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Executive Summary 

DIDC algorithms and software is a key product of the Basic Safety Message (BSM) Data Emulator 

project. The BSM Data Emulator project is one of several related research and development activities 

within the Data Capture and Management (DCM) Program, which is in turn a part of the USDOT 

connected vehicle research effort considering mobile data communications in surface transportation to 

improve safety, mobility, and the environment. This assessment report pertains to a closely related 

application of DIDC product: 

• TCA-DIDC: Offline software built with the purpose of interfacing with the Trajectory 

Conversion Algorithm (TCA) Version 2 Software Release 4 expected in April 2016.  

 

The purpose of this report is to describe the scenarios, testing method, and results from comparing 

the DIDC messaging concept with other message types available in the TCA-DIDC Version 2.4 

software. This is the second phase of DIDC testing conducted in the BSM Data Emulator project. The 

first phase of DIDC testing, the proof of concept, was completed in January 2016 and is described in a 

separate test plan and final report. This second phase of testing compared the measures estimation 

capabilities and data communication load of the DIDC concept to the European Union Cooperative 

Awareness Message (CAM) as well as the enhanced versions of the Basic Safety Message (BSM) 

and Probe Data Message (PDM) developed in the Measures Estimation effort of the BSM Data 

Emulator project. 

Purpose 

The purpose of this report is to describe the testing method and results from comparing the DIDC 

messaging concept with current message types. Elements that are covered include:  

• Assumptions 

• Research Hypotheses 

• Technical Approach  

• Analyses Scenarios and 

• Results Reporting 

 

Technical Approach 

Three factors were considered for measuring the usefulness, efficiency, and privacy of each message 

type: key performance measurement estimation, data communication costs, and re-identification 

accuracy. The effectiveness of each message type was measured by its ability to provide vehicle data 

that produced accurate performance measure estimation of four key measures: travel time, queues, 

slippery conditions, and turning movements. Another important variable for each test scenario was the 

data communication cost calculated by how much vehicle data is transmitted during the simulation. 

And finally, Noblis produced a re-identification algorithm written in the python programming language 

to run on all of the various message types tested to determine if a vehicle could be tracked to its origin 

or destination. This algorithm was designed to accept TCA output of any of the four message types 

and predict a vehicle’s origin and destination using the available message elements. For each 



Executive Summary  

U.S. Department of Transportation 

Intelligent Transportation System Joint Program Office 

DIDC Assessment Report: Impact of DIDC – Final| 6 

analysis scenario, the re-identification algorithm attempted to track five separate vehicles starting with 

a vehicle message generated in the middle diamond area (see Figure ES- 1). 

Analysis Scenarios 

Noblis developed a test network in VISSIM called Philosopher’s Corner to test the various message 

types. Figure ES- 1 shows the key features of the network which include eighteen origin and 

destination points spread out amongst two towns, Platoville and Spinoza Oaks, with a shopping center 

in the middle. 

 

Figure ES- 1: Philosopher’s Corner VISSIM Test Network 

Key Findings 

• The DIDC concept generated data more efficiently than other message types: The 

DIDC concept effectively throttled up data in low market penetration simulations and reduced 

redundant data in high market penetrations without sacrificing measures estimation 

capabilities for travel times, queues, turning movements, and slippery conditions.   

• The DIDC concept produced BMMs that were harder to re-identify the vehicle origin 

and destination compared to BSM and CAM, but easier than PDM: A vehicle’s origin and 

destination could be re-identified less than 35% of the time using BMMs at market 

penetrations greater than 20% on the Philosopher’s Corner network. By comparison, the 

origin and destination could be re-identified more than 90% of the time using BSMs but less 

than 20% of the time using PDMs. 
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• The TCA Version 2.4 software tool provides capability for others to build upon and find 

better ways of optimization: The testing documented and completed in the BSM Emulator 

project looked at simple adaptive processes primarily to see if the measures estimation 

results were preserved or improved while reducing data flow. There is apparent potential 

value in these types of adaptive processes based on the research outlined in this report. 

Much more research could be explored in this area and the TCA Version 2.4 tool provides a 

good starting point for continuing investigation. 
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1 Introduction 

Data from wirelessly connected vehicle and mobile devices have the potential to enable new 

applications and transform transportation systems management, traveler safety, and personal mobility. 

However, the utility of any new application is dependent on the underlying process by which mobile-

source data are generated, stored, communicated, and mined for information. The USDOT’s vision for 

connected vehicle systems leverages a regulatory DSRC-based Basic Safety Message (BSM) 

augmented with market-driven messages passed through alternative, longer-range communications 

media (e.g., cellular). Efforts within the Data Capture and Management (DCM) Program to evaluate 

alternative messaging protocols and innovations is a critical cross-cutting effort at the heart of 

establishing a new wirelessly connected vehicle/traveler paradigm. A wide range of critical research 

questions remain to be addressed, including the identification of required data elements, the roles of 

dual-mode communications and messaging protocols in detecting and or predicting traffic 

phenomena. 

As part of the Basic Safety Message (BSM) Data Emulator project, Noblis researchers have 

developed the Dynamic Interrogative Data Capture (DIDC) concept. DIDC was first proposed by 

Noblis researchers as a possible method of reducing bandwidth costs by tailoring data 

communications adaptively to meet application needs. Noblis researchers added the DIDC capability 

to the Trajectory Conversion Algorithm (TCA) software and developed algorithms to estimate key 

transportation measures. These algorithms and software were used to test the DIDC concept under a 

variety of scenarios to refine the concept and prove its effectiveness in both accurately predicting 

measures of performance (maximizing the value of the data) while minimizing the amount of data 

captured and transmitted (reducing data-related costs). 

Another key goal of the project is to conduct a side-by-side comparison of the measures estimation 

results and data communication load of DIDC with other message types including the European Union 

Cooperative Awareness Message (CAM) and the enhanced versions of the BSM and PDM introduced 

in the Measures Estimation effort of the BSM Data Emulator project. This assessment will inform the 

USDOT of the value of DIDC compared to current messaging strategies. The key hypothesis of DIDC 

is that using a well-constructed DIDC approach will have a lower risk of privacy issues and higher 

effective measures estimation along with a reduced data transmission load than comparable non-

DIDC alternatives. 

1.1 Purpose 

The purpose of this report is to describe the testing method and results from comparing the DIDC 

messaging concept with current message types. Elements that are covered include:  

• Assumptions 

• Research Hypotheses 

• Technical Approach  

• Analyses Scenarios and 

• Results Reporting 
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2 Assumptions 

It is critical to document assumptions to caveat findings from the analyses so that there are no false 

expectations of the benefits that may be realized in the field.  The assumptions of this study are the 

following: 

1. PDM privacy protocols modeled in study will follow SAE J2735 standards [1] 

a. Probe Segment Number (PSN) changes every 120 seconds or 1 km, whichever 

comes later 

b. After PSN changes, no snapshots are generated for 3 to 13 seconds, or 50 to 250 

meters, whichever comes first 

2. DSRC communication is not represented. The enhanced versions of the BSM and PDM 

recommended by the Measures Estimation task include Dual Mode communication. That is, 

the vehicle transmits via DSRC if in range, else transmit via cellular. For simplicity’s sake, only 

cellular communication will be used in these analyses since the transmission frequency will 

not be affected.  

3. Cellular communication loss and latency are not represented. 

4. Cost of cellular coverage is not part of the assessment. 
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3 Research Hypotheses 

This section describes the key research hypotheses that will guide the development of the analysis 

scenarios. The hypotheses listed below are valid under assumptions, specifically assumption 4 that 

pertains to cost of deployment, listed in the previous section. For each hypothesis, other critical factors 

are held constant during targeted testing. For example, the slippery condition regions are held 

constant when exploring the effect of changing market penetration.  

