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Abstract 

This report outlines the design, fabrication, and testing of a 3-D magnetic mapping 

system used to locate reinforcing steel in concrete pavements developed at Kansas State 

University (KSU) in 2006. The magnetic sensing functionality is based on the principles of 

magnetic tomography which use time-varying magnetic fields to induce magnetic returns from 

nearby ferrous objects. The purpose of this device is to provide a process for inspecting the depth 

and orientation of embedded steel bars. The device provides real-time feedback and detailed 

reports that can be archived and geospatially referenced. 

The mapping device extends the work previously done with versions that incorporated 

single sensors. Multi-sensor capability was added to enable determination of spatial orientation 

with a single data pass over a pavement joint. Additional reporting features such as GPS and in-

field calibration techniques were used to streamline the data collection and report generation 

process. 

An embedded microprocessor communication interface between the peripheral sensing 

devices and the data collection computer was designed to offload some of the data compilation 

and manipulation from the laptop. This new interface alleviated speed issues encountered with 

the user interface programs running too slowly and allowed greater extensibility for adding more 

sensors or changing the platform architecture in the future. 

Verification and field testing was performed on all functional components of the system 

and the results from these tests are presented. The functionality of this device makes it attractive 

for commercial use by both construction companies and Departments of Transportation (DOTs) 

for inspection and archiving purposes. At the time of writing this report, the mapping device was 

at the stage of being prototyped and hardened for possible production. 
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Chapter 1: Introduction 

This report outlines the design, fabrication, and testing of a 3-D magnetic mapping 

system used to locate reinforcing steel in concrete pavements developed at Kansas State 

University (KSU) in 2006. There is currently only one commercial product designed for locating 

steel reinforcement in concrete pavements and it is highly specialized for measuring the depth 

and orientation of dowel bars. These bars are used along transverse joints to tie slabs of concrete 

together for load transfer and thermal expansion and contraction. The motivation for this 

research is to develop a lower-cost device that can measure the location of both dowel bars and 

various sizes of steel rebar, typically referred to as tie bars, which are used for longitudinal joint 

control. The developed device incorporates multiple sensing units to enable taking multiple 

streams of data simultaneously. Steel reinforcement depth and orientation can be determined 

from these traces. The device incorporates GPS data into the data stream to provide permanent 

geo-referencing that can be easily transformed to common project coordinates such as project 

stationing. 

The following introductory sections further describe the nature of the problem, the 

currently available commercial product capable of mapping steel reinforcement location, and the 

reasons why this product does not satisfy the needs of the project sponsors. A detailed 

description of the developed device follows which discusses the design of the electronics, the 

software, and the mechanical cart. The testing, verification, and interpretation procedures are 

then discussed to prove the functionality of the working system. 

 
Kansas Common Concrete Construction Practices 

Steel in the form of dowel bars and tie bars is embedded in concrete pavements in Kansas 

according to the current specification, which can be found in Figure A.1 in Appendix A [1]. Two 

other proposed standards, found in Appendix B, have been written [2][3]. Their implementation 

is based on the availability of a suitable inspection device similar to the one discussed in this 

report. Figure 1.1 shows a top-down view of the standard layout of the reinforcement steel. 
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Reproduced from [1] 

Figure 1.1: Standard Reinforcement Steel Layout 

 

Dowel bars reinforce the transverse joints. They help provide load transfer between 

adjoining slabs of concrete and allow for thermal expansion and contraction of the concrete. 

Dowels are typical placed on 12 inch centers, are 18 inches long, and are coated in epoxy [1].  

There are two procedures for placing the dowel bars. The first utilizes wire baskets that 

have loops that hold the bars in place while concrete is placed around them. This process was the 

most frequently encountered during data collection. The problem with this method is that the 

force exerted on the baskets during concrete placement can possibly move or deform the baskets, 

thus misaligning the dowel bars. Dowel bars along a transverse joint must be uniformly aligned 

if the joint is going to perform to specifications. The second system uses a mechanical inserter 

that plunges the bar into the wet concrete during construction. This procedure streamlines the 

construction process by eliminating the need to place dowel baskets before concrete placement. 

Mechanical problems with the inserter and dowel bar movement during consolidation in which 

the concrete paste is subjected to vibration are the primary sources of steel placement error in 

this process. 

Figure 1.2 shows the steel placement in a cross-section of a standard concrete slab. 
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Reproduced from [1]  

Figure 1.2: Transverse Joint Detail 

 

The depth of the bar is defined by D/2 which is half of the thickness of the slab [1]. The 

typical slab thickness observed during data collection was 12 inches, which dictates that 6 inches 

was the target bar depth. Partial-depth saw cuts over the dowel bars control the slab cracking and 

provide a center line for taking data over the dowel joints. 

Longitudinal joints are typically reinforced with tie bars which are placed as shown in 

Figure 1.1. Tie bars provide a small amount of load transfer between adjacent slabs but are 

mainly used to lock the individual slabs in relative proximity to one another. Tie bars were 

commonly placed using a mechanical inserter on the tested construction projects. This process is 

similar to the dowel insertion process except the bars are oriented perpendicular to the dowel 

bars. Ties bars are also placed manually along open joint faces such as the keyed joints shown in 

the right diagram of Figure 1.2 and in the middle diagram of Figure 1.3.  

Figure 1.3 shows some cross-section views of the steel placement in longitudinal joints. 

 

 
Reproduced from [1] 

Figure 1.3: Longitudinal Joint Detail 
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Thirty-inch #5 tie bars were most frequently encountered and were placed on 24 inch 

centers. They were inserted to a nominal mid-depth of 6 inches in 12-inch concrete slabs. 

Placement errors of both dowel bars and tie bars typically result from a mechanical 

malfunction of the steel inserter. These mechanical failures result in steel being grossly 

misaligned and placed in a non-uniform fashion. Being able to detect these mechanical failures 

and other less common sources of error in real-time is the main focus of this research project. 

Other sources that contribute to misplacement or misalignment include the viscosity and 

composition of the concrete mix, the consolidation process and operation of the vibrator, and 

small inconsistencies in the inserter. These factors typically add small, random error to the 

placement process but can, on occasion, cause significant error. 

 
Covermeter Applications and Operation 

Covermeters are devices that use the magnetic pulse induction methods to measure the 

amount of cover material (typically concrete) between a ferrous object and a sensor head. These 

devices have applications in all manners of construction that utilize steel, such as buildings, 

bridges, and roadways [4]. Currently, the Kansas Department of Transportation (KDOT) inspects 

pavement construction projects using handheld covermeters. An operator kneels on the roadway, 

manually locates the steel by waving the sensor head over the area of interest, takes a depth 

reading, and records it on a depth log. 

Figure 1.4 shows an illustration of two-coil magnetic pulse induction. 
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Reproduced from [5]  

Figure 1.4: Magnetic Pulse Induction 

 

A large, time-varying magnetic field, sometimes called the send signal, is generated by a 

wire coil, called the send coil, wound around a metallic core [5]. Resulting eddy currents 

generate an opposite, but smaller magnetic field that is sensed by a second coil, called the receive 

coil. The received signal is then amplified and processed to yield a number that is proportional to 

the magnetic return. This measurement technique ignores the static magnetization of the bar and 

only measures the effects of the time-varying send signal. In this process, the diameter and 

composition of the bar affect the size of the magnetic return. Bars with larger diameters, such as 

dowel bars, will generate larger returns than a smaller diameter tie steel bar at the same distance.  

 
MIT-Scan 

A commercially available device for mapping steel placement is the MIT-Scan. It was 

developed by a German company called Magnetic Imaging Tools and designed specifically 

measuring dowel bar location and orientation [6]. Figure 1.5 shows a view of the MIT-Scan 

device. 
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Reproduced from [7]  

Figure 1.5: MIT-Scan Device  

 

The green enclosure houses the magnetic sensing elements, support circuitry, and lead-

acid battery for powering the electronics. A small handheld computer takes the data generated by 

the electronics and parses it into depth and orientation information for each bar. Data is stored on 

a compact flash card that can then be taken to a laptop or personal computer for plotting and 

additional data manipulation.  

Features 

MIT-Scan is capable of taking five traces of data per run. This allows for a complete 

representation of the steel depth and orientation to be generated from a single run of the device 

over a joint. The handheld computer that collects and analyzes the data generates a print out that 

details each bar’s location, depth, and orientation in terms of shifts and rotations from the 

expected values. The data is stored on a solid-state memory card which can then be taken to a 

computer for further analysis. The MIT-Scan software for the computer is capable of generating 

color intensity plots for each joint. These plots are highly effective at conveying the steel 

placement beneath the pavement. MIT-Scan is capable of measuring both dowel bars and tie 

steel, but the measuring process is specialized for measuring the dowel bars along the transverse 

joints which is discussed further in the next section. 
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Drawbacks 

Several drawbacks of the MIT-Scan device became apparent after field use of the system. 

The first problem was the weight of the device which was approximately 45 pounds. The size of 

the enclosure also made the device unwieldy when picking it up and moving it to the next 

transverse joint. The device had to be set down with the wheels lined up on the track rails before 

each run. Figure 1.6 shows the track and the typical operation of the MIT-Scan device. 

 

 
Figure 1.6: MIT-Scan Typical Operation 

 

The typical operating process dictated that the operator be bent over while holding and 

aligning the device with the track which was not suited to large numbers of runs due to the effort 

involved. Runs were time limited to 60 seconds and distance limited to the length of the track or 

the distance between perpendicular joints, whichever was shorter. Dowel bars and baskets at the 

transverse joints cause abnormalities in the data that the software cannot account for and causes 

the program to generate erroneous results which required manual editing. The track system 

allowed for relatively easy centering of the instrument over the joint, but it had to be moved and 
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realigned before every run, which limited the data collection speed. Figure 1.7 shows the process 

of moving the track configured for measuring the steel placement of two lanes. 

 

 
Figure 1.7: Movement of Two-Lane MIT-Scan Track 

 

Streamlined operation of the device configured for two-lane data collection required three 

people, two to move the track and one to carry the sensing device. Single person operation is 

possible but is less efficient than with two or more people. The MIT-Scan is customized for 

transverse joints. Technically, it can be used to scan longitudinal joints to determine placement 

accuracy of tie-steel, but the need to constantly reposition the track makes it impractical for all 

but very small spot samples. 
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Chapter 2: Application Requirements 

Initial instrument design was based on a set of requirements outlined by the needs of the 

research sponsors. Sensing, ruggedness, usability, and reporting requirements were formed to 

direct the design of the device and to make it feasible to use in the field. These requirements will 

be discussed in this chapter. 

 
Sensing Requirements 

The purpose of the magnetic mapping device is to detect tie-steel embedded underneath 

the longitudinal joints and dowel bars under the transverse joints in concrete pavements. Tie steel 

was the primary target for detection so the device needed to be capable of generating valid depth 

results for the various reinforcement bar sizes. The prototype device was mainly tested on #5 

reinforcement bar since that bar size was the most abundant in active construction projects 

during product design and testing, covering approximately 2003 to 2006. As a byproduct, steel 

dowels, which are typically found under the transverse saw cuts in the concrete, are also 

detectable since they have a larger diameter and generate a larger magnetic response for 

equivalent depths. The device was required to have a maximum sensing depth of at least 12 

inches because a standard slab of concrete is 12 inches thick. This ensured that reinforcement 

steel that had been pushed to the bottom of the slab could be detected and not incorrectly 

assumed to be missing. The device also needed to be able to detect steel at the upper surface of 

the concrete. This constraint may seem unnecessary, but concrete pavements were observed 

during the project that had steel at the surface of the concrete or slightly protruding from the 

surface. The ability to map close proximity steel and steel at the extents of the sensing range was 

necessary to create a device that can accurately map the condition of all embedded steel. The 

final sensing constraint was that the device be able to take simultaneous measurements. This 

would provide a means for determination of bar orientation which will be discussed later in 

further detail. 
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Environmental Constraints 

The magnetic sensing cart needed to be operational in outdoor locations, mainly on 

construction sites. Outdoor testing of various prototypes throughout the project revealed several 

environmental issues. The following sections discuss some of the problems encountered during 

the prototyping of the magnetic cart.  

Ruggedness 

Because the magnetic mapping device was designed to work outdoors, factors such as 

wind, dust, debris, and water had to be taken into account. Polycarbonate enclosures were 

fabricated to house all the electronics. This provided protection from the dust and other debris 

blown by the wind. The enclosures also provide some protection from rain showers, although 

they are not water tight. All these measures make the cart safe to use in most conditions where 

construction would be taking place. The cart was designed to travel over road debris up to half an 

inch tall. Earlier versions of the cart could not handle road debris, so a broom was used to 

completely clear the data collection path of unwanted material. 

The most exposed piece of electronics is the laptop that rides on top of the polycarbonate 

chassis. The Panasonic Toughbook laptop provides a fully ruggedized platform to the design of 

the device and is tested to the military specification MIL-STD-810F [9]. The computer is 

resistant to water, physical shocks, and dust and other debris associated with concrete 

construction sites. Having a laptop onboard the device allows the control of the programs and 

visualization of the results to be minimally difficult for the user and allows for simpler and more 

flexible software design since many software tools exist for the Windows operating system. 

User Interface Requirements 

Prototype testing revealed several issues with the usability of the device that had to be 

addressed. One of the greatest of these issues was being able to see the user interface on the 

laptop screen. Initial designs incorporated a standard IBM laptop for data collection, control of 

the system, and report generation. Problems with screen visibility in outdoor conditions and 

especially in direct sunlight situations necessitated the use of a higher brightness computer 

screen. This was found in the form of a Panasonic Toughbook with an ultra-bright LCD. The 
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higher brightness screen and high contrast settings made viewing the user interface possible in 

direct sunlight situations and improved viewing for all outdoor conditions. 

Usability 

The physical design of the device incorporates several features that make usage as simple 

and as quick as possible. The height of the handle is adjustable so that operators can comfortably 

operate the device at a level that is appropriate for them. The handle can also be disconnected 

from the rest of the device which makes stowing the device in the back of a minivan possible. 

The weight of the device is low enough that two individuals can easily load and unload it. 

The sensor bar at the front of the current device is detachable. This allows several 

different sensor configurations to interface with a common electronics and reporting platform. 

The sensor bar can be tailored to the application. A shorter sensor bar would be used for 

measuring the depth of the dowel bars placed along the transverse joints in the roadway and a 

longer bar could be used for the tie steel found along the longitudinal joint in the pavement. This 

ability to swap sensor bars also allows two or three sensor varieties of the device to be used with 

one platform. Eventually more sensors may be possible, but the current generation of the 

electronics limits the number of sensors to three. 

 
Reporting Requirements 

Part of the work done with this research project involved interfacing with research 

sponsors and potential consumers of the device to find out what reporting features would make it 

appealing for their use. Three main forms of feedback to the user were discussed and determined 

to be necessary for the product to be viable for field application. They were real-time plotting, 

reports that reflected 3-D alignment, and geospatially linked data. 

Real-Time Plotting 

One implemented feature of the reporting software that was well received by the research 

sponsors was the ability to see depth plots in real-time. The real-time plots resemble those 

generated by an echocardiogram. Figure 2.1 shows a screenshot of the real-time plotting portion 

of the user interface software. 
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Figure 2.1: Real-Time Plotting 

 

The peak in the traces corresponds to the depth of the bars underneath the sensor bar at 

the front of the device. This example plot shows the program picking up two embedded steel 

bars both at a depth of 6 inches. The first peak is at the left edge of the plot and the second is 

closer to the right edge. This plotting routine is the main feedback to the user about the status of 

the steel placement during data collection. The real-time plotting is the fastest way to discern 

whether reinforcement steel is placed correctly or is grossly misaligned. 

Spatial Interpretation and Reports 

The reports generated by the mapping device portray the results of an entire data run, 

usually a few hundred feet in length. These files give specific information about the placement of 

the embedded steel. Steel depth is plotted against the distance traveled in order to ascertain the  

3-D orientation of the steel bars. A peak finding algorithm marks the most likely longitudinal 

location of each tie bar. Placement and depth accuracy and consistency can then be measured 
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using summary statistics. The report files can be archived for future reference or analysis. This 

provides a simple way for contractors to verify and document that all specifications and 

tolerances have been met. 

Geospatially Linked Data 

Geodetic coordinate data obtained from an integrated GPS data logger allows for steel 

reinforcement placement data to be easily geo-referenced. A user can quickly locate an 

occurrence of poorly placed steel and travel to that location if further testing or examination is 

necessary. This provides a simple solution to the problem of how to store and easily access 

measured data. Traces are generated and plotted on the map by information stored in files that 

are compliant with KML, a customized XML developed for Google Maps and Google Earth. 

Clicking on a trace brings up an option to open the report associated with that location. Figure 

2.2 shows a screenshot of a map or a segment of U.S. Highway 69 overlaid with traces and labels 

associated with data collection runs. 
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Figure 2.2: Google Earth Map with Linked Data Runs 

 

Each trace is hyperlinked to an .htm file that is generated during the report generation 

process. Each linked report holds visual representations of the layout of the steel beneath the 

surface of the concrete for the marked geographical location. This feature also allows easy data 

referencing since it can be attached to a specific highway or project. Although the geo-

referencing of satellite imagery provided by Google Earth is sometimes suspect, particularly for 

rural areas, the usefulness of the embedded geodetic coordinates is not diminished. Road 

network layers can be turned on within Google Earth that clearly indicate highway route 

numbers or street names. Project stationing can only be cross-referenced to plan drawings. 

Geodetic coordinates provide a time-stable reference and increase ease of data collection. They 

can easily be cross-referenced to project coordinates as well. 
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Chapter 3: Solution Architecture 

The architecture of the steel mapping device was designed to provide future extensibility 

and platform changes without altering the device’s structure. The following sections cover the 

hierarchical design of the steel mapping device. 

 
Concept of Operation 

Communication is central to the operation of the mapping device. Half and full-duplex 

serial communication connections are the primary forms of information exchange between the 

different functional components. The following sections outline the specifics of the device 

architecture. 

 
Components 

The device’s components can be divided into three categories. They are the peripheral 

transducers, the interface electronics, and the central processing system. Figure 3.1 shows the 

architectural block diagram for the steel mapping device. 

 

GPS Magnetic 
Sensing System

Distance 
Measuring 
Device(s)

Interface

Central 
Processing 

System

 
Figure 3.1: Architectural Block Diagram 

 

The peripheral transducers include the GPS, magnetic sensing system, and the distance 

measuring devices. The central processing system, in the current design, is a laptop that acquires 
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and saves the data, provides user control of the mapping device, and generates reports. The 

interface electronics are responsible for the communication between the previous two groups. 

Kolectric Covermeters 

Customized Kolectric covermeters form the basis for the magnetic sensing system. These 

proprietary electronic devices work using the principles of magnetic tomography and are capable 

of generating raw magnetic return values via serial communication to the data acquisition device. 

The current set of covermeters can produce three streams of data concurrently which enables 

steel orientation to be determined with only a single pass over a pavement joint. Adding 

additional sensors to the current configuration is possible but would require consultation with 

Kolectric to ensure power and signal strength limits are not exceeded. 

Optical Encoders 

The chosen distance measurement devices are 128 pulse-per-revolution optical encoders 

mounted on each rear drive wheel. These encoders measure the distance traveled during data 

collection runs and enable the bar placement spacing to be referenced from the beginning of data 

collection. These devices generate pulses that are counted by an acquisition device to keep track 

of the distance traveled. 

GPS 

Geodetic coordinates were collected using a Garmin OEM GPS receiver. This device 

provides standard NMEA messages once per second over a variable speed serial channel. Output 

sentences can be enabled and disabled via prescribed serial command sentences. This receiver 

can also be programmed to output spatial coordinates at prescribed time intervals [10]. An 

appropriate active, external GPS antenna was selected and used in conjunction with the receiver.  

