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1. Introduction 

Aerosols play a crucial role in determining the radiation amount to the earth’s atmosphere. 
Emissions from vehicles are one of the sources for aerosols (e.g. soot and smoke) that may be 
detected using remote sensing techniques such as a lidar [1]. Lidar is a powerful tool for 
atmospheric aerosol profiling because it resolves the vertical distribution of an atmospheric 
column [2]. The lidar system consists of a laser transmitter, a receiver and a data acquisition system 
[1]. The laser transmitter emits a pulse of light which is sent into the atmosphere. These light pulses 
from the laser encounters aerosols or particulate matter that may absorb or scatter and reflect the 
light back to the ground. A telescope focused at the same atmospheric volume as the transmitted 
laser pulse collects the backscattered light and then sends back to the receiver. The received signals 
are processed and averaged over 2 seconds before storing as aerosol profile resolutions. Once the 
data is stored, the signal retrieval is achieved [3-9] to obtain the optical parameters of the aerosol. 
In this study, the goal is estimating the source of soot in the region of campus of Old Dominion 
University (ODU) by using lidar to collect measurements of aerosols in that region. In planning of 
collecting data at the campus of ODU, we selected four points distributed close to Hampton Blvd. 
Hampton Blvd is the major road for diesel trucks in the area near campus and we expect that these 
trucks are the main source of soot close ODU area. The locations of the four selected sites for 
collecting data are shown in the map in Figure 1.  
 
In this study, we first review methods of retrieval of aerosol parameters for purpose of detection 
through inversion solutions for processing lidar signals. The aerosols are then detected and 
classified based on the optical characteristics of aerosols which are encoded in the received 
backscattering. A Bayesian tracking algorithm using optical lidar parameters to track the source of 
soot in the data. 
 

 
The rest of this study is organized as follows: In section 2, we describe Lidar system, Section 3 
presents Optical parameters, Section 4 introduces the tracking algorithm, and the results are 
presented in Section 5. Section 6 concludes the study. 
 
 
2. Lidar System Description 

The LiDAR system used in this work consists of a laser transmitter, a receiver assembly, and data 
processing unit. The details of the hardware of the lidar is described in [10] and a schematic is 
shown in Figure 2. In a lidar system, a pulse of light is emitted from the laser, and as the beam 
travels through the atmosphere, it encounters particles (molecules, aerosols, water droplets, etc.) 
that scatter the light and reflect some of the laser beam back towards the ground. A telescope aimed 
at the same atmospheric volume as the laser pulse will capture the backscattered photons and 
collects the signal to an optical receiver. The lidar used at Old Dominion University is an elastic 



	
	

LiDAR where the emission and the reception wavelengths are the same. The main applications of 
such lidar are monitoring pollution and aerosols to provide air quality measurements. 
 
 
 

	
Figure 1. The locations of the selected points around Hampton Blvd near the campus of Old 
Dominion University. The locations are indicated by stars.  
 
 
	

	
Figure 2. Lidar in Vision Lab at Old Dominion University 

 
 
 
 
3. Aerosols Optical Parameters 

In this study, we retrieve the backscattering color ratio and lidar ratio as optical parameters that 
encode the optical characteristics of the aerosols. We retrieve these optical parameters through 
inversion solutions for lidar signals. Lidar signal inversion methods require the use of one or more 
a priori assumptions that are selected according to the particular optical solution. The contrast 
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between the various retrieval methods lie in the processes of determining boundary conditions and 
in the selection of a priori assumptions concerning other missing information. The fundamental 
inversion methods include the slope method [3], [4], Klett [5], [6], [7] and Fernald methods [8], 
[9].  
 
 

4. Bayesian Tracking Algorithm 

Source localization problem is especially difficult in a turbulent flow environment, such as the 
planetary boundary layer. Plume effluent in a turbulent wind spreads in a random manner, 
meandering to create patches of high and low concentration. The plume width and the 
concentration within the plume do not vary predictably in time or space. The uncertain relationship 
between the location of a detection and the location of the source in a turbulent flow makes source 
localization challenging.  
 
Various algorithms have been proposed for the source localization problem, including gradient 
descent [15], biologically inspired approaches [16], and probabilistic methods [17]. 
 
We compared three algorithms for estimating an airborne contaminant in a turbulent wind field, 
using gradient descent algorithm, extended Kalman filter, and recursive Bayesian estimation 
algorithm [18]. By comparison, Bayesian estimation requires relatively weak modeling 
assumptions, and simulation results suggest Bayesian estimation is less sensitive to error in the 
initial state. 
 
