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ABSTRACT 

With the advancement of battery technologies, more electric vehicles are expected to 
get introduced in the market. The energy needed to run those batteries is enormous. This calls 
for developing optimization models that help governments plan for energy expansion and to 
coordinate the efforts between energy suppliers and charging station investors. To supply this 
need, in this paper we propose a two-stage stochastic mixed-integer programming (MIP) 
formulation to establish a dynamic multi-period plan that maximizes the expected monetary 
return from expanding power cells to electric vehicle charging stations over a pre-specified 
planning horizon. We propose a Sample Average Approximation (SAA) algorithm to solve 
our proposed optimization model. We choose Washington, DC as a testing ground to visualize 
and validate the modeling results.
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INTRODUCTION 

Nowadays,  electric vehicles (EV)  are shaping  the future  of transportation, as the 
advances  in batteries storage  capabilities  allow a car  like the  Tesla  S model  to  travel  
almost  300 miles on a single charge, compared  to the  more popular  Nissan leaf, which can 
travel  only 85 miles. This breakthrough makes electric cars more realistic and feasible than 
ever before.  It is one of the alternatives that is hoped to become the substitute for fossil fuel, 
which is scarce and harmful to the environment.  The use of EV leads to an increase in the the 
energy requirements, which call for plans to expand the infrastructure. According to 
Washington State’s  Department of Transportation, a total  of 228,725 kWh of energy were 
supplied  to  charge  EV cars  between  2012 and  2015, which is equivalent  to  22,397 gallons 
of gas [1]. 

As the adoption rate of EV is expected to increase, the need for more charging stations 
is apparent. In 2029, it is expected that the load from EVs will reach 107 aMW [2]. Hence, 
preparations should be made in advance to be ready to cover the power requirements. The main 
reason of this work is to provide decision makers at electric utilities and charging stations’ 
investors a tool that helps in coordinating the e orts and to better plan for the imminent 
increase in EV cars. It makes decisions regarding where to expand power, and based on that it 
decides where to locate charging stations.  Several papers in literature addressed the problem 
of locating charging stations. Wang & Lin [3] propose a mixed integer program that locates 
charging stations using a flow-based set covering.  The objective is to minimize costs of 
locating the charging stations. They are located at the shortest paths to cover all demand from 
traveling flow of cars.  Using grid partition method, the location and size of each charging 
station is determined and the location of each partition is found using Genetic Algorithm by 
Ge, Feng, & Liu [4].  The aim is to minimize the direct and indirect travel losses to the charging 
station while considering tra c density and station’s capacity limitations. MirHassani & 
Ebrazi [5] present mixed integer linear programming based on the flow refueling location 
model (FRLM) that developed by Kuby & Lim [6]. The main idea of FRLM is to locate several 
charging stations in a long round trip using maximum cover. The paper extends on the FRLM 
by considering more assumptions like driver behavior, which produced solutions faster than 
FRLM. Likewise, Chung & Kwon [7] develop a multi period planning of constructional plan 
of charging stations based on the FRLM using three di erent methods: a multi period 
optimization, a forward myopic method, and a backward myopic method.  He, Venkatesh, & 
Guan [8] present two schemes: a global optimal schedule that minimizes the costs of for all 
EVs in a day by deciding the optimal charging and discharging of power, and a local optimal 
schedule to minimize total EV costs within a sub group. Bayram et al. [9] considers charging 
stations provided with power storage units to alleviate stochastic demand.  The main goal is to 



 

provide electricity from grid to the storage units and reroute customers to di erent stations. 
Stochastic models are proposed to achieve these objectives.  A simulation-optimization model 
is proposed by Xi, Sioshansi, & Marano [10] to locate charging stations so as to maximize 
their utilization.  There are three steps presented to attain this objective. The first is to get the 
volume of flow for EV cars. Then a simulation model is utilized to determine the number of 
cars successfully finishing a charge at a station.  Finally, a linear programming model is given 
to decide the sizing and location of each charging station.  Wang & Lin [11] extends the work 
of Watson & Woodru  [12] by taking into consideration several constraints, like facility 
budget, types of stations, and possible rerouting of EVs.  In [13], an optimal control strategy 
for a charging station equipped with a power storage, integrated EVs, and sources of renewable 
energy is provided using a multi period mixed linear integer programming model. The 
objective is to maximize economic benefits by determining power levels in storage units and 
charging and discharging power of EV. A stochastic chance-constrained programming model 
is also given assuming uncertainty in demand and power generation, EV state of charge, and 
the times of connection and disconnection. 