Microprocessor 

The final design of the interface electronics incorporated a microprocessor to handle all 

communications between the peripheral devices and the central processing system. The Freescale 

MPC555 was selected based on familiarity, availability of tools, and functionality. The MPC555 
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contains sub-processors that contain built-in serial communication functionality. All 

communication between the central processing system and the peripheral devices, except the 

encoders, used serial links. 

 
Interface Architecture 

One facet of the project that went through multiple iterations before a final solution was 

developed involved the problem of communication between the various peripheral devices and 

the main processing system, the laptop. The following sections describe the design 

considerations for the communications interface. 

Original Architecture vs. Microprocessor 

Time constraints and pressure to have a working device dictated that initial 

configurations of the mapping device be composed of off-the-shelf components. Figure 3.2 

shows a block diagram of the initial communication interface. 

 

Interface
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Magnetic Sensing
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Central Processing System  
Figure 3.2: Initial Communication Interface Architecture 

 

The two functional blocks were commercially available devices used to perform two very 

specific tasks. The distance measurement acquisition block was capable of reading the distance 

data from the distance measuring devices, packaging the data into a format that the central 
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processing system could understand, and communicating the distance data when requested by the 

central processing system. The data stream conversion block was capable of condensing the 

communication streams from four peripheral devices into a single communication link. This 

arrangement pushed the communication abilities of the central processing system and limited the 

processing time it had to complete its other tasks. This led to an interface redesign. 

The redesigned interface incorporated a microprocessor that replaced the commercial 

devices mentioned previously. The block diagram in Figure 3.3 shows the final architecture of 

the communication interface. 
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Figure 3.3: Final Communication Interface Architecture 

 

The number of functional components was reduced and the microprocessor was capable 

of combining the data received from all peripheral devices, pre-processing that data, and 

formatting it such that it reduced the load on the central processing system’s communications. 

This change allows for the development of more reporting routines and greater instrumentation 

functionality within the same architecture. 

Advantages of Incorporating a Microprocessor 

Initial prototypes of the device utilized a quad RS232 to USB converter that piped data 

into a single USB line that could be connected to the laptop. The converter appeared as four 
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additional RS232 connection ports in the computer’s device manager. These COM ports were 

utilized by the Visual Basic programs for retrieving the data from the synchronized covermeters 

and the GPS unit. This setup dictated that the laptop had to do a lot of data processing and 

handling of multiple serial channels which, in addition to the other real-time features of the 

program, caused the execution of the program to become sluggish. A solution for offloading 

some of the processing from the laptop was necessary for fast execution as well as the potential 

for adding more sensors in the future. 

The final solution was to use a microprocessor to handle all of the serial communication 

from the covermeters and GPS. The main problems with the original prototype architecture were 

the multiple serial interfaces with the laptop and the need to install specialized drivers to utilize 

the commercial acquisition devices. Incorporating a microcontroller into the instrumentation 

consolidated all the communication into a single, simple serial stream. The MPC555 also has 

built-in functionality for fast quadrature decoding to handle the optical encoders that measured 

the distance traveled by the device. With this capability, the microprocessor consolidates the 

encoder and serial data to a single serial data link that interfaces with the laptop. This system 

eliminated two peripheral devices and their associated software drivers. The new architecture is 

more flexible for future scaling of the system. Eventually, this single link could be replaced by 

wireless transceivers so that the data collection and visualization hardware, the laptop in this 

case, would not have to be within cabling distance of the peripheral hardware. This would be 

advantageous if the platform of the current device is modified to something more suitable to 

being pulled behind a paving machine. 
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Chapter 4: Hardware and Electronics Detailed Design 

The following sections present the details of the mechanical and electronic design for the 

steel mapping device. 

 
Mechanical Design 

The design of the mobile platform for the magnetic mapping device went through several 

iterations. Each new version added different functionality and incorporated lessons learned from 

previous prototypes. The following sections highlight some of the pertinent steps and final 

decisions made in the design process. 

Non-Metallic Construction 

Preliminary testing of the covermeter sensitivity showed that any steel further than 14 

inches from the pucks yielded results that were within the thresholds of the ambient noise of the 

meters. This formed the basis for the rule of keeping any metal in the cart design further than 18 

inches from the pucks at the front of the cart. Figure 4.1 shows the current design of the cart. 

 

 
Figure 4.1: Current Version of the Magnetic Sensing Cart 

 



21 

The entire cart was composed of non-metallic materials, to ensure that nothing would 

interfere with the sensor readings. Plywood forms the base of the cart and the support structures 

for housing the electronics, supporting the handle, and mounting the rear wheel axles are created 

from formed sheets of polycarbonate. The handle is composed of PVC and large diameter wood 

dowel rods. The wheels are plastic with a rubber tire and are hooked to the polycarbonate portion 

of the chassis by plastic axles. The rear wheels also provide a platform for the encoder wheels to 

ride on to measure distance traveled. Non-magnetic casters, similar to those used on medical 

carts and chairs around MRI machines, were incorporated to support the front of the cart and to 

allow the cart to pivot around a center point between the rear axles. A polycarbonate tray that is 

capable of riding over roadway debris such as small rocks holds the sensor bar that houses the 

pucks. This cart design allows the front end to be tipped into the air, thus isolating the pucks 

from any surrounding metal. This motion is used to perform the on-the-fly calibrations in the 

field that capture the magnetic readings necessary for calculating bar depth.  

Sensor Spacing 

Migrating from a single sensor to multiple sensors introduced calibration issues of 

sensors interfering with one another. Pulse induction sensing with multiple devices requires 

synchronization. If the devices are not synchronized, the active pulse from one device will 

saturate the ‘echo listening’ of another device. Calibrating the device required that the sensor 

pucks stay in the same position relative to one another so that accurate depth measurements can 

be calculated from the raw data. Testing was performed to determine the effects of puck spacing 

on the magnetic readings in the absence of steel, referred to as the ‘infinity readings’ or ‘zero 

readings.’ A summary plot of the infinity reading as a function of sensor spacing is shown in 

Figure 4.2.  
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Figure 4.2: Effects of Puck Spacing on Infinity Calibration Readings 

 

The distance between three sensors, commonly referred to as pucks, was varied from 3 

inches to 14 inches at 1-inch intervals. Data was taken for 1 minute at each distance. The plot in 

Figure 4.2 shows that the sensor infinity readings are highly dependent on the puck proximity, 

especially for puck spacing of less than 9 inches. The infinity reading is analogous to the ambient 

magnetic background. Varying the proximity of the sensors is analogous to changing the ambient 

background. It is therefore critical to lock these sensors rigidly in place to prevent relative 

movement from effecting instrument accuracy. Since infinity readings are so crucial for 

determining the depth of the steel, a method for locking sensor pucks in fixed positions relative 

to one another was necessary to make the device’s readings accurate and repeatable. A rigid 

polycarbonate structure was constructed to house two sensor pucks. Figure 4.3 shows a picture of 

the sensor bar. 
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Figure 4.3: Polycarbonate Sensor Bar 

 

This structure disallowed any relative movement between the two pucks and provided a 

simple way for removing the pucks from the cart in order to perform a full calibration in the 

field. 

Electronics Enclosures and Connectors 

The electronics had to be protected from adverse environments such as the ones 

mentioned previously in the Ruggedness section. The enclosures designed for this purpose were 

created from polycarbonate and solvent adhesive. The resulting boxes were not air or water tight 

but were capable of protecting the circuitry from wind-driven dust or the occasional rain shower 

during data collection. Figure 4.4 shows a picture of the main circuitry box that houses the GPS 

unit, power regulator, and covermeter electronics. 

 

 
Figure 4.4: Polycarbonate Electronics Enclosure 
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The top of this box is secured with nylon bolts and the upper rim of the box is covered 

with a weather stripping material used to weather proof doors and windows. Appropriate 

connectors, switches, and device controls were mounted on the sides of the enclosure for easy 

access and device operation. 

The connectors were a major design consideration due to the amount of vibration caused 

by running the cart over a textured concrete surface. Vibration caused normal four or five pin 

block connectors and DC power plugs to shake loose or flex such that contact could be 

intermittently lost. During testing, cabling to the encoder wheels was especially susceptible to 

such problems. The final design incorporated power sockets that have large contact area and 

locking capability. The connectors have a small keyed protrusion on the female connector that 

locks with a small cutout in the male connector and also only fit together in one orientation 

which prevents power from being applied in a reverse polarity to the circuitry. 

 
Hardware Integration 

Electronic integration was the primary challenge in this project. The preferred 

architecture dictated that the MPC555 microprocessor be integrated into the system. Peripheral 

boards were added as needed to adjust voltage levels and interface the main components of the 

system. The following sections discuss the different pieces of the electronic design. 

Overview 

The majority of the electronics design involved taking commercial circuitry and 

interfacing it to both power and a communications channel. Figure 4.5 shows the block diagram 

for the electronics of the steel mapping device. 
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Figure 4.5: Electronics Block Diagram 

 

The MPC555 forms the hub of the system and coordinates all communication between 

the user interface on the laptop and the rest of the peripheral devices. The following sections will 

describe the details of the various electronic components. 

Synchronized Covermeters 

The covermeters are proprietary electronics developed and customized by Kolectric and 

Tallix. They are modified to be synchronized and capable of RS232 serial communication as a 

result of negotiations between the suppliers, KDOT, and Kansas State University. The product 

specification document for the synchronized meters can be found in Appendix D. Figure 4.6 

shows a picture of the first iteration of the synchronized meters. 
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Figure 4.6: Synchronized Covermeters 

 

These synchronized meters have the on-board digital signal processing capability to 

determine a magnetic return from steel near the sensor heads. The orange, blue, and black wires 

seen at the top are used for synchronizing the three boards. 

The power up sequence of the three boards is critical to proper operation. Both slave 

devices must be powered on and initialized before turning on the master device. If this order is 

not followed, the devices may appear to operate properly, but the electronics cannot be relied 

upon to yield time-aligned measurements. There are two methods for powering on the devices. 

The first is referred to as the soft method. Power is connected to the devices at all times during 

this method. The devices are turned on by shorting control pins four and five together for 1 

second. They are turned off by shorting the same pins together for 2 seconds. This operation 

mimics the way the commercial meters operate with battery power always applied to the 

circuitry. The second is referred to as the hard method which involves applying power to turn the 

devices on and disconnecting power to turn them off. Switches can be used in the power loop to 

connect or break the circuit. 

The second piece of each covermeter is a sensor head, sometimes called a puck, which 

connects to the boards shown in Figure 4.6. Figure 4.7 shows a picture of a puck. 
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Figure 4.7: Covermeter Puck and Connectors 

 

This iteration of the puck has two connectors at the end. One connector hooks to the 

female connectors on the covermeters and the other is a DB9 connector that can hook to any 

standard RS232 computer serial port. The illustration in Figure 4.8 shows an X-ray of the puck. 
 

 
Figure 4.8: X-Ray Image of Covermeter Puck 
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The puck houses a metallic core and two coils of wire that are secured by an epoxy that 

fills the voids in the puck. The ferromagnetic core can be seen sticking out beyond the coils of 

wire in the lower coil. This core has a tendency to break loose from the epoxy that holds it in 

place. If the core is loose, movement and/or vibration can invalidate calibration measurements, 

also referred to as the infinity readings. The lower core is wound with a larger gauge wire, which 

was evident by looking at its silhouette in the original X-ray. The upper coil appears to be wound 

with a finer gauge wire and has an air core [5]. 

The synchronized covermeters report magnetic readings over the RS232 compliant serial 

port at a rate of 20 Hz and are formatted in ASCII coded hexadecimal. The standard message has 

10 characters. The first eight digits are 0-9 or A-F which form the numerical part of the message. 

Negative numbers are given in two’s complement hexadecimal notation. The last two digits of a 

message string are carriage return and line feed [11]. The example file 

SingleCovermeterExample.txt in Appendix E shows an illustration of sample output data, 

positive and negative, from a single covermeter. 

MPC555 

As previously mentioned, an embedded communication solution was attractive for 

purposes of eliminating costly third-party devices and enabling greater device scalability in the 

future.  

 
Microprocessor Selection 

The choice of the MPC555 as the interface microprocessor was based on several factors. 

The first factor was the two TPU units located in the MPC555 [12]. These sub processors have 

built-in UART and fast quadrature decode functionality [13][14]. This allows many serial 

connections to be created through software. This programmability allows serial channels that 

only require simplex communication to utilize only one pin on the processor, thus not wasting 

any resources on unnecessary channels. The current device configuration uses two receive 

channels and two pairs of transmit/receive serial connections. The second decision factor was 

based on familiarity with the hardware and development environment. This processor is used in 
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several embedded systems courses at Kansas State University and the development tools are 

readily available in the Electrical and Computer Engineering Department’s labs. The third factor 

was the number of digital I/O pins. Initial designs included controlling the power on/off 

sequence of the covermeters with the MPC555. This required six digital I/O pins for the current 

set of three synchronized meters. More I/O pins would be necessary if additional covermeters are 

added to the design, so choosing a processor with enough digital I/O to scale later was attractive. 

The final factor was ruggedness. The MPC555 is a microprocessor designed for the automotive 

industry. Automotive specifications typically reflect high operating temperatures and vibration. 

Operation of the sensing cart with its hard rubber wheels on textured concrete surfaces induces 

considerable vibration. All these factors led to the selection of the MPC555 for this project. 

 
Communication 

All user-defined communication with the MPC555 is asynchronous serial communication 

and is handled through the TPUA sub processor’s UART function. The peripheral devices all 

communicate with RS232 signal levels and polarity. All signals had to be shifted to 0VD to 

5VDC input logic levels before reaching the MPC555 input pins. This was accomplished using 

three MAX233 level shifting chips. The two input serial channels associated with the 

covermeters and the transmit/receive pair that handles the communication with the laptop all ran 

at 19.2kBaud. The GPS communicated with the MPC555 at a rate of 4800Baud. All receive 

channels were polled by the main control loop as previously discussed. 

The MPC555 program also has the ability to control the power on/off sequence of the 

synchronized covermeters. The sequence and timing are built into the program and can be 

controlled through defined command characters that can be sent from the laptop to the MPC555. 

Further design is required to create an interface between the MPC555’s digital output and the 

control pins on the covermeters. This interface would ensure that no logic levels or drive currents 

exceed the maximum limits of the devices. Furthermore, it would also ensure that no cascading 

damage would occur to the covermeters or MPC555 in the event of an electronics malfunction. 
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Power Distribution 

All power to the electronics was derived from the 12V deep-cycle lead-acid battery. 

Table 4.1 shows the power requirements for the major components in the system. 

 
Table 4.1: Power Requirements by Component 

Component Voltage Maximum Current 

Covermeter 3.5 VDC – 3.9 VDC 200 mA 

GPS15H GPS Receiver 8.0 VDC* – 40.0 VDC* 60 mA 

PB-555 Eval. Board 
and MPC 555 6.0 VDC* – 20.0 VDC* 385 mA 

MAX233 Level Shifter 5.0 VDC 20 mA 

61K128-050 Optical Encoder 5.0 VDC 30 mA 

* - unregulated 

 

Power to the covermeters was provided by a Texas Instruments PTN78060WAH variable 

output switching voltage regulator configured to output 3.7VDC. The GPS receiver and PB-0555 

evaluation board were both run directly off of the unregulated lead-acid battery. The PB-0555 

has an on-board 5.0VDC voltage regulator that is used by the MPC555 contained on the board. 

This regulator was capable of supplying the current necessary for the three MAX233 level 

shifters and the two optical encoders at 5.0VDC within device specifications. During full load, 

the 5.0VDC regulator is supplying about half of its maximum current. 
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Chapter 5: Software Architecture and Design 

The following sections describe the software architecture for the steel mapping device. 

 
MPC555 

The Freescale MPC555 was the chosen microprocessor as was previously discussed. The 

following sections outline the details of the software associated with this processor. 

Concept of Operation 

The MPC555 was added to streamline communications between the peripheral devices 

and the laptop. This alleviated the problems of dropped data and slow program execution when 

all processing was done by the Toughbook. The microprocessor can also respond to serial 

commands. Using this capability, the microprocessor can enable/disable the data stream via 

defined serial command words received from the laptop. The MPC555 condensed all 

communication to a single serial channel that required no proprietary device drivers. This 

architecture simplifies the programming environment and provides an extensible environment for 

future upgrades. 

Detailed Design and Flow 

The following sections detail the software initialization of the MPC555 hardware and the 

structure of the main control loop. 

 
Initialization 

The initialization routines for the UART and the fast quadrature decode are written in 

tpuUART.c and tpuFQD.c. All .c and .h source files can be found in Appendix C. The main 

control function is located in controlMain.c. It first initializes the buffers used to process serial 

data. It then sets the TPUA input clock to the desired value by calling the function initTPUA(). 

This function disables TPUA interrupts, sets the clock divider to divide the incoming clock by 

one, and enables the advanced prescalar which is set to divide the incoming clock by two. These 
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steps generate a TPUA clock of 10MHz. The main function then initializes the TPUB sub 

processor to generate the same clock frequency as TPUA. 

The main function then initializes the fast quadrature decode functionality in TPUB. The 

program uses two pairs of channels to utilize the optical encoders mounted on the wheels of the 

mapping device. Channels six and seven form the pair to decode the right encoder and channels 

ten and eleven are used to decode the left encoder. Two channels are necessary to detect the 

phase difference between the pulses sent from the optical encoder. This allows the MPC555 to 

keep track of direction as well as distance. The initialization of the fast quadrature decode is an 

involved process that is well documented in the function initFQD() found in tpuFQD.c. 

Serial channels are then initialized using the initTx(UCHAR channel, USHORT baud) 

and initRx(UCHAR channel, USHORT baud) helper functions written in tpuUART.c. These are 

general functions that were written to allow for any TPUA channel to be configured as a 

transmitter or receiver at any baud. The constants used to configure the channels to the correct 

baud are defined in defines.h. These values were calculated based on the 10MHz input clock that 

was set up in the initializations using the following equation. 

 

BAUDBAUD
MHzCONSTANTBAUD

71010_ ==  

 

The MPC555 communicates with the laptop at 19.2kBaud. Applying the above equation 

yields a value of 520.833. Rounding this value to the nearest integer produces a value of 521 

which is the number used in the program for the peripherals that communicate at this baud. 

The final initialization step involves setting up the GPS receiver. The GPS15H transmits 

seven different NMEA 0183 sentences by default. To lessen the communication load on the 

MPC555, all sentences but the GPRMC sentence are disabled. This is done by sending the 

PGRMO command sentence with the appropriate parameters [10]. After this initialization step, 

the embedded program begins its main control loop which is discussed in further detail in the 

following section. 
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Control Loop 

A control loop, rather than interrupts, is the method used to track all data and 

communications. The receipt of communication bytes from the TPU serial ports, transmission of 

output GPS strings and covermeter data, and handling of command messages are all handled in 

the MPC555 main control loop. Figure 5.1 shows a flowchart of the control loop operation. 

The incoming serial characters from the peripheral devices are all captured by polling the 

interrupt status register for the appropriate channels. Once a covermeter value has been fully 

received, the encoder values are latched and the transmission of the output sentence to the laptop 

begins if the respective communication port is not busy. If the port is busy transmitting the most 

recent GPS string, the transmission to the laptop will commence as soon as the port is available. 

Output strings, either GPS or covermeter, are all transmitted one character at a time. This allows 

the processor to keep polling the input channels while the current output byte is being shifted out 

at the correct rate to match the baud value. This approach takes advantage of parallel processing 

since the TPUA sub processor and the main processor are performing calculations at the same 

time. Without parallel processing the processor would have to wait for a worst case ~3.85msec 

which is enough time for the processor to miss part of the next incoming sentence. The TPUB 

sub processor is also performing its fast quadrature decode tasks in parallel so the total system 

behaves as though it had three independent processors running in parallel. The main control loop 

for the MPC555 is found in controlMain.c. 

 
Ruggedized Laptop 

A Microsoft Windows based ruggedized laptop was chosen for developing the 

application level software. Visual Basic and Matlab formed the basis for data acquisition, user 

interface, and report generation. The following sections outline the design and typical use of the 

high-level programs. 

