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This report provides direct input into the Accident Analysis Module (AAM) of the Interactive
Highway Safety Design Model. The AAM is a tool that highway engineers can use to evaluate
the impacts of highway design elements in project planning and preliminary design. Three crash
models were developed relating crashes to three types of rural intersections. These types are: (1)
three-legged intersections with major four-lane roads and minor two-lane roads that are stop-
controlled, (2) four-legged intersections with major four-lane roads and minor two-lane roads
that are stop-controlled, md (3) signalized intersections with both major and minor two-lane
roads.

Elaborate sets of data were acquired from State data sorsrces (Michigan and California) and
collected in the field. The final data sets consist of 84 sites of the three-legged intersections, 72
sites of the four-legged intersections, and 49 sites of the signalized intersections. Negative
binomial models — variants of Poisson models that allow for overdispersion — were developed
for each of the three data sets. Significant variables included major and minor road traffic; peak
major and minor lefi-tum percentage; peak truck percentage; number of driveways; and
chaunelization, intersection median widths, vertical alignment, and, in the case of signalized
intersections, the presence or absence of protected left-turn phases. Separate models were
developed for crashes resulting in injuries and total crashes.
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1. INTRODUCTION

This study develops cmsh models for

* Rural thee-legged mdfour-leggedi ntcrsectionso nfour-lallel lighways,s top-controlledon
the minor legs.

o Signalized mral irrtersection so ftwo-laneroads

An earlier study,’ of which this maybe regarded as a continuation, treats segments of two-lane rural
roads mdmraltlwee- and four-legged intersections oftwo-lane roads, stop-controlled on the minor
legs. The two studies together consider the chief geometries on two-lane roads — segments,
intersections ~vitllminor road stop-controlled, andsignalized intersect io]ls. [naddition, this study
branches out bypassing from intersections ontwo-lane roads toot3eso]l four-lane ro;lds.

A major intended use of crash models such as the ones developed here is in the Accident Analysis
component of the InteractiveHighwayS afetyDesignM odel(IHSDM).z The IHSDM isap]-oposed
set of interactive computerprograms that will allow highway designers to examine the safety
consequences ofvarious design alternatives. Theseprograms will assess how proposed designs
relate to driver expectations, vehicle and driver capabilities, traffic flows, and established design
principles.

The Accident Analysis component, or Accident Analysis Module, is intended to estimate, in
quantitative terns, thesafety effects -crash freque[lcies andseverities -t12at may result from
different desiagns. Inaddition todrivermd vehicle variables, safety isillfltlenced bythcvolLlme and
movement of traffic. Itisalso influenced bysuchdesign features aschannelization, horizollt~\l and
vertical curves, sight distances, and roadside conditions. The module was tentatively envisioned
(op. cit.) to have four parts, dealing respectively with segment crashes, intersection crashes,
interchange ramp crashes, and roadside crashes. The safety consequences ofa particular design
would bethesum of thecrmtribations ofeach part. Amodelwould redeveloped foreach type of
crash andtbemodels lvouldbe cornbinedto yield an overall picture of design consequences.

‘ A. VoStand J.G. Bared, Accident MoclelsJor T>vo-La?7.eRz{/-<r[/<c)c[dx:Segrr:errts[[r?<[
Intersections, Repofi No. FHWA-~-98- 133, Federal High\+,ay Administration, McLeaIl, \/a.,
1998; and A. Vogt~]d J. G. Bared, c`Accident Models for Two-Lane RLiral Segmelltsatld
Intersections~’ Transportation Research Record 1635: 19-29,1998.

2J.A. Reagan, “TheInteractiveH ighwayS afetyDesignModel: Designing for Safety by
Analyzing Road Geornetrics,” Pziblic Road.y: 37-43, Summer 1994.

H. Lum and J. Reagan, “Interactive Highway Safety Design Model: Accident Predictive
Module:’ FHWA Drafi 8-22-94.
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The goal of the present study is to assess the combined and relative effects of highway vaj-iables on
intersection crashes for the classes of intersections noted above. The method used, by now a well-
established method, is that of genemlized linear models based on a negative binomial distribution.
Crashes are thought of as discrete rare events, the number of crashes at an intersection being a
random variable of the Poisson type with overdispersion. The mean number of crashes is an
exponential fLmction of a linear combination of intersection variables and the vari fince in crash
counts depends on the mean, as well as on an overdispersion parameter representing factors not
incI uded in the modeI.

In Chapter 2, literature on modeling of intersection crashes is reviewed. In Chapters 3 and 4, the data
collection and preliminary analysis are described, and in Chapter 5, the models are presented and
evaluated. A final chapter, Chapter 6, summarizes the results of this study

2



2. LITERATURE REVIEW

In this chapter, representative studies are reviewed that relate intersectio]l crashes to highway
variables. The chief highway variables are the Average Daily Traffic (ADT) on the intersecting
roads, but closer analysis indicates an important role for traffic movements as they pertain to
different crash types. Most studies recognize that other variables, such as sight distances and
charmelization, also affect safety, and some studies that consider these other variab Ies are discussed
below. In addition, a number of studies me reviewed that examine the issue of the appropriate moffei
form autior fictional form for mean number of crashes. Studies that deal with special issues, such
as underrepofiing of crashes and crash location, are also noted.

This review is not meant to be exhaustive. Further review of the literature and many additional
references may be found in the articles cited here. Of particular value for its up-to-dateness is the
MRI Repofl (1997).3 Our interest is rural intersections and, where possible, we shall emphasize
studies in rural settings.

The chapter closes with a few overall conclusions

CRASHES AND TRAFFIC

Many studies have been devoted to the relationship between crashes and traffic.

A 1953 study by McDonald4 in California of intersections on divided highways, stop-controlled on
the minor legs, represents crashes per year in graphical form as a farrction of major and minor road
incoming daily traffic. A total of 150 three-legged and four-legged intersections on U. S. 99 and U.S.
40 were treated together and a dependency of the form:

N = 0.000783 (Vd)0<55(V)0633c

was found where N is the number of crashes per year, V~ is entering major road Average Daily

3Midwest Research Institute, Critical Reviews of Intersection Sofety StLttiics Task 1<
Resource Paper, MRI Report, Contract No. DTFH6 1-96-C-00055, NfRI Project No. 4584-09,
Kansas City, Me., 1997.

4 J.W. McDonald, “Relation Between Number of Accidents and Traffic Vol umc at
Divided-Highway Intersections,” F[ighway Reseavch Board Bulletin 74, Tr(tfJc-Accident

Studies, pp. 7-17, National Academy of Sciences, National Research Council, Washington,
D. C.. 1953.
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Traffic (ADT), and V, is entering minor road ADT. This study advocates crashes per year rather
than crashes per million entering vehicles as a measure of intersection safety, and emphasizes that
crash experience at an individual intersection is a variable, while N is the mean for an aggregate of
intersections with the given volumes. Median widths, chanuelization, and number of lanes at sample
intersections were not explicitly noted. The study concludes that crashes are more selqsiti\e to minor
road volmes. Of interest is that the minor road ADT in this study was based on weekday 24-hour
mechanical traffic counts at most sites and may be more accurate than that in other studies.

bother study in California, by Webbs in 1955, examines two-phase signalized intersections and
arrives at the equations:

N{, = 0.0001 89(ADTl)0’’’(ADT2 )0”s’
Ns = 0.00389 (ADTl)0’’5(.4DT2 )”’$’

N,{ = 0.00703 (ADTJ)U’’’(ADT2 )”27

where NC,,Ns, and N~, respectively, are the number of crashes per year at urban, Selni-urbfin, and
rural tie-phase intersections, and ADTI and ~T2 are major and minor road two-way average daily
traffic counts (units have been adjusted from the original study). The three categories were
determined by speed limits: 25 mph (40.2 km/h) was regarded as urban; more than 25 mph (40.2
km/h) but less than 45 mph (72.4 km/h) as semi-urban; and 45 mph (72.4 km/h) or more as rural.
Intersections having unusual features were eliminated, and the result ins sample sizes were 23, 60,
and 14 intersections for urban, semi-urban, and rural, respectively. Some of those that remained
were on four-lane divided highways. Rear-end crashes on the minor road, a county road, were
omitted, and the author notes that this may, in part, be responsible for the decr~dsing power of minor
road ADT as one moves from urban to rural and horn lower to higher major road speeds. The author
also notes that intersection geomet~, roadside development, and sight distance are influential causal
factors for crashes. Hauer and Persaud (1996, p. 84)6 find Webb’s equation for N, the most plausible
among available studies.

5G.M. Webb, “The Relation Between Accidents and Traffic Volumes at Signalized
Intersections,” Institute ofTransportation Engineers Proceedings, Technical Session No. 3B,
pp. 149-167, 1955.

GE. Hauer and B. Persaud, Safety Analysis of Roaclwaj Geometry ~lndAncilla~ Features,
Transpofiation Association of Canada, Ottawa, 1996.



Yet another California study, David and Norman (1975 ),7 considers crash factors at San Francisco
Bay Area intersections, but only at intersections with at lvast two crashes in the time period 1971-
1973. This study includes numerous tabular presentations of crash counts for ranges of crash factors.
Crashes were classified by sevetity and by traffic conflicts and movements. Let LIScall the
conflictimovement categories “T~ica~’ and “Other.” The study includes a linear regression model

for the number of “TypicaP’ intersection crashes per 3 years. The chief factors in the model in
decreasing order of importance (as measured by R-squared statistics), along with the sign of their
effect. are:

+ A measure of traffic volume based on “Typical” conflict/turning
movement.

+ Number of “Other” crashes in time period.
+ Number of U-turn restrictions.

Number of right-turn lanes.
Number of lanes on major road.

+ Stop-controlled versus signalized (O versus 1)
+ Width of minor road.

Number of divided streets.
Number of left-turn lanes.

This model (David md Norman, 1975, p. 105) was based on 82 intersections for which directional
ADT data were available. David and Nomlan note, as does Webb, that introduction of lefi-tum lanes
at signalized intersections without conversion of two-phase signals into three or more phases tends
to increase crash counts. For a sample of 558 intersections, the percentage o f nighttime crashes was
usually 20 to 30°/0, with no notable variation when lighting was present Possibly, the percentage
of crashes at the lighted intersections would have been higher if they had not been Iightcd.

Ha&ert and MahaIeI (1978)8 observe that more than 50V0of crashes occur at intersections. They
analyze four-legged intersections in terms of 24 crossing or merging pairs of traffic flows (vehicles
per unit time). For each pair, they calculate the product of the two flows and sum over all 24 pairs
to obtain a traffic flow index x. For urban and interurban intersections in Israel, they obtain a
Poisson-type model of the form:

N= A+Bx

7 N.A. David and JR. Norman, hfotor Vehicle Accidents ;n Relation to (;eometric an[i
Traf>c Features ofHighway Intersections, Volume II Research Report, Report No. FHWA-~-
76-129, Federal Highway Administration and National Highway Traffic Safety Administration,
Washington, D.C., 1975.

s A.S. Halclcert and D. Mahalel, “Estimating the Number of Accidents at Intersections
From a fiowledge of the Traffic Flows on the Approaches,” Accidettt Arro!vsis arzd Preventiorz

10:69-79, 1978.
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where N is the mean number of crashes per unit time at the intersection and A and B are suitable
positive constants. The crashes were injury or fatality crashes, the roads a mix oftwo-lane and four-
laue, and the intersections a mix of signalized and non-signalized. Traffic flows for the modeling
were based on 16-hour weekday counts. The presence of the constant term A is taken as evidence
that for small values of x, other factors come into play.

Pickering, Hall, and Grimmer (1986)9 consider crashes at three-legged intersections of two-lane
roads. They report that in 1983, one-third of mj ury crashes occurred at intersec~ions, an~i 450/0 of
these were at tee intersections. Their basic model is a Poisson model. with mean number of crashes
per unit time N of the form:

N = K(ADTI x ADT2~

where p is approximately 0.5. They consider such issues as how far a crash is from the intersection,
presence or absence of islands and channelization, and the dependence of crashes on pairs of traffic
flows. For different crash types, products of the relevant flows tended to be most significant, but the
model above performed respectably when all types of crashes were summed. Motorcycles and
bicycles were involved in a disproportionate number of crashes relative to their percentage of the
flow. Operating speeds of vehicles were significant, but depending on rhe type of crash, higher

speeds did not always lead to more frequent crashes,

A study of Hauer, hrg, and Lovell ( 1988),’0 based on 145 signalized intersections in Toronto,
considers 15 different crash patterns and develops negative binomial models for each pattern of the
forms:

N=~xF”

,V. KXF,a XF2h

depending on whether one flow F or two flows F, and Fz are involved, with a, b >0. Here N is the
mean number of crashes of the given pattern on the population of aIl intersections having these
flows. Crashes are weekday daytime crashes involving two vehicles. The number of lanes on the
roads and the chaunelization are not noted This study is notable for, among other things, its very
thoughtful explication of assumptions underlying the use of the negative binomial model.

g D. Pickering, R.D. Hall, and M. Grimmer, Accidents at RUYCZ1T-Jarrctions, Research

Reporr 65, Transport and Road Research Laboratory, Department of Transpofi, Crowthornc,
Berkshire, United Kingdom, 1986.

10E, Hauer, J,C. N, Ng, and J. Lovell, “Estimation of Safety at Signalized Intersections,”
Transportation Resea!c~) Record 1185:48-61, 1988.
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Bonnesorr and McCoy (1993)1’ develop a negative binomiaI model of the form:

N = K x (ADTI)025’(.4DT2)083’

Here N is the mean number of crashes. The overdispersion parameter for this model is 4.0, which
is rather large. A total of 125 non-urban four-legged intersections from Minnesota were considered
in the study, i 7 of which had four-lane major roads with substantial medians. AO crashes occurring
within 500 feet (153 meters) of the intersection were included.

VAMABLES BESIDES T~FFIC

The pnm~ importance of traffic as an explanatory factor for intersection crssshes relatifc to other
highway variables has long been acknowledged, and recent studies do not contradict this observation.
The study of Bauer and Harwood (1996)’2 concludes that highway variables other than traffic ha~e
only a slight influence on crashes. A review, described by Bauer and Harwood, of hard-copy crash
reports at eight urban intersections found that “only 5 to 14“Z1of the accidents had causes that

appeared to be related to geometr]c des]gn features of the intersections, ” The report Of Vogt and

Bared (Vogt and Bared, 1998, p. 137), which develops crash models for three-legged and four-
legged intersections of rural two-lane roads, attributes about 2°A explanatory value to design
variables as compared with 27Vo to ADT.

Nonetheless, designs aimed at improving safety will always be in demand, and attempts to quantify
design effect are entirely proper. Design variables that have received special attention in connection
with intersection crashes include: chanuelizatiorr, sight distances, horizontal and vertical alignment,
intersection angle, median width, and signal characteristics. Also noted below are the effects of
tmck percentage in the traffic stream, speed, and weather.

Channelization

It is generally thought that right-turn and Iefi-turn lanes on major andjor minor roads contribute to
intersection safety. The model of David and Norman (1975) mentioned earlier indicates that left-
and right-turn lanes reduce crashes. They also list left-turn storage lanes as one of six “demon-
strably accident-related’ intersection design features, but they find that opposing Ieft-tul-il lanes
without multi-phasing or at stop-controlled intersections increase crashes. They suggest raised lane
markers to help drivers define their lateral !ocation and multi-phasing at signalized intersections, The

‘‘ J.A. Bormeson and P.T. McCoy, “Estimation of Safety at Two-Way Stop-Controlled
Intersections on Rural Highway s,” Transportation Research Record 1401:83-89, 1993.

)2K M Bauer and D, H_ood statistical Models of A t-~~atie intersection A Ccidents,

Report No. FHWA-~-96-125, Federal Highway Administration, McLean, Vs., 1996.
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summary of Kuciemba and Cirillo ( 1992)’3 mentions chamrelization, along with sight distance
improvement, as a safety factor for intersections where turning traffic is high. Use of lane dividers
is recommended in urban settings, while lefi-tum lanes in rural areas are expected to reduce passing
crashes. The study of Bauer and Harwood (1996) finds that Iefi-tum lanes lower crashes, although
curbed dividers may not be more effective than painted ones. A study of MCCOY, Hoppe, and
Dvorak (1985)14 points out that left-turn lanes may be more necessary in the absence of paved
shoulders or when truck percentages are kigh. The study of Pickel-ing. Hal 1,and Grimm cr (1986)
finds channeiization, including islands, to be significant for certain crash types, bat not for total
crashes. Garber and Srinivasan (1991)15 in a study of elderly drivers conclude that left-turir lanes
(and protected phasing) would have special benefits for the elderly because of their procli\;ity for
crashes with opposing traffic.

Sight Distance

Intersection sight distances are an intuitively evident safety consideration at intersections. They are
noted as such by David and Norman (19”7j) and in the summary of Kuciemba and Cirillo ( 1992).
A study of Hanna, Flynn, and Tyler (1976)16 notes that sight distances on all approaches, for both
non-signalized and signalized intersections, affect crash rates in the expected way. Bared and Lum
(1992)’7 also find that sight distances are shorter at high-cmsb intersections.

Horizontal and Vertical Alignment

Horizontal and vertical alignment me, of course, related to sight distances. Horizontal curves, in
particular, are associated with high crash rates, Their effects on roadway crashes are noted in the

13 s R Kucienlba and J,A, Cirillo Safety Effecli>,eness o~j{ig/lllLll ~eSjg)7 /:C><[(f(/C.S,.
Volume V - Intersections, Report No. FHWA-RD-9 I-048, Federal Highway Administration,
Washington, DC., 1992.

14p T MCCOY I~~,J.Hoppe, and D,V. Dvorak, “Benefit-Cost Evaluation of Left-Turn

Lanes on Uncontrolled Approaches of Rural Intersections (,%bridgement),” Transportarior?
Reseaych Record 1025:40-43, 1985.

15 N J ~arber and R. Srinivasan, “Rjsk Assessment of Elderly Drivers at Intersections:

Statistical Modeling,” Transporta~ion Research Reco~d 1325:17-22, 1991.

16J T Hanna T,E, FIWn, and W.L, Tyler, “Characteristics of IrrterSeCtiOn Acci denls in

Rural Municipalities,” Transportation Research Record 601:79-82, 1976.

I7 J ~ Bare(~ and H. Lure, ‘fsafe~y Evaluation of Intersect on Design Elements (pi lOt

Study),” Trarisportation Research Board Conference Presentation, Washington, DC., 1992.
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report of “McGee, Hughes, and Daily (1995)’s and the references cited therein, as well as in the study
of truck crashes by Miaou, Hu, Wright, Davis, and Rathi (1993) ‘(};the paper of Shankar, Marrnering,
and Barfield (1995)20; and the paper of Vogt and Bared (1998). This paper and the FHWA report
of Vogt and Bared (1998) also exhibit intersection crash models for three-legged and four-legged
intersections oftwo-lane roads in which the average degree of curve for nearby horizontal curves and
the average grade change per 100 feet (30. 1 meters) for nearby crest curves are represented. These
curves are required to be on the major mad, with some portion within 250 feet (76 meters) of the
intersection center. The minor roads are stop-controlled. Although the alignment variables are not
particularly significant (with P-values on the order of O.30), they correlate reasonably well with crash
counts, especially on the four-legged intersections.

One oddity on the subject of alignments is the finding of Hanna et al. (1976) that steep grades tend
to decrease intersection crash counts. Grades different from zero appeal-to increase crash counts on
se=ments according to Miaou et al. (1993), Shankar et al. (1995), and Vogt and Bared (1998).

Intersection Angie

Right-angled intersections are encouraged in design. A study of J\fcCoy, Tripi, and Bonneson
(1994)2’indicates that severely skewed intersections have higher crash experience. lHowcver. Bared
and Lum (1992) find righ-angled intersections more dangerous than mildly skewed ones. This is
also supported by Bsmer and Harwood (1996) for urban signalized inlersec!i ons and by Vogt and
Bared (1998) for rural stop-controlled intersections of two-lane roads. A studyof“Ku]mala(1995)2’
suggests that when major road turning traffic that must cross the opposing major road lane(s) turns

Ia HW ~cGee, w.~. Hughes, and K. Daily, ~ffect Of ~fi~h Way standa~ds Orl Safe[Y,

National Cooperative Highway .Research Program Report 374, Transportation Research Board,
National Research Council, National Academy Press, Washington, D.C., 1995.

‘9S.-P. Miaou, P.S. Hu, T. Wright, S.C. Davis, and A.K. Rathi, Development of
Relationship Bet ween Truck Accidents and Geotzetric Design: Phase 1, Report No. FHWA-~.
91-124, Federal Highway Administration, McLean, Vs., 1993.

20v Shankar F, Mannering, and W. Barfield, “Effect of Roadway Geometries :md

Environmental Factors on Rural Freeway Accident Frequencies,” Accident Analysis atz(/
Prevention 27 (3): 371-389, 1995.

z] p T McCo~ E.J, Tripi ~d J.A. Bonneson, Guitlelines for Realignmel][ Of S/{eWC(/

Intersections, Nebraska Department of Roads Research Project Number RES 1 (0099) P471,
1994.

22R Kulmala Sufe<y at Three. and Four.Arm Junctions. ~evelor)illeill Und Application

of Accident Prediction Models, VTT Publication 233, Technical Research Centre of Finland,
Espoo, 1995.
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through an angle from 00 to 900, fewer crashes occur than when the turning angle is from 900 to

180°. This is presumably because traffic exiting from the major road has better sight of oncoming
major road trafic for small angles. The intersection modeis of Vogt and Bared support this
conclusion in the case of four-legged intersections, but not in the case of three-legged ones.

Median Width, Surface Width, and Shoulder Width

Wider medians are generally associated with fewer crashes on divided highways. See the study of
Knuiman, Council, and Reinfurt (1993).Z3 At intersections, a median region allows a zone of
protection for turning traffic (although if the zone is too wide, it converts one intersection into two).
Harwood et al. (1995)z’ find that increased median widths are associated with fewer crashes at rural
unsignalized intersections, but with more crashes at suburban signalized intersections.

Bauer and Harwood (1996) find that increased lane widths and increased shoulder widths lower the
probability of serious crashes antior multiple-vehicle crashes at urban non-signalized intersections.

Signal Characteristics

King and Goldblatt (1975)25discuss the important issue of whether signalization decreases cmshes.
Their study and some others have found no significant decrease, but mther a change in the lrelative
frequencies of crash types (from right-angle to rear-end). The commonly accepted view is that at
high-volume intersections, signalization is beneficial, but that at low-volume ones, it may not be.

With regard to phasing, David and Norman (1975) indicate that protected left turns are beneficial.
For the elderly, this is supported by Garber and Snnivasan (1991), who aIso propose a longer amber
light. Bauer and Harwood ( 1996) likewise find a beneficial effect for multi-phase, rather than two-
phase, signaling in their modeling of urban intersections, as well as for actuated signals versus pre-
timed ones.

Lighting

Bauer and Harwood ( 1996) find that the absence of lighting contributed significantly to the number

23M w fiuiman FM, Council, and D.W. Reinfufi, “Association of N~edian Width and

Highway Accident Rates~’ Transportation Research Reco?d 1401:70-82, 1993.

24,Dw HaNOod M,T. P1etrucha, M.D. Woolridge, R.E. Brydia, and K. FiY~patrick,

Median Intersection Design, National Cooperative Highway Research Program Report 375,
Transportation Research Board, National Research Council, National Academy Press, Washing-
ton, D. C., 1995.

15G F King al,d R.B. Goldblatt, “Relationship of Accident Patterns to Type of

Intersection Control,” Transportation Research Record 540:1-12, 1975.
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of injury crashes at rural three-legged and four-legged intersections. A study by Blower, Campbell,
and Green (1993)26 indicates that truck crashes in Michigan are more frecluent at night and in rural
settings; the combination of the two is deemed to imply less lighting. See also the study of Elvik
(1995)?7

Roadside Conditions

Vogt and Bared (1998) find that roadside hazards, as measured by the Roadside Hazard Raiiug O(
Zeeger et al. (1987), contribute to crashes on three-legged intersections, while driveway density near
the intersection center contributes to crashes on four-legged intersections.

The Roadside Huard Rating is a whole number from 1 to 7 (with 1 representing perfectly flat and
unobsticted roadsides, the least hazardous case) that evahrates sides lope, clear zone, and distance
to the nearest hard object. In the Vogt-Bared study, the value is a subjective average along the major
road within * 250 feet (76.2 meters) of the intersection center. Although it is reasonable that nearby
driveways might make an intersection more dangerous, the Vogt-Bared results are based on
Minnesota data and it was not possible to eliminate driveway crashes explicitly from the data set.

Truck Percentage

David and Norman (1975) note the safety-relatedness of bus routing and zones, of clearly visible
street name signs, and of raised markers and striping to indicate turning lanes and to remind the
driver of intersection control features. Their study is primarily urban, but the routing of buses and
the placement of bus zones can be thought of as the equivalent of truck traffic and truck turning
percentages. Not only are trucks more difficult to maneuver and potentially more likely to cause
serious crashes, but they are also obstacles that interfere with the line of sight of drivers (including
the truck driver making a turn).

Blower, Campbell, and Green (1993)find that significat causative fac.tors fortrLlck crashes are:
rural environment, nighttime, and road type “other” (versus “major arteria~’ or “limited access”).
Furthermore, bobtail trucks (no tractor) are more crash-prone than sing!e or double tractors. McCOY..
Hoppe, and Dvorak (1985), as noted, favor lefi-tum lanes when trtLckperceiltages are bigh.

Miaou et al. (1993) and the Vogt-Bared ( 1998) FHWA report find that a higher percentage of truck
traffic isassociated, respectively, with fewer tmckcrashes mdfewer crashes onmral roads. ,Miaou
et al. (1993, p. 62) suggest that perhaps “for a constant vehicle density, as percent trucks increases,
the kequency of lane changing and overtaking movements by cars decreases.”

2cD B1ower, K,L. Campbell, and P.E. Green, “Accident Rates for Heavy Truck-Tractors
in Michigan,' 'Accident Analysis arrd Prevention 25(3): 307-321, 1993.

27R Elvik “Mets.Analysis of Evaluations of Public Lighting as Accident Countermeas-,,
ures,” Transpo~tation Research Record 1485: 112-123, 1995.
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Speed

Bauer and Harwood (1996) find that crash rates increase with increasing design speed on four-legged
rnral intersections. Vogtmd Bared (1998)find thesmeforposted speeds onmralthee-legged and
four-legged intersections. Pickering, Hall, and Grimmer (1986)obseme that Iligller operating speeds
at three-legged intersections are associated with more right-turn crashes, but with fewer crashes of
other types.

Weather

Bad\veather isrecognized asacontributing factortoc rashes. Shankar, Mannering, and Barfield
(1995)call attention totheinteraction ofextreme weather andextreme alignnle]lt. Miaouet al.
(1993 )notethe relevance ofweather to truck crashes. Fridstmmetal. (1995 )’’ina study of
Scandinavian roadway crashes find weather significant, although bad weather does not always
increase crashes. Vogtand Baed(1998), using aregional, butnotpatiicularly local weather vmiable
in Minnesota, find that weather conditions do not have a strong effect on crashes.

MODEL FOWS AND FUNCTIONAL FOWS

State of the Art

In recent years, a consensus has formed in favor of modeling crashes as discrete, rare, independent
events. In a static environment, such events can be characterized by their mean number A per unit
time and are simply represented by a Poisson random variable, i.e., the probability that y crashes wi 11
be obsemed per unit time is:

where y = O, 1, 2, To proceed further, one analyzes the mean k in terms of fami liar variables that
characterize or partially characterize the crash location (in our case, an intersection). Thus, one
assumes that

2XL Fridstran~, J, Ifver, S. Ingebrigtsen, R. Kulmala, and L.1<. Thomsen, “Measuring the

Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in Road
Accident Counts,” Acciclent Analysis and Prevention 27 (l): 1-20, 1995.
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that is, 1 is taken to be a function of suitable variables x“, x,, .... x., pertaining to the intersection.
This function is also assumed to depend on parameters pi that al-e indepencient of the Intcrsection.
The form of the function fis up to the modeler except that it is required not to yield ncgati\c \alucs.
At different intersections, the variables xi may take di ffemnt values, so (iiffclcnt intcisccti ~>os may
have different mean crash counts L.

A commonly used functional fom is the generalized linear one:

a = exp (p#o + p,x, + ~~~ + ~mxm) = exp (~, m” P,xJ) (2,1)

This form guarantees a non-negative integer value for the mean number of crashes pci- unit time. .4
major attraction of the foml is that it is possible to estimate the coefficients pi frolm data using
methods originated by Nelder and Wedderbum ( 1972)Z’)and implemented by the software packages
SAS and LIMDEP. If the first variable XOis taken to be identically equal to 1, the combination in
equation (2. 1) includes a constant term PO,sometimes called the ijltercept term. Another advantage
is easy comparability with existing models since the form k = exp(~o + ~,x, + ~Jx2) can easily be
converted to the multiplicative form A = K(y))o’ (Y1)P2,where K = exp(~o), y, = exp(xl), and Yz=
exp(xz). The multiplicative form is common in earlier studies.

The model form equation (2. 1) is based on the assumptions that crashes al-c independent events, that
suitable input variables xi are discoverable taking fixed values at the intersection on some

appropriate time scale, and that the functional form in equation (2. I) is superior to otlhcr ,Ic>ssibie
forms. It is useful to act as if these assumptions are approximately true, in part because they yield
an analytically trac.tablc generalized linear model and in part because they have proved their worth
elsewhere in biology and economics.

A refinement of this approach, described in Hauer, Ng, and Lovell (1988), is to acknowledge that
the mean for a particular intersection is unknowable and to consider an imaginary population of
intersections all having the same values for the variables xi and having means that are grouped
around the value 1 in equation (2.1). The variance of the crash counts of the intersections in this
population depends on further assumptions, but can be taken to have the form:

where K is a parameter, applicable to the entire population but independent of the particular
intersection, called the overdispersion parameter, The variance of crash counts has two components,
the first dLLe to Poisson variation and the second due to differences among members of tljc

29J.A. Nelder and R.W. Wedderbum, “Generalized Linear Models.” Journal ojthe Ro,val
Statisricul Socie~, Series A, 135(3): 370-384, 1972.
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population, the latter perhaps due to omitted variables. Dean and Lawless ( 1989)3” propose that the
mean of individual intersections in the population is equal to a multiplier times the val LICL in
equation (2. 1), and that the multiplier is a continuous positive random variable with mean 1 and
variance K having the same distribution at each intersection. From this, they derive the overall
variance (2.2). The number of crashes Y per unit time at individual intersections is distributed
according to a compound Poisson distribution: Y given the intersection mean is a Poisson vanab Ie,
but the intersection mean itseIf is a variable. It is customary to assume that this variable obeys a
gamma distribution on each population and l~euce that Y obeys a negative binomial distribution.

With the assumptions that k is given by equation (2.1) and that K is independent of {xi}, it is
possible to estimate the parameters {pi} and K in LIMDEP and SAS by maximum likelihood
methods. When prior crash experience is known at a particular intersection, along with the variables
xi, the negative binomial form makes it possible to revise the estimated crash count for a new time
period by empirical Bayesian methods. See the discussion on p. 1j below.

Relevant Literature

Many of the studies allLlded to earlier in this chapter have used Poisson and negative binomial
models. Hakkert and Mahalel (1977) use a Poisson model with some refinements to study
intersection crashes. Pickering, Hall, and Grimmer (1986), in their study of tee intersections, use
a Poisson model along with the generalized linear model technique (and the software packages
GENSTAT and GLM). Maycock and Hall ( 1984)~’ studying roundabouts, and Hauer, Ng, and
Lovell (1988), studying urban intersections, employ the negative binomial technique. A sampling
of other studies that have used negative binomial models includes: Miaou et al. (1993) truck
roadway crashes; Bonueson and McCoy (1993) mral intersection crashes; Knuiman, Council, and
Reinfurt (1993) - divided highway crashes; FridstrOm et al. (1995) roadway crashes; Poch and
Mannering (1996)32 - urban intersection crashes; Bauer and Harwood (1996) - intersection crashes;

30 c Dean and J. F, Lawless, “Tests for Detecting Overdispersion in poisson ~egreSS iOn

Models:’ Journal of tile American Statistical Association 84 (406): 467-472, 1989.

3’ G. Maycock and R.D. Hall, Accidents at 4-Arm Rou?~dabot/ts. Laboratory Repon 1120,
Transport and Road Research Laboratory, Department of Transpor[, Crowd lo)-n e, Berkshire.
United Kingdom, 1984.

32M, Poch and F. Mannering, “Negative Binomial Analysis of Intersection-Accident
Frequencies,” Journal of Transportation Engineering 122 (2): 105-113, 1996,
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and Vogt and Bared (1998) rural segment and rural intersection crashes.

Miaou et al. (1993), Bauer and Harwood (1996), and Vogt and Bared ( 1998) make usc of both
Poisson and negative binomial models. Miaou and Lurn ( 1993)J3 compare two linear Ircgl-essioo
models and two Poisson models, prefer the latter, and indicate that the negative binomial or ‘-double
Poisson” may be even betier. Miaou (1 994)34 compares Poisson models md negative binomial
models and indicates that both kinds of models have their place, with negative binomial to be
preferred if the data are sufficiently overdispersed.

Empirical Bayesian Methods

Hauer, Ng, and Lovell (1996, p. 56) note that the negative binomial model permits past information
about an intersection to be incorporated into modeling with relative ease. TIIe essential idea is that
intersections in the imaginary population with identical values of {xi} have their rnea]l grouped
around the value ~ in equation (2.1), but past experience at an intersection gives some indication of
where in this grouping the intersection mean is likely to be. If an intersection has had A crashes in
the past T time units, then the grand mean 1 and the crash count variance A + K12 are no longer

applivdble. Instead, for the SLLb-pOpLdatiOnwith the given crash experience, crash COLllltS still obey
a negative binomial distribution, but the appropriate grand mwan is:

k
_ L(1 + AK)

new – I + KkT
(2.3)

and the total variance of crash counts on members of this sub-population is:

where

K =~,8P l+AK
(2.4)

The overdispersion pammeter decreases in equation (2.4) if A >0, and the grand mean increases or

33S.-P. Miaou and H. Lmn, “Modeling Vehicle Accident and Highway Geometric
Design Relationships,” Accident Analysis and Prevention 25 (6): 689-709, 1993.

34s.-p, MiaOu “The Relationship Between Truck Accidents and Geometric Design Of

Road Sections: Poisson Versus Negative Binomial Regressions,” Accitlenr A na~vsis (IrrclPr[,-
vention 26 (4): 471-482, 1994.
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decreases in equation (2.3) depending on whether the crash experience is above average (A > AT)
or not.

