101, the backcalculated relaxation modulus master curves from all the drops 
matched very well with the measured master curve (figure 222). However, it can be seen from 
figure 223 that the backcalculated shift factor functions for all the drops showed a good match over 
the temperature range of 50 to 131 °F, whereas the laboratory-measured values deviated from the 
backcalculated values. This could be because laboratory creep compliance tests are usually not 
reliable in determining time-temperature superposition properties because a perfect stress-step 
function is very difficult to achieve in the laboratory and also because the results are contaminated 
with viscoplasticity, especially at the high temperatures and long creep times. 

Table 61. Backcalculation results for LTPP section 10101 using DYNABACK-VE. 

Parameter 
Laboratory 

Results 
Backcalculated Results 

Drop 1 Drop 2 Drop 3 Drop 4 
c1 0.304 0.420 0.402 0.431 0.391 
c2 4.160 4.049 4.042 4.009 4.053 
c3 0.684 0.611 0.731 0.711 0.656 
c4 -0.428 -0.442 -0.450 -0.457 -0.418 
a1 3.14E-04 0.0011364 0.0008364 0.0010633 0.0010246 
a2 -1.47E-01 -0.070735 -0.0587358 -0.064368 -0.04627 

Ebase (psi) — 28,519 23,433 20,121 20,124 
Esubgrade (psi) — 48,899 46,669 42,889 45,371 

hsubgrade (ft) Drop 1 86.9 (1/r) 25 29 34.5 32.5 
Drop 2 32.7(1/r) 
Drop 3 109.8(1/r) 
Drop 4 26.6(1/r) 

Estiff (psi) — 814,826 922,537 732,145 655,421 
— Indicates data were not available. 
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Figure 221. Graphs. Measured FWD load and time histories for LTPP section 10101.  
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Figure 222. Graph. Backcalculated master curves for LTPP section 10101 from all the 

drops.  

 
Figure 223. Graph. Backcalculated shift factors for LTPP section 10101 from all the drops.  

From table 61, the backcalculated moduli for unbound layers from all the drops suggest that the 
subgrade layer was stiffer than the base layer. Also, it was observed that the backcalculated 
moduli for the unbound layers were lower as the load level increased, which suggests softening 
conditions. The same section was used in LTPP data analysis presented in chapter 3. Figure 224 
presents the load-to-deflection ratio at each load level. The plots also suggest softening 
conditions. The practical implication of these observations suggests that one could backcalculate 
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the moduli for the unbound layers from all the drops to capture the nonlinearity. This could merit 
discussion for future research. 

 
Figure 224. Graph. Softening behavior for LTPP section 10101.  

LTPP Section 6A805: The measured deflection time histories from all the drops for 
section 6A805 are presented in figure 225. The deflection time histories did show waviness at the 
end of the signal, which indicates that there was a stiff layer. The depth to the stiff layer 
estimated using Ullidtz method is about 70.4 ft using the deflection histories from drop 1.(94) 
Even though the 1/r method suggests that there was no stiff layer, the research team also decided 
to include a stiff layer in the pavement structure. The backcalculation results using drop 1 time 
histories are presented in table 62. Figure 226 shows the backcalculated and measured master 
curves. Figure 227 shows the backcalculated and measured time-temperature shift factors. For 
section 6A805, the backcalculated and the laboratory-measured relaxation modulus master 
curves matched very well with the measured master curve until reduced time of 10 s  
(figure 226). However, it can be seen from figure 227 that the backcalculated shift factor 
functions did not match.  
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Figure 225. Graphs. Measured FWD load and time histories for LTPP section 6A805.  

Table 62. Backcalculation results for LTPP section 6A805 using DYNABACK-VE. 

Parameter 
Laboratory 

Results 
Drop 1 

Backcalculation 
c1 1.381 1.609 
c2 2.983 2.758 
c3 1.625 1.425 
c4 -0.784 -0.845 
a1 -0.00169 0.001 
a2 -0.08729 -0.077 

Ebase (psi) — 43,546 
Esubgrade (psi) — 17,435 

hsubgrade (ft) drop1 70.4 (1/r) 14 
Estiff (psi) — 315,452 

— Indicates data values were not measured. 

 
Figure 226. Graph. Backcalculated master curves for LTPP section 6A805.  
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Figure 227. Graph. Backcalculated shift factors for LTPP section 6A805.  

In table 62, the backcalculated depth to the stiff layer is about 14 ft, which suggests that there 
was a stiff layer at a shallow depth. This contradicts the results from the 1/r method. However, 
because this estimated depth is close to the depth to the stiff layer beyond which dynamic effects 
are insignificant, i.e., 15 ft, the possible existence of a stiff layer could be ignored.(96) The load-
to-deflection ratio presented in figure 228 shows a maximum slope of about 4 percent seen for 
sensor 8, which suggests that nonlinearity can be ignored. 

 
Figure 228. Graph. Load-to-deflection ratio for LTPP section 6A805.  

LTPP Section 06A806: The measured deflection time histories from all the drops for section 
06A806 are presented in figure 229. The deflection time histories did show waviness at the end 
of the signal, which indicated that there was a stiff layer. Using the Ullidtz method, the depth to 
the stiff layer was estimated as a negative value, which was interpreted as the absence of a stiff 
layer.(94) Even though the 1/r method suggests that there was no stiff layer, the research team also 
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decided to include a stiff layer in the pavement structure. The backcalculation results using 
drop 1 time histories are presented in table 63. Figure 230 shows the backcalculated and 
measured master curves. Figure 231 shows the backcalculated and measured time-temperature 
shift factors. For section 6A806, the backcalculated and the laboratory-measured relaxation 
modulus master curves matched very well with the measured master curve until reduced time of 
1 s (figure 230). However, it can be seen from figure 231 that the backcalculated shift factor 
functions did not match.  

 
Figure 229. Graphs. Measured FWD load and time histories for LTPP section 6A806.  

Table 63. Backcalculation results for LTPP section 6A806 using DYNABACK-VE. 

Parameter 
Laboratory 

Results 
Drop 1 

Backcalculation 
c1 1.157 1.252 
c2 3.356 3.259 
c3 1.388 1.025 
c4 -0.673 -0.723 
a1 -0.0027 -0.001 
a2 -0.06976 -0.140735 

Ebase (psi) — 26,546 
Esubgrade (psi) — 19,075 

hsubgrade (ft) drop 1 No stiff (1/r) 13.33 
Estiff (psi) — 316,575 

— Indicates data were not available. 
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Figure 230. Graph. Backcalculated master curves for LTPP section 6A806.  

 
Figure 231. Graph. Backcalculated shift factors for LTPP section 6A806.  

In table 63, the backcalculated depth to the stiff layer is about 13 ft, which suggests that there 
was a stiff layer at a shallow depth. This contradicts the results from the 1/r method. However, 
because this estimated depth is close to the depth to the stiff layer beyond which dynamic effects 
are insignificant, i.e., 15 ft, the possible existence of a stiff layer could be ignored.(95) The load-
to-deflection ratio presented in figure 232 shows a maximum slope of about 5 percent seen for 
only sensor 8, which suggests that nonlinearity can be ignored. 
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Figure 232. Graph. Load-to-deflection ratio for LTPP section 6A806.  

LTPP Section 300113: The measured deflection time histories from drop 1 for section 300113 are 
presented in figure 233. The deflection time histories did not show waviness at the end of the 
signal, which indicates that there was no stiff layer or that the depth to the stiff layer was greater 
than 15 ft. Using the Ullidtz method, the depth to the stiff layer was estimated at about 96.4 ft.(94) 
Even though the 1/r method suggests that there was no stiff layer, the research team included a stiff 
layer in the pavement structure. The backcalculation results using drop 1 time histories are 
presented in table 64. Figure 234 shows the backcalculated and measured master curves. Figure 235 
shows the backcalculated and measured time-temperature shift factors. For section 6A806, the 
backcalculated and the laboratory-measured relaxation modulus master curves matched very well 
until reduced time of 1 s (figure 234). However, it can be seen from figure 235 that the 
backcalculated shift factor functions did not match.  

 

Figure 233. Graphs. Measured FWD load and time histories for LTPP section 300113.  
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Table 64. Backcalculation results for LTPP section 6A806 using DYNABACK-VE. 

Parameter 
Laboratory 

Results 
Drop 1 

Backcalculation 
c1 0.778 1.098 
c2 3.789 3.449 
c3 0.000 -0.081 
c4 -0.400 -0.423 
a1 4.97E-04 0.001 
a2 -1.57E-01 -0.077 

Ebase (psi) — 10,745 
Esubgrade (psi) — 22,995 

hsubgrade (ft) drop1 96.4 (1/r) 16 
Estiff (psi) — 215,298 

— Indicates data were not available. 

 
Figure 234. Graph. Backcalculated master curves for LTPP section 300113.  
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Figure 235. Graph. Backcalculated shift factors for LTPP section 300113.  

In table 63, the backcalculated depth to the stiff layer is about 16 ft, which is close to the depth to 
the stiff layer beyond which dynamic effects are insignificant, i.e., 15 ft.(96) Therefore, the 
possible existence of a stiff layer could be ignored. Figure 236 shows the load-to-deflection ratio 
for all the sensors. The maximum slope is about 5 percent for only sensor 7, which means that 
nonlinearity could be ignored. 

 
Figure 236. Graph. Load-to-deflection ratio for LTPP section 300113.  
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CONCLUSION 

A new solution and its associated computer program were developed for dynamic viscoelastic 
time-domain backcalculation of multilayered flexible pavement parameters under FWD tests in 
the time domain. The method uses a time-domain viscoelastic solution as a forward routine 
(ViscoWave-II) and a hybrid routine (DYNABACK-VE: GA and modified LM method) for 
backcalculation analysis. For the GA-based backcalculation procedure, the research team 
recommends using DYNABACK-VE twice with a population of 200 and 15 generations. When 
increasing the pulse width, the team recommends using a population of 300 and 15 generations. 
The advantage of the new solution is that it can analyze the response of pavement systems in the 
time domain and can therefore accommodate time-dependent layer properties and incorporate 
wave propagation. Also, because the backcalculation is performed in the time domain, the 
algorithm is not sensitive to truncation in the deflection time histories. The new algorithm is 
capable of backcalculating layer moduli, including the master curve of the AC layer at every 
reduced time and depth to the stiff layer, if it exists, and its modulus value. The results using 
simulated deflection time histories and field FWD data showed excellent stability and accuracy. 
Note that the backcalculation algorithm is not designed to backcalculate the modulus of more than 
one AC layer in pavement structures with different mixes or in cases where there are multiple 
subgrade layers with similar moduli values. 

The sensitivity of dynamic backcalculation solutions to signal noise and synchronization 
problems is high. The remedy to noise is to preprocess the raw data by filtering out the high-
frequency content of the signal (anything above 100 Hz) in deflection and load pulse data. Also, 
in the analysis presented in chapter 5, the percent error between the computed and measured 
displacement was used as the minimizing error. If percent error were used as the minimizing 
objective, it could lead to overemphasis of lower magnitudes of deflections at the later portion of 
the time history, which typically includes noise and integration errors. Hence another fit function 
was proposed in which the percent error was calculated with respect to the peak of deflection at 
each sensor. This de-emphasizes the tail data by normalizing them with respect to the peak. 

If synchronization problems occur, the dynamic backcalculation algorithm may not work as well, 
although one could shift the signals similar to what was done in the quasi-static viscoelastic solution 
(chapter 4). Because the quasi-static solution presented in chapter 4 is already coded to remove the 
time delay between sensors, the research team recommends the use of BACKLAVA instead of 
DYNABACK-VE when such a synchronization problem exists and cannot be removed manually. 

