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Abstract

In this paper, we consider a road-ban problem in hazardous materials (hazmat) transportation.

We formulate the problem as a network design problem to select a set of closed road segments

for hazmat traffic and obtain a bi-level optimization problem. While modeling probabilistic

route-choices of hazmat carriers by the random utility model (RUM) in the lower level, we

consider a risk-averse measure called conditional value-at-risk (CVaR) in the upper level, instead

of the widely used expected risk measure. Using RUM and CVaR, we quantify the risk of

having hazmat accidents and large consequences, and design the network policy for road-bans

accordingly. Despite that CVaR has been used in hazmat routing problems, it has not been

considered with stochastic route-choice in hazmat network design problems. By applying CVaR

to the route-choice behavior of hazmat carriers, we protect the road network from undesirable

route-choices that may lead to severe consequences. We present a case study in the real road

network of Ravenna, Italy.

Keywords: transportation; hazardous materials; risk management; network design
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1 Introduction

Hazardous materials (hazmat) are defined as materials that can pose an unreasonable threat to

the public and the environment (Federal Motor Carrier Safety Administration, 2016b) and about 1

million shipments of hazardous materials crisscross the United States every day. In the past decade,

there have been 166,968 incidents causing 105 fatalities, resulting in 2,129 injuries and costing

$820,432,788 of damages (Pipeline and Hazardous Materials Safety Administration, 2016). Widely

used for hazardous materials transportation are cargo tank trucks. Improving the truck safety on

national highways and reducing the transportation incidents are significantly important for the

public and the environment.

On account of the large number of hazardous materials transported via roads, the government

and transportation agencies pay an attention to reduce the risk of potential catastrophic accidents

by hazmat. There are various policies and tools in both truck operations and network designs for

mitigating the risk. The Federal Motor Carrier Safety Administration (FMCSA), in association

with the Pipeline and Hazardous Materials Safety Administration (PHMSA) and industry partners,

created training tools for commercial hazmat carriers of cargo tank motor vehicles transporting

hazardous materials, since 78% of rollovers involve the hazmat carrier’s error (Federal Motor Carrier

Safety Administration, 2016a). Besides, the government and agencies provide the road-ban policies

to protect the public and the environment from severe accident consequences of hazmat. In a road

network design for hazmat transportation, the government can close certain road segments for

hazmat traffic and hazmat carriers can determine routes to transport hazmat without using closed

roads.

Typically, hazmat network design problems are formulated as a bi-level optimization problem

(Kara and Verter, 2004). The upper level selects a set of closed road segments to minimize the risk

of hazmat in the network. The lower level predicts the hazmat carrier’s routes to transport hazmat

from an origin-destination (OD) pairs. Modeling route choices is essential to determine the risk

associated with a hazmat transportation network. Most studies on hazmat network design utilize

the shortest path problem to model the route choices, although routing behavior is uncertain in

reality.

To consider the uncertainty of route choices, random utility model (RUM), random regret-

minimization (RRM), bounded rationality (BR), cumulative prospect theory (CPT), fuzzy logic

model (FLM) and dynamic learning models (DLM) are developed (Sun et al., 2016a). Among

these methods, RUM models the uncertainty of routing with probabilistic-route choices. McFadden

(1975) first proposed RUM to model the choice behavior. In RUM, it assumes that users’ utility

depends on both a fixed effect and a random observation error. Daganzo and Sheffi (1977) assumed

that observation errors are normally distributed ending up with Multinomial Probit (MNP) model.

MNP is lack of tractability for researchers to perform further analysis, because it cannot provide an

explicit formula which relates choice probabilities and known factors. Later, Sheffi (1985) proposed

Multinomial Logit (MNL) model by assuming that observation errors are from Gumbel distribution.

Other logit-type models (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999; Ramming, 2001)
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Table 1: Have risk-averse approaches been used in hazmat transportation problems? RO represents
robust optimization.

Source of Uncertainty

Paper Route-Choice Accident Consequence Data Context

Toumazis et al. (2013) VaR/CVaR Routing
Toumazis and Kwon (2016) CVaR RO Routing
Sun et al. (2016b) RO Network Design
Sun et al. (2017) RO Network Design
This Paper CVaR CVaR Network Design

cannot apply to network design problems since they need to evaluate path set beforehand. The

simple explicit form of MNL to describe users’ stochastic behavior makes it incorporable with further

analysis. By using MNL in transportation, the route choice probabilities can directly relate to route

costs.

Most hazmat transportation network designs only address the economical perspective or consider

simple risk measures such as expectation of accident consequences. In risk management, value-at-risk

(VaR), also known as α-quantile, once was commonly used to measure risk ignoring the left tail of

loss distribution. Its lack of subadditivity and convexity, as discussed by Artzner et al. (1997, 1999),

however, leads researchers’ attention to a coherent measure: conditional value-at-risk (CVaR). While

both VaR (Duffie and Pan, 1997) and CVaR (Rockafellar and Uryasev, 2000) have been applied to

financial portfolio optimization problems, they have also been applied to hazmat routing. Toumazis

et al. (2013) proposed VaR and CVaR minimization for hazmat routing. Toumazis and Kwon

(2013) focused on using CVaR to route on time-dependent networks. Considering the uncertainty

of accident data, Toumazis and Kwon (2016) proposed a worst CVaR minimization problem for

hazmat routing.

Our main contribution is that we introduce a risk-averse CVaR measure to both probabilistic

behavior of hazmat carriers and probabilistic consequences from hazmat accidents in hazmat network

design problems. To the best of our knowledge, this paper is the first attempt to mitigate both

factors via averse risk measures. Sun et al. (2017) considered the worst-case behavior of hazmat

carriers using the notion of bounded rationality to derive a robust network design, while the expected

risk (ER) is used to measure the risk from hazmat accidents. Their worst-case approach is similar

to robust optimization methods without assuming any probability distribution for route choices.

