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FOREWORD

This report documents a study undertaken to identify and evaluate indices to characterize
pavement rutting. Asaresult of thiswork, several transverse profile indices have been added to
the Long Term Pavement Performance (L TPP) database to facilitate future analysis. In addition,
the study has yielded important findings regarding the accuracy and repeatability of three- and
five-point rut depth measurements commonly collected for pavement management purposes. It
was found that the three-point rut depth measurement does not provide repeatable and accurate
measurement of pavement rutting. Also, if afive-sensor rut bar is used for network-level data
collection, care should be taken to ensure that the transverse location of the rut bar is consistent
from year to year and that the mean values are adjusted to reflect more realistic rut depth val ues.

This report will be of interest to highway agency engineersinvolved in the collection,

processing, and interpretation of data collected to characterize pavement rutting. The study
findings regarding the repeatability and accuracy of three- and five-point rut depth measurements
have been summarized in Publication No. FHWA-RD-01-027, which may be found at
http://www.tfhrc.gov/pavement/Ittpp/library.htm under “TechBriefs.”

T. Paul Teng, P.E.
Director, Office of Infrastructure
Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the
interest of information exchange. The United States Government assumes no liability for its
contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and
manufacturers names appear in this report only because they are considered essential to the
object of the document.
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CHAPTER 1. INTRODUCTION

BACKGROUND

Rutting is not just acommon mode of distress on asphalt pavements, but also a safety hazard
because it allows water to pool on the roadway. Many studies have attempted to predict the
progression of rutting in asphalt concrete and composite pavements. In some of the studies,
rutting or rut depth isreferred to as “ permanent deformation.” However, permanent deformation
is layer- or material-dependent, while rutting measured at the surface is the accumulation of
permanent deformation in each pavement layer and the subgrade. The terms “rutting” and “rut
depth” will be used exclusively within this report.

Rutting measured on the pavement’ s surface is caused by three different mechanisms. These are:

* One-dimensiona vertical permanent or plastic deformation in the asphalt concrete layers
(typically referred to as localized densification).

» Latera flow in the asphalt concrete mixtures (sometimes referred to as accelerated
deformation, tertiary or shear flow).

* Mechanical deformation of subsurface layers.

Unfortunately, rut depths measured with a 1.2-m or 1.8-m straightedge (the two lengths most
commonly used) do not identify the mechanism of the rutting observed at the surface.
Identification of the causeis critical to the development of an accurate rutting prediction model;
however, more importantly, it would be highly beneficial for managing pavements and selecting
appropriate rehabilitation options.

Within the Long Term Pavement Performance (L TPP) program, transverse profiles have been
used to quantify wheelpath rutting and other types of surface distortion. Currently, these
profiles exist within the National Information Management System (NIMS) as a series of x-y
points defining the pavement surface. Rut depths measured using a 1.2-m straightedge are
availablein the NIMS, but no indices representing the transverse profile measurements were
available when the work reported herein was undertaken.

Different agencies have used different measurement techniques for quantifying the surface rut
depths along a roadway for use in managing and evaluating their pavements. The American
Society for Testing and Materials (ASTM) has a specification (ASTM E1703-95) for measuring
the rut depth of a pavement using a straightedge. ASTM E1656-94 covers the collection of
automated transverse profile data. Currently, Texas uses a five-point system in which x-y
coordinates are collected adjacent to the lane edge, in each wheelpath, and mid-lane. The rut
depth is defined as the vertical distance between aline connecting the points at the edges of the
lane and the point in each wheelpath. Many States, such as Kansas and Florida, use a three-point
system in which data are collected in each wheelpath and mid-lane. In this case, the rut depth is



defined as the difference in elevation between the mid-lane measurement and the wheel path
measurements.

The use of these various systems (the straightedge, 3.7-m string line, five-point system, three-
point system, and the transverse profile) is not conducive to the standardized system that is
required for the development of a mechanistic-empirical rutting prediction model. More
importantly, a one-parameter index (i.e., rut depth) does not allow one to identify the mechanism
or mechanisms that cause the surface distortions.

OBJECTIVES
The objectives for this research were as follows:
* ldentify and characterize representative cross-profiles.
* Quantify bias and precision in time-series measurements.

» Select methodology and compute rut indices.

SCOPE OF REPORT

Thisreport is divided into eight chapters. The second chapter provides an overview of how
transverse profile data have been collected for LTPP. Thethird chapter provides the definitions
of the indices that were considered in this study and how these indices are calculated. The fourth
chapter presents comparisons of the indices. The fifth chapter examines the variability of the
indices. It also compares the indices to common materials characteristics and pavement
parameters to relate the behavior of the indices to commonly accepted theories of rutting. The
sixth chapter evaluates the methods of data collection that are most commonly used by the
States. The seventh chapter provides the field-determined bias and precision values that may be
expected from each index. The eighth chapter summarizes the investigations and provides
recommendations for future research.



CHAPTER 2. DATA USED IN STUDY

Transverse profile measurements are made within the LTPP program using three different
procedures. These three procedures are listed below and each of these procedures is described in
this chapter.

* PASCO RoadRecon 75
« FACE Dipstick®
* 1.2-m Straightedge

Dipstick® is used whenever amanual distress survey is conducted. These measurements are
intended as a backup for the transverse profile measurements collected by RoadRecon 75. The
1.2-m straightedge measurements are required for the SPS-3 projects only, but were obtained on
some sections in other experiments.

PASCO RoadRecon 75
Data Collection Equipment

The PASCO RoadRecon system incorporates a van driven across the test section at night. A
boom, on which a 35-mm camera has been mounted, extends from the rear of the van at the top
of the unit. A strobe projector, mounted on the bumper, contains a glass plate that has a hairline
etched onto it. The strobe and the camera are synchronized so that when the camerais triggered
to take a picture, the strobe projects a shadow of the hairline onto the pavement surface at a
specific angle in relationship to the van (and thus at an approximate angle to the pavement
surface). The coordinates along the hairline image for each picture are later digitized and stored
on acomputer. Photographs are taken approximately every 15.2 m.

Calibration

PASCO follows arigorous process for calibration, data processing, and data review to ensure
data quality for the LTPP database. A more detailed description of these steps may be found in
reference 1.

Data Collection

The driver films each General Pavement Study (GPS) test section several times in an attempt to
obtain two or three good, complete passes of the section. For the Specific Pavement Study (SPS)
projects with multiple test sections, the entire project is filmed several timesto obtain two or
three good, complete passes of the project. Thefilm isreviewed in the office for the purpose of
selecting the best “pass’ for entry into the database. For the SPS projects, the best two sets of
film are chosen and the project is pieced together by choosing one section from one film and the



next section from the other film. All of the film, whether it is used or not, is retained as a backup
by the contractor.

Data Processing

Thefilmisused to create adigital profile, which is a series of x-y points defining the location of
the surface of the pavement in aplane. All of the digitizing is performed using the negatives of
the film. The point (0, 0) isthe outside edge of the lane. A mouse with cross hairsis moved
across the line on the film. The technician selects from 24 to 30 points on the line that include the
peak highs and lows on the profile. The resulting profile is stored in a computer file that can be
loaded directly into the database.

As of October 1998, there were five rounds of PASCO datain the NIMS. This means that for
some sections, there may be as many asfive or six observations. Figures 1 through 4 illustrate
some common sets of PASCO transverse profile data. The legend for these figures provides the
longitudinal location along the test section of the profile.

FACE Dipstick®
Data Collection Equipment

The FACE Dipstick" is used as part of amanual distress survey. This equipment is described in
the Distress |dentification Manual as follows:®

“The body of the Dipstick™ houses an inclinometer (pendulum), LCD panels and a
battery for power supply. The sensor of the Dipstick™ is mounted in such a manner that
its axis and the line passing through the contact points of the footpads are coplanar. The
sensor becomes unbalanced as the Dipstick® is pivoted from one leg to the other asit is
moved down the pavement, causing the display to become blank. After the sensor
achieves equilibrium, the difference in elevation between the two pointsis displayed.
The Dipstick” is equipped with a choice of hardened steel spike feet or ball-and-swivel
footpads. The swivel pads should be used on textured pavements.”

Calibration Process

A series of calibration and zero checks are performed prior to data collection.” When these
checks are completed, the operator may begin transverse profile measurements. The operator
“pops’ achalk line to establish a transverse line on the pavement surface every 15.2 m, carefully
avoiding any raised pavement markings. Readings are taken every 0.3 m across the lane and
back to the starting point so that a closed loop is used at each station. The perfect closed loop
resultsin adifference of 0 between the first reading and the last reading. The difference in the
first reading and the last reading is used as a quality control check. The maximum allowable
error is 0.076 mm per reading, or 1.8 mm total difference in the first reading and last reading for
atransverserun 7.32 m long (3.66 m up and 3.66 m back). When all profile measurements for a
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given section have been taken, the operator performs a second set of “zero” and calibration
checks to validate the measurements.®

Data Processing

The Dipstick™ data are entered manually into the PROQUAL software for quality assurance
checks.® The checks performed by PROQUAL include a user review of agraph of the
transverse profile and a check to ensure that the transverse loop falls within acceptable tolerance
levels. PROQUAL aso calculates arut depth using the string line method for each wheel path
for each transverse profile entered; however, the rut depth data are not stored in the NIMS.
These rut depths are easily recal culated from the data that are stored in the database.

Figures 5 through 8 illustrate typical transverse profiles collected with the Dipstick™. The
legends on these figures provide the longitudinal location along the test section of the profile.
Prior to February 1997, measuring transverse profiles using the Dipstick” during manual distress
surveys was encouraged, but not required, and a limited number of measurements were made.
As of February 1997, all manual distress surveys conducted on asphalt-surfaced test sections are
required to include transverse profile measurements taken with the Dipstick”. A comparison of
the Dipstick™ method and the PASCO method is discussed in chapter 3.

1.2-m STRAIGHTEDGE

In the past, lateral distortion differentials generally have been limited to measurements of rut
depths using a straightedge (usually 1.2 min length). The straightedge is placed across a
wheelpath so that the vertical distance between the bottom of the straightedge and the pavement
surface is maximized. Thisvertical distanceis called the “rut depth.” One measurement is taken
for each wheelpath every 15.2 m along the test sections. Straightedge measurements are required
only on the SPS-3 sections.®

DATA AVAILABILITY

All analyses completed for this study are based on data contained in Release 8.6 of the NIMS,
dated October 1998. There were 4,127 sets of profilesin this data set, with 45,370 total
transverse profiles. A set of profilesincludes one profile measurement every 15.2 m. Of the
4,127 sets of observations, 806 were collected by Dipstick” and 3,321 were collected by
PASCO.

Usually, 11 profiles are taken per test section. The quality control checks performed on the
NIMS do not require that all transverse profiles taken on the same day for a single test section
pass the quality control checks at the same time. Therefore, some sets do not include the typical
11 profiles. In addition, throughout the analysis, it was noted that afew of the sets of profiles
taken with the Dipstick™ only included profiles for every 30.5 m, i.e., these sets of profiles only
contained six profiles.
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CHAPTER 3. CALCULATION OF INDICES

POTENTIAL INDICES

Ten characterizations or indices of the transverse profile were chosen for study. Figuresfor
these indices are provided in alater section of this chapter, which includes a more thorough
description. These indices were selected from discussions with various experts and include the
following:

Areaof rut below and area of pavement above a straight line connecting the end points of
the transverse profile.

Area between straight lines connecting the maximum surface elevations and the
pavement surface.

Maximum depth for each wheelpath between a 1.2-m straightedge placed across a
wheel path and the surface of the pavement below the straightedge.

Maximum depth for each wheelpath between a 1.8-m straightedge placed across a
wheel path and the surface of the pavement below the straightedge.

Maximum depth for the outside wheel path between a horizontal line from the edge of the

pavement and the pavement surface (i.e., the depth of water that may accumul ate before
drainage onto the shoulder).

Maximum depth for the inside wheelpath between a horizontal line from the maximum
elevation between the wheel paths and the pavement surface (i.e., the maximum depth of
water that may accumulate before drainage into the outer wheel path, assuming elevations
in an adjacent lane greater than the maximum depth between wheel paths).

Maximum depth for each wheel path between awire line extended across the entire lane
width and the pavement surface.

Width of rut.
Radius of curvature of deformation.

PASCO typecasting as described below.

Thislist of characterizations includes the ideas of the research team, as well as those obtained
during a literature review; discussions with the LTPP Distress Expert Task Group (ETG) at a
meeting held in September 1997; discussions with PASCO, USA; and discussions with the Data
AnaysisETG. The ETGs are part of an advisory structure operated by the Transportation
Research Board (TRB), which advises the Federal Highway Administration (FHWA) on the
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conduct of LTPP. Asthe nameimplies, the Data Analysis ETG provides guidance and support
on issues concerning data analysis. The Distress ETG provides guidance and support on issues
concerning the collection and interpretation of distress information.

At the American Association of State Highway Officias (AASHO) Road Test, the rut depth was
defined as the maximum depth for each wheel path between a 1.2-m straightedge and the surface
of the pavement below the straightedge.” Recent studies of rutting in hot-mix asphalt (HMA)
pavements have defined rut depth as the maximum depth for each wheel path between a 1.8-m
straightedge and the surface of the pavement below the straightedge.®® One shortcoming of the
straightedge method is that it provides no indication as to the type of surface distortion that is
occurring.

ETG RECOMMENDATIONS

Based on the recommendations of the Distress and Data Analysis ETGs, the rut depth and rut
width based on a 1.2-m straightedge and the depth of water in each wheel path were not
considered in any further analyses. The positive and negative aress, the fill area, the rut depth
and rut width from the 1.8-m straightedge, the rut depth and rut width from the lane-width wire
line, and the radius of curvature were considered the most beneficial. The location of the rut
depth based on the distance from the edge of the lane was added to serve as a diagnostic tool.

For the remainder of the report, the terms “ 1.8-m rut depth” and “1.8-m rut width” refer to the rut
depth or width of the rut based on a 1.8-m straightedge, respectively. In addition, the terms
“wireline rut depth” and “wire line rut width” refer to the rut depth and width of the rut based on
alane-width wire line, respectively.

METHOD OF CALCULATION

The physical description of each index was examined with relationship to the transverse profile
being collected for the purpose of determining how each index would be calculated. These
methods of calculation were incorporated into a VisualBasic program entitted RUTCHAR. The
RUTCHAR program, which was used to cal culate each index from the transverse profile data, is
discussed later in this chapter.

Positive and Negative Areas

Asshown in figure 9, positive and negative areas are the areas of deviation between the
pavement surface and a straight line connecting the end points of the transverse profile. The
outcome from this calculation will be a positive area for the area below the pavement surface and
above the straight line, and a negative area for the area above the pavement surface and below
the straight line. These areas were easily determined, because the straight line is the x-axis.
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A finite integral technique is employed. The best method to use is the trapezoidal rule since the
distances between the points on the x-axis are not necessarily equal. This method assumes that a
pair of x-y coordinates provides the four corners of atrapezoid. The area of the trapezoid is:

Area= Y2 (Yis1 + ¥i) (Xi+1—X) (1)
Thisvalueis calculated for each x-y pair where both y's have the same sign. If the y's change

their sign, it is necessary to find the slope between the two points. The x coordinate (Xo), where
the line connecting the two points cross the x-axis, can be found by the following equation:

- Y
%= gope @)
15
10 ~
5 + +
0 T T T
500 1000 1590 2000 4000

mm

-10 A

-15 A

-20 A

-25

X, mm

Figure9. lllustration of the positive and negative area indices.
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The area of the triangle between (x;, yi) and (X, 0) can be determined, and the area of the triangle
between (Xo, 0) and (X+1, Yi+1) can be determined.

Finally, the positive areais the sum total areawherey; and y;.1 are greater than or equal to 0.
The negative areais the sum total areawherey; and yi.; arelessthan or equal to 0. Thesetwo
values can be used in conjunction as a sum (positive minus negative) or aratio to indicate the
amount of rutting affecting the pavement.

Area of Fill
The area of fill isthe areain millimeters squared below the straight lines connecting the

maximum surface elevations and above the pavement surface as shown in figure 10. Thisvalue
describes the material required to “fill in” the ruts for aunit length of pavement.

Fill Area

Y

Fill Area

mm
w

Figure 10. Illustration of thefill area index.

The first step isto stretch an imaginary wire line across the pavement surface (i.e., the lane
width). Thefill areais defined as the area between the wire line and the pavement surface, and
is calculated using the trapezoidal rule previously described.
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Calculated Rut Depth Based on a 1.8-m Straightedge

This rut depth is the maximum distance in millimeters in each wheel path between a1.8-m
straightedge and the surface of the pavement, as shown in figure 11. The procedure described
below provides the rut depth, width, and location for the left wheelpath (LWP) and is repeated
for the other half of the lane to obtain the values for the right wheelpath (RWP).

An iterative process was used to place the straightedge on each half of the lane. The distance
between the points on which the straightedge sat never exceeded 1.8 m. When the maximum rut
depth was determined for one-half of the lane, the exact distance between the points on which
the straightedge sat and the location at which the maximum rut depth occurred was recorded.
The same process was used for determining rut depth in each half of the lane.

2 .8-m Rut Width
1 _
0 ‘

\/3000 4000

1.8-m Rut Depth

€ -190 1060

X, mm

Figure 11. Illustration of the 1.8-m rut depth and 1.8-m rut width.

Calculated Rut Depth Based on a Lane-Width WireLine

Thisrut depth, reported in millimeters, is the maximum distance for each wheel path between a
lane-width wire line placed across the lane and the pavement surface, as shown in figure 12.
This value can best be visualized by imagining a wire stretched across the pavement surface so
that it touches only the maximum elevation, or peaks, of the pavement surface. The rut depthis
the distance between that wire and the pavement surface.

Thewirelineis defined as a series of straight lines. When the wire line is established, the next
step is to determine the distance of each x-y coordinate from the wireline. The laneisthen
divided into half. The rut depth in each wheelpath is the maximum distance between the wire
line and the x-y coordinates in each half-lane.
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The rut width is the difference in the X' s of the two peak points surrounding the rut depth in each
wheelpath. The rut location is the value of x at which the maximum rut depth in each wheelpath
occurred.

3.7-m Rut Width
<

N W

3000 4000

1
=

e

=

3.7-m Rut Depth

X, mm

Figure 12. [llustration of thewirelinerut depth and the wireline rut width.

Radius of Curvature

Theradius of curvature isthe minimum radius of curvature of the surface profile in each
wheelpath. Three points are required to uniquely define acircle. Initialy, the radius of
curvature was found by determining the radius of the circle defined by each set of three
consecutive points. The radius of curvature reported in each wheel path was the minimum radius
for that half of the lane where the center of the circle was still above the surface of the pavement.
Figures 13, 14, and 15 show examples of the circles circumscribed by this method. While these
circles are geometrically correct, they do not provide any meaningful measure of the wheel path.
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A second approach was considered in which a circle would be circumscribed for each wheel path.
If the pavement did not exhibit a definable depression in the wheel paths, then a circle would be
fitted to the mid-lane hump as shown in figure 16. However, in attempting to apply this concept,
the profile shown in figure 17 was encountered. The question then became how to apply acircle
to the wheel paths or the mid-lane of this profile. From this evaluation, a decision was made to
apply a parabolato each wheelpath rather than acircle. A parabolais defined asfollows:

e (x-h)2 =4ap(y-k) )
(hk) = vertex of the parabola.
p = distance between the focus and the vertex.

Alternatively, one may say that “a parabolaisthe set of pointsin aplane that are equidistant
from a given fixed point and afixed linein the plane.”” The fixed point is the focus and the
fixed lineisthe directrix. Thevalue p isdirectly related to the width of the opening of the
parabola.

Each profile was examined to determine if any of the y values were negative. If at least four
consecutive y-coordinates were negative, a parabolawas fitted through those negative points. A
|east-squares regression was used to fit a quadratic equation to the x-y points. The equation fit
was of the form:

and y =By +Bx+ Bzx2 (4)

-1
P=28, ©)

The values reported from the regression were the p-value, the F-statistic, and R?. The F and the
R? were reported so that some judgment could be made as to the significance of the fit. This
method was applied to the available data, but only 35 percent of the profiles had a statistically
significant fit.

The radius of curvature is not commonly used to measure rutting. Hence, to establish a
minimum radius would be problematic. If the radius was too small, the value obtained would not
necessarily be representative of what was occurring in the wheelpath. If the radius was too large,
then some wheel paths with very narrow rutting would be totally overlooked. Figure 16 does not
show any definable wheelpaths; therefore, the proposal was to fit a parabola to the surface of the
pavement with the opening of the parabola facing down rather than facing up asit would in a
wheelpath. Figure 17 does not have a definable hump in the middle of the lane as seen in figure
16. Neither aparabolanor acircle could be fit to the middle of the lane or the wheelpaths. Due
to the difficulties in appropriately defining and calculating this index, no additional analyses
were attempted. It isnot recommended for inclusion in the database.
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PASCO Typecasting

The typecasting method groups the individual profilesinto one of 14 shape categories. Each
profilein the database fits into one of the 14 categoriesillustrated in figures 18 and 19. The
shape factor is the number shown at the left of each profile category.

The shapes are based on the location of the rut in each half of the lane and the number of ruts
present in each half of the lane. These shapes may provide a clue as to the rutting mechanism.
However, the number of shapes that have been specified make it difficult to determine the
category to which the profile belongs. Figure 17 is agood example of the problems encountered
in determining shape factors. The middle of the section isthe lowest point on the profile. The
difficulty with this profileis deciding whether or not thisis dual wheel-track rutting and how to
automate this decision. For these reasons, it is recommended that this factor be excluded from
the Information Management System (IMS).

RUTCHAR PROGRAM
Program Description

Since there were in excess of 45,000 profiles, aVisuaBasic program was written to automate the
calculations of the rutting indices noted previously. It also calculates the means and standard
deviations of each index. The user’sguideis provided in appendix A.

The program provides two output files. Thefirst file includes the indices for each transverse
profile contained in the input file. Thisfile also includes the lane width provided by the
transverse profile, aflag indicating whether or not the profile was taken within the 152-m section
limits, and flags on the individual indices. The second input file contains the mean, standard
deviation, minimum, and maximum for each index for each transverse profile survey.

Transverse profile measurements are to be taken every 15 m along the test section. Though the
RoadRecon unit generally meets this requirement, it may record a measurement anywhere from
0.2 m prior to the station or 0.1 m after the station. Since some of these profiles fall outside of
the 152-m test section, these profiles are flagged and excluded from the section averages.

The flags on the individual indices indicate a potential outlier. The values are flagged if they lie

more than two standard deviations away from the mean. These values are still included in the
mean and standard deviation calculations. Theflagis provided as atool for analysts.
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Figure 18. PASCO typecasting shapes (shapes 0-6).
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Figure 19. PASCO typecasting shapes (shapes 7-13).
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In addition to the output files, the program creates another file, DATCHK.OUT. Thisfile
contains the results of checks on the data. In the process of calculating the indices from the data
extraction, two discontinuities were noted in the data. These discontinuities were encountered
with the PASCO data only and are probably a result of the data processing. Thefirstisa
duplicate x-y point. In this case, the duplicate point was removed and all calculations were
performed without the duplicate point. A message iswritten to DATCHK.OUT, which contains
the State code, Strategic Highway Research Program (SHRP) ID, construction number, survey
date, station, x, and “1S A DUPLICATE POINT.”