Concept of Operation 

The concept of the laptop operation revolves around serial communication and providing 

application control to the user. Figure 5.2 shows the responsibilities and attributes of the laptop. 
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Figure 5.1: MPC555 Main Control Loop 
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Figure 5.2: Ruggedized Laptop Responsibilities 
 

The laptop saves all the data received from the MPC555 including magnetic sensor 

readings originating from the covermeters, appropriate zero calibration data, GPS readings, and 

distance calibration values into a defined text format. A customized user interface provides real-

time feedback and control of the data collection process to the user. The single serial data 

communication channel between the microprocessor and the laptop enables the laptop to run the 

necessary real-time calculations and update the user interface without any noticeable lags in 

operation. The ruggedized laptop also contains the routines for multi-sensor calibration, distance 

calibration, and report generation. 

User Interface 

The main user interface that provides visual feedback and user control is provided by the 

main scooter program which is written in Visual Basic. Figure 5.3 shows a screenshot of this 

program.  
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Figure 5.3: Scooter Program 

 

The original software was used for both for operational testing and troubleshooting. As 

such, it still bears many of the troubleshooting remnants. The captured data is saved in a file with 

the filename specified in the text box at the top of the window. Naming conventions are left to 

the operator to adapt to the situation. The default filename is the current date in DDMMMYYYY 

format. The depth meter is turned on by default. It calculates and plots the depth of the steel in 

real-time on the right side of the window. A default calibration file is used to generate the 

polynomial coefficients that map the raw data to a depth reading. GPS data is displayed in the 

adjacent text boxes beside the GPS label in the user interface in degrees/minutes format. When 

the field is highlighted in red, the GPS data is not valid. Otherwise, the GPS receiver is sending 

valid fix data. 
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Multi-Sensor Calibration Procedure 

Multi-Sensor calibration is performed using a calibration program written in Visual 

Basic. Figure 5.4 shows a screenshot of the interface provided by this program. 

 

 
Figure 5.4: Calibration Program 

 

The output file can be selected by typing a filename and path in the textbox that is labeled 

‘Output:’. The calibration prompts the user to take 1 second samples of data, 20 data points, at 2-

inch intervals starting at 2 inches and ending at 12 inches. Infinity readings are taken before and 

after the depth measures are recorded. The end result is a .cal file with tab delimited data. See 

Appendix E for an example calibration file named CAL_5_JUL06.cal. The first column in the 

calibration file is the distance, in inches, of the calibration bar from the sensor bars. The 0 tag 

found at the beginning of the first and last 20 lines in the calibration file indicate readings taken 

in the absence of steel sometimes called infinity readings. Calibration files are used by the data 

acquisition program and the report generation program to generate polynomial coefficients that 

map the raw data values to depth measurements in inches. 
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Distance Calibration Procedure 

A distance calibration routine that allows for in-field encoder calibration is built into the 

Visual Basic user interface. The Dist Cal button shown in Figure 5.3 brings up the window 

shown in Figure 5.5. 

 

 
Figure 5.5: Distance Calibration Program 

 

The distance calibration routine can set new default values for the number of encoder 

pulses per foot. The Distance field defaults to 15 feet but can be changed to any value greater 

than zero. The program records the number of encoder pulses as the cart travels the given 

distance. From this information, the program can calculate the conversion factor between the 

number of pulses and the distance traveled in feet. This routine is useful on the current version of 

the cart where the encoder wheels are not linked via gears to the drive wheels or axle. It also 

allows for the event that different resolution encoders replace the current encoders. Ultimately, 

this program allows the data acquisition program to adapt to any unforeseen situations causing 

variations in measuring distance traveled. 
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Zero Calibration Procedure 

Zero calibration, also called infinity calibration, is a process used to obtain the infinity 

readings from the covermeters when the pucks are isolated from steel. Figure 5.6 shows the 

isolation process. 

 

 
Reproduced from [8]  

Figure 5.6: Zero Calibration Cart Orientation 

 

The sensor pucks must be at least 18 inches away from any ferrous materials during this 

process. While in this position, the 00 Cal button, as seen in Figure 5.3, is pressed. Data is 

collected for 1 second and the new zero reading is found by taking the median of the resulting 20 

data points. The zero calibration routine is done so that full multi-sensor calibrations do not have 

to be performed in the field. Performing multiple zero calibrations during a data run allows the 

reporting software to account for sensor drift which will be discussed in further detail later. 

 
Data Collection Procedure 

Typical operation of the data collection procedure is outlined in the following paragraph. 

Buttons and text fields that are referred to here can all be found in Figure 5.3. A filename is first 

chosen and entered into the filename text box. The next step is to use the Dist Cal button to 
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change the default encoder calibration if desired. A different real-time plotting calibration file 

can also be selected at this point by hitting the Calibrate button. The 00 Cal button is then 

pressed to start the data acquisition cycle. Note that the nose of the cart must be at least 18 inches 

from the concrete for the calibration to be valid. The initial press of the 00 Cal button locks in the 

values for the distance calibration for the run, gives an initial GPS position for the beginning of 

the run, and saves 1 second worth of data to the data file to be used as an infinity calibration 

reading. The most recent infinity calibration is used in the real-time plotting. The median value 

of the infinity calibration is subtracted from the data before applying the polynomial fit equation 

to determine steel depth. Once this step is completed, focus will automatically go to the START 

button. Pressing this button starts the data collection. Values for the raw meter data, encoder 

pulse count, and translated distance should all start filling the appropriate text fields. The STOP 

Collection button should be pressed when the run is complete or another on-the-fly calibration 

needs to be performed. It should automatically have focus after beginning the data collection. An 

infinity calibration, using the 00 Cal button with the nose of the cart at least 18 inches from the 

concrete surface, should be performed at the end of every data collection run before generating a 

report or starting another run. Once the final infinity calibration is completed, a new run can be 

started by changing the filename in the text box at the top of the window or a report can then be 

generated by pressing the Report button. The report generation process will be discussed in detail 

later. 

The flow of the data acquisition portion of the main program is shown in the flowchart 

seen in Figure 5.7. 
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Figure 5.7: Data Acquisition Flowchart 

 

The first part of the data acquisition flow is initialization, with the program performing 

one-time tasks such as initializing the real-time plotting, enabling the data stream from the 

MPC555, and opening the output file. The program then gets into the main data acquisition loop. 

The serial port is polled until a character is received. Upon receipt, the character is buffered and 

a test is done to determine if a complete GPS sentence has been received. If that is true and the 

appropriate time has elapsed (10 seconds in the current setup), a GPS sentence is formed and 

written to the output file. If a GPS sentence is not complete, the program checks to see if the 

incoming string is a completed encoder/covermeter string. If so, the program writes a data line to 

the output file. The program then checks to see if the STOP Collection button has been pressed. 

If so, the execution of the control loop is done. Otherwise, the program loops back and waits for 

another character to be received. 
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Reporting Software 

Report generation is started by clicking the Report button in the data acquisition program 

which is shown in Figure 5.3. That button press brings up the window shown in Figure 5.8. 

 

 
Figure 5.8: Report Generation Program 

 

The Single button is pressed to generate a report from a single .dat file from the data 

acquisition program and one .cal file from the full calibration program. The Multiple button is 

capable of generating a single report from two data files and one or two calibration files. This 

function is useful for comparing two runs over the same joint to test repeatability as well as 

testing the effect of different calibration files on the same input data. The Batch button was 

added so that multiple reports could be generated in one step using many data files and a single 

calibration file. This allows for generating all reports from a day of data collection at one time 

instead of having to generate one report at a time. The View button opens a generated report for 

viewing in an Internet Explorer window and the Close button terminates this window and returns 

to the data acquisition program. 
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Estimating Bar Position 

Bar position estimation is handled by an algorithm written in Matlab and compiled into a 

COM object that is called by the reporting portion of the Visual Basic program. The raw data 

from the output .dat file is translated into distances measurements in feet and depth values in 

inches. The bar finding algorithm then finds the peaks in the trace plots using a windowing 

approach that assumes a nominal bar spacing of 2 feet. The resulting output is a pair of vectors 

containing the depth and distance information. These values are used to plot the bar positions on 

the trace plots and generate the histograms that show the statistical results of the data run. The 

current version of the bar finding algorithm does not account for the dowel basket effects on the 

tie bar data runs. This can result in some erroneous bars that show up as outliers in the 

histograms. 

 
Plotting 

Plotting for the reports is done in a compiled COM object that was generated in Matlab 

from several .m script files. The global minimum value is found by taking the median of the 40 

infinity readings found in the calibration file. This global minimum value represents the DC bias 

of the meter readings. This value can change at each power on of the meters so an on-the-fly 

calibration is necessary before each run so that the correct value can be found and used in the 

plotting of the data that follows. The global minimum value also has a tendency to drift with 

time. Figure 5.9 shows a 6-hour test of the covermeters without the presence of steel.  
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Figure 5.9: Infinity Reading Stability 

 

The plot shows that the infinity calibration readings vary with time. The test was 

performed in the lab with no steel within 24 inches of the sensor bar. Controlled experiments 

were conducted with the sensor pucks in various temperatures, orientations, and degrees of direct 

sunlight and although there is a repeatable pattern to the drift, no correlation could be found 

between the experimental factors and the drift of the sensors. The data acquisition program 

requires that an on-the-fly calibration be performed at the beginning and end of each data run. 

This provides the reporting software with enough data to do a linear interpolation of the global 

minimum value during the data collection. This results in a more accurate representation of the 

steel location in the concrete. 

The remainder of the data, the values taken at 2 inch intervals from 2 to 14 inches, is used 

to calculate coefficients of a second order polynomial that relate signal strength to bar depth 

using a weighted least-squares approach. Figure 5.10 shows an example of the fitting curve used 

for this process. 
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Figure 5.10: Calibration Curve Fitting 

 

Weights for the different depth readings were calculated based on the variance of the data 

at each depth and the estimated accuracy of the jig used for calibration. This weighting allowed 

more reliable data, the readings found at depths of 2 to 8 inches, to have more of an effect on the 

shape of the curve. This range (less than 8 inches) corresponds to the expected location of 

properly placed steel in Kansas concrete pavements. 

 
Output 

The output generated by the data acquisition program is saved to a tab delimited .dat file. 

The example file 29AUG2006_S01_C_ABBREVIATED.dat which shows the formatting of a 

typical .dat file can be found in Appendix E. The first line of the example file is as follows: 
 

C -1 -2 664.9 671.9 

This line is the distance calibration line, marked with a ‘C’ followed by ‘-1’ and ‘-2’, 

which is always the first line in a .dat file. The final two numbers are the encoder pulse-to-feet 
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conversion factors. The first number is used for the right encoder translation and the second is 

used for the left encoder translation. This allows the data acquisition program to incorporate the 

distance calibration values gathered from the distance calibration routine instead of using the 

default values. 

The second line of the example file is as follows: 
 

G -1 1 38.928995 0 97.364428 1 290806 153555 

The ‘G’ followed by the ‘-1’ and ‘1’ indicate that this line is a GPS string. The fourth 

value, ‘38.928995’ is the latitude, in degrees, of the GPS fix and the ‘0’ following the latitude is 

an indication that the fix was in the northern hemisphere. A ‘1’ in this position would indicate 

position in the southern hemisphere. The fifth value, ‘97.364428’, is the longitude, in degrees, of 

the GPS fix and the ‘1’ following the longitude indicates that the fix was in the western 

hemisphere. A ‘0’ in this position would indicate that the fix occurred in the eastern hemisphere. 

The eighth value, ‘290806’ is the date of the GPS fix in the format DDMMYY. The final value, 

‘153555’, is the time of the GPS fix in HHMMSS format. The time information is presented in 

the 24-hour format. GPS lines occur immediately preceding on-the-fly calibration blocks and 

every 10 seconds during normal data acquisition. 

The third type of line encountered in the example file is as follows: 
 

Z -38958.4418402778 -38958.4418402778 -5268 -8686 

The ‘Z’ followed by two identical negative values indicate that this line is an on-the-fly 

calibration line. Blocks of 20 of these lines are found at the beginning and end of each .dat file 

and may occur anywhere in the middle of the data collection stream. The negative numbers 

following the ‘Z’ are unique numerical values based on the current timestamp. These are used to 

order the on-the-fly calibration results correctly during the report generation process. The fourth 

value, ‘-5268’, is the infinity reading for the Slave1 or left sensor. The final value, ‘-8686’ is the 

infinity reading for the Master or right sensor. These types of lines are used to calculate the 

infinity readings of each meter so that accurate depth calculations can be performed in the report 

generation stage. 
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The final type of line encountered in the example file is as follows: 
 

D 89 95 -5070 -8494 

The ‘D’ indicates that this is a data line. The second value of the string, ‘89’, is the 

current encoder count for the right encoder. The third value, ‘95’, is the current encoder count for 

the left encoder. The fourth value, ‘-5070’, is the current reading from the Slave1 or left 

covermeter and the final value, ‘-8494’, is the current reading from the Master or right 

covermeter. These types of lines are generated during normal data collection. 

The Matlab plotting routines plot the results in standard figure windows which are then 

saved as .jpg files in a folder generated at runtime. The folder name and .jpg filenames are all 

derived from the name of the data file sent to the routine by the report generation program. An 

.htm file is generated by the Matlab code that links to the proper images and provides an easy 

web browser interface for viewing the data collection results. These .htm files can also be 

uploaded to a web server and linked through Google Earth for geospatial locations as previously 

discussed. 
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Chapter 6: Testing and Field Trials 

A great deal of time in the design process of the mapping device involved both lab testing 

and, more importantly, field testing. The experience gained from taking the device to 

construction projects was integral to the successful functioning of the device. Field testing 

yielded results and exposed problems that would have been difficult to predict and troubleshoot 

in the lab. Usability issues such as screen brightness were blatant problems that needed to be 

fixed. Other issues such as encoder pulse accumulation errors were not so easy to detect in the 

lab due to limited space and only exhibited themselves after long runs on the road. The iterative 

design cycle of this device made field testing a natural part of the evolution. 

 
Calibration 

Two factors contribute to the accuracy of the measurements taken by the device. One is 

the ability to keep the sensor pucks locked so that there is no relative motion as was previously 

discussed. The other is the ability to take accurate measurements at given increments for the 

purpose of performing a curve fit that can translate raw meter data into depth readings. A 

structure called the calibration jig was built for the purpose of generating reliable and repeatable 

calibration values and is shown in Figure 6.1. 

The large slots cut into the top of the jig near the left edge holds the two-sensor version of 

the polycarbonate sensor bar. The rest of the smaller slots were cut to accurately place a piece of 

#5 rebar at specified distances away from the pucks in the sensor bar. There are slots cut at 2-

inch increments from 2 inches to 12 inches. The jig was fabricated completely out of pine 

2”×4”s, 5/16” dowel rods, and wood glue. This platform allowed for accurate and repeatable 

calibration of the two-sensor device. 
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Figure 6.1: Calibration Jig 

 

Field testing of the device showed that the results from a single calibration file could be 

used as long as the sensor bar remained intact with the pucks that were used for the initial 

calibration. Tests showed that the shape of the curve used for fitting the raw data to the depth 

reading does not change. This implies that the coefficients driving the shape of the curve also do 

not change. Standard operation of commercial covermeters includes taking an infinity reading 

periodically to calibrate the unit. This is consistent with what was found with the multiple-sensor 

device. Therefore, a single default calibration file could be used for each type of bar being 

measured. The default file in conjunction with on-the-fly calibrations yielded enough 

information to accurately map the steel placement. This realization negated the need to haul the 

calibration jig to the data collection site since only on-the-fly calibrations needed to be 

performed to generate accurate results.  

 
Performance Verifications 

Performance verifications were run on the mapping device using several techniques. 

Laboratory tests were performed on the data acquisition, calibration, and report generation 

software to ensure that the programs were correctly handling incoming data and producing 
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reasonable results. Testing was also performed on the hardware in the lab to ensure that all 

communications were being handled by the MPC555 correctly. Signaling and voltage levels 

were all checked using oscilloscopes and multimeters before interfacing different sections of the 

hardware. Stability testing and battery testing was performed to ensure that the system could run 

for the several hours without encountering any errors or unexpected events. 

Controlled tests were performed outdoors away from the sensitivity altering effects of 

fluorescent lights and other sources of electromagnetic noise present in the lab. These tests took 

advantage of a test track that was created to make distance verification simple as well as provide 

a portable system capable of being taken to off-site locations for demonstrations. Figure 6.2 

shows the test track. 

 

 
Reproduced from [8] 

Figure 6.2: Verification Test Track 

 

The track is composed of four sections of wood I-beams and two sections of plywood. 

The entire system is isolated from the ground by corrugated cardboard boxes to ensure that no 

steel embedded in the concrete floor or road surface could interfere with the magnetic sensing. 

Holes were drilled at places corresponding to depths of 3 inches to 10 inches at 1 inch 

increments. Holes offset from the center were also drilled so that rebar could be positioned in 

practically any orientation to test the results of the device. 
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Tie bar depth measurement tests using the calibration jig were performed to find the 

measurement accuracy and precision of the magnetic sensing device. Table 6.1 shows the 

theoretical and measured results from the measurement verification tests. 

 
Table 6.1: Depth Verification Test 

Actual Depth 
(inches) 

Master Measured Depth 
(inches) 

Slave Measured 
Depth (inches) 

Maximum Error 
Range (± inches) 

2 2.13 2.13 ±0.00064 

4 4.04 3.73 +0.011/-0.010 

6 6.04 5.94 +0.081/-0.086 

8 7.91 8.16 +0.32/-0.60 

10 9.63 10.62 +1.00/-2.21 

 

The measured depth values were found by taking the median of 600 depth samples and 

the error ranges are calculated from the maximum deviation from the median depths. The results 

of the test follow what was expected. The measured values match what is known about the steel 

placement by hand measurements. Measurement susceptibility to noise becomes evident at bar 

depths of 8 inches and greater due to the decreasing signal to noise ratio. This can be seen from 

the increasing maximum error range numbers as the depth increases. Real-time and/or post-

processing digital filtering may decrease the error ranges and thus increase the precision of the 

device, but this idea has not been implemented or tested. 

Environmental testing and data collection was performed on construction sites around the 

State of Kansas. This testing was performed to ensure that the device could operate in the 

environment for which it was intended. Part of the verification process in the field was taking 

data measurements over an exposed shoulder joint where the ends of the steel reinforcement 

could be seen. These runs provided two types of validation. Visual inspection confirmed the 

depth measurement of the prototype. It also showed that concrete cover did not adversely affect 

the instrument accuracy, as was expected since concrete does not contain any magnetic or highly 

conductive material. 
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Sample Runs 

The mapping device was taken to several construction projects during its development 

and was able to take data that yielded radically different results. The first sample run was taken 

west of Abilene, KS, on I-70. Figure 6.3 through Figure 6.8 were generated by the reporting 

software and uploaded with the referencing .html file to the Internet to be viewed through 

Google Earth. 

 

 
Figure 6.3: Condensed Plot of I-70 Testing Along Center Joint 
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Figure 6.4: Expanded Plot of I-70 Testing Along Center Joint (1/3) 
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Figure 6.5: Expanded Plot of I-70 Testing Along Center Joint (2/3) 
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Figure 6.6: Expanded Plot of I-70 Testing Along Center Joint (3/3) 
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Figure 6.7: Histogram of Left Sensor Bar Placement from I-70 Testing 

 

 
Figure 6.8: Histogram of Right Sensor Bar Placement from I-70 Testing 
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Figure 6.3 through Figure 6.8 show illustrations of good steel placement. The histograms 

show that the bars are consistently lower than optimal but are consistent. There are some 

anomalies in the data near the end with instances of missing bars such as around the 383-ft. 

mark. The data for the last 100 ft. seems to be getting worse, but the overall placement of the 

steel is acceptable. Details of the interpretation of these plots will be discussed later in further 

detail. 