To the best of the author’s knowledge, none of the prior studies modeled the feasibility 
of locating EV charging stations based on electricity grid power availability. Moreover, there 
are very limited studies that consider system uncertainties such as EV adoption rates, EV flow 
rate, and charging capacity that often impact the location and routing decisions of electric 
vehicles. To fill this gap in the literature,   this paper introduce a novel two-stages  stochastic 
programming model  that helps  governments   in planning  for  power  expansion  in  
anticipation of the  imminent  growth  in  EV  adoption   rates,   which will lead to an increase 
in the demand  of energy from charging  stations. The model decides in the first stage  the  
areas  where it is best  to expand  power at  based  on the  flow of cars per year at  the  roads  
in that area, and in the second stage, the decisions for locating the charging stations are made. 
The outcome of this study provides a number of managerial insights such as optimal expansion 
decision of power grid and deployment of charging stations decision under limited budget 
availability, which can e ectively aid decision makers to design a robust network to adopt 
electric vehicles in a given region. 
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OBJECTIVE 

This study develops a two-stage stochastic programming model which takes into 
account the uncertainty in both the adoption rates and charging behavior of geographic regions. 
Further, we consider the important links between the power and transportation systems by 
ensuring that electric vehicle charging stations are only installed where there is a su cient 
power support.   In addition to proposing the general model, another important contribution of 
this paper is applying this model to a real-world case study.   We use Washington, DC as a 
testing ground in our case study. This region possesses a number of favorable factors (e.g., 
high income and dense population) that are likely to attract intensive electric vehicle 
infrastructure investment in the future.  We solve the two-stage stochastic program using a 
Sample Average Approximation algorithm and present the computational efficiency to solve 
the proposed model by using this algorithm. 
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METHODOLOGY 

This section presents a two-stage stochastic programming model formulation to 
establish a dynamic  multi-period plan  that maximizes  the  expected  monetary return from 
expanding power cells and  electric  vehicle charging  stations over a pre-specified  planning  
horizon under electricity demand uncertainty. For the convenience of the readers, the 
mathematical notation is summarized in Table 1. 

Table 1 Description of the sets, parameters and variables used in this study 

Notation Description 
Sets 

 Set of rows 
 Set of columns 
 Set of neighboring  rows of row  
 Set of neighboring  columns of column  
 Set of time periods 
 Set of capacities for charging stations 
 Set of scenarios 

Parameters 
 Fixed cost of expanding  power in cell  in time period  
 Expected profit from car tra c in dollars for cell  in time period  
 Budget  availability for expansion in time period   
 Flow (cars/time period)  at cell  in time period  
 Cost of opening a charging  station  of size in time period  
 Budget availability for locating charging stations in time period  
 Cost  of reallocating   power  to  a  charging  station   located  at  cell  

from  cell  in time period  
 Expected income (in $/kWh) obtained  from reallocating  power to a charging 

station  located at cell  from cell  in time period  
 Power demand (in kWh) at a charging station located in cell  in time 

period  under scenario  
 Capacity  (in kWh)  of a charging  station  of size  located  in cell 

 
 Minimum  utilization required  for a charging  station  located  at  cell 

 in time period  
 Amount of residual  power available  at cell  in time  
 Percentage  of car charged  in time period  
 Unit  power requirement for each car 
 probability of scenario  

Decision variables 
 1 if cell   is selected for power expansion in time period ; 0 
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otherwise 
 1 if a charging  station  of size  is open at cell  in time period t 

 under 
scenario ; 0 otherwise 

 Amount of power transferred from cell  to cell  in time   
period  under  scenario  

 Amount of power remaining  at cell  in time   
period  under  scenario  

 