The second discontinuity occurs when two y-values are shown for the same x-coordinate. In this
case, the x-valueisreduced by 1 mm, so the first x-y point is moved back by 1 mm. In this case,
the same fields are written to DATCHK.OUT except that the message is changed to read “IS A
DUPLICATE X”. A list of the profiles with these discontinuities was provided to FHWA.

Program Verification

The purpose of the verification process was to ensure that the program accurately cal culated the
indices, not to validate the physical representation of the indices. One hundred profiles were
randomly selected from the data set for program verification. Each of the indices was calculated
manually for each of the profiles. This program was used for calculating all of the indices for
these profiles. The algorithm for each index was written and the program was run using the test
set astheinput file. The output was compared to the hand calculations and, if the data were not
the same, the algorithm was reviewed. The process was reiterated using the test set until the
program was found to accurately calculate each index. Appendix B provides the overall
distribution of the indices calculated by the RUTCHAR program for the individual profiles and
the section means.

The complete data set was used to provide afinal check of the program. Some relationships
were known to exist between the indices prior to their calculations (for example, the rut depth
calculated based on alane-width wire line should be greater than the rut depth based on a 1.8-m
straightedge). These relationships were used to confirm that the algorithms had been accurately
programmed.
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CHAPTER 4. INDEX COMPARISONS

In order to identify the index or set of indices that would be most useful to practicing engineers,
aset of comparisons were made. First, the indices were examined to determine the number of
measurements required along each test section to get an accurate representation of the rutting on
each section. Second, the indices were compared to each other. These comparisons allow for
the determination of which indices provide the same general information about the transverse
profile. Two indices are thought to be providing the same information if they are highly
correlated.

MINIMUM NUMBER OF MEASUREMENTS

As previously stated, profiles are collected every 15.2 m. The question arose as to whether the
number of profiles taken on each section could be reduced from 11 total observations (one
profile every 15 m) to 6 total observations (one every 30 m) without sacrificing the accuracy. An
analysis was conducted to determine the consequences of reducing the number of surveys.
Specifically, the averages of the indices were determined, but only using the data measured every
30 m. These values were then compared to the averages of al of the stationsin a series of
pairwise t-tests,® using a significance level of 0.05.

The results from these tests are provided in appendix C. Ascan be seenin table 1, thereislittle
difference between the two data sets. The 1.8-m RWP rut depth, 1.8-m RWP rut width, the wire
line RWP rut depth, and the wire line rut width were the only indices for which the t-test was not
significant. All of the results for the other indices showed a statistically significant difference.
The mean differences for the indices were so small that they were within the capability of the
equipment. For example, the difference in the LWP 1.8-m rut depths was 0.02 mm. Finadly, the
spread around the line of equality, as shown in the figuresin appendix C, was quite narrow. The
largest spread seen wasin the rut widths.

Thefirst set of comparisons noted above included all of the available data. However, the
guestion of the number of measurements necessary to accurately determine the amount of rutting
on atest section originally arose with respect to the Dipstick” data. If thisreduction is
appropriate, then the time required to collect the Dipstick" transverse profiles would be reduced
by almost half. Thus, asecond set of comparisons was made that included only the Dipstick"
data. These results are also shown in appendix C. This reduced data set exhibits exactly the
same trends as the compl ete data set.

The pairwise t-tests showed that using 6 observations (rather than 11) produced no overall biasin
the estimate of the average rut depth. The standard deviation of an arithmetic average of n
observationsis oA/ n. Hence, the curve y=+n provides the relationship between the precision (y)
and the number of observations (n). In this case, the relative precisionis /v 6. Reducing the
sample size from 11 to 6 increases of ¥'n by 25 percent.
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Table 1. Comparison of section means of all versus six measurementsfor all indices.

Index p-Value M ean Difference
Negative Area, mm* 0.0002 51
Positive Area, mm? 0.0147 42
Fill Area, mm? 0.0045 36
1.8-m Rut Depth, LWP, mm 0.0046 0.02
1.8-m Rut Width, LWP, mm 0.0465 2.3
1.8-m Rut Depth, RWP, mm 0.7940 0.00
1.8-m Rut Width, RWP, mm 0.9858 0.00
Wire Line Rut Depth, LWP, mm 0.0019 0.02
Wire Line Rut Width, LWP, mm 0.2825 2.6
Wire Line Rut Depth, RWP, mm 0.1312 0.01
Wire Line Rut Width, RWP, mm 0.6749 1.0

Another approach for examining this question, which addresses sample size, was aso
investigated. In this approach, one determines the number of observations required to detect the
differencein means t» and £4. Inthiscaseg, it is possible to determine the minimum number of
samples required to detect, with 95 percent confidence, a specific level of bias.® The calculation

isasfollows:
0% (Bgi2%2-5)°

n (to=14)° (6)

where:

n = sample size.

;= within-section variance of index.

z = normal distribution statistic associated with a and S.

-t = bias or difference in meansto be detected.

a = level of significance, 5 percent.

4 = probability of false acceptance, 20 percent.

Table 2 presents the results of these calculations for each index. Thelevel of bias used to
develop these numbersis provided in the (14 - t4) column.
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Table 2. Resultsof sample size analysis, 11 versus 6 measurements.

Index (Lo - 14) n
Positive Area, mm? 3000 9
Negative Area, mm? 3000 8
Fill Area, mm? 3000 8
LWP 1.8-m Rut Depth, mm 2 4
RWP 1.8-m Rut Depth, mm 2 5
LWP 1.8-m Rut Width, mm 100 17
LWP 1.8-m Rut Location, mm 100 29
RWP 1.8-m Rut Width, mm 100 16
RWP 1.8-m Rut Location, mm 100 35
LWP Wire Line Rut Depth, mm 2 6
RWP Wire Line Rut Depth, mm 2 6
LWP Wire Line Rut Width, mm 100 184
LWP Wire Line Rut Location, mm 100 26
RWP Wire Line Rut Width, mm 100 182
RWP Wire Line Rut Location, mm 100 35

The datain thistable illustrate that the only indices for which six profiles are acceptable are the
rut depths. All other indicesrequire at least 11.

INDEX COMPARISONS

The indices were compared to determine which were most likely to provide consistent
information for a specific profile. If two indices provide consistent information, it will not be
necessary to consider both indices in future analyses. Correlation between the indices indicates
the strength of the relationship between two indices. For example, the 1.8-m rut depth and the
wire line rut depth should be highly correlated because these values should be measuring the
same information about the surface. Table 3 contains the correlation matrix for the indices.® As
shown, some of the correlations are much stronger than others. Note that data from the
individual profiles were used to generate the correlation matrix and other comparisons shown
later in this section. A more detailed discussion of these results follows.

The rut locations were not included in the correlation matrix. These values will be useful to
analysts in examining trends in rut depths for individual profiles and sections. However, the
location is of little value without the rut depth. It describes nothing about the severity or quality
of the rut and it only provides the location of the wheelpath. For this reason, rut location was not
included in the correlation matrix.
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Rut Widths

In general, the correlation matrix shows that the 1.8-m rut widths are not very highly correlated
with any of the other indices. A paired t-test was performed to compare the values in the two
wheelpaths. The resultsindicate that there is a significant statistical difference between the
wheelpaths. The dispersion of the data was so large that it appears that almost any line could be
fitted. Thisshowsthat thereis virtually no relationship between the rut widths of the LWP and
RWP. One potential cause of the differences observed in the rut widths between the two
wheelpaths is the varying distances between wheels from one vehicle to another. If the drivers
of the various vehicles tend to follow a particular path, the rut width for a particular wheel path
could be fairly narrow, while the other isfairly wide.

The 1.8-m rut widths had the highest correlation with the wire line rut widths. Paired t-tests
were performed to compare the 1.8-m rut widths to the wire line rut widths. The 1.8-m rut width
cannot exceed 1,800 mm as defined by the straightedge length. Generally, where the rut width
for the lane-width wire line was less than 1,800 mm, the 1.8-m rut width was the same value. In
most cases, the rut width was greater than 1,800 mm as determined by the wire line. Therefore,
the 1.8-m rut width is not recommended for widespread use in the analysis of rutting.

A second boundary was observed at approximately 3,700 mm. For computational purposes, the
imaginary wire stretched across the pavement surface is the same width as the lane. Most of the
sections included in the LTPP program are 3.7 m wide, which is the location of the upper
boundary. However, afew of the sections are aimost 4.3 m wide, which accounts for data points
above the 3,700-mm boundary.

The highest correlation for the wire line rut width was between the wheelpaths. A paired t-test
comparing the values for each wheel path also was conducted. The test was statistically
significant. The graph shows alarge amount of scatter in the bottom left corner of the graph,
though there appears to be a clear upper boundary as shown by the diagonal line. Those points
not falling on the line of equality have different rut widths for each wheelpath. The boundary
occurs when the sum of the rut widths in each wheel path equals the lane width. Beyond that
point, the rut widths fall exactly on the line of equality. If the sum of the rut widthsis greater
than the lane width, and the rut widths for the two wheelpaths fall on the line of equality, then
the middle portion of the transverse profile islower than the outside edges.

The 1.8-m rut widths and the wire line rut widths should provide the same general measure of the
transverse profile. However, these two indices are not correlated. When the wire line rut width
is used, data from either wheel path may be sufficient to accurately describe the profile.

Rut Depths
The highest correlations shown are between the 1.8-m rut depths and the wire line rut depths.
Figures 20 and 21 show the results from a paired t-test for the LWP and RWP, respectively. The

figures show that the 1.8-m rut depths are never more than the wire line rut depths. In general,
the values are not the same, but they are closely related. The correlation between the wheel paths
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for each rut depth is moderate. The rut depth in one wheelpath is a reasonable indicator of the
rut depth in the other wheel path.
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Figure 20. Paired t-test comparing LWP 1.8-m rut
depthsversusthe LWP wirelinerut depths.
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Figure 21. Paired t-test comparing the RWP 1.8-m rut
depthsversusthe RWP wirelinerut depths.
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Areas

Thefill areawas fairly highly correlated to the rut depths. Asnoted previoudly, fill areaisthe
volume of material required to “fill in” the ruts for a unit length of pavement. Thisvaueis
essentially atwo-dimensional representation of the rut or the rut width multiplied by the rut
depth. By definition, it must show good correlation with the rut depths. However, for this
reason, it was expected that the wire line rut width would also have arelatively large correlation
with thefill area. However, just the opposite was observed when the correl ations were
examined.

Thefill areaaso had a good correlation with the negative area. Figure 22 illustrates the
relationship between these two indices. Thefill area can be more than the absolute value of the
negative area, but it can never beless. A fairly strong relationship was found between the fill
area and the negative area. Thisis expected, because if the positive areais 0, thefill area and the
negative area should be the same. Comparing the fill areato the negative area can be used asa
quality control check on the data.

Summary

In general, the 1.8-m rut depth and the wire line rut depths provide the same measure of the
rutting. The negative area and the fill area may indicate the same causes of the rutting. The 1.8-
m and wire line rut widths generally provide the same type of information, though not highly
correlated. The positive area does not provide the same information as any of the other indices.

Each index recommended for inclusion in the IM S has advantages and disadvantages. Rut depth
isthe most widely used index and many engineers have a good understanding of the range of rut
depthstypically encountered. However, this value alone provides only a one-dimensional
measure of rutting.

The rut width provides data on the second dimension of rutting. Without using the rut depth in
addition to the rut width, the severity of rutting is difficult to quantify. Since this parameter is
not typically measured, most people may not have afeel for the range of rut widths that they may
encounter.

The areas provide atwo-dimensional characterization of the rutting. Because none of the area
indices have been used widely in the past as with the rut widths, it may take some time to
develop a good understanding of the range of values that may be encountered. Thefill area
could be useful to the State Highway Agencies (SHAS) for determining initial estimates of
volumes of material to be used in aleveling course. Because thisindex istwo-dimensional, a
deep narrow rut will have the same value as awide shallow rut. Finaly, it is hypothesized that
the combined use of the positive and negative areas may be indicative of the cause of the rutting.
Trenching would be required to test this hypothesis.
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Source DF  Sum of Squares Mean Square F Ratio
Model 1 2.6383e+12 2.638el12 188422.9

Error 43839 6.13835el1l 14002020 Prob>F
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Term Estimate Std Error tRatio  Prob>|t|
Intercept 5331.7545 21.88248 243.65 0.0000
Area Neg -0.914532 0.002107 -434.1 0.0000

Figure 22. Comparison between the negative area index and thefill areaindex.
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CHAPTER 5. INDEX EVALUATION

This chapter examines the relationship of each index to the other pavement parameters. These
parameters include such items as age, base type, and HMA thickness. This analysis examines
how the indices behave with respect to the wire line depth. In this way, the reader may gain
more familiarity with these unfamiliar values. Furthermore, this analysis begins the process of
discerning which indices may be useful in determining the mechanism causing the rutting. Any
index that is affected by subgrade type provides information about how the surface rutting is
affected by the subgrade.

A preliminary study was conducted to assess the variability of each index since most of the
analyses conducted in this chapter use the section mean. Table 4 presents the ranges of the
within-section standard deviations. Asis evident, the ranges are quite broad. Each index, except
thefill area, has some surveys for which the standard deviation is 0. Note that a standard
deviation of O for the rut depths is the result of rounding off the data. The difference between the
minimum and maximum rut depths for the cases where a standard deviation of 0 was found was
typicaly 1 or 2 mm. The rut widths and rut locations that have a standard deviation of O were
obtained from data that were collected by the Dipstick®. In these cases, the data for that survey
were fairly uniform, such that even with the variations in the y-values collected, no variation was
seen in the calculated indices. Finally, the surveys for which the negative area or the positive
area has a 0 standard deviation merely indicates that all 11 profilesfor each survey were either
all above the horizontal datum or all below the horizontal datum.

Some of the test sections are extremely uniform, as shown by the minimum standard deviation of
0, while other test sections are quite variable. In general, the larger variabilities were seen in test
sections with larger amounts of permanent deformation. Thisisillustrated by the range of the
coefficient of variation (COV) shown in table 5. For the positive and negative areas where the
standard deviation was 0, the mean was aso 0. Because the COV was incalculable, the
minimum shown in table 5 for these indices was not 0.

SECTION COMPARISONS

The section means were compared to determine how each index varied with some of the basic
pavement parameters, such as surface thickness, climatic zone, subgrade type, and age. While
many researchers and State highway personnel are familiar with rut depth (how it develops and
the general magnitude of the value), it is anticipated that not nearly as many are familiar with the
areaindices or rut widths.

37



Table4. Range of standard deviationsfor each index.

Standard Deviation

I ndex
Minimum Mean Maximum

Negative Area 0 3,128 19,164
Positive Area 0 3,552 27,616
Fill Area 206 3,096 18,373
1.8-m Rut Depth, LWP 0 2 11
1.8-m Rut Location, LWP 0 213 700
1.8-m Rut Width, LWP 0 181 796
1.8-m Rut Depth, RWP 0 2 18
1.8-m Rut Location, RWP 0 227 737
1.8-m Rut Width, RWP 0 184 774
Wire Line Rut Depth, LWP 0 2 11
Wire Line Rut Location, LWP 0 210 685
Wire Line Rut Width, LWP 0 457 1,915
Wire Line Rut Depth, RWP 0 2 18
Wire Line Rut Location, RWP 0 229 755
Wire Line Rut Width, RWP 0 459 1,915

Table5. Range of COVsfor each index.

Coefficient of Variation, %

Index — _
Minimum Maximum

Negative Area -7 -350
Positive Area 5 367
Fill Area 5 329
1.8-m Rut Depth, LWP 0 100
1.8-m Rut Width, LWP 0 124
1.8-m Rut Location, LWP 0 28

1.8-m Rut Depth, RWP 0 200
1.8-m Rut Location, RWP 0 146
1.8-m Rut Width, RWP 0 123
Wire Line Rut Depth, LWP 0 100
Wire Line Rut Location, LWP 0 26

Wire Line Rut Width, LWP 0 135
Wire Line Rut Depth, RWP 0 200
Wire Line Rut Location, RWP 0 146
Wire Line Rut Width, RWP 0 123
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The comparisons in this section were used to examine the relationship between each index and
standard materials characteristics and pavement parameters. These analyses were limited to
simple comparisons of the indices between various groups. In al likelihood, the rutting observed
on the surface is not due to just one factor, but rather to a combination of factors. In each case
examined, the statements made are broad, sweeping claims that are only true if all the other
conditions are equivalent. These supplemental analyses were conducted to determine whether
the other indices behave in the same manner as the rut depth, which is better understood.

The test sections were divided into groups based on the parameter of interest, such as the age of
the pavement or the thickness of the HMA layer. The group means were then compared using a
Student’ s t-test with an a-level of 0.05. This provides a 95 percent level of confidence that the
means are different. A test aso was performed to determine whether the variances for each
group were the same. All of these results are provided in appendix E. The distributions by GPS
and SPS experiments are provided in appendix B.

Pavement Age

A linear regression was performed to determine how each index varied by age. Table 6 provides
the results from each of the regressions for the GPS-1 experiment, HMA over granular base. A
simple linear regression of theformy = mx + b was used. In thiscase, y was the rutting index of
interest. The coefficient (or slope), m, is provided in table 6. The age was x and the y-intercept
was b or the value of theindex at time 0. The F-statistic and the “Prob>F" provide the level of
significance. The “Prob>F" isthe probability of finding alarger F by pure chance. The
regression is considered significant for a probability of lessthan 0.05. Thelast valuein the
table is the coefficient of age from the linear regression or the slope of the line fit through the
data.

These analyses show that the only indices that do not change significantly with age are the 1.8-m
and wire linerut widths. At first, it appears that the negative areaimproves with age. However,
the negative areais a negative number; therefore, a negative coefficient smply indicates that the
negative area gets more negative (increases) with age. The sign of the coefficients for al of the
other indices with significant regressions is positive. Because these are al positive numbers,
these indices increase with time. Note that the coefficients for the 1.8-m and the wire line rut
depths are the same and corroborate the fairly large correlation shown between these indicesin
chapter 4. In summary, the area and rut depth indices all increase with age, as expected.

Table 7 provides the results for the GPS-2 experiment, HMA over stabilized base. These results
are similar to those for HMA over granular base. The 1.8-m and wire line rut widths did not
have significant results except for the RWP 1.8-m rut width, which had a negative ope. This
indicates that the RWP 1.8-m rut width decreases (the width gets narrower) with time. The
results for the negative area also were insignificant. The other indices with significant results
increased with time. While the coefficients for the 1.8-m and wire line rut depths are not as
similar to each other as those for the HMA sections on granular base, these values lie within a
narrow range.
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Table 6. Resultsfrom comparisonswith age for the GPS-1 section means.

Index F Prob>F Coefficient
Negative Area 5.5967 0.0182 -105
Positive Area 8.7846 0.0031 142
Fill Area 13.4480 0.0003 162
1.8-m LWP Rut Depth 22.3839 <0.0001 0.10
1.8-m LWP Rut Width 0.0537 0.8168 -0.2
1.8-m RWP Rut Depth 12.8283 0.0004 0.08
1.8-m RWP Rut Width 0.1082 0.7423 -0.4
Wire Line LWP Rut Depth 22.6285 <0.0001 0.10
Wire Line LWP Rut Width 1.8210 0.1775 -4.7
Wire Line RWP Rut Depth 11.9857 0.0006 0.09
Wire Line RWP Rut Width 1.7074 0.1916 -4.7

Table7. Resultsfrom comparisonswith age for the GPS-2 section means.

Index F Prob>F Coefficient
Negative Area 0.7411 0.3897 -43
Positive Area 7.6285 0.0059 194
Fill Area 7.0746 0.0080 127
1.8-m LWP Rut Depth 10.5178 0.0012 0.07
1.8-m LWP Rut Width 1.8177 0.1788 -2.3
1.8-m RWP Rut Depth 5.8403 0.0160 0.05
1.8-m RWP Rut Width 5.5479 0.0188 -4.5
Wire Line LWP Rut Depth 11.3622 0.0008 0.08
Wire Line LWP Rut Width 1.6629 0.1977 -6.4
Wire Line RWP Rut Depth 6.9163 0.0088 0.07
Wire Line RWP Rut Width 3.0783 0.0799 -8.9
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Experiment Comparisons

Next, the indices for the HMA over granular base experiment were compared to those observed
on test sections in the GPS-7 experiment, HMA overlay of portland cement concrete (PCC).
These results are provided in appendix E. No significant difference was seen between the two
experiments for the positive area and the LWP wire line rut width. For all of the other indices,
the test sections with HMA over granular base had greater amounts of rutting than the HMA
overlay of PCC sections. It isanticipated that the HMA overlay of PCC sections would have less
rutting than the GPS-1 sections. Rutting potentially could occur in any layer of the structurein
the HMA over granular base sections. However, since no rutting is expected to occur in the PCC
layer, rutting should be limited to the HMA overlay in the GPS-7 sections. This should limit the
total amount of rutting that does occur. In this comparison, the positive area does not behave in
the same manner as the other indices. Thisindex probably does not provide the same informa-
tion about the transverse profile as the other indices.

Thickness of Asphalt Concrete Layers

Thetest sectionsin the GPS-1 (HMA over granular base) and GPS-2 (HMA over stabilized base)
experiments were grouped by the thickness of the HMA surface. If the section had less than 76
mm of HMA surface, it was placed in the thin group. If a section had between 76 mm and 178
mm of HMA,, it was placed in the moderate group. If the section had more than 178 mm of
HMA, it was placed in the thick group. The thick sections had significantly more negative area
and less positive area than the other two groups. The thick sections had larger RWP 1.8-m rut
widths than the thin or moderate sections. The thin sections had smaller LWP 1.8-m rut widths
than the moderate or thick sections. The thin sections had smaller LWP 1.8-m rut depths and
LWP wire line rut widths. In general, the thicker asphalt sections had wider ruts.

Base Stabilization

The sectionsin the GPS-1 (HMA over granular base) and GPS-2 (HMA over stabilized base)
experiments with less than 127 mm of HMA were selected for further study. In genera, the
rutting of thin asphalt pavements is expected to be governed by base and subgrade properties.
Therefore, the set of sections used were limited to those that would be considered thin-surfaced.
These sections were divided into two groups based on whether or not the base had been
stabilized, and comparisons were made between the two groups. The results are provided in
appendix E.

All of the indices, except positive area, were larger for the sections with granular bases than for
those with stabilized bases. The test sections with granular bases exhibited smaller positive area
than the sections with stabilized bases. In theory, and all else being equal, the stabilized bases
will do abetter job of distributing the load on the subgrade. The improved load distribution
should prevent some of the accumulation of rutting (or permanent deformation) in the lower
portion of the structure, such as the base and subgrade. Therefore, the sections with stabilized
bases should perform better than those with granular bases.
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The sections with stabilized bases subsequently were divided into two groups based on whether
the base was portland cement-stabilized (cement) or asphalt-stabilized (asphalt). The test
sections in the cement group had larger positive areas, on average, than the sectionsin the
asphalt group. Otherwise, al of the indices were larger, on average, for the sectionsin the
asphalt group than for the sections in the cement group. In general, a cement-stabilized material
is expected to be stiffer than an asphalt-stabilized material. The stiffer material should prevent
rutting in the underlying layers. Therefore, the sections with a cement-stabilized base should
accumul ate less rutting than those with an asphalt-stabilized base, assuming that all other
conditions are equal. It was expected that the indices would be larger for the sections with an
asphalt-stabilized base than for those with a cement-stabilized base.