The second sample run was also taken on I-70 west of Abilene. Figure 6.9 through Figure 

6.14 show the results of an almost ideal steel placement report. 

 

 
Figure 6.9: Condensed Ideal Steel Placement Report 
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Figure 6.10: Expanded Ideal Steel Placement Report (1/3) 
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Figure 6.11: Expanded Ideal Steel Placement Report (2/3) 
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Figure 6.12: Expanded Ideal Steel Placement Report (3/3) 
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Figure 6.13: Histogram of Ideal Steel Placement, Left Sensor 

 

 
Figure 6.14: Histogram of Ideal Steel Placement, Right Sensor 
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The traces in the trace plots lie right on top of one another. This is a sign that the bars are 

oriented correctly in the pavement. The histograms in Figure 6.13 and Figure 6.14 show that 

most of the bars reside just lower than 6 inches beneath the surface of the pavement. This is the 

ideal location for the reinforcement steel in the 12-inch-thick slabs that were measured [1]. 

The third sample run which shows the results from poorly placed steel was taken on U.S. 

Highway 69 north of Fort Scott, KS. Figure 6.15 through Figure 6.19 show the results of this 

data run. 

 

 
Figure 6.15: Condensed Poor Steel Placement Report 
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Figure 6.16: Expanded Poor Steel Placement Report (1/2) 
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Figure 6.17: Expanded Poor Steel Placement Report (2/2) 
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Figure 6.18: Histogram of Poor Steel Placement, Left Sensor 

 

 
Figure 6.19: Histogram of Poor Steel Placement, Right Sensor 
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The behavior of the measurements in this example is erratic, especially in the first 150 ft. 

This can be seen in the expanded trace plots. The peaks have drastically different heights which 

is a good indication that something is wrong with the steel at those locations. The histograms 

show that there is a large variance in the measured depths. This indicates that the placement is 

not uniform and is placed poorly. 

 
Result Interpretation 

Generated reports contain two main types of plots used as a graphical representation of 

the steel placement. The two types are trace plots and histograms. The following sections discuss 

the advantages of the two types of plots and the interpretation of the two. 

Trace Plots 

The trace plots provide illustrations of the steel depth and orientation referenced to the 

distance measured by the optical encoders. This allows for all steel to be spatially referenced 

from the starting point and located for future testing if necessary. The key to interpreting the 

trace plots is the peaks in the waveform. The peaks represent the point where the sensor puck is 

closest to the steel which is the effective depth of the bar underneath the puck. The magnitude 

and phase differences between the two traces indicate the orientation of the bar. The plots in the 

following paragraphs were synthetically generated to give examples of orientation and depth 

interpretation for tie steel with the current two sensor version of the mapping device. Following 

the interpretation plots are examples of dowel basket interactions on tie bar measurement. 

The first case for interpretation is the ideal case, where the bar is perfectly aligned and is 

located at the optimal depth. Figure 6.20 shows the trace peaks from an ideally placed bar. 
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Figure 6.20: Ideal Bar Placement Example Plot 

 

The two traces perfectly overlap which indicates that the bar is parallel to the concrete 

surface and perpendicular to the transverse joint above the bars. A plot like this indicates that 

there is very little or no bar orientation error. The peaks of the two plots lie at a depth of 6 inches 

which is nominal for 12-inch concrete pavements. Peaks like this can occur at different depth 

levels. This means that the bar is oriented correctly but is either deeper or shallower than the 

optimal depth. 

The second common case is when the bar is rotated about an axis parallel to the 

longitudinal joint. In other words, it is tilted up or down with reference to the earth. Figure 6.21 

shows an example of this sort of orientation error. 
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Figure 6.21: Bar Rotated About an Axis Parallel to Longitudinal Joint Plot 

 

In this example, the peak from the left sensor resides at 5 inches and the peak of the right 

sensor is at 7 inches. This sort of return can result from two different problems. The first (and 

most likely) problem is that the bar is tilted vertically, or one end of the bar is higher than the 

other. If that were the case in this example, the center of the bar would reside at a depth of 

6 inches and the bar would be slanted downward as you move from left to right. The left end of 

the bar would be at a depth of 5 inches and the right end would be at a depth of 7 inches. The 

second scenario is that the entire bar sits at a depth of 5 inches but is shifted to the left. This 

means that the left sensor is directly over the bar. The right sensor is at the end or past the end of 

the bar and records a smaller return because the measurement is being taken at an angle rather 

than directly below the puck. There is a possibility that both issues are having an effect on the 

readings and yielding the above results. The orientation ambiguity stems from the fact that 

absolute orientation cannot be determined from two traces. The two-sensor version of the 

mapping device can determine absolute orientation by making subsequent passes over the joint 
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with a lateral shift relative to the first run. This would result in four or more traces which would 

be sufficient to find absolute bar orientation.  

The third and final common case occurs when the bar is rotated about an axis 

perpendicular to the surface of the road. In other words, the bar is tilted in the horizontal plane. 

Figure 6.22 shows an example of this sort of error. 
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Figure 6.22: Bar Rotated About an Axis Perpendicular to Concrete Surface Plot 

 

In this example both peaks are at the same height indicating that the bar is parallel to the 

surface of the concrete, but the peaks have a phase shift of 2 inches. This sort of return occurs 

when the left end of the bar is closer to the beginning of the run than the right end. In other 

words, the left end of the bar is sensed first followed by second bar 2 inches later. Another 

explanation for this sort of plot is that the bar is deformed. This occurs in the construction 

process along the exposed shoulder joint. The bars are set in the concrete in a 90-degree angle 

leaving half of the bar exposed. The bars are then bent out to be straight before pouring the final 
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shoulder. Sometimes the bars do not get bent perfectly straight, which shows up as a phase shift 

in the peaks of the plots. 

The previously mentioned scenarios form the basis for interpreting the output plots found 

in the reports. Typical data runs include examples of all of these types of returns and oftentimes 

have returns that are combinations of these simple cases. Complex cases involving two or more 

of the above examples can be easily broken down by using the fundamentals mentioned above to 

decipher the meaning of the returns. 

Other artifacts in the trace plots are caused by the interactions of dowel baskets with the 

magnetic sensing devices. These artifacts have a distinct shape and do not adhere to the 

previously discussed rules. Figure 6.23 and Figure 6.24, taken from data collection runs on I-70 

west of Abilene, KS, show the effects of dowel baskets on the reported trace plots. 

 

 
Figure 6.23: Dowel Basket Interaction Along a Center Joint 

 

The dashed box denotes the return associated with a pair of dowel baskets, one on the 

right and one on the left. This return characteristic occurs only on the center joint because there 

are baskets on both sides of the longitudinal joint. The trace shape is typically wider than the 

characteristic tie bar shape and occurs at regular intervals during the data collection run. In this 

example, there are 7 tie bars on 24 inch centers in each slab, with the slab beginning and end 

marked by the dowel basket returns seen at the transverse joints. 

The dowel basket interaction on shoulder joints is slightly different than the center joint. 

Figure 6.24 shows an example of a typical dowel basket artifact found in a data collection run. 



71 

 
Figure 6.24: Dowel Basket Interaction Along a Shoulder Joint 

 

Instead of both traces forming the characteristic dowel basket hump, only one trace 

shows a return and the other drops off of the plot. This occurs because there are no dowel baskets 

in the shoulders, so only the sensor nearest to the center of the roadway will pick up a return 

from a dowel basket. These dowel basket returns are typically marked as though there is a tie bar 

there. This occurs because the bar finding algorithm is simple and does not take dowel basket 

interactions into account. It is important to keep this in mind when interpreting histograms, 

which are covered in the next section. 

Histograms 

A second type of plots created by the report generation process is histograms for each 

data collection channel. The histograms provide a visual representation of the statistical 

properties of the steel placement of the entire data collection run. These plots present the bar 

placement in a way that makes characterizing the entire data run simple without having to look 

through pages of trace plots. In effect, the histograms are summaries of the bars found by the 

reporting software. Figure 6.25 and Figure 6.26 show an example of histograms from a 

longitudinal joint with well-placed steel. 
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Figure 6.25: Example Histogram from Left Sensor 

 

 
Figure 6.26: Example Histogram from Right Sensor 
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The typical distribution of the histograms is Gaussian with random placement variations 

caused by minor insertion irregularities, viscosity and composition of the concrete, and bar 

settling due to the vibration process. The ideal plots would be spikes at 6 inches below the 

surface which would be a Gaussian distribution with a mean of six and a variance of zero. The 

histograms also give a sense of steel uniformity. This can indicate whether there has been an 

irregularity of the steel inserter operation. General trends in the steel placement can also be seen 

from these plots. If the mean value of the right sensor is lower than that of the left sensor, it can 

be gathered that most of the bars are either tipped, shifted to the left, or a combination of both. 

Distributions other than Gaussian have been observed. These cases require more study of the 

trace plots to determine the specifics of the steel placement. Outliers like those seen in Figure 

6.25 and Figure 6.26 at depths of 4 and 11 inches sometimes result from the effects of transverse 

dowel joints. In the case for these figures, the outliers were caused by dowel joints. Deviations 

from the Gaussian distribution are usually a result of steel inserter mechanical failure. 

 
Repeatability 

A continuing theme during the design and testing of the mapping device was repeatability 

of findings. This was particularly true for the project sponsors and potential customers of the 

device. Occasional tests were run over the same joints to ensure that readings could be replicated 

to an appropriate degree. Figure 6.27 through Figure 6.32 show the results of a second run that 

was taken of the first joint discussed in the Sample Runs section. 
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Figure 6.27: Repeatability Example of Condensed Plot of I-70 Center Joint 
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Figure 6.28: Repeatability Example of Expanded Plot of I-70 Center Joint (1/3) 
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Figure 6.29: Repeatability Example of Expanded Plot of I-70 Center Joint (2/3) 
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Figure 6.30: Repeatability Example of Expanded Plot of I-70 Center Joint (3/3) 
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Figure 6.31: Repeatability Example of Left Sensor Histogram 

 

 
Figure 6.32: Repeatability Example of Right Sensor Histogram 
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The trace plot irregularities can be seen easily in the condensed plot for some of the 

outlier peaks and large features. The features that stand out, those above a depth of 7 inches, are 

repeated in both instances of the plot. The expanded plots show similar steel placement between 

the two runs with minor differences most likely caused by deviation from the center of the joint 

during the run. The histograms are also good indicators of how well the device performed when 

compared with the earlier run. Visual inspection shows that both sets of histograms exhibit the 

same distributions, as should be expected from a run over the same joint. Minor differences in 

the trace plots and histograms are caused mainly by deviation from the center of the joint during 

data collection. This pair of compared reports testifies to the precision of the device and the 

ability for it to generate reliable results. 



80 

Chapter 7: Future Work 

This research provides a solid foundation for planned commercialization of the device 

and for future improvement and modification of the reporting and control software. The current 

two-sensor version of the device provides plots that give a general idea of the steel reinforcement 

orientation. Adding additional sensors will allow for a single pass to generate enough data for 

determining absolute bar orientation and bar deformation. The limited proprietary information 

available about the customized covermeter electronics prevents modifying the existing hardware 

to work with five sensors. Wiring the devices together without acquiring further knowledge 

about the electronics is not prudent based on the potential for overloading output pins from the 

master board and causing damage to the equipment. 

Another extended application is taking the current cart platform and porting it to a system 

that can be mounted behind a paver. This modification would allow the paver’s operator to check 

the performance of the steel inserter in real-time so that a misplaced bar or equipment 

malfunction would have a minimal effect on their operation and would virtually eliminate costly 

remedial actions such as ‘stitching.’ The data collection would also allow paving companies to 

keep a record of steel placement as proof of compliance with regulations and stipulations of the 

paving contract. The device measures and records data at a far greater rate than a person can by 

hand with a single covermeter and yields a more accurate representation of the steel placement. 

This extension could also be used in a feedback loop that would control the inserter depth. Data 

from the device would be automatically transformed into commands to make minor corrections 

to the mechanical operation of the inserter to yield higher precision steel placement. 

The main user interface and data acquisition software was originally authored for a 

single-sensor version of the device that did not utilize a microprocessor as a communications 

interface. The reuse of the software led to many artifacts of previous versions that clutter the user 

interface and cause the program to not run as efficiently as it could. Rewriting the program in a 

different, preferably faster, language would allow for the user interface to be cleaner and easier 

to use and would provide more real-time functionality to the software. An embedded approach 

would be faster and more capable of handling the data real-time. It would also eliminate the need 
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for a laptop running the Windows operating system, which is not well suited for real-time 

software. Battery life of the laptop is currently the limiting factor of how long an operator can 

take data in the field. Additional plots such as a color intensity chart showing the orientation and 

depth of the bars would be a valuable addition to the software. The bar finding algorithm 

contained in the reporting software could also be enhanced to filter out the effects of dowel 

basket interaction in the collection runs. 

A substantial part of the cost associated with the device is the customized covermeters 

provided by Kolectric. Additional research on magneto-resistive sensors and other solid-state 

devices is needed so that the proprietary covermeter electronics and coils can be replaced by 

much cheaper components. The solid-state magnetic sensors have a fundamental difference in 

their measurement techniques. Coils sense the change (d/dt) of magnetic fields and the magneto-

resistive sensors detect static magnetic fields. Preliminary testing showed that bar magnetization 

caused significant errors when trying to sense steel with the solid-state sensors. Testing also 

revealed that the sensors may not be capable of being subjected to the large send magnetic field 

used to generate the magnetic response. This was evident in the magnetic film changing polarity 

and measurement accuracy degrading over time. Using solid-state sensors is advantageous since 

they are smaller and can potentially be placed in a higher density grid than wire coils can. The 

interference caused by one magnetic sensor on others has yet to be determined. This could be the 

limiting factor in how dense a sensor array could be. An array configuration would generate 

larger amounts of data for less cost and would yield plots with much higher resolution. This 

higher resolution would allow for creating a tremendously accurate 3-D model of the orientation 

and deformation of the reinforcement steel. Having control of the technology involved would 

also allow for greater flexibility in scaling the device to higher numbers of sensors for different 

applications. 
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Chapter 8: Conclusions 

The research discussed in this report outlines the development of a multiple-sensor device 

for mapping the depth, location, and orientation of reinforcement steel in concrete pavement. 

Challenges with multiple sensor interference and calibration were encountered during the course 

of the development. Multi-sensor calibration measurements were taken and used to generate a 

polynomial that translated the magnitude of a magnetic sensor return into a measure of steel 

depth. Sensor drift in the covermeters caused errors in the translated bar depth readings and 

required that an on-the-fly calibration technique be developed and implemented. An embedded 

communications interface using the MPC555 microprocessor was designed to enhance device 

scalability and extensibility. This interface also alleviated the computational load on the 

Toughbook which allowed the data acquisition and real-time feedback portions of the user 

interface application to run faster. 

Initial experimentation showed that relative movement between the sensor pucks resulted 

in DC shifts in the sensor readings that were detrimental to the accuracy of the calculated depth 

readings. The solution to this problem involved fabricating a rigid, non-metallic enclosure to 

lock the pucks in place relative to one another. This structure also allowed for taking the sensor 

bar out of the tray of the cart to perform reliable calibrations. 

Calibration of the device required some effort due to multiple factors. The first was 

finding a way to reliably take distance measurements. The solution to this problem was creating 

a wooden calibration jig with slots cut at predetermined depth values. These values were then 

used to generate a second-order polynomial that could translate between raw sensor data and the 

depth of the measured bar. The second issue was that of the puck ferromagnetic cores breaking 

loose from their epoxy containment. This caused the cores to shift during on-the-fly calibrations, 

thus causing erroneous infinity calibration readings and incorrect depth calculations. The last 

problem was that of the sensor drift over time. This phenomenon was first observed during 

multiple hour stability tests in the lab. Experiments were run to test the effects of temperature, 

direct sunlight, and puck orientation. No conclusions could be gleaned from the results of these 

tests. The solution to the drift problem was to incorporate the on-the-fly calibration routine into 
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the data acquisition and reporting process. The user interface software requires that an on-the-fly 

calibration be done at the beginning and end of every data collection run. This allows the 

reporting software to linearly interpolate between the two values to generate depth readings that 

are as accurate as possible. 

The embedded MPC555 processor allowed for the elimination of costly third-party 

electronics. The processor handled the input of the two optical encoders using the fast quadrature 

decode functionality in the TPUB sub processor. The MPC555 also controlled all serial 

communication between the peripheral devices and the user interface computer. This allowed all 

the serial communications from the covermeters and the GPS receiver and the distance values 

calculated from the encoder pulses to be combined into a single serial channel. This is 

advantageous from the standpoint of having a remote computer controlling the system in the 

future. The serial cable can be replaced by a wireless link which would allow the controls to be 

in the cab of a truck or on top of the paving machine. The MPC555 also offers scalability options 

if more covermeters are added in the future. 

The research resulted with a viable product that could potentially have substantial market 

value. The device operates as desired and has features that incorporate real-time data 

visualization, post data collection reporting routines, and procedures for geospatially linking the 

generated reports. This level of refinement involved detailed exchanges between the developers 

and the research sponsors about what would make the device attractive for routine use on the 

construction site. At the time of writing this report, work was being done with the Advanced 

Manufacturing Institute of Kansas State University for possible marketing and production of the 

mapping device.  
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Appendix A: Kansas Concrete Construction Specifications 

 
Reproduced from [1]  

Figure A.1: KDOT Standard Concrete Construction Specification 2006 
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Appendix B: Proposed Kansas Concrete Construction 
Specifications 

 

 

 

 

 

 

 

 

 

 

See next page. 
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Reproduced from [2]  

Figure B.1: KDOT Conceptual Dowel Bar Specification 
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Reproduced from [3]  

Figure B.2: KDOT Conceptual Tie Bar Specification 
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Appendix C: Embedded Source Files 

controlAux.c 
//------------------------------------------------ 
// File:      controlAux.c 
// Description: Source file that holds the helper 
//      functions used by the main control 
//      loop to handle digital I/O and 
//      the generation of ASCII coded 
//      hexadecimal values for the 
//      encoder output. 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#include "controlAux.h" 
 
// initialize the digital I/O pins for 
// controlling the covermeters 
void initIO() { 
 
 // set pin 5 of the MIOS1 general 
 // purpose I/O to be an output 
 // MASTER_OUT 
 MIOSDDR |= 0x1 << MASTER_OUT; 
 
 // set pin 5 to a '1' 
 MIOSDR |= 0x1 << MASTER_OUT; 
 
 // set pin 7 of the MIOS1 general 
 // purpose I/O to an output 
 // SLAVE1_OUT 
 MIOSDDR |= 0x1 << SLAVE1_OUT; 
 
 // set pin 7 to a '1' 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
 
 // set pin 9 of the MIOS1 general 
 // purpose I/O to be an output 
 // SLAVE2_OUT 
 MIOSDDR |= 0x1 << SLAVE2_OUT; 
 
 // set pin 9 to a '1' 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
 
 // set pin 6 of the MIOS1 general 
 // purpose I/O to be an input 
 // MASTER_IN 
 MIOSDDR &= ~(0x1 << MASTER_IN); 
 
 // set pin 8 of the MIOS1 general 
 // purpose I/O to be an input 
 // SLAVE1_IN 
 MIOSDDR &= ~(0x1 << SLAVE1_IN); 
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 // set pin 10 of the MIOS1 general 
 // purpose I/O to be an input 
 // SLAVE2_IN 
 MIOSDDR &= ~(0x1 << SLAVE2_IN); 
} 
 
 
// ensure that the covermeters are turned 
// off, regardless of their current state 
void clearMeters() { 
  
 // bring outputs low 
 MIOSDR &= ~(0x1 << MASTER_OUT); 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // wait for 1 second 
 pauseNSeconds(1); 
 
 // force outputs high 
 MIOSDR |= 0x1 << MASTER_OUT; 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
  
 // wait for 6 seconds 
 pauseNSeconds(6); 
 