In contrast, we consider CVaR for both probabilistic factors. On the other hand, unlike Toumazis

and Kwon (2016) who considered the data uncertainty, we assume that hazmat accident such

as accident probabilities and consequences at each road segment are available and deterministic.

Table 1 highlights our main contribution and differences between other approaches available in

the literature. We analyze the proposed CVaR minimization problem for hazmat network design

theoretically and develop an efficient algorithm for solving the problem. In addition, we provide

a case study on a realistic road network to confirm the validity of CVaR concept incorporating
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probabilistic-route choices and the practicability of the proposed algorithm.

2 A Deterministic Model for Network Design

In this section, we review a deterministic model for hazmat transportation network design. Later,

we extend the deterministic model to consider CVaR and uncertain route choices.

Let us consider a transportation network G = (N ,A) where N is the set of nodes and A is the

set of arcs. In a multi-commodity transportation network, let S denote the set of shipments. In

practice, S specifies the OD pair, and the kind of hazmat. Let N s be the demand of shipment s ∈ S
that represents the number of trucks carrying hazmat. Each arc (i, j) is known with the travel

cost tij , the accident probability pij , and the accident consequence csij for each shipment s ∈ S.

Accidents caused by various kinds of hazmat can have different influences on a road network making

it possible that different shipments can have different accident consequences. Let Ks be the set of

available paths for shipment s ∈ S. To transport shipment s ∈ S, the approximated risk distribution

for a single demand (truck) along path k ∈ Ks can be written as follows (Jin and Batta, 1997):

Pr{Rsk = x} ≈


1−

∑
(i,j)∈Ak

pij if x = 0

pij if x = csij for some (i, j) ∈ Ak
(1)

where Ak is the set of arcs for path k. One of the most common approaches that regulators use

to measure the risk is expected value of consequences for potential hazmat truck accidents. It is

a common assumption that hazmat carriers travel along the shortest path. We also assume that

hazmat carriers only follow the shortest path in the deterministic model for hazmat transportation

network design. Erkut and Gzara (2008) solved a bi-level hazmat transport network design problem

based on an arc-based formulation. Verter and Kara (2008) proposed a path-based approach for

hazmat transport network design by simplifying the shortest path problem with the closet assignment

constraint. Similarly, a deterministic path-based network design for multi-commodities is formulated

as follows:

min
y,z

∑
s∈S

∑
k∈Ks

∑
(i,j)∈A

N spijδ
sk
ij c

s
ijγ

sk (2)

s.t. zsk ≥
∑

(i,j)∈A

δskij yij −
∑

(i,j)∈A

δskij + 1, ∀s ∈ S,∀k ∈ Ks (3)

zsk ≤ yij − δskij + 1, ∀s ∈ S,∀k ∈ Ks, ∀(i, j) ∈ A (4)∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (5)

γsk ≤ zsk, ∀s ∈ S, k ∈ Ks (6)

γsk ≥ zsk −
k−1∑
j=1

zsj , ∀s ∈ S, k ∈ Ks (7)
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∑
(i,j)∈A

(1− yij) ≤ N (8)

γsk, zsk binary , ∀s ∈ S, ∀k ∈ Ks (9)

yij binary , ∀(i, j) ∈ A (10)

where y is the design variable, z is the path availability variable and γ is the route-choice variable. If

arc (i, j) is open for transportation of hazmat, yij = 1; otherwise, yij = 0. If path k is available for

transportation of shipment s ∈ S, zsk = 1; otherwise, zsk = 0. If path k is chosen for transportation

of shipment s ∈ S, γsk = 1; otherwise, γsk = 0. In addition, δskij is the parameter to define a path.

If δskij = 1, arc (i, j) is on path k for shipment s; if δskij = 0, arc (i, j) is not on path k for shipment

s. In hazmat transportation network design problems, decisions that whether an arc is open or

closed should be made. In the single-level problem by the path-based formulation, the objective

minimizes the ER as (2) shows. Path-based network design constraints are defined by (3)–(10).

Constraints (3) and (4) define path availability for shipments. A path is available only if all arcs

that the path contains are open. If there exist closed arcs on a path, the path is out of service.

In addition, at least one path for a shipment is available to ensure transportation as (5) shows.

Constraints (6) state that the chosen path for shipments must come from available paths. All paths

for a shipment are sorted from 1 to k by lengths meaning that the length of path 1 for any shipment

has shortest length among all possible paths. Constraints (7) guarantee that the available path with

the smallest index is used for each shipment. Because of the sorted path data, (7) is equivalent to

the shortest path problem in a path-based context. Due to the cost associated with closing arcs, (8)

restricts the number of closed arcs. Constraints (9) and (10) are binaries for decision variables. The

path-based hazmat transportation network design problem is a mixed-integer linear programming

(MILP) problem.

3 Hazmat Risk Modeling with Probabilistic Route choices

Traditionally, researchers model the risk distribution for a hazmat transportation network assuming

that hazmat carriers choose the shortest path. To consider the uncertainty of route choices,

probabilistic-route choice models are used. In probabilistic-route choice models, hazmat carriers

choose an available path with a probability. The risk distribution for a hazmat transportation network

is redefined to incorporate with probabilistic-route choices. In this section, probabilistic-route choice

models are reviewed and utilized in risk distribution for hazmat transportation network.