Further discussion of this methodology is to be found in Hauer, Terry, and Griffith ( 1994),;~
Pendleton (1996),36 Hauer and Persaud (1996), and the book of Hauer ( 1997).37

Hauer’s book explores a variety of issues that relate to the use of crash models. His chief point is
that if the goaI is increased safety, cross-sectional studies are inadequate by themselves. Before-and-
after studies are needed, and the effect of “regression to the mean” must be taken into account, This
can be done with suitable models, based in part on cross-sectional studies, for reference populations
that incorporate year-by-year crash data. Methods for predicting future trends are offered, along with
ways to compare the safety of treated and untreated intersections in light of the models and crash
histo~.

Alternative Functional Forms

Hakkert andMahalel(1978) use a tiaffic flow index and a “sulm of products” approach to modeling
intersection crashes, Hauer, Ng, and Lovell (1988) analyze crashes by patterns and have a model

for each approach pattern. Thus, it is desirable to have enough data by pattern to build separate
models for each, Then the mean count for each type of crash can be summed to obtain an overall
mean.

Miaou (1994) considel-s, in addition to Poisson and negative binomial models, zero-i nfiatcd Poisson
(ZIP) models. These are Poisson models adjusted by increasing the probability of zero crashes (and
resealing the remaining probabilities so that the sum is still one), Mi aou concludes that these are
useful when there is underreporting of crashes, so that some locations have undeserved zero crash
counts.

Bauer and Harwood (1996) do Poisson and negative binomiaj modeling, but they also exhibit a
Iognomral modeI where the log of the number of crashes is regarded as a normal variable with mean
p and variance U2. Log ~ is assumed to be a linear function of intersection variables, while the
variance is constant, They find this model useful for classes of high crash intersections (where few
intersections have zero crashes in the time period under consideration).

3s E ~auer, D, Te~, and MS, Griffith, “Effect of Resurfacing on Safety of Two-Lane

Rural Roads in New York State:’ Transportation Research Record 1467:30-37, 1994.

16~ pendleto,l, Evaluation ofAccident lWethodology, Report No. FHWA-RD-96-039

Federal Highway Administration, McLean, Vs., 1996.

37E Ha~er Obsematiotlal Befo~e-After Studies in Road Safely, pergamon press, Ox fOrd,

U.K., 1997: ‘
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Lau and May (1988)38use Classification and Regession Trees (CART) to study intersection crashes.
Data are divided into classes by bina~ trees of multiple levels until terminal nodes are reacheci (ones
from which little further improvement can be made). A split is based on dividing a sample into two
sub-samples so that the combined weighted variance of the two strata is a minimum for the residual
crash count (left over from the previous split). This method seems [o be applicable when most
variables are categorical rather than continuous. Predicted crdsh counts under this approach may be
modified on the basis of individual intersection histories.

Joksch and Kostyniuk (1998)39 apply smoothing techniques to study the relationship between
intersection crashes and major and minor road ADT. They consider crashes by type at stop-
coutmlled and signalized intersections. After some data smoothing, surfaces are developed to
represent crash as a finction of major and minor road ADT for each class of intersections. They find
that the crash stirface for urban signalized intersections in California contains a “ridge”: for
reasonably large major road volumes, as minor mad ~T increases, crash counts I-iseto a maximum
near 20,000 vehicles per day and then decrease for higher minor road traffic. FigLIre 23 (op. cit., p.
76) also shows a plateau and perhaps a ridge as major mad ADT increases.

Special Studies

Pickering, Hall, and Grimmer (1986) study intersection crashes fvitbin 20 meters of rural tee
intersections and within 100 meters of these intersections. They find that crashes from 20 to 100
meters away are three or four times as common as crashes on segments of sinrilar length, Far from
the intersection center, head-on crashes are more frequent; close to the center, turning cmshes
dominate. They raise the delicate issue of what an intersection-related crdsh really is.

Hauer and Hakkert (1988)’0 estimate that fatal crash counts are accurate to within 5V0,serious injury

crash counts to within 20°/0, and minor injury counts to within 500A. Reporting varies with the
driver, the location, and the time. Tbe count of fatalities can also vary with the quality and
timeliness of medical attention, even with progress in medicine. Property damage crashes have
threshold reporting requirements and are subject to inflation as repair costs rise. These
considerations and similar ones are important caveats for modelers.

38 ~ ~ .K, Latl and A,D. May, Accident prediction Model Development: Signali~e~i

Intersections, Research Report UCB-ITS-~-88-7, Institute of Transportation Studies,
University of~alifomia, Berkeley, Ca., 1988.

39H.C. Joksch and L.P. Kostyniuk, Moc[eling [ntersectiojt Accidefit Counts and Traffic
Volume, Report No. FHWA-RD-98-096, Federal Highway Administration, McLean, Vs.,
1998.

~oE Hauer ~d As, Hakkert, “Extent and Some [replications of InCOmpletC Accidcnl

Reporting,” T~ansportation Researc/z Record 1185:1-10, 1988.



The statistical abstract ofTessmer(1996)4’ reports that from 1975 to 1993, there were more than
4~0,000 fata] crashes in rural areas versus about 300,000 fatal ones in urban areas in the Fatal

Accident Reporting System (FARS), despite fewer vehicle-miles driven (14.2 trillion versus 19.7
tnIlion (22.9 trilIion versus 31.7 trillion vehicle-kilometers)). Also noted was the rural time delay
in receiving medical attention. About 770/0of the rural fatal crashes involved trucks versus about
62V0 of urban fataI crashes. A higher percentage of single-vehicl e fatal crashes, and a lower
percentage of multiple-vehicle crashes, occurred in rural settings than in Llrban settings in sampled
States.

CONCLUSIONS

The issues in model development include: model form, choice of variables, and interpre~ation

Nfodels of the Poisson and negative binomial types, with tnean a generalized linear function of
covariates, have the dual vitiues of being tractable computation ally wit II present software and of
capturing the discrete, random, non-negative integer character of crash counis. The 1og-1incari ty in
these models also permits equations of traditional multiplicative types, and hence easy conll~:lrison
with the results of earlier studies.

Although coefficients in both the Poisson and negative binomia[ types tend to be similar, the
negative binomial has additional advantages. Tbe presence of an overdispersion factor offers a way
to account for omitted variables (the larger this parameter is, the more important such vtiables are).
It also offers the possibility of combining the given model with empirical data from the past at a
given intersection to obtain Bayesian refinements of the model predictions

With reg~d to choice ofvanables, there is an infinity of possibilities, although resources are finite.
iMost of the variables discussed above are collected in this study, with the exception of weather.
These variables further proliferate through mathematical transformations, e.g., composite measures
of horizontal and vellical ali~wment near an intersection, or sight distance averages, or estimates of
daily traffic by incoming and outgoing intersection leg. Transformations are suggested by past
practice and common sense, but new combinations are always possible. In the analysis of the sample
data in Chapter 4, correlations between crashes and variables are examined. These correlations, and
successive ones found between I-esiduals and variables, serve to select the variables used in the
models. The selection should also be influenced by engineering j udgmcnt so that variables found
to be important in the literature, or considered so by designers, receive full consideration.

Finally, there is the question of model interpretation. The studies above note that many factors
influence crashes. However, a quantitative agreement on their relative importance has not been

~]J M, TeSSnler, Rural ~nd urban Crashes: A Comparative Analysis, Report No. DOT

HS-808-45 O,U“.S. Department of Transportation, National Highway Traffic Safety
Administration Technical Report, Washington, D.C., 1996.



achieved. mat a model can do, chiefly, is to summarize sample data. [t can indicate which
variables are most important with regard to the crashes on the sample intersections. Because of
collinearity (i.e., NO or more variables that are strongly depefident thrOugh design Or COi)lCi(ience),
there is no guarantee that for variables present in the model, causation has been established. A
model selects the variables that look “best” on the given data, and related variables may thereby be
omitted. It is thus wise to identify families or clusters of variables that are related and tentatively
view these families as the causal factors. Since families overlap, this taslc is not sinlplc.

Using a model that summarizes to predict is best done with even more engineering judgment. The
model summarizes a data set, but there are sampling and non-sampling errors io the data. Often what
one wishes to predict has new or different factors influencing it. One is dealing with a moving
target. Thus, judgment and some flexibility are in order.



3. DATA COLLECTION

The data collected in this study come from two pnm~ sources: Highway Safety In fomlatimr System
(HSIS) files for California and “Michigan, and field visits to the intersections made by Pragmatic
personnel.

This chapter discusses the populations from which the data were selected, sample SC]ection, data
collection techniques, and da~d limitations.

THE POPULATIONS

The States and the Three Data Classes

An issue of early importance for this study was the selection of States in which to carry out the
sampling. HSIS has extensive files for eight States - California, Illinois, Maine, Michigan,
Minnesota, North Carolina, Utah, and Washington. File formats andcontents vary from State to
State. Forthree of the States -California, Michigan, and Minnesota- separate HSIS intersection
files exist, while foranother three -North Carolina, Utah, and Washington there isno”HSIS
intersection infomation. Maine hasnode-and-link files (intersection-and-segment); [Ilinois treats
intersections asseoments ofzero length. California gives details about signal characteristics; Illinois
gives details abont mediaus. Neither Illinois nor Michigan hasminor road ADTavailablc, except
for cases in Michigan where the minor mad, like the major road, is a State road.

The three intersection classes in this study were originally intended to be signalized thee- and four-
legged rural intersections of two-lane roads, along with four-legged roral intersections of a four-lane
roadwith atwo-lane stop-controlled minor road. However, examination ofdaVd bases for California,
Michigan, and Minnesota indicated that there were very few signalized three-legged rural inter-
sections oftwo-lane roads. The same indication came from information on three State routes in
Washington. See TabIe 1. ``Other' 'refers alnlost exclusi\elyt ostop-co]3trolledol ltllelllillorro ad,

TABLE 1. Freqrsency of Signalized Rural Tvvo-Lane Intersections in Fear States

Rural two-lane roads Three-1 egged intersections Four-1egged intersections

signalized other signalized other

California -1995 14 (0.2VO) 6126 (99.8YQ) 3j (1.9%) 1832 (98. IYo)

Michigan -1994 16 (0.270) 6513 (99.8%) 158 (4.1%) 3722 (9j.9%)

Minnesota -1992 4 (0.3%) 1307 (99.7%) 11 (0.7%) 1591 (99.3%)

Washington* -ea. 1993 2 (0.3%) 645 (99.7%) 10 (5YO) 190 (9j’)4)

*Routes O02, 009, 101 only.
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but incIudes a few cases of flashers, and stop-controls on the major road. Of chief conce]m is not the
low percentages, but rather the low absolute numbers, which might mal<e acquisition of samples of
adequate sizes difficult. Thus, these intersections were replaced by three-legged rural intersections
with four-lane major roads and two-Iane stop-controlled minor 1egs.

Table 1 reveals a similar, but less drastic, shortage of four-legged signalized rural intersections of
two-lane roads. CaIifomia has relatively few of thenr, especially for such a large State. On the other
hand, Michigan appears from this table to hz, e an adequate number for sampling.

In order to gain useful variety in the analysis, California and Michigm were chosen for the modeling
effofi, with the possibility, if resources permitted, of addition of a third State later.

Constraints imposed on the populations from which the samples were chosen were as follows:

1. Thee-1egged rural intersections, major road four-lane, minor leg two-lane stop-controlled:
median width less than or equal to 36 feet (11 meters) on major road, all approaches two-
way, stop-controlled on minor leg only.

2. Four-1egged rural intersections, nlajor road four-lane, minor legs two-lane stop-controlled:
median width less than or equal to 36 feet (11 meters) on major road, all approaches two-
way, stop-controlled on minor legs only.

3. Four-1egged rural signalized intersections, major and minor roads two-lane: all approaches
two-way.

Implementing these constraints was not completely straightforward. The California (CA) and
Michigan (MI) HSIS intersection files had no information on whether intersections were trurai or
urban, nor on median widths, while MI’s intersection fiie had no information on number of lanes.
To obtain these items, the intersections were linked with segments in the CA and MI Roadlog files
where such information was available.

For CA, a Roadlog variable entitled RU_IO was available to indicate whether the segment was rural,
urbanized, or urban and inside a city or outside a city. For this study, we elected to use those
marked as “rural, outside city” and did not include those that were rural, but inside or partly inside
a city. The numbers for CA in Table 1 would have increased by only a small amount if other rural
categories were added. For MI, a Roadlog variable entitled RURURB, with three rural categories
(rural, rural dense small city, and rural small city boundary), was available. In the case of Mic.higsm.
all three categories were allowed. Roughly 500/0of the Michigan intersections fell uncier “1-urLL~’and
roughly 500/0under “rat-al dense small city,” and very few fell in the third category.

An intersection in CA or MI was considered rural if a neighboring segment was rural according to
the classification above. In addition, in tbe case of Michigan, since the intersection ii Ie did not
include a lane count, the major road was assumed to be either two-lane or four-lane, depending on
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how the segments adjacent to the intersection were described in the Michigan Roadlog file

Pilot Studies

Pilot studies were conducted from bases in Sacramento, CA, and Lansing, MI, in March and May
1997, respectively, with a view to visiting all intersections sufficiently close to the State capitals as
resources permitted.

In the case of California, 115 intersections in Districts 3, 4, 10, anti the noflhcrn part of 6 (within

approximately 250 miles (402 kilometers) of Sacramento) were qual ificd fol- rnern bcl-ship in the

populations on the basis of HSIS data. In Michigan, the pilot study concentrated on signalized
intersections, and 66 such intersections were identified in Districts j, 6, 7, 8, and 9 from [hc 1+S1S
data base.

In both States, photologs were examined for all such intersections. If the photolog indicated that the
intersection was not rural (e.g., curb parking, significant urban build-up for several blocks) or the
lane count was incorrect or the signalization (several flashers were found that had been listed as fully
signalized) or there was an adj scent intersection within joo feet (152.4 meters) on the major road,
then the intersection was eliminated. Thereafter, site visits were tmade to most of the intersections,
additional intersections were eliminated by the site visit, and data were collected at the remaining
ones. Even among those for which data were collected, in some cases, it was uncles]- whether they
should be considered rural or urban. Table 2 indicates the disposition of the pilot StUdy samples.

TABLE 2. Pilot Study Intersections in California and Michigan

California Michigan

sample units - three-legged 28

sample units - four-legged 27

sample units - signalized 10 23

Y intersections 6

disqualified from pbotologs 25 13

disqualified from visits 17

too remote/isolated 6 13

Total 115 66

Table 2 reveals some difficulties that were to affect the entire study. Photologs did not match what
was in the HSIS data base in a fair number of cases, and site visits revealed that changes not shown
in the photologs had also taken place. This was particularly true of the Michigan signalized
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intersections. The Y intersections, three-legged intersections with two legs divergitlg from the third,
were included in the pilot study, but it was later decided to elimimste them from the full data
collection in part because of their relative rarity. A few intersections in botb States were excluded
from visits on the grounds that they were too remote or isolated.

The issue of how to handle remote arrdor isolated intersection sites is a rather delicate one since it
relates to both resource consumption and sample integrity. Rural intersections can be few and far
between. To conseme resources, it is advisable to select intersections that are in close proximity to
one another and to a suitable base of operation where junior highway engineers can be recruited for
field work. With Sacramento or Lansing as a base, there were numbers of intersections each of
which would require an overnight trip for two people, with driving time to and from and downtime
between morning and evening traffic counts (if the site was not disqualified). While distances in
California are well-known, it is less well-knowl~ that the distance from Lansing, Michigan, to the
farthest reach of Michigan’s Upper Peninsula, 550 miles (885 kilometers), is greater than Lansing’s
distance to New York City, about 500 miles (805 kilometers). Paradoxically, the most classicality
rural intersections, ones without suburban or small town features, are iikely to be far from eacl] other
and far from suitable bases of operation and thus require disproportionate resources to \ isit. If
intersections are close to each other, within a few miles, so that a team can visit several in the same
day, the independence of the sample may be jeopardized. If they are close to a central point, such
as a major city or the State capital, they are likely to be less rural and to be in transition.

During the pilot studies, in addition to examiruation of photo logs and field work, construction plans
and aerial photographs were reviewed, and the possibility of obtaining crash reports was
investigated. Aerial photographs, photologs, and some (but not all) horizontal construction plans
were available in the Traffic Operation Office at Caltmns headquarters in Sacramento. More
complete computerized vertical and horizontal plans were not available, since the computer

application that accessed them was undergoing major repair and reno~,ation, At a later dale, this
system was running, bat some plans were found to be missing and others were difficult to locate.
District Offices in California, 11 in all, also have construction plans and hard-copy crash reports, but
these offices are understaffed and the Project Team was told that retrieval would take much time.
Caltrans personnel did indicate that the HSIS crash file for California would have numerous
variables from which crash details could be reconstructed. Michigan had aerial photographs for
many intersections in Southern Michigan taken in the years from 1972 to 1988, and some negatives
for photos from prior years. Michigan also had a library of construction plans (maps, microfilms,
and hanging files, depending on the year), although a fire in 1955 had destroyed some plans and
others were misfiled. Road segments will have as many as 50 jobs and corresponding plans. For
a minor job, the plan will not show the alignments of the road. The Project Team was told tha[, ir
Michigm, confidentiality laws make crash reports difficult to obtain since preliminary deletions by
State employees are required. Although Michigan photologs were one cycle more recent than those
of FHWA in McLean, Virginia, numerous discrepancies were found among the HSIS files, the
photologs, and site visit observations.
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In both the California and Michigan pilot studies, field work was done at ail intersections. The
typical routine was a morning site visit to hand-count traffic (on specially designed tally sheets).
Thereafter, radar guns were used to determine operating speeds for samples of vehicles approaching
the intersection on each leg. These measurements were made at discreetly placed locations before
vehicles began to slow for the intersection. Speeds would be determined only for the lead car in a
platoon, and the angle between the radar path and the direction of vehicle travel was noted to permit
calculation of true travel speed. T~ically, 25 measurements would be made if the leg traffic was
adeqtlate. If the traffic was light, as many measurements as a 15- to 20-nlinute stay would permit
would be made. Measuring wheels were used to pace off sight distances. Other- intersection features
and geomet~ were recorded, as well as signal characteristics at signalized intersections. In the late
afternoon, a second traffic count would be done. In the case of Michigan, where only sig]lalize(i
intersections were visited, computertied plate counters were also used to measure m i]nor icg traffic.
The plate counters were nailed to the minor road at mid-day and lefi there for 24 hours. The) were
recovered on a subsequent visit to the intersection and unwrapped. Data were downloaded from
them and they were recharged and rewrapped for the next count. Three people were required for
placement of the plate counters since traffic had to be disrupted. For all site visits, permits were
required from District Offices, and safety precautions, including wearing of hardhats and orange
vests, and placement of cones and signs, were taken.

Pilot study data were subsequently used to prepare some small special stadies. Three kinds of speed
data were compared: posted speeds obtained by inspection along intersection legs, operating speeds
measured by radar guns, and speeds recorded by the plate counters. The plate counters also
permitted a determination of 24-hour truck percentages, and these could be compared with observed
peak-hour truck percentages from the manual traffic counts. To assess the “intersection-relatedness”
of crashes, a review was also undertaken on the area of influence of an intersection for a few pilot
study intersections. The results of these investigations are reported in the appendix to this report.

SAMPLE SELECTION

After both pilot studies were completed, the studies were assessed and p Ians were made for the
subsequent main data collection effofl. The chief decisions made were 10 rcstricl atten~ioo to tee
intersections and omit Y inters ections,4z to measure horizontal and vertical alignments at each
intersection rather than attempt to extract this information from plans or photos, to discontinue the
minor leg plate counts, and to follow an informal sample selection plan.

42A three-legged intersection is a T intersection (or tee) when “two of the three intersec-
tion legs form a through road and the angle of intersection is not acute”; it is a Y intersection (or
wye) when “all three intersection legs have a through character or tile intersection angle with the
third intersection leg is small.” These definitions are taken from p. 836 of A Policy at? C;eo/7tet}-ic
Design of Highways anti Intersections (also known as the “Green Book’), American Association of
State Highway and Transportation Officials, Washington, D.C., 1994.

25



Three-legged intersections for the main data collection efi~ort were restricted to T irrtcrsections
because of the relative scarcity of Y intersections and in the interest of sample homogeneity. Sample
homogeneity contributes to successful modeling by removing variahlcs that \vi II not be modeled.
However, such homogeneity can only be achieved to a limited extent. Too many restrictions (e.g.,
requiting that all intersections have lighting, that they all have medians of a certain type, that they
have ADT in a certain narrow range, etc. ) can be counterproductive. There may he Loo few
intersections meeting all the constmints to be useful for modeling, and data collection from all of
them to maximize sample size may be too expensitc if they are geographically dispersed. The
distinction between T and Y intersections is of recognized importance, T intersections are fa~orcd
by intersection designers, and restricting the sample to T intersections was judged to pose no
problem.

Collection of alignment data during the field work and discontinuation of minor leg plate corurts
were undertaken for reasons of economy.

In both Michigan and California, the availability and accessibility of plans showing recorded
alignments were in doubt. Plans and photos were sought for sub-samples of the pilot study samples
in both States, and for roughiy 30°/0of the intersections in the sub-samples, no information coLdd be
found, Since morning and afiemoon traffic counts were to bt~done at each intersection, acquisition
of alignment data at midday did not seem to be unduly burdensome for field workers. At
intersections visited in the pilot studies, alignment data had not been collected, but I-cvisits during
other field work could be done without hardship.

With respect to the plate counters, the pilot study revtidied that they provided good data, but that they
were resource-intensive and that the data were not essential to the overall effoLt, The p Ia.tecounters
are HISTAR units that detect changes in the magnetic field above the roadway. The associated.
computer data are generated and printed with NU-METRICS software. Information available
includes: counts of incoming vehicles by type, counts of occupants per vehicle, vehicle speeds.,
weather conditions (temperature and precipitation), and gaps between vehicle arrival times. During;
the Michigan pilot study, the weather variables did not seem reiiable, and the counters did not work:
properly on occasion. At two intersections, they were placed on nraj or roads for whicil .4DT was

available. The count at one of these roads was 4,400 vehicles per day versus 6,400 vehicles per day
according to HSIS files. The difference is that the plate count data is for one day in 1997 and the
HSIS data is a State estimate for 1993-1995. The plate counters do not determine turning
movements, and manual counts still Ilave to be done at each intersection to obtain these. The plate
counts, as already noted, require two visits spaced 24 hours :ipart with adequate personnel to ensure
safety during placement and removal. Thus, to conserve resources, they were omitted in the main
data collection effort. For Michigan intersections where minor road ADT was not available, major
road ADT PILLS 1997 peak-hour traffic counts, in particular mtios of traffic by movement, were used
to estimate minor mad ADT. This method, while making use of 1997 data to estimate minor roa(i
ADT for earlier years, is arguabIy more reliable than using an absolute 1997 count.
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Both pilot studies revealed that field work at rural intersections is time-consuming. Rural
intersections suitable for the study, especially signalized ones, tended to be few and far between, as
noted earlier. In some cases, overnight lodgings were required both before and after in order for
Project Team members to get to a site at an adequately early hour and remain there unti 1 an.
adequately late hour. During the Michigan pilot study, a number of intersections thought to be in
the population on the basis of HSIS files and Michigan photo logs were found to be unqualified at
a site visit, primarily because they were not at all rural.

Au informal sampling plm, as follows, was developed. Complete lists of intersections whose HSIS
records satisfied the constraints had been developed. All intersections within approximately a 3- to
4-hour drive from Sacramento or Los Angeles or Lansing were automatically included in the sample,
together with a few other selected intersections at farther distances. Photo logs we]-e reviewed for
all of these, some were disqualified as a result, and with the exception of those tha[ bad been in the
pilot study and a few especially remote ones in California, all of the remaining ones were pre-visited
prior to the field work. The purpose of the pre-visit was to ascertain whether each intersection was.
in fact, qualified — no legs or medians closed, no offsets, no additional lanes or legs, number of
lanes unchanging out to +800 feet (243.8 meters), no urbanization, wi /h signal ization or sign age as
advertised. In addition, a large number of intersections were eliminated because they were too close
to other intersections of the same type and were likely to have strongly correlated data values. This
was especially true for the three-legged and four-legged non-signalized intersections. In ‘botb States,
such intersections tended to be grouped on a relatively small number of highways and tende(i [o bc
placed along these highways in close sequence.

Pre-visits by senior Project Team members were found to be very useful since field workers would.
not spend unnecessary time at unqualified intersections and tbe senicr members of the team could
make experienced judgments about the appropriateness of intersections.

The final samples, including pilot study obsemations, are shown in Table 3.

TABLE 3. Samples as Proportions of Nominal F’opulatians

CA MI ToPdl

3-legged 60/302 (19.9VO) 24193 (25.8VO) 84/395 (21 .3YO)

4-legged 54/150 (36%) 18149 (36.7Ya) 721199 (36.2 V”)
t

Signalized 18127 (66.77,) 31/100 CIIYO) 49/127 (38.6%)

The first number in Table 3 is the sample size and the second is the nominal population size in the
State. These numbers are adjusted from Table 1 by elimination of duplicate observations ani
photolog reviews, but the denominators include numerous dependent intersections and, especially
in the Michigan signalized case, intersections that are no longer rural. The denominators alsc
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include remote intersections that were not visited for lack of resources. It shouId be kept ill lnind
that some of these would have been disqualified if they had been visited.

The informal sample selection method raises the issue of represenrativ:ness. It should be noted that
crash data were not consulted in selecting the samples, but that there was some tendency to f~lvor
lager mT intersections or ones with more irregular alignment when, for example, Only One 01’two

nearby intersections could be chosen because of dependence. In addii:ion, many, but not all, of the

most remote intersections in both Statci were omitted from the samples.

DATA COLLECTED

The data collected in this study and the sources are sl?own in Tab Ic 4.

Highway Safety Information System (HSIS) Data

Average Daily Traffic (ADT) data and crash data were extracted from HSIS files.

~Tdatawere extracted from HSISIntersection and Roadlog files. ForCalifornia,r ndjorandminor
road ADT were available in HSIS intersection files for the years 1993, 1994, and 1995. For
Michigan, ADT data were available in HSIS Roadlog files for segments of State roads, although
1993data were Llnavailable andhadto beinte~olated from 1992 data.

HSIScrash vanablesfor 1993, 1994, and1995 were consulted. These illclLlde Accident Location
variables, Accident Number, Accident Severity, Accident Type, N’umber of Vehicles, Vehicle
Motion Prior to Accident (MISCACTl). Allvariables, buttFJe last, areillthe HSISAccidellt lile for
the State. The Iastisin the HSIS Vehicle file.

Traffic-Count Variables

For all intersections in Ole study, field counts were done c,n traffic during nlOrlling and evening
hours. Duetolimited resoL]rces, lhecounts were llotdonea .tafixed" iime,bLlt\veret ypicallyd one
inthemoming forabout45 minutes between 7:00 a.m. and 9:30 a.m. aod in the aftemoonbetw,een
3:30 p.m. and6:O0 p.m. Thecounts were done onnon-holiday weel<days.

In a few cases in California, no traffic was seen emanating from the minor road during the hours of
visitation. Th~shappened at Wothree-legged intersections and at two four-legged intersections, all
of them in California on Route 395. The first twointersectio:ns hadincoming traffic, butthelasttw()
hadnOtraffic, inconling oroutgoing. These intersections zreinhigh-altit~lder egionsnearMon()

Lake and Independence, the counts were made in the fall of 1997, and traffic may have been reduced
for seasonal reasons.
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During the counts, the number of passenger vehicles and the :number of trucics entering and leaving
the intersection were recorded, along with the incoming and outgoing legs. The beginning and
ending times of the counts were also recorded. A typical dumtion was 45 minutes. When the data
were processed later at Pragmatic, Inc., aIl counts were converted to hourly counts. Intersection
legs were identified by leg numbers, in the clockwise order 1, 3, 2, 4 shown in l;igure 1. Legs
numbered 1 and 2 are on the major mad; ~rom leg 1 to leg 2 is the increasing milepost direction.
Legs 3 andor 4 are on the minor road, with leg 3 to the Iefi of the major mad’s increasing direction.
For traffic going from leg number i to leg number j, the morning counts were M_.PCij aad M_TRij
in vehicles per hour, while the evening counts were E_”pCij and E_TRij. The di stinct iOn betweetl
passenger vehicles and commercial vehicles/trucks was based on the number of tires. A commercial
vehicle was taken to be any vehicle with more than four tires, and included cars with trailers. This
almost always meant a vehicle with more than two axles.

Major Road

Leg 2

~. Increasing
milepost
direction

ANGLE1 ,1i$TGL B2

Leg 3 Lecy 4

Leg 1

Major Road

FIGURE 1. Intersection Diagram Showing Leg Numbers

Roadside Variables

During the field work, the roadside variables Number of Driveways and Roadside Hazard Ratin\;
(HAZWT) were col[ected by inspection.

The number of driveways within 250 feet (76 meters) of the intersecl:ion center was counted aloll{~
the major road. Residential and commercial driveways were counted separately. A gas station with
two entranceways would be counted as having two commercial driveways. For signalize(i
intersections, the number of driveways was also counted on the minor road out to 250 feet (76
meters).

32



HAZRAT is a vwiable devised by Zegeer et al. (1987)”3 that !s an amaigam of sideslope, clear zone,
and distance to nearest hard object. It takes who[e number values from 1 to 7, with 7 being the most
hazardous. Field workers were provided with images of typical roadsi(ies with different ratings, and
at site visits, they made estimates of the average rating of the major road ~vithin 250 feet (76 meters)
of the intersection center.

Channelization and Intersection Geometry

At each intersection, field workers recorded left- and right-tu.ming lanes on all approaches, median
widths and characteristics, and intersection angles. At a three-legged intersection, the numbet- of left-
tum lanes on the major mad, or right-turn lanes, is always CIor 1, and likewise on the minor road.
At a four-legged intersection, signalized or not, the number of lefi-turn lanes on each road, or right-
tum lanes, is O, 1, or 2. The measured intersection angles, AhTGLE1 and A.NGLE2, are bet~veen legs
2 and 3 and between legs 2 and 4, respectively. See Figure 1. In California, intersections are
squared up by policy, i.e., although the basic angle between the major and mirror roads may be
substantially different from 90 degrees, the minor road wi 11curve shaiTly wit 11in a feiv car lengths
of the intersection to create a right angle. Field tvorkers were itlstructe~j 10 ]rccord the large-scale
angle of the approach when very sharp curves of this type were present.

Sight Distances

Sight distances \vere estimated longitudinally on the major road and left and right on each minor leg.
At three-legged intersections, the longitudinal sight distance was only measured in one direction,,
e.g., if the third leg was leg 3 in Figure 1, then the sight distance from leg 1 to leg 2 was measured.,
but not from leg 2 to leg 1. Like\vise, at signalized intersections, Iefi sight distances were not
measured. For the signalized intersections, longitudinal and left sight distances \vere estimated on
all legs. When a protected lefi turn exists from leg 1 to leg 3,,one may argue that longitudinal sighl:
distance from leg 1 to leg 2 is unimportant.

The Green Book (1994, p. 702) recommends that left and right intersection sight distances fi-om the
minor road be measured at 6 meters (20 feet] from the edge of the traveled way. At many
intersections, this yields very little sight distance, and only a foolhardy driver would decide to enter
the intersection from this location. An alternative standard is 3 meters (10 feet) from the edge of the
traveled way, approxim~tely the location of a seated driver prior to [entering the intersection. The
latter standard has apparently been adopted by many States, and is the one that was used ir]
measurements here. For longitudinal sight distance (along the rnaj or road from one lane to the

opposing lane), measurements were made from the edge of tbe traveled ~vayof the minor road i11the

leftmost incoming lane of the major road. The driver’s eye \vas assumed to be at a height of 1070

millimeters (3,5 feet) and the object viewed was assumed to have a height of 1300 mil 1imeters (4.2!~

43C,V, ze~eer, j. Hummer, D. Reinfuhrt, L. Herf, and W. Hunter, safety Co~t-

Effectiveness of Increilletltal Changes in Cross-Section Design — Information Guide, Report No,
FHWA-RD-87-094, Federal Highway Administration, Washington, D. C., 1987.
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feet). See the Green Book, pp. 136-7

Sight distances, if they were sufficiently short, were paced off with a measuring wheel to record the
distance. If they were many hundreds of feet long, they were estimated with a range finder. The
latter is an optical device with two light paths from the distant object to the eyepiece. Then a dial
is turned until the two images of the object merge, and a distance can be read from the dial.

Horizontal Alignment

Horizontal curves were recorded for the major mad and, in the case of signalized interst~ctions, for
the minor road. A segment from 800 feet (244 meters) before the intersection to 800 feet after the
intersection was determined, and any horizontal curve thdt over[appcd this segment was inc Iuded.
For each such horizontal curve, the beginning and end points were noted, along with the direction
ofcurvat~lre and the degree of curve, Measuring wheels and chalk were used to determine beginning
points and endpoints. Degree of curve was measured by marking off a straight line dis~ance,
t~ically 100 feet (30.5 meters), between two points at the edge of the (:raveled way, and calculating
the perpendicular distdace at the midpoint to the edge of the traveled way. The degree of curve, in
degrees per 100 feet (30.5 meters), is then calculated from the formula:

where L is the length of the straight iine in feet and H is tht;pe~endicular distance in feet, (The

metric equivalent is DEGH,,, = DEG/O.305 in degrees per 100 meters.) No adjustment was made for
the roadway width, Eveo on a four-lane road, au adjustment that rep] aces the edge of the traveled
way by the centerline of the road would typically change the value by no more than a few percent.

Vertical Alignment

As with horizontal curves, vertical curves were recorded that overlapped a segment out to + 800 feet
(244 meters) from the intersection center along the major road and:, for signalized intersections,
along the minor road. Beginning points and endpoints of each vertical curve were deternlined with.
measuring wheels and chalk. Then, incoming and outgoing grades were estimated at the beginning,
and end of each curve. Grades were considered positive if they were uphill in the direction horn leS
1 to leg 2, the increasing direction of the major road, or from leg 3 to leg 4 along the minor road,
For any intersection that had no vertical curves, a unique grade, GMDE1, was reported.