Climatic/Environmental Zones

For the last set of comparisons, the GPS-7 (HMA overlay of PCC) sections were used to
examine the trends of the indices by environmental zones. These test sections

were divided into freeze (F) and no-freeze (NF) based on the freezeindex. If the freeze index
was greater than 56°C-days, the section was considered to be in a freeze zone. If the freeze
index was less than 56°C-days, the section was considered to be in a no-freeze zone. These
results are also provided in appendix E.

The no-freeze zone had more negative area, more fill area, larger 1.8-m rut depths, larger wire
line rut depths, and larger wire line rut widths in the LWP than the freeze zone. There were no
significant differences observed in the positive area, 1.8-m rut widths, and RWP wire line rut
widths. Therut widthsin this case were not larger for the sections in the warmer climate. The
positive areais not just a measure of rutting, but al'so may be ameasure of heave. The lack of a
significant difference for the positive area and the rut widths should not be a cause for concern as
these indices are providing new information about the transverse profile.

Theoretically, larger rutting should occur in the overlay in awarm climate. Those indices most
closely related to the severity of rutting increase in the no-freeze environment.

Summary

For most of the groups described above, the indices performed in a manner that is consistent with
theory. Sections with a stiff structure exhibited less rutting. The GPS-7 (HMA overlay of PCC)
sections had larger indices than the GPS-1 (HMA over granular base) sections. Stiff base types
had smaller indices than the less stiff base types. 1n addition, GPS-7 sectionsin warm climates
had more rutting, or larger indices, than those in cool climates. However, the rut width and
positive areas were the least likely to conform to generally accepted, albeit smplistic, theory on
how rutting progresses. This indicates that as a rut gets deeper, it does not necessarily get wider.
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VARIABILITY COMPARISONS

Table 5 listed the minimum and maximum within-section COV. A check was made to determine
how the COV s varied with changes in structure and environment. Table 5 provided the range of
COVsfor al of the datain the database. Table 8 provides the minimum, mean, and maximum
within-section COV for the test sections in the GPS-1 and GPS-2 experiments.

Table 8. Distribution of within-section COVsfor GPS-1 and GPS-2 experiments.

Index Minimum Mean Maximum
Negative Area -7 -87 -350
Positive Area 6 82 367
Fill Area 6 28 329
1.8-m LWP Rut Depth 0 28 100
1.8-m RWP Rut Depth 0 29 200
1.8-m LWP Rut Width 0 14 124
1.8-m RWP Rut Width 0 14 123
Wire Line LWP Rut Depth 0 28 100
Wire Line RWP Rut Depth 0 29 200
Wire Line LWP Rut Width 0 25 135
Wire Line RWP Rut Width 0 26 123

Table 8 illustrates that the distribution of the within-section variation is similar for the indices.
The mean COV for the negative and positive areas are larger than the other means, but the rest of
the values are close. The sections were then divided into a“thin” group if the HMA surface was
less than 127 mm or a“thick” group if the HMA surface was greater than 127 mm. Table 9
provides the ranges of COVsfor these two groups.

Not much difference is observed between the two groups. The number of observationsin the
thin group is 716 and the number of observationsin the thick group is 711.

Further examination of the indices variability with structure is based on a comparison between
those sections with a thin surface and a granular base and those sections with a thick surface and
astabilized base. Table 10 includes these results. In thistable, “weak” refers to a pavement that
has less than 76 mm of HMA and a granular base, while “strong” refers to a pavement that has
more than 76 mm of HMA and a stabilized base.
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Table 9. Distribution of within-section COVsfor thin and thick test sections.

Thin Thick
Index . .

Min. M ean M ax. Min. | Mean M ax.
Negative Area -8 -87 -350 -7 -83 -350
Positive Area 7 82 367 7 85 333
Fill Area 6 29 329 7 26 115
1.8-m LWP Rut Depth 0 29 100 0 27 100
1.8-m RWP Rut Depth 0 29 200 0 29 100
1.8-m LWP Rut Width 0 14 124 0 12 96
1.8-m RWP Rut Width 0 15 123 0 12 102
Wire Line LWP Rut Depth 0 29 100 0 27 100
Wire Line RWP Rut Depth 0 29 200 0 28 100
Wire Line LWP Rut Width 0 25 135 0 24 96
Wire Line RWP Rut Width 0 26 123 0 25 102

Table 10. Distribution of within-section COVsfor weak and strong structures.

Weak Strong
Index _ .

Min. Mean M ax. Min. | Mean Max.
Negative Area -8 -81 -341 -13 -93 -340
Positive Area 8 86 367 8 75 277
Fill Area 7 29 171 9 27 84
1.8-m LWP Rut Depth 0 28 100 0 30 100
1.8-m RWP Rut Depth 0 30 100 0 29 100
1.8-m LWP Rut Width 0 13 124 0 14 54
1.8-m RWP Rut Width 0 12 123 0 15 102
Wire Line LWP Rut Depth 0 29 100 0 30 100
Wire Line RWP Rut Depth 0 30 100 0 29 100
Wire Line LWP Rut Width 0 25 135 0 24 80
Wire Line RWP Rut Width 0 25 123 3 25 102




There were 401 sections in the weak group and 173 sections in the strong group. The maximum
COV islower for the strong group than for the weak group; however, the difference may be due
to the number of test sections. No conclusions can be drawn from these data.

TIME-SERIESSTABILITY

Each index from each section was plotted by survey date. Inthisanalysis, the section means of
theindiceswere used. A line was fitted through the points. In some cases, only two pointsin
time were available. 1f more than two points were available, |east-squares regression was used to
fit thelineto the data® Generally, even if the data do not follow alinear trend, if they increase
with time, alinefit to the datawill have a positive slope. The plots and regressions were used to
examine the time-series trends exhibited by the indices.

Slope Comparisons

The slopes of the lines fitted to the data were placed in a separate database. The sign of the slope
for each index was compared to the sign on the RWP 1.8-m rut depth. The 1.8-m rut depthisa
quantity that has been used on many occasions and its response to various conditions is fairly
well documented. The expectation is that the rut depth will usually increase with time.
Occasionally, a section of roadway may experience frost heave or swelling soil and, in this case,
the rut depth could decrease. The results for these analyses, as well as the distributions of the
slopes, are provided in appendix F.

The cross tabs, or contingency tables, provide a count for each of the cells.® The-1 indicatesa
negative slope, 0 indicates a zero slope, and +1 indicates a positive slope. Inthefirst figurein
appendix F, the dlopes for the negative area are compared to those for the RWP 1.8-m rut depth.
Only 20 percent of the test sections had the same slope. The negative area is a negative number.
For the size of the negative areato increase over time, the slope of the line hasto be negative.
This means that for the negative area to exhibit the same trend as the 1.8-m rut depth (i.e.,
increasing in size when the rut depth increases in size), its slope must be oppositein sign. A
second review of the table illustrates that the slopes for the negative area are oppositein sign
from the slopes for the RWP 1.8-m rut depth 64 percent of thetime. The negative areaindex
should not be expected to behave the same way over time as the RWP 1.8-m rut depth.

The positive area was examined in comparison to the RWP 1.8-m rut depth. For one section of
793 total sections, the positive area exhibited a 0 slope where the RWP 1.8-m rut depth exhibited
apositive slope. The slope for the rut depth on this section was 0.0003. In all other instances, if
the RWP 1.8-m rut depth exhibited a zero slope, the positive area exhibited a zero slope, and if
the positive area exhibited a zero slope, the RWP 1.8-m rut depth exhibited a zero slope. For 39
percent of the sections, the slopes for the two indices had the same sign. For the amount of
rutting to increase significantly, the amount of positive areawill probably decrease. In this case,
the sign of the positive area over time would be the opposite of the sign of the RWP 1.8-m rut
depth. A second review of the contingency table shows that 44 percent of the sections are the
oppositein sign. Based on thisreview, the positive area may not exhibit consistent trends with
the RWP 1.8-m rut depth.
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Thefill area, LWP 1.8-m rut depth, and the wire line rut depths were al fairly highly correlated
with the RWP 1.8-m rut depth, so the slopes were expected to be similar. In addition, if the rut
depth increases, the fill area and other rut depths should increase. The contingency tables for
each of these indices reveal that if the RWP 1.8-m rut depth exhibited a zero slope, then the other
indices also exhibited a zero slope and vice versa. In addition, the slopes had the same sign for
85 percent of the sections for the fill area, 82 percent of the sections for the LWP 1.8-m rut
depth, 95 percent of the sections for the RWP wire line rut depth, and 82 percent of the sections
for the LWP wirelinerut depth. This analysisindicates that these indices will follow the same
genera trends as the RWP 1.8-m rut depth.

The 1.8-m rut widths and the wire line rut widths were the last set of indices to be examined.
The slopes for these indices were all zero when the slope for the RWP 1.8-m rut depth was zero.
The slopes had the same sign for 67 percent of the sections for the RWP 1.8-m rut width, 63
percent of the sections for the LWP 1.8-m rut width, 69 percent of the sections for the RWP wire
line rut width, and 66 percent of the sections for the LWP wire line rut width. These values
indicate that these indices may not follow the same trend as the RWP 1.8-m rut depth.

Check for Decreasing Ruts

The next step in examining the time-series trends was to review the plots to determine if there
were significant decreases or increases on any of the test sections. Again, the section means
were used rather than the individual index. A threshold value was set for this examination. The
decrease had to be larger than these values before it was reported. An estimate of error of 2 mm
was used in the examination of rut depths. An error in the rut widths was allowed to be as high
as 100 mm before it was reported. The areaindices were all allowed to have an error of 1,000
mm?Z. Initially, 4,133 sections were reviewed to obtain the list provided in table 11.

These decreases may be due to a number of causes, such as frost heave or swelling soils.
Alternatively, they may be due to maintenance or rehabilitation of the test section. These trends
were noted on test sections where both the PASCO RoadRecon unit and the Dipstick” had been
used to collect data; however, not all sections where both equipment had been used to collect
data exhibited this type of trend. Another factor that might contribute to thistrend is the fact that
the measurements are never taken at exactly the same station in consecutive surveys. While
Dipstick™ surveys generally repeat the same stations on each survey, the PASCO RoadRecon
unit will not be able to achieve such accuracy. Table 11 includes alist of test sections that
exhibited these decreases and possible explanations.

The trends reviewed were of the section averages. When all of the sections with decreasing
trends were identified, the trends for the individual stations within each test section were
reviewed. With the exception of one or two stations in any given section, the individual stations
followed the same trends as the section averages. Next, the longitudinal profile and distress data
were identified to determine whether these exhibited a similar decrease. A decreasein the
International Roughness Index (IRI) or other distress would have been indicative of a
maintenance or rehabilitation event. Asseen in the table, many of the trends can be attributed to

46



Table11. Time-series stability trends.

Section Index Potential Explanation
ID

021001 | PosArea No explanation

041001 | All Areas Use of both PASCO and Dipstick"™ for measurement

041002 | All Use of both PASCO and Dipstick"™ for measurement

041003 | All Distress decreased from May 1993 to Jan. 1994, suggesting
rehabilitation or maintenance

041006 | All Distress decreased from May 1993 to Jan. 1994, suggesting
rehabilitation or maintenance

041007 | All Distress decreased from Sept. 1994 to Feb. 1995,
suggesting rehabilitation or maintenance

041015 | Fill, Neg Areas; Widths | Use of both PASCO and Dipstick" for measurement

041017 | Widths Use of both PASCO and Dipstick™ for measurement

041022 | Neg, Fill Areas, Depths, | Appears to be maintenance or rehabilitation, but not

Widths enough distress or longitudinal profile data available to

verify

041034 | Depths Use of both PASCO and Dipstick" for measurement

068153 | Pos, Neg Areas; Depths | Use of both PASCO and Dipstick™ for measurement

081029 | Depths, Widths IRI decreased from Nov. 1993 to Sept. 1997, suggesting
rehabilitation or maintenance

081047 | All Areas, Depths Decrease is due to use of both PASCO and Dipstick” for
measurement

087780 | Depths Appears to be maintenance or rehabilitation, but not
enough distress or longitudinal profile data available to
verify

161005 | Neg, Fill Areas No explanation

161009 | All Areas, Depths Decreasein IRI from Aug. 14, 1991 to Oct. 24, 1992,
suggesting an unrecorded maintenance or rehabilitation
event

161010 | PosArea Use of both PASCO and Dipstick" for measurement

161020 | All No explanation

161021 | Pos Area, Widths Use of both PASCO and Dipstick™ for measurement

231001 | Depths No explanation

307066 | Pos, Neg Areas Use of both PASCO and Dipstick™ for measurement

341003 | RWP Depths No explanation

341011 | Pos, Neg Areas No explanation

341030 | Depths No explanation

371006 | Depths Use of both PASCO and Dipstick" for measurement

371024 | All Database shows overlaid on Nov. 10, 1992; however, data
trend indicates that construction probably took place prior
to Oct. 14, 1992

371817 | Depths No explanation

371992 | All Use of both PASCO and Dipstick" for measurement
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Table11. Time-series stability trends (continued).

Section I ndex Potential Explanation
ID
421597 | Pos Area, Depths Use of both PASCO and Dipstick"™ for measurement
421605 | Neg, Fill Areas; Depths | Decrease in distress from May 5, 1993 to Oct. 20, 1993,
suggesting an unrecorded maintenance or rehabilitation
event
491001 | Depths, Widths Use of both PASCO and Dipstick"™ for measurement
491008 | Neg, Fill Areas; Depths | Distress and IRI data suggest that the drop is not dueto a
maintenance or rehabilitation event
491017 | Depths Use of both PASCO and Dipstick™ for measurement
501002 | Widths No explanation available
501004 | Depths No explanation
511002 | Depths IRI data suggest that the drop is not due to a maintenance
or rehabilitation event
531008 | All Aresas, Depths Decrease in distress from June 16, 1994 to Aug. 31, 1994,
suggesting an unrecorded maintenance or rehabilitation
event
531801 | All Areas No explanation
811805 | Neg, Fill Areas, Depths, | Decreasein distress from May 24, 1995 to Aug. 25, 1995,
Widths suggesting an unrecorded maintenance or rehabilitation
event
041062 | Pos Area, Depths Use of both PASCO and Dipstick" for measurement
062041 | Neg Area, Depths Use of both PASCO and Dipstick" for measurement
062647 | PosArea Use of both PASCO and Dipstick™ for measurement
087781 | Depths Appears to be maintenance or rehabilitation, but not
enough distress or longitudinal profile datato verify
322027 | All Use of both PASCO and Dipstick™ for measurement
341638 | All Areas, Depths No explanation
361643 | Neg Area, Depths, Decreasein IRl from May 1996 to Oct. 1997, suggesting
Widths rehabilitation or maintenance
361644 | Depths No explanation
371645 | Depths, Widths Use of both PASCO and Dipstick"™ for measurement
372825 | Depths Use of both PASCO and Dipstick"™ for measurement
412002 | Neg, Fill Areas, Depths, | Decrease in distress from May 5, 1993 to Oct. 20, 1993,
Widths suggesting an unrecorded maintenance or rehabilitation
event
501681 | All No explanation
541640 | All Decreasein IRI from Sept. 1990 to Nov. 1991, suggesting
rehabilitation or maintenance
562015 | Depths IRI data suggest that the drop is not due to maintenance or
rehabilitation
562037 | Pos, Neg Areas No explanation
567772 | All Use of both PASCO and Dipstick"™ for measurement
567773 | All Areas No explanation
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Table11. Time-series stability trends (continued).

Section I ndex Potential Explanation
ID
818529 | Neg, Fill Areas; Depths | Use of both PASCO and Dipstick" for measurement
871680 | PosArea, Widths No explanation
881647 | PosArea No explanation
892011 | PosArea No explanation
046055 | Pos Area, Widths No explanation
046060 | All Areas Use of both PASCO and Dipstick"™ for measurement
066044 | Depths Use of both PASCO and Dipstick" for measurement
086002 | Neg, Fill Areas; Depths | Use of both PASCO and Dipstick™ for measurement
306004 | Pos, Neg Areas; Depths | No explanation
416011 | PosArea Use of both PASCO and Dipstick™ for measurement
491005 | Depths No explanation
491006 | All Areas No explanation
536048 | All Areas No explanation
566029 | Neg, Fill Areas No explanation
566031 | All Areas, Widths Decreasein IRI from July 1994 to July 1997, suggesting
rehabilitation or maintenance
566032 | All Areas Use of both PASCO and Dipstick™ for measurement
826007 | Depths Use of both PASCO and Dipstick"™ for measurement
846804 | Neg, Fill Areas,; Depths, | IRI data suggest that the drop is not due to maintenance
Widths or rehabilitation
361008 | PosArea No explanation
371803 | Depths Use of both PASCO and Dipstick™ for measurement
511423 | PosArea No explanation
811804 | Fill Area Use of both PASCO and Dipstick"™ for measurement
371352 | PosArea Use of both PASCO and Dipstick™ for measurement
826007 | Fill Area, Depths, Use of both PASCO and Dipstick™ for measurement
Widths
871620 | Pos Area, Widths No explanation
087035 | Neg, Fill Areas, Depths, | Appears to be maintenance or rehabilitation, but not
Widths enough distress or longitudinal profile datato verify
417018 | Neg, Fill Areas; Depths | Use of both PASCO and Dipstick” for measurement
421610 | PosArea No explanation
547008 | All Decreasein IRI from April 29, 1992 to Nov. 5, 1993,
suggesting an unrecorded maintenance or rehabilitation
event
872811 | PosArea No explanation
872812 | Pos Area, Depths No explanation
421614 | Depths No explanation
320103 | Pos, Neg Areas Use of both PASCO and Dipstick"” for measurement
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Table11. Time-series stability trends (continued).

Section I ndex Potential Explanation
ID
320104 | PosArea Use of both PASCO and Dipstick"™ for measurement
320105 | PosArea Use of both PASCO and Dipstick"™ for measurement
320107 | PosArea Use of both PASCO and Dipstick"™ for measurement
320108 | Neg Area Use of both PASCO and Dipstick" for measurement
320109 | Neg, Fill Areas Use of both PASCO and Dipstick™ for measurement
320110 | NegArea Use of both PASCO and Dipstick™ for measurement
320112 | PosArea Use of both PASCO and Dipstick"™ for measurement
510114 | PosArea No explanation
04C340 | Depths, Widths Use of both PASCO and Dipstick for measurement
04C350 | Neg, Fill Areas; Depths, | EXPERIMENT_SECTION table shows Out of Study on
Widths Feb. 1, 1997; however, data indicate that the
construction probably took place prior to Sept. 26, 1996
04D310 | Widths Use of both PASCO and Dipstick™ for measurement
08A320 | All Areas Use of both PASCO and Dipstick"™ for measurement
08A350 | Neg, Fill Areas Use of both PASCO and Dipstick"™ for measurement
16A310 | PosArea Use of both PASCO and Dipstick™ for measurement
16A320 | All Areas Use of both PASCO and Dipstick™ for measurement
16A330 | PosArea Use of both PASCO and Dipstick"™ for measurement
16A350 | PosArea Use of both PASCO and Dipstick" for measurement
16B320 | Pos, Neg Areas Use of both PASCO and Dipstick" for measurement
16B330 | PosArea Use of both PASCO and Dipstick™ for measurement
16B350 | PosArea Use of both PASCO and Dipstick"™ for measurement
24A310 | Pos, Fill Areas Use of both PASCO and Dipstick"™ for measurement
24A311 | PosArea Use of both PASCO and Dipstick™ for measurement
24A331 | PosArea Use of both PASCO and Dipstick™ for measurement
24A350 | PosArea Use of both PASCO and Dipstick"™ for measurement
30A310 | Pos, Neg Areas; Depths | Use of both PASCO and Dipstick"™ for measurement
30A330 | Pos, Neg Areas Use of both PASCO and Dipstick™ for measurement
32B310 | PosArea Use of both PASCO and Dipstick" for measurement
32B330 | Neg Area Use of both PASCO and Dipstick"™ for measurement
32B340 | All Areas Use of both PASCO and Dipstick"™ for measurement
32B350 | Pos, Neg Areas Use of both PASCO and Dipstick™ for measurement
36A310 | Depths No explanation
36A320 | All No explanation
36A321 | Neg Area, Depths No explanation
36A331 | Pos, Neg Areas; Depths | Use of both PASCO and Dipstick™ for measurement
36A340 | Neg Area, Depths Use of both PASCO and Dipstick" for measurement
36B320 | Depths Use of both PASCO and Dipstick™ for measurement
36B350 | PosArea No explanation
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Table11. Time-series stability trends (continued).

Section I ndex Potential Explanation
ID
36B351 | Pos Area, Depths, EXPERIMENT_SECTION table has not been updated
Widths to include construction event number 2

36B353 | PosArea No explanation

42B330 | PosArea No explanation

42B340 | PosArea, Depths No explanation

42B350 | PosArea No explanation

42B351 | Pos, Neg Areas, Depths | Use of both PASCO and Dipstick” for measurement

49A320 | PosArea, Depths; Use of both PASCO and Dipstick"™ for measurement

Widths

49A330 | PosArea Use of both PASCO and Dipstick"™ for measurement

49B350 | PosArea Use of both PASCO and Dipstick™ for measurement

49B390 | PosArea Use of both PASCO and Dipstick™ for measurement

49C320 | Pos, Neg Areas Use of both PASCO and Dipstick"™ for measurement

49C330 | Pos, Neg Areas Use of both PASCO and Dipstick"™ for measurement

49C350 | Pos, Neg Areas Use of both PASCO and Dipstick™ for measurement

51A321 | PosArea Use of both PASCO and Dipstick™ for measurement

53C350 | Pos, Fill Areas Use of both PASCO and Dipstick"™ for measurement

87A311 | Widths No explanation

87B360 | Pos Area, Depths EXPERIMENT_SECTION table shows no changein
construction number

87B361 | Depths Use of both PASCO and Dipstick™ for measurement

040503 | Depths Use of both PASCO and Dipstick"™ for measurement

040505 | Depths Use of both PASCO and Dipstick" for measurement

040506 | Depths Use of both PASCO and Dipstick™ for measurement

230503 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230504 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230505 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230506 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230507 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230508 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230509 | All EXPERIMENT_SECTION table has not been updated
to include construction event number 2

230559 | All EXPERIMENT_SECTION table has not been updated

to include construction event number 2
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Table11. Time-series stability trends (continued).

