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Topics to be Discussed

• Accuracy for activities with only Yes/No 
outcomes

• Forecast calibration: bias in transportation 
forecasts

• Measures of forecast performance
• Model choice



Some of the Issues

• Does your organization formally track 
forecast accuracy? 

• If yes, do you have a target/goal for 
forecast accuracy? 

• If you have a target/goal for forecast 
accuracy, how is it set? 

• What accuracy measure do you use? 
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Source: Forecast Pro Newsletter, August 
2009
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Will it Rain?

• It rains in the DC area about 1 day in 4.
• Accuracy Criterion: Maximize the percent 

correct
• What should be the forecast?
• Answer: never predict rain

– Produces 75% correct answers
– Any other forecast produces a lower percentage 

correct
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Lack of Proper Calibration

• The criterion is not properly calibrated 
because it does not encourage an 
appropriate answer

• Ask: What is the probability of rain?
• Let Y=1 if rain; Y=0 if no rain
• Forecast P(R) = probability of rain
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A Solution

• Use Brier’s Score Function and seek 
minimum:

• Example true P =0.7:
– E(S|P=0.7)=0.21
– E(S|P=0.0)=0.70
– E(S|P=1.0)=0.30

• Ready extension to multinomial case
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RESULTS
Visitor Home P(V win) P(H win) Actual Brier Brier‐0.5
Chicago White Sox Seattle Mariners 0.56 0.44 H 1 0.194 0.25
Detroit Tigers  Boston Red Sox 0.41 0.59 H 1 0.348 0.25
Oakland Athletics Baltimore Orioles 0.28 0.72 V 0 0.078 0.25
Toronto Blue Jays New York Yankees 0.40 0.60 V 0 0.160 0.25
Chicago Cubs Colorado Rockies 0.35 0.65 H 1 0.423 0.25
Cincinnati Reds Saint Louis Cardinals 0.33 0.67 H 1 0.449 0.25
Houston Astros Florida Marlins 0.58 0.42 H 1 0.176 0.25

Mean= 0.261 0.25

Baseball games played  on August 10, 2009
Predictions in Wall Street Journal, 8/10/2009



Measures of Bias for Quantitative 
Variables

• Let Y = Actual, F = Forecast
• BIAS: 

• PERCENT BIAS:

• COMMON PRACTICE (e.g. Flyvbjerg, 2005)
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A Few Comments

• Forecasts of future traffic flows for new 
transportation projects in Europe tend to:
– Overestimate rail traffic
– Underestimate road traffic
– See Flyvbjerg et al., 2006; Welde & Odeck, 2009

• Is the USA any different? Is the forecasting 
system properly calibrated or do biased 
forecasts produce extra (funding) benefits?
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A possible solution

• Reference class forecasting:  build an 
historical data set of somewhat similar 
projects with actual outcomes and calibrate 
forecasts using a regression model
– How to choose the reference set?
– Use actual outcomes, first year or ramp-up 

effect? 
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Kahneman’s Story 
(from Flyvbjerg et al, 2006)

• Team of academics and teachers working 
on a curriculum project; each was asked 
how long the project would take

• Answers ranged from 18 to 30 months
• Team was then asked  “Think of a similar 

past project; how long did it take to 
complete?”

• Answers ranged from 7 to 10 years
• OUTCOME: Project was completed 8 years 

later!
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Variability Measures for Quantitative 
Variables

• Let Y = Actual, F = Forecast; m forecasts, 
either cross-sectional or time-series

• (Forecast) Mean Square Error:

• (Forecast) Mean Absolute Error:

• These measures are scale-dependent
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Variability Measures for Quantitative 
Variables, II

• Remove scale dependence by looking at 
relative errors

• (Forecast) Mean Absolute Error:

• Requires positive data
– Net profits
– Rare events
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Variability Measures for Quantitative 
Variables, III

• For time series data, use the (Forecast) Mean 
Absolute Scaled Error:

• Require MASE < 1 if method is to do better 
than a random walk (RW)

• For cross-sectional data, replace RW by a 
suitable “naïve” model

• For particular applications, other functions 
such as cost may be more appropriate
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Model Choice: Prediction Validation 
[PVAL]

• Suppose we have n+m observations (cross- 
sectional or time series)

• Develop/estimate models using n 
observations and then compute the 
accuracy measures using the other m 
observations

• For time series, the hold-out sample must 
be at the end of the series; for cross- 
sectional data, cross-validation is possible, 
holding out multiple sets of m, or 
alternatively  “leave-one-out”
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Model Choice: Information Criteria

• The general form of information criteria is:

• Here K= # parameters in the model and q(n) is a 
penalty function:
– AIC (Akaike): q(n) = 2
– BIC  (Schwartz): q(n) = log (n), etc.

• Penalty included to avoid over-parametrization
• Asymptotically, AIC minimizes forecast error, BIC 

selects the correct model with probability 
approaching 1.
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Model Choice

• AIC tends to work  better than BIC for 
forecasting purposes (still a matter for 
debate)

• PVAL is widely used in practice, but recent 
studies have suggested that AIC works 
better

• For details, see Hyndman et al. (2008, 
chapter 7), who examine the M3 data and 
another large data set.
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Air Ton Miles – Seasonally Adjusted
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Summary Statistics

Analysis performed using Forecast Pro
AIR TON MILES ‐SA

Sample size 183
Mean 2278535
Std. deviation 575422

ARIMA HOLT
Adj. R‐square 0.98 0.98
Ljung‐Box(18) 24.5 P=0.86 30 P=0.96
BIC 74054 73838
RMSE 73008 71766
Durbin‐Watson 2.01 2.05
MAPE 2.07% 2.01%
MAE 46432 45183

Out‐of‐sample MAE 43478 47657
12 observations, 
rolling



Conclusions

• Choose accuracy measures that reflect both 
bias and variability

• Accuracy measures should be properly 
calibrated relative to planning  objectives

• Accuracy measures should reflect the 
appropriate forecasting /planning horizon

• Model choice may be based upon 
information criteria OR out-of-sample 
testing: both approaches have their 
advocates
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