3.1 Random Utility and Probabilistic Route Choice Models

RUM assumes that the utility of a choice that decision makers perceive comes from two sources: a

deterministic (observable) component and a random (unobservable) component. In the context of
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route choices, the utility U sk of path k for shipment s ∈ S is defined by:

U sk = −θstsk + ξsk (11)

where tsk is the generalized cost of observable attributes, θs is a positive parameter and ξsk is a

random variable. Usually, tsk is the travel time. It is assumed to be additive with respect to arc

costs.

tsk =
∑

(i,j)∈A

tijδ
sk
ij (12)

where tij is the generalized travel cost associated with arc (i, j), and δskij = 1 if arc (i, j) is on path

k for shipment s ∈ S and 0 otherwise.

Different distributions for random components ξsk result in various forms of probabilities πsk

for choosing path k ∈ Ks for shipment s ∈ S. By assuming that the random component ξsk are

independently and identically from Gumbel distribution, MNL model can be obtained as follows:

πsk =
ρsk∑
l∈Ks

ρsl
(13)

ρsk = e−θ
stsk (14)

for all s ∈ S,∀k ∈ Ks.
There exist other logit-type models with different formulations of ρsk (Prashker and Bekhor,

2004). In C-logit model, a commonality factor is introduced while a path size is defined in path-size

logit model. Both the commonality factor and the path size are used to measure the similarity

among paths and address some overlapping problems which MNL cannot capture. To obtain the

commonality factor and the path size, however, we need to know the path set Ks for shipment

s ∈ S beforehand. Therefore, C-logit model and path-size model cannot apply to the network design

problem. The simple form of MNL is used to model the uncertain route choices.

3.2 The Risk Distribution for Hazmat Transportation

In this section, the risk distribution for hazmat transportation is defined incorporating with the

probabilistic-route choice model. Various shipments s ∈ S can have different accident consequences.

Let Ak denote a set of arcs for path k ∈ Ks to transport shipment s ∈ S. It is assumed that hazmat

carriers are operated independently. Among N s demands of hazmat for shipment s ∈ S, demand

(truck) 1 and demand (truck) 2 have the same risk distribution along path k ∈ Ks. Choosing path

k ∈ Ks to transport shipment s ∈ S , the risk distribution for n-th truck can be approximated as

follows (Jin and Batta, 1997):

Rskn =


0 with probability 1−

∑
(i,j)∈Ak

pij

csij with probability pij for some (i, j) ∈ Ak
(15)
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When there are multiple paths available for each truck to transport shipment s ∈ S, we assume

that a path is chosen at the probability described by the probabilistic route-choice model introduced

in Section 3.1. Let Rsn be the random risk variable for n-th truck to transport s ∈ S, distributed

among all available paths in Ks. Under the consideration of available paths, the probability of

taking risk x of shipment s ∈ S by n-th truck is:

Pr

[
Rsn = x

]
=
∑
k∈Ks

Pr

[
Rsn = x | path k chosen

]
Pr

[
path k chosen for shipment s

]
(16)

=
∑
k∈Ks

Pr

[
Rskn = x

]
πsk (17)

where πsk is given in (13). Hence, Rsn is distributed as follows:

Rsn =


0 with probability 1−

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

csij with probability pij
∑

k∈Ks:(i,j)∈Ak

πsk for some (i, j) ∈
⋃

k∈Ks

Ak
(18)

The risk for a given transportation network comes from all demands among all shipments. Therefore,

the risk for a transportation network is:

R =
∑
s∈S

Ns∑
n=1

Rsn (19)

Since different trucks are operated separately transporting multiple units of demand for shipments,

we can assume that the risks for multiple units of demand among all shipments are independently

distributed. According to the North America data on hazmat transportation accident statistics, the

probabilities of an accident to take place are extremely small ranging from 10−8 to 10−6 (Abkowitz

et al., 1992). Utilizing

pijpi′j′ ≈ 0 (20)

for all (i, j), (i′, j′) ∈ A, we can obtain the probability that the risk variable becomes 0 as follows:

Pr

[
R = 0

]
=
∏
s∈S

Ns∏
n=1

Pr

[
Rsn = 0

]

=
∏
s∈S

Ns∏
n=1

(
1−

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

)

≈
∏
s∈S

(
1−N s

∑
k∈Ks

∑
(i,j)∈Ak

πskpij

)
= 1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij (21)
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and for each csij : s ∈ S, (i, j) ∈ A:

Pr

[
R = csij

]
= Pr

[∑
s∈S

Ns∑
n=1

Rsn = csij

]

≈
Ns∑
n=1

Pr

[
Rsn = csij

]
= N sπsk

∑
k∈Ks:(i,j)∈Ak

pij

=
∑
k∈Ks

N sπskpijδ
sk
ij (22)

where δskij is the incidence parameter for s ∈ S, k ∈ Ks, (i, j) ∈ A. If δskij = 1, arc (i, j) is on path k

for shipment s; if δskij = 0, arc (i, j) is not on path k for shipment s. Therefore, the approximated

risk distribution for hazmat transportation network is

R =


0 with probability 1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij

csij with probability
∑
k∈Ks

N sπskpijδ
sk
ij for some (i, j) ∈ A, s ∈ S

(23)

4 The CVaR Minimization Model for Network Design

In this section, a CVaR minimization network design model considering drivers’ probabilistic route

choices is proposed. It is well-known that CVaR is a general, coherent and risk-averse measure

(Rockafellar and Uryasev, 2002). For any random loss X, the VaR and CVaR are introduced in

Definitions 1 and 2, respectively. CVaR can also be redefined as an optimization problem as Theorem

1 shows.

Definition 1 (VaR Measure). The value-at-risk (VaR) is defined as follows:

VaRp(X) = inf{x : Pr[X ≤ x] ≥ p} (24)

where p ∈ (0, 1) is a threshold probability.

Definition 2 (CVaR Measure). The conditional value-at-risk (CVaR) is defined as follows:

CVaRα(X) =
1

1− α

∫ 1

α
VaRp(X) dp (25)

for a threshold probability α ∈ (0, 1) where VaRp(X) is shown in Definition 1.