240559
240563
240560

300561
060603
060604
060606
060607
060608
420603
420604
420606
420607
420608
300805
340801
340802

360801

Pos Area
Pos Area
All

Pos Area

Pos Area

Pos Area

Pos Area

Pos Area

Pos, Fill Areas
Pos, Neg Areas
Pos, Neg Areas
Pos, Neg Areas
Pos, Neg Areas
Depths

Pos Area

Neg, Fill Areas
Fill Area, Depths,
Widths

Pos Area

Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick"™ for measurement
EXPERIMENT_SECTION table has not been updated
to include construction event number 2

Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick"™ for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick" for measurement
Use of both PASCO and Dipstick™for measurement

Use of both PASCO and Dipstick™for measurement

the change in devices (i.e., PASCO and Dipstick”) between surveys. Some of the trends,

however, cannot be explained by a change in device or by a maintenance or rehabilitation event.

SUMMARY

The comparisons in this chapter are provided in table 12. This summary shows that the positive
area, negative area, and LWP rut depths are the most consistently affected of all of the pavement

parameters. The 1.8-m rut widths were the least affected indices. The positive and negative
areas should be examined further for their potential for identifying the rutting mechanism.
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CHAPTER 6. COMPARISONS OF THREE-POINT AND FIVE-POINT RUT DEPTHS

The three-point and five-point systems are used by many SHAs for collecting project- and
network-level rut depths. Most of these agencies use a“Rut Bar” mounted on a vehicle with
either three or five acoustic sensors. A survey of SHAs on equipment used for transverse profile
data collection indicated that among the 39 SHASs responding, 22 SHAS use a three-point system.
These data are shown graphically in figure 23.

The acoustic sensors measure the distance, or height, from the sensor to the pavement surface at
the locations defined below.

* Thethree-point systems have one sensor located above each wheel path and one sensor in
themiddle. Hence, arut depth is obtained for each wheel path by calculating the
difference between the height at the center of the pavement and the height over each
wheel path.

* Thefive-point systems have two extra sensors, usually located approximately 0.30 m
from the outside of the two wheel path sensors.

An analysis was undertaken to determine how measurements from the three- and five-point
systems compare and how the measurements compare with rut depths calculated based on alane-
width wireline.

METHOD OF CALCULATION

A software program was written to calculate the three-point and five-point rut depths from the
transverse profiles collected by the RoadRecon unit and the Dipstick®. In this program, it is
assumed that the data collected by these two methods are connected by straight lines. This is
considered to yield areasonably accurate representation of the transverse profile.

The software used two approaches in generating the data, as illustrated in figure 24. In the “best
case” scenario, the transverse placement of the rut bar is identical at each station along the test
section at which transverse profiles are collected. This scenario assumes that there is no lateral
vehicle movement in the lane within the test section. In the “worst case” scenario, the transverse
placement of the rut bar is random for all stations. This scenario assumes that there is variable
lateral vehicle movement in the lane within the test section.

Regardless of the scenario, 30 rut depth calculations are made at each station along the highway

at arandomly selected transverse location. The left sensor is placed assuming a normal
distribution, with an average placement of 914 mm.
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Figure 24. Rut bar measurement.

The lateral standard deviation or “wander” of the survey vehicle used in the computations was
127 mm. Thisvalue for the vehicle wander was determined from field data collected at alimited
number of sites. On these sites, afive-sensor rut bar was used to obtain five repeat
measurements. Elevation measurements were aso obtained on these sites. The program was
used to generate rut bar data, with the wander ranging from 50 mm to 250 mm. The standard
deviation of the five-sensor rut bar results at each level of wander was compared to the standard
deviation of the actual measurements. These results are provided for the LWP and the RWP in
figures 25 and 26, respectively. Based on these results, awander of 127 mm is the most suitable
value.

The sensors on the three-sensor rut bar are assumed to have a standard spacing of 914 mm. The
rut depth is calculated as the difference between the el evation of the pavement in the center of
the lane and the elevation of the pavement in each wheelpath, as shown in the lower portion of
figure 27.
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[Means and Std Deviations ]

Level Number Mean Std Dev Std Err Mean
2 29 6.66975 6.86628 1.2750
3 29 6.53182 6.80275 1.2632
4 29 6.11803 6.61878 1.2291
5 29 6.28286 6.34861 1.1789
6 29 5.33951 5.95524 1.1059
7 29 5.09694 5.58873 1.0378
8 29 4.64694 5.64195 1.0477
9 29 4.31728 5.29818 0.9838
10 29 4.30567 5.04997 0.9378

Figure 25. Means and standard deviations of the differences observed for
the LWP versuswander.
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[Means and Std Deviations j
Level Number Mean Std Dev Std Err Mean
2 29 7.58147 6.14350 1.1408
3 29 7.05976 5.81465 1.0798
4 29 6.93029 5.67262 1.0534
5 29 6.33562 5.75870 1.0694
6 29 5.79595 5.29036 0.9824
7 29 5.54251 5.09489 0.9461
8 29 5.06599 5.21097 0.9677
9 29 4.67769 4.47739 0.8314
10 29 4.25476 4.04032 0.7503

Figure 26. Meansand standard deviations of the differences observed for

the RWP versuswander .
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Figure 27. Calculation of rut depth from therut bar.

The three center sensors of the five-sensor rut bar have the same spacing as the sensors on the
three-sensor rut bar. The two outside sensors are located 305 mm from the sensors placed over
the wheelpath. The rut depth is obtained by drawing aline from sensors 1 to 3 and sensors 3 to
5. The difference between the line and the pavement elevation at sensors 2 and 4 is the rut depth
for the LWP and RWP, respectively. This calculation isillustrated in the upper portion of figure
27.

Both the three- and the five-point calculations can yield a negative rut depth. The three-point
system will provide anegative rut depth for transverse profiles, such as that shown in figure 28.
The five-point system will provide a negative rut depth for transverse profiles, such as that
shown in figure 29. However, other shapes may also yield a negative rut depth.
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Figure 29. Typical profile providing a negative rut depth

from five-point analysis.
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ANALYSES

To examine the rut depths for the three-point and five-point profiles, a histogram was created for
the three-point rut depths, the five-point rut depths, and the wire line rut depths. As a minimum,
these histograms illustrate that both the three-point and five-point cal culations can provide
negative rut depths. The mean, standard deviation, and minimum and maximum values for the
three-point rut depths, the five-point rut depths, and the wire line rut depths are all provided in
table 13.

Variation

The standard deviations of the simulation runs were pooled across stations to obtain a value for
each survey date. The standard deviations provide some indication of the effect of vehicle
wander on the calculated rut depth. PASCO corrects for this phenomenon by taking a picture
that is slightly larger than the width of the lane. The standard deviation for each wheel path
provides an indication of the range of values (maximum and minimum rut depths) that may be
observed for agiven transverse profile. These standard deviations were found to be correlated to
the mean rut depth for the section. Therefore, it is more appropriate to discuss the variability in
terms of COV.

The pooled standard deviation and section mean were used to calculate the COV. These values
were used to examine the variability associated with each profile for both the best-case and
worst-case scenarios. The values of COV were within round-off error between the two
scenarios. For the three-point rut bars, the average COV was 104 percent, while the average for
the five-point rut bars was 239 percent. These valuesindicate that the transverse placement of
the rut bar dramatically influences the measurement and, hence, the rut depth calcul ation.

Combined Data Sets

The correlation matrix for these rut depths shows that the five-point rut depths have a higher
correlation with the wire line rut depths (0.8 and 0.6 for the LWP and RWP, respectively) than
the three-point rut depths (0.5 and 0.4 for the LWP and RWP, respectively). In addition, the
correlations of the LWP for al three rut depths were higher than those for the RWP (table 13).
This higher correlation with the LWP rut depth may be partially attributed to the fact that thereis
typically greater consistency/uniformity in the LWP over time.

Comparisons were then made among the three-point rut depth, the five-point rut depth, and the
wire line rut depth by wheelpath. Paired t-testsindicated that there were statistically significant
differences, indicating that the different measurement techniques do not provide the same
estimate of rutting.
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These data indicate that the five-point rut depth never exceeds the wire line rut depth. However,
the three-point rut depth may be larger or smaller than the wire line rut depth. The average
difference between the wire line rut depth and the five-point rut depth was 5 mm for the LWP
and 6 mm for the RWP. On average, the three-point rut depth was 4 mm smaller than the wire
line rut depth in both wheelpaths. These values indicate that the differences are significant, both
statistically and from an engineering perspective.

Paired t-tests for the three-point rut depths versus the five-point rut depths yielded statistically
significant differences. On average, the three-point rut depths were 2 mm larger than the five-
point rut depths; however, some differences were as large as 40 mm.

Finally, a series of linear regressions were used to examine the potentia correlation between the
rut depths. The results from these regressions are shown in table 13. Figures 30 and 31 show a
graphical comparison of the three- and five-point rut depths versus those determined from the
lane-width wire line. Asisevident, the correlations are weak.

The relationship between the wire line rut depth and the five-point rut depth was stronger than
that between the wire line rut depth and the three-point rut depth (i.e., R? of 0.38 versus 0.65 and
0.15 versus 0.22, respectively). In all cases, the data included alarge amount of scatter.

The relationships between the five-point rut depths and the three-point rut depths were very
different between the wheelpaths. The R? for the LWP was 0.44 and the R?for the RWP was
0.003.

Some States that use these systems use the average rut depth from a given length of pavement.
Therefore, the analyses were repeated, examining the average rut depth for the section for both
scenarios of the three-point and five-point systems. Table 14 includes the mean, standard
deviation, and minimum and maximum values for these rut depths. The table shows that
negative values for average rut depths, though smaller than for the individual rut depths, may
still be computed.

The correlation coefficients are also provided in table 14. The values are slightly lower than
those shown for the five-point rut depth in table 13, but are dlightly higher than those for the
RWP three-point rut depth. Naturally, the sameis true for the coefficients of determination (R?)
also shown in table 14.

The results of the paired t-tests reflect a statistically significant difference between the average
three-point versus the wire line rut depths and the average five-point versus the wire line rut
depths. The mean difference for the average three-point comparison was 3 mm. The mean
difference for the average five-point comparison was 5 mm. Both values are of some concern
from an engineering standpoint.

In summary, the average three-point and five-point rut depths did not show a stronger
relationship with the wire line rut depth than did rut depths calculated for the individual
wheelpaths.
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Figure 30. Graphical comparison of the three-point rut depths versus
thewirelinerut depths.
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Table 14. Correlation of average three-point and five-point rut depths versus

thewirelinerut depths.

3-Point, | 5-Point, Wire 3-Point, 5-Point,
Worst Worst Line Best Case Best Case
Case Case

Number of Observations | 7,229 7,229 7,229 7,229 7,229
Mean 3.2 0.5 5.9 3.2 0.5
Standard Deviation 3.60 1.48 3.93 3.61 1.49
Minimum -15.2 -6.9 0.0 -15.7 -6.8
Maximum 52.6 12.4 54.6 54.4 11.9
Correlation to wireline 0.4636 0.8224 0.4623 0.8197
rut depth
R? 0.215 0.676 0.214 0.672
RMSE 3.48 2.23 3.48 2.25
Se/Sy 0.89 0.57 0.89 0.57
p-value from paired t- 0.0000 0.0000 0.0000 0.0000
test

RMSE = Root Mean Square Error
Se/Sy = Standard error of the regression divided by the standard deviation of the y-value

Blocked Data Sets Versus Shape

The shape of the transverse profile may affect the correlation between the rut depths. To test for
this possibility, the data were divided into categories based on the transverse profile shape using
the complete profile information available from the original PASCO and Dipstick® profiles.
Four categories were used for thisanalysis:

» Category 1 - Profiles for which the two outside edges were lower than the rest of the
entire profile.

» Category 2 - Profiles that were bowl-shaped.

» Category 3 - Profiles that were all negative, but with a“hump” in the middle.

e Category 4 - Profiles for which the middle portion of the profile was larger than the two
outside edges and the portions of the profile in the wheel paths were lower than the two
outside edges.

Examples of each are shown in figure 32. Figure 33 reflects the number of profiles within each

category. Category 4, which contained the most data, is considered to be atypical profile.
Category 2 included the fewest number of profiles.
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4
4
3
2 3
| 2
1 1
[Frequencies j
Level Count  Probability Cum Prob
1 10937 0.24107 0.24107
2 3074 0.06776 0.30882
3 7834 0.17267 0.48150
4 23524 0.51850 1.00000
Total 45369
4 Levels
o
o J

Figure 33. Number of profileswithin each shape category.
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Table 15 lists the means and standard deviations for each of the profile categories. The
differences between the best-case and worst-case scenarios were within round-off error;
therefore, only one value is presented. The differences between the means were all significantly
different from each other, with the exception of categories 2 and 4 for the RWP five-point rut
depth. Considerable overlap existed between the distributions of each category for each rut
depth.

Statistical tests conducted on each category were identical to those conducted on the combined
data set. These steps included the examination of the histograms, the development of the
correlation matrix, a paired t-test between each of the rut depths, and alinear regression between
each of the rut depth indices. Table 15 summarizes the comparisons with the wire line rut
depths.

Category 1 Profiles

The correlation matrix for category 1 exhibited much weaker correlations than those observed
for the combined data set. Aswith the combined data set, the correlations for the five-point rut
depths versus the wire line rut depths (0.57 and 0.42 percent for the LWP and RWP,
respectively) were stronger than those for the three-point rut depths versus the wire line rut
depths (0.54 and 0.24 for the LWP and RWP, respectively). It isinteresting to note that the
correlation between the three-point rut depth and the five-point rut depth for the RWP is
negative. Thismeans that as the three-point rut depth increases, the five-point rut depth
decreases, which is contrary to the expectation.

The results of the paired t-tests for category 1 were all statistically significant. The mean
differences between the five-point rut depths and the wire line rut depths (3 mm for the LWP and
4 mm for the RWP) were smaller than those observed for the combined data set. These values
are considered significant from an engineering perspective.

The mean differences between the three-point rut depths and the wire line rut depths were also
smaller than those for the combined data set. The mean difference for both wheel paths was 1
mm, suggesting that the significance between the three-point rut depth and the wire line rut depth
is questionable.

The differences between the three-point rut depths and the five-point rut depths are also
considered significant. These differences averaged 3 mm, but some were as large as 24 mm.
The three-point rut depths were generally, but not always, larger than the five-point rut depths.

The regression analyses were all statistically significant. The regressions for the five-point rut
depths had higher R? values than the regressions for the three-point rut depths. However, the

data scatter was extensive. Like the combined data set, the explained variation (i.e., R? values)
for the LWP three-point rut depth versus the five-point rut depth was higher than for the RWP.
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Category 2 Profiles

The correlation coefficients for the five-point rut depths versus the wire line rut depths were
lower than those computed for the combined data set (0.42 and 0.53 for the LWP and RWP,
respectively). However, the correlations for the three-point rut depths versus the wire line rut
depths were much lower (0.01 and 0.08 for the LWP and RWP, respectively). The correlation
coefficients for the three-point rut depths versus five-point rut depths were higher for the LWP
than for the RWP.

Results from the paired t-tests were all significant. For this shape category, the three-point rut
depths, like the five-point rut depths, were never larger than the wire line rut depths. This
yielded greater mean differences than those observed for the combined data set. The five-point
rut depths were 6 mm smaller than the wire line rut depths in the LWP and 7 mm smaller in the
RWP, on average. The three-point rut depths were 8 mm smaller than the wire line rut depths in
the LWP and 9 mm smaller in the RWP, on average.

The regressions for category 2 datawere not all significant. The regression for the LWP three-
point rut depths versus the wire line rut depths was not significant. The amount of scatter in the
dataindicates that, although some of the regressions were moderate, i.e., R? less than 0.50, there
is not a strong rel ationship between the measurement methods for this category.

Category 3 Profiles

The correlations for these data were generally better than those observed for the combined data
set. Infact, the LWP five-point rut depths versus the wire line rut depths had a correlation
coefficient of 0.8, whichislarge.

Results from the paired t-tests were all significant. For this shape category, the three-point rut
depths were always less than the wire line rut depths. The mean differences were similar to
those observed for the category 2 data. The mean differences observed for the comparison of the
three-point versus the five-point rut depths were so small that they should not be considered
significant from an engineering perspective.

The linear regressions for these data were al significant. Though the data show considerable
scatter, graphical presentation of these data reveals a dlight, but identifiable, trend, except for the
RWP three-point rut depths versus the five-point rut depths.

Category 4 Profiles

The correlation coefficients for this category were higher than those computed for the combined
dataset. The correlation coefficients for the five-point rut depths versus the wire line rut depths
were 0.83 and 0.53 for the LWP and RWP, respectively. The correlation coefficients for the
three-point rut depths versus the wire line rut depths were 0.72 and 0.66 for the LWP and RWP,
respectively.
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Results of the paired t-tests indicate that the measurements obtained from the different methods
were significantly different rut depths, although the mean differences were not as large as those
observed for the category 2 and 3 data. The three-point rut depths were generaly, but not
always, smaller than those obtained using the wire line method.

The linear regressions were all statistically significant. The data showed quite a bit of scatter,
but a general trend was detectable from all of the graphs except one. The graph for the RWP
three-point rut depth versus the five-point rut depth did not show any trend, even though the
regression was significant. The correlations noted here were similar to those observed for the
category 3 data set.

Blocked Data Sets Versus Rut Depth

In addition to shape, the data were categorized based on the amount of rutting, since the amount
of rutting may affect the correlation between the rut depths. The data for the individual profiles
were sorted by mean rut depth for the profile. These data were divided roughly into thirds. The
“low rutting” group consisted of profiles with an average rut depth of lessthan 4.5 mm. The
“moderate rutting” groups consisted of profiles with rutting from 4.5 mm to 7.2 mm. The“high
rutting” group consisted of profiles with more than 7.2 mm of rutting.

Low Rutting

The results from these comparisons are provided in table 16. The correlation coefficients were
less than those observed from the combined data set. The correlation coefficients for the five-
point rut depths versus the wire line rut depths were 0.49 and 0.31 for the LWP and RWP,
respectively. The correlation coefficients for the three-point rut depths versus the wire line rut
depths were 0.41 and 0.15 for the LWP and RWP, respectively.

The paired t-test results indicate that the measurements obtained from the different techniques
were significantly different rut depths. The mean differences observed for the five-point rut
depths were greater than 2 mm and large enough to be considered significant. The mean
differences observed for the three-point rut depths were small enough to be considered
insignificant, but the amount of scatter in the data was large enough to be of concern.

The linear regressions were all statistically significant. The data showed quite a bit of scatter,

but a general trend was detectable. Even though these regressions were significant, the
relationships between the rut depths were limited at best.
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FHWA-RD-01-024

Abstract

Characterization of Transverse Profiles, April 2001 (FHWA-RD-01-024)

A study of the transverse profile data currently being collected under the Long Term Pavement
Performance project was undertaken. The data were collected by three processes: (1) Dipstick, (2)
a photographic method, and (3) straightedge used to collect rut depths.

This study examined several indices for the purposes of quantifying and qualifying the transverse
profiles. It is recommended that five indices be added to the National Information Management
System. These indices include the area of the rut below a straight line connecting the end points of
the transverse profile, the total area below the straight lines connecting the maximum surface
elevations, the maximum depth for each wheel path between a 1.8-m straightedge placed across the
wheelpath and the surface of the pavement, and the width of the rut based on a 1.8-m straightedge.

These indices were studied in order to determine typical trends by climate, surface thickness, soil
type, and age. In addition, the time-series trends for each test section were studied in order to
determine whether any anomalies existed and the potential causes of these anomalies.

http://www.tfhrc.gov/pavement/Itpp/abstracts/01-024.htm [5/29/2001 1:47:16 PM]
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Moderate Rutting

The results from the comparisons of the profiles in the moderate rutting category are provided in
table 17. The correlation coefficients were lower than those for the combined data set. These
values were larger than those for the low rutting data set.

Results from the paired t-test indicate that the measurement techniques do not provide the same
value of rut depth. The differencesranged from 2.6 mmto 5.7 mm. These values are large
enough to consider the observed differences to be significant from an engineering perspective, as
well as a statistical perspective.

The linear regressions were also statistically significant. Although these results were not as good
as those for the combined data set, they were better than those for the low rutting data set. The
data showed considerabl e scatter and the value of these regressions have little meaning from the
engineering point of view.

High Rutting

The results of the comparisons of the high rutting data set are provided in table 18. The
correlation coefficients were smaller than those observed for either the combined data set or the
moderate rutting data set.

Results from the paired t-tests indicate that the measurements obtained from the different
measurement techniques were not the same. The mean differences were al greater than 5 mm.
These differences were greater than those observed for the profiles with moderate rutting.

The linear regressions were statistically significant. However, the R? and error terms associated
with these regressions indicate that the fit of the lines to the data are very poor.

SUMMARY

In summary, the following conclusions were drawn from these analyses:

» Thetransverse location of the rut bar dramatically affects the measurement and, hence,
the rut depth computation. Thus, consistent lateral placement of the survey vehicleis
essential to repeatabl e rut depth measurements using the three- or five-point rut bars.

* Thepaired t-testsillustrate that the three rut depth measurement systems (three-point,
five-point, and wire line) do not provide the same values (i.e., there are statistically
significant differences among them).

» Thethree-point rut depths underestimate the wire line rut depths for transverse profiles

where the middle of the profileis lower than the outside edges of the lane (categories 2
and 3).
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* Although a better correlation (but still considered poor) existed between the five-point rut
depths and the wire line rut depths than between the three-point rut depths and the wire
line rut depths, they consistently underestimated the wire line rut depths.

* A better correlation was found between the rut depths for those transverse profile shapes
with a“hump” in the middle (categories 3 and 4).

» Generaly, the larger the wire line rut depths, the bigger the difference that will be
observed between the wire line rut depths and the three-point and five-point rut bars.

As aresult of these analyses and comparisons, the analysts concluded that neither the three-point

nor the five-point rut depth measurement systems provide reliable and accurate estimates of rut
depths as measured with awire line.
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CHAPTER 7. FIELD STUDY

To determine the bias and precision of the PASCO and Dipstick® data collection methods, it was
necessary to conduct afield study. The data set housed in NIM S contains several sets of surveys
in which the PASCO method and a Dipstick® method were used to collect data for a 1-year time
frame. While these data allowed for comparisons between these two methods, they did not allow
for adirect computation of the bias and precision of these two measurement methods.

The field study presented here utilized data from only one roadway. The mechanism causing the
rutting could potentially affect the bias and precision of the transverse profile and, subsequently,
the bias and precision for the indices. Thisfield study provides agood initial estimate of the bias
and precision; however, as additional data become available, the data should be used to verify
the bias and precision values presented here.

DATA COLLECTION

A site with varying rut depths was selected outside of Thompsontown, Pennsylvania, on the
frontage road of U.S. 322. Two 152.5-m test sections were selected along this roadway for use
with the field study. The site had minimal traffic because the frontage road was a dead-end road.
Profile measurements were made along each section every 15 m. All data were collected within
a2-week time frame.

Four methods were used to collect the data. The first was a straightedge survey. A 3.9-m
straightedge was placed on blocks. The distance between the straightedge and the surface of the
pavement was measured every 152 mm. Three operators used this method to collect profile data
on each profile with eleven profiles measured on each section. Each operator made three
replicate measurements, for atotal of nine sets of profiles collected. The data collected by this
method were considered the benchmark for the bias computation.