 
5. Results 

This section presents the collected data and the results of the tracking algorithm. In this study, we 
collected data at four locations on the campus of ODU and are marked by stars as shown in Figure 
1. Figure 3 shows the color and lidar ratios retrieved from the data collected at Hampton Blvd 
Garage location. The data are collected for more than one hour at each location and the lidar is 
placed on the roof of the Garages to ensure safety.    
 
 
 
	

	



	
	

Figure 3.  Color and lidar ratios of data collected at Hampton Blvd Garage. 
 
 
 
We then implement a Bayesian tracking algorithm to track the source of soot in the area of the 
study. We use the values of color and lidar ratios [22-26] as ground truth to detect the soot at the 
locations of collecting the data. Once the soot is detected at these locations, we find the missing 
detection over a grid, which covers the area of study, by using the linear interpolation. For the 
purpose of interpolation, we first normalize the frequency of detection of soot for the four 
collecting sites. The results of the normalized frequency are shown in Figure 4. 
 
Figure 5 shows the interpolated normalized frequency of soot by using the lidar ratio over the the 
area of study. We also obtain frequency of detection of soot by using the color ratio and then we 
normalize it and compute the interpolation over the same grid in the area of study. The normalized 
frequency of soot detection by using the color ratio is shown in Figure 6. Figure 7 shows the 
interpolation of the normalized frequency over the search grid. 
 
 
 
 

	
(a)	Hampton	Blvd	Garage																																											

		
Figure 4. Normalized frequency of soot detection by using lidar ratio 

	
	
	

	



	
	

Figure 5. Interpolation of normalized frequency over search grid in the case of lidar ratio. 
	
 
 

	
(a) Hampton Blvd Garage                                           

	
Figure 6. Normalized frequency of soot detection by using color ratio 

																																																		
	
	
	

	
Figure 7. Interpolation of normalized frequency over search grid in the case of color ratio 

	
 
 
Once we have the interpolation data as shown in Figures 5 and 7, we implement the Bayesian 
tracking algorithm on these data. Simulation results for estimating the soot source location using 
the Bayesian source localization strategy are shown in Figure 8. In this simulation, we use a search 
grid of 200 m x 200 m grid cells with a threshold of 0.01 for normalized frequency of color ratio 
measurements and a threshold of 0.007 for normalized frequency of lidar ratio measurements. In 
other words, we claim existence of soot at certain point in the grid if the normalized frequency of 
detection from color ratio ൒ 0.01 and the normalized frequency of detection from Lidar ration  ൒ 
0.007.   
 



	
	

Initially, sample points are selected by simply “mowing the lawn” in the cross-wind direction 
within a bounded search area, the mean wind is from the north. The search pattern for the 
simulations described here begins at the bottom left. If the concentration does not exceed the 
threshold values simultaneously, continues to the next grid cell in the lawn mower pattern. If the 
concentration exceeds the threshold values, the measured concentration is used to update the 
posterior probability for all cells in the grid and the then directed to the grid cell with the highest 
probability of containing the source. The map is updated after each detection, and the estimated 
source location is defined as the point at which posterior probability is maximum.  
Figure 8 shows posterior probability distribution at the final detection point. The posterior 
probability is highest in the region around the estimated source location and nearly zero elsewhere. 
 
The simulation shows that the source of the soot over the grid of study is located near the point of 
intersection of Hampton Blvd and 49th street.  A close observation of traffic pattern for Hampton 
Blvd suggests that the source of soot at this point may make sense because it is the main traffic 
light in the area of the campus and the diesel trucks most likely stop by it more than other parts of 
Hampton Blvd in the area of study.    
 
	

	
	

	
(a)  Posterior 

Figure 8. Final probability distribution 
	
	
	
6. Conclusion 

The study in this report identifies the possible source of the aerosol, in particular the soot, in the 
vicinity of ODU campus. Lidar is employed to collect data of aerosol profiling in the atmosphere 
at several sites in the campus. Lidar and color ratios are retrieved from the data as aerosol’s optical 
parameters. A Bayesian tracking algorithm is employed to track the detection frequency of the 
soot in the data. The results of the lidar data analysis and tracking show that Hampton Blvd that 
passes by the campus is a primary source of harmful soot aerosol that is emitted by the diesel 
trucks in the region. 				
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