 // bring outputs low 
 MIOSDR &= ~(0x1 << MASTER_OUT); 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // wait for 2 seconds 
 pauseNSeconds(2); 
 
 // force outputs high 
 MIOSDR |= 0x1 << MASTER_OUT; 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
} 
 
 
// generate a string from an encoder value (24-bit) 
// and places it in the string pointed to by refPtr 
void genEncoderString(UINT enc, UCHAR *refPtr) { 
 UCHAR *encChar; 
 
 encChar = (UCHAR *)&enc; 
 
 // discard the top 8 bits 
 encChar += 1; 
 
 // adjust the most significant nibble of enc 
 // character is 0-9 
 if((((*encChar) >> 4) + 0x30) < 0x3A) { 
  *refPtr = ((*encChar) >> 4) + 0x30; 
 } 
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 // character is A-F 
 else { 
  *refPtr = ((*encChar) >> 4) + 0x37; 
 } 
 
 // adjust the second most significant nibble of enc 
 // character is 0-9 
 if((((*encChar) & 0x0F) + 0x30) < 0x3A) { 
  *(refPtr + 1) = ((*encChar) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  *(refPtr + 1) = ((*encChar) & 0x0F) + 0x37; 
 } 
 
   
 // adjust the third most significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 1)) >> 4) + 0x30) < 0x3A) { 
  *(refPtr + 2) = ((*(encChar + 1)) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  *(refPtr + 2) = ((*(encChar + 1)) >> 4) + 0x37; 
 } 
 
 // adjust the third least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 1)) & 0x0F) + 0x30) < 0x3A) { 
  *(refPtr + 3) = ((*(encChar + 1)) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  *(refPtr + 3) = ((*(encChar + 1)) & 0x0F) + 0x37; 
 } 
 
 
 // adjust the second least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 2)) >> 4) + 0x30) < 0x3A) { 
  *(refPtr + 4) = ((*(encChar + 2)) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  *(refPtr + 4) = ((*(encChar + 2)) >> 4) + 0x37; 
 } 
 
 // adjust the least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 2)) & 0x0F) + 0x30) < 0x3A) { 
  *(refPtr + 5) = ((*(encChar + 2)) & 0x0F) + 0x30; 
 } 
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 // character is A-F 
 else { 
  *(refPtr + 5) = ((*(encChar + 2)) & 0x0F) + 0x37; 
 } 
} 
 
 
// pause operation for a given amount of time (in seconds) 
void pauseNSeconds(UCHAR n) { 
 UCHAR i; 
 UINT j; 
 
 for(i = 0; i < n; i++) { 
  for(j = 0; j < SECOND_PAUSE; j++) { 
   // wait 
  } 
 } 
} 
 
 
// turn on all meters (with appropriate timing) 
void onMeters() { 
 
 // turn on the slave devices first 
 onSlaves(); 
 
 // wait for slave devices to turn on 
 pauseNSeconds(6); 
 
 // turn on the master device 
 onMaster(); 
 
 // wait for master device to turn on 
 // before relenquishing control of 
 // the processor 
 pauseNSeconds(6);  
} 
 
 
// turn on the master covermeter 
void onMaster() { 
 
 // bring master output low 
 MIOSDR &= ~(0x1 << MASTER_OUT); 
 
 // pause for 1 second 
 pauseNSeconds(1); 
 
 // force master output high 
 MIOSDR |= 0x1 << MASTER_OUT; 
} 
 
 
// turn on the slave covermeters 
void onSlaves() { 
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 // bring the slave outputs low 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // pause for 1 second 
 pauseNSeconds(1); 
 
 // force the slave outputs high 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
} 
 
 
// turn on slave1 covermeter 
void onSlave1() { 
  
 // bring slave1's output low 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 
 // pause for 1 second 
 pauseNSeconds(1); 
 
 // force slave1's output high 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
} 
 
 
// turn on slave2 covermeter 
void onSlave2() { 
  
 // bring slave2's output low 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // pause for 1 second 
 pauseNSeconds(1); 
 
 // force slave2's output high 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
} 
 
 
// turn off all meters 
void offMeters() { 
 
 // turn off the master device 
 offMaster(); 
 
 // turn off the slave devices 
 offSlaves(); 
} 
 
 
// turn off the master covermeter 
void offMaster() { 
 
 // bring master output low 
 MIOSDR &= ~(0x1 << MASTER_OUT); 
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 // pause for 2 seconds 
 pauseNSeconds(2); 
 
 // force master output high 
 MIOSDR |= 0x1 << MASTER_OUT; 
} 
 
 
// turn off the slave covermeters 
void offSlaves() { 
 
 // bring the slave outputs low 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // pause for 2 seconds 
 pauseNSeconds(2); 
 
 // for the slave outputs high 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
} 
 
 
// turn off slave1 covermeter 
void offSlave1() { 
  
 // bring slave1's output low 
 MIOSDR &= ~(0x1 << SLAVE1_OUT); 
 
 // pause for 2 seconds 
 pauseNSeconds(2); 
 
 // force slave1's output high 
 MIOSDR |= 0x1 << SLAVE1_OUT; 
} 
 
 
// turn off slave2 covermeter 
void offSlave2() { 
  
 // bring slave2's output low 
 MIOSDR &= ~(0x1 << SLAVE2_OUT); 
 
 // pause for 2 seconds 
 pauseNSeconds(2); 
 
 // force slave2's output high 
 MIOSDR |= 0x1 << SLAVE2_OUT; 
} 
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controlAux.h 
//------------------------------------------------ 
// File:      controlAux.h 
// Description: Header file that holds the 
//      prototypes for functions used 
//      by the main control 
//      loop to handle digital I/O and 
//      the generation of ASCII coded 
//      hexadecimal values for the 
//      encoder output. 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#ifndef CONTROLAUX_H 
#define CONTROLAUX_H 
 
#include "mpc555.h" 
#include "defines.h" 
 
// initialize the digital I/O pins for 
// controlling the covermeters 
void initIO(); 
 
// ensure that the covermeters are turned 
// off, regardless of their current state 
void clearMeters(); 
 
// generate a string from an encoder value (24-bit) 
// and places it in the string pointed to by refPtr 
void genEncoderString(UINT enc, UCHAR *refPtr); 
 
// pause operation for a given amount of time (in seconds) 
void pauseNSeconds(UCHAR n); 
 
// turn on all meters (with appropriate timing) 
void onMeters(); 
 
// turn on the master covermeter 
void onMaster(); 
 
// turn on the slave covermeters 
void onSlaves(); 
 
// turn on slave1 covermeter 
void onSlave1(); 
 
// turn on slave2 covermeter 
void onSlave2(); 
 
// turn off all meters 
void offMeters(); 
 
// turn off the master covermeter 
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void offMaster(); 
 
// turn off the slave covermeters 
void offSlaves(); 
 
// turn off slave1 covermeter 
void offSlave1(); 
 
// turn off slave2 covermeter 
void offSlave2(); 
 
#endif // CONTROLAUX_H 
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controlMain.c 
//------------------------------------------------ 
// File:      controlMain.c 
// Description: Source file that holds the 
//      main control loop and controls 
//      module initialization 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#include "controlAux.h" 
#include "tpuUART.h" 
#include "tpuFQD.h" 
#include "defines.h" 
 
// the main function housing the main control 
// loop for encoder & serial data capture 
int main() { 
 
 // buffers for receiving the meter data 
 UCHAR receivedMaster[METER_MESSAGE_LENGTH]; 
 UCHAR receivedSlave1[METER_MESSAGE_LENGTH]; 
 
 // buffers for holding the meter data 
 // to be transmitted 
 UCHAR toBeTransmittedMaster[METER_MESSAGE_LENGTH]; 
 UCHAR toBeTransmittedSlave1[METER_MESSAGE_LENGTH]; 
 
 // buffer for holding the GPS string 
 // 74 is the max size of GPRMC 
 UCHAR receivedGPS[GPS_COUNT]; 
 
 // buffer for holding the GPS string to 
 // be transmitted 
 UCHAR toBeTransmittedGPS[GPS_COUNT]; 
 
 // messages for setting up the GPS receiver 
 UCHAR disableMessage[11] = {'$', 'P', 'G', 'R', 'M', 'O', 
         ',', ',', '2', CR, LF}; 
 UCHAR enableGPRMC[16] = {'$', 'P', 'G', 'R', 'M', 'O',  
      ',', 'G', 'P', 'R', 'M', 'C', 
      ',', '1', CR, LF}; 
 
 // index variables for correctly placing 
 // the received bytes 
 UCHAR iMaster = 0, iSlave1 = 0, iGPS = 0; 
 
 // command received from the PC 
 UCHAR receivedPC = 0; 
 
 // index variable for 'for' loops 
 UCHAR i; 
 
 // status flag of the transmit channel 
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 UCHAR txStatus = TX_NOT_BUSY; 
 
 // flag to indicate whether the encoders have 
 // been latched after the most recent receipt 
 // of meter data 
 UCHAR encLatched = FALSE; 
 
 // current position to be transmitted 
 UCHAR txPosition; 
 
 // length of the GPS string 
 UCHAR GPSCount; 
 
 // buffer for transmitting encoder/covermeter string 
 UCHAR toBeTransmittedMeter[METER_COUNT]; 
 
 // set up the values in the encoder/covermeter string 
 // that do not change 
 toBeTransmittedMeter[L_ENCODER_START - 1] = TAB; 
 toBeTransmittedMeter[MASTER_START - 1] = TAB; 
 toBeTransmittedMeter[SLAVE1_START - 1] = TAB; 
 toBeTransmittedMeter[METER_COUNT - 2] = CR; 
 toBeTransmittedMeter[METER_COUNT - 1] = LF; 
 
 // reference pointer to the encoder/covermeter string 
 UCHAR *meterReference = toBeTransmittedMeter; 
 
 // flags for determining when a message 
 // is complete 
 UCHAR masterFlag, slave1Flag, GPSFlag; 
 masterFlag = FALSE; 
 slave1Flag = FALSE; 
 GPSFlag = FALSE; 
 
 // flag for determining whether to transmit 
 // data to the PC 
 UCHAR transmitFlag; 
  
 // initialize transmitFlag to true (transmit by default) 
 transmitFlag = TRUE; 
  
 // initialize the digital I/O to control the covermeters 
 initIO(); 
 
 // initialize the clock and disable interrupts 
 // for TPUA 
 initTPUA(); 
 
 // initialize the clock and disable interrupts 
 // for TPUB 
 initTPUB(); 
 
 // initialize TPUB to handle two pairs 
 // of Fast Quadrature Decode (FQD) 
 initFQD(); 
 
 // initialize the serial link to the PC 



99 

 initTx(PC_TX, PC_BAUD); 
 initRx(PC_RX, PC_BAUD); 
 
 // initialize the master receiver 
 initRx(SLAVE1, METER_BAUD); 
 
 // initialize the slave receiver 
 initRx(MASTER, METER_BAUD); 
 
 // initialize the serial link to the GPS 
 initTx(GPS_TX, GPS_BAUD); 
 initRx(GPS_RX, GPS_BAUD); 
 
 // disable all GPS messages 
 txString(GPS_TX, disableMessage, 11); 
 
 // enable the $GPRMC output message 
 // (Recommended Minimum Specific GPS/TRANSIT Data (RMC) 
 txString(GPS_TX, enableGPRMC, 16); 
 
 
 // main control loop 
 while(1) { 
 
  // update the encoder values (to take care 
  // of overflow & underflow problems) 
  updateEncoders(); 
 
 
  // if transmit flag is true, then data 
  // needs to be gathered and sent 
  if(transmitFlag == TRUE) { 
 
   // MASTER data receive code 
   // if a new character has been received 
   // from the master then put it in the buffer 
   if(charReady(MASTER) == 1) { 
 
    // place the character in the buffer 
    receivedMaster[iMaster] = rxChar(MASTER); 
 
    // if the end of the message has been reached, 
    // set the flag 
    if(receivedMaster[iMaster] == LF) { 
     
     // a whole message has been received 
     if(iMaster == (METER_MESSAGE_LENGTH-1)) { 
 
      // set the status flag 
      masterFlag = TRUE; 
 
      // copy the new value into the 
      // intermediate buffer 
      for(i=0; i < METER_MESSAGE_LENGTH;   
         i++) { 
       toBeTransmittedMaster[i] =   
        receivedMaster[i]; 
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      } 
     } 
 
     // reset the index variable 
     iMaster = 0; 
    } 
 
    // not at the end of a message 
    else { 
     
     // increment the index variable 
     iMaster++; 
    } 
   } 
 
   
   // SLAVE1 data receive code 
   // if a new character has been received 
   // from slave1 then put it in the buffer 
   if(charReady(SLAVE1) == 1) { 
 
    // place the character in the buffer 
    receivedSlave1[iSlave1] = rxChar(SLAVE1); 
 
    // if the end of the message has been reached, 
    // set the flag 
    if(receivedSlave1[iSlave1] == LF) { 
     
     // a whole message has been received 
     if(iSlave1 == (METER_MESSAGE_LENGTH-1)) { 
 
      // set the status flag 
      slave1Flag = TRUE; 
 
      // copy the new value into the 
      // intermediate buffer 
      for(i=0; i < METER_MESSAGE_LENGTH;   
         i++) { 
       toBeTransmittedSlave1[i] =   
        receivedSlave1[i]; 
      } 
     } 
 
     // reset the index variable 
     iSlave1 = 0; 
    } 
 
    // not at the end of a message 
    else { 
     
     // increment the index variable 
     iSlave1++; 
    } 
   } 
 
 
   // if all buffers have valid results and the 
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   // encoder values haven't been latched, 
   // then latch them 
   if((masterFlag == TRUE) && (slave1Flag == TRUE) && 
    (encLatched == FALSE)) { 
   
    // latch the current values of the encoders 
    latchEncoders(); 
 
    // set the encoder latched flag 
    encLatched = TRUE; 
   } 
 
 
   // if all buffers have valid results, 
   // the output string needs to be created 
   if((masterFlag == TRUE) && (slave1Flag == TRUE) && 
    (txStatus == TX_NOT_BUSY)) { 
 
    // gain control of the transmit channel 
    txStatus = TX_BUSY_METER; 
 
    // place the right encoder value in the 
    // output string 
    genEncoderString(encoderR, meterReference +   
          R_ENCODER_START); 
 
    // place the left encoder value in the 
    // output string 
    genEncoderString(encoderL, meterReference +   
          L_ENCODER_START); 
 
    // place the meter data in the output string 
    for(i = 0; i < METER_MESSAGE_LENGTH - 2; i++) { 
 
     // copy the master's characters 
     toBeTransmittedMeter[i + MASTER_START] =  
         toBeTransmittedMaster[i]; 
 
     // copy slave1's characters 
     toBeTransmittedMeter[i + SLAVE1_START] =  
         toBeTransmittedSlave1[i]; 
 
    } 
 
    // clear the character index variable 
    txPosition = 0; 
 
    // reset the flags 
    masterFlag = FALSE; 
    slave1Flag = FALSE; 
    encLatched = FALSE; 
   } 
 
 
   // if a data string (encoders & meters)  
   // is being transmitted, send out  
   // a character 
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   if(txStatus == TX_BUSY_METER) { 
    
    // if channel is ready to send, send a    
   // character 
    if(CTS(PC_TX) == 1) { 
 
     // send the next character 
     txChar(PC_TX,       
      toBeTransmittedMeter[txPosition]); 
 
     // increment the index variable 
     txPosition++; 
 
     // if the end of the transmission 
     // has occurred, relenquish control 
     // of the transmission channel 
     if(txPosition == METER_COUNT) { 
 
      // set status to not busy 
      txStatus = TX_NOT_BUSY; 
     } 
    } 
   } 
 
 
   // GPS data receive code 
   // if a new character has been received 
   // from the GPS receiver then put it in the buffer 
   if(charReady(GPS_RX) == 1) { 
 
    // place the character in the buffer 
    receivedGPS[iGPS] = rxChar(GPS_RX); 
 
    // if the end of the message has been reached, 
    // set the flag 
    if(receivedGPS[iGPS] == LF) { 
     
     // if a whole message has been received, 
     // send it to the PC 
     if(receivedGPS[0] == '$') { 
      
      // transmit the GPS string 
      //txString(PC_TX, receivedGPS,  
     //       iGPS + 1); 
 
      GPSCount = iGPS + 1; 
         
      // set the GPS flag 
      GPSFlag = TRUE; 
 
      // copy the received string into   
     // the output buffer 
      for(i = 0; i < GPS_COUNT; i++) { 
       toBeTransmittedGPS[i] =   
        receivedGPS[i]; 
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       // leave loop early if    
      // message doesn't 
       // take up the whole buffer 
       if(receivedGPS[i] == LF) { 
        i = GPS_COUNT; 
       } 
      } 
     } 
 
     // reset the index variable 
     iGPS = 0; 
    } 
 
    // not at the end of a message 
    else { 
     
     // increment the index variable 
     iGPS++; 
    } 
   } 
 
 
   // if the channel is clear and a GPS 
   // string has been completed, transmit 
   // the GPS string 
   if((GPSFlag == TRUE) && txStatus == TX_NOT_BUSY) { 
 
    // take control of the transmit channel 
    txStatus = TX_BUSY_GPS; 
 
    // clear the GPS flag 
    GPSFlag = FALSE; 
 
    // clear the character index variable 
    txPosition = 0; 
   } 
 
   
   // if a GPS string is being transmitted, 
   // send out a character 
   if(txStatus == TX_BUSY_GPS) { 
    
    // if the channel is clear, send a character 
    if(CTS(PC_TX) == 1) { 
 
     // send the next character 
     txChar(PC_TX,       
     toBeTransmittedGPS[txPosition]);  
 
     // increment the index variable 
     txPosition++; 
 
     // if the end of the transmission 
     // has occurred, relenquish control 
     // of the transmission channel 
     if(txPosition == GPSCount) { 
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      // set status to not busy 
      txStatus = TX_NOT_BUSY; 
     } 
    } 
   } 
  }  // end transmitFlag if statement 
 
 
  // if a byte has been received from the 
  // PC, take the appropriate action 
  if(charReady(PC_RX) == 1) { 
    
   // put the received byte in the 
   // received buffer 
   receivedPC = rxChar(PC_RX); 
 
   // take the appropriate action 
   switch(receivedPC) { 
 
    // turn on meters (with correct timing) 
    case ON_METERS: 
 
     // turn on all meters 
     onMeters(); 
     break; 
 
 
    // turn on the master 
    case ON_MASTER: 
 
     // turn on master 
     onMaster(); 
     break; 
 
 
    // turn on the slaves 
    case ON_SLAVES: 
      
     // turn on slaves 
     onSlaves(); 
     break; 
 
     
    // turn on slave1 
    case ON_SLAVE1: 
 
     // turn on slave1 
     onSlave1(); 
     break; 
 
 
    // turn on slave2 
    case ON_SLAVE2: 
 
     // turn on slave2 
     onSlave2(); 
     break; 
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    // turn off all the meters 
    case OFF_METERS: 
 
     // turn off all meters 
     offMeters(); 
     break; 
 
 
    // turn off the master 
    case OFF_MASTER: 
      
     // turn off master 
     offMaster(); 
     break; 
 
 
    // turn off the slaves 
    case OFF_SLAVES: 
 
     // turn off slaves 
     offSlaves(); 
     break; 
 
 
    // turn off slave1 
    case OFF_SLAVE1: 
 
     // turn off slave1 
     offSlave1(); 
     break; 
 
 
    // turn off slave2 
    case OFF_SLAVE2: 
 
     // turn off slave2 
     offSlave2(); 
     break; 
 
 
    // reset the encoders 
    case RESET_ENCODERS: 
 
     // call the reset encoders routine 
     resetEncoders(); 
     break; 
 
     
    // turn on data transmission 
    case TRANSMIT_DATA_ON: 
      