The second method used to collect data was the FACE Dipstick®. The Dipstick® collects data
every 305 mm across the profile. Aswith the straightedge method, each operator made three
replicate measurements of each profile.

The RoadRecon unit was then used to collect data along each section. These measurements were
made using the standard method of taking a picture approximately every 15 m. The images
collected of each profile were digitized five times by five different operators. Due to the speed at
which the RoadRecon unit is normally operated, the spacing between the imagesis rarely exactly
15 m. Therefore, a second set of measurements was taken using the RoadRecon unit in a static
mode. The unit was driven to the appropriate station and the image was collected. These
measurements were taken every 15 m and at the same stations where the dynamic images were
obtained. Therefore, twice as many profiles were collected using this method than for any other
method. These images were also digitized five times by each of the five operators. All the data
were processed to ensure uniformity. The y-values were expressed in terms of elevation relative
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to ahorizontal datum drawn through the end points of the profiles. The x-values were expressed
in terms of distance from the outside lane edge.

ANALYSIS

Thefirst step of the analysis was to compute each index using the data collected. All the
analyses were conducted by examining differences between the indices. The indices were
calculated using the RUTCHAR program. An analysis of variance (ANOV A) was completed to
examine the differences by operator, section, and station.®) Differences were expected to occur
between each of the profiles; however, differences between operators may prove to be important
in later data collection.

For the straightedge data collection method, the ANOVA results did not show a statistically
significant difference between operators for any of theindices. A t-test showed a significant
difference of 79 mm for the location of the LWP 1.8-m rut depth. This differenceis considered
to be fairly small. No differences were observed for the data collected using the Dipstick" .

The dynamic RoadRecon measurements reflect statistically significant differences between
operators for the negative areg, fill area, LWP 1.8-m rut depth, RWP 1.8-m rut width, and the
LWP wireline rut depth. The largest difference observed between operators for the fill areawas
3200 mm?. The largest difference for the LWP 1.8-m rut depth was 2 mm. The difference
observed for the LWP 1.8-m rut depth is within the precision limits. The differences observed
for both the fill area and the RWP 1.8-m rut width are quite large. Most of the indices obtained
from the static RoadRecon unit were significantly different, with the exception of the positive
area. The differences observed in the data collected by the RoadRecon unit indicate the
importance of trained operators to process the data.

Even though these differences were noted, the remainder of the analyses were conducted using
the pooled data set. The precision values noted may be alittle larger than are actually seenin
practice. Only experienced personnel should processthe data. This study incorporated at least
one set of data processed by inexperienced personnel. On the other hand, at |east one set of data
used was processed by very experienced personnel. The data were pooled by operator to provide
a between- and within-operator variance, atotal variance, and an average for each measurement
type. The distributions of each of these values were examined by measurement type.

Thefirst set examined was the measurements collected using the straightedge method. In
particular, the within-operator variance for the negative area showed one value to be much larger
than the others. A single profile was found to cause the much larger within-operator variance for
that one station. Figure 34 shows each of the profiles collected by the straightedge method for
all of the operators. One profilein particular does not follow the trend of the other profiles.
Tables 19 and 20 provide the precision for each of the indices by measurement method. These
are presented by COV'sin conjunction with ASTM C670.©
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Profile at Station 76.2 m
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Figure 34. Profiles obtained using the straightedge method at station 76.2 m.

A further investigation was undertaken to determine whether the influential profile was errant or
discrepant. The origina datawere examined and the profile was processed correctly. This
profile affects 6 of the 15 indices being examined. No record was made of problems
encountered while collecting the profile. Even though the profile may be influential, it was
deemed inappropriate to remove it from the analysis ssimply because it was different from the
other observations.

The other measurement methods were examined for similar influential observations. No profiles
were found that were significantly different from the other measurements of the same profile.

The within- and between-operator variances were examined to determine whether they were
correlated to the average of theindex. The within- and between-operator precisions are given in
tables 19 and 20, respectively. These are given in terms of COV (as directed by ASTM C670-
96) and provide an indication of the repeatability of the data processing by an individual operator
and the reproducibility of the data processing between two operators. Only alimited number of
the variances for the indices for any of the measurement types were correlated to the average of
the index.

The data were reviewed to determine the effect of longitudinal variation on the profile collected.
The dynamic measurements were not taken at exactly the same locations as the straightedge and
Dipstick” measurements. (It is not possible for the driver to trigger the system to take a
measurement at an exact location while the van is moving.) The static RoadRecon
measurements were taken at twice as many stations as the other systems. In this case, the unit
was driven to the location of interest, stopped, and triggered to take a measurement. This
method was used to obtain the data at the stations where the Dipstick” and straightedge methods
were used and the stations where the dynamic measurements were taken.
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The offset stations were compared to the stations that were exactly 15.2 m apart. First, a set of
paired t-tests were conducted. The only index for which a significant difference was found was
the LWP wire line rut depth, indicating that profiles within alimited distance were very similar.

The data were examined to determine whether the difference in the values of an index increased
with increasing distance between the stations where those profiles were observed. The absolute
value of the differences at the stations and the indices were checked for a correlation, but none
was noted. A correlation between the difference in the index and the difference at the station
would provide a means for establishing a limit on the distance from the station the measurement
can be taken and still be representative of that location.

A t-test was performed to compare the dynamic PASCO readings to the static PASCO data. In
all cases, there were no statistically significant differences. The mean differences shown as part
of the results of the test were well within the COV ranges shown in tables 19 and 20. Therefore,
the static data were used to assess the bias of the PASCO method of data collection.

A series of paired t-tests were used to determine the bias of the various measurement methods.
The straightedge method was used as the benchmark for thisanalysis. Table 21 presents the
minimum and maximum levels of bias found for each index where a statistically significant
difference was found by the t-tests. These values are based on the ASTM procedure of providing
a 95 percent confidence interval for bias.®

The indices calculated from the Dipstick® data versus those from the straightedge show
considerable scatter. This scatter presents itself in the bias values determined for the indices that
were found to be significantly different from the straightedge indices because the straightedge
measurements were taken every 152 mm and the Dipstick® measurements were taken every 305
mm. Therefore, the actual measurements for the Dipstick® could be compared to those taken at
the same location. A graph of these data also showed considerable scatter. The bias for these
relative elevation measurements lies between —4 and —2.

A direct comparison was made between the indices calculated from the static PASCO data and
the indices cal culated from the Dipstick® data. The only indices that were significantly different
between the two methods were the 1.8-m rut depths, 1.8-m rut widths, wire line rut depths, and
wire line rut widths. All of the plots showed a large amount of scatter. For analysis purposes,
the data collected by the RoadRecon unit and the Dipstick® may be used interchangeably when
the areaindices are being considered. However, if the researcher is examining either rut depths
or rut widths, only the datafrom one of the collection methods should be used.

SUMMARY

The precision and bias values for both the Dipstick® and the RoadRecon unit were determined
from five repeat runs. These values are presented in tables 19, 20, and 21. Based on these data,
the Dipstick® data were more precise, but |ess accurate than the RoadRecon unit. The Dipstick®
and RoadRecon unit provide the same results for the area indices, but the results are different for
the rut depths and rut widths.

83



Table 21. Minimum and maximum levels of bias.

Index Minimum Maximum

RoadRecon

Negative Area -2135 -5043
Positive Area -941 -2711
Fill Area 1135 2629
LWP 1.8-m Rut Width 20 85
RWP 1.8-m Rut Depth 0.3 1.3
RWP 1.8-m Rut Location -20 -75
RWP 1.8-m Rut Width 49 103
RWP Wire Line Rut Depth 0.3 1.3
RWP Wire Line Rut Location -18 -71
Dipstick®

Negative Area 2592 -10852
Positive Area 1283 -4775
LWP 1.8-m Rut Depth -6 -2
LWP 1.8-m Rut Location -284 132
LWP 1.8-m Rut Width -222 -40
LWP Wire Line Rut Depth -6 -2
LWP Wire Line Rut Location -272 140
RWP Wire Line Rut Depth 0.1 6
RWP Wire Line Rut Width -37 820




CHAPTER 8. CONCLUSIONSAND RECOMMENDATIONS

The following conclusions can be drawn from these anal yses.

The 1.8-m and wire line rut depths are fairly highly correlated (R = 0.95) and
provide the same type of information, namely the severity of the rutting.

It was anticipated that the 1.8-m and wire line rut widths would be related. The data
do not substantiate this.

Thefill area provides atwo-dimensional rut depth. Thisindex exhibited afairly high
correl ation with the rut depths (R? = 0.85) and the negative area (R* = 0.91).

The positive area did not behave in the same manner as any of the other indices;
therefore, it may provide additional information about the profile.

The mean rut depth for a section can be accurately obtained with only six profiles.
However, the other indices considered in this study require the 11 measurements that
were originally included in the data collection plan.

Results of the paired t-tests indicate that there are statistically significant differences
between three rut depth measurement systems — three-point, five-point, and wire line.

The transverse location of the rut bar dramatically affects the measurement and,
hence, the rut depth computation. Thus, consistent lateral placement of the survey
vehicleis essential to repeatable rut depth measurements using the three or five-point
procedures.

Although a better correlation (R® = 0.5), but still considered poor, existed between the
five-point rut depths and the wire line rut depths than between the three-point rut
depths and the wire line rut depths (R? = 0.2), the five-point rut depths consistently
underestimated the wire line rut depths.

The three-point rut depths underestimate the rut depths for transverse profiles where
the middle of the profile islower than the outside edges of the lane (categories 2 and
3).

A better correlation was found between the three-point, five-point, and wire line rut
depths for those transverse profile shapes with a“hump” in the middle (R? = 0.35 for
the three-point and R? = 0.6 for the five-point) (categories 3 and 4).

These data indicate that the five-point rut depth never exceeds the wire line rut depth.

However, the three-point rut depth may be larger or smaller than the wire line rut
depth.
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The average three-point and five-point rut depths did not show a stronger relationship
with the wire line rut depths calculated for the individual wheel paths.

Generally, the size of the difference observed between the wire line rut depths and the
rut depths from the three-point and five-point rut bars increases with an increasein
the wire line rut depth.

Neither the three-point nor the five-point rut depth measurement system provides
reliable and accurate estimates of rut depths as measured with awireline.

The Dipstick® relative el evation measurements are very precise, but not very
accurate. The RoadRecon unit relative elevation measurements are not very precise,
but are relatively accurate. For example, the coefficient of variation of the rut depth
for the RoadRecon unit was approximately three times that of the Dipstick® (11
percent versus 4 percent, respectively). Also, the biasfor the LWP rut depth is much
larger for the Dipstick® than for the RoadRecon unit (4 mm versus 0 mm,
respectively). These trends, as shown in tables 19, 20, and 21, are consistent for all
the indices.

Analysis performed using rut widths or rut depths should be performed using only
one method of data collection. Analysisinvolving any of the other indices could be
performed using the combined data set.

The recommendations from this study are as follows:

Two tables should be added to NIMS. The first table should contain the values of the
indices studied for each individual profile. These indicesinclude the positive area,
negative areq, fill area, LWP and RWP 1.8-m rut depths, LWP and RWP 1.8-m rut
locations, LWP and RWP wire line rut depths, LWP and RWP wire line rut widths,
and LWP and RWP wire line rut locations. The second table should contain the
mean, standard deviation, and minimum and maximum values for each index for each
survey. The rut depths are the most commonly used and most widely understood
measure of rutting. The rut widths and positive area indices appear to provide
additional information about the profile. Until it isproven that this additional
information is not useful, these indices should be kept in NIMS. Thefill areaand
negative area are both highly correlated to the rut depths. However, thefill areaisa
very easily understood index and provides the user an opportunity to segue into
viewing the transverse profile from different perspectives.

Further review needs to be undertaken to determine the cause of the negative trends
for the sections provided in table 11.

The three-sensor rut bar does not provide repeatable and accurate rut depth
measurements and, therefore, would not provide adequate network-level rut depths
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for pavement management systems. Inconsistent rut depths obtained over time from
the highway network would be problematic for determining rehabilitation needs.

If afive-sensor rut bar is used for network-level data collection, care should be taken
to ensure that the transverse location of the rut bar is consistent from year to year and
that the mean values are adjusted to reflect more redlistic rut depth values.

A second field study should be undertaken. This field study should examine the
relationship between the indices studied and the mechanism causing the rutting. This
study should also provide additional information to verify the bias and precision
values presented here.

Indices not recommended for inclusion in the database are: PASCO typecasting,
radius of curvature, and maximum water depth in each wheel path.

To limit the variability of the area and rut width indices, atransverse profile
measurement should be made every 15.2 m on each test section.
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APPENDIX A.
RUTCHAR PROGRAM USER’S GUIDE

INTRODUCTION

The purpose of the User’s Guide for the RUTCHAR program, developed under the Transverse
Profile Data Study by Fugro-BRE, Inc. in Austin, Texas, is. (1) to describe the system so that
potential users can determine its applicability, and (2) to provide users with al the information
necessary to operate and use the system efficiently and effectively.

One of the objectives of the Transverse Profile Data Study was to provide a method for
characterizing the transverse profiles collected on the test sections included in the LTPP project.
The characterizations were then to be determined for all of the data that had passed through the
Quality Control (QC) processin the NIMS. At that time, 45,370 transverse profilesresided in
NIMS for which the rutting characterizations needed to be determined. The RUTCHAR
program was written to perform these cal culations and to provide a method by which these
calculations could be easily performed for all of the transverse profile data to be collected.

This program was intended for the sole purpose of calculating the rutting indices of data
collected for LTPP. The output of the program should then be filtered into atablein NIMS.

The program was written in VisualBasic and requires an IBM 486-compatible system or later
with Windows 95 or later.

APPLICATION DESCRIPTION

As previously stated, the program was written to calculate the indices used to characterize the
transverse profile datafor NIMS.

Thefirst step in the program is a check of the input data. This data should be a series of x-y
coordinates that define the transverse profile. Each of the x-y coordinatesis reviewed to
determine whether there are any duplicates. If aduplicate set of x-y coordinates is encountered,
one of the duplicatesis removed from the data set for all further calculations. A messageis
written to afile named DATCHK.OUT, which provides the section 1D, construction event
number, survey data, the x-coordinate, and the statement “1S A DUPLICATE POINT.”

Next, a check is performed to find duplicate x-values. It was found that not all of the problems
encountered were due to duplicate x-y coordinates in the data being used to perform these
calculations. In some cases, the x-values were the same, but the y-values were different. Inthis
case, thefirst of the duplicate x-valuesis reduced by 1. Furthermore, the section ID, construction
event number, survey data, the x-coordinate, and the statement “IS A DUPLICATE X” are
written to the DATCHK.OUT file.
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The input file containing the original data set is not overwritten, but the data being used for the
calculation are dightly altered. Once the check has been completed, the computation of the
indicesisinitiated. The following discusses the computation of each index.

SYSTEM OPERATION

In order to run the software, double-click on the RUTCHAR icon. The system will prompt the
user for four file names. Thefirst file should be a data extraction of the

MON_T_ PROF_PROFILE table. Thelast file should be a data extraction of the

MON_T _PROF_MASTER table. Both files should be in afixed-width format.

The other two file names are the output file names. Thefirst file being created will contain the
calculated indices for each profile contained in the MON_T_PROF_PROFILE extraction. This
file name should be formatted UR##YY Y'Y .RIP. In this case “##" refersto the number of times
these calcul ations have been performed inthe year. “YYYY” isthe year. The second file being
created will contain the mean, standard deviation, and minimum and maximum values for each
index for each survey. Thisfilename should be formatted UR##YYYY.RIS. The format of
these filesis provided in tables 22 and 23.

While the data is being processed, a message will appear on the screen, “Please wait, your datais
being processed.”

The second output file is the DATCHK.OUT file, which has been previoudly discussed. Thisfile
will automatically be written in the directory from which the program was run. Thisfile will be
written if neither of the two discontinuities discussed are encountered; however, it will be O-
byteslong. If thisfile aready exists in the directory from which the program is run, it will not be
overwritten. The program will append information to the DATCHK.OUT file, but will never
overwriteit. The user should rename or delete the previoudy written DATCHK.OUT fileif
he/she wants to work with anew file.
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Table 22. Fileformat output for the UR##YYYY.RIP file.

Item | Format Units | IMSField Name Comments
1 Character(4) SHRP_ID 1-6
2 Numeric STATE_CODE 8-10
3 DD-MMM- SURVEY_DATE 12-22

YYYY
4 Numeric m POINT_LOC 24-29
5 Numeric mm? | NEGATIVE_AREA 31-39
6 | Character(1) NEGATIVE_AREA FLAG 41-43
7 Numeric mm? | POSITIVE AREA 45-51
8 | Character(1) POSITIVE_AREA FLAG 53-55
9 | Numeric mm? | FILL_AREA 57 - 63
10 | Character(1) FILL_AREA_FLAG 65 - 67
11 | Numeric mm | LLH_DEPTH_1 8 69 - 73
12 | Character(1) LLH_DEPTH_1 8 FLAG 75-77
13 | Numeric mm | LLH_WIDTH_1 8 79-83
14 | Character(1) LLH_WIDTH_1 8 FLAG 85-87
15 | Numeric mm | LLH_OFFSET_1 8 89-93
16 | Character(1) LLH_OFFSET_1 8 FLAG 95-97
17 | Numeric mm | RLH_DEPTH_1 8 99 - 103
18 | Character(1) RLH DEPTH_1 8 FLAG 105 - 107
19 | Numeric mm | RLH_WIDTH_1 8 109 - 113
20 | Character(1) RLH_WIDTH_1 8 FLAG 115 - 117
21 | Numeric mm | RLH_OFFSET_1 8 119-123
22 | Character(1) RLH_OFFSET 1 8 FLAG 125 - 127
23 | Numeric mm | LLH_DEPTH_WIRE_REF 129 - 133
24 | Character(1) LLH_DEPTH_WIRE_REF_FLAG 135- 137
25 | Numeric mm | LLH_WIDTH_WIRE_REF 139 - 143
26 | Character(1) LLH_WIDTH_WIRE_REF_FLAG 145 - 147
27 | Numeric mm | LLH_OFFSET_WIRE_REF 149 - 153
28 | Character(1) LLH_OFFSET_WIRE_REF FLAG 155 - 157
29 | Numeric mm | RLH_DEPTH_WIRE_REF 159 - 163
30 | Character(1) RLH_DEPTH_WIRE_REF FLAG 165 - 167
31 Numeric mm RLH_WIDTH_WIRE_REF 169 - 173
32 | Character(1) RLH_WIDTH_WIRE_REF FLAG 175 - 177
33 | Numeric mm | RLH_OFFSET_WIRE_REF 179 - 183
34 | Character(1) RLH_OFFSET_WIRE_REF_FLAG 185 - 187
35 | Numeric mm | TRANS PROFILE_MEASURE_LENGTH 189 - 193
36 | Character(1) SECTION_STAT_INCLUDE_FLAG 195 - 197
37 DD-MMM- DATA_PROCESS EXTRACT_DATE 199 - 209
YYYY
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Table 23. Fileformat for the UR#£YYYY .RISfile.

Item |Format Units |IMSField Name Comments

1 |Character(4) SHRP_ID 1-6

2 |Numeric STATE_CODE 8-10

3 |DD-MMM-YYYY SURVEY_DATE 12-24

4 |Numeric NO_PROFILES 26-27

5 |Numeric mm?  [POSITIVE_AREA_MEAN 29-35

6 |Numeric mm? [POSITIVE_AREA_STD 37-43

7 |Numeric mm’  |POSITIVE_AREA_MIN 45-51

8  |Numeric mm’  |POSITIVE_AREA_MAX 53-59

9 |Numeric mm’ |NEGATIVE_AREA_MEAN 61 - 69

10 [Numeric mm’ |NEGATIVE_AREA_STD 71-79

11 [Numeric mm® |NEGATIVE_AREA_MIN 81-89

12 [Numeric mm?  [NEGATIVE_AREA_MAX 91-99

13 [Numeric mm?  |[FILL_AREA_MEAN 101 - 107
14 [Numeric mm? |FILL_AREA_STD 109 - 115
15 [Numeric mm?  |[FILL_AREA_MIN 117-123
16  [Numeric mm?  [FILL_AREA_MAX 125-131
17  [Numeric mm [LLH_DEPTH_1 8 MEAN 133-137
18  [Numeric mm |LLH_DEPTH_1 8 STD 139- 143
19  [Numeric mm [LLH_DEPTH_1 8 MIN 145 - 149
20 |Numeric mm [LLH_DEPTH_1 8 MAX 151 - 155
21 |Numeric mm |[RLH_DEPTH_1 8 MEAN 157 - 161
22 |Numeric mm |RLH_DEPTH_1 8 STD 163 - 167
23 |Numeric mm |RLH_DEPTH_1 8 MIN 169 - 173
24 |Numeric mm [RLH_DEPTH_1 8 MAX 175-179
25 |Numeric mm [MAX_MEAN_DEPTH_1 8 181 - 185
26 |Numeric mm  [LLH_WIDTH_1 8 MEAN 187-191
27  |Numeric mm [LLH_WIDTH_1 8 STD 193 - 197
28 |Numeric mm  |LLH_WIDTH_1 8 MIN 199 - 203
29  |Numeric mm |LLH_WIDTH_1 8 MAX 205 - 209
30 |Numeric mm [LLH_OFFSET_1 8 MEAN 211 - 215
31  |Numeric mm |LLH_OFFSET_1 8 STD 217-221
32 |Numeric mm |LLH_OFFSET_1 8 MIN 223 - 227
33 |Numeric mm |LLH_OFFSET_1 8 MAX 229 - 233
34  |Numeric mm |RLH_WIDTH_1 8 MEAN 235-239
35 |Numeric mm |RLH_WIDTH_1_8 STD 241 - 245
36 |Numeric mm |[RLH_WIDTH_1_8 MIN 247 - 251
37 |Numeric mm |[RLH_WIDTH_1_8 MAX 253 - 257
38 |Numeric RLH_OFFSET_1 8 MEAN 259 - 263
39 |Numeric RLH_OFFSET_1_8 STD 265 - 269
40 |Numeric RLH_OFFSET_1 8 MIN 271- 275
41 |Numeric RLH_OFFSET_1 8 MAX 277 - 281
42  |Numeric mm  [LLH_DEPTH_WIRE_REF_MEAN 283 - 287
43  |Numeric mm  [LLH_DEPTH_WIRE_REF_STD 289 - 293
44 |Numeric mm  [LLH_DEPTH_WIRE_REF_MIN 295 - 299
45 |Numeric mm [LLH_DEPTH_WIRE_REF MAX 301 - 305
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Table 23. Fileformat for the UR#Y Y Y'Y .RISfile (continued).

