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Title 
Using Naturalistic Driving Performance Data to Develop an Empirically Defined Model of 
Distracted Driving 

Introduction 
Driver distraction is defined as a diversion of attention away from the primary driving activity 
toward non-driving related tasks (Lee et al., 2008). Multiple resource theory (MRT) describes 
this diversion as a process of competition for attentional resources (Wickens, 2002). When the 
non-driving related tasks compete for the same resource (e.g., visual or cognitive), performance 
of the primary task is very likely to degrade. In 2009, NHTSA reported highlights of analyses of 
crash databases for that year as related to distracted driving (Ascone, 2009). For example, in 
2009, 5474 people were killed on U.S. roadways in motor vehicle crashes that were reported to 
have involved distracted driving.  Of these, 18% (995) involved reports of cell phone as a 
distraction. Thus, cell phones were involved in approximately 3% of all fatalities. Of those 
injured in crashes in 2009, 20% involved reports of distraction.  Of those, 5% involved cell 
phones. Thus, approximately 1% of injuries were reported as involving cell phones.  

Cell phone use and other driver distractions have been the subject of many studies resulting in 
a range of findings (Bao, Flannagan, & Sayer, submitted; Liang & Lee, 2010; Nemme & White, 
2010; Redelmeier & Tibshirani, 1997; Strayer & Drews, 2007; Strayer & Johnston, 2001). 
However, the most challenging element of the science of driver distraction is that while most 
simulator studies clearly show performance deficits with secondary tasks (Drews, Yazdani, 
Godfrey, Cooper, & Strayer, 2009; Liang & Lee, 2010; Owens, McLaughlin, & Sudweeks, 2011), 
the crash data show steady decreases in total crashes, fatalities, and crash rates (IIHS, 2010; 
Ascone, 2009).   

One of the difficulties in understanding the effect of distraction, particularly cell phone use, on 
crashes has been that police reports have historically under-represented is traction or not 
coded various sources of distraction.  As this issue has become more public, coding of 
distraction has increased in quantity and quality. The National Motor Vehicle Crash Causation 
Survey (NMVCCS) was conducted between 2005 and 2007 and involved in-depth investigation 
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of the causation of a set of 6,949 crashes. At that time, 22% of drivers were distracted by one or 
more sources.  Of these, 16% were conversing with a passenger and about 3.4% were either 
talking on or dialing a cell phone. Because in-depth investigations were done on-scene, these 
estimates are much less likely to be undercounting distraction. The objective of this study is to 
apply a stochastic modeling method, Hidden Markov Modeling method, to naturalistic driving 
data analysis, and to develop algorithms to identify distract driving by using vehicle kinematic 
variables only. 

Method 
 

Data 
The data used for this study was collected from the Integrated Vehicle-Based Safety Systems 
Field Operational Test (IVBSS FOT) (Sayer et al., 2011). The IVBSS FOT involved 108 primary 
drivers (54 male, 54 female) who drove instrumented vehicles for 6 weeks each. The vehicles 
were 16 Honda Accord EX sedans (models years 2006 and 2007) equipped with a variety of 
prototype warning systems, including: forward radar measuring distance, closing speeds, and 
relative accelerations of leading vehicles; side and rear radars that track other vehicles and 
roadside objects alongside the vehicle, as well as closing speeds of trailing vehicles; a forward 
lane-tracking camera that gathered data on vehicle position within the lane as well as the type 
of lane markings (dashed, solid); five camera streams at rates of 10 Hz (forward and driver-face) 
and 2 Hz (other views); vehicle motion sensors, including accelerometers and a yaw rate sensor; 
GPS and onboard digital map information, including roadway attributes (e.g., posted speed 
limits, number of lanes); and, signals from the OEM automotive data bus, including speed, 
accelerator and brake pedal status, turn signals, and wipers. Audio data were not recorded. 
Participants were fully informed of the data recording and the camera locations 

The data analyzed in the current study were from the first two weeks of data collection, during 
which all warning systems were disabled for the collection of baseline driving data. For this 
analysis, the distracted driving episodes of interest were cellular phone use by the driver.  
Cellular phone use was considered any use of a hand-held or hands-free device (dialing, 
browsing, texting, talking, listening, glancing/viewing, etc.).  During video coding completed as 
part of prior analysis of these data, clips containing cellular phone use by drivers had already 
been identified.  A sample of 5-second clips in which the drivers were using a cellular phone 
were randomly selected and were considered cellular phone cases or case clips.  