Theorem 1 (Rockafellar and Uryasev, 2002). For r ∈ R, let us define

Φα(r;X) = r +
1

1− α
E[X − r]+,
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where [x]+ = max(x, 0). Then the CVaR measure is equivalent to:

CVaRα(X) = min
r∈R

Φα(r;X) (26)

4.1 Route-Choice Probabilities Depending on Network Design

To introduce the CVaR measure for hazmat transportation, the route-choice probabilities depending

on network design are clarified. Let y be the path-based network design variables and z be the

path availability variables here. If arc (i, j) is open for transportation of hazmat, yij = 1; otherwise,

yij = 0. If path k is available for transportation of shipment s ∈ S, zsk = 1; otherwise, zsk = 0. The

route-choice probabilities are formulated as follows:

zsk ≥
∑

(i,j)∈A

δskij yij −
∑

(i,j)∈A

δskij + 1, ∀s ∈ S, ∀k ∈ Ks (27)

zsk ≤ yij − δskij + 1, ∀s ∈ S,∀k ∈ Ks, ∀(i, j) ∈ A (28)∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (29)

∑
(i,j)∈A

(1− yij) ≤ N (30)

πsk =
ρskzsk∑
l

ρslzsl
, ∀s ∈ S, ∀k ∈ Ks (31)

zsk binary , ∀s ∈ S, ∀k ∈ Ks (32)

yij binary , ∀(i, j) ∈ A (33)

Equations (27) – (28) determine the path availabilities which are similar to Section 2. Equation

(29) constrains that there exist at least one path for shipment s ∈ S. Equation (30) states that at

most N arcs can be closed in the network.

Hazmat carriers, however, do not necessarily choose the shortest path in all cases. To model

the uncertainty of driver behaviors, probabilistic route-choice model is introduced. In the proposed

model, we assume that carriers choose paths among all available paths by estimating their utilities.

Then, we use RUM to model carriers’ probabilistic behavior and a case of RUM — MNL to further

simply the stochastic route-choice. Equations (31) show the route-choice probabilities among all

available paths. If path k ∈ Ks is unavailable for shipment s ∈ S, namely zsk = 0, its route-choice

probability is 0; otherwise, the route-choice probability can be given by (13) and (14).

4.2 The CVaR Minimization Model

This section shows the CVaR minimization model for hazmat network design. The distribution of

risk introduced in Section 3.2 and the route-choice probabilities in Section 4.1 can model the CVaR
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minimization network design problem. Let

Φα(r;π) = r +
1

1− α
E [R− r]+ (34)

≈ r +
1

1− α

{(
1−

∑
s∈S

∑
k∈Ks

∑
(i,j)∈Ak

N sπskpij

)
[0− r]+

+
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+}
(35)

≈ r +
1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+
(36)

We use the optimization of CVaR in Theorem 1 to define the CVaR measure in hazmat transportation

network,

CVaRα = min
r∈R+

Φα(r;π) ≈ min
r∈R+

[
r +

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+ ]
. (37)

Therefore, the CVaR minimization model is,

min
π∈Ω

CVaRα = min
π∈Ω,r∈R+

Φα(r;π) (38)

≈ min
π∈Ω,r∈R+

[
r +

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+ ]
(39)

where π ∈ Ω can be defined by

π ∈ Ω = {π : ∃y, z such that (27)–(33) hold}. (40)

4.3 The Model Analysis

The CVaR minimization model for hazmat transportation network design is a nonlinear programming

problem. If a network is complicated with a large demand of shipments, the problem becomes

extremely difficult to solve. In the proposed model, variable r only has an impact on the objective

function and does not exist in constraints. Because the objective function is linear with r within

each interval between two consecutive csij values, the optimal r value lies in Θ = {0}∪ {csij : ∀(i, j) ∈
A, s ∈ S} (Toumazis et al., 2013). The CVaR minimization model (39) is reformulated as:

min
r∈Θ

fα(r) (41)

where fα(r) = min
π∈Ω

Φα(r;π).

Given a large network with various kinds of hazmat, set Θ becomes large. To obtain the optimal

solution of the proposed model, we should solve a large number of fα(r). If some r values can be

eliminated without solving optimization problems, the computation can be more efficient. Analysis
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is conducted to explore which r values can be eliminated from being optimal solutions for the

proposed model. Let

0 = r0 ≤ r1 ≤ r2 ≤ ... ≤ rq−1 ≤ rq ≤ rq+1 ≤ ... ≤ rMA (42)

where rq is the q-th smallest value in {csij : ∀(i, j) ∈ A, s ∈ S} and MA is the number of unique

values in {csij : ∀(i, j) ∈ A, s ∈ S}. For each q = 0, 1, · · · ,MA − 1, we have

Φα(rq+1;π)− Φα(rq;π) = rq+1 +
1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − rq+1

]+
− rq −

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − rq

]+
= rq+1 − rq

− 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+1

N sπskpijδ
sk
ij (rq+1 − rq)

= (rq+1 − rq)
(

1− 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+1

N sπskpijδ
sk
ij

)
(43)

Theorem 2. Consider an index q ∈ {0, 1, . . . ,MA} such that the following condition holds:

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+1

N spijδ
sk
ij ≤ 1 (44)

Then we can show that

Φα(rq;π) ≤ Φα(rq+1;π) (45)

for all π ∈ Ω. Further

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA) (46)

Proof of Theorem 2. Given condition (44), we have 1
1−α

∑
(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+1

N sπskpijδ
sk
ij ≤ 1 for

any π. Because πsk ∈ [0, 1] is the probability associated with path k ∈ Ks for shipment s ∈ S.