 
Model Formulation 

 
 

In the two-stage stochastic programming model formulation, the first stage decides the 
electric power capacity expansion decision to support the installation of charging station in the 
second stage.  We consider the area for this study is divided into a square grid and the 
parameters of the mathematical model are defined for each cell in the grid. The cells are 
referred to through their respective row and column number. Due to the nature of the problem’s 
constraints, dummy rows and columns are added above, below, to the right, and to the left of 
the grid.  This is done to insure the validity of some constraints. The values of parameters in 
those cells are set so that they do not a ect the solution of the model. We define 

 as the set of candidate rows and  as the set of candidate 
columns for possible power expansion of electric vehicle charging stations over a set of time 
periods . Each cell  referred to by its respective row  and column number . 
We further define  (indexed by ) and  (indexed by ) be the neighboring cells of 
a selected cell  where ). For each cell ,   denote the 
expected number of cars that will in a given time period . We assume that this flow 
generates a profit of  for the charging stations, if a station is located at cell  in 
time period . We represent  as fixed investment cost of locating a charging station at 

 in time . We assume that  define as the budget availability to select cells 
for expanding power for electric vehicle charging stations in a given time period .  The 
model is designed so that if a cell is selected, a set of surrounding cells to the selected cell are 
prohibited from being chosen for power expansion to ensure the sparsity of the charging 
stations. We feel this is necessary at the early stages of building the infrastructure for EV, since 
the adoption rate of EV cars increase steadily. Sparsity insure that the covering of demand will 
not be exaggerated.  It is assumed that if a cell is selected, the expanded power is enough for 
the expected flow of cars.   
 

The objective of the second stage is to maximize the expected profits of reallocating power 
from adjacent cells. The stochastic element in the second stage is demand denoted by    (in 
kWh), and this is due to the uncertainty in the amount of energy drawn by EV owners at the 
charging stations. Let   be the set of scenarios of di erent realization of power demand for 
the charging stations located in cell  at a given time period  and  
defines a particular realization. Let  denote the cost of opening a charging station of size 
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 in time period , and at that time period, we are given a budget   to open the 
charging stations. Since decisions for power expansion are based on the current observed flow, 
the demand may increase when the charging stations are built.  In that case, we assume that 
the amount of power may transfer from cell  to cell  in time period 

 under scenario  by incurring a reallocation cost of  . This in turn  will increase 
the income (in $/kWh) of a charging  station  by serving additional customers  visited  at  cell 

 in time  period   and  is denoted  by . It is worth to note here that the 
cells will also have the option to retain their excess energy which they can use in remaining 
time periods.  Additionally we make following assumptions to simplify our modeling approach 
without the loss of generality: 
 

• Demand is assumed to be equal or larger than the demand from flow of cars at the first 
stage. 

• Demand is increasing at all cells as time periods increase. 

• Grid power is available all the time. 

• All charging stations will be of fast charging DC chargers. This assumption is made to 
ensure the ability to meet the demand. 

 
We now introduce the following first and second-stage decision variables for our two-

stage stochastic programming model formulation. The first-stage decision variables
, select the set of cells for possible power expansion of electric vehicle 

charging stations in a given time period  The first set of second-stage decision variables 
 select the size, cell, and time to open a charging station 

in a given scenario. 
 
The other second-stage  decision  variables  include  

 denote the amount of power transferred from cell  to cell 
 in time period  under  scenario   and  

  denote  the  amount of power remaining at cell  in 
time period  under scenario  . The following is a two-stage stochastic mixed-integer 
linear programming (MILP) model formulation of the problem referred to as model [EVC]: 
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In [EVC], the objective function (1) is the sum of the first-stage profits and the 

expected second-stage profits. The first-stage profits maximize the monetary return from flow 
that the charging stations may get by expanding power in a given cell  in time 
period . Budget is an important aspect in any project. Constraints (2) is given here because 
it is usually necessary to be accounted for. It limits the number of cells that can be selected in 
a given time period  with a pre-specified budget . Constraints (3) ensure that if power 
is expanded into a cell at time period  then it will still be selected in the subsequent periods 