Matched control clips, in which drivers did not engage in any secondary tasks, were identified 
for each case clip via a two-part matching and coding process.  To optimize statistical power, 
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the investigators attempted to identify as many matched control clips as possible for each case 
clip up to a maximum of five control clips per case. While it had already been determined from 
prior coding that there was no cellular phone use in these clips, new coding was conducting to 
confirm that drivers did not engage in other secondary tasks and that the clips were control 
cases. 

Three matching strategies were ultimately attempted to obtain an evaluation sample with 
enough matched clips to provide adequate analysis power. In the first matching strategy, 519 
case clips were identified from 65 drivers (mean = 8 cases per driver; maximum cases per driver 
= 10).  Potential control clips were matched to case clips by driver, same trip, within 30 minutes 
of the case clip, same roadway, and same traffic density, resulting in 2,724 matched clips - 
potential control clips.  Examination of the matched clips during coding revealed that, within 
drivers, multiple case clips had occurred within a close enough period of time that the clips 
matched to them were duplicates of the clips matched to other cases for that driver. Overall, 
80% of the clips matched using the first strategy was duplicates.  The investigators determined 
that the first strategy was too conservative and attempted a second round of matching with 
modifications. 

In the second matching strategy, 323 case clips were identified from 35 drivers (mean = 9 cases 
per driver; maximum cases per driver = 10).  The matching condition of same trip was dropped 
and potential control clips were matched to case clips by driver, within 30 minutes of the case 
clip, same roadway, and same traffic density, resulting in 2,555 matched clips.  This strategy 
performed better but 71% of the clips matched were duplicates still leaving too few control 
clips to for adequate power. 

In the third matching strategy, 349 cases were identified from 35 drivers (mean = 10 cases per 
driver; maximum cases per driver = 10).  The matching condition of within 30 minutes of the 
case clip was broadened to same time of day (day or night).  Potential control clips were 
matched to case clips by driver, same day/night, same roadway, and same traffic density, 
resulting in 10,054 matched clips.  Overall, this strategy still resulted in 77% duplicate clips, but 
the starting volume of matched clips was so large that the coding process revealed an adequate 
number of control clips to complete the data analyses.  The dataset generated using this 
strategy was used for all data analysis.   

Driving performance measures include acceleration pedal use, driving distance, driving speed 
and lane offset in both time and frequency domain were used in this study. The measurement 
of lane offset was associated with a “confidence” level in the data collection process. The 
confidence level was calculated based on how well the forward-looking video camera could 
identity lane markings on the road. The Fast Fourier Transform (FFT) method was used to 
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transform the four variables into frequency domain (See Bao et al., 2015). FFT is an algorithm to 
break down time-domain data, h(t), into constituent sinusoids of different frequencies, X(f). 

Hidden Markov Model 
The Hidden Markov model method (HMM) was used in this study. This method has been used 
by other studies to recognize driving patterns (Mitrovic, 2005). An HMM is a chain-style 
probabilistic graph model with variable length. Its structure is shown in Figure 1. 

 

 

Figure  1: HMM structure  

 𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑇𝑇  are visible nodes, whose states (visible states) are the data series that we 
observed, and ℎ1, ℎ2, … , ℎ𝑇𝑇 ∈ ℋ are the hidden nodes, which corresponds to the unobserved 
states (hidden states) that determines the underlying probabilistic distribution for generating 
the observations. ℋ is usually a finite set with a reasonable small number of elements. The 
directed edge indicates two types of conditional dependency:   

Transition dependency The hidden state at time 𝑡𝑡 + 1 depends on that at time 𝑡𝑡. The first 
hidden state has no dependency.  

Emission dependency The visual state at time 𝑡𝑡 depends on the hidden state at the same time.  