Based on (43), for any route-choice probabilities π ∈ Ω

Φα(rq;π) ≤ Φα(rq+1;π) (47)

Since

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rMA

N sπskpijδ
sk
ij ≤ · · · ≤

1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+2

N sπskpijδ
sk
ij

≤ 1

1− α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks,csij≥rq+1

N spijδ
sk
ij ≤ 1 (48)

11



we obtain

Φα(rq;π) ≤ Φα(rq+1;π) ≤ · · · ≤ Φα(rMA ;π). (49)

Let πq be an optimal solution for fα(rq) = min
π∈Ω

Φα(rq;π); that is fα(rq) = Φα(rq;πq). Then, we have

fα(rq) = Φα(rq;πq) ≤ Φα(rq;πq+1) ≤ Φα(rq+1;πq+1) = fα(rq+1). (50)

Similarly,

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA). (51)

This completes the proof.

Instead of considering all r values in Θ, we can narrow the searching range for r if there exist

r values satisfying (44). Let q̂ be the smallest index to satisfy (44). By Theorem 2, it is proved

that fα(rq̂) ≤ fα(rq̂+1) ≤ · · · ≤ fα(rMA) thus excluding r ∈ {q̂ + 1, · · · , rMA} to search the minimal

fα(r). The CVaR minimization model (41) can be rewritten as:

min
r∈{r0,r1,··· ,rq̂}

fα(r) (52)

If (44) is not satisfied for any q, every r ∈ Θ should be considered.

5 Computational Scheme for The CVaR Minimization Model

In this section, an efficient computational scheme to solve the CVaR minimization model for hazmat

transportation network design is proposed. The proposed CVaR minimization model for network

design is a nonlinear optimization model. Based on (41), the proposed network design model can be

decomposed into two stages. At the first stage, it can be addressed to search r within a finite set.

At the second stage, fα(r) is solved to yield the network design solution.

fα(r) =

{
min

[
r + 1

1−α
∑

(i,j)∈A

∑
s∈S

∑
k∈Ks

N sπskpijδ
sk
ij

[
csij − r

]+
]

: ∃y, z such that (27)–(33) hold.

}
(53)

Because of the nonlinearity to link the route-choice probabilities and path availabilities in (31), we

linearize as follows:∑
l

ρslφskl = ρskzsk, ∀s ∈ S, ∀k ∈ Ks (54)

φskl ≤ zsl, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks (55)

φskl ≥ −(1− zsl) + πsk, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks (56)

0 ≤ φskl ≤ πsk, ∀s ∈ S, ∀k ∈ Ks,∀l ∈ Ks. (57)

The parameter ρ can be computed with (14). Then, fα(r) is reformulated as a MILP problem.

12



Despite the fact that we may use Theorem 2 to reduce the searching set for r variable, it is still

extremely time-consuming to compute fα(r) given all potential r values if the scale of a network

is large. Finding the optimal r can be accelerated by developing an efficient search scheme which

depends on fα(r). Besides, solving fα(r) is very difficult when many path alternatives are considered

for a complicated network. Sometimes, it is even impractical to obtain a good feasible solution for

fα(r).

We propose a line search with mapping to obtain optimal r as shown in Section 5.1 and show

that Benders decomposition can generate upper and lower bounds of MILPs for given r values thus

solving the fα(r) problem in Section 5.2. Generating useful lower bounds by Benders decomposition,

however, costs large computation efforts while good upper bounds can be obtained after a certain

number of iterations. In this case, we terminate the algorithm and gain the best feasible solutions

from upper bounds after some iterations. Section 5.3 compares an optimal solution and a best

feasible solution gained from Benders decomposition for fα(r). It shows that a quality feasible

solution for hazmat network design can be obtained by using the best feasible solution.

5.1 A Line Search with Mapping

To search the optimal r value for the proposed network design model, we only consider a narrowed

range of values checked by Theorem 2. Initially, we can think of obtaining an optimal solution for

network design problem by visiting every value in Θ. If Θ involves a large number of values, the

computation for the problem can be extremely time-consuming because we need to solve a large

number of MILPs. A searching mechanism for r based on line search methods are proposed in order

to solve the problem efficiently. We use the Golden Section method. When it is applied to a strictly

quasiconvex function, the Golden Section method can find a global minimal solution. The essence

of the Golden Section method is to reuse one searching point in previous iteration and compare to

an updated point derived by the golden ratio to reduce computations. Note that the golden ratio is

0.618.

We use the same idea to develop a discrete version of the Golden Section method, which only

evaluates a limited number of r values in Θ. Usually, a line section method minimizes a nonlinear

optimization problem over the interval [a0, b0]. The optimal r value lies in Θ, so a0 = 0 and b0

would be the smallest r value satisfying (44) by Theorem 2.

A line search algorithm usually copes with a continuous variable from a certain interval. In

the proposed model, optimal r value is from a finite set. We map the updated point in iterations

to value in the finite set using a simple mechanism. The simple mechanism can guarantee the

correctness of searching interval. The procedures for searching optimal r for the proposed model

are shown in Algorithm 1.

5.2 Benders Decomposition for fα(r)

The line search for r highly depends on obtaining optimal objective values for MILPs. As the size

of the network increases, the computation time for solving fα(r) given r goes up exponentially. We

13



Algorithm 1 A line search with mapping

1: Initialization: Check the largest q (q∗) which satisfies (44). Let k ← 0 and ak ← 0, bk ← rq∗ .
λk = ak + (1− ϕ)(bk − ak) and µk = ak + ϕ(bk − ak). Find the left-closest value to λk (λleft)
and the right-closest value to µk (µright) among Θ. Let λk = λleft, µk = µright and

fα(λk) = min
π∈Ω

Φα(λk;π)

fα(µk) = min
π∈Ω

Φα(µk;π)

2: Convergence check: If ak = rq and bk = rq or rq+1 for any q = 0, 1, · · · , (q∗ − 1), go to
Step 6; otherwise, continue estimating fα(λk) and fα(µk). If fα(λk) > fα(µk), go to Step 3; if
fα(λk) ≤ fα(µk), go to Step 4.

