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PROBLEM	STATEMENT		
Traffic	congestion	has	grown	significantly	in	the	past	two	decades.	A	recent	study	found	that	the	
total	hours	of	delay	in	the	United	States	increased	by	528%	(0.7	to	3.7	billion	hours)	and	individual	
travelers	spend	about	three	times	as	many	extra	delay	hours	(16	to	47	hours)	than	they	did	twenty	
years	ago.	Furthermore,	congestion	affects	more	roads,	trips,	and	times	of	day	in	most	U.S.	
metropolitan	areas	[1].			

Due	to	congestion,	motorists	face	a	difficult	trip-planning	process	when	attempting	to	
reduce	delays	and	improve	travel	time	reliability.	This	decision-making	process	is	based	on	the	
drivers’	urgency,	experience,	and	current	information	on	travel	time,	trip	distance,	and	other	trip-
related	factors.	However,	energy	and	environmental	impacts	are	not	typically	utilized	in	drivers’	
decision-making	process.		

Drivers	typically	choose	routes	that	minimize	their	travel	cost	(e.g.,	travel	time).	
Consequently,	drivers	occasionally	select	longer	distance	routes	if	they	produce	travel	cost	savings.	
Recently,	navigation	tools	and	trip	planning	services	have	introduced	a	vehicle	routing	option	that	
is	designed	to	minimize	vehicle	fuel	consumption	and	emission	levels	in	response	to	rising	energy	
costs	and	increased	environmental	concerns.	Such	a	routing	option	is	referred	to	as	eco-routing.		

AERIS	Program	was	initiated	by	the	United	States	Department	of	Transportation	(U.S.	DOT)	
in		2011		[2,	3].	The	Eco-Traveler	Information	was	introduced	as	one	of	five	AERIS	transformative	
concepts.	The	AERIS	program	is	considered	one	of	the	Connected	Vehicle	(CV)	applications	since	
many	applications	in	the	AERIS	program	are	operated	with	vehicle-to-vehicle	(V2V)	and	vehicle-to-
infrastructure	(V2I)	communications	to	improve	fuel	efficiency	and	air	quality.		

U.S.	DOT	defined	the	goal	of	AERIS	program	[3]	as	“to	generate	and	acquire	
environmentally-relevant	real-time	transportation	data,	and	use	these	data	to	create	actionable	
information	that	support	and	facilitate	green	transportation	choices	by	transportation	system	users	
and	operators.	Employing	a	multi-modal	approach,	the	AERIS	Research	Program	aims	to	encourage	
the	development	of	technologies	and	applications	that	support	a	more	sustainable	relationship	
between	transportation	and	the	environment	chiefly	through	fuel	use	reductions	and	resulting	
emissions	reductions.”	The	focus	of	the	program	is	to	use	connected	vehicle	technology	to	reduce	
the	environmental	impact	of	road	transportation.	A	connected	vehicle	setting	is	used	to	develop	
applications	that	modify	traveler	behavior	or	directly	reduce	fuel	consumption	of	vehicles.		

The	AERIS	program	includes	five	transformative	concepts	including	Eco-Signal	Operations,	
Eco-Lanes,	Low	Emissions	Zones,	Eco-Traveler	Information,	and	Eco-Integrated	Corridor	
Management	as	illustrated	in	Figure	1	[4].	The	transformative	concept	is	also	called	Operational	
Scenarios	or	bundles	of	connected	vehicle	applications.	Each	transformative	concept	contains	a	set	
of	connected	vehicle	applications	which	can	improve	fuel	efficiency	and	reduce	vehicle	emissions.	
The	five	AERIS	Operational	Scenarios	are	summarized	below	[4]:	
	

• Eco-Signal	Operations:	This	Operational	Scenario	uses	connected	vehicle	technologies	
to	decrease	fuel	consumption	and	reduce	Greenhouse	Gas	(GHG)	emissions	and	criteria	
air	pollutant	emissions	on	arterials	by	reducing	idling,	stop-and-go	behavior,	and	
unnecessary	accelerations	and	decelerations	and	improving	traffic	flow	at	signalized	
intersections.	

• Eco-Lanes:	This	Operational	Scenario	includes	dedicated	lanes	optimized	for	the	
environment,	referred	to	as	Eco-Lanes.	Eco-Lanes	are	similar	to	managed	lanes;	
however,	these	lanes	are	optimized	for	the	environment	using	connected	vehicle	data	
and	can	be	responsive	to	real-time	traffic	and	environmental	conditions.	

• Low	Emissions	Zones:	Geographically	defined	areas	that	seek	to	incentivize	“green	
transportation	choices”	or	restrict	specific	categories	of	high-polluting	vehicles	from	
entering	the	zone	to	improve	the	air	quality	within	the	geographic	area.	Geo-fencing	the	
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boundaries	allows	the	possibility	for	these	areas	to	be	responsive	to	real-time	traffic	
and	environmental	conditions.	

• Eco-Traveler	Information:	This	Operational	Scenario	enables	development	of	new,	
advanced	traveler	information	applications	through	integrated,	multi-source,	multi-
modal	data.	Although	the	AERIS	program	may	not	directly	develop	specific	traveler	
information	applications,	an	open	data/open	source	approach	is	intended	to	engage	
researchers	and	the	private	sector	to	spur	innovation	and	environmental	applications.	

• Eco-Integrated	Corridor	Management:	This	Operational	Scenario	includes	the	integrated	
operation	of	a	major	travel	corridor	to	reduce	transportation-related	emissions	on	
arterials	and	freeways.	“Integrated	operations”	means	partnering	among	operators	of	
various	surface	transportation	agencies	to	treat	travel	corridors	as	an	integrated	asset,	
coordinating	their	operations	with	a	focus	on	decreasing	fuel	consumption,	GHG	
emissions,	and	criteria	air	pollutant	emissions.	
	

	
Figure	1:	AERIS	operational	scenarios	(Source:	[4])	

	
While	there	have	been	attempts	to	study	an	Eco-route	and	route	choice	behaviors	of	AERIS	

applications,	these	studies	are	either	limited	by	considering	only	a	single	vehicle,	modeling	
network-wide	impacts	using	very	simplistic	macroscopic	fuel	consumption	and	emission	models,	
not	considering	individual	route	choice	behavior,	and/or	not	considering	the	network	
characteristics	or	level	of	congestion	on	the	system	performance.	This	study	fills	in	these	gaps	to	
improve	an	eco-routing	system.	The	study	demonstrates	the	various	conceptual	development	for	an	
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eco-routing	system	including	an	individual	route	choice	behavior	model,	travel-time	or	delay	
prediction	model,	the	Vehicular	Network	Integrated	Simulator	(VNetIntSim),	ant	colony	based	eco-
routing	technique	(ACO-ECO),	and	Eco-Cooperative	Adaptive	Cruise	Control	(Eco-CACC)	system.	

RESEARCH	OBJECTIVE	AND	APPROACH	
The	objective	of	this	study	is	five-fold.		

1. The	study	develops	robust	models	that	provide	reliable	travel-time	or	delay	prediction	
under	varying	conditions	using	probe	data	from	known	bottleneck	locations	(e.g.,	bridges	
and	tunnels).	Also,	temporal	correlation	of	travel	times	are	analyzed	to	build	models	that	
capitalize	on	the	predictable	patterns.	

2. This	study	develops	individual	route	choice	behavior	model.	In	particular,	the	research	
proposes	a	new	perspective	to	address	the	heterogeneity	issue	by	establishing	individual	
route	choice	behavior	model	under	traffic	information	provision	for	every	driver.		

3. The	study	develops	the	Vehicular	Net-work	Integrated	Simulator	(VNetIntSim)	as	a	new	
transportation	network	and	VANET	simulation	tool	by	integrating	transportation	and	
VANET	modelling.		Specifically,	it	integrates	the	OPNET	software,	a	communication	network	
simulator,	and	the	INTEGRATION	software,	a	microscopic	traffic	simulation	software.	

4. The	study	develops	an	ant	colony	based	eco-routing	technique	(ACO-ECO),	which	is	a	novel	
feedback	eco-routing	and	cost	updating	algorithm.	In	particular,	in	the	ACO-ECO	algorithm,	
real-time	performance	measures	on	various	roadway	links	are	shared.	Vehicles	build	their	
minimum	path	routes	using	the	latest	real-time	information	to	minimize	their	fuel	
consumption	and	emission	levels.		

5. Finally,	Eco-Cooperative	Adaptive	Cruise	Control	(Eco-CACC)	systems	are	being	developed	
in	an	attempt	to	improve	vehicle	fuel	efficiency	in	the	vicinity	of	signalized	intersections.	
These	Eco-CACC	systems	utilize	traffic	Signal	Phasing	and	Timing	(SPaT)	data	received	via	
Vehicle-to-Infrastructure	(V2I)	communication	together	with	vehicle	queue	predictions	to	
compute	fuel-optimum	vehicle	trajectories	that	are	continuously	updated	as	the	vehicle	
travels	in	the	vicinity	of	signalized	intersections.	
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METHODOLOGY	

Predicting	Network	Conditions	from	Probe	Vehicle	Data	at	Recurrent	
Bottlenecks	to	Support	Eco-Route	Guidance	
	
The	ability	to	timely,	reliably,	and	accurately	forecast	the	dynamics	of	traffic	over	short-term	
horizons	is	becoming	very	important	for	route	guidance	and	planning.	Short-term	traffic	
forecasting	models,	therefore,	are	an	integral	element	of	the	toolset	needed	for	real-time	traffic	
control	and	route	guidance.		

Given	the	importance	of	predicting	the	expected	volume	of	traffic	ahead	of	time,	
considerable	amount	of	research	has	been	focused	on	the	topic	(see	[5,	6]).	The	availability	of	a	vast	
amount	of	spatial	and	temporal	traffic	data	coupled	with	advancements	in	statistics	and	data	
analysis	techniques	have	created	an	opportunity	to	perform	short-term	traffic	forecast	with	a	
reasonable	prediction	accuracy	and	short	processing	time.	Short-term	traffic	forecast	aims	at	
predicting	the	evolution	of	traffic	over	time	horizons	ranging	from	few	seconds	to	few	hours.	The	
approaches	used	in	short-term	traffic	forecast	can	be	broadly	classified	into	four	categories	[5,	7]:	
Naïve,	parametric,	non-parametric,	and	hybrid.	Naïve	approaches	refer	to	models	that	provide	
simple	estimate	of	traffic	in	the	future,	e.g.,	using	historic	averages.	Parametric	approaches	refer	to	
models-based	techniques	which	require	a	set	of	fixed	parameter	values	as	part	of	the	mathematical	
or	statistical	equations	they	utilize,	e.g.,	analytical	models,	macroscopic	models	and	models	based	
on	time	series	analysis	(e.g.,	[8-11]).	The	majority	of	these	approaches	suffer	from	the	assumptions	
they	consider	while	parameterizing	the	models	and	were	proven	to	perform	relatively	poorly	under	
unstable	traffic	conditions	and	complex	road	settings	[6].	On	the	other	hand,	non-parametric	
approaches	are	mostly	data-driven	and	apply	empirical	algorithms	to	provide	the	predictions,	e.g.,	
approaches	based	on	data	analysis	and	neural	network	techniques.	Such	approaches	are	
advantageous	as	they	are	free	of	any	assumptions	regarding	the	underlying	model	formulation	and	
the	uncertainty	involved	in	estimating	the	model	parameters.	Other	short-term	traffic	models	have	
implemented	a	hybrid	of	the	above-mentioned	approaches	(e.g.,[12]).	Comparative	analysis	of	a	few	
selected	models	amid	many	is	provided	in	some	studies	[13-15].		Extended	reviews	of	various	
studies	on	short-term	forecasting,	various	models	developed	and	their	technical	aspects,	are	
available	in	the	literature	[5-7,	16].		

Various	researchers	have	concluded	that	the	performance	of	non-parametric	models	is	
better	when	compared	to	parametric	models	as	they	are	better	suited	to	learn	more	from	the	
complex	data	and	adapt	to	its	pattern.	For	example,	Van	Lint	and	Van	Hinsbergen	[5]	suggested	that	
in	the	context	of	traffic	forecast,	non-parametric	approach	is	the	first	choice	as	the	input	and	output	
traffic	variables	are	noisy	and	the	relationship	between	each	other	is	nonlinear	and	poorly	
understood.	Pattern	recognition-based	approaches,	a	subset	of	the	non-parametric	approaches,	
seem	to	be	more	appropriate	as	they	are	effective	in	identifying	similar	traffic	conditions	needed	to	
generate	a	prediction.	In	a	recent	study,	a	non-parametric	and	data-driven	methodology	for	short-
term	traffic	forecasting	based	on	identifying	similar	traffic	patterns	using	an	enhanced	K-nearest	
neighbor	(K-NN)	algorithm	is	proposed	by	Habtemichael	and	Cetin	[17].		K-NN	approach	has	been	
previously	applied	for	the	purpose	of	forecasting	traffic	flow	rates	[15,	18]	and	for	travel	times	[19,	
20].		However,	the	study	of	Habtemichael	and	Cetin	[13]	provides	a	comprehensive	comparison	of	
advanced	parameter	methods	and	the	K-NN	method.		
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Figure	2:	Comparison	of	forecast	errors	of	K-NN	and	advanced	parametric	methods	

Figure	2	shows	the	performance	of	the	proposed	K-NN	method	in	comparison	to	those	from	
a	recently	published	works	Guo	et	al.	[11]	that	employ	advanced	filtering	and	time	series	modeling	
techniques	(e.g.,	adaptive	Kalman	filters,	SARIMA	+	GARCH	models)	to	predict	traffic	volumes.	
Futher	details	of	these	models	and	their	comparisons	can	be	found	in	Habtemichael	and	Cetin	[14].		
As	shown	in	Figure	2,	the	K-NN	method	performs	better	in	terms	of	the	three	performance	
indicators	for	accuracy:	Mean	Absolute	Error	(MAE),	Mean	Absolute	Percentage	Error	(MAPE)	and	
Root	Mean	Square	Error	(RMSE),	which	are	defined	in	equations		(1	through	(3	below.	
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Where:		 Fi	is	the	ith	forecast	value	
	 Oi	is	the	ith	observed	value	
	 n	is	the	number	of	samples	

	
	
Data-Driven	Prediction	Method	
Given	the	fact	that	increasingly	a	large	amount	of	transportation	data	is	being	collected	and	
archived,	data-driven	approaches	can	provide	a	reliable	alternative	to	predict	network	conditions.		
Similar	to	the	k-NN	algorithm	for	traffic	flow	rate	estimation	explained	in	[17],	a	prediction	model	is	
developed	for	travel	times.	Basically,	future	travel	times	or	speeds	are	predicted	based	on	travel	
times	observed	in	the	past.	These	past	observations	are	selected	from	a	large	archived	data.	A	
subset	of	observations	that	meet	similarity	criteria	is	identified.	The	prediction	of	future	travel	
times	is	predicated	based	on	these	similar	historic	patterns.		
	

5 10 15 20

2
4

6
8

10
12

14
MAPE

Hour of the day

M
ea

n 
M

A
P

E
 (%

)

K-NN
AKF
BATCH
EXPRW
KF

5 10 15 20

0
20

40
60

MAE

Hour of the day
M

ea
n 

M
A

E
 (v

eh
/h

/la
ne

)

K-NN
AKF
BATCH
EXPRW
KF

5 10 15 20

0
20

40
60

80
10

0

RMSE

Hour of the day

M
ea

n 
R

M
S

E
 (v

eh
/h

/la
ne

)

K-NN
AKF
BATCH
EXPRW
KF



14	
	

Since	the	main	focus	of	this	study	is	to	predict	travel	times	for	known	recurrent	bottlenecks	
under	incident	conditions,	two	datasets	are	required:	archived	travel	times	and	incident	database.	
These	two	datasets	are	compiled	for	the	Hampton	Roads	Bridge	Tunnel	(HRBT),	a	major	bottleneck	
in	Hampton	Roads,	VA.	The	HRBT	corridor	serves	as	a	critical	link	for	regional	mobility	and	
economic	activity	in	Hampton	Roads,	but	it	is	also	a	source	of	significant	recurring	and	non-
recurring	congestion,	costing	the	traveling	public	approximately	1.13M	vehicle-hours	or	$33.2M	
annually	(estimates	based	on	2013	data	[21]).	The	flow	along	the	HRBT	corridor	is	interrupted	due	
to	various	incidents	that	are	responsible	for	28%	of	all	delays.	The	frequency	of	different	types	of	
incidents	at	the	HRBT	corridor	is	shown	in	Figure	3.	The	Bridge-Tunnel	(B/T)	stoppage	has	the	
highest	frequency	with	1,280	events	reported	in	westbound	and	1,276	in	the	eastbound	direction.	
The	incident	category	‘other’	include	incident	events	which	occurred	in	the	tunnel	and	the	
connecting	bridges	but	don’t	fall	in	the	pre-specified	incident	categories[21].		
	 	