Grades were measured in one of two ways. An optical level and a measuring rod were sometimes
used, A distance of 25 feet (7.6 meters) or so would be pacecl off along the edge of the traveled way.
A marked height at that distance wouid be compared with the corresponding height on a measurin~;
rod determined by sighting the optical level horizontally. The diffel-ence in height divided by th,~
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horizontal distance yields the slope. An alternative method ‘was to pk~ce a 4-foot (1.2-meter) level
along the roadway (or along a flat board on the roadway) and record the slope directly from a
display.

Other Variables

Posted advisory and regulatory speeds were recorded for each leg whe:l seen within a few thousand
feet, existence of lighting at the intersection was noted, and a qualit~,iive measure of terroul (Lui,
rolling, or mountainous) was also noted. At signalized inters(~ctions, it was noted whether the signal

appeared to be pre-timed, actuated, or semi-actuated. Protected left turns on the major road were

also noted, but no record was made of which pairs of legs had such protection. A reasonable
assumption is that the left-turn movement from the major road leg with the highest volume, either
leg 1 to leg 3 or leg 2 to leg 4, had such protection when PROT_LT equals 1 and no left turns were
protected when PROT_LT equals O

DATA LIMITATIONS

HSIS Data

The HSIS variables are ADT and crash data for the years 1993, 1994, and 1995

California ADT data are determined systematically and regularly on State roads through 40C
permanent continuous operation count stations and another 1,700 permanent stations that are usec
once every 3 years. Intersection major road ADT is based on the segment ADT. Minor road ADT
is generally estimated rather than counted, is done by the Districts, and is thought to be older anc
of lesser quality. Michigan has about 120 pemanent count stations, nOt al1 on State roads, and
attempts to do counts on each State road once every 3 years. It does not have ADT for minor roads
unless they are State roads.

Crash data for both States are subject to the limitations noted in the study of Hakkert and Hauer
(1988). Many Michigdo property damage only crashes, and some injury crashes, are reported by the
driver without an officer at the scene. Not only are there issues of underreporting and classification
for both States, but there is also the question of crash location. Some iMichigan observers think thdt

crash locations are often incorrect, and mention examples where a crash was attributed not j ust to
the wrong milepost, but to the wrong intersection.

Field Data

The traffic data collected in the field during this study have obvious linlitations. They were collected
on a single weekday in a particular season of the year and during a short time period in nominal peak
morning and evening hours. Field workers reported that in different locations, the traffic vOlumes

might be especially high early or late in the morning Or evening, depending On such cactors as the
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~re~ence Of a manufacturing plant versus a shopping center nearby. The tme definition ofpe~ hour

varies from location to location, while this study had to follow visitation timetables based on
available resources. In California, some rural intersections had relatively low traffic, reflecting likely
seasonal variations at resorts and camping areas such as Lake Tahoe. The site visits were conducted
in late fall and early spring at some of these locations. No attempt was made to adjust the data to
take into account such variability. Yet another limitation is that these data were collected in 1997
for use in modeling 1993-1995 events.

Variables such as HAZWT, number of driveways, chan~elizatior), angle, speed iinlitst sight
distances, and horizontal and vertical alignments were also measured in 1997 and are presumed to
be valid for the earlier time period. These items, however, tend to be much more stable than traffic
movements, and temporal variation is not thought to be a significant source of error.

HAZWT is a subjective rating of roadside hazards. The measure is supposed to average the hazards
alongside the major road within +250 feet (76 meters) of the intersection. Typically, two
experienced observers will agree on a value or differ by 1, e.g., one observer may assign a 3 and the
other a 2.

Sight distances, as noted, were measured with a measuring wl~eel or a range finder. Because of the
limitations of the range finder and some subjectivity about when an object becomes vis~ble (seeing
something versus recognizing what it is), sight distances are likely to be accurate to within roughly
10OA. For the purposes of this study, sight distances in excess of 1800 feet (550 meters) or more
were not distinguished, and any sight distance thought to be in excess of 2000 feet (610 meters) was
generally marked as 2000 feet. A sight distance of 1600 fset (488 meters) would be noticeably
smaller, and absolute accuracy would improve as sight distances decrease.

Horizontal and vertical cumes present unique difficulties. For many rural roads, the line of a
highway is quite irregular when examined on a small scale. Potholes, bumps, and other small
irregularities due to the lay of the land or due to wear caused by traffic and weather are often present.
Field workers were asked to idealize roadways by smootbi.ng road !.ines out to scales of several
vehicle lengths. Decisions about where a curve begins and ends are thus to some extent arbitrary,
particularly for curves of large radius or small grade. “Beginning points and endpoints as judged by
two different obsewers might differ by as much as 20 feet (6 meters), while degree of curve might

vw by 5°/0or more. Michig~ was relatively flat, with many grades lI~SSthan 10/O.ver~ical grades
of less than 1‘A were probably measured to no greater accuracy than 4:0.250/., so that a grade listed
as 0.50/0 might be 0.2j0A or 0.75°4. A much larger grade, say 5°/0, would be accurate to within
*0.50A. Differences in successive grades accompanying a vertical curve would have about the same
accuracy since the observers would be sensitive to the chan,ge of grade.

perhaps tbe greatest limitation of the data is that they do not reflect the special circumstances Ofeactl

intersection. men individuals are classified by such conventional (and imperfect) measures as age,
height, weight, sex, IQ, race, etc., sometimes the most important and most relevant points are
missed. Site visits reveal that the intersections in this study are quite diverse, with very individual
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personalities. significant items fhat would not appear in a cia!a base are quite common, e.g., a

nearby amusement park, beach turn-offs along Lake Huron, canyon roads off of Pacific coastal
highways, sideroads into California deserts, resort areas such as Lake Tahoe and Squaw Valley,
small tows where a two-lane road flares out to four lanes for a few thousand feet or where a two-
lane road abruptly arrives at a single signalized intersection, or rural intersections along heavily

trafficked commuter highways connecting big cities to rural homesites.

Signalized rural intersections, in particular, are in transition. ‘rhe signal is often in place because of
increasing local development and increased minor road traffic. With increasing traffic come more
businesses and residences, and soon a very roral area becomes a small town and a small town
becomes a city.

Analysis and modeling are bound to be inexact because the population under study is a moving
taget, and qualitative changes can overtake the quantitative ones, bringing unforeseen variables into

prominence.
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4. ANALYSIS

The analysis consists of developing a variety of new vtiables derived from the variables collected,
determining the statistics for new and old variables singly and jointly, determining correlations
between variables (especially between crash counts and other variables), and studying the chief
relationships found.

Of particular interest is the relationship between crash counts and traffi{:. Without question, average
daily traffic (~T) on all approaches is a significant (and usually the most significant) predictor of
crashes. Not only does greater traffic imply greater numbers of crash-prone dtivers, even with the
percentage of crash-prone drivers assumed to be independent of traffic or increasing with traffic, hut
for multiple-vehicle crashes at intersections, an adequate amcunt of tra.ftic is a necessary condition
for a crash.

Successive sections of this chapter treat new variables, univariate stati sties, b ivariate stati sties and
correlations, and the relationship between crash counts and traffic.

NEW VARIABLES

The chief classes of variables in this study are: crash va]-iables, traffic variables, intersection
geometric variables, roadside variables, alignment variables, and sigh’: distances. The intersection
geometric variables concern medians, channelizatioll, and lntersectiOn angle. Alignment variables
and sight distance variables, which pertain to the roadway as far out as 800 feet (244 meters) to
several thousand feet from the intersection center, are treate(i separately.

Crash Variables

The chief crash variable is TOTACC. This is the total number of crashes occurring at the
intersection in the years 1993, 1994, and 1995. Any crash occurring at the intersection or within 250
feet (76 meters) of the intersection center along the major road is included in this number. Crashes
occurring along the minor road near the intersection are recorded as being at the intersection (if
within 100 feet (30. 5 meters) of the intersection center in Michigan, if within 250 feet (76 meters)
in California). One exception to this is when the minor road is a State road (the major road is always
a State road). This happens for some signalized intersections. In suck cases, Accident IiIes for the

minor road were also consulted and all crashes within 250 feet (76 meters) of the intersection center
along the minor State road were included.

A second crash variable is TOTACCI. For this variable, criteria proposed by Bellomo-lMcGee, Inc.
(BMI) were used to restrict the crashes to ones considered intersection-related Michigan’s HSIS
Accident file has a variable called Highway Area Type that indicates whether a crash occurred in the
vicinity of an intersection. This perhaps could have been used to es~ablisb intersection-relatedness.
However, California has no similar variable. Indeed, an important modeling issue IS to establish
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criteria for intersection-related crashes that are uniform from State to State. A set of criteria with
this aim were prepared by Warren Hughes and A.J. Nedzesky of BMI, with the assistance of Forrest
Council, and were submitted to FHWA in a memo dated March 26, 19’98. The BMI criteria are the
following: (1) crashes must occur within 250 feet (76 meters) of the intersection center aod (2) they

must be (a) vehicle-pedestrian crashes; (b) crashes in which one vehicle involved in the crash IS
making a left turn, right turn, or U-turn prior to the crash; or (c) multiple-vehicle crashes in which
the accident type is either sideswipe, rear end, or broadsidelangl e.

Applying these criteria in California and Michigan was not cc,mpletely straightfomard. M inor road
crashes could sometimes only be obtained out to a lesser distance, as noted above, beCaLISc of the

recording methods of the States. The California data base is silent on whether crashes, including
turning crashes, may or may not involve driveways, while Michigm has separate categories for sOnle
crashes involving driveways (e.g., “angle driveway”). For accident t,ype, California uses the term
“broadside,” while Michigan uses the terms “angle straight” and “angle turn.” California does not
distinguish between “sideswipe same” and “sideswipe opposite,” whereas Michigan does. The
precise criteria used in the two States, apart from location as specified in TOTACC, were:

or

or

or

or

or

CALIFORNIA

Some vehicle in the crash had MISCACT1 (Motion preceding collision) equal tc “making
right turn, “ “making left turn, ”or “making U turn”;

ACCTYPE (Type of collision) was “Auto-pedestrian”;

VEH_INVOL (Motor vehicles involved with) was “Pedestrian”;

VEH_INOL was “Other motor vehicle” or “Motor vehil;le on other roadway,” and ACCTYPE
was “Sideswipe” or “Rear end’ or “Broadside.”

MICHIGAN

ANALYS (Accident analysis) was “Motor vehiclelmot(jr vehicle,” and ACCTYpE (Accident
type) was “Head-on” or “Sideswipe opposite,” and MISCACT 1 (Driver intent) for some vehicle
in the crash was “Make right turn, “ “Make left turn,” or “Make U turn”;

ANALYS was “Auto-pedestrian”;

ANALYS was “Motor vehicle/motor vehicle,” and ACCTYPE was “Angle straight,”
“Rear end,” “Angle turn,” “Sideswipe same,” “Rear end lefi turn,” “Rear ‘nd ‘ight ‘L!m,”
“Head-on lefi turn,”” Dual ieft turn,” or “Dual right turn.”

From these comparisons, it is evident that the problem of uniformity among States also arises whel:.
multiple data fields are used to ascertain whether an crash i.s intersection-related. Tbe data fields
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and associated definitions do not always match up precisely

Yet another problem is that the BMI criteria were developed for use with two-lane rural roads. The

present study, in part, concerns four-lane rural roads and it is not clear that the same criteria should
be used for them. Observers have also raised the issue of whether different criteria should be used
for signalized versus non-signalized intersections of two-lane rural roads.

Four other crash variables were developed for this study. Their definitions are given below:

,NJACC = Aall accidents with fatalities, injuries, or possible injuries counted in TOTACC

INJACCI = All accidents with fatalities, injuries, or possible injuries counted in TOTACC

TOTACCS = All single -vehicle accidents counted in TOTA CC

TO TACCM = All multiple -vehicle acciden(s counted in TOTA CC

The first two variables, INJACC and INJACCI, exclude crashes in which only propelly damage
occurred, but include all others. In California, one of the severitY categories is “COnlPlaint of Pain”
In the time period 1993 through 1995, the reporting threshold for property damage only crashes was

S400 in Michigan and $500 in California. The last two variables, TOTACCS and TOT.4CCM, were
determined for the signalized intersections only, and were used in some of the rnodeiing to relate
crashes to traffic flows by leg.

ADT Variables

Two average daily traffic variables were used in this study - ,4DT1 and ADT2. ADT1 is estimated
average daily two-way traffic on the major road measured in vehicles pel- day (vpd) in the vicinity
of the intersection for the 3 years 1993, 1994, and 1995. ADT2 is the estimated average daily two-
way traffic for the minor road in this period.

For California, ADT1 and ADT2 were obtained by taking annual figures provided in the HSIS
intersection files, samlning them, and dividing by three.

For Michigan, ADT data were not available in the HSIS intersection file. However, ADT data were
available in the HSIS Roadlog file for State roads in the yearn 1992, 1994, and 1995. The values o:
ADT for these years were interpolated to obtain a value for the year 1993, and the values for 1993,
1994, and 1995 were averaged. These estimated ADT values were for segments of roads. Then,
ADT on segments of the major road adjacent to intersections in the study were averaged to yield
ADT 1. In some cases (about 20Y. of the Michigan intersections), the minor road was also a Statt;
road, and ADT2 could be obtained in the same way. In all other cases, ADT2 was estimated on th(;
basis of morning and evening traffic counts done by Prag,matics, I:nc. (see below). An averagf:
morning-hour traffic count (incoming plus outgoing) was tletermined for each leg, converted into
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a haction of all incoming and outgoing traffic; the same wa, done for evening traffic, and the two
fractions were averaged. Then this fraction was applied to the known estimated ADT on the two
legs of the major road to obtain an estimated ADT for each minor leg. ADT2 was this value if there
was only one minor leg, and it was the average of the values for the NO minor legs otherwise. This
method has two evident defects: it only represents peak-hour .ADT, and a sample of such at that, and
it was done in the year 1997 rather than the study years. Nonetheless, it probably has the correct
order of magnitude and may well be as reliable as other minor road ADT estimates in the HSIS h les.

In the case of the signaltied intersections, the decision about which of two two-lane roads at a four-
Iegged intersection is major and which is minor was based on. ADT. The one with the higher ADT
is defined to be the major road, and the other the minor mad. In general, the major road is the State
road, but in Michigan, ‘sometimes both roads are State roads and thus the ADT criterion is used to
declare one of them to be the major road. There are three cases, two in Michigan and one in

California, where the State road has a lower ADT than the c~therroad, a county or local road. In
these three cases, the other road is tal<en to be the major mad, its ADT is ADT 1, and its legs are
taken to be legs 1 and 2.

Variables Derived From Traffic Counts

Traffic count data were converted into hourly form so that for each ordered pair of approaches (i,j),
an estimated number of vehicles per hour was given traveling :&omleg i to leg j. This was calculated
for passenger vehicles and trucks separately and for a morning and evening hour separately.

M_Pcq =
RA WMPCq

M_HR

M_TR~ =
RA WMTRq

M_HR

E_Pc~ =
RA WEPCq

E_HR

E_TRv =
RA WETRq

E HR—

A rather large variety of variables can be derived from such quanti!:ies. For the present study,
selected variables shown below were developed.

Commercial or truck percentage was measured by three variables, Ahfl’7”l”RUCK, PM Y”TRUCK,
and PKO/OTRUCK, representing the morning, evening, and combined morning and evening
percentages of truck traffic passing through the intersection. These are defined as follows:
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AMYoTRUCK =
L.l, ,.,,.,,,,, ~-TRij

E

x 100
~,,PO,,~<,J1(M_TRij + M_pCT)

~.,, p.,,,, (i,,(~-TRV‘E-TRU)

‘K%TRUCK=E“),p..,(i,j, ‘“-TRV + ‘-PCV + ‘-TRV + ‘-pCo)
x 100

The sums are over all ordered pairs of legs (i,j), i #j. Notice that PKPATRUCK is not necessarily
the average of the other two variables. It is rather a weightec! combination of the two, weighted by
the fractions of the overall traffic in morning and evening, respectively.

Turning percentages were calculated along tbe major road, the minor road, and combined by
methods similar to the above. Define the auxiliary variables Mij and Eij by:

summing passenger and commercial vehicle flows to get tctal vebicie flOWS. Then, the variables

PK%TURN, PK%LEFT, PK%THRU1, PKYoLEFTl, PK%THRU2, PKV.LEFT2 are given by:

PK%LEFT = z ~ —(rJ) (1,3)(41).(2,4), .? (34)
M~ + Eq

x 100
~,, ,“,,$ ~,,,, (Mv + Ey)
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PKYo THRUI =

PKYoLEFTI =

PK%THRU2 =

PKYOLEFT2 =

In case the intersection is thee-legged, traffic flows to and from one of legs 3 and 4 will always be
zero and, in particular, PKO/0THRU2 is zero. Three more v:?riables tllatnlight beconti.dered are:

PKYoRIGHT = (PKYo TURN PI<YoTHRU)

PKYo RIGHTI = (100 - PK%LEFT1 - PKY. T15RUI)

PK%RIGHT2 = (loo - PKYOLEFT2 - PK%THRU2)

In cmmection with the modeling of the signalized intersections, variables were developed to estimate
the incoming traffic on each leg. These variables were based on the A13T information and the peak-
hour traffic flows. They are:

z,.,,,,,,(~lj + Elj) ADT1
F, = _x——

I IZ(~i=,,2 (~j~i (Mq + Eq + ~ji + Eii))) ‘[000

z,.,,,,,, (M2j + E2j) AD TI
F2 = _x—

112(X,=,2 (Xi,i (MV + E~ + Mji + ~ji))) 1000

z,.,,,,, (M3j + E3j) ADT2
F, = _x.—

112(ZI=3,4 (Xj.i (MU + Eij + Mji + Eji))) 1000

Ej,,,,, (~4] + E4J) ADT2
F4 = —x.—

1/2(xi .3,, (xi+, (Mu + EV + Mji + ,Eji))) 1000
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where the units are thousands of vehicles per day and Fi is the estimated nunrbcr of thousands of
vehicles per day entering the intersection along leg nLlmber i (c f Figl.tre 1). Tb[-ee other variables
derived from the Fi’s were also considered:

PRODFADJ = F,Fd + FdF2 + F2F3 + F3F,

PRODFOPP = F1F2 + FjFd

SUIWF = F] + Fz +F3 + F,

The first variable PRODFADJ is a variable representing the interactiol~ of adjacent legs, the second
PRODFOPP does the same for opposite legs, and the third SUMF is the sum of all the flows.

Intersection Angle Variables

h angle variable DEV, representing the average deviation from 900, is defined by:

/a8gleJ - 90/ if in/ersectiOn is tkr.e -legged with third leg lefi (leg 3)

DEV = 1ang”2
- 901 if intersection is three -legged with rhird leg right (ieg 4)

~anglel - 90\+langle2 - 901
if Intersection is fouf –legged

2

Another angle variable considered in this study, suggested by E. Hau.er, is HAU:

angle2 - 90 if the third leg is to the right (leg 4)
at a three –legged intersection

90 - anglel if the third leg is tO the left (leg 3)
HAU = at a three –legged intersection

angle2 - anglel
at a four–legged inti?rsection

2

The variable HAU is a signed variable. See Figures 2 and 3. For a three-legged intersection with
the angle to the right of the increasing direction, HAU is positive when the angle is larger than 900,
as in 2(a), and HAU is negative when the angle is smaller thm 900, as in 2(b). If the angle is to thf:

left of the increasing direction (see Figure 3), 180” minus the angle becomes the new angle and
HAU is defined as ((180 - angle) 90) = (90 - angle), as above. For a four-legged intersection, as
in 2(c), it is tbe average of the two three-legged values (and thus 900 cancels out). Figure ‘$
illustrates the calculation of HAU in a variety of cases. Kulrnala (1995) proposes that turns from the
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Leg 2
Leg 2

Increasing
Dire cti”n ““”\, aHgle2

.<7”F
.4 \\.

\

& \.\

<

Leg 1
Leg 4

(a) Three-legged intersection,
angle larger than 900

(b) Three-legged intersection,
angle snlaller than 90°

Leg 2

angle2

,,..
\.y Leg 4

,,0,,, ,/’
,,/ ,/ ,,,/

,’ ‘,”
,/”

I,vcreasi.g

Direcrion

(c) Four-1egged intersection

FIGU= 2. Intersection Angle Geometries
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For Three-Legged l.tersections:

Mi”orrozd to ciQht Of m.i. rv.. d 1. dice. ti. n of incceaslng mile~. st$:

t T

L
135°

k

90,
.,.

\,

HAU = ..01.2 -90 HAU = a“Q1e2 -90

=135-90 =90-90

= 45 =0

Minor road to left of major road in direct!. ” of increasing mileposts:

HAU = 90 -a”glel HAU = 90 -anglel

=90-80 =90-90

=10 =0

For Fo. r-Legged Intersections:

(minor road not straiQht)

HAU = (a”gle2 -anglel )12 HAU = [Snglez -a” Qlel )/2
=(110-80)/2 =(90.901/2
=55 =0

P60,

HAU = a“Qle2 -90

=60-90

= .30

115°

4

,,’

I
HAU =90. angle<

=90-t?5

= -25

4

HAU = (angle2 -an Qle1112

= (60 120)/2

= .30

FIGURE 3. Examples of Calculation of the Angle Variable HAU
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far lane of the major road maybe less crash prone in situation 2(a) thdn in situation 2(b), so that.
positive values of HAU correspond to fewer crashes.

Sight Distances

To represent sight distances for the modeling, reciprocals were chosen. Large values of the
reciprocals corresponded to poor sight distances, and small ones corresponded to lengthy sighl.
distmces, and thus crashes might be expected to increase with increasing values of the reciprocals.

1
if intersection is three –legged with mina? leg being leg 3

SD I

RSD1 = & if inte~section is three –legged with minor leg being leg 4

(>(& +& if intersection has fOu~ legs;

1
if intersection is three –legged with minor leg being leg 3

SDL3

RSDL2 =

RSDR2 =

RSDLI =

RSD2 =

I
if intersection is th~ee –legged with minor leg being leg 4

SDL4

(>(+ + ‘—) if inte~section has four legs;
SDL4

1
if intersection is three –legged with minor leg being leg 3

SDR3

1
if intersection is three –legged with minor leg being leg 4

SDR4

(:)(& + 1—) f intersection has four legs;
SDR4

(:)(* ‘ ~ ) if intersection k!as four legs;
SDL2

($(& + & fOr a fO~~ -legged signalized int’rs’’tiO’

The variables are RSD1, RSDL2, RSDR2, RSDL1, and RSD2.
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Horizontal Alignment

Vtiables used to represent composite horizontal curvature are the same as those used by Vogt and
Bared (1998), except that 764 feet (233 meters) has been replaced by 800 feet (244 meters):

HI- I =

HEI-I =

~1 DEGfiri

Numbev of horizontal curves overlapping intersection center +250 feet

Z, DEGh~

Number of horizontal curves overlapping intersection center +8UU jeei

where the sum is over the corresponding cuwes along the major road. El1-1 and HE 1-1 (E fo]-
extended) are the unweighed averages of the degrees of curvature of the corresponding cumes.
Similar quantities for the minor road, in the case of signalized intersections, are denoted by HI-2 and
HEI-2. These are combined with the major road variables to generate two more variables HICOM
and HEICOM:

HICOM = (:)(HI-l + H-2)

HEICOM = (~)(HEI-1 + HEI-2]
2

to be used in the modeling of the signalized intersections.

Vertical Alignment

Vertical alignment variables likewise are taken from Vogt and Bared ( 1998)

A basic variable associated with each vertical curve is Vj:

v, =
lGBi GEil

length Li of i -th vertical curve in hundreds of feet

with units of percent per 100 feet (30.5 meters), where the numerator is the absolute change of grade
Agi = lGBi - GEil and Li = (VEi - VBi)/100.
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\
\ ., eoy\...,,,,,

i-th curve

FIGUW 4. Vertical Ctirve

Four vetiical variables VCI- 1, VCEI- 1, VI- 1, and VEI- 1 were considered:

VCI-1 =

VCEI-1 =

VI-1 =

VEI-I =

~, Vi

Number of vertical c~est curves overlapping intersection center *2j0 feet
~ Vi

Number of vertical crest curves overlapping inte~sec[ion cente? +800 feet
~, vi

Number of vertical curves ove~lapping inte~section cente~ +250 feet
~, Vi

Number of vertical curves overlapping intersection center *800 feet

These smsmeoverthe stipulated veflical cumesalong themajorroad. Forsignalized intersections,
similar variables with the suffix 2 rather than 1 were also employed for the minor road, as well as
the combined variables VCICOM, VCEICOM, VICOM, and VEICOM:

VCICOM = (>(VCI-1 + VCI-2)

VCEICOM = (:)( VCEI-1 + 7CEI-2)
L

VICOM = (#(vI-l

VEICOM = (:)(VEI - I

Recall that crest curves are vertical curves for which
positive to less positive, negative to more negative).

50

* VI-2)

+ VEI-2)

the grade decreases (positive to negative,



Another variable developed pertaining to vertical alignment is ABSGRD 1. If only one grade was
seen on the major road, ~SG~ 1 was the absolute value of this grade. If more than one grade wa!j
seen in the vicinity of the intersection on the major road, absolute values were computed of all grade!;
seen at the beginnings and endings of those vertical curves that overlapped the segment of the tn]ajor
road within +800 feet (244 meters) of the intersection center. These absolute values were then
averaged (e.g., if six grades occur corresponding to three vertical curves, their absolute values were
summed and divided by six), without regard to where they occurred (in some cases more than 800
feet (244 meters) from the intersection) or the distance for which the grade remained constai.:. :4.
similar variable ABSGRD2 was also developed for the minor road of signalized intersections.

Miscellaneous Variables

Driveway variables were combined to yield NODRWY1 as follows:

NODRWYI = NOD RWYRI + NO DRWYC1

and a similar combination, NODRWY2, was used for minor road driveways at signalized
intersections.

Median widths varied behveen legs of the major road in 18 out of 84 three-legged intersections, 18
out of 72 four-legged intersections, and 1 out of 49 signalized intersections (most of the signalized
intersections had no median). Thus, the median width variable here, MED WIDTH 1, is the average
of the median widths of the two legs, leg 1 and leg 2, of the major road.

Speed limit variables, SPD 1 and SPD2, with values in miles per hour were assigned to the major and
minor road. On the major road, SPD 1 was the average of the posted speeds on Legs 1 and 2 or the
unique value seen if a posted speed was seen on only one of these legs. The same rule was applied
for the minor road to get SPD2. In some cases, no posted speed limit was seen on the leg or legs of
the minor road. In this case, SPD2 was assigned the default value 35.

During the modeling, it became convenient to introduce the channelization variable LTLN 1S:

1 if LTLNl is 1 OF 2
LTLNIS =

O if LTLN1 is O

Yet another numerical variable was devised to denote the State:
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O if the intersection is in CaliJ5~nia
STATE =

1 if the intersection is in Michigan

The STATE variable can be used to study whether crash experience at the various intersections is
due in part to differences between the States. Such factors as driver behavior andior crash reporting
practices may be significantly different ‘etween the t~vo States.

UNIVARIATE STATISTICS

A summ~ of the data obtained is shown in Tables 5, 6, and 7. The first item that strikes the eye
is that the mean number of crashes per intersection, no matter how they =e measured, is highest at
signalized intersections, moderate at four-legged ones, and lowest at three-legged ones.

There are a number of other ways in which the intersection classes differ. The signalized
intersections have much higher minor road ~T and much higher turning percentages than the other
two classes. The signalized intersections tend to have more turning lanes on both major and minor
legs, and lower speed limits on the major mad as well as higher ones on the minor road. There is
more lighting on the signalized intersection, a moderate amount on the four-legged intersection, and
the least on the three-legged intersection. Likewise, the general terrain is flattest on tlhesi gnal ixed
intersection, less so on the four-legged intersection, and least on the three-legged intersec~ ion. This
is due at least in part to the fact that two-thirds of the signalized intersections are in Michigan, whi Ie
only 250/0of the other intersections are, ~d Michig~ iS a relatively flat State. The three intersection
classes =e similar in other ways. Peak Truck Percentages at the three classes of intersections are
from 9 to 11V. on average. There are two or three driveways per intersection on average, and the
average value of HMRAT is from 2.2 to 2.5. Sight distances are comparable, except that signalized
intersections have a lower average sight distance left on the minor road. The signalized intersections
have even lower sight distances left on the major road than on the minor road. This suggests that
woods, buildings, and other obstacles are not cleared away from the minor road to the extent that
they are from the major road.

Horizontal and vertical alignments are generally similar. Fewer of the signalized intersections,
primarily in Michigan as mentioned, have horizontal curves and fewer have vertical curves.
Although the average value of HEI- 1 varies substantially among the intersection classes, this average
is strongly influenced by a few intersections with sha~ turns. The average grade of signalized
intersections is a bit lower than the average for the nonsignalized intersections, and the minor road
has a higher average grade than the major road. This phenomenon was also noted in the three-legged
and four-legged intersections, although no measurements were nlade. Frcquent]y, the minOr legs
leading to an intersection on a four-lane mad have fairly steep grades as they are brought LIp or down.
to confomr with the level of the major road.
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections

Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

f~ariable and Abbreviation Min. Max. Mcdlan Mean Freq. O/OZerO

No. of Crashes TOTACC o 19 2 3.88 326 21.4

No, of Injury Crashes INJACC o 11 1 1.61 220 (67.5VO) 38.1
—

No, of Intersection-Type Cmshes TOTACC1 o 13 1 2.62 135 (41.4%) 34.5

No. of Intersection-Type Injury Crashes INIACCI o 9 1 1.21 102 (31.3%) 48.8

Average Daily Traffic on Major Road ADTI, vpd 2,367 33,058 12,050 12,870

Average Daily Traffic on Minor Road ADT2, vpd 15 349 596

Peak Trock Percentage PKVoTRUCK 1.18 28.16 7.79 9.15

Peak Turning Percentage PKV”TURN 0.26 53.09 4.28 6.68
.—

Peak Left-Tunr PercerrVagc PK%I.EFT 0.13 25.97 2.16 3.29

f)cak Through Percentage On Major Road pK%THRU 1 63.26 100.00 97,98 96.44

Peak Left-Turn Percentage on Major Road PK%LEFT 1 0.00 21.29 0.69 1.49 13.1

Peak Left-Tunl Pcrccntage on Minor Leg PK%LEFT2 0.00 100.00 60.99 56,64 7.1



TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued)
Major road four-lane, n]inor leg stop-controlled, California and Michigan, 1993-1995

Variable aud Abbreviation Min. Max. Median Mean Freq. OAZero

Roadside IIazard Rating HWRK~ 1 7 2 2.52

1 16 (19.OYO)

2 37 (44.0%)

3 13 (15.5YO)

4 10 (11.970)

5 6 (7.1%)

6 1 (1 .2VO)

7 1 (1 .2YO)

No, of Res. Driveways on Major Road NOI)RWYR1 o 7 0 1.17 98 56.0

No. of Comm. I)riveways on Major Road NODRWYC1 o 14 0 1.93 162 57.1

No. of Driveways on Major Road NODRWY1 o 15 1 3.10 259 42.9

Left-’~umLane on Major”Road LTLN1 0 I I 0.54 46.4
O=no 39 (46.4%)
1 = yes 45 (53.6%)

Right-Tu[mLane on Major Road R1l.N I o 1 0 0.19 81.0
O=nO 68 (81.OYO)
1 = yes 16 (19.00A)

— ..—

Left-Turn Lane OnMinor Road LTLN2 o 0 3.57 96.4
O=no 81 (96.40A)
I = yes 3 (3.67.)

Right-’rorn Lane on Minor Road RTLN2 o 1 0 1).90 88.1
0 = 110 74 (88170)
1 = yes 10 (11.9V”)
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TABLE 5. Summary Statistics: 84 Three-I.egged Rural Intersections (continued)

Major mad four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max.~ Median Mean Freq. YOZero

Median Width on Major Road MEDWIDTH 1, feet o 36 0 3.74 53.6

Median Type on Major Road MEDTYPE
No Median 45 (53.6V0)
Painted 23 (27.4Yo)
Curbed 9 (10,7%)

Other (Guardrail, Mixed, etc.) 7 (8.3%)

Angle Variable HAU, degrees -45 55 0 -0.36 83.3

Longitudinal Sight Distance on Major Road SD1, feet 500 2000+ 2000+ 1543-{-

I.eft-Side Sight Distance on Minor Road SDL2, feet 45 1399+

Right-Side Sight Distance on Minor Road SDR2, feet 80 2000+ 1375 1388+

Degt-ee of Cume HEI-1= (1/u)~ DEGHi, deg/1 00 ft o 26.6 0 2.47 52.4
_— -

(“urve Grade Rate VEI-1 = (1/ln)~ (lAgi]/Li), VO/100ft o 6.71 0.04 0.89 50.0

Cres[ Grade Rate VCEI- 1 = (1/m)~ (lAgil/Li), %/100 ft o 11.0 0 0.65 59.5

A\erage Absolute Grade on Major Road ABSGRD 1, Y“ o 5.85 0.65 1.11 25.0

~
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TABLE 5. Sulnmary Statistics: 84 Three-Legged Rural Intersections (continued)
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median nlean Freq. YOZero

Speed Limit on Major Road SPD1, mph 30 65 55 50.4

Speed Limit on Minor Road SPD2, mph 15 35 35 31.5

Light at Intersection LIGHT o = 110 52 (61 .9Vo)
1 = yes 32 (38.1%)

Terrain Flat 48 (57.1 Yo)
Rolling 29 (34.5%)
Mountainous 7 (8.3Yo)

STATE O=CA 60 (71 .4V0)
~_M1 24 (28.6°/0)

1 mph= 1.61 ktih
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections
Major mad four-lane, minor legs stop-controlled, California and Michigan, 1993-1995

\Tariable aud Abbreviation Miu. Max. Median Meau Freq. YOZero

No. of Crashes TOTACC o 38 3.5 5.53 398 12.5

No. of Injury Crashes INJACC o 20 2 2.64 190 (47.7~0) 25.0

No. of Intersection-Type Crashes TOTACC1 o 27 2 4.13 297 (74.6VO) 22.2

No. of Intersection-TYPe Injury Crashes INJACCI o 19 1 2.19 158 (39.7%) 36.1

Average Daily Traffic on Major Road ADTI, vpd 3,350 73,000 11,166 13,018

Average Daily Traffic on Minor Road ADT2, vpd 21 2,018 410

Peak Truck Percentage PKV.TRUCK 1.70 37.24 8.36 10.95

Peak Turning Percentage PK%TURN 0.00 48.52 6.56 9.47 2.8

Peak Left-Turn Percentage PK%LEFT 0.00 25.26 6.56 9.47 2.8

Peak Through Percentage on Majol- Road PK%THRU 1 67.77 100.0 96.5 I 94.41

Peak l.eft-Tum Percentage on Majo~ Road PK%LEFT I 0.00 13.96 1.51 2.78 5.6

Peak Thl-oogh Percentage on Minol- Road PK%T11RU2 0.00 68.1 12.0 16.37 17.1

Peak Left-’I’um Percentage on Minor Road PK%LEFT2 0.00 100.00 37.5 40.58 5.7
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued)
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation I Miu. \ Max. I Median I Mean I Frea. I Y.Zero.