Item [Format Units |IMSField Name Comments
46  |Numeric mm |RLH _DEPTH WIRE_REF MEAN 307-311
47  |Numeric mm |RLH_DEPTH WIRE_REF STD 313- 317
48 |Numeric mm |[RLH_DEPTH WIRE_REF MIN 319-323
49 |Numeric mm |RLH_DEPTH WIRE_REF MAX 325-329
50 |Numeric mm [MAX_MEAN_DEPTH_WIRE_REF 331-335
51 |Numeric mm |[LLH WIDTH WIRE _REF MEAN 337-341
52  |Numeric mm |LLH_WIDTH_WIRE_REF STD 343 - 347
53  |Numeric mm [LLH WIDTH_WIRE_REF MIN 349 - 353
54  |Numeric mm [LLH WIDTH_WIRE_REF_MAX 355 - 359
55  [Numeric mm |LLH_OFFSET_WIRE_REF MEAN 361 - 365
56 |Numeric mm  |LLH_OFFSET_WIRE_REF_STD 367-371
57  |Numeric mm |LLH_OFFSET_WIRE_REF MIN 373-377
58 |Numeric mm  |LLH_OFFSET_WIRE_REF_MAX 379-383
59 |Numeric mm |RLH_WIDTH_WIRE_REF MEAN 385 - 389
60 |Numeric mm |RLH_WIDTH_WIRE_REF STD 391 - 395
61 |Numeric mm |RLH WIDTH_WIRE_REF MIN 397 - 401
62 |Numeric mm |RLH WIDTH_WIRE_REF MAX 403 - 407
63 |Numeric mm |[RLH_OFFSET_WIRE_REF MEAN 409 - 413
64 |Numeric mm |RLH_OFFSET WIRE _REF STD 415 - 419
65 |Numeric mm |RLH_OFFSET WIRE_REF MIN 421 - 425
66 |Numeric mm |RLH_OFFSET WIRE_REF MAX 427 - 431
67 |Character(1) T_PROF_DEVICE_CODE 433 - 435
68 [DD-MMM-YYYY DATA_PROCESS EXTRACT_DATE 447 - 457
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APPENDIX B.
DISTRIBUTION OF THE INDICES

This appendix contains distributions of each of the indices by various categories. Each
distribution includes a histogram, a normal probability plot, alist of quantiles, the mean, the
standard deviation, the confidence interval, the skewness of the distribution, and the kurtosis of
the distribution. The histogram provides a distribution of the data collected. The histogram in
figure 35 illustrates that the mgjority of the data for the negative areaindex lies between 0 and
-10,000. The normal probability plot, located to the right of the histogram, is another method for
viewing the distribution of the data. Thistype of plot is often used to determine if the data are
normally distributed. The closer the line presented in the plot isto a straight line, the more the
dataare considered to follow anormal distribution. The quantities are determined by sorting the
datain ascending order. The value for the 25" percentile is the value found one-quarter of the
way through the data. The skewness and kurtosis are both values that pertain to the normality of
thedata. Skewnessis ameasure of the tendency of the deviations to be larger in one direction
than in the other. Skewness values that have alarge absolute value are likely to be from a non-
normal distribution. Kurtosis measures the “heaviness’ of the tails of adistribution. A large
value of kurtosisindicates a heavy-tailed distribution. Kurtosis and skewness values are usually
less than +1.0.

Figures 35 through 49 contain the distribution of all of theindividual values for each index.
Figures 50 through 63 provide the distribution of the section means. All of the sections are
included in these distributions. Figures 64 through 79 provide the distribution of the GPS-1
(HMAC over granular base) section means. Figures 80 through 94 provide the distribution of the
GPS-2 (HMAC over stabilized base) section means. The GPS-6 (HMAC overlay of HMAC)
section mean distributions are provided in figures 95 through 109. The GPS-7 (HMAC overlay
of PCC) section mean distributions are provided in figures 110 through 124.
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Figure 35. Distribution of the negative area index.
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Figure 36. Distribution of the positive area index.
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Figure 37. Distribution of thefill area index.
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Figure 38. Distribution of the LWP 1.8-m rut depth.
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Figure 39. Distribution of the LWP 1.8-m rut width.
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Figure 40. Distribution of the LWP 1.8-m rut location.
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Figure4l. Distribution of the RWP 1.8-m rut depth.
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Figure42. Distribution of the RWP 1.8-m rut width.
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Figure 43. Distribution of the RWP 1.8-m rut location.
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Figure44. Distribution of the LWP wireline rut depth.
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Figure 45. Distribution of the LWP wirelinerut width.
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Figure 46. Distribution of the LWP wireline rut location.
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Figure 47. Distribution of the RWP wirelinerut depth.
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Figure 48. Distribution of the RWP wirelinerut width.
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Figure 49. Distribution of the RWP wirelinerut location.
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Figure 50. Distribution of the section means of the negative ar ea index.
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Figure51. Distribution of the section means of the positive ar ea index.
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Figure 52. Distribution of the section means of thefill areaindex.
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Figure53. Distribution of the section means of the LWP 1.8-m rut depths.
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Figure 54. Distribution of the section means of the LWP 1.8-m rut widths.
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Figure 55. Distribution of the section means of the LWP 1.8-m rut locations.
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Figure 56. Distribution of the section means of the RWP 1.8-m rut depths.
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Figure57. Distribution of the section means of the RWP 1.8-m rut widths.
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Figure 58. Distribution of the section means of the RWP 1.8-m rut locations.
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Figure59. Distribution of the section means of the LWP wirelinerut depths.
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Figure 60. Distribution of the section means of the LWP wireline rut widths.
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Figure 61. Distribution of the section means of the LWP wirelinerut locations.
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Figure 62. Distribution of the section means of the RWP wirelinerut depths.
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Figure 63. Distribution of the section means of the RWP wire line rut widths.
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Figure 64. Distribution of the section means of the RWP wirelinerut locations.
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Figure 65. Distribution of the section means of the
negative area index on GPS-1 test sections.
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Figure 66. Distribution of the section means of the
positive area index on GPS-1 test sections.
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Figure 67. Distribution of the section means of thefill areaindex
on GPS-1 test sections.
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Figure 68. Distribution of the section means of the
LWP 1.8-m rut depthson GPS-1 test sections.
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Figure 69. Distribution of the section means of the
LWP 1.8-m rut widthson GPS-1 test sections.
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Figure 70. Distribution of the section means of the
LWP 1.8-m rut locations on GPS-1 test sections.
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Figure 71. Distribution of the section means of the
RWP 1.8-m rut depths on GPS-1 test sections.
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Figure 72. Distribution of the section means of the
RWP 1.8-m rut widths on GPS-1 test sections.
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Figure 73. Distribution of the section means of the
RWP 1.8-m rut locations on GPS-1 test sections.
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Figure 74. Distribution of the section means of the
LWP wirelinerut depthson GPS-1 test sections.
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Figure 75. Distribution of the section means of the
LWP wirelinerut widths on GPS-1 test sections.
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Figure 76. Distribution of the section means of the
LWP wirelinerut locations on GPS-1 test sections.
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Figure 77. Distribution of the section means of the
RWP wirelinerut depths on GPS-1 test sections.
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Figure 78. Distribution of the section means of the
RWP wirelinerut widths on GPS-1 test sections.
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Figure 79. Distribution of the section means of the
RWP wirelinerut locations on GPS-1 test sections.
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Figure 80. Distribution of the section means of the
negative area index on GPS-2 test sections.
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Figure 81. Distribution of the section means of the
positive area index on GPS-2 test sections.
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Figure 82. Distribution of the section means
of thefill areaindex on GPS-2 test sections.
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Figure 83. Distribution of the section means of the
LWP 1.8-m rut depthson GPS-2 test sections.

144



LWP 1.8 W

1000

Normal Quantile

maximum 100.0% 1771.0
99.5% 1760.0

97.5% 1738.0

90.0% 1701.0

quartile 75.0% 1638.0
median 50.0% 1521.0
quartile 25.0% 1345.0
10.0% 1081.0

2.5% 744.0

0.5% 457.0

minimum 0.0% 0.0
Mean 1446.723
Std Dev 264.114
Std Error Mean 10.791
Upper 95% Mean 1467.917
Lower 95% Mean 1425.529
N 599.000
Sum Weights 599.000
Sum 866587
Variance 69755.990
Skewness -1.615
Kurtosis 3.193
Ccv 18.256

Figure 84. Distribution of the section means of the
LWP 1.8-m rut widthson GPS-2 test sections.
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Figure 85. Distribution of the section means of the
LWP 1.8-m rut locations on GPS-2 test sections.
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Figure 86. Distribution of the section means of the
RWP 1.8-m rut depths on GPS-2 test sections.
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Figure 87. Distribution of the section means of the
RWP 1.8-m rut widths on GPS-2 test sections.
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Figure 88. Distribution of the section means of the
RWP 1.8-m rut locations on GPS-2 test sections.
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Figure 89. Distribution of the section means of the
LWP wirelinerut depthson GPS-2 test sections.
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Figure 90. Distribution of the section means of the
LWP wirelinerut widths on GPS-2 test sections.
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Figure91. Distribution of the section means of the
LWP wirelinerut locations on GPS-2 test sections.
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Figure 92. Distribution of the section means of the
RWP wirelinerut depths on GPS-2 test sections.
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Figure 93. Distribution of the section means of the
RWP wirelinerut widths on GPS-2 test sections.
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Figure 94. Distribution of the section means of the
RWP wirelinerut locations on GPS-2 test sections.
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Figure 95. Distribution of the section means of the
negative area index on GPS-6 test sections.
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Figure 96. Distribution of the section means of the
positive area index on GPS-6 test sections.
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Figure 97. Distribution of the section means of the
fill areaindex on GPS-6 test sections.

158




Normal Quantile

maximum 100.0% 22.000

99.5% 20.000

97.5% 15.000

90.0% 10.000

quartile 75.0% 7.000
median 50.0% 5.000
quartile 25.0% 3.000
10.0% 2.000

2.5% 1.000

0.5% 1.000

minimum 0.0% 0.000
Mean 5.5971
Std Dev 3.4031
Std Error Mean 0.1687
Upper 95% Mean 5.9287
Lower 95% Mean 5.2654
N 407.0000
Sum Weights 407.0000
Sum 2278.0000
Variance 11.5811
Skewness 1.6936
Kurtosis 3.7881
CcVv 60.8016

Figure 98. Distribution of the section means of the
LWP 1.8-m rut depthson GPS-6 test sections.
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Figure 99. Distribution of the section means of the
LWP 1.8-m rut widthson GPS-6 test sections.
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Figure 100. Distribution of the section means of the
LWP 1.8-m rut locations on GPS-6 test sections.
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Figure 101. Distribution of the section means of the
RWP 1.8-m rut depths on GPS-6 test sections.
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Figure 102. Distribution of the section means of the
RWP 1.8-m rut widths on GPS-6 test sections.
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Figure 103. Distribution of the section means of the
RWP 1.8-m rut locations on GPS-6 test sections.
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Figure 104. Distribution of the section means of the
LWP wirelinerut depthson GPS-6 test sections.
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Figure 105. Distribution of the section means of the LWP
wirelinerut widths on GPS-6 test sections.
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Figure 106. Distributions of the section means of the LWP
wirelinerut locations on GPS-6 test sections.

167



RWP 3.7

-]

102
0

' o
.01 .05.10

'
.25

'
.50

Normal Quantile

maximum 100.0% 24.000
99.5% 22.920

97.5% 17.800

90.0% 10.000

quartile 75.0% 7.000
median 50.0% 5.000
quartile 25.0% 3.000
10.0% 2.000

2.5% 2.000

0.5% 1.000

minimum 0.0% 0.000
Mean 5.8649
Std Dev 3.6758
Std Error Mean 0.1822
Upper 95% Mean 6.2230
Lower 95% Mean 5.5067
N 407.0000
Sum Weights 407.0000
Sum 2387.0000
Variance 13.5113
Skewness 1.8967
Kurtosis 5.1842
CcVv 62.6743

Figure 107. Distribution of the section means of the RWP

wirelinerut depths on GPS-6 test sections.

168




RWP 3.7 W

3500

3000

2500

2000

1500

1000

500

-3 -2 -1 0 1 2 3

Normal Quantile

maximum 100.0% 3630.0
99.5% 3627.7
97.5% 3462.2
90.0% 3324.2

quartile 75.0% 2494.0
median 50.0% 1722.0
quartile 25.0% 1388.0
10.0% 1049.4

2.5% 775.2

0.5% 581.0

minimum 0.0% 0.0
Mean 1951.690
Std Dev 800.832
Std Error Mean 39.696
Upper 95% Mean 2029.726
Lower 95% Mean 1873.654
N 407.000
Sum Weights 407.000
Sum 794338
Variance 641332.1
Skewness 0.573
Kurtosis -0.707
cv 41.033

Figure 108. Distribution of the section means of the RWP
wirelinerut widths on GPS-6 test sections.
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Figure 109. Distribution of the section means of the RWP
wirelinerut locations on GPS-6 test sections.
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Figure 110. Distribution of the section means of the
negative area index on GPS-7 test sections.
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Figure 111. Distribution of the section means of the
positive area index on GPS-7 test sections.
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Figure 112. Distribution of the section means of the
fill areaindex on GPS-7 test sections.
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Figure 113. Distribution of the section means of the LWP
1.8-m rut depths on GPS-7 test sections.
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Figure 114. Distribution of the section means of the LWP
1.8-m rut widths on GPS-7 test sections.
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Figure 115. Distribution of the section means of the LWP
1.8-m rut locations on GPS-7 test sections.
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Figure 116. Distribution of the section means of the RWP
1.8-m rut depths on GPS-7 test sections.
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Figure 117. Distribution of the section means of the RWP

1.8-m rut widths on GPS-7 test sections.
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Figure 118. Distribution of the section means of the RWP
1.8-m rut locations on GPS-7 test sections.
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Figure 119. Distribution of the section means of the LWP
wirelinerut depths on GPS-7 test sections.
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Figure 120. Distribution of the section means of the LWP
wirelinerut widths on GPS-7 test sections.
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Figure 121. Distribution of the section means of the LWP
wirelinerut locations on GPS-7 test sections.
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Figure 122. Distribution of the section means of the RWP
wirelinerut depths on GPS-7 test sections.
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Figure 123. Distribution of the section means of the RWP
wirelinerut widthson GPS-7 test sections.
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Figure 124. Distribution of the section means of the RWP
wirelinerut locations on GPS-7 test sections.
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APPENDIX C.
COMPARISONS OF SECTION MEANSTO DETERMINE NUMBER OF
TRANSVERSE PROFILES NECESSARY

Comparisons were made to determine the number of profiles necessary to accurately predict the
mean. Figures 125 through 146 provide the results from these comparisons. In each of these
figures, the axis labeled “ All” used al of the available profiles to determine the section mean for
agiven survey date. The axislabeled “Whole” used data from every 30 m to determine the
section mean on a given survey date. Pairwise comparisons were then made between the “ All”
means and the “Whole” means. Figures 125 through 135 used all of the available data to make
these comparisons. Figures 136 through 146 used only the data obtained by Dipstick® for these
comparisons. The difference between the “All” value and the “Whole” value was determined for
each datapair. The mean of these differencesis presented as the mean difference. If the value
labeled “Prob>|t|” isless than 0.05, the test is statistically significant, which indicates that the
two values from each pair of values are from two different populations with a 95 percent level of
confidence.
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Figure 125. Paired t-test comparing section means from all of the profiles versus
those from profilestaken every 30 m for the negative area index.
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[Paired t-Test ]

All Mean(Pos Area) - Whole Mean(Pos Area)

Mean Difference -41.8659 Prob > |t| 0.0147
Std Error 17.15248 Prob >t 0.9927
t-Ratio -2.44081 Prob <t 0.0073
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Figure 126. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for the positive area index.
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[Paired t-Test j

All Mean(Fill Area) - Whole Mean(Fill Area)

Mean Difference 36.04745 Prob > || 0.0045
Std Error 12.67641 Prob >t 0.0022
t-Ratio 2.843664 Prob <t 0.9978
DF 4133

Figure 127. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for thefill area index.
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[Paired t-Test j

All Mean (1.8 m LWP) - Whole Mean(1.8 m LWP)

Mean Difference 0.019334 Prob > |t| 0.0046
Std Error 0.006823 Prob >t 0.0023
t-Ratio 2.833611 Prob <t 0.9977
DF 4133

Figure 128. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for the LWP 1.8-m rut depths.
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[Paired t-Test ]

All Mean(W 1.8 m LWP) - Whole Mean(W 1.8 m LWP)

Mean Difference -2.26582 Prob > |t| 0.0465
Std Error 1.137913 Prob >t 0.9767
t-Ratio -1.9912 Prob < t 0.0233
DF 4133

Figure 129. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for the LWP 1.8-m rut widths.
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[Paired t-Test ]

All Mean(1.8 m RWP) - Whole Mean(1.8 m RWP)

Mean Difference 0.001648 Prob > [t| 0.7940
Std Error 0.006309 Prob >t 0.3970
t-Ratio 0.261196 Prob <t 0.6030
DF 4133

Figure 130. Paired t-test comparing section means from all of the profiles versus
those from profilestaken every 30 m for the RWP 1.8-m rut depths.
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[Paired t-Test j

All Mean(W 1.8 m RWP) - Whole Mean(W 1.8 m RWP)

Mean Difference 0.019608 Prob > |t| 0.9858
Std Error 1.103196 Prob >t 0.4929
t-Ratio 0.017773 Prob <t 0.5071
DF 4133

Figure 131. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for the RWP 1.8-m rut widths.
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[Paired t-Test j

All Mean(3.7 m LWP) - Whole Mean(3.7 m LWP)

Mean Difference 0.023208 Prob > |t| 0.0019
Std Error 0.007466 Prob >t 0.0009
t-Ratio 3.108535 Prob <t 0.9991
DF 4133

Figure 132. Paired t-test comparing section meansfrom all of the profiles versus
those from profilestaken every 30 m for the LWP wirelinerut depths.
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[Paired t-Test j

All Mean(W 3.7 m LWP) - Whole Mean(W 3.7 m LWP)

Mean Difference -2.5766 Prob > |t| 0.2825
Std Error 2.397228 Prob > t 0.8587
t-Ratio -1.07482 Prob <t 0.1413
DF 4133

Figure 133. Paired t-test comparing section means from all of the profiles versus
those from profilestaken every 30 m for the LWP wirelinerut widths.
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[Paired t-Test j

All Mean(3.7 m RWP) - Whole Mean(3.7 m RWP)

Mean Difference 0.010431 Prob > |t| 0.1312
Std Error 0.00691 Prob >t 0.0656
t-Ratio 1.509513 Prob <t 0.9344
DF 4133

Figure 134. Paired t-test comparing section means from all of the profiles versus
those from profilestaken every 30 m for the RWP wirelinerut depths.
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[Paired t-Test j

All Mean(W 3.7 m RWP) - Whole Mean(W 3.7 m RWP)

Mean Difference -0.98966 Prob > |t| 0.6749
Std Error 2.359387 Prob >t 0.6625
t-Ratio -0.41945 Prob <t 0.3375
DF 4133

Figure 135. Paired t-test comparing section means from all of the profiles versus
those from profilestaken every 30 m for the RWP wirelinerut widths.
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[Paired t-Test j

All Mean(Neg Area) - Whole Mean(Neg Area)

Mean Difference -118.822 Prob > |t| 0.0002
Std Error 31.3516 Prob >t 0.9999
t-Ratio -3.78999 Prob <t <.0001
DF 812

Figure 136. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the negative area index.
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for the positive area index.
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Figure 137. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick®
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All Mean(Fill Area) - Whole Mean(Fill Area)

Mean Difference 100.5295 Prob > |t| 0.0009
Std Error 30.13866 Prob >t 0.0004
t-Ratio 3.335566 Prob <t 0.9996
DF 812

Figure 138. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for thefill areaindex.
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Std Error 0.015994 Prob >t 0.0088
t-Ratio 2.377111 Prob <t 0.9912
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Figure 139. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the LWP 1.8-m rut depths.
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[Paired t-Test ]

All Mean(W 1.8 m LWP) - Whole Mean(W 1.8 m LWP)

Mean Difference -3.53853 Prob > |t| 0.0393
Std Error 1.714195 Prob >t 0.9803
t-Ratio -2.06425 Prob <t 0.0197
DF 812

Figure 140. Paired t-test comparing section means from all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the LWP 1.8-m rut widths.

203




[Whole Mean(1.8 m RWP) By All Mean(1.8 m RWP) j

N
o

Whole Mean(1.8 m RWP)
H
o

o

I rrrrrrrraua I rrrrrrruraua I T rrira
0 10 20
All Mean(1.8 m RWP)

—— Paired t-Test

[Paired t-Test j

All Mean(1.8 m RWP) - Whole Mean(1.8 m RWP)

Mean Difference 0.005186 Prob > |t| 0.7289
Std Error 0.014961 Prob >t 0.3645
t-Ratio 0.346651 Prob <t 0.6355
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Figure 141. Paired t-test comparing section means from all of the profiles
versus those from profiles taken every 30 m for data collected by Dipstick"
for the RWP 1.8-m rut depths.
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All Mean(W 1.8 m RWP) - Whole Mean(W 1.8 m RWP)

Mean Difference 0.046109 Prob > |t| 0.9810
Std Error 1.940143 Prob >t 0.4905
t-Ratio 0.023766 Prob <t 0.5095
DF 812

Figure 142. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick®
for the RWP 1.8-m rut widths.
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All Mean(3.7 m LWP) - Whole Mean(3.7 m LWP)

Mean Difference 0.051297 Prob > |t| 0.0054
Std Error 0.018403 Prob >t 0.0027
t-Ratio 2.787479 Prob <t 0.9973
DF 812

Figure 143. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the LWP wirelinerut depths.
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[Paired t-Test j

All Mean(W 3.7 m LWP) - Whole Mean(W 3.7 m LWP)

Mean Difference -6.03334 Prob > |t| 0.2188
Std Error 4.902696 Prob >t 0.8906
t-Ratio -1.23062 Prob <t 0.1094
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Figure 144. Paired t-test comparing section meansfrom all of the profiles

ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the LWP wirelinerut widths.
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Std Error 0.016403 Prob >t 0.0689
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Figure 145. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the RWP wirelinerut depths.
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Mean Difference -3.91533 Prob > |t| 0.4498
Std Error 5.178212 Prob >t 0.7751
t-Ratio -0.75612 Prob <t 0.2249
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Figure 146. Paired t-test comparing section meansfrom all of the profiles
ver sus those from profiles taken every 30 m for data collected by Dipstick"
for the RWP wirelinerut widths.
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APPENDIX D.
t-TESTSCOMPARING VARIOUS PAVEMENT PARAMETERS

These are the comparisons that were performed in chapter 4. Figures 147 through 157 provide
the results of the comparisons of each index for the GPS-1 (HMAC over granular base) section
means and the GPS-7 (HMAC overlay of PCC) section means. The top box of each figure
provides a graphical review of the results. The middle box provides the results from at-test for
comparing means with equal variances at an a-level of 5 percent. The bottom box provides the
results of a comparison of the variances between the groups and an ANOVA test in case the
variances are not equal. Figures 158 through 168 provide the results of the comparisons of the
GPS-1 (HMAC over granular base) and GPS-2 (HMAC over stabilized base) sections by surface
thickness. Figures 169 through 179 provide the results of the comparisons of granular versus
stabilized base types for GPS-1 and GPS-2 sections with less than 127 mm of HMAC surface.
Figures 180 through 190 provide the results of the comparisons of asphalt stabilized bases to
cement stabilized bases for GPS-1 and GPS-2 sections with less than 127 mm of HMAC surface.
Figures 191 through 201 provide the results of the comparisons between the freeze (F) zone and
the no freeze (NF) zone for the GPS-7 test sections. The bottom half of the upper box of
numbers provides the results of the t-tests comparing each set of values. If the value in the table
is positive, the difference is statistically significant, which means that the data sets are from two
different populations with a 95 percent level of confidence. The bottom box provides a
comparison of the standard deviations. The column of numbers provided under the heading
“Prob>F" are the probabilities of getting an F-ratio that large given that the standard deviations
arethesame. A valueof 0.05 or lessis statistically significant.
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[Neg Area By Experiment j
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Student's t
Experiment 0.05
(Means Comparisons ]
Dif=Mean[i]-Mean[j] 7 1
7 0.00 3009.20
1 -3009.20 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96175
Abs(Dif)-LSD 7 1
7 -1754.04 1663.83
1 1663.83 -737.16
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 9223.270 7279.453 6948.729
7 204 7842.663 5820.508 5147.029
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 3.1731 1 1357 0.0751
Brown-Forsythe 12.1945 1 1357 0.0005
Levene 11.7720 1 1357 0.0006
Bartlett 8.3967 1 ? 0.0038
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
24.1372 1 311.03 <.0001
t-Test
4.9130

Figure 147. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor the negative area index.
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[Pos Area By Experiment j
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1 ' Each Pair
Student's t
Experiment 0.05
[Means Comparisons ]
Dif=Mean([i]-Mean[j] 7 1
7 0.000 919.994
1 -919.994 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96175
Abs(Dif)-LSD 7 1
7 -1880.09 -522.06
1 -522.06 -790.14
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 9677.746 7245.494 6567.539
7 204 9686.881 7274.208 6809.755
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 0.0001 1 1357 0.9915
Brown-Forsythe 0.1558 1 1357 0.6931
Levene 0.0035 1 1357 0.9530
Bartlett 0.0003 1 ?  0.9860
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
1.5643 1 279.36 0.2121
t-Test
1.2507

Figure 148. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor the positive area index.