1. BMM will be able to produce comparable measures estimation results to BSM and CAM. 

2. BMM will be able outperform PDM in measures estimation. 

3. BMM will be able to produce a lower data load than BSM and CAM.  

4. Vehicle origins and destinations will be easier to re-identify using BSMs than other 

message variants.  

5. The DIDC Controller will be able to adjust BMM generation rates to match the defined 

targets.  
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4 Technical Approach 

This section identifies the key transportation measures and variables that were considered and 

examined. Three factors were considered for measuring the usefulness, efficiency, and privacy of 

each message type: key performance measurement estimation, data communication costs, and re-

identification accuracy. Each of these three variables are explained below. 

4.1 Performance Measures 

The effectiveness of each message type was measured by its ability to provide vehicle data that 

produced accurate performance measure estimation of four key transportation measures. These four 

key measures were chosen because they cover all of the significant aspects of the DIDC concept and 

were used in the first phase of DIDC testing. These measures and their descriptions are:  

Queues 

• A vehicle is in queue when it is either stopped or is traveling at a speed less than 10 ft/s (3 

m/s) and is approaching another queued vehicle at headway of less than 20 ft (6 m). 

Travel time 

• This is defined as the average travel time on route segments experienced by all vehicles that 

begin travel in a specific time interval.  

Slippery Conditions 

• The use of traction control suggests a possible occurrence of slippery conditions. Slippery 

conditions are defined by the start and end time as well as the roadway coordinates of where 

they start and end.  

Turning Movements 

• This is defined as a percentage of vehicles turning left or right at a given intersection. 

Key transportation measures were estimated by running the measures estimation algorithms on the 

simulated vehicle-based messages output from the TCA software. To ensure consistency in measures 

estimation analysis, Noblis researchers used algorithms to calculate the ground truth measures from 

the traffic simulation outputs that describe the vehicle dynamics (e.g., position, speed, acceleration 

rates) of every vehicle in the network. 

Two of these algorithms, travel time and queue, were developed during the measures estimation task 

of the BSM Emulator project [4]. The remaining two algorithms, slippery conditions and turning 

movements, were developed during the first phase of DIDC testing to study the DIDC proof of 

concept. All four algorithms were written to work with all four message types. 

4.2 Data Communication Cost 

Another important variable for each test scenario was the data communication cost calculated by how 

much vehicle data is transmitted during the simulation. One of the assumptions in the Phase 2 test 

scenarios was that all communication was unlimited by loss, latency, or bandwidth. However, the 
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amount of vehicle data was still a factor in ranking the efficiency of the message types against each 

other.  

4.3 Re-Identification Accuracy 

Re-identification is the capability of predicting a vehicle’s origin and destination from a single data 

point anywhere on the network using all of the transmitted vehicle messages. Noblis produced a re-

identification algorithm written in the python programming language to run on all of the various 

message types tested in Phase 2 to determine if a vehicle could be tracked to its origin or destination. 

This algorithm was designed to accept TCA output of any of the four message types and predict a 

vehicle’s origin and destination using the available message elements. For each analysis scenario, 

the re-identification algorithm attempted to track five separate vehicles starting with a vehicle message 

generated in the middle diamond area (see Figure 5-1). These algorithms will be documented in 

Appendix B. 
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5 Analysis Scenarios 

This section presents the analysis scenarios and the VISSIM test network used in the Phase 2 DIDC 

testing.  

5.1 Test Network 

Using the requirements for the DIDC test network, Noblis developed Philosopher’s Corner as depicted 

in Figure 5-1. This VISSIM network was designed to meet the requirements outlined in Section 2. Key 

features include eighteen origin and destination points spread out amongst two towns, Platoville and 

Spinoza Oaks, with a shopping center in the middle. 

 

Figure 5-1: Philosopher's Corner VISSIM Test Network 

5.2 Variables Examined 

The accuracy of the measures estimation was examined by varying the following: 

• Market penetration of connected vehicles, as our expectation is that market penetration 

of connected vehicles will increase gradually over time and will vary by vehicle type (e.g., 

light, transit, freight vehicles) and by region. 
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• Traffic conditions (by varying demand levels, weather impacts, incidents, origin-

destinations), to examine accuracy for varying operational conditions. 

5.3 Market Penetrations of Connected Vehicles 

Measures estimation were performed for three market penetrations of connected vehicles: 2%, 20%, 

and 95%. 

In TCA, the probability that a vehicle is an equipped vehicle capable of transmitting messages, is 

equal to the specified market penetration. For example, if the market penetration is set as 2%, then in 

TCA a vehicle has a 2% probability that it is a connected vehicle. 

5.4 Traffic Conditions 

Measures estimation analysis was performed for four traffic demand levels with varying operational 

conditions as described in Table 5-1. 

Table 5-1: VISSIM and TCA Operational Conditions 

Operational 

Conditions 

ID 

Traffic 

Demand 

Multiplier 

Number of 

Incidents 

Number of 

Slippery 

Conditions 

1 Dynamic High 0 1 

2 Static Normal 1 1 

3 Static High 2 2 

4 Dynamic High 2 2 

 

All four operational conditions were tested on the Philosopher’s Corner network. The Static High 

Demand scenario was modeled by increasing the demand by 20% over the entire simulation period. 

The Dynamic High Demand scenarios was modeled by increasing the demand by 20% over the first 

hour of simulation and returning to normal demand levels for the last 30 minutes.  

For the Philosopher’s Corner network, the incidents were modeled as a speed reduction over all lanes 

for the incident duration and incident area. For the scenarios with a single incident, a reduced speed 

area affecting all lanes was modeled on the Northeast bound Vine Avenue between points A and D 

over a 150 foot stretch of roadway. The incident lasted for 30 minutes, starting at 2900 simulation 

seconds and ending at 4700 simulation seconds. The second incident affected all lanes traveling 

Eastbound on SR11 between points 1 and A over a 250 foot stretch of roadway. The incident lasted for 

20 minutes, starting at 2700 simulation seconds and ending at 3900 simulation seconds. For both 

incidents, vehicle speeds were reduced to between 2.5 and 3.7 mph. 
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6 Results  

This section discusses results reporting. 

6.1 Results Reporting 

Results are presented by research hypothesis. Each subsection corresponds to the testing and results 

of a specific research hypothesis.   

For measures estimation exercises, the mean absolute percentage error (MAPE) is reported.  The 

MAPE is a relative measure, which expresses errors as a percentage of the ground truth.  MAPE is 

one of the most often reported performance metrics in transportation since it is intuitive and easy to 

understand.  However, MAPE doesn’t reveal the direction of the error (i.e., overestimation or 

underestimation).  Secondly, MAPE tends to favor underestimation rather than overestimation.  But 

due to its simplicity, MAPE is used in this study to report out the performance accuracy for all 

measures. 

6.1.1 Hypothesis 1 

Hypothesis: BMM will be able to produce comparable measures estimation results to BSM and CAM. 

Results revealed that this hypothesis was supported. 

For most market penetrations, the BMM mean absolute percentage errors were within 10% of the 

results of the best message variant between BSM or CAM, if not better. The graphs below illustrate 

the MAPE of travel times, queues, turning movements, and slippery conditions estimation for each 

message type at each market penetration. The MAPE was averaged across the four different 

operational conditions described in Section 5.4.  