3: Reuse µk: Find the right-closest value to λk in Θ (λright) and let ak+1 = λright and bk+1 = bk.
If µk − ak+1 ≤ bk+1 − µk, let

λk+1 = µk, fα(λk+1) = fα(µk)

µk+1 =
µk+bk+1

2 .

Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate fα(µk+1).
If µk − ak+1 > bk+1 − µk, let

µk+1 = µk, fα(µk+1) = fα(µk)

λk+1 =
ak+1+µk

2 .

Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1).
Go to Step 5.

4: Reuse λk: Find the left-closest value to µk in Θ (µleft) and let ak+1 = ak and bk+1 = µleft.
If λk − ak+1 ≤ bk+1 − λk, let

λk+1 = λk, fα(λk+1) = fα(λk)

µk+1 =
λk+bk+1

2 .

Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate fα(µk+1).
If λk − ak+1 > bk+1 − λk, let

µk+1 = λk, fα(µk+1) = fα(λk)

λk+1 =
ak+1+λk

2 .

Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1).
Go to Step 5.

5: Iteration update: k ← k + 1 and go to Step 2.
6: Determine optimal solution: Evaluate for fα(ak) and fα(bk). If fα(ak) ≤ fα(bk), r

∗ = ak;
otherwise, r∗ = bk. Stop.
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benefit from generating upper and lower bounds for fα(r) and solving the problem iteratively. Seen

from the structure of the MILPs, it is found that fα(r) can be decomposed into: (1) optimizing

network design (2) analyzing probabilities assigned for paths.

Benders decomposition is a popular algorithm framework to deal with complicating variables

and large-scale optimization problems in which variables and constraints are decomposed into a

master problem and subproblems. The algorithm employs cutting-planes procedures for the master

problem based on subproblems until it converges. There are two categories of cuts in Benders

composition. When a subproblem reaches an optimal solution but the optimal objective value is not

consistent with master problem, an optimality cut based on dual of a subproblem is generated. On

the other hand, feasibility cut is generated if a subproblem is infeasible. Taking advantage of the

extreme ray for dual of a infeasible subproblem can help to generate a feasibility cut. Theories and

applications for Benders decomposition are developed widely. Geoffrion (1972) generalized Benders’

approach to a broader class of programs in which parameterized subproblems need no longer be a

linear program decades ago. Stochastic programming problems, which is well known as its stage

structure can be solved efficiently by Benders decomposition (Santoso et al., 2005).

We implement Benders decomposition for solving MILPs and obtaining fα(r). The network

design y and path availabilities z are master problem variables while the probabilities related

variables including π and φ are subproblems.

With Benders decomposition, we present the master problem as follows:

(master) min
g,y,z

∑
s∈S

∑
k∈Ks

gsk (58)

s.t. (27)–(30), (32)–(33)

gstkt ≥ ρstktzstktλt +
∑
l∈Kst

zstlµlt +
∑
l∈Kst

(−1 + zstl)vlt, t = 1, 2, · · · (59)

Equations (59) are optimality cuts which are further explained by subproblem duals later.

The subproblems which analyze the route-choice probabilities (31) are decomposed by s ∈ S, k ∈
Ks with dual variables (λ, µl, vl, ωl) as follows:

min
πsk

∑
(i,j)∈A

N sπskpijδ
sk
ij

[
csij − r

]+
(60)

s.t.
∑
l∈Ks

ρslφskl = ρskzsk (λ) (61)

φskl ≤ zsl, ∀l ∈ Ks (µl ≤ 0) (62)

φskl ≥ −(1− zsl) + πsk, ∀l ∈ Ks (vl ≥ 0) (63)

φskl ≤ πsk, ∀l ∈ Ks (ωl ≤ 0) (64)

πskfree, φskl ≥ 0, ∀l ∈ Ks (65)

Feed with master problem variables, route-choice probabilities can be estimated from subproblems.
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Therefore, subproblems are feasible making it only necessary to generate optimality cuts from

subproblem duals. The subproblem dual is defined as follows:

(SDsk) ĝsk = max
λ,µ,v,ω

ρskzskλ+
∑
l∈Ks

zslµl +
∑
l∈Ks

(−1 + zsl)vl (66)

s.t. −
∑
l∈Ks

µl −
∑
l∈Ks

vl =
∑

(i,j)∈A

N spijδ
sk
ij

[
csij − r

]+
(67)

ρslλ+ µl + vl + ωl ≤ 0,∀l ∈ Ks. (68)

In subproblem duals, we can obtain a (st, kt) with the objective value ĝstkt and the solution

(λt, µ
l
t, v

l
t, ω

l
t) accordingly. Let g̃stkt be the optimal solution for the master problem. If ĝstkt is

greater than g̃stkt , the optimality cut can be generated as (59) using (66). The algorithm can be

summarized in Algorithm 2. In Algorithm 2, ε is a small positive parameter. Besides, I is used

Algorithm 2 Benders decomposition for fα(r)

1: Initialization: Set t = 0, upper bound UB =∞ and lower bound LB = 0. Go to Step 2.
2: Solve master problem: Solve the master problem and obtain the optimal solution (g̃, ỹ, z̃).

Let LB =
∑
s∈S

∑
k∈Ks

g̃sk and I = 0. Go to Step 3.

3: Solve subproblem: For (s, k), solve SDsk problem based on z̃ and obtain optimal solution

(λ̂, µ̂l, v̂l, ω̂l). The optimal objective value for the subproblem is ĝsk. If all (s, k) are visited, go
to Step 5; otherwise, go to Step 4.