213



[Fill Area By Experiment ]
- 1
. i
50000 — '
] !
40000 - I
: :
o 30000 1
o !
< T 1
& 20000 !
] | .
10000 O
0 1
1 ' Each Pair
Student's t
Experiment 0.05
[Means Comparisons j
Dif=Mean[i]-Mean[j] 1 7
1 0.00 3693.23
7 -3693.23 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96175
Abs(Dif)-LSD 1 7
1 -736.38 2349.29
7 2349.29 -1752.17
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 9216.679 6977.862 6791.668
7 204 7812.726 5792.275 5322.843
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 3.3035 1 1357 0.0694
Brown-Forsythe 8.9794 1 1357 0.0028
Levene 6.9860 1 1357 0.0083
Bartlett 8.7090 1 ? 0.0032
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
36.5921 1 31175 <.0001
t-Test
6.0491

Figure 149. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor thefill areaindex.
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1 ' Each Pair
Student's t
Experiment 0.05
[Means Comparisons j
Dif=Mean[i]-Meanl[j] 1 7
1 0.00000 1.51693
7 -1.51693 0.00000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96175
Abs(Dif)-LSD 1 7
1 -0.34043  0.895616
7 0.895616  -0.81005

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal

)

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 4.285263 3.236836 3.146320
7 204 3.444584 2.452134 2.294118
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 5.2413 1 1357 0.0222
Brown-Forsythe 13.7324 1 1357 0.0002
Levene 14.1030 1 1357 0.0002
Bartlett 14.8295 1 ?  0.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
31.0699 1 324.88 <.0001
t-Test
5.5740

Figure 150. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor the LWP 1.8-m rut depths.
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Student's t
Experiment 0.05
(Means Comparisons ]
Dif=Mean[i]-Mean[j] 1 7
1 0.0000 28.9194
7 -28.9194 0.0000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96175
Abs(Dif)-LSD 1 7
1 -18.5940 -5.0160
7 -5.0160 -44.2435
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 223.2402 151.3384 142.8970
7 204 252.0097 185.7543 178.3824
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 1.2598 1 1357 0.2619
Brown-Forsythe 6.6875 1 1357 0.0098
Levene 7.5498 1 1357 0.0061
Bartlett 5.3570 1 ?  0.0206
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
2.3594 1 262.28 0.1257
t-Test
1.5360

Figure 151. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor the LWP 1.8-m rut widths.
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1.96175
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Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal

)

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 4.754991 3.529928 3.379221
7 204 3.406699 2.437716 2.250000
Test F Ratio DFNum DF Den  Prob>F
O'Brien[.5] 8.1873 1 1357 0.0043
Brown-Forsythe 18.3646 1 1357 <.0001
Levene 21.8521 1 1357 <.0001
Bartlett 32.7436 1 ?  <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num DF Den Prob>F
60.1215 1 359.26 <.0001
t-Test
7.7538

Figure 152. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section means for the RWP 1.8-m rut depths.
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Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 2455789 170.2922 158.2667
7 204 296.0664 231.9840 223.2990
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 45976 1 1357 0.0322
Brown-Forsythe 19.0888 1 1357 <.0001
Levene 20.8637 1 1357 <.0001
Bartlett 13.1300 1 ?  0.0003
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
22.4156 1 254.67 <.0001
t-Test
4.7345

Figure 153. Paired t-test comparing GPS-1 section means ver sus
GPS-7 section meansfor the RWP 1.8-m rut widths.
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7 -1.57806 0.00000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96175
Abs(Dif)-LSD 1 7
1 -0.36337  0.914880
7 0.014880  -0.86463

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 4.538929 3.440237 3.345455
7 204 3.915987 2.847174 2.671569
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 2.8729 1 1357 0.0903
Brown-Forsythe 8.1646 1 1357 0.0043
Levene 7.1558 1 1357 0.0076
Bartlett 7.0075 1 ? 0.0081
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
26.7748 1 307.72 <.0001
t-Test
5.1744

Figure 154. Paired t-test comparing GPS-1 section means ver sus GPS-7
section meansfor the LWP wirelinerut depths.
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[LWP 3.7 W By Experiment j
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1 0.0000 65.7585
7 -65.7585 0.0000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96175
Abs(Dif)-LSD 1 7
1 -60.977 -45.529
7 45529  -145.092

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 741.7171 605.8859 575.8719
7 204 776.1235 643.8401 616.5490
Test FRatio DF Num DF Den Prob>F
O'Brien[.5] 0.9616 1 1357 0.3270
Brown-Forsythe 1.0427 1 1357 0.3074
Levene 1.3634 1 1357 0.2432
Bartlett 0.7238 1 ?  0.3949
Welch Anova testing Means Equal, allowing Std's Not Equal

FRatio DF Num DF Den Prob>F

1.2610 1 272.53 0.2624

t-Test
1.1230

Figure 155. Paired t-test comparing GPS-1 section means ver sus GPS-7
section meansfor the LWP wirelinerut widths.
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Dif=Mean([i]-Mean[j] 1 7
1 0.00000 2.33389
7 -2.33389 0.00000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96175
Abs(Dif)-LSD 1 7
1 -0.41029 1.58509
7 158509  -0.97625

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 5.190945 3.871235 3.749784
7 204 3.959517 2.915225 2.647059
Test F Ratio DF Num DF Den  Prob>F
O'Brien[.5] 6.5412 1 1357 0.0106
Brown-Forsythe 15.6563 1 1357 <.0001
Levene 14.1141 1 1357 0.0002
Bartlett 22.2436 1 ?  <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num DF Den Prob>F
54.3718 1 339.45 <.0001
t-Test
7.3737

Figure 156. Paired t-test comparing GPS-1 section means ver sus GPS-7
section meansfor the RWP wirelinerut depths.
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[Means Comparisons J
Dif=Mean[i]-Meanl[j] 1 7
1 0.000 146.881
7 -146.881 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96175
Abs(Dif)-LSD 1 7
1 -62.590 32.649
7 32.649 -148.931
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
1 1155 757.9183 625.5254 603.7048
7 204 814.9938 675.9321 647.2941
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 2.7842 1 1357 0.0954
Brown-Forsythe 1.2861 1 1357 0.2570
Levene 2.3665 1 1357 0.1242
Bartlett 1.8793 1 ? 0.1704
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DF Num  DF Den Prob>F
5.7480 1 268.65 0.0172
t-Test
2.3975

Figure 157. Paired t-test comparing GPS-1 section means ver sus GPS-7
section meansfor the RWP wirelinerut widths.
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[Neg Area By Surface Thickness j
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T T -
Moderate Thick Thin ~ EachParr
Student's t
Surface Thickness 0.05
[Means Comparisons ]
Dif=Mean[i]-Mean[j] Moderate Thin Thick
Moderate 0.00 242.78 1655.20
Thin -242.78 0.00 1412.42
Thick -1655.20 -1412.42 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Moderate Thin Thick
Moderate -985.92 -955.54 574.69
Thin -955.54 -1378.37 135.15
Thick 574.69 135.15 -1167.46
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 8609.324 6451.552 6057.938
Thick 460 9319.431 7508.581 7233.920
Thin 330 9398.057 7246.181 6652.897
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 0.9604 2 1432 0.3830
Brown-Forsythe 3.9709 2 1432 0.0191
Levene 5.1061 2 1432 0.0062
Bartlett 2.4234 2 ? 0.0886
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
4.7230 2 791.72 0.0091

Figure 158. Paired t-test comparing GPS-1 and GPS-2 section
means for the negative area index ver sus surface thickness.
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[Pos Area By Surface Thickness j
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Surface Thickness 0.05
[Means Comparisons j
Dif=Mean([i]-Mean[j] Thin  Moderate Thick
Thin 0.00 678.32 1619.90
Moderate -678.32 0.00 941.57
Thick -1619.90 -941.57 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Thin  Moderate Thick
Thin -1557.66 -675.87 176.48
Moderate -675.87 -1114.16 -279.49
Thick 176.48 -279.49 -1319.32
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 10127.91 7671.944 7004.336
Thick 460 10117.97 7604.847 6748.354
Thin 330 10450.63 8160.850 7524.552
Test FRatio DFNum DFDen Prob>F
O'Brienl.5] 0.1215 2 1432 0.8856
Brown-Forsythe 0.8203 2 1432 0.4405
Levene 0.7923 2 1432 0.4530
Bartlett 0.2588 2 ? 07720
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
2.5125 2 806.67 0.0817

Figure 159. Paired t-test comparing GPS-1 and GPS-2 section
meansfor the positive area index versus surface thickness.
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[Fill Area By Surface Thickness ]
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Student's t
Surface Thickness 0.05
[Means Comparisons j
Dif=Mean[i]-Mean[j] Thick Thin  Moderate
Thick 0.00 1008.11 1102.48
Thin -1008.11 0.00 94.37
Moderate -1102.48 -94.37 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Thick Thin  Moderate
Thick -1155.36 -255.92 33.17
Thin -255.92 -1364.07 -1091.53
Moderate 33.17 -1091.53 -975.70
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 8582.128 6546.949 6328.358
Thick 460 9362.227 7181.002 6990.104
Thin 330 8989.305 6991.482 6766.818
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.9104 2 1432 0.4026
Brown-Forsythe 1.5649 2 1432 0.2095
Levene 1.7801 2 1432 0.1690
Bartlett 2.0612 2 ? 0.1273
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
2.1531 2 800.04 0.1168

Figure 160. Paired t-test comparing GPS-1 and GPS-2 section
means for thefill areaindex versus surface thickness.
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[LWP 1.8 By Surface Thickness ]
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Moderate Thick Thin ~ EachParr
Student's t
Surface Thickness 0.05
[Means Comparisons j
Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.000000 0.094203 0.630567
Moderate -0.0942 0.000000 0.536364
Thin -0.63057 -0.53636 0.000000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Thick Moderate Thin
Thick -0.51487 -0.38232 0.067273
Moderate -0.38232 -0.4348 0.007891
Thin 0.067273 0.007891 -0.60788
Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 4.120192 3.147907 3.031008
Thick 460 4.024786 3.011172 2.965217
Thin 330 3.624049 2.885271 2.821212
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 1.5743 2 1432 0.2075
Brown-Forsythe 0.6239 2 1432 0.5360
Levene 1.2041 2 1432 0.3003
Bartlett 3.5598 2 ? 0.0284
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
3.1003 2 841.98 0.0455

Figure 161. Paired t-test comparing GPS-1 and GPS-2 section
means for the LWP 1.8-m rut depths versus surface thickness.
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[LWP 1.8 W By Surface Thickness j
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Student's t
Surface Thickness 0.05
[Means Comparisons ]
Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.0000 2.8841 43.7767
Moderate -2.8841 0.0000 40.8927
Thin -43.7767 -40.8927 0.0000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96166
Abs(Dif)-LSD Thick Moderate Thin
Thick -29.9894 -24.8717 10.9665
Moderate -24.8717 -25.3260 10.1107
Thin 10.9665 10.1107 -35.4070

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 209.5359 153.6703 147.9380
Thick 460 204.2866 148.3078 140.5804
Thin 330 299.6773 212.6795 197.0636
Test FRatio DFNum DFDen Prob>F

O'Brien[.5] 13.9120 2 1432 <.0001

Brown-Forsythe 11.1672 2 1432 <.0001

Levene 18.7438 2 1432 <.0001

Bartlett 38.8026 2 ?  <.0001

Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
2.8768 2 747.77 0.0569

Figure 162. Paired t-test comparing GPS-1 and GPS-2 section
means for the LWP 1.8-m rut widths ver sus surface thickness.
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[RWP 1.8 By Surface Thickness j
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Surface Thickness 0.05
[Means Comparisons j
Dif=Mean([i]-Mean[j] Thick Thin  Moderate
Thick 0.000000 0.285968 0.416060
Thin -0.28597 0.000000 0.130092
Moderate -0.41606 -0.13009 0.000000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96166
Abs(Dif)-LSD Thick Thin  Moderate
Thick -0.5758 -0.34399 -0.11685
Thin -0.34399 -0.67982 -0.46092
Moderate -0.11685 -0.46092 -0.48626

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 4.285770 3.315988 3.209302
Thick 460 4.666624 3.467769 3.310870
Thin 330 4.462697 3.266556 3.236364
Test FRatio DFNum DFDen Prob>F

O'Brienl.5] 0.6867 2 1432  0.5034

Brown-Forsythe 0.1347 2 1432 0.8740

Levene 0.5507 2 1432 0.5766

Bartlett 1.9594 2 ?  0.1409

Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
1.1450 2 801.4 0.3187

Figure 163. Paired t-test comparing GPS-1 and GPS-2 section
means for the RWP 1.8-m rut depths ver sus surface thickness.
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[Means Comparisons ]
Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.0000 32.7824 38.0128
Moderate -32.7824 0.0000 5.2304
Thin -38.0128 -5.2304 0.0000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96166
Abs(Dif)-LSD Thick Moderate Thin
Thick -33.1446 2.1064 1.7506
Moderate 2.1064 -27.9906 -28.7902
Thin 1.7506 -28.7902 -39.1322

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 251.0544 184.6521 169.1147
Thick 460 237.0325 167.7991 160.7391
Thin 330 289.8882 213.2006 198.2212
Test FRatio DFNum DFDen Prob>F

O'Brien[.5] 3.0730 2 1432 0.0466

Brown-Forsythe 3.7677 2 1432 0.0233

Levene 6.4590 2 1432 0.0016

Bartlett 8.3514 2 ?  0.0002

Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
3.0760 2 785.2 0.0467

Figure 164. Paired t-test comparing GPS-1 and GPS-2 section
means for the RWP 1.8-m rut widths ver sus surface thickness.
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[LWP 3.7 By Surface Thickness ]
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Student's t
Surface Thickness 0.05
[Means Comparisons j
Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.000000 0.251230 0.710145
Moderate -0.25123 0.000000 0.458915
Thin -0.71014 -0.45891 0.000000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Thick Moderate Thin
Thick -0.56311 -0.26994 0.094071
Moderate -0.26994 -0.47554 -0.11908
Thin 0.094071 -0.11908 -0.66483
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 4.418299 3.384210 3.286822
Thick 460 4.412186 3.359093 3.269565
Thin 330 4.137652 3.278384 3.187879
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.5129 2 1432 0.5989
Brown-Forsythe 0.1166 2 1432 0.8899
Levene 0.1612 2 1432 0.8511
Bartlett 1.0466 2 ? 0.3511
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
2.7175 2  827.68 0.0666

Figure 165. Paired t-test comparing GPS-1 and GPS-2 section
meansfor the LWP wirelinerut depths versus surface thickness.
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[Means Comparisons j
Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.000 35.609 170.667
Moderate -35.609 0.000 135.058
Thin -170.667 -135.058 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96166
Abs(Dif)-LSD Thick Moderate Thin
Thick -95.755 -53.014 65.905
Moderate -53.014 -80.865 36.771
Thin 65.905 36.771 -113.054
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 706.7583 584.6481 564.6698
Thick 460 758.8254 622.5829 589.8630
Thin 330 777.3502 599.0490 567.5303
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 2.9581 2 1432 0.0522
Brown-Forsythe 0.3571 2 1432 0.6998
Levene 1.0352 2 1432 0.3554
Bartlett 2.4361 2 ? 0.0875
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
5.0935 2 790.56 0.0063

Figure 166. Paired t-test comparing GPS-1 and GPS-2 section
means for the LWP wirelinerut widths ver sus surface thickness.
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Student's t
Surface Thickness 0.05
[Means Comparisons j
Dif=Mean[i]-Mean[j] Thick Thin  Moderate
Thick 0.000000 0.396179 0.585608
Thin -0.39618 0.000000 0.189429
Moderate -0.58561 -0.18943 0.000000

Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96166
Abs(Dif)-LSD Thick Thin  Moderate
Thick -0.63504 -0.29859 -0.00214
Thin -0.29859 -0.74976 -0.4624
Moderate -0.00214 -0.4624 -0.53629

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 4.679577 3.610797 3.513178
Thick 460 5.135985 3.905312 3.773913
Thin 330 5.024666 3.732525 3.636364
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.9634 2 1432 0.3818
Brown-Forsythe 0.7323 2 1432 0.4810
Levene 1.1505 2 1432 0.3168
Bartlett 2.5747 2 ? 0.0762
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
1.8807 2 794.47 0.1532

Figure 167. Paired t-test comparing GPS-1 and GPS-2 section
means for the RWP wireline rut depths ver sus surface thickness.
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[Means Comparisons ]

Dif=Mean[i]-Mean[j] Thick Moderate Thin
Thick 0.000 70.659 159.422
Moderate -70.659 0.000 88.763
Thin -159.422 -88.763 0.000
Alpha= 0.05
Comparisons for each pair using Student's t

t
1.96166

Abs(Dif)-LSD Thick Moderate Thin
Thick -96.975 -19.093 53.325
Moderate -19.093 -81.895 -10.775
Thin 53.325 -10.775 -114.493
Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Moderate 645 728.9054 602.9505 582.3690
Thick 460 768.1865 634.0347 607.5804
Thin 330 763.6867 588.9161 566.8970
Test FRatio DFNum DFDen Prob>F

O'Brien[.5] 1.1370 2 1432 0.3211

Brown-Forsythe 0.6653 2 1432 0.5143

Levene 1.1738 2 1432 0.3095

Bartlett 0.8899 2 ?  0.4107

Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
4.1669 2 801.57 0.0158

Figure 168. Paired t-test comparing GPS-1 and GPS-2 section
means for the RWP wirelinerut widths ver sus surface thickness.
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[Neg Area By Base Type j
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Comparisons for each pair using Student's t

1.96330
Abs(Dif)-LSD Stabiliz Granular
Stabiliz -1332.65 919.93
Granular 919.93 -1200.54

Positive values show pairs of means that are significantly different.
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Stabiliz 0.00 2188.24
Granular -2188.24 0.00
Alpha= 0.05

[Tests that the Variances are Equal

)

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 8612.179 6668.947 6440.922
Stabiliz 323 8643.248 6329.013 5743.136
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 0.0018 1 719  0.9665
Brown-Forsythe 1.9246 1 719  0.1658
Levene 0.6480 1 719 04211
Bartlett 0.0046 1 ?  0.9459
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
11.4653 1 687.78 0.0007
t-Test
3.3860

Figure 169. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the negative area index ver sus base type.
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Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal

)

Count
398
323

Level
Granular
Stabiliz

Test

O'Brien[.5]
Brown-Forsythe
Levene

Bartlett

Std Dev
9303.69
11356.66

F Ratio
7.5652
15.0219
20.7700
14.2206

MeanAbsDif to Mean

MeanAbsDif to Median

6863.238 6097.997
9085.564 8480.136
DF Num DFDen  Prob>F
1 719  0.0061
1 719  0.0001
1 719  <.0001
1 ?  0.0002

F Ratio DF Num DF Den

23.6846 1 619.28
t-Test
4.8667

Welch Anova testing Means Equal, allowing Std's Not Equal

Prob>F
<.0001

Figure 170. Paired t-test comparing thin-surfaced GPS-1 and GPS-2

section meansfor the positive area index ver sus base type.
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Dif=Mean[i]-Mean[j] Granular Stabiliz
Granular 0.00 1969.84
Stabiliz -1969.84 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -1154.10 750.59
Stabiliz 750.59 -1281.10
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 8246.581 6316.121 6161.965
Stabiliz 323 8348.666 6432.837 6298.142
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.0287 1 719  0.8655
Brown-Forsythe 0.1008 1 719 0.7509
Levene 0.0865 1 719 0.7688
Bartlett 0.0538 1 ? 0.8166
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
10.0354 1 68532 0.0016
t-Test
3.1679

Figure 171. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor thefill areaindex versus base type.
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[Means Comparisons ]

Dif=Mean([i]-Meanl[j] Granular Stabiliz
Granular 0.00000 1.10687
Stabiliz -1.10687 0.00000
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -0.54094 0.535395
Stabiliz 0.535395 -0.60047

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 4.089648 3.038787 2.937186
Stabiliz 323 3.621017 2.868579 2.783282
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 2.2601 1 719 0.1332
Brown-Forsythe 0.5284 1 719 0.4675
Levene 0.8201 1 719 0.3655
Bartlett 5.2027 1 ? 0.0226
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
14.8295 1 71354 0.0001
t-Test
3.8509

Figure 172. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the LWP 1.8-m rut depths ver sus base type.
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[Means Comparisons ]
Dif=Mean([i]-Meanl[j] Granular Stabiliz
Granular 0.0000 73.2650
Stabiliz -73.2650 0.0000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -35.1674 36.1122
Stabiliz 36.1122 -39.0374
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 204.6424 137.7338 135.1432
Stabiliz 323 301.5609 226.5209 211.2508
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 13.9394 1 719 0.0002
Brown-Forsythe 27.3833 1 719 <.0001
Levene 46.3915 1 719 <.0001
Bartlett 53.4883 1 ? <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
13.8785 1  545.82 0.0002
t-Test
3.7254

Figure 173. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the LWP 1.8-m rut widths versus base type.
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Dif=Mean([i]-Meanl[j] Granular Stabiliz
Granular 0.00000 1.41474
Stabiliz -1.41474 0.00000
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -0.57052 0.812014
Stabiliz 0.812014 -0.6333