For travel time estimation, the BMM results averaged around 12% error across all market penetrations 

as seen in Figure 6-1 of operational condition ID 2 with static normal vehicle demand, one incident, 

and one slippery condition region. Travel time estimation errors were within 2% of both BSM and CAM 

results at each market penetration. 
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Figure 6-1: Travel Time Estimation Error of BMM, BSM and CAM on Philosopher’s Corner at 

Operational Condition ID 2 

Figure 6-2 shows the queue length estimation errors of BMM, BSM, and CAM for Operational 

Condition ID 2. Errors were nearly identical with an about 90% error rate for all message types at 2% 

market penetration. Most likely the high errors at low market penetrations were due to the nature of 

the queue algorithm. The queue algorithm identified a queue only if a vehicle message noted a 

motionless vehicle within 100 feet of the stop bar. A vehicle is in queue when it is either stopped or is 

traveling at a speed less than 10 ft/s and is approaching another queued vehicle at headway of less 

than 100 ft. At low market penetrations, queue lengths were underestimated because there were not 

enough equipped vehicles for the algorithm to detect a queue, regardless of message type.   

At higher market penetrations, the DIDC concept was able to capitalize on the message frequency 

adjustment capabilities of the DIDC controller. Even though the DIDC concept produced far fewer 

messages than BSM or CAM as discussed later in Hypothesis 3, the BMM provided enough queue 

information to produce comparable results to BSM and CAM.  
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Figure 6-2: Queue Length Estimation Error of BMM, BSM and CAM on Philosopher’s Corner 

Operational Condition ID 2 

The turning movement estimation errors for BMMs are within 10% of the BSM and CAM errors as 

seen in Figure 6-3. Overall these results are comparable. However, the BSM and CAM yielded better 

turning movements estimations than BMMs at higher market penetrations. This is most likely due to 

the turning movement algorithm which gives the result as a ratio of left to right turns. Even though the 

DIDC Controller may have successfully increased or decreased the message yield to match user 

defined targets for each intersection, more or less data did not improve the ratio result.  

 

Figure 6-3: Turning Movements Estimation Errors of BMM, BSM and CAM on Philosopher’s 

Corner Operational Condition ID 1 
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The message elements of the EU CAM do not include vehicle status elements such as traction control 

so only BSM results could be compared to BMM for slippery conditions. Figure 6-4 shows that the 

BMM results are comparable to BSM for all market penetrations for Operational Condition 3 which 

had two slippery condition regions on the Philosopher’s Corner network. 

 

Figure 6-4: Slippery Conditions Estimation Errors of BMM and BSM on Philosopher’s Corner 

Network Operational ID 3 

Although BMMs are generated less frequently than BSMs, the DIDC concept was able to produce 

similar slippery condition accuracy. The DIDC concept utilizes a burst mode concept which allows the 

DIDC Controller to concentrate vehicle status data collection in areas of interest. In the Philosopher’s 

Corner network, the DIDC Controller enabled burst mode on roadways where a vehicle reported its 

traction control enabled. When a vehicle reports using traction control, the DIDC Controller notified all 

vehicle within 100 feet (user-defined parameter) to generate a BMM including traction control 

information. Figure 6-5 and Figure 6-6 show the data yield of burst mode BMMs compared to the 

shaded region of how many reported traction control as enabled at both 20% and 95% market 

penetration for operational condition ID 3 with static high vehicle demand, two incidents, and two 

slippery conditions. The two slippery condition regions were correctly identified in each simulation. 
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Figure 6-5: Burst BMMs Generated on the Philosopher's Corner Network Operational 

Condition ID 3 at 20% Market Penetration  

 

Figure 6-6: Burst BMMs Generated on the Philosopher's Corner Network Operational 

Condition ID 3 at 95% Market Penetration 

6.1.2 Hypothesis 2 
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Hypothesis: BMM will be able to outperform PDM in measures estimation. 

For most market penetrations, the BMM mean absolute percentage error rate was 5-60% better than 

PDM estimations. Only high market penetrations of turning movements showed the PDM as being 

more accurate. The graphs below illustrate the MAPE of travel times, queues, turning movements, 

and slippery conditions estimation for BMM and PDM at each market penetration for operational 

condition ID 2 with static normal traffic demand, one incident, and one slippery condition.  

Travel time estimation results of BMM and PDM are compared in Figure 6-7. While both message 

types estimated travel times within 30% of ground truth, BMMs did twice as well with error rates under 

15% at all market penetration levels. 

 

Figure 6-7: Travel Time Estimation MAPE of BMM and PDM on Philosopher’s Corner Network 

Operational ID 2 

BMM produced better queue length estimation results as seen in Figure 6-8. A PDM equipped vehicle 

only generates a vehicle status message when the vehicle stops and starts which may have 

contributed to the less accurate queue measures results for PDM. In contrast, a queue BMM may be 

generated more regularly depending on the frequency (lambda) set by the DIDC Controller.  
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Figure 6-8: Queue Length Estimation MAPE of BMM and PDM on Philosopher’s Corner 

Network Operational ID 2 

Turning movement results were more accurate for BMM at 2% and 20% market penetration but PDM 

results were 6% better than BMM at 95% market penetration. See the explanation for Hypothesis 1 for 

details on this outcome. 

 

Figure 6-9: Turning Movements Estimation MAPE of BMM and PDM on Philosopher’s Corner 

Network Operational ID 2 
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The infrequency of PDM generation most likely contributed to their 80% or greater error rates at 

estimating slippery conditions at 2% and 20% market penetrations. BMMs did not do too much better 

at 2% market penetration but boast a much improved 20% error at 20% market penetration. The BMM 

still betters the PDM slippery condition estimation at 95% market penetration but the PDM does 

drastically improve. This is most likely due to a combination of high market penetration and congestion 

which provided enough vehicle status information for the slippery condition algorithm to identify the 

region. A snapshot of the roadway containing the slippery condition is seen in Figure 6-11 to illustrate 

the congestion.  

 

Figure 6-10: Slippery Conditions Estimation MAPE of BMM and PDM on Philosopher’s Corner 

Network Operational ID 2 

 

 

 

Figure 6-11: Slippery Condition roadway on Philosopher's Corner network 

6.1.3 Hypothesis 3 
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Hypothesis: BMM will be able to produce a lower data load than BSM and CAM. 

Results revealed that this hypothesis was supported. 

The BSM is a vehicle status message that is generated and transmitted every tenth of a second. The 

CAM is similar in that it is a vehicle status message that is generated and transmitted no less 

frequently than every second. As a result, both message types produced a large amount of data as 

noted in Table 6-1 and illustrated in Figure 6-12. In comparison, a BMM is only generated when the 

vehicle status or event triggers a series of messages. When a series of BMMs is triggered, the 

frequency intervals of generation were anywhere from less than a second to over five minutes in the 

Philosopher’s Corner network depending on the trigger type. As a result, the amount of BMMs 

generated and transmitted were much less than BSM and the EU CAM. Across all market 

penetrations, BMMs consistently generated 97% less data than BSMs and 88% less data than the EU 

CAM. 

Table 6-1: Average Message Counts for each Market Penetration 

 
2% Market 

Penetration 

20% Market 

Penetration 

95% Market 

Penetration 

Average Number of 

BMM 

18,419 215,697 867,811 

Average Number of 

BSM 

622,877 7,270,729 34,196,782 

Average Number of EU 

CAM 

156,856 1,821,096 8,329,690 
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Figure 6-12: Bar chart showing message count differences between BSM, CAM, and BMM 

6.1.4 Hypothesis 4 

Hypothesis: Vehicle origins and destinations will be easier to re-identify using BSMs than other 

message variants. 

As part of the BSM Data Emulator project, Noblis developed an algorithm that ingests all the available 

vehicle message data from a simulation run of the Philosopher’s Corner network and attempts to 

identify the origin and destination of five vehicles. Given a single starting message anywhere on the 

shopping diamond area of the network, the re-identification algorithm works backwards with all the 

available vehicle data to predict the origin and forwards to predict the destination of the vehicle. Figure 

6-13 shows a bar chart illustrating the average percentage of origin-destinations correctly identified 

across all three rounds of testing. These results include five operational conditions and five different 

vehicles each round. An origin or destination is correctly identified if the algorithm predicts the correct 

start or end point on the network and the correct vehicle ID. In some cases, the algorithm predicted 

the correct origin or destination but had the incorrect vehicle ID, these were not counted in the 

average.  