Median Width on Major Road MEDWIDTH1, feet o 36 2 3.78 43.1

Median Type on Major Road MEDTYPE
No Median 31 (43,1%)

Painted 17 (23.1%)
Curbed 22 (30.6%)
Other 2 (2.8 V,)

Angle Variable HAU, degrees -20 30 0 0.868 77.8

Longitudinal Sight Distance on Major Road SD1, feel 400 2000+ 1500 1430+

Left-Side Sight Distance on Minor Road SDL2, feet 324 2000+ 1438 1358+

Right-Side Sight Distance on Minor Road SDR2, feet 215 2000+ 1430 1377t

Degree of Curve HEi-i = (1/nj~ DEGHi, deg~l 00 ft o 233,3 0 5.01 56.9

Curve Grade Rate VE1-1 =(1/m)~(!Agil/Li),%/100 ft o 12.j o 0.70 61.1

Crest Grade Rate VCEI-1 = (1101)1 (lAgil/Li), ~0/loo ft o 12.5 0 0.50 75.0

Average Absolute Grade on Major Road ABSGRD 1, ‘h o j.8 0.4 0.98 38,9

1 ft = 0,305 In
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TABI.E 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued)
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Min. Nlax. Median Mean Freq. O/OZerO

Speed Limit on Major Road SPD1, mph 25 65 55 53.68

Speed Limit on Minor Rwad SPD2, mph 25 so 35 33.35

Light at Intel-section LIGIIT O=nO 40(55,6%)

1 = yes 32 (44.4%)

Terrain Flat $9(68.1%)

Rolling 14(19,4VO)

Mountainous 9 (12.5Yo)

STATE O=CA 54 (75.OVO)

I=MI 18 (25.OYO)

1 mph= 1.61 km/h
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TABI.,E 7. Summary Statistics: 49 Signalized Rural Intersections
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median Mean Freq. Y.Zero
I

No. of Crashes TOTACC 2 48 21 20.8 1017 0.0

No. of Injury Crashes INJACC o 25 7 7.47 366 (36.OYO) 4.1

No. of intersection-Type Crashes TOTACCI 1 37 17 16.1 790 (77.7%) 0.0

No, of Intersection-Type Injury Crashes ~JACCI o 21 6 6.14 301 (29.6Yo) 4.1
I

Average Daily Traffic on Major Road ADTI, vpd

Average Daily Traffic on Minor Road ADT2, vpd 940 12,478 3,670 4,367

Peak Truck Percentage PK%TRUCK 2.69 45.43 7.71 8.96

Peak Turning Percentage PK%TURN ] 7.07 I 72.66 I 34.48 I 35.64 ] II
Peak Left-Turn Percentage PK%LEFT I 4.20 I 37.07 \ 17.97 I 18.17 I II
Peak Through Percentage on Major Road PK%THRU1 I 18.01 I 96.73 ] 73.77 I 71.19 I I i
Peak Left-Turn Percentage on Major Road PKY.LEFT1 [ 1.78 [ 36.67 [ 12.99 I 14.71 I II
Peak Through Percentage on Minor Road PK%THRU2 I 8.45 I 84,09 / 41.97 I 43.90 I II

Peak Left-Turn PerccnP~ge an Minor Road PK%LEFT2 2.50 75.73 24,88 28.69 I

61



TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued)

Four-legged intersections oftwo-lane roads, California and Michigan, 1993-1995

Variable aud Abbreviation Min. Max. Median Mean Freq. YOZero

Roadside Hazard Rating HAZRAT 1 6 2 2.35

1 10 (20.4VO)

2 20 (40.8VO)

3 14 (28.6Yo)

4 3 (6.lYo)

5 1 (2.OYO)

6 1 (2.OYO)

No. of Res. D1-iveways on Major Road NODRWYR1 o 6 0 0.67 33 71.4

No. of Conlm. Driveways on Major Road NODRWYC1 o 11 2 2,35 115 32.7

No, of Driveways on Major Road NODRWY1 o 15 3 3,02 148 28.6

No. of Res. Driveways on Minor Road NODRWYR2 o 8 0 0.94 46 65.3

No. of Comm Driveways on Mirror Road NODRWYC2 o 11 3 2.24 110 22.4

No. of Driveu’ays on Minor Road NODRWY2 o 11 3 3.18 156 12.2

Left-Tunl Vanes on Major Road LTLN1 o 2 2 1.69 14.3
0 7 (14.3%)

1 1 (2.070)
2 41 (83.77,)

Right-Turn Lanes on Major Road RrLN 1 0 2 1 0,98 42.9

0 21 (42.9VO)

1 8 (16.3 Y”)

2 20 (40.8UA)
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TABLE 7. Summary Statistics: 49 Signalized Rnral Intersections (continued)
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995

Variable aud Abbreviation Min. Max. Median Mean Freq. Y.Zero

Lefi-Tum Lanes on Minor Road LTLN2 o 2 2 1.24 34.7
0 17 (34.7VO)
1 3 (6.170)
2 29 (59.2%)

Right-Turn Lanes on Minor Road RTLN2 o 2 0 0.73 53.1
0 26 (53.lYo)
1 10 (20,4%)
2 13 (26,5%)

Median Width on Major Road MEDWIDTFI 1, feet o 6.5 0 0.58 87.8

Median Type on Major Road MEDTYPE
No Median 43 (87,8%)
Painted 1 (2.0%)
Mixed 5 (10.2YO)

Angle variable HAU, degrees -45 40 0 0.102 67,35

Longitudinal Sight Distance on Major Road SD1, feet 267 2000+ 1538 1454+

Left-Side Sight Distance on h4ajo1-Road SDL1, feet 186 2000+ 612 833+-

Longitudinal Sight Distance on Minor Road SD2, feet 390 2000+ 1333 1406+

Lefi-Side Sigh( Distance on Minor Road SDI.2, feet 253 2000+ 825 1007+
—

ft = 0.305 n]
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Crash Data Versus Intersection Class and State

Table 8 is an extract from Tables 5,6, and 7, comparing the mean number of crashes per intersection
for tbe tkee intersection classes. It indicates that four-legged intersections have from 1.42 to 1.81.
times as many crashes as three-legged intersections. The higher ratio comes into effect as the crash
severity and the intersection-relatedness increase. This is consistent with the rough nde of thumb

TABLE 8. Mean Number of Crashes per lntersectiOn by Crash Variable and intersection
Class

three-legged four-legged signalized

TOTACC 3.88 5.53= 1.42x3.88 20.8=3.76x5.53

TOTACCI 2.62 4.13=1.58x2.62 16.1=3.90x4.13

INJACC 1.61 2.64=1.64x1.61 7.47=2.83x2.64

~JACCI 1.21 2.19=1.81x1.21 6.14=2.80x2.19

that a four-legged intersection behaves like a pair of three-ll~gged intersections, with a consequent
crash ratio of 2. Note that average major and minor road AOT’s, ~T 1 and ~T2, in Tables 5 ancl
6 for three-legged and four-legged intersections, respectively, are very nearly equal, and thus tha~
the comparison of three-legged and four-legged intersections is j ustifiable.

Whh regad to the signrrlized intersections, Table 8 indicates that they have from 3.90 to 2.80 times
as many crashes as four-legged intersections. These two intersection classes have in common four-
leggedness, but otherwise are quite different (lanes, control, and ~T)I. Nonetheless, it appears that
intersection-relatedness, i.e., all crashes versus those satisfi]ing the BMI criteria (see p. 40), has a
negligible effect on the crash ratio, but that the fraction of serious crashes is lower at signalizeci
intersections than it is at the four-legged intersections.

Table 9 provides a decomposition of crashes by seventy and State for the three intersection classes.
Whh respect to State, it indicates that lMichigan crashes tend to be less severe than Cali fomia crashes
for all classes, regardless of intersection-relatedness. Regardless of State, signalized intersections
have the lowest percentage of serious crashes and four-”legged intersections have the highest
percentage. Intersection-related crashes (TOTACCI) have a slightly higher tendency to be seriou!]
than all crashes (TOTACC) for both States and all three intersection classes.

The data in Table 9 are represented in another way in Table 10. Table 10 indicates that CaIifomi~
is rmderrepresented in crashes in both the four-legged and si[inalized intersectiOn samples and pafib{
underrepresented in the thee-legged intersection sample. It also shows that such under-
representation decreases for serious crashes and that for the three-legged intersections, Cali fomi a
is ovemepresented in serious crashes. The modeling later in this report will attempt to sort out
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BIVAWATE STATISTICS

To prepare for model development, it is appropriate to ask what variables correlate strongly with
crash counts and to note the mutual correlations of highway variables with one another.

In the tables that follow, correlation coefficients between variables are shown, along with P-values,
for each of the three data sets. Recall that the P-value is the estimated probability that the measured
correlation coefficient would be at least as far from 2 as it is found to be if the true cor!-ciatioii
coefficient for the population from which the sample is drawn is zero. A small P-value indicates that
a correlation is significant, a large one indicates that no particular significance can be attached to it.
The correlation coefficient summarizes the sample: if it is positive, the variables compared tend to
increase together in the sample; if it is negative, they tend to decrease together. If the correlation
coefficient is fa from zero and its P-value is small, the sample is unlikely to have been drawn from
a population where the true correlation is zero; if the correlation coefficient is close to zero and its
P-value is large, the sample resembles a sample drawn randomly from a population whose overail
correlation coefficient is zero.

Other cautions should be offered in the interpretation of comelation coefficients, If a variable
correlates strongly with, say, number of crashes, it may be that the variable is not in itself influential.
but that it happens to correlate strongly with another variable that is influential. Likewise, if a
variable seems to have a weak correlation with the number of crashes, it may be in part because the
influence of the variable is masked by the presence of other more influential variables. The poinl
of modeling is to determine the leading influences and then discover secondary influences, e.g.,
crashes may be strongly dependent on ADT, but after ADT is properly taken into account, the
residual, the portion of crash count that cannot be expressed in terms of ADT, may be strongly
correlated with another variable.

Crashes Versus Other Variables

TabLes 11, 12, and 13 exhibit correlation coefficients and P-values between crash courr!s and other
variables for the three data sets.

Table 11 exhibits the correlations between intersection crashes and highway variables for the three-

legged intersections. Major and minor road ADT’s correlate positively with crashes, as expected.
Peak turning percentages also correlate with crashes, both positively and negatively. Since these
turning percentages correlate with each other, it is not immediately clear what the chief influence
are. mile HAZRAT is insignificant, number of driveways correlates positively with crashes and
median width correlates negatively; neither result is unexpected. The angle variables HAU and DEV
are both significant, with HAU more so than DEV. The sign, however, is no[ what the Kulmal]
(1995) study suggests, but it is consistent with the work of Vogt and Bared ( 1998) for three-legged
intersections. Sight distance is not significant, although minor road sight distance left is nrarginall:y
significant. Both left and right turns from the minor road are affected by sight distance left. The
horizontal variable HEI- 1 and the vertical variables VI-1 and VEI- 1 are significant. LIGHT and
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TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Three-Legged Intersections

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95

Highway Variable TOTACC INJACC TOTACC1 lNJ.4CCI

COrr. P-value CoII. P-value CoI-r. P-valtle COrr. P-vah]e

ADT1 0.3623 0.0007 0.3383 0.0016 0.3810 0.0003 0.3223 0.002E

ADT2 0.5009 0.0001 0.3780 0.0004 0.5007 0.0001 0.4315 0.0001

PK%TRUCK

PK%TURN

PKY”LEFT

PK%THRU1

PKV”LEFT1

PKYOLEFT2

-0.2j02 0.0217

0.2j74 0.0181

0.2323 0.0335

-0.2170 0.0474

0.2786 0.0103

-0.2096 0.0588

-0.1540 0.1620

0.2362 0.030j

0.2142 0.0504

-0.174j 0.1123

0.2612 0.0164

-0.1628 0.1440 r-0.2662 0.0144 -(). 1596 0.147C

0.3113 0,0039 ().2X1 1 0.0096

().2X34 ().0()9() 0.2574 OOIXI

-0.2X19 0.0094 -0.2242 0.0403

0.3098 0.0041 0.28X4 () ()()78

-0.1900 0.0873 -0.1446 0.1950

HAZRAT -0.0720 0.5150 0.0449 0.6850 -0.0419 0.7050 0.0j95 0.5907

NODRWYI 0.3888 0.0003 0.1591 0.1484 0.4132 0.0001 0.1876 0.0874

“>TLN 1 -0.1753 0.1106 0.0190 0.863j -0.1347 0.2218 -0.0086 0.9382

%TLN1 -0.1203 0.2757 0.0041 0.9704 -0.0717 0.516X -0.0242 0.X267

rrLN2 0.1691 0.1241 0.1579 0.lj15 0.1563 0.1556 0.1564 0.1553

%TLN2 0.lj52 0.lj86 0.1210 0.2728 0.1519 0.1677 0.1411 0.2005

MEDWIDTHI -0.2557 0.0189 -0.1252 0.2j66 -0.2259 0.03XX -0.1223 0.2679

HAU 0.2871 0.0081 0.3817 0.0003 0.2265 0.0383 0.3753 0.0004

DEV 01743 0.1127 0.2422 0.0264 0.1332 0.2269 0.2401 0.027X

RSD 1 0.0775 0.4836 0.0778 0.4818 0.1126 0.3079 0.0736 0.5061

RSDL2 0.1597 0.1467 0.1264 0.2520 0.0908 0.4116 0.1143 0.3006

RSDR2 0.0684 0.5366 0.1006 0.3625 0.0626 0.5717 0.0X61 0.4361
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TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Three-Legged Intersections (continued)

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95

1

Highway Variable TOTACC INJACC TOTACCI INJ.ACC1 !

Corr. P-value Corr. P-value COrr. P-value Corr. P-value

HI-1 0.0552 0.6181 0.0834 0.45J7 0.0489 0.6590 0.0753 o,~~j~

HEI- 1 0.2366 0.0303 0.1786 0.1041 0.1946 0.076) 0.1676 0.1275

VI- 1 0.1742 0.1131 0.1614 0.1426 0.2437 0.02jj 0,2287 0.0364

VEI. 1 0.1673 0.1283 0.1530 0.1647 0.2208 0.0436 0.2060 0.0601

VCI- 1 0.0251 0.8210 0.0513 0.6429 0.0637 0.5647 0.0676 0.5410

VCEI- 1 0.1321 0.2308 0.1234 0.2633 0.1774 0.106j 0.1922 0.0799

ABSGRD 1
1

0.0099 0.9288 0.1158 0.2942 0.0492 0.6567 0.0931 0.3997

SPD 1 -0.3688 0.0006 -0.1314 0.2334 -0.350Y 00011 -0.1591 o.14x3

7PD2 -0.1133 0.3047 0.0174 0.8753 -0.0208 0.8513 0.0664 0.5483

,lGHT 0.3290 0.0022 0.2163 0.0481 0.3242 0.0026 0.2078 0.0579

;TATE 0.1459 0.1853 -0.0823 0.4568 0.0327 0.7680 -0.1054 0.3402

major road speed (SPD 1) correlate positively and negatively, respectively, with crashes, but they also
correlate positively and negatively, respectively, with minor road ADT (cf. Table 15), and this
may be an exmple of one variable representing another. The same applies to Peak Truck
Percentage, which correlates negatively with both crashes md ADT (Tables 11 and 15). The
variable STATE does not seem to play an important role in three-legged intersection crashes.

In Table 12, similar correlations are found between crashes on. four-legged intersections md highway
variables. ADT1 is a bit less significant than in the three-legged case. Peak turning percentages
correlate with crashes, but the minor road turning percen~ages are less significant. HAZRAT
remains insignificant, but now it is joined by number of driveways and median width, which are alsc,

insignificant. The typical Huard Rating and number of driveways at foLlr-iegged iIllcrsect iOIISarc
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TABLE 12. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Four-Legged Intersections

72 mral intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95

HighwayVariable
1

TOTACC INJACC TOTACC1 IhJACCI

COrr. P-value Corr. P-value con. P-value con. P-\,alue

ADT1 0.1519 0.2027 0.3088 0.0083 0.1642 0.1682 0.270j 0.0216

ADT2 0.4801 0.0001 0.3123 0.0076 0.4612 0.0001 0.2945 0012(

PKYoTRUCK

PK%TURN

PKY”LEFT

PK%THRU1

PK%LEFT1

PKYOTHRU-2

PKY.LEFT2

B

-0.3035 0.0096

0.3225 0.0057

0.3117 0.0077

-0.3022 0.0099

0.3532 0.0023

0.1688 0.1625

-0.1021 0.4003

I

-0.3154 0.0070

0.1651 0.1659

0.1598 0.1799

-0.1457 0.2219

0.2020 0.0889

0.0813 0.5033

-0.0883 0.4674

-0.2932 0.0124

0.3400 0.0035

0.3258 0.00j2

-0.3263 ().0052

0.3794 0.0010

0.2013 0.0948

-0.1088 0.3702

-0.3003 0.0104

0.1810 0.1282

0.174j 0.142C

-0.1647 0.1668

O.zlgo 0.0645

0.1081 0.3729

-0.0961 0.4288

HAZRAT
I

-0.1663 0.1628 -0.1452 0.2237 I -0.1367 0.2j21 -0.1294 0.2789

VODRWY1
1

0.1780 0.1346 0.0389 0.7455 0.1702 0.lj28

:TLN1

lTLN 1

LTLN2

KTLN2

0.0132 0.9121

-0.0127 0.91j6

-0.0450 0.7076

0.2016 0.0895

-0.0132 0.9124

MEDWIDTH 1
1 -0.1579 0.1852 0.0102 0.9324 -0.1172 (1..727(1 0.0289 0.8093

HAU 0.0101 0.9330 -0.0572 0.6333 -0.0413 0.7307 -0.0940 0,4320

DEV 0.0599 0.6174 0.1381 0.2473 0.0416 0.7289 0.1117 03500

RSD 1 0.0884 0.4604 0.0095 0.9369 0.0619 0.6054 0.0168 0.8889

RSDL2 0.1278 0.2850 0.0110 0.9270 0.0846 0.4800 -0.0004 0.9971

RSDR2 0.3314 0.0045 0.2060 0.0826 0.3420 0.0033 0.2068 0.0814
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TABLE 12. Correlation Coefficients assd P-Values for Crashes Versus Other Variables,
Four-Legged Intersections (continued)

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95

HighwayVariable TOTACC lNJACC TOTACC1 INJACC1

HI- 1

COrr. P-value con. P-\alue Corr. [>-value CoI-r. p-valLl~

0.0396 0.7411 -0.0740 0.5366 -0.0139 0.908 I -0.0487 0.6848

HE1-1 1 -0.0423 0.7240 -0.0481 0.6880 -0.0829 0.4890 -0.0762 0.j249

VI- 1

VEI- 1

VCI- 1

VCEI- 1

&BSG~l I -0.0177 0.8826 -0.0332 0.7822 I -0.0012 0,9918 -0.0140 0.9073

jPD 1 -0.2753 0.0193 -0.0306 0.7988 -0.2477 0.03j9 -0.0007 0.9957

jPD2 -0.0778 0.5158 0.2541 0.0312 -0.0006 0.9963 0.2742 0.0197

LIGHT 0.0393 0.7430 -0.0377 0.7j33 -0.oloj ().9303 -0.0633 ().5<176

3TATE

slightly less than they are at three-legged intersections, and this perhaps is relevant. However,
median width, on average, is as Iligh at four-legged intersections as at three-legged intersections,
with a lower percentage of zero medians at four-legged intersections. Four-1egged geometries,
perhaps, lessen the safety effect of medians.

As with the three-legged intersections, major road turning lanes tend to decrease the number o f
crashes (or are insignificant for injury crashes), while minor road turning lanes increase the number
of crashes or are insignificant. In the three-legged case, minor road turning lanes correlate strongl]t
with minor road ~T, but this is not true for four-legged intersections. Peak truck percentage still
correlates negatively with crashes and positively with ADT (Table 16), but LIGHT, which there i:j
more of on the four-legged intersections, is now insignificant.

Neither angle variable HAU or DEV is significant on the fOur-legged intersections. perllaPs this is
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Signalized Intersections

49 signalized 4-legged mral intersections, 2-lane by 2-lane roads, CA and .MI, 1993-95

Highway Variable TOTACC INJACC TOTACC1 INJACCI

con. P-value Corr. P-value con. P-value COrr. l>-,allie

ADT1 0.0166 0.9099 o.03jo 0.8219 0.0686 0.6393 0.0537 0.7138

ADT2 04490 0.0012 0.1020 0.4857 0.3873 0.0060 0,0392 0.7893

PK%TRUCK 0.2675 0.0631 0.4431 0,0014 0.2760 0.0549 0.4308 0.0020

PKVOTURN 0.2110 0.14j7 0.0147 0.9202 0.1496 0.3049 -0.0642 0.661j

PKYoLEFT 0.2175 0.1333 0.0022 0.9879 0.1489 0.3071 -0.0801 0.5845

PKYoTHRU 1 -0.2693 0.0614 -0.0660 0.6524 -0.2472 0.0868 -0.0086 ().9j33

PK%LEFT1 0.3j57 0.0121 0.1521 0.2967 0.3507 0.0135 0.1450 0.3203

PK%THRU2 0.1482 0.3096 0.1176 0.4210 0.1996 0.1692 0.1686 0.2468

PK%LEFT2 -0.3230 0.0236 -0.2526 0.0800 -0.3629 0.0104 -0.3101 0.0301

HAZRAT
I

0.0136 0.9260 0.0890 0.5433 0.063 I 0.6667 0.1462 0.3163

NODRWY1 0.4005 0.0044 0.1823 0.2099 0.3641 0.0101 0.1021 0.4852

NODRWY2 0.0255 0.8618 0.0179 0.9028 0.0331 0.8212 0.0014 0.9924

LTLN 1 -0.2046 0.1584 -0.0058 0.9683 -0.1022 0.4849 0. I088 0.4j69

RTLN 1 -0.1107 04490 -0.0728 0.6194 -0.1085 0.4582 -0.0824 0.5737

>TLN2 -0.1755 0.2277 -0.0760 0.6037 -0.1838 ().2062 -0.0688 0.6387

LTLN2 0.2425 0.0932 0.1363 0.3j04 0.2216 0.1260 0.1301 0.3730

MEDWIDTH1
I

-0.0394 0.7882 -0.0216 0.8827 00190 0.8968 0.0401 0.7843 !

HAU -0.0070 0.9610 0.0079 0.9j71 0.0535 0,71j3 0.0j33 0.7163

DEV -0.0587 0.6886 -0.1496 0.3051 -0.0874 0.5504 -0.1639 0.260j
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Signalized Intersections (coi~tinued)o

49 signalized 4-legged mral intersections, 2-lane by ~

Highway Variable TOTACC INJACC

Corr. P-value Col-r. P-value

-0.1129 0.4401 -0.0403 0.7832

RSDL 1 I -0.2085 0.1505 -0.1310 0.3695

RSD2 ~ 0.0079 0.9j71 I -0.0165 0.9104

RSDL2 1-0.0615 0.67491-0.0829 0.5713

lane roads, CA and MI, 1993-95

TOTACCT INJACCI

con. P-value COrr. P-value

c

HI- 1 -0.2232 0.1232 -0.1936 0.1825 -0.2398 0.0970 -0.1815 0.2120

HEI- 1 -0.0152 09177 -0.0892 0.5421 -0.0651 0.6j67 -0,1457 0.3178

HI-2 .0,2391 0.0980 -0.2039 0.1601 -0.2230 0.1236 -0.1867 0.1990

HEI-2 -0.1749 0.2295 -0.1540 0.2907 -0.1487 0.3079 -0.1363 0.3503

HICOM -0.3268 0.0219 -0.2815 0.0501 -0.3317 0.0199 -0.2613 0.0697

HEICOM -0.0817 0.5766 -0.1434 0.3258 -0.1186 0.4169 -0.1897 0.1918

VI- 1

VEI- 1

VC1- 1

VCEI- 1

VI-2

VEI-2

VCI-2

VCEI-2

VICOM

vEICOM

VCICOM

VCEICOM

0.0634 0.6654

0.2196 0.1294

0.1942 0.1811

0.0465 0.7511

0.1356 0.3531

0.1486 0.3081

0.1065 0.4663

0.1472 0.3127

[
0.1417 0.3316

0.2188 0.1310

0.1633 0.2621

0.1534 0.2927

0.0277 0.8504

0.1316 0.3674

0.1029 0.4818

0.0069 0.9627

0.0931 0.5246

0.1038 0.4778

0.0355 0.8086

0.0875 0.5501

I
0.0903 0.5372

0.1437 0.3245

0.0676 0.6442

0.081j 0.5779
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0.0113 0.9386

0.1631 0.2627

0.0782 0.5933

0.0069 0.9626

0.1388 0.3417

0.1524 0.2957

0.0988 0.4993

0.1466 0.3147

I

0.0510 0.7230

0.0891 0.5429

0.0302 0.8368

-0.0j49 0.7082

0.1 29j 0,37j2

0.1353 0.3541

0.0729 0.6187

0.1217 0.4050

0.1214 0.4061 0.131j 0.3677

0.1985 01715 0.1530 0.2938

0.1163 0.4263 0.0762 ().(,026

0.1345 0.3570 I 0.0834 0.5687



TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Signalized Intersections (continued)

49 signalized 4-legged rnral intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

HighwayVariable TOTACC INJACC TOTACC1 lXJACC1

Corr. P-value COrr. P-value Corr. P-value Corr. I>-value

ABSGRD1 0.0328 0.8228 -0.0365 0.8032 0.0269 0.8545 -0.0445 0.7614

ABSGRD2 -0.0822 0.5744 -0.0316 0.8294 -0.1005 0.4920 -0.0461 0.7530

SPD 1 -0.1201 0.4111 0.1354 0.3538 -0.0744 0.6112 0.2006 0.1670

SPD2 0.0246 0.8668 0.2031 0.1616 0.0960 0.5118 0.2816 0.0499

PROT_LT -0.2925 0.0414 -0.0767 0.6006 -0.1242 0.395 I o.030- ().s.340

LIGHT -0.1336 0.3601 -0.0670 0.6473 -0.0619 0.6729 -0.0827 0.5723

STATE 0.3690 0.0091 0.1817 0.2115 0.1977 0.1732 0.0481 0.7429

because they are less variable on the four-legged intersections than on the three-legged intersections,
with standard deviations on the three-legged intersections being aboot twice what they are on the
four-legged intersections. Minor road sight distance right is significant on the fear-l eggec!
intersections, an indication that left-turn and through traffic on the minor mad may have a greater
tendency toward crashes than right-turn trafbc. All remaining alignment variables, including grade,
are insignificant .on the four-legged intersections. STATE appews to be significant for fOur-leggetl
intersections, and this is consistent with Table 10.

Correlation coefficients of crashes with other variables for the signalized intersections are shown in
Table 12. Remarkably, ADT1 is insignificant, and ADT2 is insignificant fOr injuv crashes. This
is perhaps due to the relatively small sample size and the presence of a variety of other influential
factors. Peak Trock Percentage, which negatively correlates with ADT (cf. Table 16), altboogh
weakly, has a strong positive correlation with crashes. Peak tLlming percentages have some
significant correlations, positive and negative, with crashes, and they wi II be examined more c Iosel>,
later in this chapter. HAZRAT, channelization, median width, and the angle variables are generallj

insignificant. Median widths are mostly zero, but HAU and DEV, the angle variables, are aboLlt as
variable as in the three-legged intersections and still have a.negligible effect. Sight distances and
horizontal alignment are generally insignificant with the wrong sign. This indicates that when other
factors are ignored, shorter sight distmce and more horizontal curvature lead to fewer crashes. On
the other hand, vertical alignment, although generally insignificant, h~s the right sign: other factorj
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ignored, crashes rise with more grade change per unit distance. Speeds, though genetall!~

insignificant, seem to correlate positively with injury crashes. The existence of a protected left turn,
which correlates positively with major mad ADT, correlates negatively with crashes, as one might
expect. This may, in pall, account for the poor showing of ADT 1. Finally, LIGHT is insignificant.
but STATE shows a positive correlation with crashes.

As a general rule, correlations are similar for TOTACC and TOTACCI, and for INJACC and
INJACC1. However, there are significant differences as one passes fronl all crashes to serious
crashes (from TOTACC to NJACC, or from TOTACCI to INJACCI). Items that stand out include
the following:

. ADT1 and ADT2 are both significant at three-legged and four-legged intersections, with
ADT2 generally more significant; but at the signalized intersections, neither is signi fican!
except ADT2 with TOTACC and TOTACCI.

. PKYoTRUCK correlates negatively with crashes of all types at three-legged and four-legged
intersections and positively at signalized intersections.

o Peak tming percentage variables correlate strongly with crashes of all types at three-leggecl
and four-legged intersections, and with TOTACC and TOTACCI at signalized intersections.

. NODRW1 correlates positively with TOTACC and TOTACCI at all intersection types, bu[
correlates insignificantly with lNJACC and INJACCI at four-legged and signalized
intersections.

. LMEDWIDTH1 correlates negatively with TOTACC and TOTACCI at three-legged and four-
legged intersections, but insignificantly with INJACC and TNJACCI.

. Channelization variables correlate less significantly with lNJACC and fNJACC I than witb
TOTACC and TOTACCI and sometimes have correlation coefficients ofunexpec[ed sign.

o HAU and DEV correlate strongly with all crash types at three-legged intersections

e Sight distance variables generally have insignificant correlation, except for RSDR2 at four-
legged intersections, which correlates positively with all crash types.

. Horizontal alignment variables have insignificant correlation andlor correlation coefficient
with unexpected sign, except for HEI- 1 at three-legged intersections, while HICOkl
correlates negatively with all crash types at signalized intersections (fewer crashes at
signalized intersections with major or minor road horizont~l curves out to 250 feet (76
meters)).
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. Vertical alignment variables are insignificant arrd/or have correlation of unexpected sign,
except for VI-1 and VE1-I at three-legged intersections and VETCOM at signalized
intersections, the effect being stronger for TOTACC and TO~ACC 1than for INJACC and
INJACCI.

. SPD 1 correlates negatively with TOTACC and TOTACCI at ‘!hree-legged and fou--legged
intersections; SPD2 correlates positively with INJA.CC and [NJACCI at four-legged and
signalized intersections.

o LIGHT correlates positively with all crash types at three-legged intersections

e STATE correlates positively with TOTACC and TOTACCI at four- ]egged and signalized
intersections.

. PROT_LT correlates negatively with TOTACC, but nOt sigli ficalltly with INJACC and
INJACCI for signalized intersections.

Information pertaining to TOTACC is summarized in Table 14. Featores not already mentioned that
are related to TOTACC include:

. ADT1 has lessened significance as one passes from three-legged to four -iegged to signalized
intersections.

. LIGHT correlates positively with TOTACC at three-legged and four-legged intersections
(perhaps because lights are placed at high crash locations).

. LTLNI correlates negatively with TOTACC on all three data sets

. At three-legged intersections, HEI- 1 and RSDL2 correlate positively with TOTACC.

. At four-legged intersections, horizontal and vertical variables have correlation coefficients
of mixed signs with TOTACC, while all sight distances have coefficients of appropriate
signs, with RSDR2’S being significant.

. At signalized intersections, vertical variables have positive correlation with TOTACC,
horizontal variables have negative correlation, and sight distance variables have mixed
correlation.