4: Generate an optimality cut: If I = 1 go to Step 2; otherwise, compare g̃sk and ĝsk. If
ĝsk − g̃sk ≥ ε, update I ← 1, t← t+ 1, st ← s, kt ← k, λt ← λ̃, µt ← µ̃, vt ← ṽ and an optimality
cut is generated; otherwise, update (s, k) and go to Step 3.

5: Convergence check: If UB >
∑
s∈S

∑
k∈Ks

ĝsk, set UB =
∑
s∈S

∑
k∈Ks

ĝsk. If UB−LB ≤ ε, terminate;

otherwise go to Step 1.

to indicate whether an optimality cut is generated. Based on an optimal solution for the master

problem, we can generate multiple optimality cuts for different shipments and paths. The master

problem becomes very difficult to solve if too many cuts are added at a time. If a master problem

costs huge computations at the beginning, it would be hard to yield an upper bound. In order to

produce upper bounds effectively, we only add one optimality cut after solving the master problem

until the algorithm terminates.

We implement Benders decomposition on Ravenna network in (Bonvicini and Spadoni, 2008;

Erkut and Gzara, 2008) with 105 nodes and 134 undirected arcs. Four kinds of hazardous materials

are considered including methanol, chlorine, gasoline and LPG. There are 31 shipments and each

shipment defines a certain demand of a hazmat transported from an OD pair. For each shipment, we

generate 50 paths using k-shortest path approach to test the performance of the proposed framework.

The computation process for solving f0.95(0.454) is shown in Figure 1. We terminate the algorithm

when the optimality gap is less than 5%. The computation costs more than 10 hours using Benders

decomposition while the optimality gap is 98% solved by CPLEX with the same time. In this
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Figure 1: Lower bounds and upper bounds for a MILP given r = 0.454 and α = 0.95 by Benders
decomposition for Ravenna network.

example, we can see that a good feasible solution is achieved within a small number of iterations.

The improvement of lower bound, however, is extremely slow. Besides, it becomes more difficult to

solve the master problem as iteration proceeds. It indicates that the time spent on the iteration

close to the optimal solution can be far more than early iterations. The optimal solution is obtained

when the upper bound and the lower bound are close.

Since we can obtain feasible solutions and useful upper bounds before reaching the convergence

of Benders decomposition, a close optimal solution generated by a set of feasible solutions is used.

When the upper bound does not improve in the next a few iterations, we terminate the algorithm.

The local optimality can be guaranteed for the best feasible solution thus providing a practical

approach. Besides, the effectiveness to terminate at a good feasible solution for fα(r) accelerates

the solving process.

5.3 Hazmat Network Design Based on Benders Decomposition

This section discusses the performance of Algorithm 1 depending on a close fα(r) for the proposed

network design model. The Ravenna network with 20 paths for each shipment are used for

experiments in this section. Let α = 0.95 and the maximum number of closed arcs N = 10. To solve

the proposed CVaR minimization model for hazmat network design, we incorporate the searching

scheme for r in Section 5.1 with different evaluations of fα(r) – using the optimal objective value

and the minimum objective value from the best feasible solution. The results are shown in Figure 2.

It can be seen that the optimal network design is achieved when solving MILP with r = 0.687 and

the minimum risk equals to 0.732. A line search with mapping efficiently identifies optimal r value

if we can obtain fα(r). In Figure 2, it is found that optimal r value is 0.699 and the approximated
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Figure 2: Comparison for network design based on optimal and best feasible solution by Benders
decomposition

minimum risk is 0.742 from best feasible solution. Accordingly, the network design results are shown

in Figure 3. The number of closed arcs in both cases are 10 with 8 of which are the same. In the

optimal design, arc (56, 69) and (66, 83) should be closed while our proposed approach determines

arc (5, 7) and (7, 5) are closed. Given the best feasible design, the CVaR is the minimum value for

Φ(r;π) through all r values. Hence, the risk for best feasible network design is less than or equal to

0.742.

Our proposed method yields a network design with the risk no higher than 1.35% of the global

optimal solution making it acceptable for decision makers. In addition, it cost 3 hours to compute

the optimal hazmat network design depending on exact value of fα(r) while the best feasible design

is obtained in 1 hour and 33 minutes. Therefore, our proposed computational scheme to incorporate

a line search for r with best feasible solution for fα(r) is very efficient and effective.

6 Numerical Experiments

In this section, an application of the proposed model is shown. All numerical experiments in this

section are conducted using Ravenna (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008) network

data. In Ravenna network which has 105 nodes and 134 undirected arcs, four kinds of hazardous

materials are considered: methanol, chlorine, gasoline and LPG. There are 31 shipments transported

through Ravenna network. The data set includes the length of each arc, the population that each

kind of hazmat can influence on each arc, the OD pairs for each kind of hazmat and the demand of

hazmat accordingly.
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(a) Optimal solution (b) Best feasible solution

Figure 3: Ravenna case study with different approaches for MILPs

Our proposed model is a path-based hazmat network design model which requires specified

path alternatives by hazmat carriers. One of the most typical approaches to generate path set is

k shortest path algorithm. Yen (1971) first presented an algorithm to find the loopless k shortest

length path. Despite the modifications or improvements of k shortest path algorithm, this approach

rarely emphasizes on accident consequences on arcs. If the set of path alternatives obtained by

k shortest path algorithm is very small, for example, only five paths for each shipment, some

important arcs with high chosen probabilities and high risks can be left out. On the other hand, it

is nearly impossible to solve our proposed model enumerating all paths for all shipments due to the

tremendous model size. Hazmat carriers can be restricted to some roads due to massive weights,

large heights and long lengths for trucks. Usually, hazmat carriers select a route within a limited

number of path alternatives. We use k shortest path algorithm to enumerate a list of paths which

consider the shortest 50 paths for each shipment preparing for the proposed hazmat network design

model.