Figure 6-13 confirms the hypothesis that BSMs yielded the most accurate re-identification of vehicle 

origin and destination. BSM data is every tenth of a second making it easy for the algorithm to track a 

vehicle along the network, even at 95% market penetration the origin and destination was correctly 

identified over 95% of the time.  

Overall, the re-identification algorithm had relatively good success at identifying the origin and 

destination across all message types at the 2% market penetration level. Most likely this was due to 

less vehicles generating and transmitting message in close proximity to each other and therefore 

making it easier for the algorithm to pick up messages of the correct test vehicle. There is a notable 

drop in correct identification at the 20% market penetration level where BMM and CAM allow a 40% 
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success rate which then drops to less than 20% at the 95% market penetration level. The re-

identification algorithm had the least success at correctly identifying the origin and destinations using 

PDM. Most likely this was due to the infrequent message generation rates of PDMs. 

 

Figure 6-13: Average Percentage of Origin-Destinations Correctly Identified on the 

Philosopher’s Corner network by the Re-ID Algorithm 

6.1.5 Hypothesis 5 

Hypothesis: The DIDC Controller will be able to adjust BMM generation rates to match the defined 

targets. 

Results reveal that this hypothesis was supported. BMM frequencies at the end of the simulations with 

95% market penetration after multiple optimization intervals led to lambda values between 0.2 and 0.6 

seconds. The fluctuating targets and generation frequencies (lambda values) of queue BMMs provide 

an illustration of how well the DIDC Controller was able to adjust to the realized data flow. The target 

data yield for queue BMMs fluctuates depending on the length of the queue as measured by the DIDC 

Controller. 

Figure 6-14 shows an example of the DIDC Controller’s adjustment of queue BMM generation during 

a model run with 20% market penetration on Philosopher’s Corner Operational Condition ID 1 with 

dynamic high vehicle demand, one incident, and one slippery condition. At the beginning of the 

simulation, the DIDC Controller consistently reduces the lambda value to increase the frequency of 

queue BMMs. By the 51 minute mark of the simulation, the realized data yield meets and quickly 

exceeds the target data yield which causes the lambda values to increase. The corresponding queue 

length estimation results for this simulation run are seen in Figure 6-15. The linear trend line notes an 

overall average decrease in MAPE of queue length estimation as the simulation progresses. 
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Figure 6-14: DIDC Controller adjustment of queue BMM generation lambda compared to data 

yield at 20% market penetration 

 

Figure 6-15: BMM queue length estimation error over simulation time at 20% market 

penetration 

Similar graphs in Figure 6-16 and Figure 6-17 show the results for 95% market penetration over the 

same operational conditions. With a higher market penetration, the DIDC Controller effectively 

decreases the frequency of queue BMMs by increasing the lambda value between the 30 and 72 

simulation minute marks. After 72 minutes, the realized data yield is close enough to the target that 

the lambda remains constant. A similar linear trend line in Figure 6-17 reveals the same overall 

improvement to queue length estimation errors as seen in the 20% market penetration example. 
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Figure 6-16: DIDC Controller adjustment of queue BMM generation lambda compared to data 

yield at 95% market penetration 

 

Figure 6-17: BMM queue length estimation error over simulation time at 95% market 

penetration
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7 Conclusions 

One of the overarching purposes of DIDC was to determine if there was a logical way to optimize the 

torrent of connected vehicle data in a way that was feasible and useful. Two ways connected vehicle 

data could be optimized include: alter the vehicle data generation rates from a probe data perspective 

or filter unneeded or redundant data from a roadside perspective. The perspective of DIDC is to 

investigate both ways to make connected vehicle data as efficient and effective as possible by 

dynamically modifying vehicle data generation rates in response to current data needs and actual data 

yield from the transportation system. Key findings from the testing that was conducted to study and 

compare the DIDC concept with existing vehicle message processes is included in this section. 

7.1 Key Findings 

• The DIDC concept generated data more efficiently than other message types: The 

DIDC concept effectively throttled up data in low market penetration simulations and reduced 

redundant data in high market penetrations without sacrificing measures estimation 

capabilities for travel times, queues, turning movements, and slippery conditions.   

• The DIDC concept produced BMMs that were harder to re-identify the vehicle origin 

and destination compared to BSM and CAM, but easier than PDM: A vehicle’s origin and 

destination could be re-identified less than 35% of the time using BMMs at market 

penetrations greater than 20% on the Philosopher’s Corner network. By comparison, the 

origin and destination could be re-identified more than 90% of the time using BSMs but less 

than 20% of the time using PDMs. 

• The TCA Version 2.4 software tool provides capability for others to build upon and find 

better ways of optimization: The testing documented and completed in the BSM Emulator 

project looked at simple adaptive processes primarily to see if the measures estimation 

results were preserved or improved while reducing data flow. There is apparent potential 

value in these types of adaptive processes based on the research outlined in this report. 

Much more research could be explored in this area and the TCA Version 2.4 tool provides a 

good starting point for continuing investigation. 
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APPENDIX A.   List of Acronyms 

Acronym Meaning 
AERIS Applications for the Environment: Real-Time Information Synthesis 

BMM Basic Mobility Message 

BSM Basic Safety Message 

CAM Cooperative Awareness Message 

DCM Data Capture and Management 

DIDC Dynamic Interrogative Data Capture 

DMA Dynamic Mobility Applications 

DOT Department of Transportation 

DSRC Dedicated Short Range Communications 

DSS Decision Support System 

FHWA Federal Highway Administration 

ITS Intelligent Transportation Systems 

JPO Joint Program Office 

PDM Probe Data Message 

RITA Research and Innovative Technology Administration 

TCA Trajectory Conversion Algorithm 

TRB Transportation Research Board 

USDOT U.S. Department of Transportation 

VII Vehicle Infrastructure Integration  
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APPENDIX B.   Re-Identification Algorithm 

 

BSM Re-Identification Algorithm 

Notations 

𝑇  = Simulation duration 

𝑡  = Instantaneous time, where 𝑡 ∈ 𝑇 

𝐵  = Array of known starting BSMs 

𝑏  = ID for known starting BSM, where 𝑏 ∈ 𝐵 

𝑑  = ID for temporary current BSM moving toward destination 

𝑜  = ID for temporary current BSM moving toward origin 

𝑝𝑏  = Initial position of starting BSM, 𝑏 

𝐿𝑏  = Initial link of starting BSM, 𝑏 

𝑡𝑏  = Time of starting BSM, 𝑏 

𝑙𝑏  = Length of starting BSM, 𝑏 

𝑤𝑏  = Width of starting BSM, 𝑏 

𝐿  = ID for roadway segment (i.e., link) 

𝐿  = Set of all roadway segments (links) 𝐿 in the network (i.e., 𝐿 ∈ 𝐿) 

𝐴(𝐿)   = List of all links that are adjacent to link 𝐿 

𝐼(𝐿, 𝑡)  = List of all Basic Safety Messages (BSM) generated at time 𝑡, on link 𝐿 

𝑖  = BSM, where 𝑖 ∈ 𝐼(𝐿, 𝑡) 

𝑡𝑖  = Time stamp of BSM 𝑖 

𝑥𝑖  = Position associated with BSM 𝑖 

𝑙𝑖  = Length associated with BSM 𝑖 

𝑤𝑖  = Width associated with BSM 𝑖 

𝑣𝑖  = Speed associated with BSM 𝑖 

𝑎𝑖  = Acceleration associated with BSM 𝑖 

𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝑗) = Function that measures in feet the distance between message 𝑖 and  

message 𝑗 (Initialize to 0) 

𝑅  = Set of all routes in the network (Each route comprises a route origin, 𝑟𝑂  

and destination, 𝑟𝐷) 

              𝑂(𝑏)  = List of BSMs that go from the starting BSM, 𝑏 to the origin of the route,  

𝑟𝑂  ∈ 𝑅 

𝐷(𝑏)  = List of BSMs that go from the starting BSM, 𝑏 to the destination of the  

route, 𝑟𝐷  ∈ 𝑅 

 𝐸(𝑏, 𝑖)  = Function that measures the error between message 𝑖 and message 𝑏 

𝐼𝐷(𝑏)  = List of BSMs that go from origin to destination of route for initial starting  

BSM, 𝑏  

𝐴𝐵𝑆()  = Function that returns the absolute value 

 

Process 

Step 1: For 𝑏 ∈ 𝐵 do steps 2-20. 