	
Figure	3:	Frequency	of	incident	types	by	direction	for	2013	

	
As	explained	previously,	forecasting	the	congestion	impacts	of	incidents	is	important	for	

traffic	operations,	route	guidance,	and	eco-route	planning.	Depending	on	the	type	and	other	
characteristics	of	an	incident,	its	impacts	on	the	traffic	flow	can	vary	substantially.	The	approach	in	
this	research	involves	predicting	future	travel	times	once	an	incident	occurs.	The	travel	time	
prediction	methods	involves	the	following	key	steps:		

• Obtain	characteristics	for	a	subject	incident	including	its	type,	location,	and	time	of	
occurrence.		

• Using	travel	times	(or	speeds)	observed	prior	to	this	subject	incident	and	its	characteristics	
search	the	incident	and	travel	time	databases	to	identify	a	set	of	similar	conditions	on	past	
days.		

• Use	the	archived	travel	times	(or	speeds)	for	similar	conditions	that	are	observed	after	the	
incident	occurs	to	predict	future	travel	times	(or	speeds)	for	the	subject	day/incident.	These	
travel	times	are	predicted	from	5	minute	to	30	minutes	into	the	future	in	reference	to	the	
occurrence	time	of	the	incident.		

	
Correlation	between	Average	Speeds	and	Fuel	Consumption	
Once	travel	times	or	average	speeds	are	predicted,	the	expected	fuel	consumption	(or	CO2	
emissions	since	the	two	are	related	through	conversion	factors)	can	be	estimated	by	means	of	
predefined	fuel	consumption	and	average	speed	relationships.	As	an	example,	a	set	of	fuel	
consumption	curves	is	given	in	Figure	4	for	gasoline	passenger	cars	with	an	engine	smaller	than	1.4	
liters	[22].		
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Figure	4:	Speed-fuel	consumption	curves	for	gasoline	passenger	car	by	engine	technology	([22])	

	
Travel	Time	Prediction	
In	order	to	evaluate	the	proposed	data-driven	method	for	travel	time	prediction	under	incidents,	a	
large	dataset	is	assembled.	Two	main	datasets	are	needed:	incident	database	and	travel	time	or	
speed	data.	As	mentioned	previously,	the	HBRT	corridor	is	selected	as	a	test	case	as	it	is	a	major	
bottleneck	in	Hampton	Roads,	VA.	Both	incident	and	travel	time	data	are	compiled	for	all	days	in	
2013.	The	travel	times	are	obtained	from	INRIX	database	and	incident	records	from	datasets	
provided	by	VDOT	(more	details	about	the	datasets	can	be	found	in	[21]).		Experienced	travel	times	
are	estimated	every	five	minutes	for	the	westbound	(WB)	corridor	that	covers	an	8.42-mile	
segment	of	I-64,	beginning	at	the	I-64/I-564	interchange	in	Norfolk	to	shortly	before	the	Mallory	St	
ramp	in	Hampton.	These	experienced	travel	times	(105,120	observations)	are	then	correlated	to	
the	incident	database.	For	each	one	of	the	incidents	(in	Figure	3),	the	incident	occurrence	times	are	
determined.		For	the	incidents	on	WB	HRBT	in	the	year	2013,	travel	times	after	the	incidents	are	
then	predicted	by	applying	the	steps	outlined	previously	under	Data-Driven	Prediction	Method	
section.	The	predictions	are	based	on	similar	historic	travel	times	that	are	extracted	from	the	
database	depending	on	incident	start	time	and	incident	category.			

In	order	to	compare	the	results,	a	simple	approach	is	also	implemented	where	the	observed	
or	current	travel	time	at	the	time	the	incident	occurs	is	used	as	the	prediction	value	for	future	time	
periods.	Predictions	are	made	for	time	periods	5	to	30	minutes	beyond	the	incident	occurrence	
times.	Figure	5	and	Figure	6	show	the	distribution	of	MAPE	for	all	predictions	made	for	all	incident	
types	for	the	data-driven	and	simple	methods	respectively.	It	is	clear	that	the	data-driven	or	
similarity-based	method	outperforms	the	simple	approach	as	the	variance	and	mean	values	of	the	
MAPEs	are	smaller.		
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Figure	5:	Distribution	of	MAPE	when	predictions	are	based	on	the	data-driven	method	

	
	

	
Figure	6:	Distribution	of	MAPE	when	previous	measurements	are	used	as	predictions	

	
The	average	MAPEs	are	presented	in	Table	1	and	Table	2	by	category	of	incidents	for	the	

data-driven	and	simple	methods	respectively.	As	it	can	be	observed,	the	prediction	accuracy	
decreases	as	the	prediction	horizon	is	increasing.	Compared	to	other	categories,	predicting	travel	
times	under	multi-vehicle	accidents	is	more	challenging	as	the	MAPEs	are	generally	higher.	Table	3	
show	the	improvements	in	MAPE	when	the	results	of	the	data-driven	approach	are	compared	to	
those	of	the	simple	method.	The	improvements	are	significant	and	range	from	22%	to	56%	when	
considering	different	types	of	incident	and	prediction	horizons.		These	results	of	the	data-driven	
method	are	promising	and	seem	to	provide	acceptable	prediction	accuracy	of	travel	times	under	
incidents.		
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Table	1:	MAPE	results	based	on	the	data-driven	prediction	method	

Incident	Category	 5	min	 10	min	 15	min	 20	min	 25	min	 30	min	 Average	

Bridge/TunnelStoppage	 3.34	 3.77	 3.99	 4.27	 4.11	 4.19	 3.95	

DisabledVehicle	 3.51	 4.10	 5.71	 6.30	 6.16	 6.78	 5.43	

Multi-VehicleAccident	 5.14	 6.80	 6.79	 10.12	 7.62	 10.02	 7.75	

VehicleAccident	 4.42	 5.21	 6.39	 8.16	 8.72	 6.84	 6.62	

Average	 4.10	 4.97	 5.72	 7.21	 6.65	 6.96	 5.94	
	

Table	2:	MAPE	results	if	current	travel	times	are	used	as	forecasts	

Incident	Category	 5	min	 10	min	 15	min	 20	min	 25	min	 30	min	 Average	

Bridge/TunnelStoppage	 6.23	 6.74	 6.95	 7.12	 7.10	 7.07	 6.87	

DisabledVehicle	 6.67	 8.80	 10.88	 10.84	 10.59	 10.76	 9.76	

Multi-VehicleAccident	 10.66	 11.99	 13.63	 14.52	 12.82	 18.25	 13.65	

VehicleAccident	 8.55	 10.72	 12.98	 14.52	 13.13	 10.63	 11.76	

Average	 8.03	 9.56	 11.11	 11.75	 10.91	 11.68	 10.51	
	

Table	3:	Percent	reductions	in	MAPE	

Incident	Category	 5	min	 10	min	 15	min	 20	min	 25	min	 30	min	 Average	

Bridge/TunnelStoppage	 38%	 38%	 35%	 36%	 39%	 36%	 37%	

DisabledVehicle	 42%	 56%	 54%	 46%	 40%	 35%	 46%	

Multi-VehicleAccident	 48%	 49%	 50%	 28%	 22%	 43%	 40%	

VehicleAccident	 41%	 48%	 54%	 49%	 25%	 29%	 41%	

Average	 42%	 48%	 48%	 40%	 32%	 36%	 41%	
	
	
Fuel	Consumption	Prediction	
In	order	to	determine	the	optimal	eco-route,	the	dynamic	variations	in	travel	speeds	in	the	
downstream	need	to	considered	and	predicted.	Once	these	future	travel	times	are	predicted,	
another	step	is	needed	to	predict	fuel	consumption	under	the	predicted	future	travel	times.	This	
can	be	accomplished	if	a	relationship	between	fuel	consumption	and	average	speed	is	established	
as	illustrated	previously	in	Figure	4.			

Rakha	et	al.	[23]	developed	the	Virginia	Tech	Comprehensive	Power-based	Fuel	
consumption	Modeling	(VT-CPFM)	framework	by	characterizing	fuel	consumption	levels	as	a	
second-order	polynomial	function	of	vehicle	power.	Furthermore,	the	model	offers	a	unique	ability	
to	be	calibrated	for	a	specific	vehicle	make/model	using	publicly	available	data	(a	more	detailed	
description	of	the	calibration	procedure	is	provided	in	[23])	without	massive	data	collection.	As	an	
example,	Figure	7	shows	the	fuel	consumption	rate	computed	by	VT-CPFM	for	Honda	Civic	and	
Accord	for	a	range	of	speeds.	Such	curves	could	be	created	for	other	vehicle	makes/models	by	
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providing	the	necessary	calibration	parameters	for	the	VT-CPFM	[19].	For	a	given	speed,	the	
estimated	fuel	consumption	can	be	obtained	from	these	relationships.		
	
	

	
Figure	7:	Vehicle	consumption	rate	versus	cruise	speed	(from	[19])	

	
However,	these	curves	in	Figure	7	are	constructed	for	cruise	speeds	and	do	not	account	for	

variations	in	speeds.	The	predicted	speeds	or	travel	times	in	the	previous	section	reflect	the	
average	values	of	speeds.	In	order	to	investigate	the	how	fuel	consumption	varies	by	average	
speeds,	vehicle	trajectory	data	were	collected	in	the	field.	Figure	8	shows	the	I-64	corridor	where	a	
total	of	68	vehicle	trips	were	collected	between	the	two	points	in	either	direction	between	the	two	
red	boxes.	The	data	include	vehicle	speeds	measured	via	an	on-board	diagnostics	(OBD)	device	and	
latitude	and	longitudes	from	GPS.	All	data	were	collected	by	a	custom	Android	App	developed	by	
the	Transportation	Research	Institute	(TRI)	at	ODU.	The	approximate	distance	between	the	two	red	
boxes	in	Figure	9	is	5.5	miles.		
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Figure	8:	The	I-64	corridor	where	probe	data	collected	

In	order	to	analyze	how	fuel	consumption	would	vary	as	average	speed	changes,	the	
collected	probe	trajectory	data	were	segregated	into	1	mi	segments.	Since	the	corridor	is	5.5	miles,	
there	will	be	5	trajectory	segments	for	a	given	trip.	Figure	9	shows	these	1-mi	trajectories.	As	it	can	
be	observed	there	is	a	large	variation	in	travel	times	over	these	segments.		

For	each	1-mi	trajectory	given	in	Figure	9,	the	average	speed	is	calculated	by	simply	taking	
the	inverse	of	the	travel	time,	since	distance	traveled	is	one	mile.	In	addition,	for	each	one	of	the	
trajectories,	the	total	fuel	consumed	is	computed	by	the	VT-CPFM	model	calibrated	for	a	Toyota	
Camry.		The	choice	of	a	vehicle	make/model	is	arbitrary	and	is	not	critical	for	the	analyses	below.	
Figure	10	shows	four	plots,	corresponding	to	4	different	segments	lengths,	correlating	the	fuel	
economy	or	consumption	(in	miles	per	gallon	(MPG))	and	average	speeds	computed	based	on	the	
individual	vehicle	travel	times.	As	it	can	be	observed	in	Figure	10,	there	is	a	significant	variation	in	
fuel	consumption	at	a	given	average	speed	value.	This	can	be	explained	by	the	fact	that	there	might	
be	multiple	“paths”	or	trajectories	in	Figure	9	that	result	in	the	same	travel	time	or	average	speed.	
On	the	other	hand,	the	variation	in	fuel	consumption	is	lower	at	low	average	speeds	(e.g.,	less	than	
20	mph).		
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Figure	9:	Vehicle	trajectories	(1-mi	segment	length)	

	
	
	
	

	
Figure	10:	Fuel	consumption	rate	versus	average	speeds	
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Development	and	Evaluation	of	Individual	Route	Choice	Behavior	Model	
under	the	Influence	of	Traveler	Information	
	
Most	commonly	used	methods	to	model	drivers’	route	choice	behaviors	under	the	influence	of	
traveler	information	in	the	transportation	literature	include	discrete	choice	modeling,	neural	
network	and	fuzzy	logic	[24-28].	Usually	with	these	methods,	a	single	route	choice	model	can	be	
established	based	on	stated	preference	or	revealed	preference	data	obtained	from	a	group	of	
drivers.	Drivers’	different	route	choice	preferences	can	be	captured	by	various	social	economics	
characteristics,	for	instance,	age,	gender,	income	and	driving	experience.		

Within	the	framework	of	traditional	perspective	of	route	choice	behavior	modeling,	there	
are	still	some	challenges	to	accurately	predict	drivers’	route	choice	behaviors	under	information	
provision.	These	challenges	stem	from	“the	complexity	of	representing	human	behavior,	the	lack	of	
travelers’	perceptions	of	route	characteristics	and	the	unavailability	of	exact	information	about	
travelers’	preferences	[29].”	To	be	more	specific,	the	process	that	a	driver	making	route	choice	
decision	under	the	influence	of	ATIS	is	shown	in	Figure	11	[24].	When	looking	back	at	traditional	
methods,	traditional	perspectives	of	modeling	route	choice	generally	do	not	adequately	capture	the	
perception	and	cognition	process	when	drivers	are	making	route	choice	decisions	[24].			

	
Figure	11:	Route	perception	and	cognition	

	
Researchers	have	tried	to	consider	heterogeneity	issues	in	route	choice	model	since	1990s.	

Abdel-Aty	et	al	(1997)	[30]	added	individual-specific	error	component	to	utility	function	and	
assumed	it	followed	normal	mixing	distribution	across	drivers.	With	metropolitan	area	survey	data,	
both	Abdel-Aty	et	al	(1997)	and	Jou	(2001)	[31]	showed	that	the	standard	deviation	of	individual	
error	term	confirmed	the	existence	of	unobserved	heterogeneity.	Dial	(1997)	[32]	and	Nielsen	
(1996)	divided	perceived	route	impedance	into	two	parts:	deterministic	and	stochastic	
compoment.	Dial	(1997)	assumed	the	weight	of	stocahsitc	part	as	a	random	variable	following	an	
arbitarty	but	given	density	in	order	to	reflect	different	trip	makers’	perferences.	Nielsen	(1996)	
[33]	introduced	random	variables	that	follow	pre-determined	distribution	to	both	deterministic	
and	stochastic	parts	to	capture	the	preferences	heteregenity	across	drivers.	However,	the	
assumption	that	the	individual-specific	term	and	random	weights	should	follow	a	particular	
distribution	(for	instance,	normal	distribution)	has	not	been	testified.	The	distribution	was	selected	
mostly	for	the	sake	of	modeling	conviences.	It	would	have	been	more	realistic	if	actual	driver’s	
heterogentiy	is	expliclity	modeled.		

To	address	the	heterogeneity	issues,	resaechers	attempted	other	approaches.		For	example,	
researchers	have	established	various	models	for	multiple	classes	of	drivers.	Tawfik	and	Rakha	
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(2012,	2013)	[34,	35]	categorized	experiment	participants	into	four	types	according	to	their	driving	
patterns.	The	learning	pattern	and	route	choice	decision	rules	of	each	type	were	modeled	
separately.	They	proved	that	multi-type	route	choice	model	has	smaller	deviances	to	drivers’	actual	
choice	than	general	models.	Peeta	and	Yu	(2004)	[36]	proposed	a	hybrid	route	choice	model	which	
allowed	travlers	to	have	their	own	perception	about	route	attributes	and	their	perceptions	are	used	
in	route	choice	modeling	within	the	same	driver	class.	Their	results	explained	the	evolution	of	
travelers’	route	choice	behavirs	as	their	perception	keeps	being	updated.	Levinson	and	Zhu	(2013)	
[37]	proposed	a	route	choice	model	based	on	route	profile	theory	and	compared	it	with	results	
generated	from	stochastic	user	equilibrium	and	found	that	the	route	choice	decisions	obtained	from	
route	profile	theory	model	are	more	realistics.	They	also	pointed	out	that	the	model	can	be	used	at	
individual	level.	The	efforts	made	in	these	studys	proved	that	considering	the	heterogeneity	of	
route	choice	preference	can	more	reaslisticly	and	accurately	describe	drivers’	route	choice	
behaviors.	However,	there	are	still	some	challenges	in	accommodating	drivers’	heterogeneity	in	
route	choice	modeling.	As	Peeta	and	Yu	(2004)	[36]	pointed	out	in	their	study,	“the	lack	of	a	
capability	to	estimate	the	ambient	driver	class	fractions	is	a	main	barrier	to	the	prediction	accuracy	
in	real-time	operation	and	the	dynamic	traffic	assignment	under	ATIS.”	In	addition	to	that,	the	
standards	used	to	divide	drivers	into	different	categories	are	also	critical	to	route	choice	model’s	
performances.	Even	though	it	is	possible	to	catergorize	drivers	into	different	clasess,	the	
heterogeneity	within	the	group	is	still	not	addressed.	

On	the	other	hand,	there	is	a	branch	of	research	efforts	focusing	on	personalized	route	
planning	that	considers	individual	user’s	preference	while	providing	route	guidance	services		[26,	
38,	39].	They	use	personal	route	choice	data	to	describe	a	particular	traveler’s	route	choice	
preference	and	recommend	a	route	which	a	traveler	is	more	likely	to	be	satisfied	with.	These	
personalized	route	guidance	models	considered	traveler’s	route	choice	preference	at	an	individual	
level.	However,	they	mainly	focused	on	improving	individual	traveler’s	user	experiences	and	
satisfaction	with	route	guidance	system.	Its	benefit	is	only	limited	at	individual	level	without	
exploring	how	this	can	help	transportation	community	addressing	the	heterogeneity	issue.			