The results from dynamic analyses clearly showed the superiority of a fully dynamic solution 
with a viscoelastic AC layer modulus in predicting deflection responses that are in line with what 
one would expect from soil, as evidenced by the close match in the details of the deflection time 
histories between theory and observation. The theoretical predictions from ViscoWave-II 
showed very good agreement with the measured deflection time histories. The fact that theory 
and measurement showed the same behavior with time was proof that these observations were 
physically real. This is important in that it reinforces the following: (1) a comprehensive model 
that takes into account viscoelasticity of the AC layer, damping in the unbound layers, and 
dynamics in terms of inertial and wave propagation effects can explain the measured data with 
all their complexities; and (2) the FWD sensor measurements, if properly calibrated, can show 



 

213 

the physical behavior for most of the time range, with the exception of the drift problems at the 
tail of the records. 

In contrast, the layered viscoelastic solution cannot simulate the true deflection time histories 
because it cannot account for inertial and wave propagation effects. As such, it cannot predict the 
time delays in the response, the initial rebounds of the farther sensors, and the free vibrations 
after the load is applied. Also, the layered viscoelastic solution significantly underestimates the 
deflections when a stiff layer is present. This is because it cannot account for dynamic 
amplification caused by the wave energy trapped in the unbound layers when a stiff layer 
condition exists. 
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CHAPTER 6. ENHANCEMENT TO THE FWD EQUIPMENT 

This chapter describes the results from a set of experimental procedures designed to evaluate the 
performance of FWD measurement systems (seismometers, geophones, and accelerometers). 
Parameters such as accuracy and sensitivity were considered. Observations were used to help test 
certain features of the numerical tools presented in chapter 5. A high-precision laser system was 
used in the experimental setups as a reference system and also to evaluate limitations on 
potential recommendation of its use in FWD systems.  

REVIEW OF FWD EQUIPMENT 

In this section, the research team focused on the key issues to address for potential improvements 
to FWD testing and interpretation. The identified issues were the following: (1) FWD data 
collection and measurement; and (2) analysis methods, i.e., static versus dynamic, linear versus 
nonlinear; and viscoelastic behavior of the AC material. A review of the basic mechanisms and 
characteristics of the measurement systems available in FWD equipment was conducted. 

The research team found that FWD systems available in North America used either geophones or 
seismometers as sensors to measure the deflection basins. Geophones fell between 
accelerometers and seismometers in function and price. Seismometers were typically larger and 
more expensive and usually detected extremely small movements at lower frequencies than 
geophones. The team learned that some seismometers could be very fragile, and calibrating a 
seismometer was critical to obtaining useful data. Therefore, a geophone or an accelerometer 
would more likely be used to get a simpler signal. Because accelerometers are nearly solid state, 
they are good at handling more violent motion.  

Because the measurements are done in a moving reference frame (the pavement surface), almost 
all sensors are based on the inertia of a suspended mass, which tends to remain stationary in 
response to external motion. The mass is used as the reference in the system. Therefore, the 
relative motion of the suspended mass and the ground is a function of the pavement’s motion. 
Because the sensor is moving with the ground and there is no fixed, undisturbed reference 
available means that the displacement cannot be measured directly, and according to the inertia 
principle, one can observe the motion only if it has an acceleration. The frequency response of 
the mass-spring system is thus a critical factor that greatly influences the sensitivity and the 
accuracy of the measurement devices. 

The basic principle of a geophone involves use of a moving coil within a magnetic field. This 
can be implemented by having a fixed coil and a magnet that moves with the mass or a fixed 
magnet and the coil moves with the mass. The output from the coil is proportional to the velocity 
of the mass relative to the frame. This kind of electromagnetic geophone is called a velocity 
transducer. Therefore, the measured output from a geophone is related to ground movement 
through a two-stage transfer function—first a second-order differential transformation describing 
the mechanical system movement, followed by the electrical system relation obeying the 
Faraday’s law and describing the generated current in the coil, which is theoretically proportional 
to velocity. Figure 237 shows an example of the frequency response characteristics for the two 
stages. Even though the mechanical system exhibited a relatively flat response at low 
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frequencies, the performance of the overall combined response for an in-series configuration fell 
considerably for low frequencies.  

 
Figure 237. Graphs. Frequency response of geophone components. 

For a seismometer, the relative motion of the mass with respect to the casing of the sensor is 
measured directly using LVDTs. The natural frequency of the mass-spring system and the 
damping must be tuned to control the sensitivity of the module. The sensitivity (of a seismometer) 
is defined as the ratio of the maximum motion of the mass to the maximum ground motion during 
steady-state motion; it is a measure of magnification developed directly at the transducer. 

Figure 238 shows the amplitude response of a sensor with a natural period of 1 s and damping 
ranging from 0.25 to 4 h. As can be seen, low damping resulted in a peak in the response 
function that occurred for ratio values less than 1. If damping was equal to 1, the seismometer 
mass returned to its rest position in the least possible time without overshooting, the response 
curve had no peak, and the seismometer is said to be critically damped. From the shape of the 
curve, it can be seen that the seismometer could be considered a second-order high pass filter for 
ground displacement. Seismometers perform optimally at damping close to critical. When the 
damping increases above 1, the sensitivity decreases and the response approaches that of a 
velocity sensor.  

If the ground displacement frequency were near the resonance frequency, a larger relative motion 
would be induced (depending on damping). If the damping was low, the mass could get a push at 
precisely the right time such that the mass would move with a larger and larger amplitude, thus 
the gain would be larger than 1. For this to occur, the push from the ground would have to occur 
when the mass was at an extreme position (top or bottom) and there must be a phase shift  
of - /2. 

Below the resonance frequency, the relative displacement due to ground displacement would 
decrease. With the ground moving very slowly, the mass would have time to follow the ground 
motion; in other words, there would be little relative motion and less phase shift. Thus the gain 

π 
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would be low. Therefore, for small frequencies, the relative displacement of the mass would be 
directly proportional to the ground acceleration. The sensitivity of the sensor to low frequency 
ground acceleration would be inversely proportional to the squared natural frequency of the sensor.  

Strictly speaking, none of the sensors are linear—in the sense that an arbitrary waveform of 
ground motion can be exactly reproduced at scale—for any kind of response.  

 
Figure 238. Diagram and Graph. A mechanical inertial seismometer with a natural 

frequency of 1 Hz. 

Based on the collected information concerning the frequency behavior of the different measuring 
devices, a time-frequency analysis was conducted. Measured real field signals were analyzed in 
the time and frequency domains. The objective was to determine the location, with respect to the 
signal peak, of frequencies that were artificially filtered by the mechanical spring-mass system, 
which reduces the accuracy of the sensors (figure 239 through figure 244). The spectrograms, or 
time-frequency representations of a signal shown in these figures, are 2-D visual representations 
of the spectrum of frequencies in a signal as they vary with time. The colors illustrate the 
distribution of the energy contained in the signal as a function of time (x-axis) and frequency 
(y-axis). The spectrogram is equivalent to a tracing of the frequency response of the analyzed 
signal in a moving time window. The unit is the decibel, which is a logarithmic unit commonly 
used to express the ratio between a reference value and the value of a physical quantity measured 
in units of power or intensity.  

As discussed in the previous paragraph, the different measuring instruments eliminate certain 
frequencies because of poor performance in some specific ranges. Therefore, it is important to 
know in what time window (before or after the peak) the eliminated frequencies occur. Also, the 
comparison between the time-frequency contents of the load and the response from the sensors 
help in determining the effect of time synchronization. 
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Figure 239. Graphs. Time-frequency content of the load for LTPP section 60565. 

 
Figure 240. Graphs. Time-frequency content of the load for LTPP section 320101. 
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Figure 241. Graphs. Time-frequency content of the load for LTPP section 400113. 
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Figure 242. Graphs. Spectrum of deflection at each sensor for LTPP section 60565. 
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Figure 243. Graphs. Spectrum of deflection at each sensor for LTPP section 320101. 
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Figure 244. Graphs. Spectrum of deflection at each sensor for LTPP section 400113. 

In light of the literature review of the FWD equipment and the above interpretations, the 
following issues and observations were identified: 
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• Key issue 1: Accuracy 

o A fixed reference system is needed. 
o For seismometers, “fixed mass” is not easy to achieve (highly sensitive to 

calibration). 
o For geophones, relying on external corrections for the displacement of the sensor bar 

is very susceptible to numerical errors (double integration, etc.). 

• Key issue 2: Sensitivity 

o The ideal is to have the same sensitivity over the entire frequency content of the motion. 
o Both seismometers and geophones have problems at low frequency (especially 

geophones), which is crucial when measuring pavement deflections. 

EXPERIMENTAL TESTING 

Preliminary Field Evaluations 

Different sensor types were identified and acquired. A seismometer, a geophone, and an 
accelerometer were tested. Figure 245 shows the acquired systems. An in-house data acquisition 
module was built to extract the raw unfiltered data from all the measurement sensors.  

 
Figure 245. Photos. Geophone (left), seismometer (center), and high-accuracy piezoelectric 

accelerometer (right). 

A laser head capable of noncontact measurement of deflections was also tested. Preliminary 
evaluations of the laser under simulated real field conditions were conducted at the testing 
facility at FHWA’s Turner-Fairbank Highway Research Center (TFHRC) (see figure 246).  
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Figure 246. Photos. Setup attached to the FWD system at TFHRC. 

The objective was to determine the induced errors (noise) in the recorded signal from the laser in 
a non-controlled environment. A sample of the obtained signal and its frequency content are 
shown in figure 247.  

 
Figure 247. Graphs. Sample measured signal (left) and frequency content (right). 

The signal-to-noise ratio (SNR) was calculated as 122 for the recording shown in figure 247. 
This high SNR factor indicated that most of the power in the signal was useful information, and 
there was very little background noise, which can be identified and filtered. A variation of 
±10 percent was observed in the calculated ratios for all measured signals. In addition, the 
accuracy was evaluated to be on the order of 10-5 mil.  

The recorded deflection was not compared with the output of the FWD system because of the 
unavailability of the control laptop computer for the machine during the testing.  

To improve the accuracy of the laser measurements, a new more accurate system was acquired. 
The system and the properties of the new laser head are shown in figure 248. Furthermore, 
observations during the testing showed that vibrations in the mounting device were a major cause 
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of induced noises. Specific fixtures were built to attach to different models of FWD machines. 
Figure 249 shows the design for the fixture.  

 
Figure 248. Photos. LK-H008 laser head for deflection measurement . 

 
Figure 249. Diagram. Schematic of the designed fixture. 
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Laboratory Evaluation of Geophones—Accuracy and Sensitivity 

A set of laboratory tests were conducted to evaluate the performance of the geophone sensor. 
Two series of tests were conducted: First, the research team placed the geophone directly on the 
beam and side by side with the laser sensor (see figure 250). Then the geophone was placed in its 
encasement provided by the manufacturer and situated symmetrically opposite to the laser sensor 
relative the MTS® load actuator (see figure 251). For this second set of tests, the team also 
introduced noise on the system by independently vibrating the test setup while placing an 
accelerometer on the MTS® system so that the noise could be filtered out of the signal. 

Figure 252 shows an example of raw velocity signal data from the geophone, and figure 253 
shows the filtered velocity data. The figures show that the velocity signal was not symmetrical 
about zero and that some cyclic behavior occurred post loading time. 

Figure 254 shows multiple replications of the laser displacement readings. The data show that 
the laser was capable of producing a faithful and repeatable deflection signal. 

 
Figure 250. Photo. Geophone placed directly on beam next to laser sensor. 
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Figure 251. Photos. Test setup for mounted geophone and laser sensor. 
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Figure 252. Graph. Example of raw data from geophone. 

 
Figure 253. Graph. Filtered geophone data with multiple replications. 
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Figure 254. Graph. Laser data with multiple replications. 

Figure 255 and figure 256 show comparisons between the geophone and laser data for the first 
test series. When comparing velocity measurements, laser displacement signal was differentiated 
with respect to time. When comparing deflection measurements, geophone measurements were 
integrated with respect to time.  The measurements showed some significant differences between 
the two systems, especially after the load returned to zero. 