ADT and State Versus Other Variables

It is generally recognized that ADT is the most important explanatory variable in modeling crashes
It is therefore appropriate to make a special effort to determine when other variables are correlated
with ADT so that one can begin to distinguish effects that are properly due to these variables apafl:
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TABLE 14. Correlates of T~3TACC

84 Three-legged Intersections

Positive correlates Negative correlates Insignificant correlates

ADT1*, ADT2* PKVOTRUCK* PKOARIGHTl

PKVO~RN*, PKYoLEFT* PK%THRU1 * HAZRKi (neg)

PKVOLEFT1* PK%LEFT2* (82 int.) RTLNI (neg)

PKY.RIGHT2” (82 int.) MEDWIDTHI * RSD1 , RSDR2

NODRWY1*,HAU*> DEV* SPD1* HI- 1

HEI- 1*. LIGHT* LTLN1 VCI- 1, VCEI- 1

LTLN2;RTLN2,R SDL2 ABSGRD I

VI- 1, VEI- 1, STATE SPD2(neg)

72 Four-1egged Intersections

Positive correlates

ADT2*
PK%TURN*
PKVOLEFT*, PKVOLEFT1 *
PKVOWGHT1*
RSDR2*, STATE*
PKV~THRU2(70illt.)
NODRWY1,LTLN2
ADT1 (P-value= 0.2027)

Positive correlates

ADT2*,PKYOTRUCK *

PK%LEFT1*

NODRWY1*,

NODRWYCOM*

F:*, F,*>STATE*

RTLN2*>PK%TURN

PK%LEFT,VCI- l,VEI-1

VEICOM

3
Negative correlates Insignificant correlates

PK%TRUCK* PK%LEFT2, PKV,RIGHr2
PKV”THRU1* (both neg., 70 int.)
LTLN1 * RTLN2(neg),HAU, DEV
SPD 1“ RSD1,RSDL2,HI-1

HAZUT HEI-1 (neg), VI-I (neg)

RrLNl VEI-l(neg),VCI- l(neg)
MEDWIDTHI VCEI-l,ABSGRDI (neg)

SPD2(neg),LIGHT

49 SiWalized Intersections

Negative correlates

PKO/OTHRUl”
PK”hLEFT2*
PROT_LT*
HI-2*, HICOM”, HI-1
LTLN1,RSDL1

[insignificant” means P-value in excess Of O.20, “*” mea]

Insigllil’iciilll c<)rrelatcs

ADT1,l’,, F2,PKVORIGHTI
PKVOTI+RU2, PK%RIGHT2
HAZRAT,NODRWY2
LTLNl,RTLNl(neg)
MEDWIDTHl(neg)
I-IAU,DEV(bOth neg)
RSDl,RSDL2(b0th neg), RSD2
HEI- 1, HEI-2 (both neg)
HEICOM (neg)
VI-1, VCEI-1
VI-2, VC1-2, VEI-2, VCEI-2,
VICOM,VCICOM, VCEICOM
ABSGW31,ABSGRD2 (neg)

SPD 1 (neg), SPD2, LIGHT (Ileg)

P-value less thm 0.10
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TABLE 15. Correlation Coefficients and P-Values for ADT and STATE Versus
Intersection Variables, Three-Legged Intersections

84mralintersectiolls, major road4-lme, minor legstop-control! ed, CAand MI, 1993-95

Highway ADT1 ADr2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value

ADT1 1.0000 0~1612 0.1429 -0.1156 0.2951

ADT2 0.1612 0.1429 I .0000 0.0000 0.2240 ().0406

STATE 1 -0.1156 0.2951 0.2240 0.0406 I 1.0000 0.0000

PKYoTRUCK

PK%TURN

PK%LEFT

PK%THRUI

PKYoLEFT1

PK%LEFT2

-0.2349 0.0315

-0.1079 0.3286

-0.1319 0.2317

0.1024 0.3540

-0.0353 0.7500

-0.2709 0.0138

-0.2211 0.0433

0.6842 0.0001

0.6658 0.0001

-0.6183 0.0001

0.6404 0.0001

-0.1145 0.3058

-0.0993 0.3686

0.0251 0.8208

0.0530 0.6323

0.0213 0.8477

0.0132 09052

-0.0380 0.7345

HURAT 1 0.1405 0.2025 I -0.1416 0.19901 -0.4795 0.0001

NODRWY1 0.1347 0.2217 0.2166 0.0478 0.242j 0.0262

.TLNI

ZTLN1

;TLN2

lTLN2

0.2027 0.0644

0.2585 0.0176

0.0195 0.8601

-0.1127 0.3076 -0.6794 0.()()(11

-0.0218 0.8442 -0.3067 0.0045

0.4336 0.0001 -0.1217 0.2701

0.0311 0.7786 0.2513 0.0211 0.1744 0.1127

MEDWIDTH1 1 0.0251 0.8211 \ -0.2267 0.0381 -0.3923 0.0002

HAU -0.0164 0.8823 0.1250 0.2574 0.2042 0.0624

DEV 0.0992 0.3691 0.0418 0.7056 -0.0654 0.5545
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TABLE 1S . Correlation Coefficients and P-Values for AD’~ and ST.4TE Versus
Intersection Variables, Three-Legged Intersections (continued)

84rural intersections, major road 4-lane, nlinorleg stop-control! ed, CAalld MI, 1993-95

Highway A.DT1 AD7:2 STATE
Variable

Corr. P-value cm-r. P-value Corr. P-value

RSD 1 0.2673 0.0140 0.0576 0.6030 0.0280 0.8003

RSDL2 0.1149 0.2998 -0.0424 0.7020 -0.0923 0.4038

RSDR2 0.1339 0.2248 0.0034 0.9755 -0.0818 0.4597

HI- 1 0.0765 0.4892 0.0214 0.8472 -0.0258 0.8160

HEI- 1 0.1326 0.2294 0.0347 0.7540 0.1134 0.3043

VI-1

VEI- 1

VCI- 1

VCEI-1

0.2868 0.0082 0.0772 0.4852 -0.0484 0.0623

0.2501 0.0218 0.0509 0.6455 -0.0471 0.6706

-0.0203 0.8545 -0.0719 0.51j9 0.1620 0.1410

0,1607 0.1442 0.0854 0.4401 0.0467 0.6733

ABSGRD1 I 0.1299 0.2389 I -0.0680 0.5387 \ -0.3052 0.0048

SPD 1 -0.0703 0.5250 -0.2895 0.0076 -0.4397 0.0001

SPD2 0.0375 0.7348 -0,1394 0.2061 -0.7916 0.0001

LIGHT I 0.0917 0.4070 I 0.3625 0.0007 I 0.3178 0.0032
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TABLE 16. Correlation Coefficients and P-Values for AW~and STATE Versus
Intersection Variables, Four-Legged Intersections

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95

Highway ADT1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Col-1-. P-value

ADT1 1.0000 0.0000 -0.1083 0.3653 -0.1436 0.2288

ADT2 -0.1083 0.3653 1.0000 0.0000 0.4082 0.0004

STATE 1 -0.1436 0.2288 0.4082 0.0004 1.0000” 0.000c

PKYoTRUCK

PKYoTURN

PK%LEFT

PKYoTHRU1

PK%LEFT1

PK%THRU2

PK%LEFT2

-0.2673 0.0232

-0.3284 0.0049

-0.3205 0.0061

0.3087 0.0083

-0.2754 0.0192

-0.3957 0.0007

0.2937 0.0136

-0.2044 0.0850

0.6402 0.0001

0.5921 0.0001

-0.6207 0.0001

0.5777 0.0001

0.3468 0.0033

-0.0896 0.4609

1

-0.2459 0.0374

0.2795 0.0174

0.2622 0.0261

-0.2240 0.0586

0.2677 0.0230

0.0117 0.9231

-0.0982 0.4186

HMRAT 0.1181 0.3230 I -0.2264 0.0558 ] -0.3059 0.0090

NODRWY1 -0.0582 0.6272 0.2336 0.0483 0.3567 0.0021

LTLN 1 0.0548 0.6474

RTLN1 0.1089 0.3623

LTLN2 ) -0.0736 0.5389

RTLN2 0.0991 0.4077

-0.2563 0.0297

-0.0734 0.5403

0.0935 0.4349

-0.0642 0.5920

-0.8433 0.0001

-0.4261 0.0002

-0.0976 0.4148

-0.0761 0.5250

,
MEDWIDTH1 I 0.2571 0.0292 I -0.2597 0.0276 I -0.3968 0.0006

HAU -0.0431 0.7195

1 004=

-0.0592

DEV -0.0687 0.5663
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TABLE 16. Correlation Coefficients and P-Values for ADT and STATE Versus
Intersection Variables, Four-Legged Intersections (contiI~ued)

72rural intersections, major road4-lalle, minor legs stop-controllcd, CA~~nd MI, 1993-95

Highway ADT1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value

RSD 1 0.0798 0.5054 -0.0628 0.6003 -0.0706 0.j557

RSDL2 0.0589 0.6233 0.0066 0.9560 -0.0072 0.9523

RSDR2 -0.0233 0.8458 0.2311 0.0S08 -0.056j 0.6372

HI- 1 0.0037 0.9754 -0.0549 0.6469 -0.0881 0.4620

HEI-1 0.0080 0.9472 0.3428 0.0032 0.2339 0.0587

VI- 1 -0.0115 0.9237 -0.1108 0.3540 0.1860 0.1178

VEI- 1 -0.0132 0.9122 -0.1220 0.307s 0.1794 0.1316

VCI- 1 -0.0741 0.5365 -0.0976 0.4147 ().2322 0.0497

VCEI-I -0.0215 0.8575 -0.0958 0.4233 0.2107 (),0757

MSGRDI 1 0.0926 0.4392 -0.2053 0.0837 -0.2760 0.0190

SPD1 0.2020 0.0888 -0.3133 0.0074 -0.4738 0.0001

SPD2 0.0858 0.4738 -0.0523 0.6627 -0.5648 0.0001

LIGHT -0.1626 0.1725 0.2560 0.0300 0.3873 0.0008
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TABLE 17. Correlation Coefficients and P-Values for ADT and STATE Versus
1ntersection Variables, Signalized Intersections

49 signalized 4-leg,qed rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-9j

Highway ADT1 ADT2 STATE
Variable

Corr. P-value con. P-value Corr. P-value
!

ADTI 1.0000 0.0000 0.1965 0.1759 -0.4j44 0.001(

ADT2 0.1965 0,1759 1.0000 0.0000 0.2397 0.0972

STATE -0.4544 0.0010 0.2397 0.0972 1,0000 0.000(

PK%TRUCK

PKYoTURNT

PKVOLEFT

?KO/OTHRUl

?KO/OLEFT1

?Ko/oTHRu2

?KO/oLEFT2

-0.2051 0.1575

-0.2818 0.0498

-0.2630 0.0679

0.3358 0.0183

-0.1856 0.2018

-0.3224 0.0239

0.1800 0.2158

-0.1001 0.4938

0.4554 0.0010

0.4940 0.0003

-0.5271 0.0001

0.5179 0.0001

0.1868 0.1988

-0.1472 0.3127

0.1836 0.206;

0.3116 0.029?

().2893 0.0438

-0.1819 ().2 111

0.0997 0.4955

-0.0342 0.8157

-0.0214 0.8839

iMRAT 0.2309 0.1105 -0.1939 0.1818 -0.3096 0.0304

iODRWYl -0.0642 0.6611 0.3133 0.0284 0.3613 0,0108

~oDRwY2 0.1781 0.2209 0.1905 0.1899 -0.0278 0.8495

.TLN1

{TLN 1

.TLN2

<TLN2

0.1756 0.2276

-0.1709 0.2404

-0.3372 0.0178

-0.0651 0.6569

-0.0648 0.6583

0.0284 0.8463

-0.3305 0.0204

-0.0633 0.6657

0.1088 0.4570

-0.0858 0.5578 0.3733 0.0083 0.2100 0.1476

AEDWIDTH1 I -0.0155 0.9159 -0.1377 0.3456 -0.3992 0.0045

IAU 0.1417 0.3313 -0.1621 0.2659 -0.2000 0.1682

)EV -0.1103 0.4504 -0.0192 0.8957 0.0573 0.6956
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TABLE 17. Correlation Coefficients and P-Value:$ for ADT and STATE Versus
Intersection Variables, Signalized Intersections (continued)

I signalized 4-lez~ed rural intersections. Z-lane bv 2-lane roads. CA and .MI. 1993-95. .

Highway ADT1 AD’r2 STATE
Variable

Corr. P-value Corr. P-val~le Corr. P-value

RSD1 0.5043 0.0002 0.0011 0.9940 -0.1830 0.2081

RSDL1 0.3642 0.0101 -0.1004 0.4927 -0.1342 0.3578

RSD2 0.3954 0.0049 0.1536 0.2921 -0.0701 0.6320

RSDL2 0.0701 0.6325 -0.0805 0.5827 -0.0702 0.6317

HI- 1 -0.1852 0.2027 -0.0010 0.9944 0.1156 0.4289

HEI- 1 0.0018 0.9903 0.3390 0.0172 0.1476 0.3115

HI-2 0.1542 0.2900 -0.0449 0.7596 -0.2588 0.0726

HEI-2 0.1706 0.2412 -0.0373 0.7994 -0.2991 0.0368

HICOM -0.0688 0.6386 -0.0266 0.8560 -0.0j03 0.7314

HEICOM 0.0675 0.6448 0.3044 0.0334 0.0234 ().8730

VI- 1 -0.0187 0.8987 -0.0131 0.9287 0.0289 0.8439

VEI- 1 -0.0722 0.6221 0.1015 0.4875 0.1496 0.3048

VCI-1 -0.0985 0.5009 0.0558 0.7036 0.20j6 0.156j

VCEI-1 0.1259 0.3889 0.0336 0.8187 0.0880 0.5478

VI-2 -0.1754 0.2281 -0.1649 0.2j7j -0.lj47 0.2886

VEI-2 -0.1287 0.3783 -0.1801 0.2156 -0.1431 0.3267

VCI-2 -0.1837 0.2064 -0.1725 0.2359 -0.1489 0.3073

VCEI-2 -0.1569 0.2818 -0.1358 0.3523 -0.1089 0.4566

VICOM -0.1553 0.2866 -0.1441 0.3233 -0.1170 0.4234

VEICOM -0.1403 0.3361 -0.1123 0.4424 -0.0605 0.6794

VCICOM -0.1999 0.1685 -0.1364 0.3500 -0.0633 0.6658

VCEICOM -0.0820 0.5754 -0.10j9 0.4688 -0.0566 (),6992
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TABLE 17. Correlation Coefficients and P-Values for ADT assd STATE Versus

Intersection Variables, Signalized Intersections (continued)
49 signalized 4-legged raral intersections, 2-lane by 2-lane roads, CA and Ml, 1993-9j

Highway ADT1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value

ABSG~l -0.0795 0.5873 -0.0396 0.7871 -0.0446 0.761 I

ABsGm2 ~ -0.0075 0,9590 I -0.1583 0.2774 I -0.0037 0.9800

SPD1 -0.1053 0.4713 -0.3336 0.0192 -0.18j3 0.2025

SPD2 -0.1776 0.2222 -0.1849 0.2034 -0.0871 0.5520

PROT_LT
I 0.4829 0.0004 -0.0023 0.9875 -0.7943 0.0001

~LIGHT I 0.2200 0.1288 I -0.0421 0,7739 I -0.2808 0.0506 ~

correlated: if the minor road ~T is high, there will tend to be lighting. At the signalized
intersections, 80°A of which have lighting (see Table 7), there is no correlation with minor road
ADT. On the three-legged and four-legged intersections, LIGHT and STATE are positively
correlated, As noted, Michigan tends to be less rural and to have more mirror road ADT, and hence
more lighting. But LIGHT negatively correlates with STATE on signalized intersections, an
indication that California signalized intersections are more likely to have lighting.

Correlations Bet~veen I Intersection Variables

Tables 18, 19, and 20 show correlations between pairs of intersection variables within the three data
sets. Only those correlations are shown for which P-values are less than 0.10. In addition, rather
than exhibit all peak turning percentage, channelization, aligmnent, and sight distance variables, \vc
only show representative variables from each of these classes,

Items of special note in these tables that have not already been mentioned include the following:

. Wider medians, left-turn lanes on the major road, and fewer major road driveways tend to
go together in the three-legged and four-legged samples.
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TABLE 18. Correlations Between Intersection Variables in the Tl]ree-Legged Sample

VARIABLE

ADTI

ADT2

E
PKOhTRUCK

PK%TURN

SPDI

SPD2

HAZRAT

NODRWYI

MEDWIDTHI

F
DEV

RSDI

Reciprocal Sight D]stance

HEI-I

Horizontal out to 800 ft
B

l:::;:aloutto,ooft

j ABSGRDI

rLIGHT
No= O, YeS=l

1 ft = 0.305 m

POSITIVE COR~LATES N’EGATIVE CORRELATES

~

PK’?4TR UCK, PK%LEFT2

PKY,TURN, PKOALEFT, PKYoLEFTI, NODRW,YI.

ME DWIDTHI, HAU, SPDI ADTI, ADT2, NODRWYI, RSDI.

RS9R2, HEI-1, VI-), VEI-1, LIGHT
1

ADT2, PKoALEFT, PKV,LEFTI , LTLN’2, RTLN2, PK<%THRUI

LIGHT

PKYoTRUCK, HAZRAT, LTLN 1, RTLN 1, ADT2, NODRWYI , RSDI, RSDR2,

MEDWIDTHI, SPD2 Hi-l, HEI-1, VI-I, VEI-1, VCEI-1,

LIGHT, STATE

HAZRAT, LTLN 1, RTLN 1, MEDWIDTH 1, ILIGHT, STATE

ABSGRDI. SPDi

LTLNl, HI-1, ABSGRDI, SPD1, SPD2 I NODRWYI, LIGHT, STATE

ADT2, RSDI, RSDR2, HI-1, HE]-], PK’XrRUCK, PiAZRAT, LTLN 1,

VEI- 1, LIGHT> STATE RTLNl, MEDWIDTH 1, SPDI

PKOATRUCK, LTLNI, RTLN 1, SPDI, SPD2 ,ADT2> NODRWYl, RSDl, Hi-l,

HEI-I. LIGHT

ADTI, HAZRAT, RTLNI, MEDWIDTHI, SPDI, NODRWYI, HI- I, HEI-I, VCI-1,

SPD2, STATE LIGHT

I>K% TRUCK, LIGHT, STATE RSDI, HI- I, ABSGRDI

RSDI, HEI-l I

::ABSGRD’’L”HT+
ADTI, NODRWYI>DEV, HI-1, HEI-1, VI-I> PK”A,TR[JCK, MEDWIDTH 1, HAIJ,

NODRWYI, DEV, RSDI, RSDL2, RSDR2> FJI-1, PK”/.TRUCK> LTLN 1, MEDWIDTH 1,

ADTI, NODRWYI, RSDI, RSDR2, HI-1, IHEI-1,

1

PK”ATRUCK, SPDI

VI-I, VCI-1, vCEI-1, ABSGRDI

‘E1-’’VCESPD2SPD+
IHAZRAT, RTLNI, RSDl, RSDR2, Hi-l, VI-1.

ADT2, PKOATURN, PK”ALEFT> NODRWY I
LTLN2, HAU, RSD 1, STATE
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VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES

E ‘K”A’EF’pKoAT;u2 -:

PK%THRUI, PK”ALEFT2, MEDWIDTH 1, SPDI PK”41’RUCK, PK%TLRN, PK”ALEFT,

PKYoTURN, PKY”LEFr, PK%LEFTI , PK”ATf{RU2, PI<%,. RLCI<, PI<’YoIIHRUI. HAZR.AT,

NODRWYI, RSDR2, HEI-1, LIGHT> STATE LTLNI, MEDWIDTHI, ,ABSGRDI, SPDI

ADT2, PK”ATURN, PK%L:FT, PKOALEFTl, PKY.’TRUCK, PKv”THRUI , FL4ZRAT,

CA= O, MI= I NODRWY1, HEI-1, VCI-1, VCEI-1, LIGHT LTLNl, RTLNI, MEDWIDTHI,

ABSGRDI> SPDI, SPD2
—

PK%TRUCK PK0X1THRU2, LTLN 1, RTLN 1, RTLN2, SPD I ADTI, ADT2, PK%TURN, PK%LEFT,

PKYoLEFT1, HAZRAT, NODRWYI, DEV,
RSDI, RSDL2, f<SDR2, LIG1+”I’, STA”rt.

—

PKUATURN ADT2, PKOALEFT, PK”ALEFTI, PK%rHRU2, ADTI, PKOATRUCK> PK”A,TIIRU 1, LTLS 1,
NODRWY 1, LIGINT, STATE RrLhl i, RTLN2, VEDWIDTH 1, SPDI

SPD I ADTI , PK%TRUCK> PK%THRU 1. I..TLN 1, RTLN 1, ,\r)-r2. l~l<’’f)TLl{Y. Pl<!{,LEFT, f)I<’)<,l.EITl

RTLN2, MEDWIDTHI, SPD2 NODf?WYf. IRSDL2, RS[)R2. I-IEI-I. l.l GHT.
yr~,f:

SPD2 LTLNI, RTLNI, DEV, SPDI NODRWYI, HEI-1, VI-1, VEf-1,
\,Cl-l VCEI-I , STA”rE

—

HAZRAT LTLNI, DEV, RSDI , RSDL2, RSDR2, HI-I, ADT2, PK”ATRUCK, PK0ATHRU2, RTLN I >
ABSGRDI RrLN2, STATE

—

40DRWY I ADT2, PK”ATURN, PK”ALEFT, PK”ALEFTI, RSDI PKOA;”rRUCK, PKY;I’HRU 1, l.”rLN 1, 1<’”1’l.?i1,

RSDL2, RSDR2, HEI-f, LIGH’r> STATE RrLN2, MEDWIDTH 1, SPDI SPD2
—

AEDWIDTHI ADTI, PKY”THRUI, LTLNI, LTLN2, SPDI ADT2, PK%TURN, PK”ALEFT, PKOALEF:l,

NODl<\V}, 1, [.[clrr, STATE
—

,TLN I PKOATRUCK, HAZRAT, RTLN 1, MEDWIDTH 1, ADT2, PK”ATU RN, PK”ALEFT, PKV”LEF71

SPDI, SPD2 NODRWY 1>VCI-1, VCEI-I , LIGtfT, STATE
—

{AU DEV, ABSGRD I
—

)EV HAZRAT, HAU, RSDR2, ABSGRDI, SPD2 PKY;rRUCK, RTLN 1, RTLN2
—

(SD, RcciprOcal HAZRt\T, NODRWYf> RSDL2, KSDR2, HI-1, PK”4rRUCK, PK”XrHRU2, RTf,N I

;ight Distance ABSGRDI
—

iE1-1, Horizontal out ADT2> NODRWYI, STATE SPDi, SPD2

0800 ft

{El- 1, Vertical out 10 RSDL2, VI-1, VCI-I vCEI-1, ABSGRDI f?’rLN2, SPD2

100 ft
—

\BSGRDl HAZRAT, HAU, DEV, RSDI> RSDL2, RSDR2, FII-1, ADT2, PK”ATHRU2, RTLN 1, RTLN2,

VEI-I STATE
—

.IGHT ADT2, PKVOTURN, PKOALEFT, PK”ALEFTI, PKOATRUCK, PK”ATINRUI, LTLN 1, RTLN 1,

NO=o, Yes=l NODf<WYl, STATE RTLN2, MEDwIDTH 1, SPDI

,.. —n?m. -

TABLE 19. Correlations Between Intersection Varizibles in the Four-Lezzed Sample

L ,, “.. ”., ‘,1
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TABLE 20. Correlations Between Intersection Variahl in tl~e Signalized Sample

NEGATIVE CORRELATES

PKYoTURN, PKnALEFT, PK”A{rHRU2>

LT’LN2, STATE

PK%THRUI, SPDI

—

POSITIVE CORRELATESVARI~LE

ADT1 PKOATHRUl , RSD 1, RSDLI , RSD2, pROT_LT

ADT2 Pi<”ATURN, PK”ALEFT, PK%LEFTI >NODRWY I>

RTLN2, HEI-l , HEICOM, STATE

ADr2, PKYoTURN> PKVOLEFT, NODRWY I Al)Tl, HAL R.AT, I.’rLNl.
ME; DWIDTIII, HI-2, 111:1-2

PROT LT, LIGHT

STATE

CA= O, MI= I

SPD2

ADT2, PKYoLEFT, PK%LEFTI, NODRWYI, HE]-),
HEICOM, VEI-1, VEICOM, VCI-2, VCEI-2,

VCEICOM, ABSGRDI

PKVOTRUCK

AOT2, PK%THRUI PI<UATHRU2,

SPD I

PK%TURN

—
RTLN 1, RTLN2, SPD2 ADT2, PKYoTURN, PK”ALEFT,

NODRWYI, NODRWY2, RSDI,

RSDLI, RSDL2, HEI-1, t{ EICOM
VCEI-1, LIGHT

SPDI

Pi<%TRUCK, PK0ATHRU2, LTLN 1, RTLN2, SPD I PK:%LEFT2, NODRWYI,

NODRWY2, RSDI RSDLI, RSD2.

RSDL2 HEICOM, LIGHT

SPD2

RSDI, VCE1-I

ADT2> PKYoTURN, PK”ALEFT, NODRWY2, RS132>

RSDL2, STATE

PK%LEFT2, NODRWYI, RSDL2, LIG}[T

VI-2, vEI-2, VCI-2, VCE1-2, VCICOM, VCEICOM.
PROT LT

NODRWY2, RTLN 1. VCI-I , STATE{AZRA7

PK”ArHRUl, Hi-2, PROT_LT, SPDI>

SPD2

PK”ATHRU2, HAZRAT, SPOI , SPD2

40 DRWY1

40 DRWY2

RTLN2, HAU, STATEJEDWIDTHI

HEI-I , VCI-I STATE

HI-I. HICO,M

.TLN I

+AU

LTLN2, PROT,_LT, SPD2

MEDWIDTHI

HI-I, HICOM

ADTI, HAZRAT, RSDLI , RSD2> RSDL2, HI-1,

HEI-1, tlEICOM, VI-1, VEI-1, VCEI-1, ABSGRDI,

PROT_LT, VEI-1, ABSGRDI, LIGHT

ADTI, PK%LEFT2, NODRWYI, RSDI, RSDLI, Hi-2

HE[-2, ABSGRDI, ABSGRD2

ADT2>PKVOTURN, PKOALEFT, PK0ALEFTl, RSDI,

RSDL2> HI- I, HI-2, HICOM, HE1-I, HE1-2, VEI-1,
vCE1-I, ABSGRDI

PK’%TURN> VI-I. VI-2, VICOM, VET-I> VE1-2, VCI-I

VCI-2, VCICOM, VCEI-1> VCE1-2, VCEICOM,
ABSGRDI> ABSGRD2

—

)EV

R’LN 1, SPDI> SPD2<SD 1, Reciprocal

jight Distance

along Maior Rw.d

PK%THRU2, SPD2

PKO/”Tl-{RUI , SPDI, SPD2

<SD2, Recip. Sight

~ist alonz Minor Rd

HEICOM

Horizontal out to

300ft, All legs

VEICOM, Vctiical f>lKOA,THR U

out to Soo ft,

All legs

ft = 0.305 m
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TABLE 20. Correlations Between Intersection Variables in the Signalized SampIe
(continued]

VARI~LE POSITIVE CORRELATES NEGATIVE CORRELATES

ABSGRD1 PK%TURN, PKV.LEFr> PK.V,T1+RUI, MEDWIDTH I

Major Road RSD1, RSD2, RSDL2, HI-1 >
HICOM, V:-1 , VICOM,
VEI-1, VEICOM, VCI-1>
VCEI-1, VCEICOM,
ABSGRD2

&BsGm2 RSD2, VI-2, VICOM> VEI-2,
Minor Road VEICOM, VCI-2, VCICC~M,

VCEI-2, VCEICOM,
ABSGRDI

LIGHT PK%LEFT2, NODRWY2> PKVOLEFTI, RTLN2> SPDI,

~o=O, Yes=l RSDLI , RSDL2 SPD2, STATE

?ROT_LT ADTI, LTLN1, NODRWYI , STATE
iO=O, Yes=l MEDWIDTH1 , RSD 1,

RSDL1 , HEI-2

o Major road speeds tend to be higher when major road channeiization is present and when
medims are wider in the three-legged and four-legged samples.

o Major road speeds tend to be lower when minor road ADT is higher, when there are more
major mad driveways, when sight distance is restricted, when lighting is present, or when
horizontal or vertical curves are present. This happens in all three data sets.

o Lighting is more likely to be present when minor road ADT is high, when the peak turning;
percentages are high, or when the number of major road driveways is high. This applies tc,
the three-legged and four-legged samples.

o At signalized intersections, protected lefi turns are more likely to occur in California than in
Michigan (17 out of 18 CA signalized intersections have pro!ected left turns, while only ~1
out of31 MI signalized intersections do).

A couple of anomalies are evident from the tables. In Table 19, for the four-legged intersections,
a negative correlation exists between the presence of a left-turn lane on the m~ or road and peak
turning percentages, including major road left turns. When a higher fraction of the traffic is turning,
it is less likely that there is a turning lane. It may be that the motive for installing turning lanes is
more to prevent disruption of through traffic than to assist turning drivers. Another oddity, this tiln,s
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in Table 20 for signalized intersections, is the negative correlation between HAZRAT and VC1- 1,
accompanied by a positive correlation between HAZRAT and VCE1- 1. HAZRAT is measul-ed out.
to 250 feet (76 meters) as is VCI- 1, while VCEI- I is measured out to 800 feet (244 meters). A total
of 37 out of 49 signalized intersections have VCI equal to zero, while 25 out of 49 have VCEI equal
to zero. The two highest hazard ratings occur at intersections with VC1 equal to zero, but with VCE1.

equal to 6.0 and 3.46 (average VCEI is 0.952), and this contributes to the anomalous correlation.

Correlations for Single-Vehicle and Multiple-Vehicle Crashes at Signalized Intersections

For the si~alized intersections, an attempt was made to analyze single-vehicle crashes and multiple-
vehicle crashes separately and to relate them to various flow patterns deli \c(i from [be traffic data.
The variables TOTACCS and TOTACCM, representing a decomposition of TOTACC into sinSle-
vehicle crashes and multiple-vehicle crashes, were compared with the intersection variables and with.
the flow variables Fl, Fz, F,, F~, PRODFADJ, PRODFOPP, ar~dSUMF. The correlation coefficients
and P-values are shown in Table 21.

Conclusions that can be drawn from Table21 with regards to the signalized sample arc:

4 Single-vehicle crashes show a slight negative correlation with major road ADT and major
road flows.

o Multiple-vehicle crashes are strongly correlated with minor mad flows and with the
interaction variable for adj scent legs, as well as with peak truck percentage and left-turn
percentage on the major road.

. HAZRAT’S correlation coefficient has the correct sign for single-vehicle crashes, but is
insignificant, as are the driveway variables.

. Horizontal alignment variables are negatively correlated with both kinds of crashes (one may
speculate that horizontal alignment causes drivers to exert ex!ra caution at signalized
intersections), and protected left turns reduce both kinds of c!-ashes.

* Minor road vertical alignment contributes to single-vehicle crashes, and lighting reduce!j
these crashes significantly.

The correlation of both kinds of crashes with the STATE variable has already been noted, i.e.,
Michigan is overrepresented in crashes. However, since STATE has a strong negative correlation
with PROT_LT, it is not clear which of these two vaIiables has the dominant influence.

Turning Percentage Variables

Intersection crashes are naturaliy related to turning percentages at illterSCC[iOnS. However. sorting

out the relative importance of left turns versus right turns and turns from the major road versus the
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Nlultipie-Vehicle

49 s
Crashes Versus Signalized Intersection Variables

a]i7ed 4-Ie~ued rllral intersections. 2-lane bv 2-lane rn~~~ CA ~nd Ml. 1‘------ ,.==-— .. ---., --- ---—- -.,

Highway TOTACCS TOTACCM

Variable
Corr. P-value COrr. P-vall[e

ADTI -0.1175 0.4213 0.0386 0.7923

ADT2 0.1682 0.2480 0.4545 0.0010

F, -0.1140 0.4365 0.0303 0.8365

F, -0.0722 0.6222 0.0809 0.5807

F, 0.1650 0.2571 0.3048 0.0332

F, 0.0584 0.6904 0.4461 0.0013

PRODFADJ 0.1018 0.4865 0.3931 0.0052

PRODFOPP -0.0588 0.6882 0.1543 0.2899

SUMF -0.0201 0.8907 0.2349 0.1043

‘KO/OTRUCK 0.1853 0.2025 0.2558 0.0761

‘KO/OTURN 0.1132 0.4386 0.2075 0.1526

‘KO/OLEFT 0.1188 0.4161 0.2136 0.1406

‘KO/OTHRUl -0.0793 0.5882 -0.2’763 0.0546

‘KO/OLEFT1 0.1450 0.3203 0.3579 0.0116

JK0ATHRu2 -0.0374 0.7986 0.1664 0,2533

‘KO/0LEFT2 -0.1490 0.3069 -0.3220 0.0240

IAZRAT
1

0.1001 0.4938 -0.0030 0.9838
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TABLE 21. Correlation Coefficients and P-Values for Single-Velhicle and.Mu1tiple-Vehicle
Crashes Versus Signalized Intersection Variables [continued)

49signalized 4.1egged mralintersections, 2-lane by2-lane roads, CAand MI, 1993-95

High}vay
Variable

LTLN1

RTLN 1

LTLN2

TOTACCS I TOTACCM 1

0.0683 0.6410

-0.0727 0.6194

-0.1314 0.368;

-0.1764 0.225:

RTLN2
1

0.2169 0.1345 0.2232 0.1231

MED WIDT1-11 -0.0724 0.6209 -0.0297 0.8395

HAU -0.0737 0.6149 0.0054 0.9704

DEV -0.0708 0.6289 -0.0508 0.7288

RSD 1 -0.1429 0.3275 -0.0965 0.5095

RSDLI -0.1760 0.2265

RSD2 -0.1453 0,3191

-0.1938 0.1821

0.0341 0.815s

RSDL2
I

-0.2095 0.148j -0.0293 0.8415

HI- 1

HE1-1

HI-2

HE1-2

HICOM

HEICOM

-0.1041 0.4766

-0.1815 0.2121

-0.1812 0.2128

-0.1750 0.2292

-0.1924 0.1853

-0.2382 0.0993

0.01j6 0.91j0 ~
I

-0.2258 0.11871

-0.1577 0.2792

-0.3184 0.0258

-0.040 I 0.7529
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and MuItiple-Vehicle
Crashes Versus Signalized Intersection Variables (continued)

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and Ml, 1993-95

Highway TOTACCS T(lTACCkl
Variable

Corr. P-value Corr. P-value

VI- 1 -0.0295 o.&403 0.073j 0.6156

VEI- 1 -0.0421 0.7741 0.2442 0.0908

VCI- 1 -0.0302 0.8367 0.2148 0.1384

VCEI-I -0.1738 0.2324 0.0808 0.5811

VI-2 0.3434 0.0157 0.0856 0.5587

VEI-2 0.3269 0.0219 0.1026 0.4829

VCI-2 0.3238 0.0232 0.0578 0.6934

VCEI-2 0.3051 0.0331 0.1050 0.4729

VICOM 0.2749 0.0559 0.1043 0.4759

VEICOM 0.2629 0.0680 0.1895 0.1922

VCICOM 0.2818 0.0498 0.1264 0.3867 ~

VCEICOM 0.1924 0.1853 0.1315 0.3680

ABSGRD 1 -0.0753 0.6071 0.0487 0.7398 I

msGRD2 0.1030 0.4812

9

SPD 1 0.0794 0.587j

SPD2 0.1588 0.2758 a

PROT-LT I -0.3996 0.0045 -0.2449 0.0899

LIGHT 1 -0.4359 0.0017 -0.0672 0.6464

~ I
STATE 1 0.3356 0.0184 ] 0.3387 0.0173
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minor road, as well as the direction of the effect in each case, is not easy since the turning percentage
variables are strongly related to one another. In Tables 22 and 23, some of the relevant correlation
coefficients are presented.