Accordingly, three types of probability distributions need to be defined to specify an HMM: 

Initial probability 𝑝𝑝(ℎ1) can be specified by a vector 𝐛𝐛 = �𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏|ℋ|�
𝛵𝛵

, where |ℋ| denotes 
the number of hidden states, 𝑏𝑏𝑖𝑖 ≥ 0 is the probability of chosing the 𝑖𝑖th hidden state for ℎ1, 

and ∑|ℋ|
𝑡𝑡=1 𝑏𝑏𝑡𝑡 = 1.  

Transition probability 𝑝𝑝(ℎ𝑡𝑡+1|ℎ𝑡𝑡) can be similarly specified by a square matrix 𝐀𝐀 =
�𝑎𝑎𝑖𝑖𝑖𝑖�𝑖𝑖,𝑗𝑗=1,2,…,|ℋ|

, where 𝑎𝑎𝑖𝑖𝑖𝑖 > 0 is the probability of trasiting from the 𝑗𝑗th hidden state (at time 𝑡𝑡) 

to the 𝑖𝑖th hidden state (at time 𝑡𝑡 + 1), and ∑|ℋ|
𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖 = 1.  

Emission probability 𝐱𝐱𝑡𝑡 ∈ ℝ𝐷𝐷 is a continous variable, so we cannot specify 𝑝𝑝(𝐱𝐱𝑡𝑡|ℎ𝑡𝑡) by a matrix, 
which is the common practical for discrete visible states. Instead, the Gaussion distribution is 
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adopt, i.e. 𝐱𝐱𝑡𝑡|ℎ𝑡𝑡~𝒩𝒩(𝜇𝜇(ℎ𝑡𝑡),𝚺𝚺(ℎ𝑡𝑡)), where 𝜇𝜇(ℎ𝑡𝑡),𝚺𝚺(ℎ𝑡𝑡) are respectively the mean vector and 
covariance matrix for the state of ℎ𝑡𝑡.  

In summary, an HMM can be specified by a tuple of parameters Φ = (𝐛𝐛,𝐀𝐀, {𝜇𝜇(ℎ),𝚺𝚺(ℎ)}ℎ∈ℋ). 

    Given the hidden states, the probability of observing a series 𝐗𝐗 is  

𝑝𝑝(𝐗𝐗|{ℎ𝑡𝑡}𝑡𝑡=1𝑇𝑇 ,Φ) = (𝑝𝑝(ℎ1)𝑝𝑝(𝐱𝐱1|ℎ1))∏𝑇𝑇
𝑡𝑡=2 (𝑝𝑝(ℎ𝑡𝑡−1|ℎ𝑡𝑡)𝑝𝑝(𝐱𝐱𝑡𝑡|ℎ𝑡𝑡)). (5) 

The probability of observing an 𝐗𝐗 with unknown hidden states can be calculated by 
marginalizing the hidden varibles: 

𝑝𝑝(𝐗𝐗|Φ) = ∑ℎ1,ℎ2,…,ℎ𝑇𝑇∈ℋ 𝑝𝑝(𝐗𝐗|{ℎ𝑡𝑡}𝑡𝑡=1𝑇𝑇 ,Φ). (6) 

    Given a set of training series1 𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗𝑛𝑛, the standard way to learn Φ is the maximum 
likelihood (ML) criterion. More specifically, the optimal parameter tuple is  

Φ� = argmax
Φ

∑𝑛𝑛
𝑘𝑘=1 log𝑝𝑝(𝐗𝐗𝑘𝑘|Φ). (7) 

This optimization problem can be solved by a standard expectation-maximization algorithm 
initialized with k-mean clustering algorithm. We used the implementation in Murphy’s HMM 
toolbox for MATLAB [1]. 

 

Sliding window: classifier as a convolutional filter 
 

 

Figure 2: Sliding window scheme for generating a series of predictions. 

    The proposed classifier predicts a single classification label for an input series. However, in 
practice, the data under driver distraction and normal driving are usually mixed in a long series, 
where assigning a single label to the whole series makes no sense. To deal with this situation, 
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we extend our method with a sliding window scheme to output a series of predictions, and 
enables real-time distraction alerts using the proposed classifier. 