Figure 257 shows similar behavior for the second test series. From the conducted tests, it was 
clear that numerical errors played a significant role in altering the recorded signals. A set of tests 
was devised to illustrate the effect of numerical integrations on the collected data to be used in 
the tools introduced in chapter 5.  
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Figure 255. Graphs. Comparison of filtered geophone velocity data with the laser 

derivative output for test series 1. 
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Figure 256. Graphs. Comparison of integrated geophone data with direct laser 

displacement output for test series 1. 
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Figure 257. Graphs. Comparison of integrated geophone data with direct laser 

displacement output for test series 2. 

Effects of Numerical Errors and Drifts 

A series of field tests were performed with the objective of illustrating the effects of drifts and 
errors induced by numerical integrations and filtering/treatment of raw data collected from 
inertial sensors (geophones). A KUAB FWD system (owned by the Michigan Department of 
Transportation (MDOT)), which uses seismometers, was outfitted with a geophone (see figure 
258). Loading tests, at four different load levels, were performed on a thin asphalt layer covering 
a granular structure. Raw data were collected directly from the sensors and compared with the 
output rendered by the device software (see figure 259). 
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Figure 258. Photos. Test setup. 

 
Figure 259. Graphs. Sample of recorded raw geophone data. 

The use of numerical integration of acceleration or velocity information from inertial sensors to 
obtain position information inherently causes errors to grow with time, commonly known as 
“integration drift.” The main problem is that integrating a signal contaminated with noise and 
drift leads to an output that has an RMS value that increases with integration time even in the 
absence of any motion of the sensor. For a single integration, the errors are a function of the 
duration of the signal. For that reason, estimation of deflections using inertial sensors is usually 
performed with the help of externally reference-aided sensors or sensing systems, or prior 
knowledge about the motion to correct for the drift. With aided sensors or sensing systems, KFs 
or EKFs are commonly used to fuse different sources of information in an attempt to correct for 
the drift.  
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For real-time compensation, zero-phase adaptive filtering algorithms are employed. These 
algorithms are based on truncated Fourier series such as weighted-frequency Fourier linear 
combiner (WFLC) or band-limited multiple Fourier linear combiners (BMFLCs), which can 
detect periodic or quasi-periodic signals. These algorithms can estimate desired periodic signals 
from a mixture of desired periodic signals and undesired signals without altering the phase and 
magnitude of the desired periodic signal. However, to achieve satisfactory accuracy of the 
estimate, the WFLC and the BMFLC have limitations—the magnitude of the undesired signals 
compared with that of the desired periodic signal cannot be too large. Because the magnitude of 
the integration drift is too large compared with that of the periodic signal, the algorithms are not 
well suited for the problem of drift. 

For the tests performed, the research team needed to obtain drift-free deflection estimates of the 
quasi-periodic motion using the geophone sensor without employing other aided sensors or sensing 
systems. An example of the effects induced by the numerical integration is shown in figure 260. 
The methods used to obtain the test results are based on linear high-pass filtering of drifted 
position by selecting a cutoff frequency between the frequencies of low-frequency drift signals and 
that of the periodic motion, which had relatively high frequency (the effect of the cutoff frequency 
selection is shown in figure 261). A specific cutoff frequency was selected for each dataset. 
Optimal values were used to obtain the final result shown in figure 262 and figure 263. One of the 
issues observed was that linear filtering inherently introduced phase shift and attenuation, resulting 
in inaccurate deflection-amplitude estimates. A combination of linear filtering and WFLC was 
used. The integrated signal was filtered using a high-pass linear filter. The filtered signal, which 
was the phase-shifted and amplitude-modified version of the actual desired signal, was then 
estimated using WFLC algorithms. The estimate of the actual periodic signal was recovered from 
the phase-shifted and modified estimate by compensating for the phase-shift and amplitude 
alteration introduced by the filter. 

 
Figure 260. Graph. Example of numerical drift resulting from integration of raw geophone 

data. 
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Figure 261. Graphs. Illustration of the windowing and filtering procedure and the observed 
effects on the raw velocity data: frequency content of the velocity signal (left) and effect of 

the selected cutoff frequency on the signal magnitude as a source of errors (right). 

 
Figure 262. Graphs. Comparison between the filtered and treated seismometer data 

rendered by the device software and the integrated unfiltered geophone data (left); and 
integrated and filtered geophone data showing post-peak effects due to propagation of 

cumulative errors (right). 
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Figure 263. Graphs. Comparison between the filtered and treated seismometer data 

rendered by the device software and the integrated unfiltered geophone data at different 
load levels. 

Seismometer—Field Evaluation  

The FWD system (owned by the MDOT), which uses seismometers, was outfitted with a laser 
for direct deflection measurements. Loading tests, at four different load levels, were performed 
on a section of a local road. Raw data were collected directly from the laser and compared with 
the output rendered by the commercial software used.  

The laser was mounted on a beam that was attached to the ground on the roadside (see figure 264). 
The objective was to isolate the beam from the effects of the vibrations in the pavement.  

Given the high accuracy of the laser system, even small vibrations are picked up in the signal. 
For the tests performed, a poor SNR was observed. The measurements from the laser had to be 
filtered and adjusted. An example is shown in figure 265.  

As figure 265 shows, the post peak fluctuations rendered in the laser signal were not included in 
the KUAB signal, which was cut off at 120 ms. More important, the difference in deflection time 
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histories seemed to be much larger in the post peak region. This would seem to confirm 
anecdotal assertions made by FWD specialists over the years. 

 
Figure 264. Photos. FWD test setup: view of the beam used for mounting the laser (top 
left), close-up view of mounted laser(top right), and view of laser sensor setup (bottom). 

 
Figure 265. Graph. Comparison between the seismometer data rendered by the KUAB 

software and the filtered and treated laser data measured for a 9,500-lbf load. 
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CONCLUSION 

This chapter describes a set of experimental procedures conducted both in the laboratory and in 
the field using seismometers, geophones, and accelerometers. The experiments were designed to 
evaluate the performance of the sensors in term of accuracy and sensitivity, with the objective of 
including the effects of these parameters in the tools described in previous chapters. 

Based on the observations, the following issues were discussed:  

• The need for a fixed reference system. 

• The difficulty of achieving a “fixed mass” for seismometers, which are highly sensitive to 
calibration. 

• The reliance of geophones on external corrections for the displacement of the sensor bar, 
which is very susceptible to numerical errors (double integration, etc.). 

• Maintenance of sensitivity over the entire frequency content of the motion, which cannot 
be done. 

• The problems that both seismometers and geophones have at low frequency (especially 
geophones), which is crucial when measuring pavement deflections.  

In addition, a study was presented to illustrate the effects of numerical integrations and drifts, 
confirming their significant influence on the output results.  

For all the tests presented, a high-precision laser system was used in the experimental setups as a 
reference system and also to evaluate limitations on potential recommendation of its use in FWD 
systems. Even though the laser system performed flawlessly under laboratory conditions and was 
successfully used as a reference for characterizing the other devices, it was much more difficult to 
use in the field. Given the high accuracy of the laser, even small vibrations were picked up in the 
signal. Therefore, field measurements from the laser also had to be filtered and adjusted. The 
advantages of using a laser were mainly that it eliminated all the undesirable effects from numerical 
artifacts because it directly measured the deflection. This is similar to seismometers but with the 
added advantage that it was a noncontact method so there were no seating errors. The main 
disadvantage was that lasers still need a fixed reference in the system to extract the pavement’s true 
surface motion. This could be achieved by either disconnecting the rigid bar that holds the sensors 
away from the FWD machine frame, thus isolating the frame from the vibration noise, or by placing 
an external reference mechanism away from the influence of the deflection basin induced by the 
load drop. The external reference could be position sensors that track the movement of the beam 
holding the sensors. This was previously done using accelerometers but would not solve the 
problem because it would require a double integration for the accelerometer data.  

Geophones have the advantage of not requiring an added reference, but it was shown in the 
studies reported in this chapter that data were relatively less reliable post-peak. Geophones are 
based on the inertia of a suspended mass, which means they have performance issues at low 
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frequencies. Furthermore, the requirement for a numerical integration induces several numerical 
artifacts such as errors in post-peak amplitude and drifts. 

The issue with time synchronization between the load and the measurements output was an easy 
technological fix. The focus of existing FWD systems has been to determine the response peaks, 
which are not affected by the synchronization problem. This becomes important when the whole 
time response is of interest. This issue could be resolved by adding a position sensor that records 
the exact position of the dropping mass. The position sensor should be connected to the same 
data acquisition system as all the sensors so that it uses the same timer.     
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CHAPTER 7. CONCLUSIONS 

SUMMARY OF FINDINGS 

LTPP Data Analysis 

A detailed sensitivity analysis on a relatively large sample of FWD test results from the LTPP 
database was conducted to determine the following: (1) prevalence of dynamics, (2) how 
prevalence of nonlinear behavior, and (3) measurement issues based on apparently erroneous 
deflection sensor time histories. The data covered all climatic zones, seasons, and temperature 
ranges. It was observed that dynamics were present in about 65 percent of the cases, while 
nonlinearity could be prevalent in a range from as low as 24 percent of the cases to as high as 
65 percent of the cases, depending on severity level and sensor location. Nonlinearity was more 
prevalent for the sensors that were far from the center of the load. Because of the prevalence of 
dynamic behavior (in the form of free vibrations of deflection sensor time histories) observed in the 
large sample of LTPP FWD test data, it was hypothesized that in the great majority of the cases, the 
stiff layer condition might not correspond to the presence of shallow bedrock. Such bedrock would 
be highly unlikely given that it typically lies at much greater depths. Instead, the stiff layer 
condition could manifest anytime the soils below the subgrade layer are stiffer than the subgrade 
layer itself. This could be caused by increased confinement with depth, overconsolidation, or 
existence of shallow groundwater table for example; these situations are very common in any soil 
profile. This would explain the high percentage of sections from the LTPP database that showed 
dynamic behavior. 

Viscoelastic Approach 

As part of this effort, two multilayered viscoelastic algorithms were developed. The first 
algorithm (called LAVA/LAVAP) assumes the AC layer as a linear viscoelastic material and 
unbound layers as linear elastic. The second algorithm (called LAVAN) also assumes the AC 
layer as a linear viscoelastic material; however, it can consider the nonlinear (stress-dependent) 
elastic moduli of the unbound layers. These two models were used to develop two GA-based 
backcalculation algorithms (called BACKLAVA/BACKLAVAP and BACKLAVAN) for 
determining the E(t) or |E*| master curve of AC layers and unbound material properties of 
in-service pavements. 

The research team drew the following conclusions: 

• Viscoelastic properties of AC layer can be obtained using a two-stage scheme. The first 
stage is an elastic backcalculation to determine unbound layer properties, which is followed 
by viscoelastic backcalculation of E(t) of the AC layer while keeping the unbound layer 
properties fixed.  

• The examples presented in this study show that, in the case of the presence of considerable 
dynamic effects, the algorithms (BACKLAVA and BACKLAVAN) should be used with 
caution or use the dynamic backcalculation algorithm (DYNABACK-VE). The algorithms 
presented in chapter 4 predict the behavior of flexible pavement as a viscoelastic damped 
structure, assuming it to be massless.  
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• For the GA backcalculation procedures, the following population and generation sizes are 
recommended: 

o For the BACKLAVA model, use a set of FWD tests run at different (but constant) 
AC layer temperatures with a population size of 70 and 15 generations. 
 

o For the BACKLAVAP model, use a single FWD test with a known AC temperature 
profile and a population size of 300 and 15 generations. 
 

o For the BACKLAVAN (nonlinear) model, use FWD tests run at different (but 
constant) AC layer temperatures and a population size of 100 and 15 generations. 
 