The computational scheme in Section 5 is coded in Julia and CPLEX solver of version 12.6 is

used. The experiments are implemented on a computer 8GM of RAM and a 2.7GHz processor. The

results are shown in Figure 4. In Figure 4, network designs with different confidence levels can

be seen. When α = 0.90 and α = 0.95, the optimal network designs are the same. Regulators for

hazmat transportation have different attitudes towards risks but may end up with the same optimal

network design. Theoretically, the proposed model indicates that high confidence level α considers

more on severer accidence consequences than low confidence level does. With the increasing of

confidence level, the optimal network design for the proposed model can vary a lot. The optimal

network design of α = 0.99 only has one common closed arc – arc (78, 74) with α = 0.90 and

α = 0.95. For example, closing arc (3, 6) plays a significant role in reducing risk with α = 0.99 but
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(a) α = 0.90 (b) α = 0.95 (c) α = 0.99

Figure 4: Ravenna case study with different α

Table 2: Comparisons of CVaR and ER model

CVaR
ER

Model Confidence level α 0.900 0.950 0.990 0.999

CVaR min.

0.900 762.4 – – – 369.2
0.950 – 837.8 – – 369.2
0.990 – – 1157.3 – 401.5
0.999 – – – 1487.0 397.9

Determin. 768.7 850.5 1257.6 1687.0 358.1

not in α = 0.90 and α = 0.95 cases. If we close arc (3, 6), the large accident consequences by hazmat

within 1% chance to happen can be avoided while it may not be effective to reduce the risk brought

by 10% potential hazmat truck accidents.

To show the value of our model, comparisons of a deterministic model described in Section 2 and

the proposed model are conducted. The results are shown in Table 2. When α = 0.90 and α = 0.95,

the proposed model generates the optimal network designs which are similar to the optimal solution

by deterministic model. If the decision makers and regulators for the hazmat transportation network

have relatively low confidence levels and pay a limited attention on severe accidents, the network

design by the proposed model is close to the deterministic model. When α = 0.99, the CVaR of

network design from deterministic model would be 8.7% higher compared to the proposed model

while the ER is 12.1% lower. If α = 0.999, the CVaR of network design from deterministic model

would be 13.45% larger than the proposed model while the ER is 10% lower. It can be found

that the difference of hazmat transportation network design between the proposed model and the

deterministic model becomes more significant as the confidence level increases. The proposed model

which minimizes the CVaR and considers probabilistic route choice emphasize a hazmat transport

network design which cannot be addressed by the deterministic model in some cases.

In Ravenna network, the optimal network designs by the proposed model and the deterministic

model yield different available paths for shipments with which lead to different risks. The comparisons

of available paths for transporting methanol from node 110 to node 105 by both models are shown in
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Table 3: Comparisons of available paths for transporting methanol from node 110 to node 105
between CVaR and the deterministic model

Model Path Length ER Prob

CVaR min.

1: 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.345
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

14 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 26.04 0.0169 0.158
→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

19 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 26.87 0.0168 0.146
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

26 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 28.17 0.0172 0.128
→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

34 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 29.00 0.0172 0.118
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.105
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

Determin.

1 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.246
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

3 : 110→ 104→ 83→ 78→ 62→ 57→ 58→ 38 19.93 0.0169 0.207
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

5 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 23.26 0.0157 0.149
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

8 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 54 24.77 0.0160 0.128
→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

18 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 26.69 0.0164 0.106
→ 46→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

27 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 46 28.20 0.0167 0.091
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.073
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

Table 3. For each path, the length, the ER to transport methanol and the probability to be chosen

by hazmat carriers are given. It is found that two available paths are the same while the rest of

them are different either in length or ER for both models. The deterministic model addresses more

on short length paths than the proposed model while ignoring the risk and the chosen probability

for each path. In Table 3, the shortest path with the highest probability by both models is path 1.

Since the deterministic model generates shorter paths than the proposed model thus making some

paths comparable and decreasing the probability of choosing path 1. Although the minimum ER

path is path 1 for both models, the higher chosen probability of path 1 in the proposed model results

in lower risk for the shipment. It is reasonable that the proposed model is preferred to capture risk

with considerations of probabilistic routes and protect the road network from severe consequences.

7 Concluding Remarks

In this paper, we consider a probabilistic-route choice model to analyze hazmat carriers’ behavior in

response to a network design in hazardous materials transportation. With the probabilistic-route
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choice, the risk distribution for hazmat transportation incorporates with not only the road accident

probability but also the carriers routing behavior. Followed by Toumazis et al. (2013), we introduce

conditional value-at-risk (CVaR) as a general, coherent and risk-averse approach. We present a

CVaR minimization model for network design. The proposed model is a nonlinear programming

which can be decomposed into two stages: (1) searching the optimal solution for a nonnegative

variable; (2) solving MILP given the nonnegative variable. In applications, estimating a large number

of MILPs is extremely inefficient. Besides, solving a single MILP costs numerous computation

efforts when a network is complicated. Therefore, we develop a line search with mapping based on

Benders decomposition and obtain quality network design solutions.

We present a case study in the real road network of Ravenna, Italy. To show the value of

our model, comparisons of a deterministic model and the proposed model are conducted. When

the confidence level in CVaR is small, it indicates that decision makers and regulators for the

transportation network pay limited attention on sever accidents. The hazmat network design by

deterministic model and our proposed model are similar. Our proposed model, however, can consider

the network designs with high risk-averse attitudes. In addition, we model the uncertainty of

route choices instead of using the shortest path to predict the behavior of hazmat carriers. Hence,

our model can protect the road network from undesirable route-choices that may lead to severe

consequences.
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