The	personalized	route	planning	and	emerging	technologies	nowadays	provide	us	with	a	
new	perspective	to	deal	with	the	heterogeneity	issues	identified	as	a	challenge	in	traditional	route	
choice	modeling	study.	The	new	perspective	is	to	establish	individual	route	choice	behavior	model.	
Personalized	route	planning	model	can	consider	individual	preference	to	the	maximum	extent,	and	
technologies,	such	as	Global	Position	System,	smart	phone,	Connected	Vehicle,	Automated	Vechicle	
[40],	can	enable	us	collecting	individual	driver’s	route	choice	data	for	individual	route	choice	
behavior	modeling,	including	the	route	set	given	in	the	information,	characteristics	of	each	route	
and	driver’s	final	decision.	These	data	collected	over	days	can	be	used	for	calibrating	this	driver’s	
individual	route	choice	model.	The	model	can	be	updated	to	incorporate	the	evolution	of	driver’s	
route	choice	preference	when	more	data	are	obtained.	Whitin	a	certain	time	period,	a	person’s	
perception,	congnition	and	decision	usually	do	not	change	much.	The	model	can	maintain	similar	
perception	and	decision	rules	when	it	is	used	to	predict	this	driver’s	route	choice.	

Establishing	individual	route	choice	behavior	model	could	benefit	both	individuals	and	the	
transportation	system.	For	the	transportation	system,	with	individual	route	choice	behavior	model,	
the	traffic	estimation	and	prediction	model	can	generate	routes	guidance	information	that	
individual	driver	is	likely	to	comply	with	based	on	their	preference.	As	more	drivers	participate	in,	
the	route	guidance	information	is	to	have	much	higher	compliance	than	those	generated	from	
aggregated	route	choice	model	(e.g.,	shortest	travel	time	only).	It	can	help	estimate	road	network	
conditions.	For	individuals,	drivers’	experience	with	route	guidance	system	and	satisfaction	n	could	
be	improved.	In	addition	to	the	benefits	discussed	above,	as	Levinson	and	Zhu	(2013)	[37]	
mentioned,	modeling	the	behavior	of	individuals	is	important	for	air	quality,	pricing	and	many	
other	applications.		
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As	noted,	this	study	proposes	a	new	perspective	to	address	the	heterogeneity	existing	in	
drivers’	route	choice	behaviors	under	the	influences	of	ATIS	by	establishing	individual	route	choice	
model	for	each	driver	using	his/her	driving	data.	Following	sections	describe	a	stated	preference	
survey	designed	to	collect	route	choice	decisions	data	and	briefly	introduce	the	methodologies	
utilized	in	this	study	including	three	commonly	used	methods	for	modeling	driver	behavior:	Binary	
Logit	model,	Neural	Network	and	support	vector	machine.	Then,	the	performances	of	these	
methods	are	assessed	when	being	used	to	establish	aggregated	and	individual	level	route	choice	
behavior	models.	Modeling	results	are	analyzed	and	compared	in	section	Result	Analysis,	including	
the	comparison	between	individual	route	choice	model	and	aggregated	route	choice	model.	The	
performances	of	three	individual	route	choice	models	are	also	compared.		At	last,	this	study	is	
concluded	with	a	summary	of	key	findings	and	discussion	about	future	research.	One	thing	needs	to	
be	noted	is	that	the	focus	of	this	study	is	about	exploration	of	the	possibility	to	establish	individual	
route	choice	model	and	the	performance	comparison	between	individual	and	aggregated	route	
choice	models.	The	models’	applicability	to	common	drivers	group	is	not	the	focus	of	this	study.	
	
Stated	Preference	Survey	and	Data	
	
A	stated	preference	was	designed	and	conducted	to	collect	route	choice	decision	data.	In	the	survey,	
information	on	binary	routes	with	various	route	attributes	is	shown	to	participants	and	they	were	
asked	to	choose	one	route	they	would	take.	Five	attributes	were	included:		route	distance,	travel	
time,	possible	maximum	travel	time,	fuel	cost	and	number	of	controlled	intersections.	Each	of	the	
variables	is	discussed	below.	A	key	principle	applied	for	parameters’	values	setting	is	to	make	the	
scenarios	as	realistic	as	possible.		

Route	distance	is	an	important	aspect	of	traffic	information.	Three	scenarios	are	designed	to	
estimate	the	influences	of	route	distances.	The	distance	for	Route	1	is	fixed	across	all	three	
scenarios.	Route	2	is	10%,	20%	and	30%	longer	than	Route	1	in	three	scenarios,	respectively.	The	
route	lengths	setting	used	in	the	survey	is	summarized	in	Table	4.	In	each	scenario,	there	are	three	
levels	of	distance	combinations.	For	example,	in	Scenario	1,	distances	of	two	routes	can	be	“8	vs	8.8	
miles,”	“15	vs	16.5	miles”	and	“20	vs	22	miles.”		

	
Table	4:	Route	distances	and	travel	time	used	in	survey	design	

		
Scenario	1		 Scenario	2	 Scenario	3		

Distance	
(miles)	

Travel	Time	
(minutes)	

Distance	
(miles)	

Travel	Time	
(minutes)	

Distance	
(miles)	

Travel	Time	
(minutes)	

Route	 1	 2	 1	 2	 1	 2	 1	 2	 1	 2	 1	 2	

Distance	
Level	1	 8	 8.8	

12	 11	
8	 9.6	

14	 12	
8	 10.4	

13	 12	
15	 17	 17	 19	 16	 19	
21	 24	 24	 28	 24	 27	

Distance	
Level	2	 15	 16.5	

23	 21	
15	 18	

26	 23	
15	 19.5	

25	 23	
29	 32	 32	 36	 30	 36	
39	 45	 45	 52	 45	 51	

Distance	
Level	3	 20	 22	

31	 28	
20	 24	

34	 31	
20	 26	

33	 30	
39	 42	 43	 49	 40	 48	
52	 60	 60	 69	 60	 69	
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Travel	time	information	is	given	as	an	average	travel	time.	Based	on	the	route	distance	
defined	above,	the	travel	time	can	be	determined	by	assuming	traveling	speed.	Three	levels	of	
speed	are	assumed	and	the	speed	of	longer	route	is	faster	than	the	shorter	one.	This	represents	the	
situation	that	in	reality	without	considering	other	factors	more	drivers	prefer	to	shorter	route	over	
longer	route,	so	the	speed	on	shorter	route	is	relatively	slow	because	of	the	higher	demand.	Three	
levels	of	speeds	are	adjusted	to	make	sure	that	in	two-thirds	situations	of	each	scenario	the	average	
travel	time	on	Route	1	is	shorter	than	that	of	Route	2,	and	in	the	rest	of	situations	of	each	scenario	
the	average	travel	time	on	Route	2	is	shorter	than	that	of	route	1.	For	each	distance	level,	there	are	
three	levels	of	travel	times.	For	example,	as	shown	in	Table	4,	when	distance	level	1	(8	vs	8.8	mile)	
is	set,	the	associated	travel	time	combinations	can	be	“12	vs	11	minutes,”	“15	vs	17	minutes”	or	“21	
vs	24	minutes.”	

Possible	maximum	travel	time	(PMTT)	describes	the	reliability	of	travel	time	on	certain	
route.	Participants	are	told	that	the	actual	travel	time	can	be	the	average	travel	time,	possible	
maximum	travel	time	or	any	value	within	the	range	of	these	two.	A	route	with	larger	possible	
maximum	travel	time	is	considered	as	less	reliable.	The	possible	maximum	travel	time	is	designed	
by	increasing	the	average	travel	time	by	certain	percentage.	The	percentage	is	adjusted	to	ensure	
that	in	two-thirds	situations	of	each	scenario	the	possible	maximum	travel	time	of	Route	2	is	
shorter	than	that	of	Route	1.	This	represents	the	situation	that	in	reality	longer	route	has	less	
demand	so	the	travel	time	variance	is	relatively	smaller.	Also,	there	are	three	levels	of	percentages	
for	both	routes	used	to	calculate	the	possible	maximum	travel	times.	PMTT	of	two	routes	are	
selected	independently.	

Fuel	cost	is	also	an	influencing	factor.	To	make	it	realistic,	fuel	efficiency	is	calculated	based	
on	distance	and	gas	price	(assumed	to	be	2.5	dollars	per	gallon)	according	to	equation	(4).	Fuel	
efficiency	of	Ford	vehicle	ranges	from	22	to	32	miles	per	gallon.	Based	on	this,	three	levels	of	fuel	
efficiencies,	22,	27	and	32	miles	per	gallon,	are	used	to	calculate	fuel	cost.	Fuel	efficiencies	for	two	
routes	are	also	selected	independently.	
	

FuelPrice
encyFuelEffici
ceDistFuelC ×=

tanos 	 	 	 	 	 (4)	

The	last	route	attribute	considered	is	the	number	of	controlled	intersections.	Controlled	
intersection	can	be	stop	controlled,	traffic	signal	controlled,	roundabout,	etc.	Drivers	usually	
perceive	controlled	intersections	as	uncomfortable	impedance	while	driving,	considering	the	
actions	of	stop	and	go,	possible	time	spent	waiting	at	the	intersection,	etc.		Route	1	which	is	shorter	
and	less	reliable	has	more	controlled	intersections	(i.e.,	just	like	urban	route)	than	Route	2	(e.g.,	
rural	detour	route	or	expressway).	There	are	three	levels	for	the	number	of	controlled	intersections	
for	both	routes.	Route	1	has	10,	15	and	20	intersections	which	are	generally	more	than	that	of	route	
2,	namely	4,	9	and	15.	This	variable	for	two	routes	are	also	determined	independently.	

In	order	to	develop	statistically	well	designed	route	choice	scenarios,	Taguchi	design	which	
is	one	of	often	used	experiment	design	methods	(Rose	&	Bliemer,	2009;	Cucu	et	al,	2010;	Tillema,	
2009)	[41-43]	was	used	to	make	an	experiment	design	using	8	variables	with	3	levels	discussed	
above.	The	variables	and	the	number	of	levels	for	the	scenarios	used	in	this	research	are	
summarized	in	Table	5.	Each	scenario	can	generate	27	questions.	In	total,	there	are	81	questions	for	
three	scenarios.	Scrutinizing	effort	was	made	to	eliminate	dominated	questions	in	which	one	route	
is	absolutely	superior	to	the	other	at	every	aspect.	Finally,	74	questions	were	used	in	the	final	
questionnaire.		

A	total	of	28	undergraduate	students	from	University	of	Virginia	took	part	in	the	survey,	
including	11	male	and	17	female	students.	Each	participant	was	asked	to	sit	on	the	driving	
simulator	seat	so	that	participants	could	have	felt	more	likely	they	were	to	make	a	decision	while	
driving.	Tables	containing	information	about	the	attributes	of	two	routes	were	shown	on	the	screen	
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of	driving	simulator.	Following	the	survey	instructions	by	explaining	the	scenarios	and	the	meaning	
of	each	variable,	they	were	told	that	they	were	in	a	casual	trip	heading	to	gym,	grocery	store	or	
visiting	a	friend	and	they	were	asked	to	choose	a	route	that	they	would	prefer	to	take.	Each	subject	
went	through	74	questions.		

	
Table	5:	Variables	and	associated	levels	used	for	experiment	design	

Variables	
Number	of	
levels	

Distance	combination	for	both	routes	 3	
Travel	time	combination	for	both	
routes	 3	
PMTT	for	route	1	 3	
PMTT	for	route	2	 3	
Fuel	cost	for	route	1	 3	
Fuel	cost	for	route	2	 3	
Number	of	intersections	for	route	1	 3	
Number	of	intersections	for	route	2	 3	

	
	
Proposed	Models		
	
This	section	briefly	introduces	three	methods	used	to	establish	the	proposed	route	choice	behavior	
models	with	the	data	collected	from	the	stated-preference	survey.	Again,	three	methodologies	are	
discrete	choice	model,	Neural	Network	model	and	Support	Vector	Machine.	Discrete	choice	model	
and	NN	have	been	widely	used	in	travelers’	behaviors	study	including	route	choice	modeling.	SVM	
is	relatively	new	in	transportatioin	domain,	but	has	been	proven	that	it	costs	less	computing	time	
than	NN	to	have	similar	performances	[44].	These	three	representive	methods	were	selected	to	
explore	the	possibility	of	establishing	individual	route	choice	model	and	also	compare	the	
performances	of	individual	and	aggregated	route	choice	models.	Other	methods	for	instance,	fuzzy	
logicand	deep	learning	could	be	also	used.			
	
Discrete	Choice	Model		
	
Discrete	choice	model	is	a	traditional	method	that	is	widely	used	in	driver	behavior	modeling	[45].	
In	stated	preference	survey	conducted	in	this	research,	participants	have	two	routes	to	choose	
from.	Binary	Logit	model	is	adopted	to	represent	discrete	choice	model	to	describe	drivers’	route	
choice	behaviors.		
	

The	deterministic	component	of	utility	of	choosing	Route	i	in	Binary	Logit	model	is	in	the	
following	form:	
	

gfcpmttttdisUi 654321 int ββββββα ++++++= 		 	 	 	 (5)	
In	which	
Ui	is	the	deterministic	component	part	of	utility	associated	with	choosing	route	i;	
α	is	the	constant	term	of	utility	function;	
βi	is	the	parameters	of	term	i	in	utility	function;	
dis	is	the	distance	of	route	i;	
tt	is	the	travel	time	of	route	i;	
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pmtt:	is	the	possible	maximum	travel	time	of	route	i;	
fc	is	the	fuel	cost	associated	with	traveling	on	route	i;	
int	is	the	number	of	controlled	intersection	along	route	i.	
g	is	the	gender	of	particular	participant.	
	

In	case	of	the	aggregated	route	choice	behavior	model,	utility	function	contains	all	seven	
variables	as	described	in	equation	(5),	but	the	individual	route	choice	behavior	model	the	
participant’s	gender	variable	is	not	included	as	the	gender	is	identical	to	each	participant	
throughout	the	scenarios.	The	utility	function	for	individual	route	choice	behavior	model	is	in	the	
form	of	equation	(6).	All	the	parameters	are	the	same	as	in	equation	(5).	

int54321 βββββα +++++= fcpmttttdisUi 		 	 	 	 	 (6)	
	
Neural	Network		
	
Neural	Netowrk	has	been	used	by	many	researchers	in	transportation	domain	[46-48].	A	typical	
neural	network	contains	three	types	of	layers	including	input,	hidden	and	output	layers.	Each	layer	
contains	neurons.	Data	are	put	into	the	network	through	input	layer	and	passed	between	neurons	
and	layers.	The	final	results	are	generated	from	output	layer.	Readers	who	are	interested	in	NN	can	
refer	to	Neural	Network	Design	[49].	

In	this	study,	input	data	include	the	information	about	attributes	of	two	routes	and	the	
output	is	the	route	that	participant	finally	decides	to	take.	Besides,	several	other	settings	of	NN	
need	to	be	determined.	They	are	number	of	layers,	number	of	neurons,	transfer	function	and	
training	algorithm.		

Number	of	layers.	A	two-layer	network	having	a	sigmoid	transfer	function	at	the	first	layer	
and	a	linear	transfer	function	at	the	second	layer	can	be	trained	to	approximate	most	functions	very	
well		[49].	In	transportation	literature,	researchers	usually	adopted	neural	network	with	only	single	
hidden	layer	[25,	44,	50,	51].		Thus,	a	neural	network	with	one	input	layer,	one	hidden	layer	and	
one	output	layer	is	also	used	in	this	study.	

Number	of	neurons.	Fewer	neurons	than	needed	cannot	represent	all	input	data	and	more	
neurons	than	needed	can	cause	overfitting	issue.	To	obtain	an	appropriate	number	of	neurons,	
cross	validation	is	used	to	determine	the	number	of	neurons	with	best	performance.		More	details	
about	obtaining	the	best	number	of	neurons	can	be	found	in	the	Model	Calibration	section.	

Transfer	function.	As	noted,	a	network	with	one	sigmoid	layer	and	one	liner	layer	can	be	
trained	for	approximating	most	functions	very	well.	Besides,	in	literature	where	NN	is	used	to	
model	travelers’	route	choice	behaviors,	sigmoid	function	is	commonly	used	[25,	44].		Thus,	
sigmoid	transfer	function	is	adopted.	Two	types	of	sigmoid	functions,	Hyperbolic	Tangent	Sigmoid	
function	and	Log-Sigmoid	function,	are	compared	in	the	Model	Calibration	section	and	the	one	with	
better	performance	is	selected.		

Training	algorithm.	Bayesian	regularization	backpropagation	is	chosen	as	the	training	
algorithm	because	of	its	advantage	of	mitigating	overfitting	issue	automatically.	Overfitting	can	
jeopardize	the	generalization	performances	while	using	the	network	with	new	data.	Bayesian	
regularization	backpropagation	can	calculate	the	regularization	parameters	while	training	and	
improve	the	generalization	performances	of	neural	network	[49].	
	