Dynamic Viscoelastic Approach 

A new solution and its associated computer program were developed for dynamic viscoelastic 
time-domain backcalculation of multilayered flexible pavement parameters under FWD tests in 
the time domain. The method uses a time-domain viscoelastic solution as a forward routine 
(ViscoWave-II) and a hybrid routine (DYNABACK-VE: GA and modified LM method) for 
backcalculation analysis. For the GA-based backcalculation procedure, the research team 
recommends using DYNABACK-VE with a population size of 300 and a number of generations 
of 15. The advantage of the new solution is that it can analyze the response of pavement systems 
in the time domain and can therefore accommodate time-dependent layer properties and 
incorporate wave propagation. Also, because the backcalculation is performed in the time domain, 
the algorithm is not sensitive to truncation in the deflection time histories. The new algorithm is 
capable of backcalculating layer moduli, including the master curve of the AC layer at every 
reduced time and the depth to the stiff layer and its modulus value, if it exists. The results using 
simulated deflection time histories and field FWD data show excellent stability and accuracy.  

The sensitivity of dynamic backcalculation solutions to signal noise and synchronization 
problems is high. The remedy to noise is to preprocess the raw data by filtering out the high-
frequency content of the signal (anything above 100 Hz) in deflection and load pulse data. Also, 
in the analysis presented in chapter 5, the percent error between the computed and measured 
displacement was used as the minimizing error. If percent error were used as the minimizing 
objective, it could lead to overemphasis of lower magnitudes of deflections at the later portion of 
the time history, which typically includes noise and integration errors. Hence another fit function 
was proposed in which the percent error was calculated with respect to the peak of deflection at 
each sensor. This de-emphasized the tail data by normalizing them with respect to the peak. 

If synchronization problems occur, the dynamic backcalculation algorithm may not work as well, 
although one could shift the signals similar to what was done in the quasi-static viscoelastic 
solution (chapter 4). Because the quasi-static solution presented in chapter 4 is already coded to 
remove the time delay between sensors, the research team recommends the use of BACKLAVA 
instead of DYNABACK-VE when such a synchronization problem exists. 

The results from dynamic analyses clearly showed the superiority of a fully dynamic solution 
with a viscoelastic AC layer modulus in predicting deflection responses that are in line with the 
physical reality, as evidenced by the close match in the details of the deflection time histories 
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between theory and observation. The theoretical predictions from ViscoWave-II showed very 
good agreement with the measured deflection time histories. The fact that theory and 
measurement showed the same behavior with time was proof that these observations were 
physically real. This is important in that it reinforces the following: (1) a comprehensive model 
that takes into account viscoelasticity of the AC layer, damping in the unbound layers and 
dynamics in terms of inertial and wave propagation effects can explain the measured data with 
all their complexities; and (2) the FWD sensor measurements, if properly calibrated, can show 
the physical behavior for most of the time range, with the exception of the drift problems at the 
tail of the records. 

In contrast, the layered viscoelastic solution cannot simulate the true deflection time histories 
because it cannot account for inertial and wave propagation effects. As such, it cannot predict the 
time delays in the response, the initial rebounds of the farther sensors and the free vibrations 
after the load is applied. Also, the layered viscoelastic solution significantly underestimates the 
deflections when a stiff layer is presented. This is because it cannot account for dynamic 
amplification caused by the wave energy trapped in the unbound layers when a stiff layer 
condition exists. 

Practical Implications and Recommendations 

The research team makes the following recommendations regarding FWD data collection, based 
on both viscoelastic and dynamic analyses conducted in this study: 

• Careful collection of FWD deflection data is crucial. The accuracy of the deflection time 
history needs to be improved. As a minimum, a highly accurate deflection time history at 
least until the end of the load pulse duration is needed for the E(t) or |E*| master curve 
backcalculation. The longer the duration of the deflection time history, the better. 

• The temperature of the AC layer needs to be collected during the FWD testing. 
Preferably, temperatures should be collected at every 2 inches of depth of AC layer. 

• Either a single FWD run on an AC with a large temperature gradient or FWDs run at 
different temperatures can be sufficient to compute the E(t) or |E*| master curve of 
asphalt pavements. Moreover, in chapter 5, in the subsection Effect of Pulse Width on 
Backcalculation Results, it was shown that increasing the pulse duration will improve the 
backcalculation results and therefore, there is no need to run FWDs at different 
temperatures. However, a temperature profile is still needed to be able to backcalculate 
the shift factors for the master curve. 

• For backcalculation using multiple FWD test datasets, tests should be conducted at a 
minimum of two different temperatures, preferably 18 °F or more apart. FWD data 
collected at a set of temperatures between 68 and 104 °F will maximize the accuracy of 
backcalculated E(t) or |E*| master curve up to less than a 10-percent error. 

• For backcalculation using single FWD test dataset at a known AC temperature profile, the 
FWD test should be conducted under a temperature gradient of preferably ±9 °F or more. 
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• An FWD configuration composed of multiple pulses will improve the accuracy of the E(t) 
master curve prediction. However, to obtain the time-temperature shift factor coefficients, 
either temperature variation with depth needs to be measured (and included in the 
analysis) or the FWD test (with multiple pulses) needs to be run at different pavement 
temperatures (e.g., different times of the day). While testing using multiple pulses or 
elongated pulses allows calculation of E(t) at longer durations, testing at lower or higher 
temperatures (with respect to the reference temperature) essentially means shrinking or 
elongating the loading pulse in reduced time domain and hence may be sufficient.  

• The influence of unbound layer properties increases with incorporation of data from 
farther sensors and with increase in test temperature. All sensors in the standard FWD 
configuration are needed for accurate backcalculation of the viscoelastic AC layer and 
unbound layers. 

FWD Equipment Analysis 

A set of experimental procedures, conducted both in the laboratory and in the field, were 
performed using seismometers, geophones, and accelerometers. The experiments were designed 
to evaluate the performance of the sensors in term of accuracy and sensitivity, with the objective 
of including the effects of these parameters in the tools studied in earlier chapters of this report. 

Based on the observations, the following issues were discussed:  

• The need for a fixed reference system. 

• The difficulty of achieving a “fixed mass” for seismometers, which are highly sensitive to 
calibration. 

• The reliance of geophones on external corrections for the displacement of the sensor bar, 
which is very susceptible to numerical errors (double integration, etc.). 

• Maintenance of the sensitivity over the entire frequency content of the motion, which 
cannot be done. 

• The problems that both seismometers and geophones have at low frequency (especially 
geophones), which is crucial when measuring pavement deflections.  

In addition, a study was presented to illustrate the effects of numerical integrations and drifts, 
confirming their significant influence on the output results.  

For all the tests presented, a high-precision laser system was used in the experimental setups as a 
reference system and also to evaluate limitations on potential recommendation of its use in FWD 
systems. Even though the laser system performed flawlessly under laboratory conditions and was 
successfully used as a reference for characterizing the other devices, it was much more difficult to 
use it in the field. Given the high accuracy of the laser, even small vibrations were picked up in the 
signal. Therefore, field measurements from the laser also had to be filtered and adjusted. The 
advantages of using a laser were mainly that it eliminated all the undesirable effects from 
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numerical artifacts because it directly measured the deflection. This is similar to seismometers but 
with the added advantage that it was a noncontact method so there were no seating errors. The 
main disadvantage was that lasers still need a fixed reference in the system to extract the true 
pavement’s surface motion. This could be achieved by either disconnecting the rigid bar that holds 
the sensors from the FWD machine frame, thus isolating the frame from the vibration noise, or by 
placing an external reference mechanism away from the influence of the deflection basin induced 
by the load drop. The external reference could be position sensors that track the movement of the 
beam holding the sensors. This was previously done using accelerometers but would not solve the 
problem because it would require a double integration for the accelerometer data.  

Geophones have the advantage of not requiring an added reference, but it was shown in studies 
reported in chapter 6 that data were relatively less reliable post-peak. Geophones are based on the 
inertia of a suspended mass, which means that they have performance issues at low frequencies. 
Furthermore, the requirement for a numerical integration induces several numerical artifacts such 
as errors in post-peak amplitude and drifts. 

The issue with time synchronization between the load and the measurements output was an easy 
technological fix. The focus of existing FWD systems has been to determine the response peaks, 
which are not affected by the synchronization problem. This becomes important when the whole 
time response is of interest. This issue could be resolved by adding a position sensor that records 
the exact position of the dropping mass. The position sensor should be connected to the same 
data acquisition system as all the sensors so that it uses the same timer.     

IMPLEMENTATION RECOMMENDATIONS AND FUTURE RESEARCH 

The tools developed in this project are standalone applications that could be used on most 
computers. The following four time-domain backcalculation software products were developed: 

• BACKLAVA: Backcalculation algorithm for a constant AC layer temperature. 

• BACKLAVAP: Backcalculation algorithm for a temperature profile in an AC layer. 

• BACKLAVAN: Backcalculation algorithm for a viscoelastic AC layer and nonlinear 
base layer. 

• DYNABACK-VE: Backcalculation algorithm for a viscoelastic AC layer (with 
temperature profile).  

All these tools are engineering software applications that allow the user to backcalculate the master 
curve of the AC layer (four sigmoidal coefficients and two time-temperature shift factors) and the 
resilient moduli for the unbound base/subbase and subgrade materials. DYNABACK-VE could 
also backcalculate the modulus of the stiff layer and the depth to the stiff layer, if one is present.  

With good seed values for the moduli (e.g., previous information about the moduli), one could 
also implement a simple gradient-based method along with LAVA, LAVAP, LAVAN, and 
ViscoWave-II as forward routines. If the measured deflections are reasonably free from errors, a 
simple RMS objective function can be selected; otherwise, it is better to first apply any remedies 
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as discussed in chapter 2, (subsection Review of Status of FWD Data Collection, Analysis, and 
Interpretation) before running the program.  

Owing to the searching method used, DYNABACK-VE could take more time to run compared 
with current backcalculation programs. Thus, continued study is needed on reducing the runtime 
of the program. For example, the current version of DYNABACK-VE takes approximately the 
following times on various computers: 

• Three min on a 2-core processor with 64-bit operating system.  
• Forty-five s on a 4-core processor with 64-bit operating system. 
• Twenty-two s on an 8-core processor with 64-bit operating system. 
• Six s on a 60-core processor with 64-bit operating system. 

These translate to backcalculation runs of approximately the following times and costs: 

• Forty-three h on a 2-core processor with 64-bit operating system (approximately $200).  
• Eleven h on a 4-core processor with 64-bit operating system (approximately $1,000). 
• Six h on an 8-core processor with 64-bit operating system (approximately $2,000). 
• Two h on a 60-core processor with 64-bit operating system (approximately $2,800). 

As shown in this study, the influence of the parameters in the GA (size of population, number of 
generations, mutation rate, etc.) on the backcalculation procedure is significant, which could be 
an interesting topic for future study. Recently, a variety of optimization techniques have been 
developed with several advantages and disadvantages. A comparative study of these techniques 
could help better understand the moduli optimization and improve the backcalculation method. 
In addition, while the approach in this effort has assumed the layer thickness is known, 
DYNABACK-VE could be extended in the future to reliably backcalculate layer thicknesses as 
well. Also, the current DYNABACK-VE program assumes linear elastic pavement layers. The 
nonlinearity of unbound layers should be considered in the backcalculation procedure, especially 
under high surface loads. The algorithm could also be improved to consider the thermal effect in 
future versions. 
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APPENDIX A. DEVELOPMENT OF NONLINEAR VISCOELASTIC MODEL USING 
k-  NONLINEARITY 

DEVELOPMENT OF A LAYERED ELASTIC ALGORITHM WITH NONLINEAR 
UNBOUND LAYERS 

Introduction 

Unbound layers typically exhibit nonlinearity, i.e., their responses are affected by the state of 
stress. This stress includes the induced stress due to the applied load on the surface and the 
geostatic stress. Software programs such as KENLAYER and MICHPAVE consider the 
constitutive equation between resilient modulus and stress invariants as that shown in figure 266.  

 
Figure 266. Equation. Relationship between resilient modulus and stress invariants.. 