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 4.566188 3.483005 3.374372
Stabiliz 323 3.437487 2.784039 2.761610
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 13.3275 1 719 0.0003
Brown-Forsythe 8.6258 1 719 0.0034
Levene 13.1841 1 719 0.0003
Bartlett 27.7149 1 ? <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
22.4963 1 715.11 <.0001
t-Test
4.7430

Figure 174. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the RWP 1.8-m rut depths ver sus base type.
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Dif=Mean[i]-Mean[j] Granular Stabiliz

Granular 0.0000 85.7121
Stabiliz -85.7121 0.0000
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -36.9074 46.7211
Stabiliz 46.7211 -40.9689

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 222.4193 149.7810 145.1859
Stabiliz 323 309.8966 246.4318 226.4087
Test F Ratio DFNum DF Den Prob>F
O'Brienl[.5] 13.7585 1 719  0.0002
Brown-Forsythe 29.0503 1 719 <.0001
Levene 54.3865 1 719  <.0001
Bartlett 39.2519 1 ?  <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DFNum DF Den Prob>F
17.4245 1 567.11 <.0001
t-Test
4.1743

Figure 175. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the RWP 1.8-m rut widths versus base type.
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Dif=Mean[i]-Mean[j] Granular Stabiliz
Granular 0.000000 0.952860
Stabiliz -0.95286 0.000000
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -0.59308 0.326297
Stabiliz 0.326297 -0.65835

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 4.323585 3.222595 3.125628
Stabiliz 323 4.183474 3.339187 3.244582
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 0.1734 1 719 0.6772
Brown-Forsythe 0.2999 1 719 0.5841
Levene 0.3274 1 719 0.5673
Bartlett 0.3844 1 ? 0.5353
Welch Anova testing Means Equal, allowing Std's Not Equal

F Ratio DF Num DF Den Prob>F

8.9760 1 697.25 0.0028

t-Test
2.9960

Figure 176. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the LWP wirelinerut depths versus base type.
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Dif=Mean[i]-Mean[j] Granular Stabiliz
Granular 0.000 121.715
Stabiliz -121.715 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -104.365 11.458
Stabiliz 11.458 -115.850
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 682.1302 556.9888 536.9573
Stabiliz 323 825.8065 665.8650 638.1950
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 15.6864 1 719  <.0001
Brown-Forsythe 6.7702 1 719  0.0095
Levene 11.0416 1 719 0.0009
Bartlett 13.0672 1 ?  0.0003
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
45161 1 62252 0.0340
t-Test
2.1251

Figure 177. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the LWP wirelinerut widths versus base type.
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Student's t
Base Type 0.05
[Means Comparisons ]
Dif=Mean([i]-Mean[j] Granular Stabiliz
Granular 0.00000 1.37205
Stabiliz -1.37205 0.00000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -0.63117 0.705238
Stabiliz 0.705238 -0.70063
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 4.869137 3.695462 3.557789
Stabiliz 323 4.085890 3.237892 3.235294
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 5.2869 1 719 0.0218
Brown-Forsythe 1.8569 1 719 0.1734
Levene 4.4987 1 719 0.0343
Bartlett 10.7361 1 ? 0.0011
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
16.9207 1 718.19 <.0001
t-Test
4.1135

Figure 178. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the RWP wirelinerut depths versus base type.
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Dif=Mean([i]-Mean[j] Granular Stabiliz
Granular 0.000 153.812
Stabiliz -153.812 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96330
Abs(Dif)-LSD Granular Stabiliz
Granular -103.720 44.236
Stabiliz 44.236 -115.134
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Granular 398 678.9518 553.8407 540.1784
Stabiliz 323 819.6431 650.8271 622.4799
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 15.4851 1 719 <.0001
Brown-Forsythe 4.8177 1 719 0.0285
Levene 8.5867 1 719 0.0035
Bartlett 12.6841 1 ? 0.0004
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DF Den Prob>F
7.3060 1 623.62 0.0071
t-Test
2.7030

Figure 179. Paired t-test comparing thin-surfaced GPS-1 and GPS-2
section meansfor the RWP wirelinerut widths versus base type.
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Asphalt -2610.90 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t

1.96741
Abs(Dif)-LSD Cement T Asphalt
Cement T -2272.77 631.88
Asphalt 631.88 -1633.29
Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal

)

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 9348.833 6943.740 6328.746
Cement T 110 6794.374 4871.945 4472.318
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 3.8220 1 321 0.0515
Brown-Forsythe 4.8528 1 321 0.0283
Levene 9.3584 1 321 0.0024
Bartlett 13.4792 1 ?  0.0002
Welch Anova testing Means Equal, allowing Std's Not Equal

F Ratio DF Num  DF Den Prob>F

8.2130 1 285.85 0.0045

t-Test
2.8658

Figure 180. Paired t-test comparing thin-surfaced GPS-2 section means
for the negative area index versus base type.
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Cement T 0.00 3358.93
Asphalt -3358.93 0.00
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96741
Abs(Dif)-LSD Cement T Asphalt
Cement T -2987.57 757.48
Asphalt 757.48 -2146.96
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 10179.81 7983.32 7520.56
Cement T 110 13112.74 10903.86 10255.38
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 7.9662 1 321  0.0051
Brown-Forsythe 7.9484 1 321 0.0051
Levene 14.1284 1 321 0.0002
Bartlett 9.6157 1 ? 0.0019
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
5.5045 1 178.52 0.0201
t-Test
2.3462

Figure 181. Paired t-test comparing thin-surfaced GPS-2 section
meansfor the positive area index ver sus base type.
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Cement T -4295.98 0.00
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -1545.81 2422.94
Cement T 2422.94 -2151.05

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 8640.974 6593.641 6416.732
Cement T 110 6956.915 5470.518 5222.727
Test FRatio DFNum DFDen Prob>F
O'Brienl[.5] 3.0141 1 321 0.0835
Brown-Forsythe 3.2273 1 321 0.0734
Levene 3.4343 1 321 0.0648
Bartlett 6.3976 1 ? 0.0114
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
23.3455 1 265.29 <.0001
t-Test
4.8317

Figure 182. Paired t-test comparing thin-surfaced GPS-2 section means
for thefill areaindex versus basetype.
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Dif=Mean[i]-Mean[j] Asphalt Cement T
Asphalt 0.00000 1.41554
Cement T -1.41554 0.00000
Alpha= 0.05

Comparisons for each pair using Student's t
t

1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -0.67939 0.592330
Cement T 0.592330 -0.94539

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 3.689110 2.920496 2.835681
Cement T 110 3.306122 2.606942 2.418182
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 1.1157 1 321 0.2916
Brown-Forsythe 2.1384 1 321 0.1446
Levene 1.5138 1 321 0.2195
Bartlett 1.6809 1 ? 0.1948
Welch Anova testing Means Equal, allowing Std's Not Equal
F Ratio DF Num  DF Den Prob>F
12.2732 1 24266 0.0005
t-Test
3.5033

Figure 183. Paired t-test comparing thin-surfaced GPS-2 section means
for the LWP 1.8-m rut depths versus base type.
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Cement T -134.758 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -56.2698 66.5768
Cement T 66.5768 -78.3013
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 270.7918 191.7597 180.6056
Cement T 110 337.5504 274.9322 260.8545
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 3.3414 1 321 0.0685
Brown-Forsythe 9.3991 1 321 0.0024
Levene 13.6298 1 321  0.0003
Bartlett 7.2508 1 ? 0.0071
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
13.1584 1 183.1 0.0004
t-Test
3.6275

Figure 184. Paired t-test comparing thin-surfaced GPS-2 section
meansfor the LWP 1.8-m rut widths versus base type.
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Abs(Dif)-LSD Asphalt Cement T
Asphalt -0.62697 1.38308
Cement T 1.38308 -0.87244

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 3.476660 2.710970 2.704225
Cement T 110 2.888316 2.331405 2.190909
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 3.1833 1 321  0.0753
Brown-Forsythe 4.2216 1 321 0.0407
Levene 2.5638 1 321 0.1103
Bartlett 4.7183 1 ? 0.0298
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
34.6297 1  258.68 <.0001
t-Test
5.8847

Figure 185. Paired t-test comparing thin-surfaced GPS-2 section means
for the RWP 1.8-m rut depths versus base type.
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Comparisons for each pair using Student's t
t
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Abs(Dif)-LSD Asphalt Cement T
Asphalt -56.067 140.784
Cement T 140.784 -78.019
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 264.8157 187.4494 171.9484
Cement T 110 343.9717 291.3719 290.2818
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 5.2336 1 321 0.0228
Brown-Forsythe 23.4440 1 321 <.0001
Levene 22.9856 1 321 <.0001
Bartlett 10.2718 1 ?  0.0014
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
31.0098 1 177.4  <.0001
t-Test
5.5686

Figure 186. Paired t-test comparing thin-surfaced GPS-2 section means
for the RWP 1.8-m rut widths versus base type.
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Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 4.315832 3.408936 3.356808
Cement T 110 3.654102 2.865785 2.690909
Test F Ratio DF Num DF Den Prob>F
O'Brien[.5] 2.6291 1 321 0.1059
Brown-Forsythe 4.1965 1 321 0.0413
Levene 3.3913 1 321 0.0665
Bartlett 3.8213 1 ?  0.0506
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
15.2656 1  254.67 0.0001
t-Test
3.9071

Figure 187. Paired t-test comparing thin-surfaced GPS-2 section means
for the LWP wirelinerut depthsversus basetype.

252



[LWP 3.7 W By Base ]

] !
3000 H
] !
!
2000 @)
= 1 O
& |
o
= i
- |
1000 |
- 1
i ' |
0
T -
Asphalt Cement T Each pair
Student's t
Base 0.05
[Means Comparisons ]
Dif=Mean([i]-Mean([j] Asphalt Cement T
Asphalt 0.000 274.982
Cement T -274.982 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -155.697 86.326
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Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 815.9333 671.5165 637.3380
Cement T 110 818.1795 643.3084 621.8182
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.0014 1 321 0.9702
Brown-Forsythe 0.0554 1 321 0.8141
Levene 0.2554 1 321 0.6136
Bartlett 0.0011 1 ? 09737
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
8.2090 1 219.89 0.0046
t-Test
2.8651

Figure 188. Paired t-test comparing thin-surfaced GPS-2 section means
for the LWP wirelinerut widths versus basetype.
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t

1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -0.74541 1.63739
Cement T 1.63739 -1.03726

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 4.185761 3.242082 3.192488
Cement T 110 3.308392 2.729587 2.509091
Test F Ratio DF Num  DF Den Prob>F
O'Brien[.5] 4.4270 1 321  0.0362
Brown-Forsythe 4.7311 1 321  0.0304
Levene 3.3077 1 321 0.0699
Bartlett 7.4955 1 ?  0.0062
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DF Den Prob>F
35.5115 1 269.14 <.0001
t-Test
5.9592

Figure 189. Paired t-test comparing thin-surfaced GPS-2 section means
for the RWP wirelinerut depths versus base type.
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Dif=Mean([i]-Mean([j] Asphalt Cement T
Asphalt 0.000 335.990
Cement T -335.990 0.000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.96741
Abs(Dif)-LSD Asphalt Cement T
Asphalt -153.511 149.983
Cement T 149.983 -213.616
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
Asphalt 213 798.0659 657.6296 609.9437
Cement T 110 818.9877 638.5709 632.4455
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 0.1192 1 321 0.7302
Brown-Forsythe 0.1165 1 321 0.7331
Levene 0.1189 1 321 0.7305
Bartlett 0.0966 1 ?  0.7560
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
12.4220 1 21547 0.0005
t-Test
3.5245

Figure 190. Paired t-test comparing thin-surfaced GPS-2 section means
for the RWP wirelinerut widths versus base type.
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Alpha= 0.05
Comparisons for each pair using Student's t
t
1.97363
Abs(Dif)-LSD F NF
F -1752.69 4538.96
NF 4538.96 -4321.72
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 6616.52 4959.72 4433.68
NF 25 12712.12 11206.17 10968.44
Test FRato DFNum DFDen Prob>F
O'Brien[.5] 27.5627 1 175 <.0001
Brown-Forsythe 23.3755 1 175  <.0001
Levene 40.6032 1 175 <.0001
Bartlett 23.3016 1 ?  <.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
9.0956 1 26.178 0.0056
t-Test
3.0159

Figure 191. Paired t-test comparing climate for the GPS-7
section means of the negative area index.
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[Tests that the Variances are Equal ]

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 9582.76 7296.008 6897.520
NF 25 11980.21 7479.536 6581.480
Test F Ratio DF Num  DF Den Prob>F
O'Brien[.5] 0.7487 1 175  0.3881
Brown-Forsythe 0.0331 1 175  0.8558
Levene 0.0162 1 175 0.8989
Bartlett 2.2648 1 ? 0.1323
Welch Anova testing Means Equal, allowing Std's Not Equal

FRato DFNum DFDen Prob>F

0.6006 1 29.265 0.4446

t-Test
0.7750

Figure 192. Paired t-test comparing climate for the GPS-7
section means of the positive area index.
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Abs(Dif)-LSD NF F
NF -4314.81 4501.28
F 4501.28  -1749.88

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 6882.41 5165.106 4724.289
NF 25 11731.05 9920.144 9710.720
Test F Ratio DF Num  DF Den Prob>F
O'Brien[.5] 17.0164 1 175  <.0001
Brown-Forsythe 16.1406 1 175  <.0001
Levene 21.5606 1 175 <.0001
Bartlett 14.8177 1 ? 0.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
10.4432 1 26.781 0.0033
t-Test
3.2316

Figure 193. Paired t-test comparing climate for the GPS-7
section means of thefill areaindex.
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LWP 1.8 By Freeze
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Alpha= 0.05
Comparisons for each pair using Student's t
t

1.97363

Abs(Dif)-LSD NF F
NF -1.96357 1.06381
F 1.06381  -0.79633

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median

F 152 3.267551 2.288089 2.131579
NF 25 4.800347 3.881600 3.640000
Test FRato DFNum DFDen Prob>F

O'Brien[.5] 4.0473 1 175  0.0458

Brown-Forsythe 6.0153 1 175 0.0152

Levene 9.6093 1 175  0.0023

Bartlett 7.2334 1 ?  0.0072

Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
6.6175 1 27772 0.0157
t-Test
2.5724

Figure 194. Paired t-test comparing climate for the GPS-7
section means of the LWP 1.8-m rut depths.

259



[LWP 1.8 W By Freeze ]

|
T P a
_ 5 ()
1000 — .
= :
poy E |
- 1
o -
=
-
0
T -
F NE Each Pair
Student's t
Freeze 0.05

[Means Comparisons j
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Comparisons for each pair using Student's t
t
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Abs(Dif)-LSD NF F
NF -143.866 -35.385
F -35.385 -58.345

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median

F 152 238.2526 184.7729 177.1974
NF 25 356.6035 195.8208 186.7600
Test F Ratio DF Num  DF Den Prob>F

O'Brien[.5] 2.5770 1 175 0.1102

Brown-Forsythe 0.0479 1 175 0.8269

Levene 0.0838 1 175 0.7726

Bartlett 8.0174 1 ? 0.0046

Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
1.0135 1 27.63  0.3228
t-Test
1.0067

Figure 195. Paired t-test comparing climate for the GPS-7
section means of the LWP 1.8-m rut widths.
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F -2.41816 0.00000
Alpha= 0.05
Comparisons for each pair using Student's t
t
1.97363
Abs(Dif)-LSD NF F
NF -1.91485 0.95704
F 0.95704 -0.77658
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 3.086071 2.201177 2.019737
NF 25 5.086911 3.878400 3.640000
Test FRatio DFNum DFDen Prob>F
O'Brien[.5] 8.2022 1 175 0.0047
Brown-Forsythe 7.3023 1 175 0.0076
Levene 11.1649 1 175 0.0010
Bartlett 12.8343 1 ?  0.0003

Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
5.3269 1 26978 0.0289
t-Test
2.3080

Figure 196. Paired t-test comparing climate for the GPS-7
section means of the RWP 1.8-m rut depths.
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Comparisons for each pair using Student's t
t
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Abs(Dif)-LSD NF F
NF -162.763  -118.134
F -118.134 -66.009

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal ]

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median

F 152 267.3935 208.9024 201.9079
NF 25 412.3589 299.0784 256.3600
Test F Ratio DF Num DF Den Prob>F

O'Brien[.5] 6.2853 1 175 0.0131

Brown-Forsythe 1.3924 1 175 0.2396

Levene 5.0852 1 175 0.0254

Bartlett 9.3710 1 ?  0.0022

Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
0.0051 1 27.414 0.9439
t-Test
0.0711

Figure 197. Paired t-test comparing climate for the GPS-7
section means of the RWP 1.8-m rut widths.
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Abs(Dif)-LSD NF F
NF -2.20686 1.71844
F 1.71844  -0.89500

Positive values show pairs of means that are significantly different.

[Tests that the Variances are Equal j

Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median

F 152 3.640468 2.671312 2.519737
NF 25 5.529617 4.582400 4.240000
Test FRatio DFNum DF Den Prob>F

O'Brien[.5] 7.0730 1 175  0.0086

Brown-Forsythe 7.4196 1 175 0.0071

Levene 12.1925 1 175 0.0006

Bartlett 8.6688 1 ?  0.0032

Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
8.8350 1 27522 0.0061
t-Test
2.9724

Figure 198. Paired t-test comparing climate for the GPS-7
section means of the LWP wirelinerut depths.
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Comparisons for each pair using Student's t
t
1.97363
Abs(Dif)-LSD NF F
NF -437.046 142.717
F 142.717 -177.245
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal j
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 761.4174 632.8072 603.1382
NF 25 906.5596 745.9136 742.0800
Test FRatio DFNum DF Den Prob>F
O'Brien[.5] 2.0283 1 175 0.1562
Brown-Forsythe 1.5290 1 175 0.2179
Levene 1.4793 1 175 0.2255
Bartlett 1.3514 1 ? 0.2450
Welch Anova testing Means Equal, allowing Std's Not Equal
FRato DFNum DFDen Prob>F
6.1810 1 29.828 0.0187
t-Test
2.4862

Figure 199. Paired t-test comparing climate for the GPS-7
section means of the LWP wirelinerut widths.
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Comparisons for each pair using Student's t
t
1.97363
Abs(Dif)-LSD NF F
NF -2.20828 1.59867
F 1.59867 -0.89557
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 3.525118 2.546918 2.289474
NF 25 5.993608 4.796800 4.600000
Test F Ratio DF Num  DF Den Prob>F
O'Brien[.5] 11.5847 1 175  0.0008
Brown-Forsythe 11.6526 1 175  0.0008
Levene 16.1536 1 175 <.0001
Bartlett 14.6645 1 ?  0.0001
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
7.0999 1 26.795 0.0129
t-Test
2.6646

Figure 200. Paired t-test comparing climate for the GPS-7
section means of the RWP wirelinerut depths.
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Comparisons for each pair using Student's t
t
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Abs(Dif)-LSD NF F
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F 62.267 -184.224
Positive values show pairs of means that are significantly different.
[Tests that the Variances are Equal ]
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
F 152 775.050 635.1389 602.9211
NF 25 1024.175 896.7232 896.6800
Test F Ratio DF Num  DF Den Prob>F
O'Brien[.5] 6.5846 1 175  0.0111
Brown-Forsythe 6.7601 1 175  0.0101
Levene 7.4601 1 175 0.0070
Bartlett 3.6204 1 ? 0.0571
Welch Anova testing Means Equal, allowing Std's Not Equal
FRatio DFNum DFDen Prob>F
3.6416 1  28.694 0.0664
t-Test
1.9083

Figure 201. Paired t-test comparing climate for the GPS-7
section means of the RWP wirelinerut widths.
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APPENDIX E.
COMPARISONS OF TIME-SERIES SLOPES

The slopes for the time-series data for each test section were determined for each of the indices.
The distributions of the slopes are provided in figures 202 through 212. The signs of the slopes
for each of the indices were compared to the signs for the LWP 1.8-m rut depth. These results
are provided in figures 213 through 222. The top block in each figureis a graphical presentation
of theresults. The second block is a contingency table that provides a count for each cell in the
table. A “-1" indicates a negative slope, a“0” indicates azero slope, and a“1” indicates a
positive slope. The bottom block provides the statistical results for each analysis.
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Figure 202. Distribution of the time-series slopesfor the negative ar ea index.
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Figure 203. Distribution of the time-series slopesfor the positive area index.
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Figure 204. Distribution of the time-series Slopesfor thefill areaindex.
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Figure 205. Distribution of the time-series slopesfor the LWP 1.8-m rut depths.
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Figure 206. Distribution of the time-series slopesfor the LWP 1.8-m rut widths.
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Figure 207. Distribution of thetime-series slopesfor the RWP 1.8-m rut depths.
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Figure 208. Distribution of the time-series slopesfor the RWP 1.8-m rut widths.
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Figure 209. Distribution of the time-series slopesfor the LWP wirelinerut depths.
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Figure 210. Distribution of the time-series slopesfor the LWP wirelinerut widths.
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Figure 211. Distribution of the time-series slopesfor the RWP wireline rut depths.
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Figure 212. Distribution of the time-series slopes for the RWP wirelinerut widths.
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Figure 213. Comparison of the signs of the slopesfor the negative
area index versusthose for the LWP 1.8-m rut depths.
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Figure 214. Comparison of the signs of the slopesfor the
positive area index ver susthose for the LWP 1.8-m rut depths.
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Figure 215. Comparison of the signs of the slopesfor the
fill areaindex versusthosefor the LWP 1.8-m rut depths.
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Figure 216. Comparison of the signs of the slopesfor the
LWP 1.8-m rut widthsversusthosefor the LWP 1.8-m rut depths.
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Figure 217. Comparison of the signs of the slopesfor the
RWP 1.8-m rut depths versusthose for the LWP 1.8-m rut depths.
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Figure 218. Comparison of the signs of the slopesfor the
RWP 1.8-m rut widths versusthose for the LWP 1.8-m rut depths.

284



[3.7 LWP + or - By 1.8 LWP + or - j

14 -
0.75 |
S 05
o
=
—
™~
@
0.25 I
0— =l
1.8 LWP + or -
1.8 LWP +or -
Count -1 0 1
5/-1 221 0 30 251
a0 0 134 0 134
% 11 0 397 408
P 232 134 427 793
Source DF -LogLikelihood RSquare (U)
Model 4 645.27117 0.8085
Error 787 152.86041
C Total 791 798.13159
Total Count 793
Test ChiSquare Prob>ChiSq
Likelihood Ratio 1290.542 <.0001
Pearson 1390.195 <.0001
Kappa Std Err
0.914088 0.01317
Kappa measures the degree of agreement.

Figure 219. Comparison of the sign of the slopesfor the
LWP wirelinerut depthsversusthosefor the LWP 1.8-m rut depths.
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Figure 220. Comparison of the signs of the slopesfor the
LWP wirelinerut widthsversusthosefor the LWP 1.8-m rut depths.
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Figure 221. Comparison of the signs of the slopesfor the
RWP wirelinerut depths versusthose for the LWP 1.8-m rut depths.
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Figure 222. Comparison of the signs of the slopesfor the
RWP wirelinerut widths versusthose for the LWP 1.8-m rut depths.
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