     // clear the index variables 
     iMaster = 0; 
     iSlave1 = 0; 
     iGPS = 0; 
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     // clear the transmit status flag 
     txStatus = TX_NOT_BUSY; 
 
     // clear the encoder latched flag 
     encLatched = FALSE; 
 
     // clear the receipt flags 
     masterFlag = FALSE; 
     slave1Flag = FALSE; 
     GPSFlag = FALSE; 
 
     // set the transmit data flag 
     transmitFlag = TRUE; 
     break; 
 
 
    // turn off data transmission 
    case TRANSMIT_DATA_OFF: 
 
     // clear the transmit data flag 
     transmitFlag = FALSE; 
     break; 
 
 
    // default case, do nothing 
    // (command not recognized) 
    default: 
     break; 
   } 
  } 
 
 
 }  // end of control loop 
     
 return(0); 
} 
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defines.h 
//------------------------------------------------ 
// File:      defines.h 
// Description: Header file that defines constants 
//      and data types used for the 
//      MPC555 communication interface. 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#ifndef DEFINES_H 
#define DEFINES_H 
 
// sets the bauds to the appropriate value based 
// on whether the debugger is being used 
// (comment out the following line for operation without debugger) 
//#define DEBUG 
 
#ifdef DEBUG 
// 5MHz TPU clock with debugger 
#define PC_BAUD    130 // (38.4k with debugger) 
#define METER_BAUD 260 // (19.2k with debugger) 
#define GPS_BAUD  1042 // (4800  with debugger) 
// constant in the for loop that results in 
// a one second delay 
#define SECOND_PAUSE 455620 
 
#else 
// 10MHz TPU clock without debugger 
//#define PC_BAUD    260 // (38.4k without debugger) 
#define PC_BAUD 521 // (19.2k without debugger) 
#define METER_BAUD 521 // (19.2k without debugger) 
#define GPS_BAUD  2083 // (4800  without debugger) 
// constant in the for loop that results in 
// a one second delay 
#define SECOND_PAUSE 911240  
 
#endif // DEBUG 
 
 
// defines the channels used for each device 
#define MASTER 8 
#define SLAVE1 4 
#define PC_TX  1 
#define PC_RX  3 
#define GPS_TX 7 
#define GPS_RX 5 
 
// boolean values 
#define TRUE 1 
#define FALSE 0 
 
// carriage return character 
#define CR 0x0D 
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// line feed character 
#define LF 0x0A 
 
// tab character 
#define TAB 0x09 
 
// define the 8-bit characters 
#define UCHAR unsigned char 
#define VUCHAR volatile unsigned char 
 
// define the 16-bit characters 
#define USHORT unsigned short 
#define VUSHORT volatile unsigned short 
 
// define the 32-bit characters 
#define UINT unsigned int 
#define VUINT volatile unsigned int 
 
// defines for the arbitration of the single 
// transmit channel 
#define TX_BUSY_METER 'M' 
#define TX_BUSY_GPS   'G' 
#define TX_NOT_BUSY   'N' 
 
// reference variables for string placement 
// (for more streamlined system scaling later) 
#define R_ENCODER_START 0 
#define L_ENCODER_START 7 
#define MASTER_START 14 
#define SLAVE1_START 23 
#define METER_COUNT 33 
#define GPS_COUNT 74 
 
// length of the message sent by the meters 
#define METER_MESSAGE_LENGTH 10 
 
// digital I/O pins for turning meters on/off 
#define MASTER_OUT 5 
#define MASTER_IN  6 
#define SLAVE1_OUT 7 
#define SLAVE1_IN  8 
#define SLAVE2_OUT 9 
#define SLAVE2_IN 10 
 
// define shorter names for the MIOS registers 
// MIOS data register 
#define MIOSDR  MIOS1.MPIOSM32DR.R 
// MIOS data direction register 
#define MIOSDDR MIOS1.MPIOSM32DDR.R 
 
 
/* command bytes from the PC */ 
 
// turn on all meters (with correct timing) 
// (ASCII 0) 
#define ON_METERS 0x30 
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// turn on master (ASCII 1) 
#define ON_MASTER 0x31 
// turn on both slaves (ASCII 2) 
#define ON_SLAVES 0x32 
// turn on slave1 (ASCII 3) 
#define ON_SLAVE1 0x33 
// turn on slave2 (ASCII 4) 
#define ON_SLAVE2 0x34 
// turn off all meters (ASCII 5) 
#define OFF_METERS 0x35 
// turn off master (ASCII 6) 
#define OFF_MASTER 0x36 
// turn off slaves (ASCII 7) 
#define OFF_SLAVES 0x37 
// turn off slave1 (ASCII 8) 
#define OFF_SLAVE1 0x38 
// turn off slave2 (ASCII 9) 
#define OFF_SLAVE2 0x39 
 
// reset the encoders (ASCII A) 
#define RESET_ENCODERS 0x41 
// turn on data transmission (ASCII S) 
#define TRANSMIT_DATA_ON 0x53 
// turn off data transmission (ASCII D) 
#define TRANSMIT_DATA_OFF 0x44 
 
/* end - command bytes from PC */ 
 
#endif // DEFINES_H 
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tpuFQD.c 
//------------------------------------------------ 
// File:      tpuFQD.c 
// Description: Source file that holds the helper 
//      functions used to handle the fast 
//      quadrature decoding of the 
//      two optical encoders. 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
// Note:     Register initializations in 
//      initFQD() were written in 
//      collaboration with 
//      Justin S. Williams at Kansas 
//              State University  
//------------------------------------------------ 
#include "tpuFQD.h" 
 
// initialize the clock of TPUB and disable interrupts 
void initTPUB() { 
 
 // TCR1P = 0 (Divide TCR1 by 1) 
 // PSCK = X (Fsys / 2 is input to TCR1 prescaler (enhanced)) 
 //   (10MHz / 2 = 5MHz (with debugger)) 
 //   (20MHz / 2 = 10MHz (w/o debugger)) 
 TPU_B.TPUMCR.R = 0x0040; 
 
 // PWOD = 1 (Prescaler write-once disabled) 
 // EPSCKE = 1 (Enable enhanced prescaler) 
 TPU_B.TPUMCR3.R = 0x0140; 
 
 // disable interrupts 
 TPU_B.CIER.R = 0x0000;  
} 
 
// initialize TPUB channels (6-7)(R) and (10-11)(L)  
// in pairs to perform the Fast Quadrature 
// Decode (FQD) function 
void initFQD() { 
 int k; 
 
 baseR = 0; 
 baseL = 0; 
 
 // temporary  
 // set up the clock 
 TPU_B.TPUMCR.R = 0x4040; 
 //PWOD=1, EPSCKE=1, EPSCK=11000(0x18) 
 TPU_B.TPUMCR3.R = 0x0158; 
 // end temporary 
 
 // no interrupts 
 //TPU_B.TICR.R = 0x0000; 
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 // disable interrupts 
 TPU_B.CIER.R = 0x0000; 
 
 // disable TPUB channels 6 and 7 
 TPU_B.CPR1.R &= 0x0FFF; 
 
 // disable TPUB channels 10 and 11 
 TPU_B.CPR0.R &= 0xFF0F; 
 
 // clear the interrupt status bits 
 TPU_B.CISR.R = 0x0000; 
 
 // set TPUB channels 6 and 7 to Fast 
 // Quadrature Decode (FQD) function (0x6) 
 TPU_B.CFSR2.R &= 0x00FF; // clear bits (chan 6 & 7) 
 TPU_B.CFSR2.R |= 0x6600; // set appropriate bits 
 
 // set TPUB channels 10 and 11 to Fast 
 // Quadrature Decode (FQD) function (0x6) 
 TPU_B.CFSR1.R &= 0x00FF; // clear bits (chan 10 & 11) 
 TPU_B.CFSR1.R |= 0x6600; // set appropriate bits 
 
 
 // FQD primary channel (6) 
 // POSITION_COUNT initialized to RESET_VALUE 
 // CORR_PINSTATE_ADDR=0x76 (chan 7, offset 6) 
 // EDGE_TIME_LSB_ADDR=0x61 (chan 6, offset 1) 
 TPU_B.PARM.R[6][1] = RESET_VALUE; 
 TPU_B.PARM.R[6][4] = 0x76; 
 TPU_B.PARM.R[6][5] = 0x61; 
 
 // FQD secondary channel (7) 
 // CORR_PINSTATE_ADDR=0x66 (chan 6, offset 6) 
 // EDGE_TIME_LSB_ADDR=0x61 (chan 6, offset 1) 
 TPU_B.PARM.R[7][4] = 0x66; 
 TPU_B.PARM.R[7][5] = 0x61; 
 
 // FQD primary channel (10) 
 // POSITION_COUNT initialized to RESET_VALUE 
 // CORR_PINSTATE_ADDR=0xB6 (chan 11, offset 6) 
 // EDGE_TIME_LSB_ADDR=0xA1 (chan 10, offset 1) 
 TPU_B.PARM.R[10][1] = RESET_VALUE; 
 TPU_B.PARM.R[10][4] = 0xB6; 
 TPU_B.PARM.R[10][5] = 0xA1; 
 
 // FQD secondary channel (11) 
 // CORR_PINSTATE_ADDR=0xA6 (chan 10, offset 6) 
 // EDGE_TIME_LSB_ADDR=0xA1 (chan 10, offset 1) 
 TPU_B.PARM.R[11][4] = 0xA6; 
 TPU_B.PARM.R[11][5] = 0xA1; 
 
 // channel 6 set to 00 (primary channel normal mode) 
 // channel 7 set to 01 (secondary channel normal mode) 
 TPU_B.HSQR1.R &= 0x0FFF; // clear appropriate bits 
 TPU_B.HSQR1.R |= 0x4000; // set appropriate bits 
 
 // channel 10 set to 00 (primary channel normal mode) 
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 // channel 11 set to 01 (secondary channel normal mode) 
 TPU_B.HSQR0.R &= 0xFF0F; // clear appropriate bits 
 TPU_B.HSQR0.R |= 0x0040; // set appropriate bits 
 
 // set channels 6 & 7 to 0b11 (Initialize) 
 TPU_B.HSRR1.R &= 0x0FFF; // clear HSRR for chan 6 & 7 
 TPU_B.HSRR1.R |= 0xF000; // initialize 
 
 // set channels 10 & 11 to 0b11 (Initialize) 
 TPU_B.HSRR0.R &= 0xFF0F; 
 TPU_B.HSRR0.R |= 0x00F0; 
 
 // Channel Priority Register 
 // set all channels 6, 7, 10 and 11 to 0b11 (High Priority) 
 TPU_B.CPR1.R |= 0xF000; 
 TPU_B.CPR0.R |= 0x00F0; 
 
 for(k = 0; k < 10000; k++) { 
  // wait for functions to initialize 
 } 
 
 // end FQD initialization 
} 
 
// keep the encoder values up to date (and update 
// 'base' to keep track of the overflows and underflows) 
void updateEncoders() { 
 // temporary variable 
 USHORT count; 
 
 // right encoder 
 count = TPU_B.PARM.R[RIGHT_ENC][1]; 
 
 if(count < THRESHOLD) { 
  // decrement the multiplier 
  baseR--; 
 
  // reset the counter 
  TPU_B.PARM.R[RIGHT_ENC][1] += (RESET_VALUE - THRESHOLD); 
 } 
 
 else { 
  if(count > (MAX - THRESHOLD)) { 
   // increment the multiplier 
   baseR++; 
 
   // reset the counter 
   TPU_B.PARM.R[RIGHT_ENC][1] -= ((MAX - THRESHOLD) -   
         RESET_VALUE); 
  } 
 } 
 
 
 // left encoder 
 count = TPU_B.PARM.R[LEFT_ENC][1]; 
 
 if(count < THRESHOLD) { 
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  // decrement the multiplier 
  baseL--; 
 
  // reset the counter 
  TPU_B.PARM.R[LEFT_ENC][1] += (RESET_VALUE - THRESHOLD); 
 } 
 
 else { 
  if(count > (MAX - THRESHOLD)) { 
   // increment the multiplier 
   baseL++; 
 
   // reset the counter 
   TPU_B.PARM.R[LEFT_ENC][1] -= ((MAX - THRESHOLD) -   
        RESET_VALUE); 
  } 
 } 
} 
 
// latch the current encoder values to 
// be read momentarily (ensures both encoder 
// values with be syncronized) 
void latchEncoders() { 
 // temporary values 
 USHORT right, left; 
 
 // grab the current counter values at 
 // nearly the same time 
 right = TPU_B.PARM.R[RIGHT_ENC][1]; 
 left = TPU_B.PARM.R[LEFT_ENC][1]; 
 
 // calculate the new values 
 encoderR = (baseR * ((MAX - THRESHOLD) - RESET_VALUE)) 
      + (right - RESET_VALUE); 
 
 encoderL = (baseL * ((MAX - THRESHOLD) - RESET_VALUE)) 
      + (left - RESET_VALUE); 
} 
 
 
// reset the encoder values 
void resetEncoders() { 
  
 // reset the overflow/underflow variables 
 baseR = 0; 
 baseL = 0; 
 
 // set encoder values to 0 
 encoderR = 0; 
 encoderL = 0; 
 
 // reset the counter registers for 
 // each encoder 
 TPU_B.PARM.R[RIGHT_ENC][1] = RESET_VALUE; 
 TPU_B.PARM.R[LEFT_ENC][1] = RESET_VALUE; 
} 
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tpuFQD.h 
//------------------------------------------------ 
// File:      tpuFQD.h 
// Description: Header file that defines constants 
//      and holds the prototypes for the 
//      helper functions used to handle 
//      the fast quadrature decoding of 
//      the two optical encoders. 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#ifndef TPUFQD_H 
#define TPUFQD_H 
 
#include "mpc555.h" 
#include "defines.h" 
 
#define RESET_VALUE 32768 
#define MAX 65535 
#define THRESHOLD 1000 
#define RIGHT_ENC 6 
#define LEFT_ENC 10 
 
// keeps track of the overflows and 
// underflows 
USHORT baseR; 
USHORT baseL; 
 
// latched values of the encoders (global) 
UINT encoderR; 
UINT encoderL; 
 
// initialize the clock of TPUB and disable interrupts 
void initTPUB(); 
 
// initialize TPUB channels (6-7) and (10-11)  
// in pairs to perform the Fast Quadrature 
// Decode (FQD) function 
void initFQD(); 
 
// keep the encoder values up to date 
void updateEncoders(); 
 
// latch the current encoder values to 
// be read momentarily 
void latchEncoders(); 
 
// reset the encoder values 
void resetEncoders(); 
 
#endif // TPUFQD_H 
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tpuUART.c 
//------------------------------------------------ 
// File:      tpuUART.c 
// Description: Source file that holds the helper 
//      functions used by the main control 
//      loop to handle serial 
//      communication through TPUA 
// Author:     Nathan Holle 
//       Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#include "tpuUART.h" 
 
// disableChannelA disables a specified channel in TPUA 
void disableChannelA(UCHAR channel) { 
 
 // check to see if the channel value is valid 
 if(channel > 15) { 
  // invalid channel, return from function 
  return; 
 } 
 
 if(channel < 8) { 
  // use CPR1 
  TPU_A.CPR1.R &= ~(0x3 << (channel * 2)); 
 } 
 
 else { 
  // use CPR0 
  TPU_A.CPR0.R &= ~(0x3 << ((channel - 8) * 2)); 
 } 
} 
 
// enable the given channel in TPUA with 
// the given priority 
void enableChannelA(UCHAR channel, UCHAR priority) { 
 // intermediate value; 
 unsigned short value; 
  
 // check to see if the channel value is valid 
 if(channel > 15) { 
  // invalid channel, return from function 
  return; 
 } 
 
 // check to see if the priority is valid 
 if(priority > 3) { 
  // invalid priority, return from function 
  return; 
 } 
 
 if(channel < 8) { 
  // use CPR1 
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  // clear the bits associated with the channel 
  value = TPU_A.CPR1.R & ~(0x3 << (channel * 2)); 
 
  // set the appropriate bits 
  value |= (priority << (channel * 2)); 
 
  // put the new value into the register 
  TPU_A.CPR1.R = value; 
 } 
 
 else { 
  // use CPR0 
 
  // clear the bits associated with the channel 
  value = TPU_A.CPR1.R & ~(0x3 << ((channel - 8) * 2)); 
 
  // set the appropriate bits 
  value |= (priority << ((channel - 8) * 2)); 
 
  // put the new value into the register 
  TPU_A.CPR0.R = value; 
 } 
} 
 
// set the function of a given TPUA channel via the  
// Channel Function Select Register (CFSRx) 
void selectFunctionA(UCHAR channel, UCHAR function) { 
 // intermediate variable 
 unsigned short value; 
 
 // check to see if the channel value is valid 
 if(channel > 15) { 
  // invalid channel, return from function 
  return; 
 } 
 
 // check to see if the function value is valid 
 if(function > 15) { 
  // invalid function, return from function 
  return; 
 } 
 
 if(channel < 4) { 
  // use CFSR3 
 
  // clear the nibble associated with the channel 
  value = TPU_A.CFSR3.R & ~(0xF << (channel * 4)); 
 
  // set the appropriate bits to yield the correct value 
  value |= (function << (channel * 4)); 
 
  // set the new value in the register 
  TPU_A.CFSR3.R = value; 
 } 
 
 else { 
  if(channel < 8) { 



117 

   // use CFSR2 
 
   // clear the nibble associated with the channel 
   value = TPU_A.CFSR2.R & ~(0xF<<((channel-4) * 4)); 
 
   // set the appropriate bits to yield the 
   // correct value 
   value |= (function << ((channel - 4) * 4)); 
 
   // set the new value in the register 
   TPU_A.CFSR2.R = value; 
  } 
 
  else { 
   if(channel < 12) { 
    // use CFSR1 
 
    // clear the nibble associated with the channel 
    value = TPU_A.CFSR1.R &~(0xF<<((channel-8)*4)); 
 
    // set the appropriate bits to yield the    
   // correct value 
    value |= (function << ((channel - 8) * 4)); 
 
    // set the new value in the register 
    TPU_A.CFSR1.R = value; 
   } 
 
   else { 
    // use CFSR0 
 
    // clear the nibble associated with the channel 
    value = TPU_A.CFSR1.R&~(0xF<<((channel-12)*4)); 
 
    // set the appropriate bits to yield the    
   // correct value 
    value |= (function << ((channel - 12) * 4)); 
 
    // set the new value in the register 
    TPU_A.CFSR1.R = value; 
   } 
  } 
 } 
} 
 
// set the Host Sequence Register (HSQRx) to 
// the desired value 
void setHSQ(UCHAR channel, UCHAR valueHSQ) { 
 // intermediate variable 
 unsigned short value; 
 
 // check to see if the channel value is valid 
 if(channel > 15) { 
  // invalid channel, return from function 
  return; 
 } 
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 // check to see if the HSQ value is valid 
 if(valueHSQ > 3) { 
  // invalid HSQ value, return from function 
  return; 
 } 
 
 if(channel < 8) { 
  // use HSQR1 
  value = TPU_A.HSQR1.R & ~(0x3 << (channel * 2)); 
  value |= (valueHSQ << (channel * 2)); 
  TPU_A.HSQR1.R = value; 
 } 
 
 else { 
  // use HSQR0 
  value = TPU_A.HSQR0.R & ~(0x3 << ((channel - 8) * 2)); 
  value |= (valueHSQ << ((channel - 8) * 2)); 
  TPU_A.HSQR0.R = value; 
 } 
} 
 
// set the Host Service Request Register (HSRRx) to 
// the desired value 
void setHSR(UCHAR channel, UCHAR valueHSR) { 
 // intermediate variable 
 unsigned short value; 
 
 // check to see if the channel value is valid 
 if(channel > 15) { 
  // invalid channel, return from function 
  return; 
 } 
 