Where:  
 = 1 + 2 + 3 + z(1 + 2K0). 

k1 and k2 = material constants. 
K0 = the coefficient of earth pressure at rest. 

1, 2, and 3 = principle stresses.  

MICHPAVE is a FEM-based software program and hence can consider both the radial and 
vertical nonlinearity in calculations, whereas KENLAYER (being a “layered” algorithm) can 
consider only the vertical nonlinearity. In KENLAYER, the elastic nonlinearity is solved 
iteratively assuming an initial set of elastic moduli. The developed algorithm used in this section 
is similar to KENLAYER in that the evaluated stresses obtained using the current values of 
moduli are used to evaluate a new set of moduli using the equation in figure 266 iteratively. Note 
that the appropriate stress adjustments were made because unbound granular material cannot take 
tension. This means that in such a case, a residual stress would be generated that should make the 
stress zero or such that it would obey the yield criterion. 

The algorithm developed to obtain response in nonlinear system was compared with the more 
robust nonlinear FEM software program MICHPAVE. Two cases were considered. In the first 
case, the unbound layer was considered as a single layer for nonlinearity calculations 
(algorithm 1), and in the second case, the layer was divided into two sections (algorithm 2). The 
pavement section used in the analysis is described in table 65. 

Table 65. Pavement section used in the nonlinear comparison analysis. 

Physical Layer Modulus 
Thickness 
(inches) 

Poisson’s 
Ratio 

Density 
(pcf) K0 

AC (Elastic) E(t) psi 6 0.45 138 0.6 
Base (Nonlinear) Nonlinear: k1=11,450, k2=0.33 20 0.35 121 0.6 
Subgrade (Elastic) 25,500 psi Infinity 0.45 130 0.6 
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Results and Discussion for Layered Elastic Algorithm With Nonlinear Unbound Layer 

Results for surface deflection at the center of the load (r = 0 inches) at contact pressures of 10, 
30, 60, and 80 psi are shown in figure 267. From the figure, it can be seen that the deflections 
obtained from the developed algorithms 1 and 2 match well at all the load values. This means 
that subdividing the 20-inch base layer into two layers and computing the nonlinear deflections 
on the surface did not produce an improvement in the results. 

 
Figure 267. Graph. Results for multilayer nonlinear structure surface deflection at the 

center of the load (r = 0 inches). 

NONLINEAR VISCOELASTIC ANALYSIS USING k-  MODEL 

Introduction 

For the multilayered viscoelastic nonlinear pavement model to follow Fung’s QLV nonlinearity 
model, it should satisfy figure 63 through figure 66. However, it was shown that these conditions 
are not satisfied for k- -  type of nonlinearity. Subsequently, a generalized form of QLV model 
was used to develop a nonlinear viscoelastic pavement response model for k- -  type 
nonlinearity.  

In this section, the same analysis is presented for the k-  model, shown as in figure 268. 

 
Figure 268. Equation. Resilient modulus. 
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As the first step it was shown that Fung’s model of nonlinear viscoelasticity was not applicable for 
this type of nonlinearity. Subsequently, the LAVA algorithm was modified to implement the 
granular base nonlinearity using the iterative solution for the pavement properties shown in table 66. 

Table 66. Pavement section used in the nonlinear viscoelastic validation of k-  model. 

Physical Layer Modulus 
Thickness 
(inches) 

Poisson’s 
Ratio 

Density 
(pcf) K0 

AC (viscoelastic) E(t) sigmoid constants: 
1.598,2.937,0.512,-0.562 

5.9 0.35 130 0.6 

Base (nonlinear) Nonlinear: 
k1 = 3,626, k2 = 0.5 

9.84 0.4 130 0.6 

Subgrade (linear) 10,000 psi Infinity 0.4 130 0.6 
 
Figure 269 shows the variation of g( ) calculated using the procedure already explained in the 
section in chapter 4 entitled Layered Viscoelastic Nonlinear (LAVAN) Pavement Model. From 
the figure, it can be seen that similar to the results obtained for k- -  nonlinearity, the g( ) 
values decreased with increasing stress ( ). This shows that g( ) was not solely based on the 
stress, and Fung’s model cannot be used in a layered pavement structure.  

 
Figure 269. Graph. Variation of g( ) with stress and E(t) of AC layer. 

Subsequently, similar to the k- -  model, the k-  model was also implemented in the proposed 
generalized QLV algorithm and was analyzed on a 35-ms haversine load (synthetic FWD pulse 
load). As shown in table 58, the section properties were kept the same as used for k- -  model. Two 
HMA mix properties were considered: control and CRTB (for mix properties refer to figure 73). 
Again stresses at two radial distance r = 0 and 3.5a within the center of the layer (vertically) were 
used in calculating unbound base modulus value. In the first trial, the modulus value of unbound 
granular material in LAVA was calculated using stress state at r = 0. In the second trial, the modulus 
value of unbound granular material in LAVA was calculated using stress state at r = 3.5a.  
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Results and Discussion for Nonlinear Viscoelastic Model Using k-θ Nonlinearity 

Figure 270 (top) and figure 271 (top) show the results when r = 0 was used in LAVAN, whereas 
Figure 270 (bottom) and figure 271 (bottom) show the results when r = 3.5a was used in 
LAVAN. The difference between the ABAQUS and LAVAN was quantified using the two 
variables PEpeak and PEavg defined earlier for k- -  model in figure 78 and figure 79, 
respectively. Because the model integrated both viscoelastic and nonlinear material properties, 
both peak deflection as well as creeping of deflection should be predicted with accuracy. PEavg 
was used to examine the model performance in creeping. 

 

Figure 270. Graphs. Comparison of ABAQUS and LAVAN for nonlinear viscoelastic 
structure for the control mix where (top) LAVAN uses stress at r = 0, and (bottom) 

LAVAN uses stress at r = 3.5a. 
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Figure 271. Graphs. Comparison of ABAQUS and LAVA for nonlinear viscoelastic 
structure for the CRTB mix where (top) LAVAN uses stress at r = 0 and (bottom) LAVAN 

uses stress at r = 3.5a. 

As seen in figure 272, slight improvement was observed in PEpeak values for the control mix 
when stress at r = 3.5a was used to obtain a resilient modulus. However, PEpeak values for CRTB 
(figure 273) showed a different trend, where first three sensors exhibited lower errors when r = 0 
was used. The rest of the sensors did show improvement when r = 3.5a was used. For both the 
mixes, the creep behavior of the response was well predicted by the model, which can be seen 
from the low PEavg values in figure 274 and figure 275. However, similar to the k- -  results, 
r = 0 produced relatively good results, especially in the first four to five sensors. 
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Figure 272. Graph. Percent error (PEpeak) calculated using the peaks of the deflections for 

LAVAN-ABAQUS comparison (control mix). 

 
Figure 273. Graph. Percent error (PEpeak) calculated using the peaks of the deflections for 

LAVAN-ABAQUS comparison (CRTB mix). 
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Figure 274. Graph. Average percent error (PEavg) calculated using the entire time history 

for LAVAN-ABAQUS comparison (control mix). 

 
Figure 275. Graph. Average percent error (PEavg) calculated using the entire time history 

for LAVAN-ABAQUS comparison (CRTB mix). 
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APPENDIX B. THEORETICAL ANALYSES ON MULTIPLE-PULSE FWD’S IN 
BACKCALCULATION 

As discussed in chapter 4, responses of viscoelastic materials show dependence on time (or 
frequency), rate of loading, and temperature. The relationship of characteristic viscoelastic 
properties such as relaxation modulus, creep compliance, and dynamic modulus with time (or 
frequency) are often expressed at a specific reference temperature, in terms of a master curve. In 
theory, it should be possible to obtain such a curve if data containing time-changing responses at 
different temperature levels are known. The available analysis window for the current FWD 
devices is short, extending up to 25 to 35 ms of stress pulse. However, the recorded information 
can be used to infer part of the relaxation function. As for temperature information, it is possible 
to test the same location at different times within a day. Although a series of FWD tests at 
different temperatures could be useful in developing the entire master curve, in theory the 
prediction can be improved if information at different rates of loading or over a larger time 
interval were known. In this appendix, these possibilities are explored. Note that backcalculation 
in this appendix was performed using the MATLAB® optimization function fminsearch. 

BACKCALCULATION USING MULTIPLE PULSES AT DIFFERENT FREQUENCIES 

To illustrate the possibility of exploiting information from multiple frequencies in backcalculation 
of the damaged HMA master curve, two examples are presented. In the first, a typical FWD pulse 
was backcalculated, and in the second example, multiple FWD pulses at different frequencies 
were backcalculated. For these two examples, forward computations were performed using a 
known E(t) to compute the deflection basin. Figure 276 shows the E(t) master curve that was used 
in these examples. For simplicity, the AC layer temperature was assumed to be equal to the 
reference temperature of the master curve (Tref = 66.2 °F); therefore, tR = t = actual time. 

 
Figure 276. Graph. E(t) used to compute the deflection basin in examples 1 and 2. 
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Example 1—Typical FWD Pulse 

In this example, to simulate a typical FWD pulse, a haversine loading with a duration of 35 ms, 
followed by a rest period of 35 ms, was simulated (figure 277 (left)). Figure 277 (right) shows 
the resulting deflection basin at different radial distances from the centerline of the load.  

 
Figure 277. Graphs. FWD deflection history for example 1. 

In this example, the only unknown parameter was the E(t) master curve of the AC layer. Other 
parameters, such as unbound layer modulus, Poisson’s ratio, and thicknesses of AC and unbound 
layers, were known. In addition, a constant Poisson’s ratio of 0.35 was assumed for the AC layer. 
Initially, a random number generator was used to determine the initial sigmoid constants. Figure 278 
(left) shows the initial sigmoid coefficients and the resulting initial E(t) curve, which was quite 
different from the actual E(t) curve. Such an initial difference was important to ensure that the 
backcalculation procedure worked accurately without depending on the initial values. 
Backcalculation results at the starting and the ending stage of optimization are shown as continuous 
line in the figure. Figure 278 (right) shows the final backcalculation results obtained at the end of the 
optimization, where a very good agreement was observed. Figure 279 shows the backcalculated |E*| 
and  values, along with the actual values. Consistent with E(t), a good match between the 
backcalculated and actual values was obtained at frequencies higher than 10-3 Hz in both |E*| and . 
However, curves diverged at lower frequencies. This was not unexpected because only the early 
portion of the E(t) curve was used in calculation of deflection history shown in figure 276. Later 
portions of the E(t) curve (and |E*| and  values at low frequencies) can be obtained by increasing 
the pulse duration or using a different form of stress history, which is shown in the next example.  

 
Figure 278. Graphs. E(t) and deflection history at the initial (left) and final (right) 

backcalculation stage in example 1.  
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Figure 279. Graphs. Comparison of backcalculated and actual |E*| and phase angle master 

curves for example 1. 

Example 2—Cyclic Pulses With Two Different Frequencies 

In this example, four successive pulses with durations of 35 ms, followed by four pulses with 
10 s durations, were simulated to generate the deflection basin (figure 280). This example was 
used to investigate whether a different loading history could result in better estimation of E(t). 
Figure 281 shows the backcalculated E(t), where a much better fit can be seen. Note that the 
accuracy of the backcalculated E(t) depended on the duration of the stress pulse, where longer 
duration allowed calculation of E(t) at longer durations. It was also important to apply high-
frequency (short duration) pulse load to increase the accuracy of E(t) at very short times. 
Backcalculation of E(t) for this example took less than 5 min. Figure 282 shows the 
backcalculated |E*| and phase angle master curves, where a much better match can be seen 
compared with example 1. 



 

258 

 
Figure 280. Graphs. Applied stress and resulting deflection basin for example 2. 

 
Figure 281. Graph. Backcalculated E(t) using multiple stress pulses. 
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Figure 282. Graphs. Comparison of backcalculated and actual |E*| and master curves for 

example 2. 