 

Step 2: Select starting BSM, 𝑏. 

 

Step 3: For all BSMs generated on the network for all times, 𝐼(𝐿, 𝑇), select all 𝑖 ∈  𝐼(𝐿, 𝑇), where 𝑙𝑖 =  𝑙𝑏 and 

𝑤𝑖 = 𝑤𝑏. 
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Step 4: Set 𝑑 = 𝑏. Add 𝑏 to the destination list 𝐷(𝑏). Repeat steps 5-11 until 𝑟𝐷 has been found. 

 

Step 5: For each link that could be travelled on from the initial BSM link,  𝐿 ∈ 𝐴(𝐿𝑑), find all BSMs on those 

links at time (𝑡𝑑 + 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), 𝐼(𝐿, 𝑡𝑑 + 0.1). 

 

Step 6: For each BSM, 𝑖 ∈ 𝐼(𝐿, 𝑡𝑑 + 0.1), do steps 7-10.  

 

Step 7: If 𝑥𝑖 is upstream of 𝑝𝑑  return to Step 6. 

 

Step 8: Calculate the distance between 𝑖 and 𝑑, 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖). 

 

Step 9: Calculate the estimated distance the vehicle traveled towards the destination from initial position, 

𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷) using the following: 

 

𝑣𝑑 ∗ 0.1 + 0.5 ∗  𝑎𝑑 ∗  0.12  

 

Step 10: Calculate the error, 𝐸(𝑑, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷)) 

 

Step 11: Select the BSM, 𝑖, with the lowest error, 𝐸(𝑑, 𝑖), add it to the destination list 𝐷(𝑏), set 𝑑 = 𝑖 

and return to Step 5. If 𝐼(𝐿, 𝑡𝑑 + 0.1) is empty, 𝑟𝐷 has been found, proceed to Step 12. 

 

Step 12: Set 𝑜 = 𝑏. Repeat steps 13-19 until 𝑟𝑂 has been found. 

 

Step 13: For each link that could be travelled on from the initial BSM link,  𝐿 ∈ 𝐴(𝐿𝑜), find all BSMs on 

those links at time (𝑡𝑜 − 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), 𝐼(𝐿, 𝑡𝑜 − 0.1). 

 

Step 14: For each BSM, 𝑖 ∈ 𝐼(𝐿, 𝑡𝑜 − 0.1), do steps 15-18.  

 

Step 15: If 𝑥𝑖 is downstream of 𝑝𝑜 return to Step 14. 

 

Step 16: Calculate the distance between 𝑖 and , 𝐷𝐼𝑆(𝑝𝑜, 𝑥𝑖). 

 

Step 17: Calculate the estimated distance the vehicle traveled towards the initial position from the new 

position, 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷) using the following: 

 

𝑣𝑖 ∗ 0.1 + 0.5 ∗  𝑎𝑖 ∗  0.12  

 

 

Step 18: Calculate the error, 𝐸(𝑜, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑜 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷)) 

 

Step 19: Select the BSM, 𝑖, with the lowest error, 𝐸(𝑜, 𝑖), add it to the origin list 𝑂(𝑏), set 𝑜 = 𝑖 and 

return to Step 13. If 𝐼(𝐿, 𝑡𝑜 − 0.1) is empty, 𝑟𝑂 has been found, proceed to Step 20. 
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Step 20: Merge the origin list, 𝑂(𝑏), and the destination list 𝐷(𝑏), to form the full re-identified 

route,  𝐼𝐷(𝑏). Print 𝐼𝐷(𝑏). Return to Step 1. If all initial BSMs have been re-identified, 

terminate.
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CAM Re-Identification Algorithm 

Notations 

𝑇  = Simulation duration 

𝑡  = Instantaneous time, where 𝑡 ∈ 𝑇 

𝐵  = Array of known starting CAMs 

𝑏  = ID for known starting CAM, where 𝑏 ∈ 𝐵 

𝑑  = ID for temporary current CAM moving toward destination 

𝑜  = ID for temporary current CAM moving toward origin 

𝑝𝑏  = Initial position of starting CAM, 𝑏 

𝐿𝑏  = Initial link of starting CAM, 𝑏 

𝑡𝑏  = Time of starting CAM, 𝑏 

𝑙𝑏  = Length of starting CAM, 𝑏 

𝑤𝑏  = Width of starting CAM, 𝑏 

𝐿  = ID for roadway segment (i.e., link) 

𝐿  = Set of all roadway segments (links) 𝐿 in the network (i.e., 𝐿 ∈ 𝐿) 

𝐴(𝐿)   = List of all links that are adjacent to link 𝐿 

𝐼(𝐿, 𝑡)  = List of all Cooperative Awareness Messages (CAM) generated at time 𝑡,  

on link 𝐿 

𝑖  = CAM, where 𝑖 ∈ 𝐼(𝐿, 𝑡) 

𝑡𝑖  = Time stamp of CAM 𝑖 

𝑥𝑖  = Position associated with CAM 𝑖 

𝑙𝑖  = Length associated with CAM 𝑖 

𝑤𝑖  = Width associated with CAM 𝑖 

𝑣𝑖  = Speed associated with CAM 𝑖 

𝑎𝑖  = Acceleration associated with CAM 𝑖 

ℎ𝑖  = Heading associated with CAM 𝑖 

𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝑗) = Function that measures in feet the distance between message 𝑖 and  

message 𝑗 (Initialize to 0) 

𝑅  = Set of all routes in the network (Each route comprises a route origin, 𝑟𝑂  

and destination, 𝑟𝐷) 

              𝑂(𝑏)  = List of CAMs that go from the starting CAM, 𝑏 to the origin of the route,  

𝑟𝑂  ∈ 𝑅 

𝐷(𝑏)  = List of CAMs that go from the starting CAM, 𝑏 to the destination of the  

route, 𝑟𝐷  ∈ 𝑅 

 𝐸(𝑏, 𝑖)  = Function that measures the error between message 𝑖 and message 𝑏 

𝐼𝐷(𝑏)  = List of CAMs that go from origin to destination of route for initial starting  

CAM, 𝑏 

𝐻𝐸𝐴𝐷(ℎ𝑏 , ℎ𝑖) = Function that measures the change in heading between message 𝑖 and  

message 𝑏 

𝑆𝑃𝐷(𝑣𝑏 , 𝑣𝑖) = Function that measures the change in speed between message 𝑖 and  

message 𝑏  

𝐴𝐵𝑆()  = Function that returns the absolute value 

 

 

 

 

Process 

Step 1: For 𝑏 ∈ 𝐵 do steps 2-22. 
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Step 2: Select starting CAM, 𝑏. 

 

Step 3: For all CAMs generated on the network for all times, 𝐼(𝐿, 𝑇), select all 𝑖 ∈  𝐼(𝐿, 𝑇), where 𝑙𝑖 =  𝑙𝑏 and 

𝑤𝑖 = 𝑤𝑏. 

 

Step 4: Set 𝑑 = 𝑏. Add 𝑏 to the destination list 𝐷(𝑏). Repeat steps 5-12 until 𝑟𝐷 has been found. 