. Constraints (4) ensure that the distribution of charging stations around a selected cell 
 is sparse and prevents a set of surrounding cells to the selected cell from being 

chosen for power expansion. Constraints (5) set the binary restrictions for the first-stage 
decision variables. 
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In the second-stage, the objective function (6) maximizes the monetary return of 

rerouting power to cover extra demand. Constraints (7) limit the number of charging stations 
that can be opened in a given time period  with a pre-specified budget . Constraints (8) 
indicate  that if a charging  station  is opened  in an earlier time period,  it will still remain open 
in the  subsequent  time  periods. Constraints (9) indicate that a charging station is open only 
if the expected utilization is attractive for the investors. Constraints (10) ensure that the power 
rerouted is no more what is available. Since power can be drawn from adjacent cells as 
necessary, the remaining amount should be monitored. Constraints (11) assign the remaining 
power after reallocation to the next time period. Constraints (12) indicate that the residual 
power at the first period is initialized with the parameter , which is the amount of residual 
power available  at the beginning. If the  demand  is more  than  the  expected  flow, power  
from adjacent  cells   can  be rerouted to the selected cell  to fulfill 
the unaccounted for increase in demand which is denoted by constraints (13) . Constraints (14) 
indicate that at most one charging station of size  is opened in a given cell in 
time period  under scenario . Finally, constraints (15) set the binary restrictions and 
(16), (17) are the standard non-negativity constraints. 

 
Solution Algorithm 

 
 
This section presents the solution technique used to solve the model [EVC].  Note that by 
setting  and   i.e., a single scenario and a single time period, we can show that 
the problem [EVC] is a special case of a capacitated facility location problem which is known 
to be an NP-hard problem [14]. When the number of scenarios in our stochastic program model 
are too large, commercial solvers, such as CPLEX, cannot solve the large-scale instances of 
this problem. To overcome this computational challenging problem, in this section we propose 
a sampling based algorithm which is known as Sample Average Approximation method (SAA) 
to solve the problem. The aim is to generate high quality solution for the problem in a 
reasonable amount of time. 

 
Sample Average Approximation 

The  two-stage  stochastic  program  is challenging  to solve by exact  solution  techniques  
and  commercial solvers, such as CPLEX  fails to solve even a moderate  size of this  problem.  
Theretofore, SAA method is employed to reduce the computational burden to solve our 
problem.  With the SAA approach, the objective function is approximated through a random 
sample of scenarios.  SAA is used extensively to solve large scale supply chain network flow 
related problems, such as [15], [16] and others. Interested readers may refer to review the 
works from Kleywegt et al.  [17] for the proof of convergence properties  of SAA. In SAA, a 
sample  of   realization  of the random  vector ω is generated  from Ω according 
to a probability distribution P and  they  are  solved repeatedly  until  a pre-specified  tolerance  
gap  is achieved.   After the scenarios are generated (e.g.,   scenarios), problem [EVC] is 
estimated by following SAA problem: 
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As the sample size increases the optimal solution of (18), , and the optimal  value 

 , converges with probability one to an optimal  solution of the original problem [EVC] [17]. 
The following steps briefly summarize the Sample Average Approximation (SAA) technique 
to solve problem [EVC]. 

 
1. Generate   M   independent demand  scenarios  of size     i.e., 

 where 
 and solve the corresponding  SAA: 

                      }),(1:)(ˆ{
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                             (20) 

The optimal objective value is denoted by  and the optimal solution by 
 . 

2. Compute  the  average  of the  optimal  solutions  obtained  by  solving  all SAA 
problems,  and variance,  : 

                 
M

m

m
N

N
M v

M
v

1

1                                                                   (21) 

 
where,  provides  a statistical upper  bound  on the  optimal  objective  function  
value  for the  original  problem  defined by (1)-(17) . Since   samples are 
generated and   are independent, the variance of   is given by: 
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3. Pick a feasible first-stage  solution  obtained  from Step 1 of the SAA algorithm, 
i.e., one of the  solutions  from  and  estimate  the  objective  function  value of the 
original  problem [EVC] using a reference sample as follows: 
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The estimator  serves as a lower bound for the optimal objective function value 
of problem [EVC]. We now generate a large set of power demand scenarios   i.e., 