Support	Vector	Machine	
	
Support	Vector	machine	(SVM)	is	relatively	new	in	transportation	domain.	It	can	be	used	for	
regression	and	pattern	recognition	[52].	The	concept	of	SVM	is	to	map	the	data	points	into	high	
dimensional	space	and	find	a	hyperplane	which	can	divide	the	points	representing	different	
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categories.	It	is	based	on	the	structural	risk	minimization	principle	and	its	training	can	always	
guarantee	a	globally	optimal	solution	[44].	Readers	who	are	interested	in	more	about	SVM	can	refer	
to	Steinwart	&	Christmann	(2008)	[52].	

The	kernel	function	and	other	two	parameters	need	to	be	determined	before	training.	The	
selection	of	kernel	function	depends	on	the	problem	under	study.	Linear	kernel	function	is	adopted	
in	this	research,	based	on	the	recommendation	in	Matlab	that	linear	kernel	function	is	for	two	class	
learning.	The	value	of	penalty	parameter	C	and	kernel	scale	parameter	are	determined	through	
cross	validation	which	can	be	found	with	more	details	in	the	Model	Calibration	section.			
	
Model	calibration		
	
After	determining	calibration	settings	needed	for	each	method,	the	survey	data	are	organized	for	
model	calibration	and	testing.	Each	participant	has	a	sample	size	of	74	questions	(except	one	
participant	only	finished	60	questions).	80%	of	these	questions	are	randomly	selected	as	
calibration	data	and	the	remaining	20%	are	used	as	testing	data	for	all	three	methods.	Data	from	
individuals	are	used	for	individual	route	choice	behavior	model	calibration	and	testing.	Then	
calibration	data	from	all	participants	are	put	together	and	used	for	aggregated	route	choice	model	
calibration.	The	sample	size	for	both	individual	and	aggregated	route	choice	behavior	models	are	
shown	in	Table	6.	As	shown	in	Table	6,	for	individual	route	choice	model,	60	questions	(80%	of	74)	
are	used	as	calibration	data	and	14	(20%	of	74)	are	used	as	testing	data.	Individual’s	test	data	are	
used	for	testing	both	individual	and	aggregated	models	in	order	to	make	a	fair	comparison.		

	
Table	6:	Data	for	individual	and	aggregated	model	calibration	and	testing	

Model	
Type	

Calibration	Sample	
Size	 Test	Sample	Size	

Individual	 60	 14		
Aggregated	 1668	 14	for	each	one	

Note:	One	participant	only	finished	60	questions.	The	same	proportions	of	80%	and	20%	were	used	
to	divide	calibration	and	testing	data	for	this	participant.	
	

During	the	survey,	a	brief	interview	was	conducted	with	a	few	randomly	selected	
participants.	It	turned	out	that	some	participants	looked	at	not	only	the	information	given	in	the	
survey,	but	also	calculated	and	considered	the	difference	between	travel	time	and	possible	
maximum	travel	time.	To	better	capture	participants’	route	choice	preference,	another	variable	is	
included	in	the	model,	namely	the	time	buffer	which	is	the	difference	between	possible	maximum	
travel	time	and	travel	time.		

Considering	the	large	range	of	the	variable	values	set	in	the	survey,	data	standardization	is	
made	before	model	calibration.	For	each	variable,	variable	mean	is	deducted	from	its	original	value	
and	the	difference	is	divided	by	the	standard	deviation.	Final	values	generated	from	this	
standardization	procedure	is	used	for	the	model	calibration	and	training.	

As	noted	at	the	end	of	introduction,	the	focus	of	this	study	is	about	the	exploration	of	the	
possibility	to	establish	individual	route	choice	model	and	the	performance	comparison	between	
individual	and	aggregated	route	choice	models.	The	models’	applicability	to	common	drivers	group	
is	not	the	focus	of	this	study.	So	the	sample	used	in	this	study	is	considered	as	representative	within	
the	group	of	survey	participants.	
	
Discrete	Choice	Model	
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Software	R	is	used	to	calibrate	Binary	Logit	model.	Since	another	variable,	time	buffer,	was	added	
for	analysis,	equation	(5)	and	equation	(6)	need	to	add	this	variable	as	one	of	items	for	calibration.	
The	variables	put	into	the	model	are	adjusted	to	see	which	combination	makes	best	performance	in	
terms	of	adjusted	r	square	and	only	including	significant	and	reasonable	factors.	The	time	buffer	is	
calculated	as	the	difference	between	possible	maximum	travel	time	and	average	travel	time.	There	
can	only	be	two	of	these	three	variables	(travel	time,	PMTT	and	time	buffer)	included	in	the	model	
at	the	same	time.	Different	combinations	of	two	from	these	three	variables	are	compared	and	the	
combination	with	the	best	performance	case	is	selected.	
	
Neural	Network		
	
The	Matlab	Neural	Network	toolbox	is	used	to	calibrate	NN	models	for	both	individual	and	
aggregated	cases.	As	noted,	the	number	of	neurons	for	hidden	layer	needs	to	be	determined	
through	cross	validation.	There	are	13	input	variables	(including	information	about	both	routes’	
attributes	and	gender)	for	aggregated	model	and	12	variables	for	individual	model	(only	including	
information	for	both	routes’	attributes).	The	calibration	data	is	randomly	divided	into	5	parts.	Each	
of	these	5	parts	is	used	as	test	data	once	and	has	a	prediction	accuracy	associated	with	each	of	5	
parts.	This	process	was	repeated	for	three	times.	The	average	prediction	accuracy	of	all	testing	(15	
values	of	prediction	accuracy)	is	calculated	when	number	of	neurons	is	set	from	12	to	24.	The	
number	of	neurons	with	the	best	performance	regarding	prediction	accuracy	is	selected.	Both	
individual	and	aggregated	models	have	the	same	process.	The	prediction	accuracy	is	calculated	as	
the	percentage	of	route	choices	predicted	by	the	model	that	match	participant’s	actual	choices	in	
test	data.	

Besides,	since	the	NN	toolbox	starts	with	random	initial	values	for	training	neural	network	
and	may	end	up	with	different	results	every	time,	minimum	times	of	training	required	for	reaching	
certain	level	of	accuracy	needs	to	be	determined.	The	neural	network	is	trained	first	and	
performances	obtained	from	this	sample	are	used	to	calculate	minimum	sample	size	required	at	the	
confidence	level	of	95%.	Acceptable	error	of	2%	is	used	while	calculating	the	required	minimum	
sample	size.	The	minimum	sample	size	for	each	individual	and	aggregated	route	choice	models	are	
calculated.	
	
Support	Vector	Machine		
	
The	Matlab’s	Statistics	and	Machine	Learning	Toolbox	is	used	to	train	Support	Vector	Machine	
(SVM).	Cross	validation	is	implemented	to	select	optimal	values	of	penalty	parameter	C	and	kernel	
scale	parameter.	Same	as	NN	training,	data	is	randomly	divided	into	five	groups	and	each	of	the	five	
groups	is	used	as	test	data	once.	Three	different	random	divisions	are	made	and	the	average	
prediction	of	all	testing	at	varying	parameters	are	calculated.	The	parameter	value	associated	with	
the	best	performance	is	selected	to	be	the	best	value	of	variables.		

Recommended	by	Matlab,	the	range	of	parameter	C	is	the	geometric	sequence	from	10-5	to	
105	by	a	factor	of	10	[53].	For	kernel	scale	parameter,	the	original	value	is	chosen	by	using	heuristic	
procedure	available	in	Matlab.	Then,	the	range	of	kernel	scale	parameter	is	based	on	original	value	
multiplied	by	11	different	values,	a	geometric	sequence	from	10-5	to	105	by	a	factor	of	10.	The	
combination	of	these	two	parameters	associated	with	the	best	performance	is	selected.	

To	guarantee	the	accuracy	of	the	test	performances,	the	required	minimum	sample	size	is	
calculated	for	SVM	as	well.	Performances	of	all	individual	models	and	aggregated	models	are	
calculated	by	following	the	minimum	sample	sizes.	
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Result	analysis	
	
Performances	Comparison	between	Individual	and	Aggregated	Models		
	
The	performances	of	individual	models	and	aggregated	models	are	summarized	and	compared	for	
all	three	methods	in	Table	4.	The	first	column	is	the	number	of	28	participants.	The	area	in	the	
middle	with	checks	shows	the	significant	factors	in	the	regression	of	Binary	Logit	model.	The	
following	six	columns	shows	the	performances	in	terms	of	prediction	accuracy	of	individual	models	
and	aggregated	models	on	each	individual	participant	with	three	methods.	Performance	of	0.71	
represents	that	the	route	choices	predicted	by	the	model	match	71%	of	choices	that	participant	
actually	made	in	the	test	data.	
	
Binary	Logit	model		
According	to	significant	variables	shown	in	Table	7,	different	drivers	care	about	different	route	
attributes	and	aggregated	model	might	bring	bias	in	predicting	drivers’	behaviors.	For	example,	the	
participant	#19	cares	fuel	cost	and	number	of	controlled	intersections	only	and	the	other	route	
attributes	do	not	influence	his/her	route	choices	significantly,	as	shown	in	his/her	own	route	
choice	model.	But	in	aggregated	model	which	is	shown	at	the	bottom	of	Table	7,	all	route	attributes	
are	significant	and	can	influence	travelers’	choices.	When	the	individual	model	and	the	aggregated	
model	were	used	to	predict	participant	#19’s	test	data,	the	individual	models	had	prediction	
accuracy	of	93%	which	is	much	higher	than	that	of	the	aggregated	model,	79%.	That	is	because	the	
aggregated	model	contains	all	participants’	preferences	and	it	would	not	work	well	on	particular	
individual	driver.	

The	average	prediction	accuracy	of	individual	model	across	28	participants	is	0.729	with	
standard	deviation	of	0.018.	It	means	that	in	average	the	calibrated	individual	models	can	predict	
72.9%	of	each	participant’s	test	data	correctly.	The	corresponding	performance	of	the	aggregated	
model	is	0.686	with	standard	deviation	of	0.022.	The	average	prediction	accuracy	across	28	
participants	of	the	individual	models	is	better	than	that	of	the	aggregated	model.	To	have	a	better	
comparison	between	two	types	of	models,	a	paired	T	test	on	average	prediction	accuracies	is	
conducted.	The	result	shows	that	the	individual	models	outperform	the	aggregated	route	choice	
model	(p	value:	0.057)	when	Binary	Logit	method	is	used.	
	

Table	7:	Significant	factors	and	prediction	accuracies	for	individual	and	aggregated	models	
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Notes:	Dis	is	distance;	TT	is	travel	time;	Buffer	is	travel	time	buffer;	PMTT	is	possible	maximum	
travel	time;	FC	is	fuel	cost;	Int	is	the	number	of	controlled	intersection;	Gen	is	gender.	
	
Neural	Network		
The	results	obtained	from	NN	model	are	summarized	in	Table	4.	As	noted	in	the	selection	of	
transfer	function,	the	Hyperbolic	Tangent	Sigmoid	function	shwoing	better	performance	is	used	for	
the	study.	Similar	to	the	results	of	Binary	Logit	model,	the	performances	of	two	types	of	models	
vary	across	all	participants.	The	average	prediction	accuracy	of	individual	model	is	0.726	with	
standard	deviation	of	0.006,	compared	to	the	average	prediction	accuracy	of	aggregated	model,	
0.604	with	standard	deviation	of	0.018.	A	paired	T	test	regarding	average	prediction	accuracies	is	
also	conducted	between	two	types	of	models,	the	result	shows	that	the	individual	route	choice	
behavior	models	outperform	the	aggregated	route	choice	behavior	model	(p	value:	1.7	e-5)	when	
NN	modeling	is	used.	
	
Support	Vector	Machine	
SVM	is	trained	with	the	same	data	as	used	in	Binary	Logit	and	NN,	and	the	results	obtained	are	
summarized	in	Table	4.	The	average	prediction	accuracy	of	the	individual	models	is	0.780	with	
standard	deviation	of	0.009.	The	average	prediction	accuracy	of	the	aggregated	model	is	0.70	with	

Dis TT Buffer PMTT FC Int Gen Individual Aggregated Individual Aggregated Individual Aggregated
1 √ √ √ √ 0.71 0.79 0.76 0.55 0.79 0.86
2 √ √ √ 0.79 0.79 0.86 0.71 0.88 0.71
3 √ √ √ 0.86 0.79 0.71 0.56 0.76 0.86
4 √ √ 0.64 0.57 0.60 0.53 0.71 0.64
5 √ √ 0.79 0.64 0.76 0.73 0.86 0.57
6 √ 0.57 0.71 0.68 0.73 0.86 0.63
7 √ √ √ √ 0.79 0.86 0.64 0.74 0.62 0.75
8 √ √ 0.50 0.43 0.64 0.54 0.65 0.50
9 √ √ 0.64 0.57 0.84 0.62 0.85 0.64

10 √ √ √ 0.57 0.64 0.75 0.68 0.65 0.71
11 √ √ √ √ √ 0.86 0.79 0.69 0.54 0.76 0.71
12 √ √ √ 0.64 0.79 0.66 0.72 0.77 0.71
13 √ √ √ 0.64 0.86 0.78 0.61 0.77 0.80
14 √ √ √ √ 0.71 0.43 0.77 0.38 0.75 0.50
15 √ √ √ 0.79 0.71 0.73 0.65 0.71 0.66
16 √ √ √ √ 0.79 0.79 0.74 0.56 0.76 0.86
17 √ √ √ √ 0.79 0.79 0.80 0.69 0.86 0.86
18 √ √ 0.86 0.71 0.84 0.75 0.93 0.79
19 √ √ 0.93 0.79 0.77 0.80 0.76 0.71
20 √ √ √ √ 0.79 0.71 0.64 0.62 0.71 0.79
21 √ √ √ 0.57 0.64 0.59 0.50 0.69 0.71
22 √ √ 1.00 0.93 0.85 0.81 0.83 0.86
23 √ √ √ 0.79 0.50 0.57 0.38 0.63 0.60
24 √ √ 0.43 0.50 0.64 0.38 0.89 0.67
25 √ √ √ 0.57 0.43 0.79 0.55 0.90 0.50
26 √ √ √ 0.71 0.79 0.70 0.70 0.71 0.71
27 √ √ 0.86 0.43 0.79 0.29 1.00 0.50
28 √ √ √ 0.86 0.86 0.74 0.61 0.80 0.79

Aggregated √ √ √ √ √ - - - - - -

Participant
Binary Logit Model NN SVM 

Significant Factors Performance Performance Performance
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standard	deviation	of	0.013.	The	result	of	paired	T	test	regarding	average	prediction	accuracies	
again	shows	that	the	individual	route	choice	behavior	models	outperform	the	aggregated	model	(p	
value:	0.006).	

Across	these	28	participants,	the	performances	of	the	individual	route	choice	behavior	
models	are	mostly	better	than	the	aggregated	model	but	not	always.	In	Binary	Logit	model,	19	of	28	
cases	show	that	the	individual	route	choice	behavior	models	outperform	the	aggregated	one.	In	NN	
and	SVM,	this	becomes	24	out	of	28	cases	and	18	out	of	28	cases,	respectively.	The	cases	with	lower	
prediction	accuracy	of	the	individual	route	choice	behavior	models	might	be	explained	as	the	
inconsistent	preference	of	particular	participants	that	come	from	two	possible	reasons.	First,	even	
the	same	person’s	preference	could	be	changed	at	times.	The	second	reason	is	that	the	survey	
contains	74	questions	and	it	requires	participants	making	a	series	of	route	choice	decisions.	As	
such,	some	participants	may	show	inconsistent	route	choice	preferences	in	his	or	her	data	because	
of	the	efforts	required	for	lengthy	concentration.	When	these	two	situations	happen,	the	aggregated	
route	choice	model	could	compensate	the	inconsistent	behaviors	by	containing	other	travelers’	
data.	So	in	some	cases,	the	aggregated	model	has	better	performances	than	individual	model.	It	is	
noted	that	when	revealed	preference	data	is	used,	this	issue	is	expected	to	be	mitigated.	

With	all	three	methods,	the	results	indicate	that	the	individual	route	choice	models	have	
significantly	better	performances	than	the	aggregated	ones	in	predicting	drivers’	route	choice	
behaviors,	and	with	a	more	heterogeneous	group	of	drivers,	the	advantage	could	be	larger.	The	
differences	between	the	average	prediction	accuracies	of	the	two	type’s	models	are	4.3%	in	Binary	
Logit	model,	12.2%	in	NN	model	and	8%	in	SVM.	One	thing	needs	to	be	emphasised	is	that	the	
sample	used	in	this	survey	is	composed	of	all	third-year	Civil	Engineering	undergraduate	students.	
They	have	similar	age,	driving	experience	and	even	education	background.	In	this	relative	
homogenous	group,	the	aggregated	route	choice	behavior	model	can	have	ranging	from	4.3%	to	
12.2%	less	accurate	prediction	than	the	individual	route	choice	behavior	models.	This	difference	
could	be	even	larger	with	a	more	heterogeneous	group	of	drivers	whose	occupation,	income,	and	
educational	background	are	very	different.	
	