BACKCALCULATION USING SERIES OF MULTIPLE-PULSE FWDS AT CONSTANT 
FREQUENCY AND DIFFERENT TEMPERATURE 

The theoretical FWD stress history shown in figure 283 was used to investigate whether a 
loading history with multiple pulses at constant frequency could improve the backcalculation 
results. First, deflection time histories were computed at several temperatures using LAVA. 
Then, BACKLAVA was used to backcalculate the E(t) master curve. Two examples are shown. 
In the first, three successive pulses with durations of 80 ms, followed by a rest period of 760 ms, 
were simulated to generate deflections. In the second, only the initial three successive pulses 
were used, and deflection over the remainder of the period was ignored.  
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Figure 283. Graph. Stress history used in the constant frequency multiple pulse analysis. 

Example 1 

The LAVA algorithm was used to compute deflection histories resulting from the loading shown 
in figure 283 at the temperatures 50, 86, 104, 140, 176, 212, and 248 °F. Measured and 
backcalculated responses for temperatures 50, 86, 104, and 140 °F are shown in figure 284. The 
backcalculated E(t) curve after 1 h 7 min is shown in figure 285. The results obtained for the 
backcalculation using multiple pulses were encouraging because of the increased time and 
relaxation due to the stress history. 
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Figure 284. Graphs. Deflection at different sensors at different temperatures in example 1. 

 
Figure 285. Graph. Result for backcalculated E(t) curve in example 1. 

Example 2 

In example 2, the problem was solved only for the pulse duration; the relaxation trend was 
omitted. The problem was solved for a temperature set of 32, 50, 68, 86, 104, 122, 140, 158, 176, 
194, 212, 230, and 248 °F. The backcalculated E(t) values for example 2 at 1 h 7 min are plotted 
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in figure 286. Measured and backcalculated deflection histories for temperature 32, 50, 68, and 
86 °F are shown in figure 287. 

 
Figure 286. Graph. Result for backcalculated E(t) curve for example 2. 

 
Figure 287. Graphs. Deflections at different sensors at different temperatures for 

example 2. 

Note that the accuracy of the backcalculated E(t) curve depended on the duration and 
temperature of the stress pulse loading. Inclusion of high temperatures along with an elongated 
stress pulse in the theoretical analysis allowed calculation of E(t) at longer durations. It can be 
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seen from figure 285 and figure 286 that the backcalculated E(t) curve obtained from using both 
truncated and nontruncated deflection curves showed good prediction. However, a much more 
accurate predicted E(t) curve up to 105 s was obtained when nontruncated deflection curves were 
used in backcalculation. 

CONCLUSIONS 

The results from the four examples presented in this appendix suggest that including FWD pulses 
or multiple frequencies in backcalculation may improve the accuracy of the E(t) master curve 
prediction. The improvement in backcalculated E(t) master curve could be for two possible 
reasons—an increase in the deflection time history and a different rate of loading. However, 
more comprehensive theoretical analyses are needed to assert and determine the optimal loading 
history that should be applied by an FWD. Although the theoretical methods suggested in this 
appendix clearly have potential to improve the ability of BACKLAVA in predicting E(t) master 
curve, the methods have the following limitations: 

• Increasing the number of FWD pulses (i.e., the frequency content) increases the 
computational time of the backcalculation, making it computationally expensive. 

• Different frequencies in the loading history alone cannot be used to obtain both the time 
and temperature properties of the HMA layer, which are needed for complete 
characterization of the HMA layer. 
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APPENDIX C. THEORETICAL DEVELOPMENT OF A TIME-DOMAIN FORWARD 
SOLUTION 

GOVERNING EQUATIONS FOR VISCOELASTIC WAVE PROPAGATION 

Similar to any other wave propagation problems, the proposed solution began with the classical 
equation of motion for a continuous medium as shown in figure 288.(101) 

 
Figure 288. Equation. Equation of motion for a continuous medium. 

Where: 

 = the stress tensor. 
b = the vector of body forces per unit volume. 

 = the mass density of the material. 
u = the displacement vector.  

According to the theory of linear elasticity, the stress-strain relationship for a linear, 
homogenous, and isotropic material is obtained from the generalized Hooke’s law, as shown in 
figure 289. 

 
Figure 289. Equation. Stress-strain relationship for a linear, homogenous, and isotropic 

material. 

Where:  
 = the strain tensor.  
 and  = the lamé constants.  

Ι = the identity tensor.  

The strain tensor in figure 289 is related to the displacement vector according to the equation in 
figure 290. 

 
Figure 290. Equation. Strain-displacement relationship for a linear, homogenous, and 

isotropic material. 

For a viscoelastic material such as an AC mixture, the fundamental materials properties—in this 
case, the lamé constants—as well as the stresses and strains are time dependent and hence, their 
relationship can be written as the following in reference to the theory of linear 
viscoelasticity:(68,102,103) 
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Figure 291. Equation. Stress-strain relationship for a viscoelastic material. 

Where the operator * between any function  represents the well-known Stieltjes 
convolution integral defined as shown in figure 292. 

 
Figure 292. Equation. Stieltjes convolution integral.  

Note that the kinematic strain-displacement relationship shown in the equation in figure 290 also 
applies to linear viscoelastic materials. The only difference from an elastic material is that the 
displacement and hence the strain are functions of not only the material (or spatial) coordinates 
but also time. Substituting the equations presented in figure 290 and figure 291 into the equation 
of motion shown in figure 288, and ignoring the body forces, results in the equation shown in 
figure 293 in terms of displacements: 

 
Figure 293. Equation. Equation of motion in terms of displacements. 

By means of the Helmholtz decomposition, the displacement vector in figure 293 can be 
expressed in terms of potentials as shown in figure 294. 

 
Figure 294. Equation. Displacement vector in terms of potentials. 

Where  represent a scalar potential, and H is a vector potential whose divergence vanishes (i.e., 
). 

Similar to the spectral element solution provided by Al-Khoury et al., the cylindrical 
axisymmetric coordinate system shown in figure 295 is employed herein.(2)  
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Figure 295. Diagram. Coordinate system for axisymmetric layers on a half-space. 

Then, the equations shown in figure 296 and figure 297 are obtained for the potentials by 
substituting the equation in figure 294 into the equation in figure 293. 

 
Figure 296. Equation. Equation of motion in terms of the scalar potential. 

 
Figure 297. Equation. Equation of motion in terms of the vector potential. 

Where Hθ is the tangential and also the only component of H that does not vanish. By defining Hθ 

as shown in figure 298, it can be shown that the scalar potential  satisfies the wave equation 
shown in figure 299. The proof can be obtained immediately if the equation in figure 299 is 
differentiated with respect to r.(104) 
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Figure 298. Equation. Vector potential H . 

 
Figure 299. Equation. Scalar potential . 

The equations in figure 296 and figure 299 are the wave equations that govern the axisymmetric 
wave motion in a continuous, linear viscoelastic medium. It is also worthwhile to note that if the 
lamé constants,  and , were independent of time (i.e., the material is linear elastic), then the 
convolution integral in the equations reduce to an arithmetic multiplication and these two 
equations become the well-known axisymmetric wave equations for a linear elastic material.(104,105) 

Another immediate consequence of adopting the axisymmetric coordinate system is that the 
displacement component in the tangential direction, uθ, vanishes.(105) The remaining deflections 
can be written in terms of the scalar potentials  and  as shown in figure 300 and figure 301.  

 
Figure 300. Equation. Relationship between radial displacement and potentials.  

 
Figure 301. Equation. Relationship between vertical displacement and potentials. 

The stresses can be written as shown in figure 302 and figure 303. 

 
Figure 302. Equation. Relationship between shear stress and potentials. 

 
Figure 303. Equation. Relationship between vertical stress and potentials. 
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SOLUTIONS FOR THE WAVE EQUATIONS IN THE LAPLACE-HANKEL DOMAIN 

The solution to the wave equations presented in the previous section can be worked more 
conveniently by using the integral transforms. Taking the Laplace transform of the equation in 
figure 296 results in the equation shown in figure 304. 

 
Figure 304. Equation. Equation of motion in terms of the scalar potential  in the Laplace 

domain. 

Where s is the Laplace variable, and  is the Laplace transform of a 

function f(t). Then, taking the Hankel transform (also known as the Fourier-Bessel transform) of 
order zero defined as of the equation in figure 304, the equation in 

figure 305 is obtained. 

 
Figure 305. Equation. Equation of motion in terms of the scalar potential  in the Laplace-

Hankel domain. 

After a simple rearrangement of the terms, figure 305 can be written as shown in figure 306. 

 
Figure 306. Equation. Simplified form of the equation in figure 305. 

From the equation in figure 306, the solution for the Laplace-Hankel transformed potential 
function, , is obtained as shown in figure 307, after dropping the term that develops an 
unbounded result, i.e., the wave that propagates in the negative z direction.(104,105) 

 
Figure 307. Equation. General form solution of the equation in figure 306. 

Where A is an arbitrary constant.  
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By following the same mathematical steps shown above, the equation in figure 299 can be 
rewritten as shown in figure 308. 

 
Figure 308. Equation. Equation of motion in terms of the scalar potential  in the Laplace-

Hankel domain. 

Again, after dropping the term leading to unbounded results, the solution for the transformed 
potential, , is obtained as shown in figure 209. 

 
Figure 309. Equation. General form solution of the equation in figure 306. 

Where C is also an arbitrary constant.  

To use the solutions obtained above for the transformed potentials, it is also necessary to acquire 
the equations for the displacements and the stresses in the transformed domain. While taking the 
Laplace transform of the displacements and the stresses is straightforward, additional attention is 
needed in taking the Hankel transform because of the spatial symmetry supplied by the 
cylindrical coordinate system adopted for the solution. Referring back to figure 295, one finds 
that the displacement at any point on the z-axis (i.e., when r = 0) is only allowed to occur in the 
z-direction (i.e., uz  ≠ 0 when r = 0) but is confined in the r-direction (i.e., ur = 0 when r = 0), 
unless the axisymmetric assumption is to be violated. Because of these physical characteristics of 
the axisymmetric displacements, Hankel transforms of different orders need to be applied to ur 
and uz.  

Figure 310 shows the first few cycles of the Bessel functions of the first kind and of orders zero 
(J0) and one (J1) that make up the kernels of the Hankel transform. The primary difference 
between the two Bessel functions shown in the figure is that while the Bessel function of order 
zero (J0) has a nonzero value at r = 0, the Bessel function of order one (J1)  is equal to zero when 
r = 0. This implies that the Hankel transform of order zero whose kernel is composed of J0 is 
appropriate for transforming the functions that exhibit nonzero values at the origin, whereas the 
Hankel transform of order one whose kernel is made up of J1 is more appropriate for 
transforming the functions that have zero values at r = 0. Therefore, the appropriate Hankel 
transforms that should be applied to ur and uz are of orders one and zero, respectively.  
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Figure 310. Graph. Bessel functions of the first kind. 

Taking the Laplace and the respective Hankel transforms on the displacements ur and uz, shown in 
figure 300 and figure 301 results in the equations shown in figure 311 and figure 312, respectively. 

 
Figure 311. Equation. Relationship between radial displacement and potentials in the 

Laplace-Hankel domain. 

 
Figure 312. Equation. Relationship between vertical displacement and potentials in the 

Laplace-Hankel domain. 

Note that although the Hankel transform of order one was used to transform ur shown in figure 300, 
the Hankel transform of the potentials shown in figure 311 is still of order zero. This is a 
consequence of the partial derivative with respect to r that is present in both terms of the right-hand 
side of the equation in figure 300 and the property of the Hankel transform shown in figure 313, 
which associates the first order transform of a function’s derivative to the zero order transform of 
the original function.(105,106)  

 
Figure 313. Equation. Hankel transform of a function’s derivative. 