. Typically, sample size  is chosen much 
larger than the sample size   in the SAA problems i.e.,  . We can estimate the 
variance of  as follows: 
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4. Compute the optimality gap  and its variance  using the 

estimators calculated in Steps 2 and 3. 
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The confidence interval for the optimality gap is then calculated as follows: 
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with  , where  is the cumulative  distribution function  of the 
standard normal distribution. 
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DISCUSSION OF RESULTS 

This section conducts numerical studies to test the proposed model and draw relevant 
managerial insights. We have chosen Washington DC as a testing ground for this study. The  
following subsections  first describe the  input parameters used in this study,  then conducts a 
computational study on model [EVC] and present results  from the case study  and draw 
managerial  insights  and finally we present the performance  of the algorithms.  

We selected Washington DC for our case study in which we apply the model. The 
reason behind choosing Washington DC is that the city o ers incentives to own EV cars and 
the adoption rate is high.  The map is divided into a grid of size  cells (i.e., |

) including the dummy ones mentioned earlier. Each cell is approximately 0.5 
mile2 in area. We have considered five time periods for this study, and they are measured in 
years starting in 2017 and ending in 2021. All costs are calculated based on 2017 dollars and 
then adjusted for inflation.  The data for cell-specific parameters were obtained only for those 
that have a road passing through them.  The values for parameters for other cells were given a 
value of zero. The cost of expanding power  in a given cell  is set to $700,000 

[18] and we assume that we are given an annual budget ( = $5M, $6M, $7M, $8M, and 
$9M) to expand power for years 2017 - 2021 [18].  Similarly, the construction cost for locating 
a fast electric vehicle charging station ( ) in a new location is set to $50,000 [19].  We 
investigate three di erent electric vehicle charging station capacities (s = 100 kWh, 200 kWh, 
and 300 kWh).  We further assume that we are given an annual budget ( = $400, $550, $700, 
$850, and $1000) (in thousand dollars) to build infrastructures for electric vehicle charging 
stations in our tested region for years 2017 – 2021 [20]. The cost of reallocating power  
to a charging station located at cell  from cell    in time period 

 is set to $0.12/kWh [21]. Finally, we set  = $0.5/kWh,  =40%, = 10 kWh, and  = 
20% for our base case experimentations. 

The  first experiment  studies  the  impact  of budget  on power expansion  and  installing  
charging  station decisions. We conduct four sets of experiments:  a) base budget for both   
and , (b)  is increased by 50% while keeping the budget  fixed, (c)   is increased 
by 50% while keeping the budget    fixed, and (d) both   and   are increased by 50%. 
Figures 1-2 show the deployment of power expansion cells  (represented by “square” 
symbol  in Figures 1-2) and charging stations  (represented by symbol “circle” in Figures 
1-2) for the experiments (a) and (d).  From these figures it is observed that he decisions of  
and  are highly impacted by the budgets   and   set by the decision makers. It is 
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observed that the results for experiment (b) show a little progression of selecting charging 
stations over the base case scenario (shown in Figure 1). This is obvious because  in experiment 
(b) the  budget  is fixed for the  power  expansion  decision,  so the  model  gets  less options  
to  establish  the charging  station  in the second stage. Now, if we increase the power expansion 
budget by 50% and fixed the charging  station  budget,  then  the number  of cell for power 
expansion  shows a significant increasing trend,  where the  charging  stations show a little  
increasing  trend (experiment (c)). However, it is important to note that many of the cells 
selected in the first-stage are eventually not picked for locating charging stations in the second-
stage. Finally,  Figure 2 shows the results  when  the  budget  for both  power expansion  and  
charging  station  increases  by 50% over years 2017 - 2021.  It is seen that increasing both 
budgets show a rapid expansion of the number of cells for power expansion and charging 
stations. We observe some additional charging stations being located far away from the 
original cluster of stations primarily due to serving the high density of population, hospitals, 
and colleges located near the stations.  
 