 // check to see if the HSR value is valid 
 if(valueHSR > 3) { 
  // invalid HSQ value, return from function 
  return; 
 } 
 
 if(channel < 8) { 
  // use HSRR1 
  value = TPU_A.HSRR1.R & ~(0x3 << (channel * 2)); 
  value |= (valueHSR << (channel * 2)); 
  TPU_A.HSRR1.R = value; 
 } 
 
 else { 
  // use HSRR0 
  value = TPU_A.HSRR0.R & ~(0x3 << ((channel - 8) * 2)); 
  value |= (valueHSR << ((channel - 8) * 2)); 
  TPU_A.HSRR0.R = value; 
 } 
} 
 
// initialize the clock of TPUA and disable interrupts 
void initTPUA() { 
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 // TCR1P = 0 (Divide TCR1 by 1) 
 // PSCK = X (Fsys / 2 is input to TCR1 prescaler (enhanced)) 
 //   (10MHz / 2 = 5MHz (with debugger)) 
 //   (20MHz / 2 = 10MHz (w/o debugger)) 
 TPU_A.TPUMCR.R = 0x0040; 
 
 // PWOD = 1 (Prescaler write-once disabled) 
 // EPSCKE = 1 (Enable enhanced prescaler) 
 TPU_A.TPUMCR3.R = 0x0140; 
 
 // disable interrupts 
 TPU_A.CIER.R = 0x0000;  
} 
 
/* 
// returns whether the interrupt flag is set for 
// the given channel 
UCHAR checkInterrupt(UCHAR channel) { 
  
 // check if channel is a valid number 
 if(channel > 15) { 
  return(0); 
 } 
 
 if((TPU_A.CISR.R & (0x1 << channel)) != 0) { 
  return(1); 
 } 
 else { 
  return(0); 
 } 
} 
*/ 
 
// set up a specified TPUA channel as a UART transmitter 
void initTx(UCHAR channel, USHORT baud) { 
 
 // check to see if channel is valid 
 if(channel > 15) { 
  return; 
 } 
  
 // disable channel 
 disableChannelA(channel); 
 
 // clear the interrupt status bit 
 TPU_A.CISR.R &= ~(0x1 << channel); 
 
 // set up the baud 
 TPU_A.PARM.R[channel][1] = baud; 
 
 // set TDRE 
 TPU_A.PARM.R[channel][2] = 0x8000; 
 
 // number of data bits = 8 
 // DATA_SIZE = 0x8 
 TPU_A.PARM.R[channel][3] = 0x0008; 
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 // set channel to UART function 
 // (UART = 0xB) 
 selectFunctionA(channel, 0xB); 
 
 // set parity (no parity) 
 setHSQ(channel, 0x0); 
 
 // set channel to tranmitter (0x3) 
 setHSR(channel, 0x3); 
 
 // enable the channel (high priority, 0x3) 
 enableChannelA(channel, 0x3); 
 
 // wait for channel to be initialized 
 while(CTS(channel) == 0) { 
  // wait 
 } 
} 
 
// set up a specified TPUA channel as a UART receiver 
void initRx(UCHAR channel, USHORT baud) { 
  
 // check to see if channel is valid 
 if(channel > 15) { 
  return; 
 } 
 
 // disable channel 
 disableChannelA(channel); 
 
 // clear the interrupt status bit 
 TPU_A.CISR.R &= ~(0x1 << channel); 
 
 // set up the baud 
 TPU_A.PARM.R[channel][1] = baud; 
 
 // number of data bits = 8 
 // DATA_SIZE = 0x8 
 TPU_A.PARM.R[channel][3] = 0x0008; 
 
 // set channel to UART function 
 // (UART = 0xB) 
 selectFunctionA(channel, 0xB); 
 
 // set parity (no parity) 
 setHSQ(channel, 0x0); 
 
 // set channel to receiver (0x2) 
 setHSR(channel, 0x2); 
 
 // enable the channel (high priority = 0x3) 
 enableChannelA(channel, 0x3); 
} 
 
// check if channel is clear to send 
UCHAR CTS(UCHAR channel) { 
 // don't check for channel validity 
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 // going for speed 
 
 if((TPU_A.CISR.R & (0x1 << channel)) == 0) { 
  // not clear to send 
  return(0); 
 } 
 
 else { 
  // clear to send 
  return(1); 
 } 
} 
 
 
// transmit a character over the given TPU channel 
void txChar(UCHAR channel, UCHAR c) { 
 // don't check for channel validity 
 // going for speed 
 
 // wait for channel to be ready 
 while(CTS(channel) == 0) { } 
 
 // clear the appropriate interrupt flag 
 TPU_A.CISR.R &= ~(0x1 << channel); 
 
 // write the character to TRANSMIT_DATA_REG 
 TPU_A.PARM.R[channel][2] = ((USHORT)c) & 0x00FF; 
} 
 
 
// transmit a short over the given serial port  
// in ASCII hex  
void txShort(UCHAR channel, USHORT s) { 
 //UCHAR c1, c2, c3, c4; 
 UCHAR c[4], i; 
 UCHAR *sChar; 
 
 sChar = (UCHAR *)&s; 
 
 // adjust the most significant nibble of s 
 // character is 0-9 
 if((((*sChar) >> 4) + 0x30) < 0x3A) { 
  c[0] = ((*sChar) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[0] = ((*sChar) >> 4) + 0x37; 
 } 
 
 // adjust the second most significant nibble of s 
 // character is 0-9 
 if((((*sChar) & 0x0F) + 0x30) < 0x3A) { 
  c[1] = ((*sChar) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
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 else { 
  c[1] = ((*sChar) & 0x0F) + 0x37; 
 } 
 
   
 // adjust the second least significant nibble of s 
 // character is 0-9 
 if((((*(sChar + 1)) >> 4) + 0x30) < 0x3A) { 
  c[2] = ((*(sChar + 1)) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[2] = ((*(sChar + 1)) >> 4) + 0x37; 
 } 
 
 // adjust the least significant nibble of s 
 // character is 0-9 
 if((((*(sChar + 1)) & 0x0F) + 0x30) < 0x3A) { 
  c[3] = ((*(sChar + 1)) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[3] = ((*(sChar + 1)) & 0x0F) + 0x37; 
 } 
 
 for(i = 0; i < 4; i++) { 
 
  while(CTS(channel) == 0x00) { 
   // wait for channel to be ready 
   // to transmit 
  } 
   
  // write the byte to the serial port 
  txChar(channel, c[i]); 
 } 
 
 /* 
 // write the first byte to the serial port 
 txChar(channel, c1); 
 
 // wait for the first byte to be sent 
 while(CTS() == 0x00) { 
  // wait for channel to be ready 
  // to transmit 
 } 
 
 // write the second byte to the serial port 
 txChar(channel, c2); 
 
 // wait for the first byte to be sent 
 while(CTS() == 0x00) { 
  // wait for channel to be ready 
  // to transmit 
 } 
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 // write the third byte to the serial port 
 txChar(channel, c3); 
 
 // wait for the first byte to be sent 
 while(CTS() == 0x00) { 
  // wait for channel to be ready 
  // to transmit 
 } 
 
 // write the fourth byte to the serial port 
 txChar(channel, c3); 
 */ 
} 
 
// transmit a string of characters over the give TPU channel 
void txString(UCHAR channel, UCHAR *s, UCHAR num) { 
 UCHAR i; 
 //unsigned int j; 
 
 // don't check for channel validity 
 // going for speed 
 
 for(i = 0; i < num; i++) { 
 
  // wait for channel to be ready 
  while(CTS(channel) == 0) { } 
 
  //nwhcheck 
  //for(j = 0; j < 500; j++) { } 
   
  // send character 
  txChar(channel, *(s + i)); 
 } 
} 
 
// transmit an encoder value (24-bit) 
void txEncoder(UCHAR channel, UINT enc) { 
 UCHAR c[6]; //, i; 
 UCHAR *encChar; 
 
 encChar = (UCHAR *)&enc; 
 
 // discard the top 8 bits 
 encChar += 1; 
 
 // adjust the most significant nibble of enc 
 // character is 0-9 
 if((((*encChar) >> 4) + 0x30) < 0x3A) { 
  c[0] = ((*encChar) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[0] = ((*encChar) >> 4) + 0x37; 
 } 
 
 // adjust the second most significant nibble of enc 
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 // character is 0-9 
 if((((*encChar) & 0x0F) + 0x30) < 0x3A) { 
  c[1] = ((*encChar) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[1] = ((*encChar) & 0x0F) + 0x37; 
 } 
 
   
 // adjust the third most significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 1)) >> 4) + 0x30) < 0x3A) { 
  c[2] = ((*(encChar + 1)) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[2] = ((*(encChar + 1)) >> 4) + 0x37; 
 } 
 
 // adjust the third least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 1)) & 0x0F) + 0x30) < 0x3A) { 
  c[3] = ((*(encChar + 1)) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[3] = ((*(encChar + 1)) & 0x0F) + 0x37; 
 } 
 
 
 // adjust the second least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 2)) >> 4) + 0x30) < 0x3A) { 
  c[4] = ((*(encChar + 2)) >> 4) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[4] = ((*(encChar + 2)) >> 4) + 0x37; 
 } 
 
 // adjust the least significant nibble of enc 
 // character is 0-9 
 if((((*(encChar + 2)) & 0x0F) + 0x30) < 0x3A) { 
  c[5] = ((*(encChar + 2)) & 0x0F) + 0x30; 
 } 
 
 // character is A-F 
 else { 
  c[5] = ((*(encChar + 2)) & 0x0F) + 0x37; 
 } 
 
 // transmit the newly created string 
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 txString(channel, c, 6); 
} 
 
// check if a character has been received 
// (non-blocking) 
UCHAR charReady(UCHAR channel) { 
 // don't check for channel validity 
 // going for speed 
 
 if((TPU_A.CISR.R & (0x1 << channel)) == 0) { 
  // no new character 
  return(0); 
 } 
 
 else { 
  // new character 
  return(1); 
 } 
} 
 
// receive a character from a given TPUA channel 
// (blocking) 
UCHAR rxChar(UCHAR channel) { 
 // don't check for channel validity 
 // going for speed 
 
 while(charReady(channel) == 0) { 
  // wait for a received character 
 } 
 
 // clear the interrupt flag for the appropriate channel 
 TPU_A.CISR.R &= ~(0x1 << channel); 
 
 // return the received character 
 return((UCHAR)(TPU_A.PARM.R[channel][2] & 0x3FFF)); 
} 
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tpuUART.h 
//------------------------------------------------ 
// File:      tpuUART.h 
// Description: Header file that holds the 
//      prototypes for thehelper 
//      functions used by the main control 
//      loop to handle serial 
//      communication through TPUA 
// Author:     Nathan Holle 
//      Kansas State University 
// Date:     23JUN06 
//------------------------------------------------ 
#ifndef TPUUART_H 
#define TPUUART_H 
 
#include "mpc555.h" 
#include "defines.h" 
 
// disableChannelA disables a specified channel in TPUA 
void disableChannelA(UCHAR channel); 
 
// enable the given channel in TPUA with 
// the given priority 
void enableChannelA(UCHAR channel, UCHAR priority); 
 
// set the function of a given TPUA channel via the  
// Channel Function Select Register (CFSRx) 
void selectFunctionA(UCHAR channel, UCHAR function); 
 
// set the Host Sequence Register (HSQRx) to 
// the desired value 
void setHSQ(UCHAR channel, UCHAR valueHSQ); 
 
// set the Host Service Request Register (HSRRx) to 
// the desired value 
void setHSR(UCHAR channel, UCHAR valueHSR); 
 
// initialize the clock of TPUA and disable interrupts 
void initTPUA(); 
 
/* 
// returns whether the interrupt flag is set 
UCHAR checkInterrupt(UCHAR channel); 
*/ 
 
// set up a specified TPUA channel as a UART transmitter 
void initTx(UCHAR channel, USHORT baud); 
 
// set up a specified TPUA channel as a UART receiver 
void initRx(UCHAR channel, USHORT baud); 
 
// check if channel is clear to send 
UCHAR CTS(UCHAR channel); 
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// transmit a character over the given TPUA channel 
void txChar(UCHAR channel, UCHAR c); 
 
// transmit a short over the given serial port 
// in ASCII hex  
void txShort(UCHAR channel, USHORT s); 
 
// transmit a string of characters over the given TPUA channel 
void txString(UCHAR channel, UCHAR *s, UCHAR num); 
 
// transmit an encoder value (24-bit) 
void txEncoder(UCHAR channel, UINT enc); 
 
// check if a character has been received 
// (non-blocking) 
UCHAR charReady(UCHAR channel); 
 
// receive a character from a given TPUA channel 
// (blocking) 
UCHAR rxChar(UCHAR channel); 
 
#endif // TPUUART_H 
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Appendix D: Synchronized Covermeter Product Specification 

Document reproduced from [11] 
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Appendix E: Raw Data Files 

SingleCovermeterExample.txt 
FFFFF4AC 
FFFFF5BC 
FFFFF6F0 
FFFFF846 
FFFFF9CC 
FFFFFB7E 
FFFFFD60 
FFFFFFA2 
00000226 
000004F6 
000007EE 
00000B20 
00000E94 
00001254 
0000163C 
00001A2C 
00001E0C 
000021EE 
0000252C 
000026A0 
000025A4 
0000225E 
00001DB0 
00001876 
0000134E 
00000E7C 
00000A22 
00000646 
000002EE 
0000000A 
FFFFFD92 
FFFFFB78 
FFFFF9BC 
FFFFF83E 
FFFFF702 
FFFFF5FC 
FFFFF512 
FFFFF446 
FFFFF392 
FFFFF2FA 
FFFFF26E 
FFFFF20E 
FFFFF1C8 
FFFFF1A8 
FFFFF19E 
FFFFF1CC 
FFFFF21C 
FFFFF2A8 