Table 22 shows the correlation coefficients for the various turning percentages. It supports the con-

ventional wisdom, although not perfectly. PKOALEFT1 correlates positively with PKO/0RIGHT2

TABLE 22. Correlation Coefficients and P-Values for Peak Turning Percentage Variables

Variable Pair 3-legged 4-legged signalized
Corr. P-value COrr. P-value Corr. P-valL1c

PK%LEFT 1
Vs. PKYoTHRU1 -0.8853 0.0001 -0.8964 0.0001 -0.7744 0.0001

PKYoRIGHT1 0.5588 0.0001 0.6519 0.0001 0.2101 0.1473

PKYOLEFT2 -0.2891 0.0084 -0.1704 0.1584 -0.4724 0.0006

PK%THRU2 0.2642 0.0271 ().1307 0.3709

PK%MGHT2 0.2891 0.0084 -0.0109 0.9290 0.3477 0.0144

‘KO/OTHRUl
1s. PKYoRIGHT1 -0.8803 0.0001 -0.9205 0.0001 -0.7813 0.0001

PKVOLEFT2 0.0165 0.8829 0.02418 0.8385 0.0716 0.6248

PKYOTHRU2 -0.29:!7 0.0136 -0.0995 0.4965

PK%MGHT2 -0,0165 0.8829 0.1621 0.1801 0.0491 0.7378

?KO/ORIGHT1
7s PKYOLEFT2 0.2673 0.01j2 0.1077 0.3750 0.3554 0.0122

PKYOTHRU2 0.2686 0.0245 0.0248 0.8657

PKYORIGHT2 -0.2673 0.0152 -0.2670 0.0255 -0.4189 0.0027

?KO/0LEFT2
0s. PK%THRU2 -0.1966 0.1028 -0.6536 0.0001

PK%RIGHT2 -1.0000 0.0001 -0.78’74 0.0001 -0.2543 0.0779

PKYOTHRU2
vs. PK%MGHT2 -0.44?5 0.0001 -0.5657 0.0001
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(exception: the four-legged intersections where the correlation is negligible) and negatively w~th
PKYoLEFT2. Likewise, PKOARfGHTl correlates positively with PKY.LEFT2 and negatively with
PK0ARIGHT2. The positive correlations are expected since the corresponding flows are !revetsals
of one another, The negative correlations result at least in part from the fact that pKO/0LEFT2 and

PK0ARIGHT2 are negatively correlated with one another. The four- lc~:ed intel-sections at-e less
regular than the other two intersection classes. These correlations al-e, of course, based on rough
information since peak hours in the morning and the afternoon were selected in a crude manner and
there is no reason why flows should reverse in any precise way (even if peak hours were selected
with great care).

Table 23, extracted in part from Tables 11, 12, and 13, shows the relationship between the crash
variables and the turning percentages for the three classes ofintersectiolls. What immediately strikes
the eye is that PKYoLEFT 1 is positively correlated with all types of crashes at all types of
intersections, while PK0ALEFT2 (or for that matter PKO/OTHRU1) is negatively correlated with all
types of crashes at all types of intersections. Since PK%LEFT2 = 100 PK%THRU2
PK%RIGHT2, what is being said is that the sum of PKV.TI+RU2 and PKY0RIGHT2 is positively
correlated with crashes. The last two columns of Table 23 confirm this. In general, both
PKV”THRU2 and PKY0WGHT2 are positively correlated with crashes; in cases where one of them

TABLE 23. Correlation Coefficients and P-Values for Crashes Versus Peak Turning
Percentage Variables

PKVOLEFTI PK%THRUI PKoARIGHTl PK(Y, L,EFT2 PK’Y,TIIRU2

TOTACC

3-legged 0.2786,0.0103 -0.2170,0.0474 0.1027,0.3525 -().2()96, 0.0j8S
4-legged 0.3532,0.0023 -0.3022,0.0099 0.205j, 0.0833 -0.1021.0.4003 t).1688,0.162j
si~nalizcd 0.3557,0.0121 -0.2693,0.0614 0.0652, ().656j -0.3230,0.0236 0 14S2, 0.309G

TOTACCI

3-legged 0.3098,0.0041 -0.2819, 0.0094 0.18G7> 0.0890 -0.19 C’O,().0873

4-lcZged 0.3794,0.0010 .0.3263 ,0.0052 0.2235,0.0590 -0.10 ss,0.3702 0.2013,0.0948
signalized 0.3507, 0.0)35 -0.2472, O.OSGS 0,03 Gl,0.80jG -().3G29, [).0104 O.199G, O.l G92

INJACC

3-legged 0.2612,0 .01G4 -0.1745,0.1123 0.0448, 0.6SGI -0,162,8 >0.1440

4-legged 0.2020>0.0889 -0.1457, 0.2219 0.07) 2>0.5521 -0,0883>0,4674 0,08[3, 0.5033
signalized 0.1521,0.2967 -0. OGGO,0.G524 -0.04 S)>0.7427 -0.252.G> 0.0800 0.1176,0.4210

[N JACCI
l-legged o,28S4, o,o07S .0,2242 ,0.0403 0. I05G, ().3389 -(1. 144G, 0.1950
!-legged 0.2190, 0.0G45 -0. IG47,0. IGGS 0.0S8G, 0.4j91 ,-o.09GI. 0.4288 0.10 S),0.3729
;ig”alized 0.1450>0.3203 -0.00sG, 0.9533 -0,1298,0.3742 -0.3101, 0.030) 0.1686, 0.2468

TOTACCS
;ignalized 0.1450,0.3203 -0.0793,0.5882

L

.O.020j, ().S887 -O. !490, 0.3069 -0.0374, 0.798G

TOTACCM

signalized 0.3j79, 0.0116 -0.2763, 0.054G 0,07j9,0.G 14(1 -().32:20, ().()24()

[).2096, (1.oj88
O,oljl, (1.9144

[).1626, 0.2643 I

d0.1900, 0.0s73

0.0275>0.8215
0.[403, 0.33G2

40. IG28, 0.1440
0.0293, ().8098
0.1249, 0.3925

d
‘1.)446, 0.)950

).019G, [).8723
).1224. (1.4022

+

),2[01 ,0.1473

,).13s 3, (1.34.34
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is not (and in those cases, the correlation is insignificant), the other one is still positively correlated
with crashes. Right turns horn the minor road, including right turns on red, are certainly occasions
for crashes. It might be argued that drivers turning left from the minor road are more vigi Iant than
drivers turning right md are at less risk than drivers going through (between legs 3 and 4). Drivers
turning left from the major road, at least at the three-legged and four-legged intersections, nlust be
concerned about both opposing traffic and traffic behind them, whereas drivers turning left from a
stop-controlled minor road have less risk from traffic behind them. According tO Table 22,
PKVOLEFT2 correlates negatively with PKVOLEFT1. This suggests that the negative correlation O:f

crashes with PKO/0LEFT2 may, in part, be a consequence of the positive correlation of crashes with
PK%LEFT1.

Crashes Versus ADT

Examination of correlation coefficients shows that ADT unsupported by other variables, especially
ADT1, plays a smaller role as one passes from three-legged to four-legged to signalized
intersections. To understand this phenomenon better, we examine grouped data in the Inanncrof
Haueretal. (1988). Foreach of thetkee data sets, intersections were divided into four groups by
increasing major road ADT with an effort to equalize thenumberofcrashes in each group to the
extent possible. Likewise, intersections were divided into four grotlpsby increasing minor roacl
ADTwith roughly equal crash counts in each group. Then, 16cells were defined bymeansoftllc
grouping. Ineachcell, thenmber ofintersections wascourlted, alongwith thenumberofcrashe~
(TOTACC) at its intersections during 1993-1995 and the ratio (the a~erage number of crashes per
intersection). The numbers obtained are shown in Tables 24, 25, and 26. In addition, Imarginal
counts were made for the major road ADT groups and the minor road ADT groups of the same
variables (number of intersections, number of crashes, and average number of crashes per
intersection).

Itisevident &omthetables thatsome cells wereempty orsparsely occupied. Forexample, in Table
24, there are no intersections in the highest quartile for major road ADT and the second highest
quartile forminorroad ADT. There arealso twoempty cells in Table 25. Ifthecells were unifonllly
occupied, theaverage number ineacll cell would be84/l6=5.2j, 72116 =4.5, and 49/16 = 3.1 in
Tables 24,25, and 26, respectively.

[n Figures 5, 7, and 9, the marginal distributions with respect. to major road ADT am plotted, and m
FiWres6, 8,mdl O,tllose with respect tominor road ADT are plotted. Thehorizontal variableirl
each case is the median ADT of the group, and the vertical variable is the average number of crashe!;
perintersection inthegmup, Thenumber ofcrashes perintersection generally appears to]ncreasl:
with increasing minor road ADT, with allowances made for noise due to the smallness of the sample
sizes. The number of crashes per intersection versus major road ADT shows a similar but mom
erratic trend, except fortlle signalized intersections (Figure 9). The plot for the Iatter shows ver:!
little change inthecrashes perintersection asmajor road ADTisval-ied. Note the scale.
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TABLE 24. Crashes Versus Grouped Major and Minor Road ADT, Three-Legged Sample
3-legged, 4-lane by 2-Iane, stOp-controlled mral intersections, CA ~_~95

hro. of Intersectlolls
AD T 1

NO. of Cl-ashes
CrasheslIntersection 2,367to ll,917to 15,168 to 17,379 to

11,916 15>167 17,378 33,058
~~ ~

A 15-250 22 5 2 6 :5

18 21 , 7 33 79

0.82 4,20 3.50 5.jO 2.26

D
251-820 11 6 1 7 2j

30 20 6 31 87
2.73 3,33 6.00 4.43 3.48

T
821-1>270 6 4 3 0 13

23 19 33 7j
3.83 4.75 11.00 j.77

1,271-3,001 2 4 2 3 11
9 29 23 24 8j
4.50 7.25 11.50 8.00 7.73

*

41 19 8 16

n

84
80 89 69 88 326

1.95 4.68 8.63 5.50 3.88

3-Legged, 4-Lane by 2-Lane, Stop-Controlled Rural intersections

10

~..

o

CA&Ml, 1993-95

❑

❑

. . .....=

5000 10000 75000
Grouped Major Road ADT

,.

20000 25000

FIGURE 5. Crashe5 Versus Major Road ADT, Three-I, egged Sample
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3-Legged,4-Laneby2-Lane,Stop-ControlledRura Intersecltons,

CA8MI, 1993.95

E

m

m’

500 1000 1500 2000
GroupedMinorRoadADT

FIGUW 6. Crashes Versus Minor Road AD~, Three-Legged Sample

TABLE 25. Crashes Versus Grouped Major and Mino}r Road ADT, Four-Legged Sample
4-legged, 4-lane by2-lane, stop-controlled rural intersections, CAand MI, 1993-95

$0.of lntersectiOtls
{o. of Crashes
;rasheslIntersectiOn

A

+
341-800

D k801-1.051

T

P

AD T
, II

3,350 to 7,685 to 12,001to

7,684 12,000 19,332 I:%0iL

mE
I 17 I 18 I 62 II 97

5.56 18.00 20.67 13.86

6 2 2 0

r

10
72 17 16 105
12.00 8.50 8.00 I0,5C

1 1

18 28 13 13

m

72
99 101 95 103 398

5.jO 3.61 7.31 1.92 5.53
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4-Legged, 4-Lane by 2-Lane, Stop-Controlled Rural Intersections,

0:...... .. .
0 5000

CA & Ml, 1993-95

-..

10000 15000 20000
Grouped Major Road ADi’

25000 30000

FIGUW 7. Crashes Versus Major Road ADT, Four-Legged Sample

4-Legged, 4-Lane by 2-Lane, Stop-Controlled Rural Intersections,

CA & Ml, 1993.95

15 ~~~~~~~~~
m

o
o 200 400 600 800 1000 1200 1400 1600

Grouped Minor Road ART

FIGU~ 8. Crashes Versus Minor Road ADT, Four-Legged Sample
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TABLE 26. Crashes Versus Grouped Major and Min{)r Road ,~DT, Signalized Sample
Signalized, 2-lane by 2-lane, 4-legged rural interse(:tions, C.A and, MI, 1993-9:

No. of Inters ectlOus

NO. of Crashes
A D T 1

Crashes/Intersection 4,647 to 7,581ta 8,834 to 12,826to
7,580 8,833 12,825 25,133

H- ~~ i

A 940-3,003 4 3 1 7 15
70 65 17 98 2j0
17.50 21.67 17.’30 14.00 16.67

D
3,004-4,192 4 3 4 2 13

68 69 119 13 269
17.00 23.00 29.75 6.50 20.69

T
4,193-5,450 4 4 4 1 13

76 78 79 25 258
19.00 19.50 19.75 25.00 19.85

1 1 3 3 8

+, * ;: :: *I &l

Signalized, 2-Lane by2-Lane, 4-Legged Rur:sllntersections,

CA8 MI, 7993-95
*S... ,..

o
0 5000 i 0000 15000 20000

Grouped Major Road ADT

FIGUW 9. Crashes Versus Major Road A.DT, Signalized Sample
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Signalized, Z-1ane by 2-Lane, 4-Legged Rural Intersections,

CA&Ml, 1993-95
35 .. .. ..

2 ~ .-,

~ ,..

0 2000 4000 6000 8000 10000
Grouped Minor Road ADT

FIGUW 10. Crashes Versus Minor Road #,DT, Sigl~alized Sample

A.M. Versus P.M. Truck Percentages

Thelarge amount oftraffic movement data collected forthis repofi permits avarietyofspccial
studies. Table 27isone illustrative example. Forreiated items, seethe appendix.

Table 27indicates thattie tickpercentage issomewhat vaiable, mdthatin themoming, thetmck
percentage ishi@er thanintie evening (except forthe Michigan sigIlalized intersections). Miaou
et al. (1993) recommend that future studies include a time-of-day variable in estimating truck
percentages.

CONCLUSIONS

This chapter began with the development of variables for malysis and modeling. A variety of
variables were constructed relating to crash counts, ADT, peak-hoar truck traffic, tumin:~
percentages, geometry, channelization, alignments, and driveway counts. A variable for State was

defined, underscoring the possibility that in different regior~s andjor epochs, crash experience may
be quantitatively distinct despite similar values for intersection variables.
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TABLE 27. A.M. and P.M. Truck Percentages by State

3-Legged Intersections

California (60) Michigan (24) CA& Ml (84)

W%TRUCK 10.11 10.31 10.17

PMVOTRUCK 9,19 6,$18 8.56

PK%TRUCK 9.52 8.21 9.15

4-Legged Intersections

California (54) Michigan (18) CA& MI (72)

AM%TRUCK 13.76 8,94 12.56

PM%TRUCK 10.98 7.11 10.01

PK%TRUCK 11.98 7.83 10.95

Signalized Intersections

California (18) Michigan (31) CA& MI (49)

AMY”TRUCK 8.34 9.70 9.20

PMYoTRUCK 6.62 10.16 8.86

PKYoTRUCK 7.36 9.89 8.96

Then. in Tables 5, 6, and 7, a summaW of univariate statistics for these variables on the three data
sets was given. More crashes occur at si~alized intersectior~s than at fore-legged intersections, anti
more occur at four-legged than at three-legged intersections (cf. Table 8). Crashes tend tO be mOre
severe in California (Table 9), but more frequent in Michigan (Table 10). While this may, in part,
be attributable to systematic differences in intersection variables between the two States (cf. Tables
15, 16, and 17), it is a reminder that the STATE variable may make an independent contribution.

The chapter also examines correlations between pairs of variables. This includes cmshcs \e!-su!s

other variables (Tables 11, 12, 13, and 14), ADT and STA.TE versus other intersection variables
(Tables 15, 16, and 17), single-vehicle and multiple-vehicle crashes versus other signalized
intersection variables (Table 21), and turning percentage variables (Tables 22 and 23). The most
striking finding is the relevant insignificance Of major road ADT in relation to the signalizef~
intersection crashes (see especially Figure 9). Another finding of impoflance is the negativ,a
correlation between minor mad left-turn percentage and crashes present for all three intersection
classes (Table 23). This, of course, implies a positive correlation between crashes and the sum of
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minor road through and right-turn percentages. Given the range of minor mad left-turn percentages
within and among the three data sets (Tables j, 6, and 7), this seems especially significant. Since
the hazards that a left-turning vehicle faces are greater than those that a right-turning vehicle faces,
the possibility exists that driven m~ing Iefi turns from the mirror road exercise more care than other

drivers approaching the intersection from a minor leg Perhaps more relevant is the fact that since
lefi-turn percentages from the minor road correlate negatively with right-turn percentages from the
minor road, they also correlate negatively with Iefi-tum percentages from the major road. As minor
road left turns increase, major road left turns decrease, and the net effect of the two opposi[e changes
is to reduce crashes.

An issue that will affect the modeling is the multival-iate relationships, especially the relationship
among crashes and pairs of highway variables. Thus, for the signalized intersections, the relative
insignificance of crashes versus major road ADT may indicate the effect of a third variable that
correlates with ADT. Again, for the signalized data, the effect of STATE on crash counts may be
confounded with that of other variables such as LIGHT, PROT_LT, HAZWT, NODR WY 1,
MEDWfDTHl, and even ~Tl, all of which strongly correlate with STATE. The general strategy
will be to see which vwiable has the chief effect, in accordance with common sense, and, thereafter,
to determine which remaining variable, if any, has a significant effect on the residual, ie., the poflion
of the crash count not predicted by the chief variable.
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5. MODELING

In this chapter, we use the sample data to develop generalized line~ models Of the poisso~negative
binomial type for the mearr number of crashes per unit time at an intersection in terms of the
intersection variables discussed in earher chapters. These mcldels summarize the data collected. It
is hoped that they have predictive value for other data sets from the same intersection classes.

The chapter begins with a review of some of the theoretical aspects of model bui Iding and
measurement of goodness of fit. Thereafter, models are built for each of the three classes of
intersections. This is done for each of the four crash variables — TOTACC, TOTACCI, INJ ACC,
and NJACCI. We study how these variables can be represented in terms of maj or and minor road
DT, md then we add variables with the aim of improving the fit and discovering design elements
that might affect safety.

Separate models are also developed for TOTACCS and TOTACCM in the case of the signalized
intersections. These models use only the flows F,, FZ, F3, and F~ as explanatov vari ab~es.

Finally, the main models for TOTACCI are subjected to residual analysis to uncoier systematic
shortcomings.

THEORY

Modeling

We shall use a negative binomial model with mean a generalized linear function of intersection
variables. Thus,

(5.1)

where vi is the mem number of crashes to be expected at intersection number i in a given time

period; xi,, .... x;~, are the values of the intersection variables at this intersection during that time
period (xi, = 1 corresponds to the intercept term); and ~,, ... ~p are coefficients to be estimated by
the modeling. More sensitively, one might say that pi is the grand mean of crashes to be expected
at a hypothetical population of intersections having the same values as intersection number i for the
intersection variables considered. Variables not included in the model account for differences in the
expected number of crashes among members of this population, and these differences are describec,
by the term overdlspersion. See lIauer et al. (1988). The variance (oi)2 of the number of crashes in
this population under the model is:
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(oi)’ = pi + K(p,)2

where K is the overdispersion parameter. The second tem on the right side of this equation
represents the variation in means among different members of the population existing even when all
intersections have the same value for the considered intersection variables. In principle, K could also
depend on these intersection variables, but for simplicity, that possibility is ignored.

Under the negative binomial model, the probability of yi cmshes at intersection number i is given
by:

men K equals O, the negative binomial reduces to the Poisson model. The larger the value of K,
the more variability there is in the data over and above that associated with the mean )i

The coefficients ~j are estimated by maximizing the log-likelihood function L(P, K) for the negdtive
binomial distribution. The likelihood function is the probability that the values y,, .... y~ would be

observed for intersections number 1 though N. If crash counts are independent at the differenl:
intersections, the likelihood is:

and application of the logarithm yields the log-likelihood function:

(5.2)

Here, p = (@l,..... ~P) is the vector of coefficients, yi is now taken to be the observed crash cOLmta.t

intersection no. i, and Yi is given by equation (5.1). The values of ~ and K that maximize the
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function L(P, K) in (5.2) are the estimated coefficient vector ~ and ti~c estimated ovel-dispersion
parameter K The estimated value of )i obtained by substituting ~ and ~ for ~ and K i~lequation
(5.1) is denoted by Y,. For convenience, tbe same letters will often bc LISedfor both the pammeters

and their estimated values, i.e., carets ~) will be omitted in references to ~ and ~.

P-Values and Goodness of Fit

The modeIing of the data in this study was done using SAS and LIIM”DEPsoftware. Along with
approximate maximum likelihood estimates for the regression coefficients, these software packages
yield estimates of the standard error for each coefficient. From these, P-values can be computed for
the null hypothesis that the tme value of some regression coefficient is zero. The z-score of the
estimated coefficient is the estimated coefficient minus zero, divided by the estimated standard error.
The P-value is the probability that a norrnaI random variable has an absolute w~iue larger than the
z-score obtained. If dre P-value is small, we have good evidence that t~te corresponding variable is
siamificant, that the difference between the coefficient estimate and zero arises not from chance, but
from a systematic effect. Even if tie P-value is large, the parametel- estimate has some value since
the null hypothesis that the parameter is zero is a somewhat arbitrary starting point and the estimate
obtained is the one dictated by the data. A large P-value lowers our confidence in the estimate and
indicates that even if the basic model form is correct, the true coefficient may be quite different from
the one estimated. One may expect the true coefficient to be within one or two estimated standard
errors of the estimated coefficient.

Goodness-of-fit measures associated with Poisson-type models have been introduced and reviewed
by Fridstram et al. (1995) and Miaou (1996). For the modeling, we shall use three measures of
goodness-of-fit.

One measure is the ordinary R-squared, or coefficient of determination, used in linear regression
models:

where

Yi = observed crash count for intersection no. i,

—

Y = average crash count for the sample, and

(j.3)

91 = estimated mean crash count for intersection no. i.
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This measure is used because of its great familiarity. In case a model with no variables is used, i.e.,
in equation (5.1), Vi = exp(~o) so that there is only a constant or intercept term in the iinear
expression, the maximum likelihood estimate for Docan he shown to yield

and hence, R2 equals zero
principle, happen that

~?i E j

This model is called the zero model. At tbe other extreme, it might, in

yi = yi

for each i, and hence, R2 equals 1. The value of R* is alway> less tha]l or equal to 1 hy definition.

It is greater tha or equal to zero since maximum likelihood guarantees a result at least as good as
the zero model.

FridstrOm et al. (1995) have pointed out that in Poisson or negative binomial models, R2 is very
unlikely to equal 1 since a Poisson-type variable takes a variety of values other than its mean, and
yl is unlikely to equal the estimated mean $i for each i in a sample of any appreciable size. They
have proposed taking a ratio of R* to its largest expected value P2 under a best fit as a measure of
goodness-of-fit.

A form ofthLs that they recommend for negative binomial models is tile lag-likelihood R-squared,
based on the deviance V of the model. The deviance ofa model m is:

where

is the log-likelihood that would be achieved if the model did give a perfect fit (vi= yi for each i, and

K = O). Such a model is called the full or saturated model by FridstrOm et al. V is the log-
Iikelihood, as in (5.2), of the model under consideration (/Li= ~i). If the latter model is correct, D“’
is approximately a chi-squared rdndom variable with degrees of freedom equal to the number N o f
observations minus the number of parameters. The number of parameters is (p + 1), where p is th{:
number of explanatory variables in the model plus the intercept, and the extra 1 is for the
overdispersion parameter.
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Fridstr@m et al. propose the following measures:

D“

N-2

N-2

2

R’=~PD
P;

(5.4)

(j.5)

(5.6)

Here Do is the deviance of a model with only two parameters — the constant term (intercept) and
the overdispersion parameteL p is the number ofpararneters of the model m under consideration (not
inchrting the overdispersion parameter in the model); and D~mis the expected value of the deviance
in the case where a Poisson model with the same means yi as the model m is the correct one.
Roughly speaking, R~2 indicates how much explanatoW power results from adding the highway
characteristics and RP~2represents this as a fraction of the highest possible expected explanatory
power of any model with the same means as m.

A third measure of goodness-of-fit, proposed by Miaou (1996), is based explicidy on the
overdispersion parameter:

(5,7)

Here, K is the overdispersion parameter estimated in the model, and Km.Xis the overdispersion
parameter estimated in the zero model. Based on simulations, ~Miaouconcluded that this measure
shows promise. It is simple to calculate, it yields a value between Oand 1, it has the “proportionate
increase” property (Miaou proposes as a criterion that independent variables of equal importance.,
when added to a model, increase the value of the measure by the same absolute amount regardless
of the order in which they are added), and it is independent of the choice of intercept temr in the
model.
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Model Building

Adopting Miaou’s parameter as a measure of goodness-of;fit is equivalent to taking the over-
dispersion parameter as such a measure. A smaller overdispersion parameter signifies a better fit.
Such improvement may occur because explanatory variables have been discovered or because the
number of independent variables is large relative to the sample size.

Akaike has proposed a criterion for jud?ing models, and a corrected version of this, applicable to
small samples, has been developed by Hurvich and Tsai. See Miaou (1996, Chapter 4) for a
discussion. This statistic, in a form relevant to negative binomial models, is:

(j,8)

where N is the sample size and p is the number of parameters in the model (excluding the
overdispersion parameter). Models with smaller values ofCAIC~~ are deemed to be better fits. This
measure involves a trade-off between increased probability and a penalty for adding parameters on
small data sets. IfN = ~, the last term is dropped and the uncorrected Akaike criterion results. Even
without the last term, the criterion includes a penalty in the second tel-m for adding parameters.

The model building described in subsequent sections of this chapter is guided by certain principles.
Intersection variables of known importance, namely ADT 1 and ADT2, should be included in the
model. Other variables with understandable inte~retations, i.e., thc,se presented in the previous
chapter (some of which were developed in the course of the modeling), are added to the model
provided they satisfy some combination of the criteria below:

e Engineering and intuitive judgments should be able to confirm the validity and practicality
of the sign and rough magnitude of the estimated coefficient of each variable.

e Among variables that measure strongly overlapping properties, at most one, will be used.

. Examination of residuals yi - $i under a predecessor model not including the variable should
indicate that the variable is strongly correlated with the residual.

e Inclusion of the variable should lead to reductions of the overdispersion parameter and

CAIC~~, increases in the R-squared values, and respectable ?-values for the estimated.
coefficient of the variable to the extent possible.

These criteria are guidelines rather than precise and strict requirements, since model-building is an
@ rather than a science.
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MODELS FOR TH~E-LEGGED INTERSECTIONS

Tables 28, 29, 30, and 31 show negative binomial models of crashes in terms of intersection
variables for the three-legged intersections.

TABLE 28. Negative Binomial Models for Crashes pe!’ Year (TOTACC), Three-Legged
Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT On~y :=1Main M,>del

Intercept -12.9243 -12.2196 -12.2577
(2.3682, 0.0001) (2.3575, 0.0001) (2.3626, 0.0001)

Log of ADTI 1.1989 1.1479 1.1778
(0.2477, 0.0001) (0.2527, 0.0001) (0.2517, 0.0001 )

Log of ADT2 0.3027 0.2624 0.2034
(0.0892, 0.0007) (0.0866, 0.0024) (0.1032, 0.0487)

MEDWIDTHI -0.0546 -0.0551
(in feet), major road (0.0249, 0.0285) (0.0246, 0.0254)

NODRWI, 0.0391 0.0414
driveways (0.0239, 0.1023) (0.0245, 0.091 2)
to 250 ft, major road

PKYoLEFTI 0.0544
major road (0.0471, 0.2479)

N, p 84,3 84,5 84,6

K Q.5256 (0.1366,0.0001) 0.3893 (0.1160,0.0008) 0.3658 (0.1095>0.0008)
R; 0.5158 0.6413 0.6630

R2 0.2294 ‘ 0.4351 0.4473

R;, P; 0.1821,0.5628 0.2247, ~0.5589 0.2275,0.5524
R;. 0.3237 0.4021 0.4119

CAIC.. 381.930 373.887 373.742

1 ft = 0.305 m

Table 28 indicates that the regression coefficient for (the 10200 maior road ADT is about four tO
five times that for minor road ADT, Among the next mos~ si~nificmt variables, as measured b!j

residuals after use of the ADT-only model, are NODRWY 1, MED WIDTH 1, and SPD 1. A second
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TABLE 29. Negative Binomial Models for Crashes per Year (TOTACCI), Three-Legged
Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only IMain Model Variant 1. Variant 2 Variant 3 1
Intercept -16.1636 -15.4661 -16.6179 -15.700s -13.6339

(3.4655,0.0001) (3.4685,0.0001) (3.3126,0.0001) (3.3955,0.0001) (3.0516.0.0001)

Log 1.5023 1.4331 1.6117 1.4962 1.1954

of ADT1 (0.3s07, 0.0001) (0.3608,0.0001) (0.3s41>0.0001) (03s30. 0.0001) (0.3109>0.0001)’

Log 0.2904 0.2686 0.1276 0.1801 0.2646
of ADT2 (0.1001,0.0037) (0.0988,0.006S) (0.1283,0.:1199) (0,,1187,0.1294) (o.lo~4>0.0091)’

MEDWIDTHI -0.0612 -0.06s7 -0.0607

ft (0.0360,0.0888) (0.0384,0.0738) (0.0340>0.0739)

NODRWYl 0.0560 0.0552 0.0597 0.0903

majOr road (0.0289,0.0S2S) (0.0290,0.0S65) (0.0283,0.03S0) (0.0266.0.0007!

PK%TUW 0.0401
(0.021s, 0.0617)

PKYoLEFTI, 0.0764
major road (0.0665,0.2S09)

VEI-1, vertical 0.1180
OUt to 800 ft, (0.0700,0.0919)

major road
4

HAU

J - J

0.0197
angle (0.0174,0.2S91)

N, p 84,3 84,5 84,6 S4, 6 S4, 6

K 0.7332 0.s118 0.4195 0.4416 0.4416
(0.2068,0.0004) (0.1719,0.0029) (0.1478,0.0046) (0’.1s13,0.003s) {0.1642,0.0072)

R; 0.5139 0.6607 0.7072 0.7072
0.7219

R2 0.1666 0.4452 0.4644 0.4757 0.4287

R;, P; 0.1731,0.S322 0.2233,0.S374 0.2491,0.53S6 0.2371,0.S313 0.2278, 0.5196

R;. 0.3253 0.4155 0.4652 0.4462 0.4384

CAIC.. 326.27S 317.141 313.620 315.s00 317.4s0

1 ft = 0.305 m
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TABLE 30. Negative Binomial Models for Crashes per Year (l NJACC), Three-Legged
Intersectiosss

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT On~~

‘aria~

Intercept -13.1685 -12.3246 -11.0061

(3.0319, 0.0001) (2. S0’76, 0.0001) (2.6937,0 .0001)

Log of ADTI 1.202s 1.1436 0.9526
(0.3082, 0.0001) (0.2763, 0.0001) (0.2S43, 0.0008)

Log of ADT2 0.1925 0.1357 0.1499
(0.0931, 0.03ss) (0.1029, 0.1 872) (0.0916, 0.1018)

HAU 0.0230 0.0289

~ngle (0.01 31, 0.0790) (0.01 05, 0.0061)
—

YODRWYl, driveways 0.0481
out to 250 ft, major road (0.0262, 0.0664)

—

ABSGRDI, average 0.1S38
grade, major road (0.1130, 0.103s)

N, p S4, 3 84,4 S4, 6
—

K 0.5649 (0.z032,0.0055) 0.3787 (0.1792,0.0346) 0.258S (0.1848,0,1613)
R~ 0.4535 0.63:16 0.7496

R2 0.1400 0.3755 0.4505

R;, P; 0.1437,0.4039 0.1S41, 0.3966 0.2036, 0.3S37

R;D 0.355s 0.4644 0.5306

CAIC~~ 274.653 269.275 26 S.0S1

ft= 0.305 m

tier of significant vtiables includes PKYOTRUCK and LTLN 1. All of these vatiables correla[e with
NODRfiY 1 and MEDWIDTH1 (see Table 18), and when the latter two variables are added, the
others become much less significant. However, it is also tru[>that NODRWY 1 and MED WIDTH 1
correlate strongly with each other (correlation coefficient -0.37654 and P-value 0.0004).

Nonetheless, we keep them both because they seem to have separate effects in the mtin model o<
Table 28. When we consider residuals for the main model, the angle variables DEV and HAU shov,
positive correlation, as do turning percentage variables. If we add an angle variable and a turning
percentage variable to the model, the overdispersion parameter K reduces to about 0.29, but the P-
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TABLE 31. Negative Binomial Models for Crashes pe!r Year (INJACCI), Tl~ree-Legged
Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT O~]y —~]Varia~t 1

! 1

Intercept -14.6858 -13.9216 -12.4996

(4.0902, 0.0004) (3.7706, 0.0003) (3.5376, 0.0004)

Log of ADTI 1.3145 1.2616 ?.0701
(0.4202, 0.0018) [0.3810, 0.0009) (0.3691 , 0.0037)

Log of ADT2 0.2179 0.1629 0.1657
(0.1076, 0.0429) (0.1097, 0.1373) (0.1019, 0.103s)

HAU 0.0253 0.03s9
angle (0.0205, 0.2179) (0.0138, 0.0205)

NODRWYl driveways 0.0487
out to 250 ft, major rd (0.0302, 0.1068)

VEI-I vertica~ out to 0.1555
Soo ft (0.1075, 0.1479)

N, p 84,3 S4, 4 84,6

K 0.7219 (0.2846, ,01 12) 0.4857 (0.2401, 0.(1431) 0.3295 (0.2723. 0.2263)

R; 0.4725 0.6451 0.7592

R’ 0.1470 0.3674 0.4119

R;, P; 0.1375, 0.384S 0.1786, 0.3S16 0.20S4, 0.3774
R;. 0.3573 0.4680 0.5522

CAICN. 240.718 235.734 233.492

[ ft = 0.305 m

values for the angle variable range from 0.30 to 0.39. We have retained only one variant model ill-.

Table 28. Note-that inclusion of PKOALEFTl in the variant reduces the c~efficient of the log of
ADT2, not unexpectedly, since these variables are correlated.

In Table 29, similar models are shown for TOTACCI. With crashes restricted to those that are
intersection-related, the effect of ADT 1 becomes stronger. Two variant models show the slightly
different effects of two turning percentage variables: one has smaller P-values and a larger R2, the
other has smaller CAICK~ and the other two R-squared measures are largeL they give differing
magnitudes to the minor mad coefficient. A third variant shows that vertical alignment VE1- 1 and
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the angle variable HAU in a suitable combination, but not without each other, have some explanatory
value in place of MED WIDTH 1.

When we turn to serious crashes (INJACC and INJACCI) i:t Tables 30 and 31, the importance of
ADT1 relative to ADT2 continues to increase. In addition, h4EDWIETH 1 ceases to be significant
and HALT becomes an important variable. Recall from Figures 2 and 3 that the sign of HAU is
positive when a driver turning from the major road across traffic need only turn through a small
angle. According to these models, this increases crashes This suggests that perhaps the more
relevant movement is turning from the minor road. A driver ‘turning right from the minor road may
have the iIlusiorr of easy access, but inadequate visibility for traffic on the major road traveling in
the same direction, while a driver turning left will have poor visibility of the tmffic that must be
crossed. Only 17V0of the three-legged intersections had HAU different from zero (cE Table 5), and
the ones with HAU higher than zero had more inju~ crashes than average and the ones with HAU
lower than zero had fewer crashes. Recall from Table 11 that HAU has a strong positive correlation
with all crash types. With MEDWIDTH 1 removed and tIAU added, NODRW 1 and one o f the two
vertical alignment variables VEI- 1 or ABSGRD 1 also contribute to injury crashes in the other
models shown in Tables 30 and 31.