In summary, it is observed that depending on the values of  and   set by the 
decision maker many more cells and charging stations are opened to provide a broader 
coverage for the electric vehicles. These results provide an insightful ground for decision 
makers to invest in power expansion to certain regions to maximize profit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 Electric vehicle charging station expansion planning under base case scenario. 
 
 
 

  

                                                                 

   
2017 2018 2019 

2020 2021 
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FIGURE 2 Electric vehicle charging station expansion planning under experiment (d). 
 

This  section  presents  the  impact  of power demand ( )  variation  on the  number  
of cell selection for power expansion  and  installing  charging  station  decisions.  For our 
experiment we assume that the power demand follow normal distribution at each cell  

  in time period   . We  conduct  two  set  of experiments: (a) low power  demand  
variation  and  (b)  high  power  demand  variation.  The  standard deviation  (SD)  of power  
demand  is set  equal  to  0.15 for low power  demand  variation  and  0.50 for high  power  
demand variation. Results indicates that  as the level of power demand increases, the number 
of cell for power expansion and number charging station increases under  a specified budget  
limit. More specifically, the model decides to select more cell for power expansion and 
charging station of di erent sizes to cope against the power demand variability and on average 
the number of cell for power expansion increases by 18.75% and charging station by 35.89%. 
Figure 3(a) summarizes the number of power expansion cells (PE) and charging stations (CS) 
opened under low and high demand variabilities. This in turn  will have an  impact  on the  
amount  of power  transferred from cell  to  cell  under scenario  

, as illustrated in Figure 3(b).  This implies that the power demand variability level 
highly impacts the power expansion and establishing charging station decisions. 
 
 
 
 

                                                                 

   

  

2017 2018 2019 

2020 2021 
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FIGURE 3 Impact of power demand variability on system performance. 
 

We now analyze the impact of car traffic flow, , on system performance. Figure 4 
provides a relationship between charging station opening decisions  under di erent  
values. Clearly, increasing the flow  at each cell  in time period  impacts 
the charging station opening decisions  under a pre-specified budget restriction. For 
instance, a 50% increase in  increases the average number of charging stations  by 
31.4%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
                         

 
FIGURE 4 Impact of  on locating charging station decisions. 

 
 

 

 

(a) ,  vs. time (b)  vs. time 
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CONCLUSIONS 

This  study  develops a novel optimization framework  that can  be used to  design widespread  
adoption of electric  vehicle charging  stations for a pre-specified  planning  horizon  subjected  
to  stochastic  power demands. The model can be computationally very challenging depending 
on the size of the cells, time periods, and scenarios set by the decision maker. To alleviate these 
challenges and to solve real scale problem instances, we have used Sample Average 
Approximation (SAA) algorithm. 
 

By using Washington, DC as a testing ground, we conducted thorough computational 
experiments to test our model and to draw managerial insights.  Our computational 
experiments reveal some insightful results  about  the  impact  of cell expansion  (  ) and  
charging  station  budgets  ( ) on electric  vehicle adoption  performance.  We further conduct 
sensitivity analysis on the impact of power demand ( ) variability and vehicle flow rate ( ) 
on system performance.  It is observed that the model decides to open an additional 18.75% 
power expansion cells and 35.89% charging stations to counter high power demand variability 
over the base case scenario.  Moreover, we observe that a 50% increase in vehicle flow  
will open an additional 31.4% charging stations in our tested region under a specified budget 
constraint. We believe our results will used by energy distribution agencies as well as charging 
stations investors to understand the  growth  pattern of EV cars on the  road,  and  take  action  
towards  providing   services and exploit the economic benefits that comes with it and 
eventually help to develop a future sustainable transportation system. 
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RECOMMENDATIONS 

This research opens up a number of future research opportunities. Our study makes 
several assumptions, such as fast charging stations, known electric vehicle tra c volume, no 
power failure, and fixed charging capacity over time.  High fidelity models will be developed 
in the future to relax these assumptions. Further, it is interesting to integrate renewable energy 
sources into the optimization framework and assess the robustness of the model in a situation 
where a disruption (e.g., hurricane, tornado) impacts the system.  These issues will be 
addressed in future studies. 
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