Performances	Comparison	across	Three	Methods	
	
The	prediction	accuracies	of	three	individual	route	choice	behavior	models	are	compared	to	see	
which	method	works	best.	The	paired	T	tests	were	conducted	using	average	prediction	accuracies	
between	each	two	of	three	methods.		

As	shown	in	Table	8,	the	paired	T	test	shows	that	there	is	no	evidence	to	reject	the	null	
hypothesis	between	NN	and	Binary	Logit.	The	performance	of	SVM	is	significantly	better	than	NN	(p	
value:	0.0005)	and	Binary	Logit	(p	value:	0.049).	It	is	concluded	that	SVM	has	the	best	performance	
in	predicting	drivers’	route	choice	behaviors	among	three	methods.	In	a	similar	research	conducted	
by	Zhang	and	Xie	(2008),	SVM	also	in	general	performs	better	than	multinomial	logit	model	and	NN	
when	they	were	used	to	predict	travelers’	mode	choices.	

	
Table	8:	Paired	T	test	regarding	average	prediction	accuracies	among	three	methods	

	

	 Mean	 Variance	 P	value	
H0:	NN=Logit	 NN:	0.726	 0.0066925	

0.4430315	Ha:	NN>Logit	
Logit:	
0.729	 0.0182756	

	
H0:	SVM=NN	 SVM:	

0.780	 0.0090739	 0.0005072	
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Ha:	SVM>NN	 NN:	0.726	 0.0066925	

	
H0:	SVM=Logit	

SVM:	
0.780	 0.0090739	

0.0490987	
Ha:	SVM>Logit	

Logit:	
0.729	 0.0182756	
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An	Integrated	Architecture	for	Simulation	and	Modeling	of	Small-	and	
Medium-sized	Transportation	and	Communication	Networks	
	
Vehicular	Ad	Hoc	Networks	(VANETs)	and	Intelligent	Transportation	Systems	(ITSs)	have	a	wide	
spectrum	of	applications,	algorithms	and	protocols	that	are	important	for	the	public,	commercial,	
environmental	and	scientific	communities.	From	the	communication	perspective,	these	applications	
range	from	on-road-content-sharing	Li,	Yang	[54],		entertainment-based	and	location-based	
services	[55].	From	the	transportation		perspective,	these	applications	include	safety	applications	
[56],	cooperative	driving	and	warning	applications	[57],	traffic	control	and	management	[58],	fuel	
consumption	and	carbon	emission	minimization	applications	[59],	speed	harmonization	[60],	road	
traffic	congestion	detection	and	management	[61],	and	taxi/transit	services	[62].	This	wide	
application	spectrum	demonstrates	the	importance	of	these	systems.		

On	the	other	hand,	evaluating	these	systems	is	challenging,	not	only	because	of	the	cost	
needed	to	implement	these	systems	because	of	the	need	for	a	large	number	of	vehicles	equipped	
with	communication	devices,	the	required	communication	infrastructure	and	signal	controllers,	but	
also	for	the	need	for	roads	to	run	the	required	experiments.	A	third	reason	is	that	some	
applications/algorithms	work	in	special	conditions	of	either	weather	and/or	traffic	congestion,	
which	are	not	easily	provided.	Fourthly,	and	most	importantly,	the	failures	in	some	of	these	
applications	may	result	in	loss	of	lives	of	the	participants.		

Thus,	currently,	the	best	approach	to	study	these	systems	is	to	use	simulation	tools.	
However,	simulating	ITS	and	VANET	systems	is	challenging.	The	reason	is	that	these	systems	cover	
two	fields,	namely	the	transportation	field	and	the	communication	field.	The	transportation	field	
includes	the	modeling	of	vehicle	mobility	applications	including	traffic	routing,	car-following,	lane-
changing,	vehicle	dynamics,	driver	behavior	modeling,	and	traffic	signal	control	modeling,	in	both	
macroscopic	and	microscopic	modeling	scales.	The	other	main	field	is	the	data	and	communication	
network	modeling	that	includes	data	packet	flow,	vehicle-to-vehicle	(V2V)	communication	as	well	
as	vehicle-to-infrastructure	(V2I)	communication,	wireless	media	access,	data	transportation,	data	
security	and	other	components.	These	two	fields	are	not	distinct	or	isolated,	but	instead	are	
interdependent	and	influence	one	another.	For	example	vehicle	mobility,	speeds	and	density	affect	
the	communication	links	between	vehicles	[56]	as	well	as	the	data	routes,	and	hence	the	
communication	quality	(i.e.	reliability,	throughput	and	delay)	[63].	Another	example	is	the	attempt	
in	[64]	to	model	the	multi-hop	V2V	connectivity	in	urban	vehicular	networks	using	archived	Global	
Positioning	System	(GPS)	traces	that	revealed	many	interesting	characteristics	of	network	
partitioning,	end-to-end	delay	and	reachability	of	time-critical	V2V	messages.		In	the	opposite	
direction,	the	number	of	packet	losses	between	vehicles	and	the	delivery	delay	will	affect	the	
accuracy	of	the	data	collected,	and	hence	the	correctness	of	the	decisions	made	by	the	ITS’s	
systems.	Taking	in	consideration	the	complexity	of	each	system	(transportation	and	
communication)	in	addition	to	the	high	and	complex	interdependency	level	between	them,	we	can	
see	how	challenging	the	modeling	and	simulation	of	VANET	and	ITS.	

Most	of	the	previous	efforts	in	simulating	VANET	and	ITS	platform	are	based	on	using	fixed	
mobility	trajectories	that	are	fed	to	the	communication	network	simulator.	These	trajectories	may	
be	generated	off-line	using	a	traffic	simulator	platform	or	extracted	from	empirical	data	sets.		This	
simulation	paradigm	is	useful	for	single	directional	influence	(i.e.	studying	the	effect	of	mobility	on	
the	network	and	data	communication)	such	as	data	dissemination	in	a	VANET.	However,	this	
approach	cannot	be	used	in	case	the	opposite	direction	of	interdependence	is	important	(i.e.	the	
effect	of	the	communication	system	on	the	transportation	system).	Such	as	vehicle	speed	control	in	
the	vicinity	of	traffic	signals,	where	vehicles	and	the	signal	controllers	exchange	information	to	
compute	and	optimal	vehicle	trajectory.	These	interactions	have	to	be	run	in	real-time	to	accurately	
model	the	various	component	interactions.	
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The	study	introduce	a	new	framework	for	modeling	and	simulating	an	integrated	VANET	
and	ITS	platform.	This	new	framework	has	the	capability	of	simulating	the	full	VANET/ITS	system	
with	full	interdependence	between	the	communication	and	transportation	systems,	and	hence	
allows	for	the	analysis	of	VANET	and/or	ITS	applications	and	algorithms	with	any	level	of	
interaction	or	interdependence	between	them.	This	framework	integrates	two	simulators,	namely;	
the	INTEGRATION	[65]	as		microscopic	traffic	simulator	and	the	OPNET	modeler	[66]	as	the	data	
and	communication	simulator	by	establishing	a	two-way	communication	channel	between	the	
models.	Through	this	communication	channel,	the	two	simulators	can	interact	to	fully	model	any	
VANET/ITS	application.		Subsequently,	the	developed	framework	is	used	to	study	the	effect	of	
different	traffic	characteristics	(traffic	stream	speed	and	density)	on	V2V	and	V2I	communication	
performance.	

The	necessity	of	integrating	a	full-fledged	traffic	simulator	with	a	wireless	network	
simulator	to	model	the	cooperative	ITS	systems	built	on	V2X	communication	platform	has	been	
perceived	since	the	past	decade.	A	number	of	attempts	have	been	made	within	recent	years	to	
develop	an	integrated	traffic	simulation	platform	that	allows	the	vehicles’	mobility	conditions	
dynamically	adapt	to	the	wirelessly	received	messages.	Two	different	approaches	have	been	
considered	by	the	researchers	to	facilitate	this	inter-operability.	

One	common	approach	was	to	embed	the	well-known	vehicular	mobility	models	into	the	
established	network	simulators.	These	features	are	sometimes	combined	with	the	original	
simulator	as	separate	functional	modules	or	APIs.	For	example,	Choffnes	et.	al.	[67]	integrated	the	
Street	Random	Waypoint	(STRAW)	model	into	the	Java-built	scalable	communication	network	
simulator	SWANS,	which	allowed	parsing	of	real	street	map	data	and	modeling	of	complex	
intersection	management	strategies.	A	collection	of	application-aware	SWANS	modules,	named	as	
ASH,	were	developed	to	incorporate	the	car-following	and	lane-changing	models	providing	a	
platform	for	evaluating	inter-vehicle	Geo-cast	protocols	for	ITS	applications	[67,	68].	Following	a	
similar	approach,	the	communication	network	simulator	NCTUns	extended	its	features	to	include	
road	network	construction	and	microscopic	mobility	models	[69].		More	recently,	NS-3	has	been	
engineered	to	incorporate	real-time	interaction	between	a	wireless	communications	module	and	
vehicular	mobility	models	using	a	fast	feedback	loop.	

Another	different	approach	is	to	integrate	two	standalone	simulators	-	a	traffic	simulator	
coupled	with	a	wireless	network	simulator.	The	choice	of	traffic	simulators	considered	by	the	
community	for	coupling	in	this	manner	included	CORSIM,	VISSIM,	SUMO	whereas	network	
simulators	ranged	from	NS-2,	NS-3,	QUALNET,	and	OMNET++.		Table	9	summarizes	some	of	these	
integration	attempts:	

Table	9:	Integrated	Simulators	Summary.	

Traffic	Sim.	 Network	Sim.	 Integrated	Simulator	

VISSIM	 NS-2	 MSIE	[70]	
SUMO	 NS-2	 TraNS	[71]	
SUMO	 OMNET++	 VEINS	

[72][72][72][72][19]	
SUMO	 NS-3	 OVNIS	[73]	
SUMO	 NS-3	 iTETRIS	[74]	

	
CORSIM	is	a	commercial	traffic	simulator	that	does	not	provide	dynamic	routing	

capabilities,	while	VISSIM	does	provide	some	dynamic	routing	capabilities	these	are	limited	
compared	to	the	INTEGRATION	software,	which	provides	a	total	of	ten	different	routing	strategies	
ranging	from	feedback	to	predictive	dynamic	routing.	Consequently,	both	CORSIM	and	VISSIM	do	
not	provide	sufficient	routing	algorithms	for	testing	in	a	connected	vehicle	environment.	The	first	
attempt	of	integrating	two	independent	open	source	traffic	and	wireless	simulators	was	TraNS	
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(Traffic	and	Network	Simulation	Environment)	[71],	which	combined	SUMO	and	NS-2.	Later,	VEINS	
[72]	also	adopted	the	open	source	approach	of	TraNS	by	combining	the	network	simulator	
OMNET++	with	SUMO.	VEINS	allowed	for	the	interaction	between	the	two	simulators	by	
implementing	an	interface	module	inside	OMNET++	that	sends	traffic	mobility	updating	commands	
to	SUMO.	For	example,	VEINS	could	impose	a	given	driving	behavior	to	a	particular	vehicle	upon	
receiving	wireless	messages	from	another	vehicle.	Most	recently,	the	Online	Vehicular	Network	
Integrated	Simulation	(OVNIS)	[73]	platform	was	developed,	that	coupled	SUMO	and	NS-3	together	
and	included	an	NS-3	module	for	incorporating	user-defined	cooperative	ITS	applications.	OVNIS	
extends	NS-3	as	a	‘‘traffic	aware	network	manager’’	to	control	the	relative	interactions	between	the	
connected	blocks	during	the	simulation	process.	Last	but	not	the	least,	iTETRIS	[74]	moves	one	step	
beyond	the	state-of-the-art	solutions	and	overcomes	one	limitation	that	is	present	in	Trans,	VEINS	
and	OVNIS	by	providing	a	generic	central	control	system	named	iCS	to	connect	an	open-source	
traffic	simulator	with	a	network	simulator,	without	having	to	modify	the	internal	modules	of	the	
interconnected	simulation	platforms.	

VNetIntSim	uses	the	concept	of	separation	between	the	internal	simulators	modules	and	the	
new	modules	that	were	added	to	support	the	model	integration.	This	feature	is	actually	inherited	
from	the	two	simulators	we	selected	for	the	VNetIntSim.	INTEGRATION	is	fully	built	in	modular	
fashion	with	a	master	module	that	manages	and	controls	of	all	the	modules.	The	interaction	
between	the	modules	is	modeled	using	interfaces	between	the	modules.	Consequently,	updating	
any	modules	will	not	affect	the	others	as	long	as	this	interface	does	not	change.	OPNET	is	built	in	a	
hierarchical	modular	fashion	at	all	its	levels	(network,	nodes,	links	and	processes).	The	network	
consists	of	a	set	of	nodes	and	links.	Each	node	consists	of	a	set	of	process	modules.	The	process	
modules	interact	through	interrupts	and	the	associated	Interface	Control	Information	(ICI).		The	
modules	added	to	the	simulators	in	this	research	effort	maintain	the	same	concept,	so	that	updating	
the	simulators	does	not	affect	the	integration	between	them.		

OPNET	and	INTEGRATION	have	their	unique	features	compared	to	the	other	simulators.	
Compared	to	NS-2	and	NS-3,	OPNET	has	these	features;	1)	a	well-engineered	user	interface	that	
allows	for	easy	building	and	managing	of	different	simulation	scenarios.	2)	the	OPNET	modeler	
provides	its	powerful	debugging	capabilities.	3)	OPNET	supports	a	visualization	tool	that	allows	for	
tracking	data	packets	within	the	nodes.	OMNET++	is	a	simulation	framework	that	does	not	have	
modules.	However,	there	are	many	open	source	frameworks	based	on	OMNET++	that	implement	
different	modules	such	as	VEINS.	In	VEINS,	the	update	interval	is	1	second	which	is	a	long	interval	
from	the	communication	perspective.	For	example	if	the	speed	is	the	vehicle	is	60	km/h	(37.28	
mi/h)	which	is	a	common	speed	in	cities,		this	update	interval	corresponds	to	16.6	m	which	is	a	long	
step	that	can	affect	the	communication	between	vehicles		

From	the	traffic	perspective,	INTGRATION	supports	many	features,	such	as	dynamic	vehicle	
routing	and	dynamic	eco-routing[75],	eco-drive	systems,	eco-cruise	control	systems,	vehicle	
dynamics	and	other	features	that	are	not	supported	in	other	traffic	simulation	software,	including	
SUMO.	The	INTEGRATION	model	has	been	developed	over	three	decades	and	has	been	extensively	
tested	and	validated	against	empirical	data	and	traffic	flow	theory.	Furthermore,	the	INTEGRATION	
software	is	the	only	software	that	models	vehicle	dynamics,	estimates	mobility,	energy,	
environmental	and	safety	measures	of	effectiveness.	The	model	also	includes	various	connected	
vehicle	applications	including	cooperative	adaptive	cruise	control	systems,	dynamic	vehicle	
routing,	speed	harmonization,	and	eco-cooperative	cruise	control	systems.	
	
VNetIntSim	Operation	
This	section	introduces	the	operation	of	the	VNetIntSim	platform	which	integrates	two	simulators;	
namely	OPNET	and	INTEGRATION.		First,	a	brief	introduction	about	INTEGRATION	and	OPNET	is	
presented.	Then,	the	VNetIntSim	operation	is	described.	
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INTEGRATION	Software		
The	INTEGRATION	software	is	agent-based	microscopic	traffic	assignment	and	simulation	software	
[65].	INTEGRATION			is	capable	of	simulating	large	scale	networks	up	to	10000	road	links	and	
500,000	vehicle	departures	with	time	granularity	of	0.1	second.	This	granularity	allows	detailed	
analyses	of	acceleration,	deceleration,	lane-changing	movements,	car	following	behavior,	and	shock	
wave	propagations.	It	also	permits	considerable	flexibility	in	representing	spatial	and	temporal	
variations	in	traffic	conditions.	These	are	very	important	characteristics	needed	when	studying	the	
communication	between	these	vehicles.	
The	model	computes	a	number	of	measures	of	performance	including	vehicle	delay,	stops,	fuel	
consumption,	hydrocarbon,	carbon	monoxide,	carbon	dioxide,	and	nitrous	oxides	emissions,	and	
the	crash	risk	for	14	crash	types	[65].	
	
OPNET	Modeler	
The	OPNET	modeler	is	a	powerful	simulation	tool	for	specification,	simulation	and	analysis	of	data	
and	communication	networks	[66].		OPNET	combines	the	finite	state	machines	and	analytical	
model.	The	modeling	in	OPNET	uses	Hierarchical	Modeling,	which	has	a	set	of	editors	(Network,	
Node	and	Process	editors),	all	of	which	support	model	level	reuse.	The	most	important	OPNET	
characteristic	is	that	has	been	tested	using	implementations	for	many	standard	protocols.	However,	
it	does	not	yet	support	any	VANET	technology	protocols	(i.e.	IEEE	802.11p	DSRC	[76],	nor	Vehicular	
Routing	Protocols).	Consequently,	for	now,	the	IEEE	802.11g	for	wireless	LAN	simulation	is	used	in	
the	scenarios	and	AODV	[77]	for	routing	purposes.	
	