29AUG2006_S01_C_ABBREVIATED.dat 
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C -1 -2 664.9 671.9 
G -1 1 38.928995 0 97.364428 1 290806 153555 
Z -38958.4418402778 -38958.4418402778 -5268 -8686 
Z -38958.4418402778 -38958.4418402778 -5264 -8690 
Z -38958.4418402778 -38958.4418402778 -5264 -8686 
Z -38958.4418402778 -38958.4418402778 -5262 -8670 
Z -38958.4418402778 -38958.4418402778 -5268 -8684 
Z -38958.4418402778 -38958.4418402778 -5274 -8688 
Z -38958.4418402778 -38958.4418402778 -5278 -8682 
Z -38958.4418402778 -38958.4418402778 -5274 -8682 
Z -38958.4418402778 -38958.4418402778 -5264 -8680 
Z -38958.4418402778 -38958.4418402778 -5264 -8674 
Z -38958.4418402778 -38958.4418402778 -5264 -8670 
Z -38958.4418402778 -38958.4418402778 -5260 -8676 
Z -38958.4418402778 -38958.4418402778 -5262 -8666 
Z -38958.4418402778 -38958.4418402778 -5264 -8676 
Z -38958.4418402778 -38958.4418402778 -5262 -8676 
Z -38958.4418402778 -38958.4418402778 -5254 -8674 
Z -38958.4418402778 -38958.4418402778 -5254 -8686 
Z -38958.4418402778 -38958.4418402778 -5254 -8682 
Z -38958.4418402778 -38958.4418402778 -5258 -8688 
Z -38958.4418402778 -38958.4418402778 -5264 -8698 
D 0 0 -5062 -8498 
D 0 0 -5068 -8498 
D 0 0 -5068 -8490 
D 0 0 -5068 -8488 
D 0 0 -5060 -8496 
D 0 0 -5060 -8492 
D 0 0 -5062 -8496 
D 0 0 -5072 -8490 
D 0 0 -5076 -8490 
D 0 0 -5078 -8492 
D 0 0 -5080 -8494 
D 0 0 -5068 -8482 
D 0 0 -5070 -8490 
D 0 0 -5058 -8488 
D 0 0 -5058 -8482 
G -1 1 38.928988 0 97.364432 1 290806 153601 
D 1 2 -5048 -8480 
D 3 5 -5048 -8486 
D 8 10 -5046 -8480 
D 15 18 -5052 -8488 
D 25 27 -5046 -8486 
D 36 40 -5054 -8484 
D 51 56 -5060 -8500 
D 69 74 -5064 -8498 
D 89 95 -5070 -8494 
D 113 120 -5074 -8508 
D 140 147 -5066 -8508 
D 170 177 -5062 -8506 
D 203 209 -5070 -8510 
D 237 243 -5070 -8508 
D 271 276 -5072 -8502 
D 304 310 -5072 -8506 
D 339 344 -5064 -8510 
D 373 380 -5062 -8502 
D 407 415 -5062 -8508 
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D 443 452 -5054 -8498 
D 479 487 -5048 -8492 
D 516 523 -5048 -8500 
D 554 558 -5044 -8506 
D 593 595 -5062 -8508 
D 632 635 -5062 -8516 
D 673 674 -5064 -8516 
D 713 715 -5076 -8526 
D 751 756 -5076 -8534 
D 792 798 -5078 -8530 
D 835 840 -5090 -8530 
D 878 885 -5086 -8544 
D 922 931 -5088 -8538 
D 967 979 -5090 -8518 
D 1015 1029 -5084 -8518 
D 1062 1081 -5086 -8510 
D 1112 1134 -5078 -8494 
D 1163 1189 -5070 -8478 
D 1215 1242 -5066 -8454 
D 1268 1297 -5058 -8416 
D 1320 1353 -5044 -8398 
D 1375 1411 -5046 -8392 
D 1432 1468 -5064 -8392 
D 1490 1527 -5080 -8408 
D 1550 1588 -5102 -8432 
D 1610 1650 -5124 -8464 
D 1671 1713 -5134 -8490 
D 1734 1775 -5156 -8524 
D 1799 1839 -5172 -8542 
D 1866 1907 -5184 -8558 
D 1933 1974 -5192 -8578 
D 2008 2047 -5204 -8588 
D 2076 2112 -5198 -8604 
D 2147 2183 -5196 -8616 
D 2217 2251 -5186 -8610 
D 2289 2321 -5174 -8598 
D 2361 2392 -5150 -8574 
D 2430 2463 -5122 -8532 
D 2496 2531 -5098 -8494 
D 2566 2602 -5082 -8478 
D 2632 2672 -5080 -8464 
D 2704 2747 -5086 -8470 
D 2773 2817 -5098 -8484 
D 2842 2892 -5120 -8498 
D 2910 2964 -5134 -8522 
D 2981 3037 -5142 -8552 
D 3053 3111 -5156 -8568 
D 3124 3186 -5174 -8590 
D 3195 3260 -5194 -8602 
D 3268 3334 -5198 -8614 
D 3341 3409 -5202 -8624 
D 3411 3483 -5200 -8628 
D 3484 3557 -5190 -8618 
D 3560 3630 -5178 -8600 
D 3632 3702 -5154 -8564 
D 3704 3776 -5130 -8530 
D 3779 3852 -5108 -8496 
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D 3856 3929 -5100 -8476 
D 3932 4006 -5102 -8462 
D 4008 4080 -5104 -8474 
D 4086 4156 -5120 -8496 
D 4162 4232 -5148 -8528 
D 4239 4312 -5156 -8548 
D 4315 4388 -5172 -8578 
D 4390 4468 -5186 -8600 
D 4463 4548 -5204 -8608 
D 4540 4628 -5216 -8608 
D 4616 4706 -5220 -8620 
D 4694 4786 -5218 -8626 
D 4768 4862 -5206 -8612 
D 4844 4934 -5194 -8596 
D 4924 5012 -5170 -8570 
D 5006 5090 -5154 -8538 
D 5090 5169 -5128 -8514 
D 5170 5249 -5114 -8512 
D 5250 5330 -5096 -8512 
D 5335 5410 -5100 -8526 
D 5414 5487 -5094 -8550 
D 5496 5564 -5116 -8564 
D 5579 5642 -5136 -8582 
D 5661 5724 -5142 -8602 
D 5738 5806 -5164 -8604 
D 5814 5882 -5170 -8612 
D 5890 5959 -5180 -8632 
D 5966 6035 -5190 -8624 
D 6046 6111 -5188 -8616 
D 6128 6191 -5170 -8602 
D 6206 6270 -5158 -8576 
D 6280 6349 -5142 -8546 
D 6357 6427 -5122 -8536 
D 6432 6503 -5120 -8534 
D 6507 6580 -5128 -8538 
D 6585 6659 -5136 -8536 
D 6662 6741 -5146 -8546 
D 6735 6821 -5166 -8566 
D 6807 6901 -5178 -8582 
D 6880 6979 -5200 -8596 
D 6950 7057 -5210 -8612 
D 7021 7132 -5216 -8616 
D 7096 7207 -5220 -8618 
D 7170 7279 -5220 -8628 
D 7248 7353 -5200 -8628 
D 7324 7424 -5192 -8602 
D 7400 7493 -5172 -8590 
D 7474 7563 -5162 -8560 
D 7547 7634 -5138 -8520 
D 7622 7704 -5120 -8500 
D 7694 7776 -5112 -8480 
D 7767 7849 -5112 -8486 
D 7839 7920 -5118 -8512 
D 7912 7991 -5130 -8536 
D 7986 8065 -5150 -8564 
D 8055 8136 -5170 -8586 
D 8128 8206 -5196 -8598 
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D 8201 8278 -5206 -8614 
D 8272 8350 -5218 -8632 
D 8346 8427 -5222 -8650 
D 8418 8500 -5224 -8650 
D 8490 8574 -5226 -8664 
D 8562 8649 -5218 -8662 
D 8636 8726 -5216 -8658 
D 8714 8805 -5190 -8642 
D 8784 8877 -5150 -8614 
D 8857 8950 -5108 -8574 
D 8930 9023 -5064 -8534 
D 9002 9101 -5016 -8498 
D 9074 9177 -4988 -8464 
D 9143 9256 -4982 -8458 
D 9214 9332 -5000 -8470 
D 9280 9406 -5024 -8486 
D 9352 9479 -5060 -8516 
D 9424 9552 -5082 -8538 
D 9496 9628 -5110 -8566 
D 9567 9701 -5122 -8588 
D 9640 9775 -5142 -8604 
D 9714 9850 -5156 -8614 
D 9787 9922 -5162 -8630 
D 9861 9997 -5168 -8630 
D 9935 10071 -5182 -8630 
D 10008 10144 -5166 -8622 
D 10081 10218 -5162 -8618 
D 10154 10292 -5154 -8606 
D 10228 10367 -5140 -8604 
D 10300 10441 -5124 -8592 
D 10372 10512 -5106 -8576 
D 10444 10584 -5094 -8568 
D 10514 10656 -5088 -8556 
D 10588 10730 -5072 -8540 
D 10660 10803 -5058 -8536 
D 10736 10879 -5064 -8538 
D 10806 10952 -5054 -8536 
D 10879 11026 -5040 -8528 
D 10951 11100 -5044 -8528 
D 11022 11175 -5044 -8518 
D 11094 11246 -5034 -8516 
D 11165 11321 -5036 -8510 
D 11241 11395 -5034 -8504 
D 11312 11470 -5034 -8504 
D 11385 11544 -5044 -8496 
D 11459 11619 -5056 -8494 
D 11533 11690 -5054 -8498 
D 11607 11761 -5076 -8512 
D 11683 11829 -5092 -8526 
D 11760 11901 -5098 -8536 
D 11834 11974 -5114 -8538 
D 11907 12050 -5108 -8538 
D 11978 12123 -5096 -8534 
D 12047 12192 -5084 -8512 
D 12119 12264 -5064 -8492 
D 12192 12339 -5044 -8478 
D 12265 12412 -5030 -8456 
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D 12336 12485 -5038 -8456 
D 12405 12559 -5048 -8472 
D 12479 12633 -5070 -8488 
D 12550 12706 -5096 -8510 
D 12622 12776 -5126 -8530 
D 12691 12850 -5146 -8554 
D 12763 12924 -5158 -8584 
D 12832 12993 -5168 -8602 
D 12903 13065 -5186 -8614 
D 12974 13137 -5196 -8618 
G -1 1 38.928988 0 97.364505 1 290806 153611 
D 13044 13209 -5196 -8624 
D 13114 13280 -5188 -8610 
D 13183 13352 -5174 -8592 
D 13255 13424 -5144 -8560 
D 13327 13496 -5112 -8516 
D 13396 13566 -5080 -8490 
D 13466 13639 -5062 -8466 
D 13536 13709 -5058 -8446 
D 13604 13780 -5060 -8452 
D 13673 13850 -5076 -8484 
D 13743 13924 -5094 -8496 
D 13814 13994 -5120 -8528 
D 13879 14067 -5130 -8548 
D 13946 14134 -5150 -8564 
D 14011 14202 -5164 -8588 
D 14081 14270 -5184 -8604 
D 14150 14340 -5186 -8602 
D 14222 14410 -5186 -8622 
D 14291 14479 -5194 -8632 
D 14363 14546 -5188 -8620 
D 14434 14613 -5164 -8610 
D 14506 14682 -5136 -8576 
D 14579 14753 -5106 -8536 
D 14652 14824 -5076 -8512 
D 14724 14897 -5050 -8490 
D 14799 14970 -5040 -8468 
D 14872 15048 -5048 -8474 
D 14944 15122 -5066 -8494 
D 15016 15196 -5096 -8520 
D 15087 15271 -5118 -8550 
D 15160 15345 -5130 -8572 
D 15231 15418 -5150 -8598 
D 15307 15495 -5164 -8612 
D 15385 15573 -5170 -8628 
D 15462 15649 -5176 -8628 
D 15537 15726 -5182 -8618 
D 15614 15806 -5180 -8612 
D 15691 15887 -5150 -8598 
D 15769 15968 -5118 -8570 
D 15850 16050 -5090 -8532 
D 15930 16132 -5068 -8490 
D 16012 16216 -5052 -8466 
D 16092 16299 -5058 -8456 
D 16173 16380 -5068 -8472 
D 16254 16464 -5080 -8500 
D 16339 16546 -5108 -8526 
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D 16420 16623 -5134 -8556 
D 16500 16705 -5148 -8598 
D 16584 16787 -5160 -8622 
D 16667 16870 -5178 -8632 
D 16750 16950 -5186 -8638 
D 16836 17030 -5194 -8636 
D 16923 17115 -5184 -8624 
D 17007 17200 -5160 -8600 
D 17088 17286 -5142 -8566 
D 17172 17370 -5118 -8534 
D 17255 17456 -5088 -8502 
D 17339 17543 -5078 -8490 
D 17424 17630 -5084 -8480 
D 17507 17717 -5088 -8504 
D 17590 17800 -5112 -8526 
D 17674 17885 -5134 -8548 
D 17758 17971 -5154 -8576 
D 17846 18058 -5172 -8590 
D 17934 18145 -5192 -8602 
D 18017 18230 -5188 -8600 
D 18102 18315 -5192 -8606 
D 18187 18401 -5178 -8588 
D 18272 18484 -5148 -8560 
D 18356 18571 -5126 -8522 
D 18440 18656 -5088 -8478 
D 18520 18741 -5054 -8462 
D 18599 18826 -5052 -8448 
D 18682 18912 -5066 -8462 
D 18762 18995 -5090 -8494 
D 18843 19076 -5118 -8528 
D 18926 19162 -5138 -8548 
D 19010 19244 -5160 -8576 
D 19094 19328 -5182 -8586 
D 19179 19412 -5202 -8606 
D 19264 19495 -5212 -8620 
D 19349 19579 -5214 -8614 
D 19435 19659 -5202 -8600 
D 19520 19740 -5182 -8590 
D 19605 19825 -5144 -8556 
D 19690 19908 -5094 -8512 
D 19770 19992 -5054 -8482 
D 19851 20077 -5042 -8472 
D 19936 20159 -5040 -8478 
D 20016 20239 -5058 -8494 
D 20098 20321 -5074 -8514 
D 20179 20402 -5104 -8552 
D 20259 20482 -5130 -8576 
D 20339 20566 -5142 -8588 
D 20418 20649 -5160 -8606 
D 20496 20729 -5172 -8614 
D 20575 20810 -5188 -8618 
D 20652 20889 -5196 -8624 
D 20728 20968 -5188 -8624 
D 20804 21051 -5178 -8614 
D 20880 21133 -5174 -8612 
D 20956 21215 -5150 -8602 
D 21035 21293 -5130 -8582 
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D 21109 21373 -5110 -8574 
D 21183 21448 -5094 -8560 
D 21261 21529 -5080 -8544 
D 21336 21610 -5068 -8532 
D 21418 21689 -5062 -8530 
D 21502 21766 -5060 -8514 
D 21582 21845 -5046 -8508 
D 21664 21925 -5048 -8502 
D 21745 22004 -5040 -8500 
D 21825 22083 -5038 -8494 
D 21907 22162 -5038 -8486 
D 21992 22242 -5038 -8488 
D 22072 22322 -5040 -8488 
D 22150 22405 -5044 -8484 
D 22228 22487 -5058 -8490 
D 22304 22570 -5060 -8492 
D 22381 22652 -5072 -8502 
D 22460 22732 -5096 -8522 
D 22540 22812 -5114 -8542 
D 22619 22892 -5126 -8554 
D 22694 22971 -5132 -8540 
D 22769 23051 -5128 -8550 
D 22847 23132 -5112 -8526 
D 22922 23210 -5082 -8500 
D 23001 23287 -5050 -8468 
D 23080 23365 -5036 -8440 
D 23155 23443 -5038 -8428 
D 23232 23522 -5042 -8444 
D 23308 23601 -5060 -8448 
D 23387 23679 -5090 -8472 
D 23466 23757 -5102 -8504 
D 23543 23830 -5126 -8536 
D 23622 23910 -5144 -8562 
D 23698 23987 -5158 -8594 
D 23776 24064 -5178 -8610 
D 23857 24145 -5182 -8610 
D 23934 24226 -5176 -8614 
D 24016 24309 -5158 -8604 
D 24095 24390 -5120 -8572 
D 24171 24471 -5074 -8544 
D 24250 24550 -5032 -8502 
D 24328 24633 -5012 -8468 
D 24404 24714 -4984 -8458 
D 24480 24792 -4996 -8464 
D 24559 24871 -5018 -8486 
D 24633 24948 -5044 -8510 
D 24706 25023 -5080 -8544 
D 24779 25096 -5108 -8558 
D 24855 25174 -5126 -8578 
D 24928 25246 -5146 -8594 
D 25004 25321 -5158 -8606 
D 25078 25397 -5172 -8620 
D 25151 25471 -5182 -8620 
D 25225 25548 -5168 -8596 
D 25300 25622 -5142 -8572 
D 25376 25698 -5116 -8546 
D 25449 25774 -5076 -8500 
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D 25527 25850 -5034 -8474 
D 25607 25928 -5024 -8442 
D 25684 26003 -5028 -8438 
D 25759 26075 -5038 -8460 
D 25834 26147 -5066 -8480 
D 25909 26222 -5088 -8504 
D 25986 26299 -5112 -8536 
D 26063 26374 -5132 -8562 
D 26142 26451 -5150 -8578 
D 26217 26526 -5162 -8594 
D 26295 26600 -5176 -8614 
D 26371 26677 -5170 -8624 
D 26447 26757 -5174 -8628 
D 26524 26834 -5156 -8614 
D 26600 26912 -5122 -8582 
D 26676 26993 -5084 -8532 
D 26753 27074 -5048 -8484 
D 26828 27155 -5012 -8448 
D 26904 27236 -5006 -8438 
D 26981 27315 -5026 -8440 
D 27056 27391 -5048 -8452 
D 27134 27468 -5078 -8478 
D 27212 27548 -5104 -8506 
D 27290 27624 -5130 -8538 
D 27366 27702 -5142 -8568 
D 27442 27779 -5160 -8586 
D 27518 27853 -5170 -8606 
D 27596 27927 -5176 -8612 
D 27676 28002 -5174 -8620 
D 27751 28075 -5192 -8612 
D 27826 28148 -5156 -8578 
D 27902 28225 -5106 -8538 
D 27975 28303 -5052 -8484 
D 28051 28380 -5012 -8444 
D 28131 28457 -4994 -8422 
D 28206 28533 -4992 -8426 
D 28279 28609 -5004 -8444 
D 28357 28689 -5032 -8468 
D 28434 28767 -5058 -8490 
D 28511 28846 -5096 -8520 
G -1 1 38.928982 0 97.364587 1 290806 153621 
D 28588 28922 -5116 -8544 
D 28666 29001 -5136 -8562 
D 28742 29077 -5152 -8574 
D 28817 29153 -5160 -8574 
D 28891 29226 -5162 -8578 
D 28967 29301 -5164 -8582 
D 29041 29377 -5152 -8564 
D 29114 29450 -5130 -8550 
D 29188 29525 -5086 -8510 
D 29261 29599 -5042 -8464 
D 29333 29674 -5004 -8446 
D 29403 29748 -4998 -8432 
D 29475 29824 -5008 -8446 
D 29548 29899 -5024 -8464 
D 29626 29977 -5056 -8496 
D 29698 30052 -5084 -8516 
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D 29770 30128 -5102 -8536 
D 29843 30205 -5124 -8562 
D 29918 30284 -5146 -8590 
D 29990 30361 -5156 -8606 
D 30062 30434 -5168 -8618 
D 30139 30509 -5176 -8620 
D 30214 30585 -5166 -8616 
D 30291 30663 -5150 -8598 
D 30363 30739 -5114 -8560 
D 30437 30814 -5060 -8520 
D 30511 30889 -5016 -8470 
D 30583 30960 -4982 -8432 
D 30664 31037 -4962 -8412 
D 30744 31113 -4972 -8420 
D 30819 31188 -4994 -8436 
D 30895 31264 -5026 -8470 
D 30972 31342 -5060 -8492 
D 31050 31422 -5086 -8520 
D 31127 31502 -5116 -8544 
D 31206 31581 -5150 -8566 
D 31284 31660 -5160 -8566 
D 31360 31737 -5160 -8582 
D 31434 31816 -5164 -8580 
D 31506 31892 -5166 -8572 
D 31578 31969 -5160 -8578 
D 31654 32045 -5140 -8568 
D 31729 32121 -5118 -8556 
G -1 1 38.928973 0 97.365855 1 290806 153624 
Z -38958.4441319444 -38958.4441319444 -5274 -8700 
Z -38958.4441319444 -38958.4441319444 -5272 -8700 
Z -38958.4441319444 -38958.4441319444 -5274 -8706 
Z -38958.4441319444 -38958.4441319444 -5280 -8698 
Z -38958.4441319444 -38958.4441319444 -5278 -8700 
Z -38958.4441319444 -38958.4441319444 -5272 -8696 
Z -38958.4441319444 -38958.4441319444 -5286 -8688 
Z -38958.4441319444 -38958.4441319444 -5288 -8696 
Z -38958.4441319444 -38958.4441319444 -5286 -8698 
Z -38958.4441319444 -38958.4441319444 -5282 -8696 
Z -38958.4441319444 -38958.4441319444 -5282 -8694 
Z -38958.4441319444 -38958.4441319444 -5278 -8694 
Z -38958.4441319444 -38958.4441319444 -5274 -8692 
Z -38958.4441319444 -38958.4441319444 -5268 -8698 
Z -38958.4441319444 -38958.4441319444 -5270 -8692 
Z -38958.4441319444 -38958.4441319444 -5274 -8690 
Z -38958.4441319444 -38958.4441319444 -5272 -8698 
Z -38958.4441319444 -38958.4441319444 -5276 -8712 
Z -38958.4441319444 -38958.4441319444 -5276 -8702 
Z -38958.4441319444 -38958.4441319444 -5274 -8702 
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CAL_5_JUL06.cal 
0 -4762 -8800 
0 -4762 -8792 
0 -4760 -8786 
0 -4766 -8792 
0 -4764 -8788 
0 -4762 -8778 
0 -4768 -8780 
0 -4756 -8774 
0 -4758 -8772 
0 -4768 -8774 
0 -4768 -8772 
0 -4772 -8776 
0 -4770 -8780 
0 -4774 -8776 
0 -4778 -8780 
0 -4780 -8782 
0 -4770 -8780 
0 -4770 -8776 
0 -4772 -8782 
0 -4776 -8786 
2 26654 22588 
2 26660 22588 
2 26668 22578 
2 26668 22586 
2 26666 22590 
2 26670 22584 
2 26668 22578 
2 26660 22580 
2 26666 22578 
2 26660 22574 
2 26662 22588 
2 26668 22580 
2 26664 22582 
2 26668 22588 
2 26664 22586 
2 26652 22572 
2 26650 22574 
2 26648 22572 
2 26644 22574 
2 26642 22584 
4 -1016 -5002 
4 -1018 -5008 
4 -1014 -5014 
4 -1018 -5006 
4 -1014 -5004 
4 -1010 -5006 
4 -1004 -5002 
4 -1000 -5002 
4 -1000 -5006 
4 -1002 -5002 
4 -1002 -5006 
4 -1000 -5008 
4 -1000 -5006 
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4 -1002 -5006 
4 -1000 -5008 
4 -1012 -5000 
4 -1010 -5010 
4 -1006 -5012 
4 -1014 -5004 
4 -1004 -5004 
6 -4024 -8066 
6 -4016 -8074 
6 -4022 -8076 
6 -4018 -8074 
6 -4006 -8078 
6 -4018 -8072 
6 -4022 -8066 
6 -4022 -8070 
6 -4016 -8060 
6 -4024 -8066 
6 -4018 -8056 
6 -4016 -8052 
6 -4010 -8052 
6 -4004 -8056 
6 -4004 -8052 
6 -4012 -8062 
6 -4010 -8068 
6 -4022 -8068 
6 -4022 -8068 
6 -4024 -8062 
8 -4578 -8628 
8 -4578 -8632 
8 -4574 -8626 
8 -4580 -8632 
8 -4576 -8634 
8 -4574 -8622 
8 -4580 -8618 
8 -4582 -8620 
8 -4574 -8614 
8 -4576 -8618 
8 -4572 -8620 
8 -4578 -8612 
8 -4586 -8608 
8 -4578 -8602 
8 -4578 -8606 
8 -4588 -8604 
8 -4582 -8608 
8 -4584 -8606 
8 -4588 -8604 
8 -4584 -8606 
10 -4704 -8732 
10 -4706 -8744 
10 -4708 -8736 
10 -4704 -8738 
10 -4706 -8742 
10 -4706 -8740 
10 -4706 -8740 
10 -4712 -8736 
10 -4716 -8742 
10 -4710 -8742 
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10 -4716 -8748 
10 -4712 -8750 
10 -4710 -8762 
10 -4708 -8770 
10 -4712 -8760 
10 -4714 -8746 
10 -4724 -8742 
10 -4722 -8742 
10 -4720 -8752 
10 -4718 -8750 
12 -4744 -8782 
12 -4752 -8786 
12 -4746 -8784 
12 -4746 -8788 
12 -4752 -8788 
12 -4754 -8786 
12 -4752 -8782 
12 -4754 -8780 
12 -4748 -8776 
12 -4744 -8784 
12 -4746 -8786 
12 -4744 -8782 
12 -4740 -8780 
12 -4732 -8780 
12 -4736 -8766 
12 -4734 -8772 
12 -4740 -8772 
12 -4738 -8776 
12 -4744 -8778 
12 -4744 -8784 
0 -4758 -8802 
0 -4758 -8800 
0 -4772 -8808 
0 -4770 -8806 
0 -4768 -8806 
0 -4772 -8806 
0 -4766 -8802 
0 -4764 -8802 
0 -4772 -8798 
0 -4778 -8792 
0 -4774 -8792 
0 -4780 -8790 
0 -4774 -8788 
0 -4766 -8796 
0 -4770 -8794 
0 -4770 -8800 
0 -4766 -8796 
0 -4770 -8790 
0 -4770 -8796 
0 -4774 -8800 
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