 

Step 5: For each link that could be travelled on from the initial CAM link,  𝐿 ∈ 𝐴(𝐿𝑑), find all CAMs on those 

links between times 𝑡𝑑 and (𝑡𝑑 + 1.0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), 𝐼(𝐿, ([𝑡𝑑, 𝑡𝑑 + 1.0]). 

 

Step 6: For each CAM, 𝑖 ∈ 𝐼(𝐿, ([𝑡𝑑 , 𝑡𝑑 + 1.0]), do steps 7-11.  

 

Step 7: If 𝑥𝑖 is upstream of 𝑝𝑑  return to Step 6. 

 

Step 8: If 𝑡𝑖 <  𝑡𝑑 + 1.0 check if any CAM triggers have been met using the following conditions: 

 

If 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) >  13.124 ft or 𝑆𝑃𝐷(𝑣𝑑 , 𝑣𝑖) >  1.11847 ft/sec or 𝐻𝐸𝐴𝐷(ℎ𝑑 , ℎ𝑖) >  4 degrees 

continue to step 29. Otherwise, return to Step 6.  

 

Step 9: Calculate the distance between 𝑖 and 𝑑, 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖). 

 

Step 10: Calculate the estimated distance the vehicle traveled towards the destination from initial position, 

𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷) using the following: 

 

𝑣𝑑 ∗ (𝑡𝑖 − 𝑡𝑑) + 0.5 ∗  𝑎𝑑 ∗  (𝑡𝑖 − 𝑡𝑑)2  

 

 

Step 11: Calculate the error, 𝐸(𝑑, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷)) 

 

Step 12: Select the CAM, 𝑖, with the lowest error, 𝐸(𝑑, 𝑖), add it to the destination list 𝐷(𝑏), set 𝑑 = 𝑖 

and return to Step 5. If 𝐼(𝐿, ([𝑡𝑑 , 𝑡𝑑 + 1.0]) is empty, 𝑟𝐷 has been found, proceed to Step 13. 

 

Step 13: Set 𝑜 = 𝑏. Repeat steps 13-21 until 𝑟𝑂 has been found. 

 

Step 14: For each link that could be travelled on from the initial CAM link,  𝐿 ∈ 𝐴(𝐿𝑜), find all CAMs on 

those links between times 𝑡𝑑 and (𝑡𝑑 − 1.0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), 𝐼(𝐿, ([𝑡𝑑, 𝑡𝑑 − 1.0]). 

 

Step 15: For each CAM, 𝑖 ∈ 𝐼(𝐿, ([𝑡𝑑 , 𝑡𝑑 − 1.0]), do steps 16-20.  

 

Step 16: If 𝑥𝑖 is downstream of 𝑝𝑜 return to Step 14. 

 

Step 17: If 𝑡𝑖 <  𝑡𝑑 + 1.0 check if any CAM triggers have been met using the following conditions: 

 

If 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) >  13.124 ft or 𝑆𝑃𝐷(𝑣𝑑 , 𝑣𝑖) >  1.11847 ft/sec or 𝐻𝐸𝐴𝐷(ℎ𝑑 , ℎ𝑖) >  4 degrees 

continue to step 29. Otherwise, return to Step 14.  

 

Step 18: Calculate the distance between 𝑖 and , 𝐷𝐼𝑆(𝑝𝑜, 𝑥𝑖). 
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Step 19: Calculate the estimated distance the vehicle traveled towards the initial position from the new 

position, 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷) using the following: 

 

𝑣𝑖 ∗ (𝑡𝑑 − 𝑡𝑖) + 0.5 ∗  𝑎𝑖 ∗  (𝑡𝑑 − 𝑡𝑖)
2  

 

 

Step 20: Calculate the error, 𝐸(𝑜, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑜 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷)) 

 

Step 21: Select the CAM, 𝑖, with the lowest error, 𝐸(𝑜, 𝑖), add it to the origin list 𝑂(𝑏), set 𝑜 = 𝑖 and 

return to Step 14. If 𝐼(𝐿, ([𝑡𝑑 , 𝑡𝑑 − 1.0]) is empty, 𝑟𝑂 has been found, proceed to Step 22. 

 

Step 22: Merge the origin list, 𝑂(𝑏), and the destination list 𝐷(𝑏), to form the full re-identified 

route,  𝐼𝐷(𝑏). Print 𝐼𝐷(𝑏). Return to Step 1. If all initial CAMs have been re-identified, 

terminate.
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BMM Re-Identification Algorithm 

Notations 

𝑇  = Simulation duration 

𝑡  = Instantaneous time, where 𝑡 ∈ 𝑇 

𝐵  = Array of known starting BMMs 

𝑏  = ID for known starting BMM, where 𝑏 ∈ 𝐵 

𝑑  = ID for temporary current BMM moving toward destination 

𝑜  = ID for temporary current BMM moving toward origin 

𝑝𝑏  = Initial position of starting BMM, 𝑏 

𝐿𝑏  = Initial link of starting BMM, 𝑏 

𝑡𝑏  = Time of starting BMM, 𝑏 

𝑙𝑏  = Length of starting BMM, 𝑏 

𝑤𝑏  = Width of starting BMM, 𝑏 

𝐿  = ID for roadway segment (i.e., link) 

𝐿  = Set of all roadway segments (links) 𝐿 in the network (i.e., 𝐿 ∈ 𝐿) 

𝐴(𝐿)   = List of all links that are adjacent to link 𝐿 

𝐼(𝐿, 𝑡)  = List of all Basic Mobility Messages (BMM) generated at time 𝑡, on link 𝐿 

𝑖  = BMM, where 𝑖 ∈ 𝐼(𝐿, 𝑡) 

𝑡𝑖  = Time stamp of BMM 𝑖 

𝑥𝑖  = Position associated with BMM 𝑖 

𝑙𝑖  = Length associated with BMM 𝑖 

𝑤𝑖  = Width associated with BMM 𝑖 

𝑣𝑖  = Speed associated with BMM 𝑖 

𝑎𝑖  = Acceleration associated with BMM 𝑖 

𝑚𝑡𝑖  = The message type of BMM 𝑖  

𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝑗) = Function that measures in feet the distance between message 𝑖 and  

message 𝑗 (Initialize to 0) 

𝑅  = Set of all routes in the network (Each route comprises a route origin, 𝑟𝑂  

and destination, 𝑟𝐷) 

              𝑂(𝑏)  = List of BMMs that go from the starting BMM, 𝑏 to the origin of the route,  

𝑟𝑂  ∈ 𝑅 

𝐷(𝑏)  = List of BMMs that go from the starting BMM, 𝑏 to the destination of the  

route, 𝑟𝐷  ∈ 𝑅 

 𝐸(𝑏, 𝑖)  = Function that measures the error between message 𝑖 and message 𝑏 

𝐼𝐷(𝑏)  = List of BMMs that go from origin to destination of route for initial starting  

BMM, 𝑏 

𝑀𝐺𝑇𝑆(𝐿, 𝑡) = List of times, 𝑡, when a new Mean Generation Time for BMMs was sent  

out to the network, 𝐿.   

𝑚  = Current Mean Generation Time for BMMs, where 𝑚 ∈  𝑀𝐺𝑇𝑆(𝐿) 

𝑛  =  Estimated next periodic time  

𝐴𝐵𝑆()  = Function that returns the absolute value 

 

 

Process 

Step 1: For 𝑏 ∈ 𝐵 do steps 2-24. 

 

Step 2: Select starting BMM, 𝑏. 
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Step 3: For all BMMs generated on the network for all times, 𝐼(𝐿, 𝑇), select all 𝑖 ∈  𝐼(𝐿, 𝑇), where 𝑙𝑖 =  𝑙𝑏 and 

𝑤𝑖 = 𝑤𝑏. 