Integrating	OPNET	&	INTEGRATION	
The	main	idea	behind	VNetIntSim	is	to	use	the	advantages	of	both	the	INTEGRATION	and	OPNET	
platforms	by	establishing	a	two-way	communication	channel	between	them.	Through	this	channel	
the	required	information	is	exchanged	between	the	two	simulators.	The	basic	and	necessary	
information	that	should	be	exchanged	periodically	is	the	vehicle	locations.	The	locations	of	vehicles	
are	calculated	in	INTEGRATION	every	deci-second	and	transmitted	to	the	OPNET	modeler,	which	
updates	the	vehicle	locations	while	they	are	communicating.				
For	this	version	of	VNetIntSim,	the	communication	channel	between	OPNET	and	INTEGRATION	is	
established	by	using	shared	memory	as	we	will	explain	in	the	next	section.		The	shared	memory	
supports	the	required	speed	and	communication	reliability	between	the	two	simulators.	
	
Initialization	and	Synchronization	
When	starting	the	simulators,	and	before	starting	the	simulation	process,	the	two	simulators	should	
initialize	the	communication	channel	using	two-way	Hello	Messages.	After	establishing	the	
connection,	the	two	simulators	synchronize	the	simulation	parameters;	simulation	duration,	
network	map	size,	location	update	interval,	maximum	number	of	concurrent	running	vehicles	and	
number	of	signals.	In	this	synchronization	phase	the	INTEGRATION	serves	as	a	master	and	OPNET	
serves	as	a	slave,	i.e.	values	of	these	parameters	in	OPNET	should	match	those	calculated	in	
INTEGRATION.	Mismatching	in	some	of	these	parameters	(such	as	simulation	duration,	number	of	
fixed	signal	controllers	and	the	maximum	number	of	concurrent	running	vehicles)	will	result	in	
stopping	the	simulators.	In	this	case	the	OPNET	software	sends	a	Synchronization	Error	message	to	
the	INTEGRATION	software.	This	behavior	guarantees	the	consistency	of	the	operation	and	the	
results	collected	in	both	system.		Additional	parameters	allow	some	tolerances.	For	example,	the	
map	size	in	OPNET	should	be	greater	than	or	equal	to	that	in	INTEGRATION.			

After	successful	synchronization,	the	simulation	process	should	start	by	exchanging	the	
simulation	start	message	sent	from	OPNET.		OPNET	starts	the	simulation	by	initializing	its	scenario	
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components	and	initializing	the	vehicles	locations	and	status.		The	component	initialization	take	
place	by	sending	start	simulation	interrupt	to	each	module	in	each	component	in	the	scenario	(i.e.	
routers,	hosts,	vehicles…etc.).	The	purpose	of	this	interrupt	is	to	read	the	configuration	parameters,	
initialize	the	modules	state	variable	and	invoke	the	appropriate	processes	based	on	the	
configuration.	After	this	initialization	all	the	OPNET	finds	the	vehicles	nodes	in	the	scenario	and	
map	each	one	to	a	vehicle	ID	in	the	INTEGRATION	software.	Using	this	mapping,	each	vehicle	in	
OPNET	corresponds	to	only	one	vehicle	in	the	INTEGRATION.	However,	this	behavior	can	be	
overdid	by	as	described	in	the	next	section.	Then,	OPNET	disable	all	the	vehicles,	which	means	that	
all	the	vehicles	will	be	inactive.	After	that,	OPNET	enables	vehicles	based	on	the	information	it	
receives	from	INTEGRATION.	The	vehicle	in	OPNET	is	a	mobile	node	that	we	customized	by	adding	
new	attributes	such	as	speed,	acceleration	and	movement	direction.	Also	we	added	some	modules	
to	this	this	vehicle	node	to	represent	some	vehicular	applications	such	as	eco-routing	module	that	
implement	the	eco-routing	[75]	algorithm	for	minimizing	fuel	consumption.	However	this	is	out	of	
the	scope	of	this	article.		

During	the	simulation	phases,	there	are	many	types	of	messages	that	can	be	exchanged	
between	the	two	simulators.	Each	message	type	has	its	unique	Code.	Based	on	the	code,	the	
message	fields	are	determined.	Table	10	shows	the	different	message	codes.		The	gaps	between	the	
code	values	allow	for	the	addition	of	new	functionalities	in	the	future.				

Table	10:	Message	Codes.	

Code	 Function	
01	 Initialization;	Hello	Message	

02	 Initialization	:	Connection	
Refused	

10	 Parameter	Synchronization	
11	 Synchronization	Error	
30	 Signal	Locations	Request	
31	 Signal	Locations	Updates	
40	 Start	Simulation	
50	 Locations	Information	Request	
51	 Locations	Information	Updates	
60	 Speed	Information		Request	
61	 Speed	Information		Updates	
99	 Termination	Notification	

	
Location	Updating	
During	the	simulation,	the	INTEGRATION	software	computes	the	new	vehicle	coordinates	and	
sends	them	to	the	OPNET	software,	which	in	turn	updates	the	location	of	each	vehicle,	as	shown	in	
Figure	12.	This	cycle	is	repeated	each	update_interval,	which	is	typically	0.1	seconds	in	duration.	
The	time	synchronization	during	the	location	updating	is	achieved	in	two	ways,	1)	using	two	
semaphores	(intgrat_made_update	and	opnet_made_update)	one	for	each	simulator,	2)	at	each	
update	time	step	the	INTEGRATION	software	sends	the	current	simulation	time	to	OPNET.	If	it	does	
not	match	the	OPNET	time,	OPNET	will	take	the	proper	action	to	resolve	this	inconsistency.		Figure	
13	shows	the	flow	chart	for	the	basic	location	update	process.	In	each	location	update	cycle,	the	
INTEGRATION	software	computes	the	updated	vehicle	locations.	Subsequently,	it	checks	whether	
the	last	update	has	been	copied	(intgrat_made_update	=	0).	If	so,	it	writes	the	new	update	to	the	
shared	memory	and	sets	the	intgrat_made_update	flag	to	1.		
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OPNET	waits	for	new	updates.	When	it	receives	a	new	update,	if	the	received	time	equals	its	current	
time,	the	driver	process	in	OPNET	will	copy	the	locations,	set	the	intgrat_made_update	flag	to	0,	and	
then	moves	the	vehicles	to	the	new	locations.	If	the	received	time	is	greater	than	the	OPNET	current	
time,	it	schedules	the	process	to	be	executed	again	in	the	received	time.	If	the	received	time	is	less	
than	the	current	time,	OPNET	discards	this	update.	

	
Figure	12:	Location	update	cycle.	

Application	Communication	
The	basic	operation	described	above	is	only	for	updating	locations,	which	is	the	core	of	the	
VNetIntSim	platform.		However,	ITS	applications	need	the	exchange	of	other	types	of	information	
that	reflect	the	communication	results	to	INTEGRATION.		This	information	and	how/when	it	should	
be	exchanged	depend	mainly	on	the	application	itself.	Thus,	the	application	specifications	should	
define	what	other	information	as	well	as	how	and	when	it	should	be	exchanged.	
	

	
Figure	13:	VNetIntSim	basic	operation.	

The	applications	will	use	the	established	communication	channel	to	exchange	the	required	
information.		VNetIntSim	supports	simultaneous	multi-applications,	where	each	application	can	use	
one	or	more	codes	to	support	its	functionalities.		Figure	14	shows	the	complete	communication	
cycle	when	running	an	application.		
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For	example,	in	variable	speed	control	systems,	the	integration	will	move	the	vehicles.	Then,	
in	OPNET,	the	vehicles	and	signals	communicate	the	speed	information.	Based	on	the	exchanged	
information,	each	vehicle	finds	its	new	speed.	These	new	speeds	should	be	sent	to	the	
INTEGRATION	software,	which	computes	the	updated	parameters	(i.e.	acceleration	or	deceleration)	
and	then	computes	the	updated	vehicle	locations.		

	
Figure	14:	Complete	communication	cycle.	

Architecture,	Implementation	and	Features	of	VNetIntSim	
This	section	describes	the	architecture	and	the	detailed	implementation	of	the	modeler	and	then	
the	supported	features	in	the	current	version.	
Architecture	and	Implementation	
Figure	15	shows	the	VNetIntSim	architecture	and	the	modules	that	were	added	to	each	simulator	
(dashed	boxes).	Within	INTEGRATION,	the	Configuration	Reader	Module	reads	the	input	files	and	
based	on	the	configuration	generates	an	XML	topology	file	for	OPNET.	This	topology	file	contains	
the	vehicle	specifications,	signal	controller	locations	as	well	as	the	application	and	profile	
specifications.	This	file	is	used	by	OPNET	to	generate	its	scenarios.	
The	first	issue	that	arises	during	implementation	entails	identifying	the	inter-process	
communication	mechanism	that	should	be	used	to	connect	the	simulators.	In	VNetIntSim	two	
methods	were	selected,	namely;	TCP	sockets	and	shared	memory.	Each	of	these	methods	has	its	
advantages	over	all	the	other	methods.	The	shared	memory	approach	supports	very	high	speed	
communication,	which	is	needed	when	modeling	large	simulation	networks.	In	addition,	the	
operating	system	manages	the	mutual	execution	of	this	shared	memory	so	this	does	not	need	to	be	
considered.	

However,	it	is	limited	by	the	machine	capabilities	in	terms	of	processing	speed	and	memory	
size.	On	the	other	hand,	TCP	sockets	provide	more	flexibility	so	that	the	INTEGRATION	software	
can	be	connected	to	any	other	simulator	on	a	different	OS/machine,	in	addition	to	the	processing	
capabilities	that	will	be	gained	from	the	other	machine.	However,	TCP	sockets	introduce	the	
network	dynamics,	reliability	and	delay	problems	to	the	simulation	process	which	may	result	in	
some	communication	delay.	Consequently,	the	approach	used	in	this	study	is	the	shared	memory	
approach.	In	future	we	plan	to	implement	the	TCP	socket	communication.	
In	each	of	the	two	simulators,	a	communication	module	was	created.	These	two	modules	are	
responsible	for	1)	establishing	the	communication	channel	by	creating	a	shared	memory,	2)	
exchanging	the	information	between	the	two	simulators	through	the	shared	memory,	3)	addressing	
the	applications	using	the	message	codes	shown	in	Table	10,	based	on	the	received	code	the	
communication	module	forwards	the	data	to	the	appropriate	application,	and	4)	synchronizing	the	
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communication	against	the	data	damages	or	losses	by	using	intgrat_made_update	and	
opnet_made_update	semaphores,	one	for	each	direction.	

The	location	updating	module	in	INTEGRATION	is	responsible	for	calculating	the	location	of	
each	vehicle	(because	INTEGRATION	works	based	on	the	distance	on	the	link)	and	sending	them	
along	with	the	other	parameters	to	the	driver	module	in	OPNET.	The	other	parameters	basically	
include	the	number	of	moving	vehicles,	the	vehicle	IDs,	and	the	current	time.		Moreover,	in	the	
location	updating	message,	the	location	updating	module	notifies	OPNET	about	the	vehicles	that	
completed	their	trips.		

The	driver	module	in	OPNET	receives	the	location	updating	messages	(code	51)	from	the	
communication	module	and	then	1)	checks	the	received	simulation	time	from	the	other	side,	and	in	
case	of	time	mismatch	it	takes	the	appropriate	decision	to	overcome	this	mismatch	as	shown	in	
Figure	13,	2)	updates	the	location	for	the	moving	vehicles,	3)	activates	any	required	new	vehicles,	
and	4)	deactivates	the	vehicles	which	finished	their	trips.	Using	the	number	of	moving	vehicles	and	
the	activation/deactivation	mechanism	drastically	reduces	the	processing	time	in	OPNET,	
especially	for	large	scenarios.		That	is	because	OPNET	cannot	dynamically	create	or	delete	
communication	nodes	(vehicles)	during	the	run	time,	and	all	the	vehicles	must	be	created	before	
running	the	scenario.			
	

	
Figure	15:	VNetIntSim	architecture.	

We	faced	many	challenges	in	the	implementation.	This	section	describes	the	main	
challenges.		The	first	one	is	that	INTEGRATION	is	built	using	FORTRAN	which	does	not	support	any	
of	the	inter-process	communication	mechanisms.	To	overcome	this	problem,	we	used	Mixed-
Language	Programming	by	building	the	communication	module	using	the	C	language	and	then	
compiling	its	object	file	into	FORTRAN.	

The	second	problem	is	that	OPNET	cannot	dynamically	create	or	delete	communication	
nodes	(vehicles)	during	the	run	time.	This	means	that	all	the	vehicles	must	be	created	and	
configured	before	running	the	scenario	i.e.	if	we	have	50,000	vehicle	scenarios,	then	we	have	to	
create	50,000	communication	nodes	in	OPNET	at	the	design	time.	The	problem	is	this	number	of	
communication	nodes	in	OPNET	will	result	in	a	very	slow	simulation	process.	Here	we	used	the	
Activation/Deactivation	mechanism	for	communication	nodes.	This	mechanism	starts	by	
deactivating	all	the	communication	nodes	and	when	receiving	location	updates	activating	the	
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required	nodes.	When	INTEGRATION	sends	a	notification	about	a	vehicle	that	completes	its	trip,	the	
mechanism	deactivates	that	vehicle.	This	mechanism	drastically	reduces	the	number	of	active	
vehicles	in	OPNET	and	thus	enhances	the	simulation	speed.		

Moreover,	most	of	the	computations	are	made	in	the	INTEGRATION	software	to	take	the	
advantage	of	the	FORTRAN	high	computing	speed.	For	example,	one	option	was	to	send	the	vehicle	
speeds	and	directions	and	have	OPNET	compute	the	vehicle	updated	locations,	however	because	
FORTRAN	is	faster	than	C,	all	computations	were	made	in	the	FORTRAN	environment.	
Modeler	Features	
VNetIntSim	has	some	features	that	were	added	to	achieve	different	objectives,	as	described	in	this	
section.	
 
Vehicle Reuse 
One	of	the	main	issues	when	simulating	the	vehicular	network	is	scalability,	which	is	mainly	
affected	by	the	number	of	vehicles	traveling	along	the	network.		As	mentioned	in	the	previous	
subsection,	OPNET	cannot	create	vehicles	in	run	time.	Consequently	we	have	to	create	all	the	
required	vehicles	in	the	design	phase.	In	case	of	large	network	scenarios,	the	large	number	of	
vehicles	will	result	in	a	very	long	initialization	time	when	starting	the	simulation	and	also	results	in	
large	memory	usage.	Subsequently,	this	limits	the	model	scalability.	To	overcome	this	limitation	
VNetIntSim	can	make	reuse	of	the	same	vehicle	as	a	communication	node	to	represent	multiple	
moving	vehicles,	obviously	in	different	time	slots.		In	this	way,	the	required	number	of	vehicles	in	
OPNET	can	be	reduced	from	the	total	number	of	vehicles	or	trips	(which	may	be	thousands	of	
vehicles)	to	the	maximum	number	of	concurrent	vehicles	which	is	much	smaller	than	the	total	
number	of	vehicles	or	trips.	The	vehicle	reuse	feature	can	significantly	increase	the	scalability	by	
reducing	the	number	of	vehicles	simulated	in	OPNET,	consequently,	decreases	the	memory	
requirements	and	the	execution	time.	This	feature	can	be	safely	used	when	we	are	interested	in	
studying	the	global	system	behavior.	However,	it	is	not	suitable	when	studying	the	individual	
communication	behavior	of	a	vehicle	or	a	connection.			
 
Vehicles Multi-Class Support  
This	capability	is	inherited	from	INTEGRATION	which	supports	up	to	five	classes	of	vehicles.		Each	
class	can	be	configured	to	run	in	different	way	and	use	different	algorithms.	We	extend	this	feature	
to	OPNET,	where	the	class	information	is	associated	with	the	vehicle	and	transferred	from	
INTEGRATION	to	OPNET.	So,	the	user	can	implement	communication	protocols	or	configure	them	
to	work	differently	for	different	classes	of	vehicles.		For	example,	in	data	dissemination	in	VANET,	
the	user	can	chose	to	send	the	data	only	to	specific	vehicle	class	(i.e.	Trucks).	Using	this	feature	also,	
routing	protocol	can	prioritize	next	hop	based	on	its	class	(i.e.	vehicles	of	the	same	class	move	in	
similar	speeds,	thus	their	relative	speeds	are	very	low).	Another	application	of	this	feature	is	the	
penetration	ratio	of	a	specified	technology	where	we	want	to	check	the	effect	of	the	penetration	
ratio	of	some	new	technologies	(i.e.	cooperative	driving).	
	