    Specifically, we can get a series of classification score (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑇𝑇) of the same length as a 
long input series [𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑇𝑇] by 

𝑠𝑠𝑡𝑡 = 𝑠𝑠([𝐱𝐱𝑡𝑡−𝛿𝛿 , … , 𝐱𝐱𝑡𝑡, … , 𝐱𝐱𝑡𝑡+𝛿𝛿]), (8) 

where 𝑡𝑡 is the center of the window, and 𝛿𝛿 ≥ 0 determines the size of the window. Considering 
the two ends of the series, we set 𝐱𝐱𝑡𝑡 to an empty vector (𝐱𝐱𝑡𝑡 ∈ ℝ𝐷𝐷×0) if 𝑡𝑡 ∉ {1,2, … ,𝑇𝑇}. Figure 2 
illustrates the sliding window scheme. It basically takes the HMM-based classifier as a 
convolutional filter, and feeds it only with small segments of the whole input series. 

Modeling analysis and results 
Parameters: 5 hidden states are used. The size of the sliding window is 4. 

Evaluation protocol 
The proposed method is evaluated on our dataset with three protocols. 

Individual model: For each subject appearing in the dataset, we train an HMM-based classifier 
so that the driving patterns of each subject is specifically modeled with HMMs. As only one 
series exists for one subject, we use the same series for training and testing. 

Generic model: With the aim to characterizing the generic driving patterns under distraction, 
an HMM-based classifier is trained with all the series in our dataset. For testing, we still use the 
whole dataset. 

Leave-one-out model: To evaluate how challenging is it for a generic model to process driving 
patterns of unseen subjects, we adopt the leave-one-out strategy. In particular, we only 
excluding one subject in the dataset from training, and train an HMM-based classifier with the 
series of all the rest subjects. The excluded subject is then used for testing. All the subjects are 
enumeratively excluded from training once so that all of them can appear once for testing.  

 

Model performance: Individual vs. Generic vs. Leave-one-out 
The whole dataset is used for model performance evaluation. Performance was assed based on 
accuracy, equal error rate, Precision-recall (which is generated by tuning the threshold C), and 
AUC (i.e., area under P-R curve). In general, individual based model has a much higher accuracy 
(0.88) and lower error rate (0.27) than generic models (0.59 for accuracy, and 0.38 for error 
rate) (Figure 3).  
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Figure 3: Performance measures output (I: individual T=T: generic Train=Test, LOO: generic 
Leave-one-out). 

Figure 4 shows the ROC curves which is in the upper triangular region away from the diagonal 
line, meaning the metric being tested has useful information predicting texting behavior better 
than random guessing. The area under the ROC curve (AUC) was also calculated which indicates 
the probability that the classifier will rank a randomly chosen positive instance (texting while 
driving in our case) higher than a randomly chosen negative instance (baseline driving).  
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Figure 4: ROC curves of identifying texting from baseline driving 

The density distribution of lane offset power was shown in Figure 4. The result shows that 
texting tasks led to a higher variation of lane offset when compared to the condition before the 
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tasks, suggesting that drivers had erratic lane control right after they started texting tasks, 
compared to the baseline driving.  

 

 

Figure 5. Density distribution of the average relative spectral power of lane offset 

 

Conclusions 
This study applied HMM techniques to predict drivers’ texting behavior by using vehicle 
kinematic features from an existing naturalistic driving study. Both time and frequency domain 
analysis methods to compare driving performance during distracted driving and baseline driving 
were conducted. FFT analyses were performed in this study to investigate the frequency 
characteristics of drivers’ behavior during distracted driving. The Fourier analysis can describe 
the variation of driving performance measurements by integrating the power over different 
parts of the frequency spectrum, and thus distinguish behavior that would otherwise be 
indistinguishable. For this analysis, the degree of variability was measured in low frequency 
band (i.e. 0~0.5 Hz). Driver vehicle control performances can be significantly degraded during 
this period. Results from the frequency domain analysis showed that drivers behave 
significantly different when they start engaging in texting tasks when compared to baseline 
driving. It was also found that in this research that stochastic modeling algorithms like HMM 
can be a useful technique to detect and monitor driver state. It was also found in this study that 
individual based models works better than generic models.  
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