 

Step 4: Set 𝑑 = 𝑏. Add 𝑏 to the destination list 𝐷(𝑏). Set 𝑚 equal to initial value in 𝑀𝐺𝑇𝑆(𝐿, 𝑡) where 𝑡 > 𝑡𝑑. 

Set 𝑛 equal to 𝑡𝑑 + 𝑚. Repeat steps 5-13 until 𝑟𝐷 has been found. 

 

Step 5: For each link that could be travelled on from the initial BMM link,  𝐿 ∈ 𝐴(𝐿𝑑), find all BMMs on those 

links between times 𝑡𝑑 and (𝑛 + 2 ∗ 𝑚), 𝐼(𝐿, [𝑡𝑑, (𝑛 + 2 ∗ 𝑚)]). 

 

Step 6: For each BMM, 𝑖 ∈ 𝐼(𝐿, [𝑡𝑑, (𝑛 + 2 ∗ 𝑚)]), do steps 7-10.  

 

Step 7: If 𝑥𝑖 is upstream of 𝑝𝑑  return to Step 6. 

 

Step 8: Calculate the distance between 𝑖 and 𝑑, 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖). 

 

Step 9: Calculate the estimated distance the vehicle traveled towards the destination from initial position, 

𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷) using the following: 

 

. 5 ∗ ((𝑣𝑑 ∗ (𝑡𝑖 − 𝑡𝑑) + 0.5 ∗  𝑎𝑑 ∗  (𝑡𝑖 − 𝑡𝑑)2) +  (𝑣𝑑 ∗ (𝑡𝑖 − 𝑡𝑑))) 

 

 

Step 10: Calculate the error, 𝐸(𝑑, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷)) 

 

If message 𝑖 is a periodic, 𝑚𝑡𝑖 = 1, then add the following to the error, 𝐸(𝑑, 𝑖): 

 

𝐴𝐵𝑆(𝑛 − 𝑡𝑖) 

 

 

Step 11: Select the BMM, 𝑖, with the lowest error, 𝐸(𝑑, 𝑖), add it to the destination list 𝐷(𝑏), set 𝑑 = 𝑖. 

If 𝐼(𝐿, [𝑡𝑑 , (𝑛 + 2 ∗ 𝑚)]) is empty, 𝑟𝐷 has been found, proceed to Step 14. 

 

Step 12: Check if 𝑡𝑑 is greater than the next time in 𝑀𝐺𝑇𝑆(𝐿). If so set 𝑚 equal to new Mean Generation Time.  

 

Step 13: If new message, 𝑑, is a periodic, 𝑚𝑡𝑑 = 1, or 𝑡𝑑 > 𝑛  set 𝑛 equal to 𝑡𝑑 + 𝑚.  Return to Step 5.  

 

Step 14: Set 𝑜 = 𝑏. Set 𝑚 equal to initial value in 𝑀𝐺𝑇𝑆(𝐿, 𝑡) where 𝑡 ≤ 𝑡𝑜. Set 𝑛 equal to 𝑡𝑜 − 𝑚. Repeat 

steps 15-23 until 𝑟𝑂 has been found.  

 

Step 15: For each link that could be travelled on from the initial BMM link,  𝐿 ∈ 𝐴(𝐿𝑜), find all BMMs on those 

links between times 𝑡𝑜 and (𝑛 − 2 ∗ 𝑚), 𝐼(𝐿, [𝑡𝑜, (𝑛 − 2 ∗ 𝑚)]). 

 

Step 16: For each BMM, 𝑖 ∈ 𝐼(𝐿, [𝑡𝑜, (𝑛 − 2 ∗ 𝑚)]), do steps 17-20.  

 

Step 17: If 𝑥𝑖 is downstream of 𝑝𝑜 return to Step 16. 

 

Step 18: Calculate the distance between 𝑖 and , 𝐷𝐼𝑆(𝑝𝑜, 𝑥𝑖). 
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Step 19: Calculate the estimated distance the vehicle traveled towards the initial position from the new position, 

𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷) using the following: 

 

. 5 ∗ ((𝑣𝑖 ∗ (𝑡𝑖 − 𝑡𝑜) + 0.5 ∗  𝑎𝑖 ∗  (𝑡𝑖 − 𝑡𝑜)2) +  (𝑣𝑖 ∗ (𝑡𝑖 − 𝑡𝑜))) 

 

Step 20: Calculate the error, 𝐸(𝑜, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑜 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷)) 

 

If message 𝑖 is a periodic, 𝑚𝑡𝑖 = 1, then add the following to the error, 𝐸(𝑑, 𝑖): 

 

𝐴𝐵𝑆(𝑛 − 𝑡𝑖) 

 

 

Step 21: Select the BMM, 𝑖, with the lowest error, 𝐸(𝑜, 𝑖), add it to the origin list 𝑂(𝑏), set 𝑜 = 𝑖 and return to 

Step 14. If 𝐼(𝐿, [𝑡𝑜, (𝑛 − 2 ∗ 𝑚)]) is empty, 𝑟𝑂 has been found, proceed to Step 24.  

 

Step 22: Check if 𝑡𝑑 is less than the previous time in 𝑀𝐺𝑇𝑆(𝐿). If so set 𝑚 equal to new Mean Generation 

Time.  

 

Step 23: If new message, 𝑑, is a periodic, 𝑚𝑡𝑑 = 1, or 𝑡𝑑 < 𝑛  set 𝑛 equal to 𝑡𝑑 − 𝑚.  Return to step 15.  

 

Step 24: Merge the origin list, 𝑂(𝑏), and the destination list 𝐷(𝑏), to form the full re-identified route,  𝐼𝐷(𝑏). Print 

𝐼𝐷(𝑏). Return to Step 1. If all initial BMMs have been re-identified, terminate.
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PDM Re-Identification Algorithm 

Notations 

𝑇  = Simulation duration 

𝑡  = Instantaneous time, where 𝑡 ∈ 𝑇 

𝐵  = Array of known starting PDMs 

𝑏  = ID for known starting PDM, where 𝑏 ∈ 𝐵 

𝑑  = ID for temporary current PDM moving toward destination 

𝑜  = ID for temporary current PDM moving toward origin 

𝑝𝑏  = Initial position of starting PDM, 𝑏 

𝐿𝑏  = Initial link of starting PDM, 𝑏 

𝑡𝑏  = Time of starting PDM, 𝑏 

𝑙𝑏  = Length of starting PDM, 𝑏 

𝑤𝑏  = Width of starting PDM, 𝑏 

𝐿  = ID for roadway segment (i.e., link) 

𝐿  = Set of all roadway segments (links) 𝐿 in the network (i.e., 𝐿 ∈ 𝐿) 

𝐴(𝐿)   = List of all links that are adjacent to link 𝐿 

𝐼(𝐿, 𝑡)  = List of all Probe Data Messages (PDM) generated at time 𝑡, on link 

𝐿 

𝑖  = PDM, where 𝑖 ∈ 𝐼(𝐿, 𝑡) 

𝑡𝑖  = Time stamp of PDM 𝑖 

𝑥𝑖  = Position associated with PDM 𝑖 

𝑙𝑖  = Length associated with PDM 𝑖 

𝑤𝑖  = Width associated with PDM 𝑖 

𝑣𝑖  = Speed associated with PDM 𝑖 

𝑎𝑖  = Acceleration associated with PDM 𝑖 

𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝑗) = Function that measures in feet the distance between message 𝑖 

and  

message 𝑗 (Initialize to 0) 

𝑅  = Set of all routes in the network (Each route comprises a route origin, 

𝑟𝑂  

and destination, 𝑟𝐷) 

              𝑂(𝑏)  = List of PDMs that go from the starting PDM, 𝑏 to the origin of the 

route,  

𝑟𝑂  ∈ 𝑅 

𝐷(𝑏)  = List of PDMs that go from the starting PDM, 𝑏 to the destination of 

the  

route, 𝑟𝐷  ∈ 𝑅 

 𝐸(𝑏, 𝑖)  = Function that measures the error between message 𝑖 and message 

𝑏 

𝐼𝐷(𝑏)  = List of PDMs that go from origin to destination of route for initial 

starting  

PDM, 𝑏  

𝐴𝐵𝑆()  = Function that returns the absolute value 

𝑛  =  Estimated next periodic time  

𝑚𝑡𝑖  = Message type of message 𝑖 

 

 

 

Process 
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Step 1: For 𝑏 ∈ 𝐵 do steps 2-20. 