Customizable	Updating	Interval 
The	location	updating	interval	determines	how	frequently	the	location	information	are	sent	from	
INTEGRATION	to	OPNET.	The	shorter	the	updating	interval,	the	higher	the	accuracy	of	the	mobility.	
However,	the	shorter	the	updating	interval	the	more	the	processing,	and	thus,	the	longer	the	
execution	time.	VNetIntSim,	enable	the	user	to	change	this	interval	based	on	the	network	
requirements.	Its	default	is	0.1	seconds	which	is	also	the	minimum	updating	interval.	It	can	be	
changed	to	any	value	that	is	multiple	of	0.1	second.	Also,	it	is	not	necessary	to	be	matched	in	the	
two	sides	of	the	VNetIntSim	because	the	INTEGRATION	can	overwrite	the	updating	interval	setting	
n	OPNET.		
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Case	Study	
Routing	is	one	of	the	important	protocols	that	are	sensitive	to	vehicle	mobility	and	density	
parameters.	In	this	section,	the	VNetIntSim	is	used	to	study	the	effect	of	mobility	measures	on	the	
AODV	[77]	routing,	in	case	of	FTP	traffic.	In	addition,	the	effect	of	vehicle	density	on	VIOP	jitter	is	
studied.	Subsequently	the	scalability	of	the	VNetIntSim	modeling	tool	is	tested	because	scalability	is	
a	critical	drawback	in	existing	simulators,	including:	VEINS	and	iTETRIS.		
	
Simulation	Setup	
In	this	case	study,	the	road	network	shown	in	Figure	16	is	used.		

	
Figure	16:	Road	network	and	O-D	demands.	

The	road	network	consists	of	an	intersection	numbered	12,	and	four	zones	numbered	1,	2,	3	and	4.	
Each	zone	serves	as	a	vehicle	origin	and	destination.	Each	road	link	is	2	kilometers	in	length.	The	
vehicular	traffic	demand	that	was	considered	in	the	study	is	presented	in	Figure	16.	For	example,	
the	traffic	rate	from	zone	2	to	1	is	75	Veh/h.	The	vehicles	speeds	are	determined	using	two	speed	
parameters,	namely;	the	free-flow	speed	and	the	speed-at-capacity	[78].	Throughout	the	study,	the	
notation	Free/Capacity	will	be	used	to	represent	the	ratio	of	free-flow	speed	to	the	speed-at-
capacity.	Two	speed	scenarios	are	considered,	namely:	40/30	km/h	and	80/50	km/h.		
For	the	application	we	used	File	Transfer	Protocol	(FTP),	in	which	we	can	control	the	connection	
time	by	deciding	the	file	size.	Also,	in	OPNET	we	can	control	the	traffic	rate	of	the	FTP	connections.	
The	FTP	server	is	located	at	the	intersection.	Starting	from	250	seconds,	the	moving	vehicles	
attempted	to	download	a	100	Kbyte	file	from	this	server.	The	FTP	clients	re-established	a	new	
connection	every	20	seconds.		The	FTP	server	is	spatially	fixed	and	modeled	as	a	road	side	unit	
(RSU).	The	IEEE82.11g	was	employed	at	the	wireless	communication	medium	with	a	data	rate	of	24	
Mbps.	For	routing	the	AODV	was	used	as	the	routing	protocol	for	both	scenarios.	
	
Number	of	Moving	Vehicles	in	the	Network	
The	traffic	simulation	included	three	phases;	two	transient	and	one	steady-state	phase.	The	loading	
and	unloading	phases	are	transient	phases,	which	represent	the	two	shoulders	of	the	peak	period,	
as	illustrated	in	the	graphs	in	Figure	16.	In	the	loading	phase,	vehicles	enter	the	road	network,	
while	in	the	unloading	phase	vehicles	exit.		Between	them	there	is	a	steady-state	phase	in	which	
some	vehicles	are	entering	the	network,	while	others	are	exiting.	In	the	steady-state	phase,	the	
change	in	the	number	of	the	vehicles	in	the	network	is	not	significant.	While	in	the	loading	phase	
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the	network	loading	changes	significantly.	The	length	of	these	phases	depends	mainly	on	the	speed	
distribution,	vehicle	departure	rates,	and	the	road	map.		
	

	
Figure	17:	Number	of	vehicles	in	the	network.	

Figure	17	shows	the	number	of	vehicles	in	the	network	for	different	speed	parameters	
(Free/Capacity).	The	importance	of	determining	these	phases	is	that	during	the	transient	phases	
the	communication	network	may	be	spatially	partitioned	without	data	routes	that	link	these	
partitions	together.	While	in	the	steady-state	phase	vehicles	almost	cover	the	entire	road	network,	
and	most	probably	there	is	full	connectivity	between	vehicles.	Consequently,	the	network	
communication	behavior	during	the	transient	phases	is	different	from	that	during	the	steady-state	
phase.		

By	controlling	the	speed	parameters	and	the	departure	rate	distribution,	we	can	control	the	
network	partitions	during	the	simulation	time.	Using	this	methodology,	we	can	model	the	delay	
tolerant	communication	networks	(DTN)	[79]	and	intermittently	connected	mobile	networks	[80].	
Thirdly	defining	these	phases	gives	us	estimation	for	the	vehicle	density	in	the	network	at	any	
instant	in	time.	This	density	significantly	influences	the	communication	performance	as	will	be	
shown	later.	
FTP	Connections	and	AODV	
In	this	section	some	results	obtained	from	the	FTP	communication	will	be	presented.	As	we	
described	in	the	previous	subsection	the	vehicle	density	significantly	affects	the	communication	
performance.	Figure	18	shows	the	cumulative	number	of	packets	dropped	by	AODV	across	the	
entire	network	due	to	the	loss	of	a	route	to	the	destination.			
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Figure	18:	AODV	total	#	of	packet	drops.	

The	AODV	packet	drop	can	be	caused	by	two	main	reasons:	1)	the	number	of	vehicles	in	the	
network;	the	larger	the	number	of	vehicles	the	larger	the	traffic.	So	any	route	missing	will	result	in	
a	larger	number	of	drops.	2)	The	vehicle	speeds;	the	higher	the	speed	the	faster	the	route	changes,	
and	so	the	larger	the	number	of	packet	drops.	

In	an	attempt	to	identify	which	of	the	two	factors	is	more	influential	on	the	routing,	Figure	
19	illustrates	how	the	average	number	of	drops	vary	across	the	network.	It	shows	that	around	300	
seconds,	both	speeds	have	a	similar	average	packet	drop	rate.	During	this	interval	the	number	of	
vehicles	for	both	scenarios	is	very	similar.	While	as	the	difference	in	vehicle	density	increases	with	
time,	the	average	number	of	drops	also	reflects	the	changes	in	traffic	density.		
	

	
Figure	19:	AODV	Av.	#	of	Packet	Drops	per	vehicles.	

The	two	figures	demonstrate	that	for	the	two	scenarios,	despite	the	fact	that	the	vehicle	
density	is	related	to	the	traffic	stream	speed,	the	vehicle	density	has	a	more	significant	impact	on	
the	performance	of	the	communication	system.	Consequently,	a	change	in	the	traffic	stream	density	
caused	by	other	factors,	such	as	traffic	demand	has	a	more	significant	impact	on	the	routing	than	
does	changes	in	the	traffic	stream	speed.	Another	important	parameter	in	routing	efficiency	is	the	
route	discovery	time	which	is	shown	in	Figure	20.	It	shows	the	correlation	between	the	route	
discovery	time	and	the	IP	processing	and	queuing	delay	on	the	vehicles.	After	250	seconds	each	
vehicle	attempts	to	establish	an	FTP	session	with	the	server	resulting	in	a	flood	of	AODV	route	
request	packets.	This	flood	increases	the	amount	of	IP	packets	being	sent	and	processed	at	the	IP	
layer	in	each	vehicle,	and	thus	increases	the	IP	processing	(queuing	+	processing)	delay,	which	is	
reflected	on	the	route	discovery	time.			
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	Figure	20,	it	is	clear	that	the	long	route	discovery	time	when	initiating	the	communication	
is	mainly	due	to	the	IP	queuing	and	processing	delay	in	the	higher	density	scenario.		Subsequently,	
the	TCP	congestion	control	logic	paces	the	packets	based	on	the	acknowledgements	it	receives.	This	
pacing	results	in	lower	queuing	and	processing	delay.	Consequently,	both	the	processing	delay	and	
route	discovery	time	gradually	decrease.		
Figure	21	illustrates	the	effect	of	the	speed	and	density	on	the	number	of	active	TCP	connections	on	
the	FTP	server.	The	figure	demonstrates	that	when	initiating	the	FTP	connections	there	are	69	and	
61	TCP	connections	for	the	40/30	and	80/50	speeds,	respectively.	These	numbers	are	proportional	
to	the	number	of	concurrent	vehicles	in	the	network	for	each	scenario.	The	results	also	
demonstrate	that	some	of	these	connections	were	completed	before	the	start	of	the	second	cycle	(at	
270	seconds).	Similarly,	the	second	cycle	increases	the	number	of	connections.	The	results	
demonstrate	that	later	the	number	of	connections	for	the	80/50	scenario	decreases	significantly	
because	some	vehicles	exit	the	network	and	so	their	connections	are	timed-out	and	dropped,	while	
in	the	40/30	scenario	vehicles	are	still	traveling	on	the	network.	The	results	and	analysis	for	the	
simple	scenarios	we	used	are	realistic	and	consistent	with	the	protocol	behavior.	

	
	

	
Figure	20:	AODV	Av.	route	discovery	time	and	Av.	IP	processing	delay.	
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Figure	21:	Number	of	TCP	connections	of	the	FTP	server.	

VOIP	Jitter	
This	subsection	focuses	on	the	VOIP	traffic	and	how	the	mobility	parameters	affect	the	performance	
of	the	voice	application.		The	start	time	of	the	voice	sessions	is	normally	distributed	with	a	mean	
and	variance	of	350	and	50	seconds,	respectively.	The	session	duration	is	250	seconds.	Figure	22	
shows	the	average	jitter	across	the	entire	network.	Figure	22	shows	that	the	jitter	for	the	low	speed	
is	very	high	compared	to	the	high	speed.	

The	results	show	that	when	the	voice	session	starts	around	350	seconds,	the	jitter	in	both	
scenarios	is	similar.	Furthermore,	as	the	number	of	sessions	increases,	the	jitter	increases	
gradually.	For	the	80/50	speeds	the	jitter	increase	seizes	because	the	network	enters	a	steady-state	
(the	change	in	number	of	vehicles	is	not	significant).		While	for	the	40/30	scenario,	the	jitter	
continues	to	increase	to	unacceptable	values	because	of	the	increase	in	the	number	of	vehicles.	
Figure	22	shows	the	importance	of	the	vehicle	density	in	the	network	and	how	influential	it	is	on	
the	VOIP	connections.	It	shows	that	as	the	number	of	vehicles	in	the	network	reaches	a	specific	
value,	the	overall	jitter	across	the	network	becomes	unacceptable.		Although	the	routes	in	lower	
speed	are	relatively	more	stable,	the	jitter	is	higher	due	to	the	vehicle	density.		
	

	
Figure	22:	Average	VOIP	jitter	
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System	Scalability	
The	scalability	is	the	most	critical	drawback	of	existing	platforms	including	the	proposed	platform.	
The	two	main	scalability	parameters	are	the	memory	usage	and	the	execution	time.	The	results	
show	that	the	number	of	nodes	and	the	data	traffic	rate	per	vehicle	are	key	factors	behind	the	
scalability	issue.	Specifically,	results	show	that,	the	memory	usage	grows	exponentially	with	the	
number	of	vehicles	in	the	network,	as	shown	in	Figure	23.	The	result	shows	also	that	the	execution	
time	is	mainly	dependent	on	the	average	traffic	rate	per	vehicle.	As	shown	in	Figure	24.	

Figure	23,	shows	that	the	memory	utilization	increases	exponentially	with	the	number	of	
vehicles	in	the	network.	This	possesses	a	scalability	limitation	to	the	modeler.		This	scalability	
problem	is	reasoned	to	the	detailed	implementation	of	the	network	simulation	models.	However,	
this	detailed	implementation	is	necessary	when	studying	the	behavior	of	individual	vehicle,	
individual	connection	between	two	vehicles	or	the	detailed	behavior	of	a	specific	protocol.		
On	the	other	hand,	in	case	of	focusing	on	global	analysis,	where	the	individual	detailed	behavior	is	
not	important,	we	can	reduce	the	number	of	vehicles	in	the	network	by	reuse	the	vehicles	as	
described	earlier.	In	this	case,	the	total	number	of	vehicles	we	need	in	the	simulation	network	
become	the	maximum	concurrent	number	of	vehicles.		

Figure	23	also	shows	that	for	a	specific	number	of	nodes,	increasing	the	traffic	rate	has	no	
significant	effects	on	the	memory	usage.	We	argue	that	behavior	to	the	ability	of	OPNET	to	destroy	
the	packets	after	they	arrived	it	destination	application	and	so	free	its	memory.	

	
Figure	23:	The	memory	usage	(GB)	vs.	the	number	of	nodes	for	different	traffic	rates.	

	

Figure	24:	The	execution	time	(Sec)	vs.	the	number	of	nodes	and	the	traffic	rate	per	vehicle.	

Figure	24	shows	that	the	execution	time	is	exponentially	increasing	with	number	of	
vehicles,	and	increases	also	with	the	average	traffic	rate	per	vehicle.	We	can	notice	the	abrupt	
increase	in	the	execution	time	when	increasing	the	traffic	rate	to	only	one	packet.		This	large	
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increment	is	reasoned	to	the	broadcast	nature	of	the	AODV	protocol	that	used	in	this	scenario.	
Where	any	application	packet	to	a	new	source	triggers	the	AODV	to	broadcast	a	route	request	
message	to	all	its	neighbors.	Each	of	these	neighbors	receives	and	processes	this	message	and	
might	rebroadcast	it.	Which	results	in	a	wave	of	broadcast	that	spans	overall	the	network.	
Consequently,	increasing	the	execution	time.	

The	study	found	that	increasing	the	traffic	rate	per	vehicle	from	1	packet	to	10	packets	per	
vehicle	does	not	result	in	such	increase	in	the	execution	time.		That	is	because	the	first	packet	only	
initiates	the	broadcast	waves	in	the	network.	And	any	other	packets	to	the	same	destination	needs	
only	the	route	maintenance.	These	results	are	obtained	on	a	machine	of	Intel	Core-i7	Quad-core	
processor,	4	GB	of	memory,	and	running	windows	7	Ultimate.	
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Eco-Routing:	An	Ant	Colony	Based	Approach		
The	environmental	and	economic	impact	of	the	transportation	sector	has	necessitated	research	in	
recent	years	because	the	transportation	sector	is	an	important	source	of	the	major	current	
challenges,	including:	global	warming,	energy	and	fuel	shortage,	and	environmental	pollution.		In	
2008,	the	U.S.	Department	of	Energy	mentioned	in	[81]	that	approximately	30%	of	the	fuel	
consumption	in	the	U.S.	is	consumed	by	vehicles	moving	on	the	roadways.	In	addition,	about	one-
third	of	the	U.S.	carbon	dioxide	(𝐶𝑂!)	emissions	comes	from	vehicles	[82].	The	2011	McKinsey	
Global	Institute	report	estimated	savings	of	“about	$600	billion	annually	by	2020”	in	terms	of	fuel	
and	time	saved	by	helping	vehicles	avoid	congestion	and	reduce	idling	at	red	lights	or	left	turns.		

From	the	drivers’	perspective,	drivers	usually	select	routes	that	minimize	their	costs	such	as	
travel	time	or	travel	distance.		However,	the	minimum	time	or	distance	routes	do	not	necessarily	
minimize	the	fuel	consumption	or	emission	levels	[83,	84].	There	are	many	cases	where	the	
minimum	time	routes	result	in	higher	fuel	consumption	levels	such	as	high-speed	routes;	despite	
the	time	reduction	that	could	be	achieved,	the	higher	speed	routes	may	produce	higher	fuel	
consumption	levels	due	to	the	higher	vehicle	speeds,	route	grades	or	longer	distance.	Also,	shorter	
distance	routes	can	result	in	higher	fuel	consumption	if	the	speed	is	too	low	or	if	the	route	has	
many	intersections	that	result	in	numerous	deceleration	and	acceleration	maneuvers.	Selecting	the	
minimum	time	or	minimum	distance	routes	is	simple	compared	to	finding	the	minimum	fuel	
consumption	routes.	The	fuel	consumption	depends	on	many	parameters	such	as	distance,	travel	
time,	route	grades,	congestion	level,	vehicle	characteristics,	and	the	driving	behavior.		

Researchers	have	proposed	several	models	for	the	estimation	of	vehicle	fuel	consumption	
and	emission	levels.	These	models	can	be	classified	into	two	classes;	macroscopic	models	[85,	86]	
and	microscopic	models	[87,	88].	In	macroscopic	models,	the	average	link	speeds	are	used	to	
estimate	the	fuel	consumption	and	emission	levels	for	each	link.	This	class	is	characterized	by	its	
simplicity	but	has	a	limited	accuracy	because	it	ignores	the	speed	and	the	acceleration	impacts	on	
fuel	consumption	levels.	Meanwhile,	microscopic	models	overcome	this	limitation	using	
instantaneous	speed	and	acceleration	levels	to	estimate	the	fuel	consumption	and	emission	levels.	
Consequently,	microscopic	models	provide	higher	accuracy	at	the	cost	of	model	complexity.		
Eco-routing	[75]	was	developed	to	select	the	route	that	minimizes	vehicle	fuel	consumption	levels	
between	an	origin	and	destination.	In	a	feedback	system,	Eco-routing	depends	on	the	vehicle	and	
route	characteristics	as	well	as	its	ability	to	report	this	information	to	a	traffic	management	center	
(TMC)	that	updates	the	routing	information,	rebuilds	the	routes,	and	sends	the	new	routes	to	
vehicles	traversing	the	network.	