Subsequently, the Laplace-Hankel transforms need to be carried out on the relevant stresses. 
Based on the same mathematical arguments presented above for the displacements, the Hankel 
transforms of orders one and zero should be applied respectively to rz and z to allow for a 
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solution that is compatible with the axisymmetric coordinate system chosen for the solution. 
After simplifying, the equations shown in figure 314 and figure 315 are obtained. 

 
Figure 314. Equation. Relationship between shear stress and potentials in the Laplace-

Hankel domain. 

 
Figure 315. Equation. Relationship between vertical stress and potentials in the Laplace-

Hankel domain. 

FORMULATION OF THE STIFFNESS MATRICES FOR THE LAYER ELEMENTS 

The solutions presented in the previous section for the scalar potentials in the transformed 
domain are not readily applicable for a multilayered system such as the one shown in figure 295. 
To allow for the analysis of a layered system such as an AC pavement, it is necessary to develop 
the formulations for the layer elements whose underlying concept originates from the FEA 
method. In this section, two types of layer elements are developed—a two-noded element for a 
layer with a finite thickness (e.g., the top layer in figure 295) and a one-noded element for 
simulation of a semi-infinite half-space (e.g., the bottom layer in figure 295).  

Two-Noded Element for a Layer With a Finite Thickness 

The solutions for the scalar potentials shown in the equations in figure 307 and figure 309 only 
account for the incident waves that propagate from the upper boundary of a layer in the direction 
of the positive z-axis, i.e., downward direction in figure 295. However, a layer with a finite 
thickness also encompasses the waves that reflect from the lower boundary and propagate in the 
direction of the negative z-axis. To account for these reflected waves, an additional term must be 
added to each of the potentials, which results in the equations in 

 

figure 316 and figure 317. 

 
Figure 316. Equation. Scalar potential  in the Laplace-Hankel domain. 
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Figure 317. Equation. Scalar potential  in the Laplace-Hankel domain. 

Where B and D are arbitrary constants, and h is the layer thickness. Substituting these equations 
into the equations in figure 311 and figure 312 results in the equations for the displacements 
within a two-noded element shown in figure 318 and figure 319. 

 
Figure 318. Equation. Radial displacement in the Laplace-Hankel domain. 

 
Figure 319. Equation. Vertical displacement in the Laplace-Hankel domain. 

For the formulation of a layer element, the displacements at the upper and lower boundaries need 
to be extracted from these equations. The radial and the vertical displacements at the upper 
boundary, denoted respectively as  and , can be obtained by substituting z = 0 in the 
equations in figure 318 and figure 319. Similarly, the displacements at the lower boundary (  
and ) are acquired by substituting z = h. In matrix form, the resulting equations for the 
displacements can be written as shown in figure 320. 

 
Figure 320. Equation. Relationship between shape factors and boundary conditions. 

It is also necessary to obtain the equations for the stresses. By substituting the equations shown 
in 

 

figure 316 and figure 317 into the equations shown in figure 314 and figure 315, one arrives at 
the following equations shown in figure 321. 

 
Figure 321. Equation. Shear and vertical stress in the Laplace-Hankel domain. 

Again, the stresses at the upper boundary (  and ) are obtained by substituting z = 0 in the 
equations shown in figure 321, while those at the lower boundary ( and ) are found by 
substituting z = h, all of which can be summarized in a matrix form as shown in figure 322. 
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Figure 322. Equation. Relationship between stresses and shape factors. 

Combining the equations shown in figure 320 and figure 322 by eliminating the vector of 
arbitrary constants, the stresses can be expressed in terms of the displacements as the equation 
shown in figure 323.  

 
Figure 323. Equation. Stress-displacement relationship in the Laplace-Hankel domain. 

Where S1 and S2 are the four by four matrices defined in the equations shown in figure 320 and 
figure 322, respectively. According to the concepts of FEA, the stiffness matrix of an element 
defines the relationship between the displacement vector and the boundary traction vector. 
Owing to the Cauchy stress principle, the boundary tractions are obtained by taking the dot 
product between the stress tensor and a unit vector directed along the outward normal of the 
boundary. Calculating these tractions at the upper and lower boundaries of the element and 
reorganizing them in a vector form results in the relationship between the tractions, stresses, and 
displacements shown in figure 324.   

 
Figure 324. Equation. Relationship between the tractions, stresses, and displacements. 

From figure 324, it is seen that the four by four matrix S2-noded is the stiffness matrix of the two-
noded layer element which is calculated as shown in figure 325. 

 
Figure 325. Equation. Local stiffness matrix of the two-noded layer element. 
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One-Noded Semi-Infinite Element 

The axisymmetric one-noded element was schematically shown as the bottom layer in figure 295. 
As shown in that figure and as its name implies, the one-noded element has only a single boundary 
at the top of the layer and extends infinitely in all other directions. As a consequence, the waves in 
this element are only allowed to propagate away from the upper boundary (which is also the only 
boundary) without any waves reflecting back. Therefore, the solutions for the scalar potentials 
shown in the equations of figure 307 and figure 309 can be used without any modifications. 
Substituting these two equations into the equations shown in figure 311 and figure 312 results in 
the displacements shown in figure 326 and figure 327. 

 
Figure 326. Equation. Radial displacement of a one-noded layer element. 

 
Figure 327. Equation. Vertical displacement of a one-noded layer element. 

The displacements at the boundary are obtained by substituting z = 0 in these equations and can 
be written as the matrix form shown in figure 328.  

 
Figure 328. Equation. Displacements at the boundary of a one-noded layer element. 

Again, the equations for the shear and normal stresses are obtained by substituting the potentials 
(equations shown in figure 307 and figure 309) into the equations figure 314 and figure 315, 
respectively, to produce the equations in figure 329 and figure 330. 

 
Figure 329. Equation. Shear stress of a one-noded layer element. 

 
Figure 330. Equation. Vertical stress of a one-noded layer element. 

Substituting z = 0 in the equations shown in figure 329 and figure 330 results in the stresses at 
the boundary shown in figure 331. 

 
Figure 331. Equation. Stresses at the boundary of a one-noded layer element. 
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From the equations shown in figure 328 and figure 331, the relationship shown in figure 332 is 
attained between the stresses and the displacements. 

 
Figure 332. Equation. Stress-displacements relationship at the boundary of a one-noded 

layer element. 

Where S3 and S4 were defined in the equations shown in figure 329 and figure 331, respectively. 
By applying the Cauchy stress principle, the relationship shown in figure 333 is achieved 
between the tractions, stresses, and displacements. 

 
Figure 333. Equation. Relationship between the tractions, stresses, and displacements at 

the boundary of a one-noded layer element. 

Where the stiffness matrix for the one-noded element can be written in terms of the previously 
defined variables as the equation shown in figure 334. 

 
Figure 334. Equation. Local stiffness matrix of the one-noded layer element. 

INCORPORATING ELASTIC AND VISCOELASTIC LAYER PROPERTIES 

For a homogenous, isotropic, elastic material whose properties are independent of time, the 
relationship between the elastic modulus, E, and the lamé constant, , is given by the theory of 
linear elasticity as the equation in figure 335. 

 
Figure 335. Equation. Relationship between the elastic modulus (E) and the lamé constant  

( ) for homogenous, isotropic, elastic material. 

Because the parameters in that equation are not functions of time, the Laplace transform of the 
above equation is simply obtained as shown in figure 336. 

 
Figure 336. Equation. Laplace transform of the equation in figure 335. 
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However, as it was noted by the pioneer of the spectral element method for layered media 
Stephen Rizzi, it is advantageous to add a small amount of damping to the lamé constant,  
because no realistic material is purely elastic.(107) Following Rizzi, this artificial damping can be 
added to the above lamé constant as shown in figure 337.(107) 

 
Figure 337. Equation. Lamé constant for elastic material. 

Where  is the damping constant. To simulate the wave propagation through an elastic layer, the 
simple equation in figure 337 can be substituted into the equations for the layer elements 
presented earlier. To incorporate the viscoelastic material effects into the solution derived in the 
previous sections, it is necessary to adopt a simple function that is capable of representing the 
fundamental property of a viscoelastic material analytically. In addition, because all of the time-
dependent variables, including stresses, displacements, and material properties (i.e., lamé 
constants), were transformed into the Laplace domain, it is preferable to choose a function that is 
easily transformable into the Laplace domain. Among the analytical functions described in 
chapter 3, the Prony series has been selected because it maintains a simple form while 
representing the viscoelastic property effectively. Again, this function is expressed as shown in 
figure 338. 

 
Figure 338. Equation. Prony series. 

Where:  
Em and TKm = the Prony series parameters. 
aT, a1, and a2 are the shift factor and its coefficients. 
T and Tref are the temperature and the reference temperature.  

Taking the Laplace transform of the equation in figure 338 results in the equation shown in 
figure 339. 

 
Figure 339. Equation. Prony series in the Laplace domain. 
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For viscoelastic material, the Poisson’s ratio is also time dependent. However, the Poisson’s ratio 
has typically been assumed to be a time-independent constant in past literature.(27) In addition, 
Lee and Kim showed that assuming a reasonable constant value for the Poisson’s ratio still 
results in accurate viscoelastic responses.(108) The assumption of a constant Poisson’s ratio 
implies that the time-dependent behavior of a viscoelastic material in shear or bulk is identical to 
the behavior in uniaxial mode, and simplifies the solution significantly.(109) With this assumption, 
the relationship between the viscoelastic lamé constant and the uniaxial relaxation modulus 
shown in figure 339 is found to be that shown in figure 340. 

 
Figure 340. Equation. Relationship between the elastic modulus (E) and the lamé constant  

( ) for viscoelastic material. 

CONSTRUCTION OF THE GLOBAL STIFFNESS MATRIX 

After the stiffness matrices have been obtained for all the layers that make up the structure, the 
global stiffness matrix can be constructed in the same way as the traditional FEA methods.(110) 
An in-depth explanation of the concept of the FEA as well as the relationship between the 
element and the global stiffness matrices is beyond the scope of this project. Hence, it is not 
explained herein, and interested readers are referred to a variety of textbooks available on this 
subject. In this appendix, only the generic conceptual schematics are outlined, and the discussion 
is kept to a minimum for conciseness of the report. Figure 341 shows the schematics of the 
global stiffness matrices for the two types of layered structures that are most widely adopted for 
modeling a pavement system.  

Figure 341 shows how the global stiffness matrix is constructed for a layered system resting on a 
half-space. As previously mentioned, this pavement model is capable of dissipating the energy 
geometrically through the one-noded half-space and is generally used for simulating the FWD 
time histories that do not show free vibration at the end of the loading.  

 
Figure 341. Equation. Construction of the global stiffness matrix for structures with a half-

space. 

𝑢𝑢�(𝑠𝑠) =
𝐸𝐸�(𝑠𝑠)

2(1 + 𝑣𝑣) 

μ 

1
noded2−S

•••=GlobalS

2
noded2−S

1-n
noded2−S

n
noded1−S



 

279 

Upon constructing the global stiffness matrix, the displacements at the system nodes can be 
found from the equation shown in figure 342.  

 
Figure 342. Equation. The displacement at the system nodes. 

is a vector of system displacements to be calculated in global coordinates with  and  
being the radial and vertical

 

displacements at the ith node from the top, respectively. Similarly, 
is a nodal force vector in global coordinates, with the radial and vertical forces at the ith node 

denoted as  and , respectively. The nodal forces in this vector should be obtained from the 
boundary conditions as presented in the next section.  

BOUNDARY CONDITIONS FOR A CIRCULAR UNIT IMPULSE LOADING AT THE 
GROUND SURFACE 

For the problem in hand where the loading is induced by an impact of a falling weight at the 
ground surface, all components of in figure 342 vanish except for . In other words, the 
only external load applied to the system is in the vertical direction at the top node (node 1). In 
this project, this surface force is also in the form of a unit impulse load acting over a circular 
area, for the reasons explained in the System Response to Arbitrary Loading section. In the 
physical time and spatial domain, this boundary condition is mathematically expressed as shown 
in figure 343. 

 
Figure 343. Equation. Boundary conditions. 