Variables not included in these models, such as STATE, sight disl.anccs, and HE1-I. had very
insignificant P-values after inclusion of the variables shown in the tables.

The three-legged models have the following general features:

. TOTACC and TOTACCI models are similar, INJACC and INJACCI models are simi Iar.

. For all four crash variables, ADT 1, ADT2, and NOI>RWY 1 are influential

. For TOTACC and TOTACCI, MEDWIDTH 1 and turning percentage are influential

. For INJACC and NJACCI, the angle variable HAU and vertical alignment are influential,
and, to some extent, this is also true for TOTACCI.

MODELS FOR FOUR-LEGGED INTERSECTIONS

The models for the four-legged intersections are exhibited in Tables 32, 33, and 34

Table 32 shows models for TOTACC. In the absence of other variables, minor mad ADT appears
to be more influential than major mad ADT. When other variables are added, in particular, tumi n;:
and through percentages, ADT 1 becomes much more influential than ADT2. The variables that
correlate most strongly with the residuals of the ADT-only model are RSDR2, PKO/oLEFT1,
LTLNI S, and STATE, in order. However, when these variables are added to the models, the ones
that are most significant are PKOALEFT1 and LTLN 1S. Both of them correlate strongly with

115



TABLE 32. Negative Binomial Models for Crashes pt;r Year (TOTACC), Four-Legged
Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Main Model Variant 1 Variant 2 Variant 3
1

Intercept -6.9352 -9.46311 -10.1902! -10.9526 -9.7859
(2.3767,0.0035) (2.5991, 0.0003) (3.3126,0.0021) (2.5907,0.0001) (2.6032,0.000:2)

Log 0.4683 0.8503 0.8873 1.0382 0.8s94

of ADTl (0.2330,0.0444) (0.2779,0.0022) (0.2653,0.0008) (0.2870,0.0003) (0.2873.0.00211)

Log 0.5135 0.3294 0.2924 0.2206 0.284j

of ADT2 (0.0896,0.0001) (0.1255,0.0087) (0.1316,0.0263) (0.1219,0.0704) (0.1375,0.0385)

PKY”LEFTI, 0.1100 0.2976 0.1054

major road (0.0412,0.0076) (0.1393,0.0326) (0.0372,0.0046)

LTLNIS -0.4841 -0.6607 -0.5471
(O or 1) (0.2311,0.0362) (0.2347,0.0049) (0.2445,0.0252)

PK%LEFTI -0.0131
squared (0.0094,0.1643)

PKYOTHRU2 0.0220
minor road (0.0107,0.0391)

ABSGRDI 0.1553
major road (0.1123,0.1666)

PK%,TURN 0.0351
(0.0238,0.1404)

100 XRSDM 2.2s4

(looxl/ft) 1 ft = 0.305m (1.503,0.1286)

N, p 72,3 72,5 72,5 ’70,1 72,6

K 0.6144 0.4578 0.4S20 0.36s2 0.41s3
\ (0.156z,0.0001) (0.1307,0.0005) (0.1425,0.0007) (0.1124,0.0011) (0.1147,0.0003)

R; 0.3s01 0.53s1 0.5136 0.5953 0.5780

R2 0.2565 0.3109 0.2520 0.4797 0.4494

R;, P; 0.10S0, 0.6011 0.1623,0.5S58 0.2557,10.5874 0.1575,0.5666 0.1635,0.57’?2

R;. 0.1796 0.2771 0.2557 0.27S0 0.2s22

CAICX, 385.16S 374.94s 377.165 369.S29 374.870
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TABLE 33. Negative Binomial Models for Crashes per Year (TOTACCI), Four-Legged
Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

F
F
Log
of mTl

Log
of ADT2

PKYoLEFTI
major road

LTLNIS
(0 or 1)

PKOALEFTl
squared

PK%THRU2
minor road

ABSG~l
major road

N, p

L
K

R;

L

ADT On~~ Main MOdel Variant 1 Variant 2 Variant 3

, ,

-7.2501 -11.1096 -1(].9008 -? 1.8796 -13.28C5 =
(2.9094,0.0130) (3.3345,0.0008) (3.3257,00010) (3.2980,0.0004) (3.2833,0.0001.)

0.4582 0.9299 0.9325 1.0161 1.2160
(0.2844,0.1071) (0.3433,0.0067) (0.3452,00069) (0.3382,0.0027) (0.3434,0.0004)

0.5311 0.3536 0.3498 0.2866 0.2195
(0.0996,0.0001) (0.1163,0.0024) (0.1300,00071) (0.1336,0.0319) (0.1279,0.086~!)

0.1491 0.1427 0.3854 0.1396
(0.0586,0.0110) (0.0583,0,0144) (0.1674,0.0213) (0.0540, 0.009:7)

-0.2891 -0.4890
(0.2920,0.3222) (0.2970,0.099[1)

-0.0172
(0.0111,0.1221)

—

0.0284
(0.0145,0.051‘r)

—

0.1698
(0.1353,0.2093)

72,3 72,4 72,5 72, 5 70,7
—

1.8814 0.7096 0.6901 0.6548 0.5556
‘0.2267,0.0001) (0.1906,0.0002) (0.1827,0.0002) (0.1779,0.0002) (0.1512,0.0002)
).3338 0.4.637 0.4784 0.5051 0.5498

—

1.2323 0.1587 0.1952 0.1646 0.3675

).0814, 0.5802 0.1334, 0.571s 0.1273, 01.Sb46 0.1410,0.5665 0.1275,0.5470
).1403 0.2334 0.2255 0.248S 0.2332

——

!50.ss7 341.404 342.S41 340.13s 337.S89
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TABLE 34. Negative Binomial ModeIs for Crashes per Year (INJACC and INJACCl),
Four-Legged Intersections

Estimated regression coefficients (estimated standard error and J’-value in parentheses).

Log of ADT2 0.4778 0.3237 0.5138 0.3310
(0.1401,0.0007) (0.1645,0.0491] (0.1604,0.0014) (0,1894, 0.0805)

PKYoLEFTI 0.0994 0.1228
major road (0.0433,0.0216) (0.0614,0.0457)

SPD2 0.0339 0.0429
(in mph) (0.0179,0.0577) (0.0240,0.0740)

N, p 72,3 12,5 72,3 I 72,5

K 0.5741 0.4308 0.9671 0.7178
(0.1821,0.0016) (0.1824,0.0182) (0.2899,0.0009) (0.2716,0.0082)

R& 0.4218 0.5662 0.3449 0.5138

R* 0.2445 0.3565 0.1987 0.3237

R;, P; 0.1197,0.4817 0.1550,0.4654 0.0834,0.4812 0.1214,0.4680

R;, 0.2485 0.3331 0.”1734 0.2593

CAIC., 294.271 289.919 275.196 270.302

1 mph= 1.61 km/h

STATE, ad STATE ceases to correlate significantly i~ith the residual of this new model.
PKOALEFTl and LTLNI S correlate \vith each other as well, having a correlation coefficient of
-0.22S8 and a P-value of 0.0532, but both of them still seem to contribute to the accident count.

The original major road iefr-tum lane variable LTLN1 t~es values O, 1, and 2, but only 4 out of 72
four-legged intersections (see table 6) have exactly one left-turn lane. One can model the left-turn
lanes on the major road using two regression coefficients (dividing the intersections into three
subclasses), but the quantity of data does not support this option. If one uses only the variable
LTLN1, one is adopting the bias that two turning lanes ha,~e double the safety effect of one. Our
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data suggest that two left-turning lanes are less safe than one: :1model with coefficients for each case
gives a larger negative coefficient when there is one turning lane than when there are two. The
variable LTLN1 S takes the value 1 when there is at least o~le lefi-tuming lane on the major road.
This, in effect, divides the intersections into two classes and avoids any assumptions about the
relative safety of intersections with one versus two left-turning lanes. (A similar approach is used
in the next section with the signalized data where PROT_LT indicates at least one protected left turn
on the major road.) Variant 1 is a model that indicates a quadratic dependence of crash count on
PKY.LEFT1. This model does not perform as well as the main model, but is present because
residuals for the main model correlate negatively with PKO/oLEFT1. We will discuss this issue
further in collection with TabIe 33. If LTLNI S is added tc, the Variant 1 model of Table 32, the
quadratic term in PK%LEFT1 becomes insignificant, with a P-value going to 0.3962.

The next most significant variable afier those in the main model is PK0ATHRU2. There are reasons
to be wary of adding two turning percentages because of the strong correlations among ADT 1,
ADT2, PKYoLEFT1, and PK0ALEFT2 (see Tables 16 and 19). Also, two intersections must be
removed from the sample for which the minor legs had no traffic approaching the intersection during
the peak-hour visits. However, if PKO/0THRU2 is added, it is significant. The design variable
ABSG~l is also included in Variant 2.

Variant 3 in Table 32 is obtained by using PKO/.TURN rather than PK.”/oLEFT1 and proceeding to
add significant variables. The average sight distance right from the minor mad in feet, represented
here by its reciprocal multiplied by 100, is known to be correlated with all types of crashes (see
Table 12). Also, it has a strong correlation with tbe residuals from other models, but when it is
added to models, Variant 3 is the only model where its regression coefficient achieves a relatively
small P-value.

In Table 33, similar models are done for TOTACCI. The results are similar except that LTLNI S
is less significant. A version of Table 32, Variant 3, is not shown because the P-values of LTLN 1S
and RSDR2 rise from 0.0252 and 0.1286 to 0.2594 and 0.3 [08, respectively.

We discern again a quadratic dependency on PKYoLEFTI (compare Variant 2 in Table 33 with
Variant 1 in Table 32). A quadratic of the form ax - bx2 with a and b positive has its mmimum when.
~ = ~2b, The two quadratic models have maximum contribution from PKO/OLEFT1 at the values

0.2976/(2x0.01 31) = 11.36 and 0.3854/(2x0.0172) = 11.20, respectively. This suggests that wher.
the left-turn percentage from the major road is less than 110/0, crashes rise with increasing
percentage, but that when it is greater, crashes fall with increasing percentage. Among the 72
intersections upon which the model is based, 5 of them have PKO/”LEFTl in excess of 11O/..

Variant 1 in Table 33 includes LTLNI S, and yields Improvement In K and Rz, bat not in R~,,,ol-

CAICK” or P-values. Likewise, Variant 3 in Table 33 includes the design variables LTLN I S and
AB SGRD 1. Without them, but with PKY.LEFT 1 and PKV.THRU2 retained, in a model for
TOTACCI that we do not display, the overdispersion parameter K is larger (O.6261), R2 is smaller
(0. 1260), and R~ is smaller (0.2261), but CAICXBis also smaller (337.641 ). This is a reminder that
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the various criteria do not always have consistent trends. In addition, the behavior of CAICX,I
~ugge~ts the possibility that a regime is being entered where overfitting occurs. overfitting occurs

when random variation in a set of input variables is USedto explain the random variation in a single
output variable. When the number of input variables is a significant: fraction of the sample size,
some combination of the noises in the input variables may, by coincidence, approxilllate tile
variation in the output variable without having predictive value.

Models for INJACC and NJACC1 are shown ‘UTable 34. Turning percentages are significant for
these models and so is posted miuor road speed SPD2, but other design variables fail to be.
PKY0THRU2 is marginally significant with a P-value of about 0.19, but it has been omitted, in part,
because the interpretsstion is unclear. Since SPD2 correlates negatively with STATE, one might
suspect that its influence is due to that source, but STATE itself is ]qot significant in tbe presence of
the ADT variables and PKY.LEFT1.

The general features of the models for the foLLr-leggedinter~ectiOns are:

. Turning percentage, along with major and minor mad ADT, are influential for all crash
tyQes.

. LTLh~l S, which registers the presence of one or more left-turn lanes on the major road, is
influential for TOTACC and marginally so for TOT.4CC1.

. Grade and poor sight distance right from the minor road are marginally significant for
TOTACC and TOTACCL

. High minor road posted speed appears to contribute to serious crashes.

MODELS FOR THE SIGNALIZED INTERSECTIONS

Negative Binomial Models

The signalized intersectimls present special difficulties As shown in Table 26 and Figure 9, at RI:

appearances, the dependence of crashes on major road ADT i.snegligible, Likewise, the correlatlo~.

coefficient between crashes and ADT 1 is insignificant in Table 1~. An ADT-only model for
TOTACC in terms of the logs of ADT1 and ADT2 actually assigns a negative (but insignificant)
regression coefficient to the log of ADT 1.

Part of the insignificance perhaps stems from the small sample size — only 49 signalized
intersections. However, at signalized intersections, minor and major roads tend to have more equal
standing. If their standing is equal, their ADT’s should enter into any model symmetrically. For
example, the coefficient of ADT 1 would be the same as that of ADT2 except for noise. We ~ave
attempted to address that possibility by using the log of the product, log(ADT 1xADT2), as a vartabl(:
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in some of the signalized models below. At the same time, ADT by itself becomes less important.
Signalized intersections, one may argue, are less stereotypical than other rural intersections. On the
latter, the division between major road and minor road is more pronounced and the turning
percentages on each fall into a narrower range. More important on the signalized intersections, onc
would judge, are the movements of the vehicles through the intersection. Turning percentages, left
and right, from all approaches and flows along each approach are likely to be more determinative
of crashes.

There is also the issue of how to define the major road. Usually, and in this study, it is taken to be
the road with the larger ADT. But if there is significant turning along certain legs, legs of the same
road may have drastically different ADT. Most of the ADT may be on two adj scent legs, say legs
1 and 4, and very little on the other two adjacent legs, legs 2 and 3. See Figure 1. Usually, the major
road has a lower percentage of turning traffic than the minor road, but it is possible that a road with
less traffic would have virtually no turning traffic (all of it through), while the crossroad has much
more traffic and a significant amount of it is turning. In the data, an asymmetry can occur between
minor road turning traffic and major road turning traffic. ‘This can be caused by failure of the
morning and evening peak hours to match up, by unusual travel hours to and from locations, or even
by alternative routes.

Despite these considerations, the models exhibited here take ADT to be primary, in part because of
its familiarity and acceptability to the engineering community and in part to permit comparisons with
other models that use ADT. Yet, it should be recognized that rural signalized intersections are a
transitional class where variables other than ADT may prove to be more appropriate. This is
addressed in the subsection afier this one, where models of single and mu)tiple-vehicle crashes in
terms of traffic flows are briefly investigated.

In Tables 35, 36, and 37 are shown negative binomial models for crashes on the signalized two-lane
by two-lane intersections. ADT-only models are omitted since when ADT1 and ADT2 are
separated, ADT 1 is insignificant and has a coefficient of negative sign, and when they are united in
the form log(ADTl xADT2), the model coefficients are somewhat unstable (SAS and LIMDEP give
rather different values for the regression coefficients, but the same 10S I.ikelihood, indicating that the
mmimum occurs at a hard-to-find set of values on a large relatively flat plateau). When variables
that correlate well with the residuals to these models are added, the models settle dow and the ADT
variables share in the significance.

Table 35 shows models for TOTACC. The existence of one or more protected left turns on the
major road at the signal is an influential variable. It correlates strongly with STATE, as no{ed
earlier, and it is possible that there is a combined effect here. A total of 17 out of 18 California
signalized intersections had one or more protected left turns on the major road, whi Ie only 4 out of
31 Michigan signalized intersections did. Nonetheless, when PROT_LT is added to the mode)
versus STATE, the former improves the model more than the latter, and the correlation between the
residual of a PROT_LT model and the STATE variable is negligible.
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TABLE 35. Negative Binomial Models for Crashes per Year (TOTACC), Signalized
Intersections

Estimated regression coefficients (estimated standard error ad P-value in parentheses).

[Variables Main Model Variant 1

‘ar~

Intercept -6.9536 -6.1236 -6.3658 -5.4091
(2.7911,0.0132) [2.5973,0.0184) (3.3207,0.0S52) (3.0054.0.0718)

Log of ADTI 0.6199 0.6475
(0.2504,0.0133) (0.3156,0.0402)

Log OfADT2 0.3948 0.2104
(0.1737,0.0230) (0.2232,0.3459)

Log of 0.4643 0.3914
ADTI xADT2 (0.1483,0.0017) (0.1732,0.0238)

PROT_LT -0.6754 -0.6110 -0.7181 -0.5980
O=no, l=yes (0.1S24!0.QO02) (0.1507,0.0001) (0.1973,0.0003) (0.1690,0.0004)

PK”/oLEFT2 -0.0142 -0.0134 r
minor road (0.0047,0.0023) (0.0048,0.0052)

PK”ALE~l 0.0220 0.0137
major road (0.0”142,0.1207) (0.0116,0.2388)

VEICOM 0.1299 0.1243 0.1001 0.1044
vertical, all (0.0450,0.0039) (0.0507,0.0142) (0.0508,0.0486) (0.0618,0.0914)

legs

PKY”TRUCK 0.0315 0.0300 0.0353 0.0317
truck ‘~. (0.0143,0.027S) (0.0141,0.0331) (0.0175,0.0441) (0.0167,0.0573)

N, p 49,7 49,6 49,7 49, 6

K 0.1161 0.1186 0.1353 0.1422
(0.0323,0.0003) (0.0317,0.0002) (0.0341,0.000i) (0.0375,0.0002)

R; 0.6490 0.6414 0.5910 0.5701

R2 0.5053 0.5208 0.5134 0.5172

R;, P; 0.1479,0.6262 0.1619,0.6349 0.1059, 0.&163 0.1123,0.6351
R;. 0.2362 0.2550 0.1691 0.1768

CAIC.,, 358.508 356.471 363.937 363.044
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TABLE 36. Negative Binomial Models for Crashes pt~r Year (TOTACCI), Signalized
Intersections

Estimated regression coefficients (estimated standard emor and P-va!ue in parentheses).

Variables Main JModel Variant 1 Variant 2 Variant 3

Intercept -6.0841 -4.9564 -4.1075 -5.4581
(3.3865,0.0724) (3.0779,0.1074) (2.9461,0.1633) (3.1937,0.0874)

Log of ADTl 0.5951 I 0.5995
(0.2847,0.0366) (0.2795,0.0319)

Log of ADT2 0.2935 0.2015
(0.1972,0.1366) (0.1917, 0.2932)

Log of 0.3857 0.3320
ADTI xADT2 (0.1788,0.0309) (0.1’719,0.0534)

PRQT_LT -0.4708 -0.3822 -0.3025 -0.4041
O=no, l=yes (o.zooo>o.o18~) (0.1668,0.0220) (0.1745,0.0830) (0.1883,0.0319)

PKY”LEFT2 -0.0165 -0.0153 -0.0160 -0.0177
minor road (0.0057,0.0036) (0.0060,0.0101) [0.0055,o.oo3a) (0.0050,0.0005)

VEICOM 0.1126 0.1033 0.0996 0.1114
vertical, (0.0365,0.0020) (0.0416,0.0130) (0.0382,0.0091) (0.0326.0.0006)

all legs

PKYoTRUCK 0.0289 0.0268 0.0234 0.0256
truck 0/. (0.0131,0.0276) (0.0131,0.0398) (0.0122,0.0j47) (0.0117,0.0287)

NODRWI 0.0347 0.0407
major road (0.0270,0.1986) (0.0246,0.0983)

N, p 49,7 49,6 49,7 49,8

K 0.1313 0.1354 0.1222 0.1145
(0.0392,0.0008) (0.0390,0.0005) (0.C1374,0.0011) (0.0401,0.0043)

R; 0.5521 0.5382 0.5834 0.6094

R2 0.3650 0.3913 0.4563 0.4327

R;, P; 0.0944,0.5854

~i~~ ‘::*

0.1053,0.5951
R;. 0.1612

CAIC., 342.266
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TABLE 37. Negative Binomial Models for Crashes ~ler Year [INJACC, INJACCI),
Signalized Intersections

Estimated regression coefficients (estimated standard e:mor and P-valL
——

Variables INJACC INJACC1

Intercept -3.2562 -:[.547s
(2.9932,0.2767) (3.0298,0.6095)

Log of 0.2358 0.1290
ADTI xADT2 (0.1722,0.1707) ((1.1757,0.4627)

PRoT_LT -0.2943
O=no,l=yes (o1864,~l144)

PKY”LEFT2 -0.0113 -0.0149
minor road (0.0062,0.067ti (0.0066,0.0250)

VEICOM 0.0822 0.0686
verticai, (0.0551,0.1358) (0.0692,0.18j8)

al! Iegs

PKYoTRUCK 0.0323 0.0282
trfitck ‘/. (0.0146,0.0267) (().0152,0.0628)

——
N, p 49,6 49, s

K 0.1630 0.1433
(0.0662,0.0138) ({}.0692,0.038j)

R; 0.4474 0.4829

R’ 0.3275 0.3488

R;,, P; 0.0420,0.4926 0.066S, 0.456S
R;” 0.08S3 0.14S8

CAIC~~ 28 S.287 265.687 ,

in parentheses).

Other significant vtiables shown in the main model of Table 35 include PKYoTRUCK, VEICOM,
and PKO/.LEFT2.

Crashes rise at signalized intersections with a higher percentage of truck traffic and with more
vertical cuwature out to 800 feet (244 meters) on any or all approaches. Trucks at a signal, as well
as having greater destructive capacity than passenger vehicles, take a long time to engage in turning;
maneuvers and block visibility during this time. In Table 13, almost all vertical variables correlate
positively with crashes, although few have significmt P-~alues. The combination that is mosl:
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significmt in the modeling is VEICOM. VEICOM is an average change of grade per 100 feet (30.5
meters) along both major and minor roads for vertical curves at least partly within 800 feet (244
meters) of the intersection center. One may wonder why VEICOM is more significant than VICOM,
the comparable measure out to 250 feet (76 meters). Signalized intersections are mrely placed
immediately beside vertical curves, but are often found to be displaced from them by hundreds of
yards or meters. The mean, median, and standard deviation of VICOM are 1.79, 1.2, and 0.28,
respectively, while those for VEICOM are 1.88, 1.43, and 0.27. The difference in medians, in
particular, shows that vertical curves partly within 800 feet (244 meters) of the intersection, b:..! ,:o!
within 250 feet (76 meters), increase the average.

Crashes fall with increasing PK%LEFT2, the left-turn percentage on the minor road. PK%LEFT2
is the most significant of the turning percentage variables, but the others are also significant.
PKY0LEFT2 is, of course, equivalent to (100 - PK0ATHRU2 - PK0ARIGHT2), i.e., to the sum of
PKY0THRU2 and PKY.RIGHT2, ad each of the latter two vmiables correlates positively with
crashes (see Table 23). PKO/0LEFT2 correlates negatively with PKO/OLEFT1 and thus the latter
should increase crashes. Variants 2 and 3 in Table 35 show that this is indeed the case, but that the
P-value rises. Note also that the P-value for the log of ADr2 becomes rather large in Variant 2,
presumably due to the strong positive correlation between PKVOLEFT1 and ADT2 (Table 17).

The difference between the Main Model in Table 3S and Variant 1 is in the use of
Log(ADTI xADT2) rather than the individual logs. In fact, Variant 1 gives a smaller value of
CAIC., and a larger value of R2. The decrease in CAIC,,I suggests that Variant 1 may be the
superior model: it has about the same explanatory value, but with fewer variables. 10 the Main
Model, we have elected to exhibit coefficients for ADT 1 and ADT2 separately, partly to allow
comparison with other models, When they are combined in Variant 1, the new coefficient is
intermediate between the separate coefficients. The estimated difference in tbe two coefficients in
the Main Model is, of course, 0.6199-0.3948 = 0.2251. ‘Using the estimated covariance matrix for
the model, we find that the estimated standard error of the estimated difference is [(0.2 S04)Z +
(0. 1737)2 - 2X0.0039226]”2 = 0.2916. This gives a P-value of 0.4401 for testing the hypothesis that
the coefficients are different. In other words, the Main Model does not alIow us to reject the

hypothesis that the regression coefficients of the logs of ADT1 and ADT2 are the same.

The models for TOTACCI in Table 36 are similar to those in Table 35, except that the P-value of

ADT2 increases and the variable NODRW1 is marginally significant in Variant 2 and significant.
in Variant 3. Variant 3 has m unacceptably high P-value for .~T2. NODRWY2 and the combined.
variable NODRWCOM, although positively correlated with crashes, do not achieve as good a P.
value as NODRWY 1. NODRWY 1 also correlates positively with TOTACC, and in a TOTACC
model with the same variables as Variant 2 of Table 36, gives a P-value of 0,2270. Surprisingly,
its P-value in Variant 2 of Table 36, 0,1986, is lower, This is a surprise because TOTACCI attempts
to eliminate driveway crashes with no intersection involvement. We have omitted variant model$s
in which PKO/.LEFTl is used instead of PKO/oLEFT2. In (one such model, the P-value of ADT2
jumps to 0.6481, although other vtiables behave well; in another mo(iel with LOG(ADTI xADT2),
ADT behaves well, but VEICOM and PK%LEFT1 have P-values of 0.2402 and ().3263,
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respectively.

For boti TOTACC and TOTACCI, variables such as LIGNr and LTLNl correlate well with the
residuals of the models shown, LIGHT positively and LTLN1 negatively. When these variables are
added to the models, they are also marginally significant. Holvever, the values of CAICYUdo not
decrease, and concern about overtitting leads us to omit them.

In Table 37, we present one model each for INJACC and ~JACCL The coefficient of the log of
ADT2 is quite insia~ificant because of large standard error. So we only exhibit models using
LOG(~Tl xDT2). Even with these, the P-value deteriorates substantially. In addition, VEICOM
becomes less significant and PROT_LT attains, in the case of rNJACCI, a P-value of 0.5666 (not
shown).

The main features of the signalized intersection models are:

. ~Tl is insignificant for all crash types when ADT2 is present but without other variables.

. PKVOTRUCK and the turning percentages, especially PK0ALEFT2, are significant fot- all
crash types.

. The existence of one or more protected left turns on the major road, as \vell as major and

minor road vertical curves, is significant for TOTACC ancl TOTACCI, becoming less
significant for INJACC and insignificant for IN-JACCI.

o NODRWY 1 is marginally significant for TOTACC and TOTACCI, but not for serious
accidents.

e For TOTACC and TOTACCI models, in general, ADT 1 becomes more significant as
variables are added, while ADT2 gets less significant, sharing its influence with turnin~,
percentage.

Flow Models

The signalized intersections, as noted, behave somewhat peculiarly with respect to ADT. This
suggests a more detailed analysis, making use of flows and crash types. Here we examine a fev
models based on the decomposition of TOTACC into single-vehicle crashes and multiple-vehicl~:
crashes by the variables TOTACCS and TOTACCM. Although many single-vehicle crashes ma!{
in fact be multiple-vehicle crashes in which other vehicles (escape unscathed, we proceed as if thi j
decomposition is valid.

For single-vehicle crashes, one approach is to regard them as functions of incoming flows, wit.1
minor and major legs treated on an equal footing and without interaction terms. An underlying
rationale is that single-vehicle crashes depend on same-direction traffic as well as intersection
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features ether than traffic, such features including perhaps pedestrian traffic, intersection geometry,
roadside huards, obstructions that limit sight diseances, signal timing, etc. Theo one might expect
that the number of such crashes is proportional to some power of the flow. Although such a view
is not particularly consistent with the evidence in Table 21, we pursue the approach and indicate the
outcome.

A negative binomial model with mean number ofsingle-vellicle crashes per unit time ofthe form

is sought with varimce equal to y + Ky2. The unknowns are the multiplicative constant C, the
power a, and the overdispersion parameter K. For a given power a, LIMDEP or SAS wilI choose
the pair (C, K) to maximize the probability (or log-likelihood) of the observed numbers y of single-
vehicle crashes given the observed values of F,, Fz, F3, and Fq. The crude strategy we follow,
suggested by the measure R? , is to vary a and choose the triple (C, a, K) that yields the smallest
value for K (and hence the largest for R;).

When this is done, the resulting model is as follows:

SINGLE-VEHICLE CWSH MODEL. SIGNALIZED INTERSECTIONS

where
w is the mean number of single-vehicle crashes per yem,

the intersection flows are FI, F2 F,, and F, in thousands of vehicles per day, and

the overdispcrsion parameter K = 0.4670.

The constant term -1.9218 has an estimated standard errorcfO.1419 and a P-value of 0.0001, and
the overdispersion parameter 0.4670 has an estimated standard error of 0.1993 and a P-value of
0.0192. Because of the modeling technique, an estimated standard error for the power a = 0.01 is
not available.



The power 0.01 is evidently quite small. Indeed, the so-tailed zero model is not substantially
different from the one above. It is:

p = exp-1,6727

with overdispersion parameter K = 0.4674. Here the intercept -1.6727 has an estimated standard
error of0,1419 and a P-value of 0.0001, and f!le overdispersion parameter has a standard error of
0.1998 aud a P-value of 0.0193. The overdispersion parameter of the zero model is only slightly
larger thm that of the proposed single-vehicIe crash model. Given the size of the standard errors
involved, this suggests that single-vehicle crashes are not appropriately estimated by this model
form.

Turning to the multiple-vehicle crashes, we look for a negative binomial model of the form

p = c x [[F1)”(F4)~+ (F4)”(F,)*+ (F2)”(F3)’* (F,3)’(F,)’+ p(F,F2)’ + p(F3F4)’]

for which there are six unknown parameters: C, a, b, p, c, and the overdispersion parameter K. The
first fonr terms represent interactions of adjacent flows and the last two represent interactions of

opposing flows. Minor and major roads are represented symmetrically in this model form, but left
versus right distinctions are maintained since a need not be equal to b, and adjacent flow interactions
are not assumed to be of the same magnitude as opposite flow interactions, i.e., p need not be equal
to 1 nor are the powers a and b constrained in relation to the power c.

The modeling methodology employed here, similar to that for the single-vehicle crash model, is to
fix the quadruple (a, b, c, p) and apply SAS or LIMDEP to yield a maximum likelihood model for
the observed number y of multipIe-vehicIe crashes given the observed flows F,, Fl, F,, and F,. This
yields values for the pair (C, K). Then the values of the quadruple (a, b, c, p) are varied in such a
way as to minimize K.

The resulting model is the following:
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MULTIPLE-~~EHICLE CRASH MODEL, SIGNALIZED INTERSECTIONS

p = (~X~ -0.4420) X [(~l~d)0”3 + (~4F,)0”3 + (~2F3)0’3 + [~J~l)O’3 + 0.95]

where
y is the mean number of multiple-vehicle crashes pcr year,

the intersection flows are F,, Fz, F3, and Fq in thousands of vehicles per day, and

the overdispersion parameter .K= 0.2936.

The constant term -0.4420 has an estimated standmd error of 0.1015 and a P-value of 0.0001, and
the overdispersion parameter 0.2936 has an estimated standard error of 0.0696 and a P-value of
0.0001. Because of the modeling technique, estimated standard errors for the powers a = b = 0.3,
c = 0, ad p = 0.95 are not available.

These results indicate that the product of opposing flows, at leas[ when summed over both
approaches, does not significantly contribute to the crash rate. The sum of the 0.3 powers of
adjacent flow products is the relevant variable, and a linear transformation is applied to it. If the
flow on any two opposite legs is zero, the mean number of multiple-vehicle crashes per year is
estimated to be exp(-0.4420)x(0 .95) - 0,61. Perhaps the chief point of interest is that the powers
a and b turn out to be at least roughly equal, with values close to those in the models of Tables 35
and 36 (Variant 1). Note also that the overdispersion parameter for TOTACChf, 0.2936, is
significantly larger than those shown in the TOTACC mode Is of Table 35.

Many additional ideas could be explored along the lines intr~duced here. In particular, in view of
Table 21, model forms that stress minor leg flows could be considered. Other crash decompositions

could be considered, including TOTACCI, INJACC, ~JACCI, time of day, or crash tWe.

~SIDUAL ANALYSIS

For the thee Main Models of TOTACCI, from Tables 29, 33, and 36, graphs of cumulative scaled

residuals versus explanatory variables are plotted in Figures 11 through 22, For an explanatory
variable x, a plot is made of J versus the quantity
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(j.9)

called the cumulative scaled residuai. The variable J runs through the set of values that the
explanatory variable x assumes on the data set. The terms in (5.9) are scaled residuals and should
each be approximately unbiased with mem square equal to 1 if the model form and estimated yi and
K are essentially correct. However, if the sum depends in some regulw way on the values of J, then
the model may have missed some systematic effects (e.g., quadratic dependency). If there is no
systematic effect and the terms are otherwise independent, the expected value of the sum is

approximately zero, and its standard deviation is approximately the square root of the number of
observations for which x s J. For the three samples ~ = 9, ~ = 8.5, and ~ = 7, and these
numbers are indications of the permissible order of magnitude of the sum. The cumulative scaled
residuals should represent the net distance traveled afier each step in a random walk that ends at the
sum of the scaled residuals for the entire data set.

For the Main Models in Tables 29,33, and 36, the overall sums of the scaled residuals are 5.7, -0.j,

and -0.2, respectively. Thus, the corresponding graphs should wander from a height of O to these
heights in a random manner.

Figures 11 through 14 refer to the Main Model for T(3TACCI in Table 29 (three-legged
intersections). The explanatory variables are ~T 1, ADT2, IMEDWIDTH 1, and NODRW 1. The
graphs of scaled residuals versus each of these four variables exhibit regions of systematic trends.
This suggests that separate models might capture the crash counts better with variables restricted to
smaller ranges.