 

Step 2: Select starting PDM, 𝑏. 

 

Step 3: For all PDMs generated on the network for all times, 𝐼(𝐿, 𝑇), select all 𝑖 ∈  𝐼(𝐿, 𝑇), where 𝑙𝑖 =

 𝑙𝑏 and 𝑤𝑖 = 𝑤𝑏. 

 

Step 4: Set 𝑑 = 𝑏. Add 𝑏 to the destination list 𝐷(𝑏). Repeat steps 5-11 until 𝑟𝐷 has been found. 

 

Step 5: For each link that could be travelled on from the initial PDM link,  𝐿 ∈ 𝐴(𝐿𝑑), find all PDMs on 

those links between time 𝑡𝑑 and , 𝐼(𝐿, [𝑡𝑑, 𝑛]). 

 

Step 6: For each PDM, 𝑖 ∈ 𝐼(𝐿, [𝑡𝑑, 𝑛])do steps 7-10.  

 

Step 7: If 𝑥𝑖 is upstream of 𝑝𝑑  return to Step 6. 

 

Step 8: Find all messages, 𝑗 ∈  𝐼(𝐿, 𝑇) such that 𝑝𝑠𝑛𝑖 =  𝑝𝑠𝑛𝑗 . For each message, 𝑗, check if 𝑡𝑗 <  𝑡𝑑, 

if so return to Step 6. 

 

Step 9: Calculate the distance between 𝑖 and 𝑑, 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖). 

 

Step 10: Calculate the estimated distance the vehicle traveled towards the destination from initial 

position, 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷) using the following: 

 

. 5 ∗ ((𝑣𝑑 ∗ (𝑡𝑖 − 𝑡𝑑) + 0.5 ∗  𝑎𝑑 ∗  (𝑡𝑖 − 𝑡𝑑)2) +  (𝑣𝑑 ∗ (𝑡𝑖 − 𝑡𝑑))) 

 

 

Step 11: Calculate the error, 𝐸(𝑑, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑝𝑑 , 𝑥𝐷)) 

 

If message 𝑖 is a periodic, 𝑚𝑡𝑖 = 3, then add the following to the error, 𝐸(𝑑, 𝑖): 

 

𝐴𝐵𝑆(𝑛 − 𝑡𝑖) 

 

 

Step 12: Select the PDM, 𝑖, with the lowest error, 𝐸(𝑑, 𝑖), add it to the destination list 𝐷(𝑏). Find all 

messages, 𝑗 ∈  𝐼(𝐿, 𝑇) such that 𝑝𝑠𝑛𝑖 =  𝑝𝑠𝑛𝑗 and append them to the destination list. Set 𝑑 =

𝑗𝑀𝐴𝑋. If 𝐼(𝐿, [𝑡𝑑 , 𝑛])is empty, 𝑟𝐷 has been found, proceed to Step 14. 

 

Step 13: If new message, 𝑑, is a periodic, 𝑚𝑡𝑑 = 3, or 𝑡𝑑 > 𝑛  set 𝑛 equal to the following: 

 

If 𝑣𝑑 ≤ 𝐿𝑆𝑇, 𝑛 = 𝑛 + 4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

Else if 𝑣𝑑 ≥ 𝐻𝑆𝑇, 𝑛 = 𝑛 + 20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Else 𝑛 = 𝑛 + (4 +
𝑣𝑑−𝐿𝑆𝑇

𝐻𝑆𝑇−𝐿𝑆𝑇
∗ 16) 

 

Return to Step 5.  
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Step 14: Set 𝑜 = 𝑏. Repeat steps 15-23 until 𝑟𝑂 has been found. 

 

Step 15: For each link that could be travelled on from the initial PDM link,  𝐿 ∈ 𝐴(𝐿𝑜), find all PDMs on 

those links at time between time 𝑡𝑜 and , 𝐼(𝐿, [𝑡𝑜, 𝑛]). 

 

Step 16: For each PDM, 𝑖 ∈ 𝐼(𝐿, [𝑡𝑜, 𝑛])do steps 17-21.  

 

Step 17: If 𝑥𝑖 is downstream of 𝑝𝑜 return to Step 17. 

 

Step 18: Find all messages, 𝑗 ∈  𝐼(𝐿, 𝑇) such that 𝑝𝑠𝑛𝑖 =  𝑝𝑠𝑛𝑗 . For each message, 𝑗, check if 𝑡𝑗 >  𝑡𝑑, 

if so return to Step 17. 

 

Step 19: Calculate the distance between 𝑖 and , 𝐷𝐼𝑆(𝑝𝑜, 𝑥𝑖). 

 

Step 20: Calculate the estimated distance the vehicle traveled towards the initial position from the new 

position, 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷) using the following: 

 

. 5 ∗ ((𝑣𝑖 ∗ (𝑡𝑖 − 𝑡𝑜) + 0.5 ∗  𝑎𝑖 ∗  (𝑡𝑖 − 𝑡𝑜)2) +  (𝑣𝑖 ∗ (𝑡𝑖 − 𝑡𝑜))) 

 

 

Step 21: Calculate the error, 𝐸(𝑜, 𝑖) as follows: 

 

𝐴𝐵𝑆(𝐷𝐼𝑆(𝑝𝑜 , 𝑥𝑖) − 𝐷𝐼𝑆(𝑥𝑖 , 𝑥𝐷)) 

 

If message 𝑖 is a periodic, 𝑚𝑡𝑖 = 3, then add the following to the error, 𝐸(𝑑, 𝑖): 

 

𝐴𝐵𝑆(𝑛 − 𝑡𝑖) 

 

 

Step 22: Select the PDM, 𝑖, with the lowest error, 𝐸(𝑜, 𝑖), add it to the origin list 𝑂(𝑏). Find all 

messages, 𝑗 ∈  𝐼(𝐿, 𝑇) such that 𝑝𝑠𝑛𝑖 =  𝑝𝑠𝑛𝑗 and append them to the origin list. Set 𝑜 = 𝑗𝑀𝐼𝑁. If 

𝑖 ∈ 𝐼(𝐿, [𝑡𝑜, 𝑛]) is empty, 𝑟𝑂 has been found, proceed to Step 24. 

 

Step 23: If new message, 𝑑, is a periodic, 𝑚𝑡𝑑 = 3, or 𝑡𝑑 > 𝑛  set 𝑛 equal to the following: 

 

If 𝑣𝑑 ≤ 𝐿𝑆𝑇, 𝑛 = 𝑛 + 4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

Else if 𝑣𝑑 ≥ 𝐻𝑆𝑇, 𝑛 = 𝑛 + 20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Else 𝑛 = 𝑛 + (4 +
𝑣𝑑−𝐿𝑆𝑇

𝐻𝑆𝑇−𝐿𝑆𝑇
∗ 16) 

 

Return to Step 14.  

 

 

Step 24: Merge the origin list, 𝑂(𝑏), and the destination list 𝐷(𝑏), to form the full re-identified 

route,  𝐼𝐷(𝑏). Print 𝐼𝐷(𝑏). Return to Step 1. If all initial PDMs have been re-identified, terminate. 
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