Where (t) is the Dirac delta function for the impulse loading, and a is the radius of the circular 
loaded area. However, note that the stiffness matrices were previously derived in the Laplace-
Hankel domain rather than the physical domain. Therefore, it is also necessary to convert the 
above boundary condition into the one in the transformed domain. Because the Laplace 
transform of (t) is equal to 1, taking the Laplace-Hankel transforms of the equation shown in 
figure 343 simply results in the equation shown in figure 344. 

 
Figure 344. Equation. Boundary conditions in the Laplace-Hankel domain. 
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INVERSION OF LAPLACE AND HANKEL TRANSFORMS 

As mentioned, the displacements at all nodes of the system can be obtained through the 
equations shown in figure 342 from the global stiffness matrix and the force boundary condition 
described in the previous sections. Note again that the displacements obtained in this manner are 
in the Laplace-Hankel domain and need to be inverse transformed back to the physical domain. 
However, it has been shown that even for an elastic half-space (which simply has a single 
boundary) subjected to a point load, the closed form inversion of the Laplace-Hankel 
transformed displacement is rather complicated and is close to impossible for a generalized 
problem .(105) Therefore, the closed form inversion of the displacements obtained from the 
equations shown in figure 342 is not even attempted because of the mathematical complexity 
arising from the viscoelastic material behavior and the wave propagation phenomenon. Instead, 
the inversion is carried out numerically for both the Laplace and Hankel transforms.  

NUMERICAL INVERSION OF THE HANKEL TRANSFORM 

As mentioned earlier, Hankel transforms of orders zero and one were used to transform the 
vertical and radial displacements, respectively. Therefore, the inverse Hankel transform of 
respective orders must be carried out for the two displacements. In this appendix, the numerical 
integration scheme is outlined for the vertical displacement (i.e., the inverse Hankel transform of 
order zero). The inverse transform of the radial displacement can also be evaluated in a similar 
manner. The closed form equation for the inverse Hankel transform of the vertical displacement 
at node i is given as the equation in figure 345.  

 
Figure 345. Equation. Inverse Hankel transform of the vertical displacement. 

This integral can also be written as the series of integrals shown in figure 346.  

 
Figure 346. Equation. Inverse Hankel transform as a series of integrals. 

Then, each integral in the right-hand side of the equation in figure 346 must be evaluated 
numerically. Upon selecting the six-point Gaussian quadrature as the numerical scheme to use, 
the integral in the Figure 346 can be evaluated as shown in figure 347.(111) 
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Figure 347. Equation. Evaluation of the inverse Hankel transform using six-point Gaussian 

quadrature scheme. 

Where xp and wp are the Gaussian nodes and their corresponding weights, respectively.  

The parameter bn defines the limits for each integration, which can be chosen arbitrarily. 
However, Cornille indicated that the convergence of the Gaussian quadrature would be greatly 
improved if the limits were selected to be the successive roots of the derivative of the Bessel 
function that comprised the kernel of the inverse transform.(112) Based on a sensitivity analysis 
conducted by the research team for this project, subdividing the region between the successive 
roots of the Bessel function of order one (that is, the derivative of the Bessel function of order 
zero) into 10 smaller regions of equal intervals provided satisfactory results for the numerical 
integration.  

Note that the upper bound of the integral shown in figure 345 is equal to infinity. This indicates 
that the summation of integrals shown in figure 346 should also span an infinite range. However, 
as was indicated by Kim, the numerical integration converges very rapidly even after the first 
few cycles of the Bessel function comprising the kernel of the inverse Hankel transform.(96) 
Therefore, in Kim’s static solution for a viscoelastic layered system, the first five cycles of the 
Bessel function were used to invert the Hankel transform near the loaded area, and fewer cycles 
were used in the region far from the loading.(96) The developers of the axisymmetric spectral 
element method used the Fourier-Bessel series (which is the discrete version of the Hankel 
transform) in their solution and the summation was also carried out for approximately the first 
five cycles of the Bessel function.(2) Although the details are omitted for this report, the 
sensitivity analysis performed for the proposed algorithm also showed that the numerical 
integration over the first five cycles of the Bessel function is adequate for the solution.  

NUMERICAL INVERSION OF THE LAPLACE TRANSFORM 

For the inverse Laplace transform, a multiprecision numerical scheme known as the Fixed 
Talbot Algorithm is adopted in this report because of its efficiency, accuracy, and ease for 
implementation.(113) The Bromwich integral is the standard equation for the inverse Laplace 
transform is given by figure 348. 

 
Figure 348. Equation. Bromwich integral. 
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Where . The contour B, chosen for the above integral, is along the path shown in  
figure 349. 

 
Figure 349. Equation. The contour for the Bromwich integral. 

In figure 349, M is the number of precision decimal digits to be used for the numerical analysis. 
For the sake of accuracy, this value is specified to be equal to the machine precision. Replacing 
the contour path in figure 348 with the one shown in figure 349 produces the result shown in 
figure 350: 

 
Figure 350. Equation. Bromwich integral along the chosen contour path. 

Finally, the inverse Laplace transform is obtained by approximating the integral shown in  
figure 350 through the trapezoidal rule shown in figure 351. 

 
 

Figure 351. Equation. Evaluation of Bromwich integral through the trapezoidal rule. 

SYSTEM RESPONSE TO ARBITRARY LOADING 

As described in the equations shown in figure 343, the boundary condition considered in the 
previous sections was for a unit impulse load distributed over a circular area. As such, the 
vertical displacement, Uzi, obtained using the equation shown in figure 351 represents the unit 
impulse response of the layered system in time domain. The primary advantage of the time-
domain unit impulse response is that the system response to any arbitrary loading can be 
obtained through the convolution integral.(114,3) Theoretically, this convolution integral for a 
continuous function is given as shown in figure 352. 

 
Figure 352. Equation. Convolution integral for a continuous function. 
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Where T(t) could be any arbitrary time-dependent loading function, and yzi(t) is the 
corresponding vertical displacement at node i. For a discrete signal such an FWD time history, 
figure 352 must evaluated numerically as shown in figure 353.(114,3)  

 
Figure 353. Equation. Numerical evaluation of the convolution integral. 

Where t is time interval of the discrete signal, and tn = n t for an integer n.  
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APPENDIX D. FIELD MEASUREMENT FWD TEST DATA 

FWD TEST DATA 

FWD test information, sensor location, peak stress, peak load, and peak deflection for Waverly 
road test near Lansing, MI, at section 1 and 3 are shown in table 67 and table 68, respectively. 

Table 67. FWD Test information from station 1 (afternoon test). 

Contact 
Radius 

5.9 

Morning Test Afternoon Test Evening Test 
Drop 

1 
Drop 

2 
Drop 

3 
Drop 

4 
Drop 

1 
Drop 

2 
Drop 

3 
Drop 

4 
Dro
p 1 

Drop 
2 

Drop 
3 

Drop
4 

Stress 
(psi) 

57.9 86.3 111.7 147.5 54.9 83.7 108.2 142.9 55.0 83.7 108.2 142.9 

Force 
(kip) 

6.33 9.46 12.23 16.15 6.01 9.16 11.86 15.65 6.01 9.16 11.86 15.65 

Sensors 
location 
(inches) 

Deflection (mil) 

D1 0 12.7 19.8 26.2 34.8 15.2 24.2 32.5 44.1 15.2 24.2 32.5 44.1 
D2 8 9.8 15.3 20.4 27.3 10.9 17.4 23.4 31.8 10.9 17.4 23.4 31.8 
D3 12 8.2 12.9 17.3 23.1 8.4 13.6 18.3 25.0 8.4 13.6 18.3 25.0 
D4 18 5.9 9.5 12.8 17.2 5.7 9.4 12.8 17.5 5.7 9.4 12.8 17.5 
D5 24 4.4 7.1 9.6 13.0 4.1 6.8 9.3 12.8 4.1 6.8 9.3 12.8 
D6 36 2.6 4.1 5.6 7.7 2.4 3.9 5.4 7.5 2.4 3.9 5.4 7.5 
D7 48 1.7 2.6 3.6 4.9 1.6 2.5 3.5 4.8 1.5 2.5 3.4 4.8 
D8 60 1.1 1.9 2.6 3.5 1.1 1.8 2.4 3.4 1.1 1.8 2.4 3.4 

Table 68. FWD Test information from station 3 (afternoon test). 

Contact 
Radius 

5.9 

Morning Test Afternoon Test Evening test 
Drop 

1 
Drop 

2 
Drop 

3 
Drop 

4 
Drop 

1 
Drop 

2 
Drop 

3 
Drop 

4 
Drop 

1 
Drop 

2 
Drop 

3 
Drop 

4 
Stress 
(psi) 

57.3 85.6 111.0 145.6 54.5 82.5 107.3 141.9 54.5 82.5 107.3 54.5 

Force 
(kip) 

6.28 9.37 12.16 15.95 5.98 9.04 11.75 15.54 5.98 9.04 11.75 15.54 

Sensors 
location 
(inches) 

Deflection (mil) 

D1 0 14.7 22.2 29.2 38.7 16.9 25.7 34.1 45.5 16.9 25.7 34.1 45.5 
D2 8 11.8 17.9 23.4 30.9 12.7 19.4 25.7 34.2 12.7 19.4 25.6 34.2 
D3 12 9.9 15.0 19.8 26.1 10.2 15.8 21.0 27.9 10.2 15.8 21.0 27.9 
D4 18 7.3 11.2 14.7 19.6 7.0 11.0 14.7 19.7 7.0 11.0 14.7 19.7 
D5 24 5.3 8.2 10.9 14.6 5.0 7.8 10.5 14.2 5.0 7.8 10.5 14.2 
D6 36 3.0 4.6 6.2 8.3 2.7 4.3 5.8 7.9 2.7 4.3 5.8 7.9 
D7 48 1.8 2.8 3.9 5.2 1.7 2.6 3.6 4.9 1.7 2.6 3.6 4.9 
D8 60 1.2 2.0 2.7 3.7 1.1 1.8 2.5 3.5 1.1 1.8 2.5 3.5 



 

286 

Temperatures along the depth of the pavement were recorded each time the FWD test was 
performed. Variation in temperature along the depth at section 1 and section 3 at three FWD tests 
are shown in table 69 and table 70, respectively.  

Table 69. Temperature profile at section 1. 

Time (h:min) 

Temperature for Actual Depth (°F) 

Remarks 
0 

inches 
2 

inches 
4 

inches 
6 

inches 
8 

inches 
10 

inches 
Morning 9:40 63.1 61.0 59.7 59.2 59.2 59.4 Cloudy 

Afternoon14:05 90.0 83.8 74.8 68.5 65.1 62.8 Cloudy 
Evening 19:05 91.6 90.0 85.1 79.9 75.7 72.1 Cloudy 

Temperature holes 5 ft behind FWD load (north). 

Table 70. Temperature profile at section 3. 

Time (h:min) 

Temperature for Actual Depth (°F) 

Remarks 
0 

inches 
2 

inches 
4 

inches 
6 

inches 
8 

inches 
10 

inches 
10:15 68.7 64.0 60.3 59.2 58.5 58.3 Cloudy 
14:40 87.1 81.1 73.4 69.3 65.7 63.1 Cloudy 
19:45 82.6 83.7 80.2 77.0 73.8 70.3 Cloudy 

Temperature holes 10 ft behind FWD load (north). 

LABORATORY-MEASURED RESULTS FOR WAVERLY ROAD 

Figure 354 through figure 356 present graphs of the laboratory-measured results for Waverly 
Road using different sample sizes. 

 
Figure 354. Graph. Laboratory-measured dynamic modulus at station 1 using 1.5- by 

3.94-inch samples. 
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Figure 355. Graph. Laboratory-measured dynamic modulus at station 1 using 3.94- by 

5.9-inch samples. 

 
Figure 356. Graph. Laboratory-measured dynamic modulus at station 3 using 1.5- by 

3.94-inch samples. 
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