Figures 15, 16, and 17 refer to the Main Model for TOTACCI in Table 33 (four-legged inter-
sections). The explanatory variables are ADT 1, ADT2, and PKOALEFT1. Another variable,
LTLNI S, which indicates the presence oflefi-tum lanes on the major road, is marginally significant,
but is categorical in nature and hence does not lend itself to detailed residual analysis. In any case,
it is not included in the Main Model. Figures 16 and 17 indicate that there may be qaadratlc
dependence on ADT2 (Log of ADT2) antior PKV.”LEFTi. Table 33 does include a model (Variant
2) with quadratic dependence on PKV”LEFT2, which appears to be an improvement over the Main
Model according to the various R-squared measures. The horizontal outlicr in Figure 15 is a four-
iegged intersection with a major mad ADT of 73,000, When it was removed from the sample and.
modeling was done without it, there were small but insignificant changes to the estimated regressior(
coefficients and the estimated overdispersion parameter. It was not found to be unduiy influential.
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FIGURE 11. Cumulative Scaled Residual Versus AD?rl for Three-Legged Intersections,
TOTACCI Main Model oflrable 29

The cumulative scaled residual varies from -7.2 to 10.2, ending at 5.7. It is positive for 38 out of
84 intersections. In the middle range of ADT, the model at first overpredicts (negative slope) and
then underpredicts (positive slope).
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FIGURE 12. Crsmuiative Scaled Residual Versus ADr2 for Tb ree-Legged Intersections,
TOTACCI Main Model of Table 29

The cumulative scaled residual varies from -4,5 to 7.9, ending at 5.7. It is positive for 65 out of
84 intersections. For low values of ~T2, the model underpredicts.
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FIGURE 13. Cumulative Scaled Residual Versus MEDWIDTH1 for Three-Legged
Intersections, TOTACCI Main Model of Table 29

The cumulative scaled residual varies from -7.2 to 6.2, ending at 5.7. It is positive for 32 out of
84 intersections. On the eight intersections with median widths fmm 12 to 16 feet (3.7 to 4.9
meters), the model underpredicts on average.
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FIGU~ 14. Cumulative Scaled Residual Versus NODRVIYl for Three-Legged
Intersections, TOTACCI .Main Model of Table 29

The cumulative scaled residuai varies from -3.1 to 10.9, ending at 5.7. [t is positive for 69 out of
84 intersections. men there are few driveways, the model tends to unde~redict crashes.
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FIGU~ 15. Cumulative Scaled Residual Versus ADTI for Four-Legged Intersections,
TOTACCI Main Model of Table 33

The cumulative scaled residual varies from -4.5 to 5.2, ending at -0.5. It is positive for 27 out of
72 intersections.
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FIGUW 16. Cumulative Scaled Residual Versus ADT2 for Four-Legged Intersections,
TOTACCI Main Model oflrable 33

The cumulative scaled residual vafies from -6.1 to 3.5, ending at -0.5. It is positive for 26 out of
72 intersections. There is some indication of quadratic dependence on ADT2 or Log of ADT2 to
describe ove~rediction at low values of ADT2 and underprediction at higher values.
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FIGU~ 17. Cumulative Scaled Residual Versus PKO/.LEFTl for Four-Legged
Intersections, TOTACCI Main Model of Table 33

The cumulative scaled residual varies horn -8.4 to 2.6, ending at -0.5. It is positive for 12 out of 72
intersections. There is some indication ofoverprediction at lower turning percentages, followed by
unde~rediction at somewhat higher turning percentages. A quadratic model addresses this mattel-
in Variant 2 of Table 33, starting out with a smaller intercept and steeper slope, but with the slope
becoming smaller as PKOALEFTl increases.
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FIGU~ 18. Cumulative Scaled Residual Versus AIIT1 for Signalized Intersections,
TOTACCI Main Model of Table 36

The cumulative scaled residual varies from -3.1 to 3.9, ending at -0.2. It is positive for31 OLIt of

49 intersections.
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FIGUW 19. Cumulative Scaled Residual Versus ADT2 for Signalized Intersections,
TOTACCI Maiss Model of Table 36

The cumulative scaled residual varies from -5.4 to 4.2, ending at -0.2. It is positive for 29 out of
49 intersections.
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FIGU~ 20. Cumulative Scaled Residual Versu!$ PKO/.LEFT2 for Signalized
Intersections, TOTACCI Main Model of Table 36

The cumulative scaled residual varies from -3.2 to 2.9, ending at -0.2. It is positive for 24 out of
49 intersections.
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FIGUW 21. Cumulative Scaled Residual Versus VEICOM for Signalized Intersections,
TOTACCI Main Model of?rable 36

The cumulative scaled residual varies from -4.6 to 3.2, ending at -0.2. It is positive for 19 OLItof
49 intersections.
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The cumulative scaled residual varies from -3.4 to 2.0, ending at -0.2. It is positive for 27 out of
49 intersections.
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Cumulative residuals for the TOTACCI Main Model of Table 36 (signalized intersections) are
plotted in Figures 18 tkough 22. The explanatory variables are ADT1, ADT2, PROT_LT,

PK%LEFT2, VEICOM, and PKY.TRUCK. The vaiable PROT_Cr is not used in the residual
1 The figures show what appear to be random walks with no particularmalysis since it is categorical.

systematic effects. Indeed, the fact that they stay relativel~’ close to zerO suggests that possibly
overfitting is occurring.

Table 38 shows the range of values for the cumulative scaled residuals of all variables in the
TOTACCI Main NIodels. The range is quite consistent with the square roots of the sample sizes.
For PROT_LT, the sum of the scaled residuals over all signalized intersections without a protected
Iefi turn is 0.45, so that tie signalized models slightly underpredict crashes on intersections without
major road protected left turns. Since there are 28 signalized intersections without protected left
turns, the average scaled residual is 0.45/28 -0.016. The overall cumulative sum being -0.2, it fol-

TABLE 38. Cumulative Scaled Residuals Versus Increasing Value of Intersection
Variables, TOTACCI Main Models

84 three-legged
intersections
(Table 29 Main
Model)

m=9

72 four-legged
intersections
(Table 33 Main
Model) ~ = 8.5

49 signalized
intersections
(Table 35 Main
Model)

m=l

ADT 1 -7.2 to +10.2

ADT2 -4,5 to +7.9

MEDWIDTH1 -7.2 to +6.2

NODRWY 1 -3.1 to +10.9

ADT1 -4.5 to +5.2

ADT2 -6.1 to +3.5

PKVOLEFT1 -8.4 to +2.6

ADT 1 -3.1 t0+3.9

ADT2 -5.4 tO +4.2

PKYOLEFT2 -3.2 to +2.9

VEICOM -4.6 to +3.2

PKVOTRUCK -3.4 to +2.0

PROT_LT ~-0.2, +0.45
1
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lows that the sum of the scaled residuals on the intersections where major road protected left turns
me present is -0.6S, for an average on the latter intersections of-0.6S/21 = -0.031. Thus, the model
slightly overpredicts on the intersections that have major mad protected left turns.

In summary,

. The three-legged Main Model for TOTACCI mig~t be improved by partitioning the
intersection variables into smaller ran ges and developing models for each range.

. The four-legged Main Model for TOTACCI might be improved by inclLldlLlg qLLadratic
dependence on ADT2 or the log of ADT2 audlor PKYoLEFTl.

. The signalized Main Model for TOTACCI has well-behaved residuals, possibly an indication
of overfitting.

In view of the relatively small sample sizes, the models all behave reasonably well.

A residual analysis was not done for the TOTACC models, although it is believed that it would
yield similar results.
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6. CONCLUSIONS

In this chapter, we exhibit the Main Models for TOTACC and TOTACCI again. Then, we use these
models and the log-likelihood R* to decompose the variation in crashes into proportions due to
different variables. We also develop Accident Reduction Factors for the models. Finally, we review
and summarize ideas in this study.

THE MAIN MODELS

Three-Legged Intersections

1. Three-le~sed rural intersections of a four-lane maior road with stou-controlled two-lane minor
road. TOTACC Main Model (Table 28)

Negative Binomial Model with K = 0.389

j= NUMBER OF YEARS x (AD T1)’”48 x (AD~2)0’2s2 x e~p(-~2.22~)
x exp(-O.0546XMED WZDTHI + 0.0391 xNODR WY1)

where the variables are:

~ = predicted mean number of crashes within 250 feet (76 meters) of the intersection
center

WMBER OF YEARS

~T 1 = average two-way major road traffic in vehicles per day

ADT2 = average two-way minor road traffic in vehicles per day

MEDWIDTH1 = the major road median width in feet

NODRWY1 = the number of residential and commercial driveways on the major road
within 250 feet (76 meters) of the intersection center.

NOTE: A - version of this model is obtained by repla:ing - 0.0546 xMEDWIDTH1 above
with -0.179 x MEDWIDTH 1., w!nere MED WIDTH 1. = the major road median width in meters.
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II. Three-lez~ed rural intersections of a four-lane maior road with sto~-controlled two-lane minor
road. TOTACCI Main Model (Table 29)

Negative Binomial Model with K = 0.512

y= NUMBER OF YEARS x (ADTI)1433 x (ADT2)”’269 x exp( -15.466)
X exp(-0.@612 XMEDW1DTHl + 0.0560 xNODRWYI)

where the variables are:

~ = predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

NMBER OF YEARS

ADTI = average two-way major road traffic in vehicles per day

ADT2 = average two-way minor road traffic in vehicles per day

MEDWIDTH1 = the major road median width in feet

NODRWYI = the number of residential and commercial driveways on the major road
within 250 feet (76 meters) of the int(:rsection center.

NOTE: A X version of this model is obtained by replacing - 0.0612xMEDWIDTH1 above
with -0.201 x MEDWIDTH1., where MEDWIDTHln, = the major road median width in meters.
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Four-Legged Intersections

I. Four-1 egged rural intersections of a four-lane maior road with sto~-controlled two-lane ]minor
roads. TOTACC Main Model (Table 32)

Negative Binomial Model with K = 0.458

0850 x (~~TZ)o.329 X exp( –9.463)y= NUMBER OF YEARS x (ADTI)
x exp(O.l lOxPKO/oLEFTl – 0.484 xLTI,NIS)

where the variables are:

~ = predicted mean number of crashes within 250 feet (76 meters) of the intersection
center

~MBER OF YEARS

ADT1 = average two-way major road traffic in vehicles per day

~T2 = average two-way minor road traffic in vehicles per day

PKYoLEFT 1 = the percentage of incoming major mad traffic during peak hours that turns
left

LTLNl S = Oif the major road has no left-turn lane, 1 if the major road has at least one
left-turn lane.



II. Four-lezzed rural intersections of a four-lane maior road with stou-controlled two-lane minor

roads. TOTACCI Main Model (Table 33)

Negative Binomial Model with K = 0.710

f= NUMBER OF YEARS x (AD Tl)”’930 x (AD T2)”’354 x ex~(-l~.~ 10)
x exp[0.149xPK”/. LEFTI)

where the variables are:

f= predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

WMBER OF YEARS

ADT1 = average two-way major road traffic in vehicles per day

ADT2 = average two-way minor road traffic in vehicles per day

PKOALEFTl = the percentage of all incoming major road traffic during peak hours that
tt)ms left.
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Signalized Intersections

1, Siqalized four-leqzed rural intersections oftwo-lane roads. TOTACC .Main Model (Table

u

Negative Binomial Model with K = 0.116

0620 ~ (ADTJ)03y5 x exp(-6.9~4)~= NUMBER OF YEARS x (ADT1)
x exp(–0.0142 xPK0/0LEFT2 + 0.0315 xPK”/. Tl8UCQ
x exp(–O.675xPR0T_LT + 0.130 xVE1CQM)

where the variables are:

$ = ~n~y mean number of crashes within 250 feet (76 meters) of the intersection

mBER OF YEARS

AOTI = average two-way major road traffic in vehicles per day

~T2 = average two-way minor road traffic in vehicles per day

PKY0LEFT2 = the percentage of all incoming minor road traffic during peak hours that
turns left

PKY.TRUCK = the percentage of all incoming traffic during ]?eak hours that consists of
trucks

PROT_LT = Oif the major road has no protected left turn, 1 if the major road has at least
one protected Iefi turn

VEICOM = (1/2) (VEI-1 + VEI-2)

VEI-1 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical curve along the m~ or road, any portion of which is within 800 feet (244
meters) of the intersection center, divided l~y the number of such curves

VEI-2 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical curve along the minor mad, any portion of whic]l is within 800 feet (244

meters) of the intersection center, divided by the number of such curves.

NOTE: A * version of this model is obtained by replacing 0. 130xVEICOM above with
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0.0396 xVEICOM~, where VEICOM~ = (1/2) (VEI-1~ + VE1-24 and VEI-I ~ and VEI-2”, are as
above, except that units of absolute grade change per 100 meters are used for each vertical curve,

my pofiion of which is within 244 meters of the inters ectiorl center.

11.Signalized four-leqq ed rural intersections oftwo-lane roads. TOTACCI Main Model (Table

m

Negative Binomial Model with 1<= 0.1 ~1

~= NUMBER OF YEARS x (AD Tl)O’59s ‘( (AD T~)O’294x ‘XP( ‘~.0g4)
x exp(–0.0165 xPK0/0LEFT2 + 0.0289 :~PKO/oTRuc~
x exp(–O.471XPR0T_LT + 0.113x VEICOM)

where the variables are:

~= predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

~MBER OF YEARS

ADT 1 = average two-way maj or road traffic in vehicles per day

ADT2 = average two-way minor road traffic in vehicles per day

pKYOLEFT2 = the percentage of all incoming minor road traffic during peak hours that

turns left

PKYoTRUCK = the percentage of all incoming traffic during peak hours that consists of
trucks

PROT_LT = O if the major road has no protected left turn, 1 if the maj or road has at least
one protected left turn

VEICOM = (1/2) (VEI-1 + VEI-2)

VEI-1 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical cuwe along the major road, any pcrtion of which is within 800 feet (244
meters) of the intersection center, divided by the number of such curves

VEI-2 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical curve along the minor mad, any portion of which is within 800 feet (244.
meters) of the intersection center, divided ‘by the number of such curves.
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NOTE: A - version of this model is obtained by replacing O.113xVEICOM above with
0.0344 xVEICOM~, where VEICOM. = (1/2) (VEI-f”, + VEI-2~ and VEI-I ~ and VE1-2n, are as
above, except that units of absoiute grade change per 100 meters are used for each vertical curve,
any portion of which is within 244 meters of the intersection center.

EXPLANATORY VALUE OF MAIN MODELS

A customary way to measure the explmatory value of variables in a model is to note the increment
to a goodness-of-fit measure as each variable is added to the model. For Poisson and negative
binomial models, as FridstrOm et al. (1995) have observed, there is inherent randomness in the model
that needs no explanation. With respect to the Iog-likelihood R-squared measure proposed by
FridstrOm et al., negative binomial randomness is represented by 1- P; where P; is as in equation
(5.5) of Chapter 5. The contribution of other factors is represented by: (i) R; for the first variable
when a model with that variable present is used, and (ii) the increment in R; for each additional
variable as it is successively added to the model. Recall tht; definition of R~ in eqoation (5.4) of
Chapter 5. Finally, the unexplained portion of variation is P;, - R~~where R~Jis the R-squal.ed \alue
obtained when all variables are present.

Tables 39,40, and 41 and Figures 23,24, and 25 decompose the variation according to this method
for each of the Main Models.

TABLE 39. Explanation of Variation in Total Crashes by (;roups of Covariates,
Main Three-Legged Intersection .Modens

3-Legged Log-Likelihood ~

Intersection Coefficient of
Main Models (Tables 28 and 29) Determination (%)

TOTACC TOTACCI

Randomness 44.11 46.26 ~

Exposure (ADT1, ADT2) 18,21 17,31

Design (MEDWIDTH 1, NODRWY1 ) 4.26 5.02

Unexplained 33.42 31.41

TOTAL 100.00 100.00
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RIGURE 23. Explanation of Variation of TOTACC and TOTACCI
by Groups of Covariates, Main Negative Binomial Models for Tl]ree-Legged Intersections,

Log-Likelihood R-$qua)red

For the three-legged intersections, ADT explains 17 to 18% of the variation, while .MEDWIDTH 1
and NODRW1 explain another 4 to 5Vo. For the four-leg2ed intersections, ~T explains 8 to 100/0
of the variation, while major road left-turn percentage andlor the presence of a major road left-turn
explains another 5‘A.

In shq contrast, for the signalized intersections, ADT by itself explains a negligible percentage of
crashes. Turning and truck percentages explain 1 to 3°/0and the design variables PROT_LT and
VEICOM explain between 6 and 13Y0,depending on the model. As FridstrOm et al. (1995, p. 11)

point out, the explanatory vaIue of a variable may well be affected by the order in which variables
are added. This is amply demonstrated by Table 41 and Figure 25. A more cautious interpretation!
of Table 41 is that in the case of the TOTACC model. 0.34 + 1.46 + 12.99 = 14.790/. of the variation
is explained by the six intersection variables, and in the case of the TOTACCI model, 0.00 + 3.2;’
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+ 6.16 = 9.43 “Aof the variation is explained by the six intersection variables. Furthermore, the

proportion of the explanato~ power that is attributable to the individual variables is uncertain, ADT
aIone does not explain much.

TABLE 40. Explanation of Variation in Total Crashes by Groups of Covariates,
Main Four-Legged Intersection .Models

4-Legged Log-Likelihood
Intersection Coefficient of

Main Models (Tables 32 and 33) Determination (Yo)

TOTACC TOTACCI

Randomness 41.42 42.85

Exposure (ADT1, ADT2) 10.79 8.14

PKVOLEFTI 2.55 5.20

LTLNI S 2.89

Unexplained 42.35 43.81

TOTAL 100.00 100.00

TABLE 41. Explanation of Variation in TotaICra.shes by Groups of Covariates,
Main Signalized Intersection Models

Signalized Log-Likelihood
Intersection Coefficient of

Main Models (Tables 35 and 36) i Determination ~A)

TOTACC TOTACCI

Randomness 37.38 41.46

Exposure (ADT1, ADT2) 0.34 0.00

PKYOLEFT2, PKYOTRUCK 1 1.46 3.2J

VEICOM,PROT_LT 12.99 6.16

Unexplained 47.83 49.11

TOTAL 100.00 100.00
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TOTACC TOTACC’i

Unexplained

LTLNIS

PK”ALEFTl

AOTI, ADT2

Randomness

FIGU= 24. Explanation of Variation of TOTACCand TOTACCI

by Groups of Covariates, Main Negative Binomial Mo(iels for Four-Legged Intersections,
Log-Likelihood R-Squalred
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100

TOTACC TOTACCI

Unexplained

VEICOM, PROT_LT

PKYOLEFT2, PK”ATRUCK

ADTI, ADT2

Randomness

FIGURE 25. Explanation of Variation of TOTACC and TOTACCI
by Groups of Covariates, Main Negative Binomial Models for Signalized Intersections,

Log-Likelihood R-Squared

ACCIDENT WDUCTION FACTORS

The Main Models yield the Accident Reduction Factors shown in Table 42. Recall hat the Accidenl:
Reduction Factor is the percentage decrease in mean pre[iicted crash count when a variable is
increased by one unit, all other variables being held fixed. A negative value signifies that crashes
increase by that percentage when the variable is increased by one unit.

For the three-legged intersections, the TOTACC and TOTA.CCI models yield similar results. It ij
a ctiosity that the number of driveways is more significant :forintersection-related crashes than for
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all crashes, given that the former attempts to exclude driveway crashes and the latter does not.

TABLE 42. Accident Reduction Factors for the Main Models

3-Legged intersections

TOTACC Main Model TOTACCI lMain Model

Table 28 Table 29

MEDWDTH1 5.3% 6.6%

NODRWY 1 -4,0Y0 -5.7Y0

4-Legged intersections

TOTACC Main Model TOTACCI Main Model
Table 32 Table 33

PK%LEFT1 -1 1.6% -16.1°A

LTLNIS 38.470

Signalized intersections

TOTACC Main Model TOTACC1 Main ,Model

Table 35 Table 36

PKYOLEFT2 1.4% 1.6%

PK%TRUCK -3.2Y0 -2.9Y0

PROT_LT 49.l”h 37.5”A

VEICOM -13.9Y0 -11.9”A

Note: Negative Accident Reduction Factors signify an increase in accidents.

For the four-le~~ed intersections, the TOTACC model declares that the Presence of one or more left---
-turn lanes reduces crashes by 38.4°/0. LTLNrl S had a high P-value (0.3222) when applied tc,
TOTACCI andappears only inthe Variant 1 and Variant 3modelsof Table 33. In the Variant 1
model, its Accident Reduction Factor is25.10A, \vhilethat of PK0/oLEFTl is-15.3°/0. The number
25.1 Y. is not as large as 38.4%, but is still quite substantial.

Variables in the signalized intersection models show simil.ar Accident Reduction Factors as am:
passes from TOTACC to TOTACCI. Only PROT_LT shows a dranlatic decreases in i~
effectivenessby going from 49.1°A to 37.5°/0. The two regression coefficients fOr PROT_LT on
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which these estimates are based have overlapping confidence intervals so that the difference between
49.l% and 37.5% may be ilhrsory.

The effect of PKOALEFTl in different models is of some interest. Consider TOTACC models for
all three classes of intersections containing this variable, namely, the Variant Model in Table 28, the
Main Model in Table 32, and Variant 2 in Table 35. The respective Accident Reduction Factors are
-5.6Y0, -1 1.60A, and -2.20A. For each l-percent increase in left turns from the major road, crashes
increase by 5.6°/0, 11.60/., and 2.20/0 at three-leggec~, four-legged, :.!>d slgnahzeci intel-sc.,c..~,
respectively. A superficial justification of the relative sizes of these numbers runs as fo[lows: at the
fou-legged intersections, a driver turning left from the major road has to worry about t~affic from
both minor legs; at a three-legged intersection, the driver has to worn] about traffic from only one
minor leg; and at a signalized intersection, the driver has to worry about neither minor leg (as long
as the signal is green). Even if minor road ADT is low, the presence of minor legs requires some
division of attention.

SUMMARY

The Main Models presented at the beginning of this chapter are the primary product of this study.
There are six such models, one for each of the three intersection classes and for each oftbe two crash
types TOTACC and TOTACCI. Because our sample sizes were small, we judged it expedient to use
all observations for model development and reserve none for prediction, so no efforts have been
made to test the predictive powers of the models. The models are, however, reasonably stable:
potentially influential observations were removed and the models retained similar coefficients and
P-values.

With regard to the two crash types TOTACC and TOTACCI, we do not make a selection. The
models for each are reasonably consistent with one another, the variables are mostly the same, and

the regression coefficients are similar. For the three-legged and four-legged intersections, the
exception is that as one passes from TOTACC to TOTACCI, the intercept gets smaller and the
coefficient of the log of ADT 1 gets larger. TOTACC1 is more sensitive to major road ADT than.
TOTACC. On the signalized intersections, in the same transition, the intercept gets larger and the
coefficients of the logs of both major and minor ADT get smaller. TOTACCI is less sensitive tc
~T than TOTACC. These trends are systematic, but not too much weight should be put on tbelr.
since the standard errors of the coefficients do not preclude the possibility thdt the true coefficients
are equal (but there must be a net adjustment downward somewhere since TOTACCI < TOTACC).

Both the TOTACC models and the TOTACC1 models are equally serviceable. A decision on which
to use should be based on what they will be used for and how overlapping models will be assembled
to represent all crashes. of some importance is agreement among interested parties as to what an

intersection-related crash is. Desirable properties include simplicity, i.e., an understandable
definition, and practicsrlity, i.e., one that can be used to extract data from existing or soon-to-exist
data bases, The treatment of driveway crashes, run-off-road crashes, and minor road crashes that
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are not intersection-related should be addressed. Also, a decision is needed about whether the same
criteria can be used to define intersection-related crashes for di fferent kinds of intersections: ones
with two-lane versus four-lane major roads, ones with or without signals, and ones in urban versus
rural environments. The BMI criteria discussed at the beginning of Chapter 4 were used in this
study, but they had a limited purpose and scope and their overall applicability should be reassessed.

The same considerations apply to INJACC versus INJACC1 models. Their differences and
similarities mirror those betweer, the TOTACC and TOTACCI modeIs.

A separate issue is whether injury crash models am needed. A reaso:a not to develop them is that
it may suffice to apply a percentage to TOTACC or to TOT,4CCI in order to estimate INJACC or
~JACCI. Tables 9 and 10 in Chapter 4 suggest that injury crashes as a proportion of all accidents

VW at Ieast by State and by intersection class. However, the State variable in this study seemed to
have no independent influence, and this is a significant finding of our study. Our evidence suggests
that serious crashes at three-legged and four-legged intersections are not distributed in the same
proportion relative to all crashes at different intersections. Although we do not identify Main
Models for INJACC or fNJACCI, we do develop ~JACC and IhrJ.4CCI models. It is worthwhile
to compare such models with TOTACC/TOTACCI models. For the three-legged intersections, the
angle variable HAU assumes prominence and median width loses importance. For the four-legged
intersections, minor road posted speed gains influence and channelization loses influence. On the
other hand, INJACCl~JACCI models for signalized intersections are similar to the
TOTACC/TOTACCI models. Since injury crashes are of greater concern to society and are better
reported, contrasts between models for injury crashes and all crashes deserve attention.

We also argue that the variant models shown in the tables of Chapter 5 are worthy of attention.
When P-values are large, it is not possible to confirm that the true regression coefficient is non-zero.
Thus, an estimated regression coefficient of 0.3 with an estimated standard error of 0.3 could well
be a fluctuation for a variable whose tme coefficient is zero, the variable thus having no bearing on.
crash experience. On the other hand, the fluctuation could run in the opposite direction and the true
regression coefficient might be 0,6. The estimated coefficient 0.3 summarizes the sample at hand.
accurately (as does its standard error 0.3) and may be regarded as a point estimate for the true
regression coefficient. It is the single best guess as to what that coefficient is. If its standard error
is large, there is the possibility that this coefficient might be zero, but the true answer might also bt~
twice as large. If engineering judgment supports the sign and rough magnitude of a regression
coefficient, som,e Iatitade is in order.

Variant 1 in Table 33 “issuch a case. The variable LTLN 1S, representing the existence of a Ieft-tum
lane, has an estimated coefficient of -0.2891 with an estimated standard error of 0.2920 (and a P-
value of O.3222) in a TOTACCI model. This variable is significant in the TOTACC model and is
significant in another TOTACCI model, Variant 3 in Table 33.

All of the models are, of course, subject to caveats. The definitions of TOTACC and TOTACCI are
imperfect. California and Michigan assign crashes to an intersection out to different distances along
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the minor mad. TOTACCI in CaIifomia, but not in Michigan,, may contain some driveway crashes
where a car is entering a driveway. Alignments, sight distances, grades, and median widths are
subject to measurement errors, and a~y and all variables may have changed from the time period
1993-1995 to the time of the field work (1997-1998).

Of special concern, since they are so prominent in the models, are the peak-hour traffic data. We
have referred to some of them as turning percentages or peak turning percentages. But they are in

fact merely a sample of peak-hour turning percentages collected during a po}tion of peak hours on
a particular day in 1997-1998 and are averaged between morning and evening. They can be regarded
as crude estimates of the true average peak-hour turning percentages or truck percentages during
1993-1995. But even the variable one is trying to estimate is somewhat suspect. A peak hour can
be defined by a clock definition or by actual experience along a highway. The latter seems more
pertinent to crash experience, b~t the former is presumably closer to what we have.

Yet another issue, one that has not been addressed in this study, is how peak-hour turning
percentages should relate to ADT. If one were dealing with true mean turning percentage, it would
seem that a model form would be required that yields zero crashes when all turning percentages are
zero. As a practical matter, if, for example, major road turning percentages are zero, then we can
usually assume that there is zero minor road traffic. Relationships can Ibebuilt into the model form
to ensure that this happens. Since we are dealing with peak-hour turning percentages rather than true
mean 24-hour turning percentages, it is possible in principle that the former could be zero without
the latter being zero and that the latter could adjust itself to be compatible with almost any observed
values of ADT2 or ADT1. Rather than address these thorny issues, we have taken an empirical point
of view and allowed interrelated vtiables, such as the log of ADT 1, the log of ADT2, PKO/OLEFT1,
pK0ALEFT2, ~d PKVOTHRU2, to appear in generalized linear expressions without regard to their

hypothetical mutual constraints.

Indeed, especially in the case of the signalized intersections where ADT behaves somewhat
peculiarly when other variables are missing, as confirmed in Table 26 and Figure 9 as well as Table
4 I and Figure 25, new model forms should be explored that might better describe the data. The
limited data in this study suggest that at signalized intersections, some measure of turning percentage
(e.g., PROT_LT, PK%LEFT1, PK%LEFT2) should be adjoined to major and minor mad ADT as
the primary intersection variables. It would also be desirable if new model forms retained some
affinity with existing forms that have been adequate for other classes.

One caveat for all of the models is that some variables have rather wide ranges, e.g., NODRWY1,
PKY,LEFT2, PKYOTR. The coefficients assigned to these variables represent their behavior as
linear. Over such wide ranges, piecewise linear or quadratic dependencies might be more
appropriate. Ezra Hauer has suggested that model forms where the mean number of crashes depends
on major mad ADT through expressions of the form (ADT 1~xexp(-bxADTl ) or exp(ax (Log of
ADT1) bxADTl ), with a and b positive, should be explored. Figures 5 and 9, for three-legged and
signalized intersections, respectively, suggest such a possibility. A similar form could be applied
to minor road ADT. More elaborate fomls could also be considered that allow crash frequency tc



rise to a maximum as ADT 1 increases, with the value of A.DT i at which the maximum occurs
depending on ADT2.

We recapitulate the main points below:

.

.

.

.

The data in this study have shortcomings. These include relatively small sample sizes, peak
turning percentages and truck percentages measured by samples not contemporary with the
crash data, and the difficulty of meast!~ing and defining crash and intersection variables

In addition to the six Main Models, alternate models cleserve consideration. These include
variants given in the tables using other variables, the Flow Models in Chapter 5, models that
restrict the range of certain inputs (piecewise linear) or allow quadrsstic dependencies, and
model forms suggested by Hauer.

Major road ADT plays a lesser role as one passes from three-legged to four-legged to
signalized intersections, with turning percentage measures becoming more important, and
unexplained crash frequency variation increasing (Figures 23, 24, and 25).

The six Main Models adequately summarize the data in this study, with the choice of a crash
variable TOTACC (all crashes within 250 feet (76 meters)) or TOTACC I (all intersection-
related crashes within 250 feet (76 meters)) to be detcmined by other criteria.
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APPENDIX. DATA FROM PILOT STUDY PHASE OF DP,TA COLLECTION

During the pilot study phase of data collection for this report, in March and May 1997, plates were
used to collect traffic data on minor legs of signalized intersections in Michigan and radar guns were
used to measure operating speeds on all legs of intersectiolts in both California and Michigan.
Figures A-1, A-2, and A-3 exhibit some relationships obtained from these data. In addition an area-
of-influence study was done on a few selected intersections to judge whether crashes near the
intersectio~. were intersection-related. Figure A-<!shows the findings for one such intersection.

Figure A-1 is a graph of posted speed versus observed opera:ing speed at signalized intersections.
Operating speeds were determined by radar guns aimed along the road toward the intersection during
daytime hours out of sight of the intersection or far enough away so that drivers typically bad not
begun to slow. The graph shows that many drivers exceed the posted speed limit, but that the excess
tends to be less at low and high speeds and greater at intermediate speeds.

Figure A-2 is a graph of daytime speeds versus 24-hour speeds along minor legs approaching
Michigan signalized intersections. Daytime speeds were messsured by radar guns, and 24-hour
speeds by HISTAWN-METRICS plate counts. It is appartmt that the 24-hour speeds are Iowel-,
although some of the extreme cases may represent miscalibrat ion of the radar guns andor the pIates.

Figure A-3 shows that truck percentage in off-hours tends to be higher than in peak hours. At the
end of Chapter 4, it is noted that a.m. truck percentage is higher than p.m. truck percentage as well,
and that Miaou et al. (1988) have called for studies of truck percentage by time-of-day. Between
a.m. and p.m., a rough reversal of movements was found for all traffic (e.g., soutl~boand
predominance in a.m., northbound in p.m.) although variances were large. Truck percentage is a
small portion of the total during peak hours, and may be larger in off-hours, chiefly because
noncommercial traffic lessens.

A few intersections in this study were examined in detail, in an effort to analyze the area of influence
of an intersection, i.e., how far out from the intersection center intersection-related crashes are likely
to be found. For this purpose, all crashes within 500 feet (152 meters) of the intersection center were
examined. Figure A-4 shows crash locations for one such intersection. A distance of 250 feet (76
meters) from the intersection center includes most intersection-related crashes, misses a few, and
picks up a few that are not intersection-related. Crashes that are not intersection-related are more
likely to be found on the outward bound lanes from the intersection center. One State high~vay
engineer reported intersection-related crashes that occurred on roads that did not pass through the
intersection. During heavy traffic, a driver turning onto an intersection leg from a side road is
sometimes involved in a crash related to the main intersection.
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POSTED SPEED VERSUS OPERATING SPEED

24 Signalized Intersections, Pilot Studies, CA & Ml, 1997
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Operating speeds were measured during daytime hours
by radar guns well away fiOm the intersection
1 mph= l.61 kmh
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FIGURE A-1. Posted Speed Versus operating Speed
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Daytime Speed vs. 2A-bIour Sp~ed

?9 Signalized Intersections, Minor Le9~, Michigan, May lgg7

55

Daytime speeds were measured by radar guns.
24-hour speeds were measured by HIS’r~-METRICS plate counts.
1 mph= 1.61 km/h

FIGU~ A-2. Daytime Speed Versus 24-Hour Speed
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PEAK TRUCK PERCENTAGE VERSUS 24-HOUR TRUCK PERCENTAGE

Peak Truck Percentages were measured by daytime manual count.
24-hour Truck Percentages were measured by HIST~-MET~CS plate
counts.

FIGU~ A-3. Peak Truck Percentage Versus 24-Hmsr Truck Percentage
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cAState Route 28intersects Fox Street inplacer County. ThisintersectiOn (cnty_fie =’’0302831~’, milepost= 10.025 )has minor leg

stop control, isofthe Ttype, four-laIle bytwo-lane, with arightangle> andnolnedians on any leg. Theintersection isinrollingte~ain
with aHAZWT equal to2. The longitudinal sight distance for leg 1 is80~feet (244 meters). Although theintersection is defined as
``meal,'' itisinthe Lake Tahoe resofiarea with 12coI~ercial driveways alOng legs 1 ~d2within+250 feet (76meters) of the intersection

center. This isahigh-crash intersection with 17craslles occ~l~ing within +500feet(152 llleters) oftbeintersection center during the years
]993-1995. Onthebasis ofreview of~lSIS files, thecrashes with Ilunlbers inparentheses were deelned nottobe intersection-related.

FOXSt. (Leg 3)

‘Route2x(Leg1) .ll~ E.Roue8Leg~
(5) (1)

6.12.13 (17),,
4,7, 15 0:

8 9 14
2,3, 11

!@

(16)

500 400 250 150 100 50 0 50 100 ljO 250

Crash locations are numbered; those with parentheses
are not thought to be intersection-related.
1 ft = 0.305 meters

400 500 ft

FIGUREA -4. Crtisl] l.ocations and ReIationsllips ata Three-I, egged Intersection
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