Eco-routing	is	a	promising	navigation	technique	because	it	results	in	a	significant	reduction	
in	fuel	consumption	and	emission	levels.	However,	through	some	improvements,	the	Eco-routing	
system	can	be	further	enhanced	to	produce	additional	fuel	consumption	and	emission	savings.		
In	this	study,	we	first	study	the	Eco-routing	performance	and	show	that	in	some	cases	its	
performance	may	not	be	optimum.	Subsequently,	based	on	this,	we	propose	an	ant	colony	Eco-
routing	(ACO-ECO)	algorithm	that	employs	the	ant	colony	optimization	algorithms	[89].	Due	to	the	
major	differences	between	the	ant	colony	and	the	transportation	network,	the	ant	colony	
algorithms	are	not	directly	applied	to	select	the	best	routes,	however,	they	are	used	to	optimize	the	
route	selection	process	by	optimizing	the	route	selection	updating.	Finally,	we	compare	the	
proposed	approach	to	the	subpopulation	feedback	Eco-routing	algorithm	(SPF-ECO)	[90].	

The	remainder	of	this	study	is	organized	as	follows.	An	overview	of	the	Eco-routing	
literature	and	the	subpopulation	feedback	assignment	Eco-routing	(SPF-ECO)	algorithm	is	
introduced.	This	is	followed	by	outlining	the	main	problems	with	the	SPF-ECO	algorithm.	
Subsequently,	an	overview	of	the	ant	colony	optimization	is	presented.	After	that,	the	proposed	
approach	(ACO-ECO)	is	described.	Subsequently,	the	simulation	results	that	compare	the	ACO-ECO	
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to	the	SPF-ECO	are	presented	and	discussed.	Finally,	the	study	conclusions	are	presented	together	
with	recommendations	for	further	research.	
ECO-Routing	Literature	
In	2006,	Ericsson	et	al.	proposed	the	Eco-routing	in	[75]	where	they	presented	a	comprehensive	
study	that	provides	optimal	route	choices	for	lowest	fuel	consumption.	The	fuel	consumption	
measurements	are	made	through	the	extensive	deployment	of	sensing	devices	in	the	street	network	
in	the	city	of	Lund,	in	Sweden.	This	study	showed	that	about	46%	of	the	trips	were	not	made	on	the	
most	fuel-efficient	route.	And	approximately	8%	of	the	fuel	consumption	could	be	saved	on	average	
using	the	most	fuel-efficient	routes.	In	2007,	Barth et al. [83] combined sophisticated mobile-source 
energy and emission models with route minimization algorithms to develop navigation techniques that 
minimize energy consumption and pollutant emissions. They developed a set	of	cost	functions	that	
include	the	fuel	consumption	and	the	emission	levels	for	the	road	links.	In	2007,	Ahn	and	Rakha	
[91]	showed	the	importance	of	route	selection	on	the	fuel	consumption	and	environmental	
pollution	reduction,	by	demonstrating	through	field	tests	that	an	emission	and	energy	optimized	
traffic	assignment	could	reduce	𝐶𝑂!	emissions	by	14	to	18%,	and	fuel	consumption	by	17	to	25%	
over	the	standard	user	equilibrium	and	system	optimum	assignment.	Later	in	2012,	Rakha	et	al.	
[90],	introduced	a	stochastic,	multi-class,	dynamic	traffic	assignment	framework	for	simulating	Eco-
routing	using	the	INTEGRATION	software	[92].	They	demonstrated	that	fuel	savings	of	
approximately	15%	using	two	scenarios	were	achievable.	In	[93],	the	authors	developed	an	Eco-
routing	navigation	system	that	selects	the	fuel-efficient	routes	based	on	both	historical	and	real-
time	traffic	information.	
	
Subpopulation	Feedback	Eco-routing	
In	this	section,	we	will	describe	in	details	the	subpopulation	feedback	assignment	Eco-Routing	SPF-
ECO	[90]	implemented	in	the	INTEGRATION	software.	INTEGRATION	uses	the	VT-Micro	model	[87]	
for	calculating	the	fuel	consumption	rate	𝐹 𝑡 	in	𝐿/𝑠	for	each	vehicle	as	shown	in	equation	(7).	
 

𝐹 𝑡 =
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     𝑖𝑓  𝑎 < 0

            (7) 

	
Here	𝐿!,! 	are	model	regression	coefficients	at	speed	exponent	𝑖	and	acceleration	exponent  𝑗,	

𝑀!,! 	are	model	regression	coefficients	at	speed	exponent	𝑖	and	acceleration	exponent  𝑗,  	𝑣	is	the	
instantaneous	vehicle	speed	in	(km/h),	and	𝑎	is	the	instantaneous	vehicle	acceleration	(km/h/s).	
An	important	characteristic	of	INTEGRATION	is	its	time	granularity	which	is	a	deci-second	
resolution.	This	granularity	enables	it	to	accurately	calculate	the	fuel	consumption	and	emissions	
based	on	instantaneous	speed	and	acceleration	levels.			

In	SPF-ECO,	when	the	vehicle	enters	a	new	link.	The	vehicle’s	fuel	consumption	and	
emission	levels	are	reset	to	zero	for	the	new	link.	Subsequently,	the	SPF-ECO	algorithm	periodically	
calculates	the	fuel	consumption	and	emissions	for	each	vehicle	using	equation	(1).	For	each	vehicle,	
the	estimated	fuel	consumption	and	emission	levels	are	accumulated	until	the	vehicle	traverses	the	
link.	When	a	vehicle	leaves	a	link,	it	submits	its	fuel	consumption	cost	for	this	link	to	the	traffic	
management	center	(TMC),	which	updates	the	link	fuel	consumption	using	some	smoothing	
techniques.	Subsequently,	INTEGRATION	periodically	rebuilds	the	routes	for	each	origin-
destination	pair	at	a	frequency	specified	by	the	user.	Subsequently,	vehicles	use	the	latest	paths	
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when	looking	identifying	the	next	link	along	the	route.	This	mechanism	has	three	main	
shortcomings	that	are	discussed	in	this	section.	
Fixed Cost for Empty Links 
Assume	that	a	link	𝐿! 	was	loaded	with	a	high	traffic	flow	that	resulted	in	congestion	on	this	link.	
This	congestion	will	result	in	a	lower	speed	and	increasing	the	acceleration/deceleration	noise.	
Consequently,	increasing	the	fuel	consumption	and	emission	levels	on	this	link.	At	a	certain	time,	
the	SPF-ECO	system	will	re-route	vehicles	to	another	route	that	reduces	the	route	cost.	Since	the	
vehicles	on	𝐿!  have	been	exposed	to	the	congestion,	the	link	fuel	consumption	will	be	very	high	
after	these	vehicles	leave	the	link.	As	the	system	re-routes	vehicles	to	other	routes,	the	link	will	not	
be	loaded	by	vehicles	until	the	routing	information	changes.	Consequently,	the	cost	of	𝐿!  will	
continue	to	be	high	while	it	is	actually	decreasing.	This	lag	in	the	system	is	typical	of	any	feedback	
control	system	and	will	result	in	vehicles	using	sub-optimal	routes.	Consequently,	increasing	the	
network-wide	fuel	consumption	levels.	
Fixed Cost for Blocked Links 
A	reverse	situation	can	take	place	in	case	of	blocking	a	link	(for	example	due	to	an	incident).		In	this	
case	the	vehicles	that	were	not	blocked	will	have	a	low	fuel	consumption	level,	and	will	report	it	
when	leaving	the	link.	The	SPF-ECO	will	maintain	a	low	cost	for	this	link	as	long	as	the	link	is	
blocked	since	there	is	no	vehicle	leaving	the	link	to	update	the	information	on	this	link.	
Consequently,	the	SPF-ECO	will	continue	to	use	this	route	and	load	more	vehicles	to	this	link	
resulting	in	higher	fuel	consumption	and	emission	levels.	
Delayed Updates 
The	third	point	is	that	the	updates	are	only	sent	when	a	vehicle	leaves	a	link.	For	long	links	and/or	
low-speed	links,	the	link	travel	time	is	relatively	long.	Consequently,	the	information	used	to	update	
the	SPF-ECO	routing	might	be	obsolete	and	may	not	reflect	the	current	state	of	the	link.		This	
inaccurate	routing	information	might	result	in	incorrect	routing	decisions	and	hence	increase	the	
fuel	consumption	level.	In	the	proposed	approach,	we	solve	these	problems	by	utilizing	ant	colony	
techniques	to	update	the	link	cost	function	(the	fuel	consumption	level	in	this	application).		
Ant	Colony	Optimization	
Ant	colony	optimization	[89]	is	a	branch	of	the	larger	field	of	swarm	intelligence	[94].	Swarm	
intelligence	studies	the	behavioral	patterns	of	social	insects	such	as	bees,	termites,	and	ants	in	
order	to	simulate	these	processes.	Ant	colony	optimization	is	a	meta-heuristic	iterative	technique	
inspired	from	the	foraging	behavior	of	some	ant	species.	In	the	ant	colony,	ants	walking	to	and	from	
a	food	source	deposit	a	substance	called	pheromone	on	the	ground.	In	this	way,	ants	mark	the	path	
to	be	followed	by	other	members	of	the	colony.	The	shorter	the	path,	the	higher	the	pheromone	on	
that	route,	and	consequently,	the	preferable	this	route	is.	The	other	ant	colony	members	perceive	
the	presence	of	pheromone	and	tend	to	follow	paths	where	pheromone	concentration	is	higher.	Ant	
colony	optimization	exploits	a	similar	mechanism	for	solving	some	optimization	problems.	

In	this	study,	we	use	the	same	ant	colony	concept	to	optimize	the	fuel	consumption	and	
emission	cost	for	a	transportation	network.	Vehicles	are	employed	as	artificial	ants,	the	pheromone	
is	considered	to	be	the	inverse	of	the	fuel	consumption	cost	for	each	link.	Each	artificial	ant	
periodically	deposits	the	pheromone	by	updating	the	fuel	consumption	cost	for	the	link	it	is	
traversing.			

There	are	many	variants	of	ant	colony	optimization.	However,	all	of	them	share	the	same	
idea	described	earlier.	The	main	steps	in	each	iteration	are:	1)	construct	the	solutions,	2)	conduct	
an	optional	local	search	step,	and	3)	update	pheromones.	The	ant	colony	system	does	not	specify	
how	these	three	steps	are	scheduled	and	synchronized,	the	system	leaves	these	decisions	to	the	
algorithm	designer	[95].	In	the	solution	construction	step,	artificial	ants	construct	a	feasible	
solution	and	add	it	to	the	solution	space.	The	system	starts	with	an	empty	solution	space,	the	ants	
start	at	the	nest,	and	each	ant	probabilistically	chooses	a	solution	𝑒!  between	a	set	of	paths	



52	
	

𝑒!, 𝑒!,… 𝑒! 	to	reach	the	food	source.	To	choose	between	these	paths,	each	ant	uses	the	probability	
𝑃! 	computed	in	equation	(8).	
	

𝑃! =  
𝜑
𝜑!!

!!!
                   8  

 
Where	𝜑!  is	the	amount	of	pheromone	on	path 𝑒! .	This	probabilistic	behavior	for	route	

selection	guarantees	the	exploration	of	more	feasible	solutions	and	avoids	converging	to	local	ones.		
The	pheromone	updating	takes	place	while	the	ants	are	moving,	where	they	deposit	the	pheromone	
on	their	paths.	Also,	as	time	passes,	the	pheromone	evaporates	based	on	an	evaporation	factor  𝜌.	
Subsequently,	after	each	iteration,	the	phenome	is	updated	according	to	equation	(9).	
	

𝜑! = 1 − 𝜌  𝜑! + 𝛥𝜑!

!

!!!

              9  

 
Where	𝑚 	is	the	number	of	ants	that	traverse	a	link,	and	𝛥𝜑!  is	the	amount	of	pheromone	

deposited	by	ant 𝑗.	After	the	solution	construction	and	before	the	pheromone	updating,	the	local	
search	step	can	be	carried	out	to	improve	the	solution.	This	step	is	optional	and	problem	specific.	
In	the	proposed	approach,	we	utilize	these	steps	to	achieve	our	objective	of	minimizing	the	fuel	
consumption	and	consequently	the	pollutant	emissions.	
Ant	colony	based	Eco-Routing	(ACO-ECO)	
This	section	presents	the	proposed	approach	(ACO-ECO)	and	describes	its	operation	in	details.		In	
ACO-ECO,	the	ant	colony	techniques	will	be	applied	to	optimize	the	fuel	consumption	and	emissions	
in	the	transportation	network.	The	vehicles	are	the	artificial	ants,	and	the	pheromone	is	the	inverse	
of	the	fuel	consumption.	Because	of	the	major	differences	between	the	ant	colony	system	and	the	
transportation	network,	we	introduce	some	variations	to	ant	colony	techniques	to	tailor	it	to	the	
specific	application.	The	ACO-ECO	uses	a	number	of	steps	that	are	described	here.	
Initialization	
This	phase	initializes	the	cost	associated	with	the	various	links.	Because	initially	the	links	are	free,	
the	cost	of	each	link	is	initialized	to	the	free	flow	speed	fuel	consumption	using	equation	(1).		
Route	Construction		
This	phase	starts	directly	after	the	initialization	phase	and	is	repeated	periodically	and	was	defined	
to	be	60	seconds	in	this	application.	In	this	phase,	the	ACO-ECO	builds	the	minimum	path	based	on	
the	cost	of	each	link.	When	the	vehicle	leaves	a	route	link,	it	searches	the	tree	to	find	its	next	link.			
The	probabilistic	route	selection	(introduced	by	equation	(2))	is	an	important	mechanism	in	ant	
colony	algorithms	to	search	all	the	available	routes.	However,	this	mechanism	as	described	in	
equation	(2)	cannot	be	applied	in	vehicular	route	selection	because	it	is	not	realistic.	As	mentioned	
earlier,	drivers	try	to	select	routes	that	minimize	their	cost,	while	this	probabilistic	selection	
assigns	a	random	route	to	each	vehicle	based	on	the	route’s	pheromone	level	(route	cost)	relative	
to	that	for	all	other	routes.		Using	this	equation,	and	due	to	the	randomness,	a	vehicle	might	be	
assigned	a	very	high-cost	route	which	is	not	realistic,	and	is	not	consistent	with	the	driver	
behaviour	when	selecting	routes.	Consequently,	it	will	result	in	a	higher	fuel	consumption	level.	So,	
we	use	another	technique	to	introduce	some	limited	randomness	into	the	route	selection	
mechanism	while	maintaining	the	error	within	a	given	predefined	margin.	An	error	factor	is	
configured	for	the	network.	This	error	factor	(α)	is	used	to	add	some	error	to	the	cost	of	the	links,	
subsequently	to	the	tree	building	and	the	route	selection	algorithms.	The	error	value	added	to	the	
link	cost	is	a	randomly	selected	point	from	the	standard	normal	distribution 𝑁(0, σ),	where	σ	is	the	
standard	deviation	and  σ =  α . 𝑙𝑖𝑛𝑘_𝑐𝑜𝑠𝑡.	In	this	way,	we	have	a	grantee	that	95.45%	of	the	link	
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costs	are	within 1 ± 2α . 𝑙𝑖𝑛𝑘_𝑐𝑜𝑠𝑡.	Which	means	that	by	controlling	the	error	factor	𝛼	we	can	
control	the	randomness	level	within	the	route	selection	algorithm.	
Pheromone	Update	
In	this	phase,	two	updating	processes	take	place.	Pheromone	deposition	where	ants	deposit	
pheromone	to	indirectly	communicate	the	route	preference	to	the	following	ants.	And	the	
pheromone	evaporation,	where	the	pheromone	level	on	each	link	decays	with	time.		
Pheromone Deposition 
In	the	vehicular	network,	each	vehicle	sends	the	cost	it	experienced	on	a	link	to	the	TMC,	and	
consequently,	the	link	cost	is	updated	in	the	routing	algorithm.	In	the	SPF-ECO,	the	vehicles	only	
submit	the	link	cost	when	leaving	the	link.	The	advantage	of	this	method	is	the	small	number	of	
updates	being	sent	on	the	network	and	consequently	the	low	network	overhead.	But	on	the	other	
hand,	it	results	in	delayed	updates	and	fixed	cost	for	empty	or	blocked	links	as	mentioned	earlier.		
In	contrast	to	the	SPF-ECO,	the	ACO-ECO	overcomes	these	issues	by	enabling	vehicles	to	submit	
multiple	updates	while	traveling	the	link.	These	updates	can	be	sent	periodically	either	time-based	
or	distance-based.	Using	time-based	updating,	the	vehicles	have	a	predefined	maximum	updating	
interval  𝑇.	The	vehicles	should	send	their	estimation	for	the	link	cost	each	𝑇	seconds.	This	cost	
updating	method	can	control	the	number	of	updates	that	are	sent	over	the	network.	However,	it	has	
an	important	drawback;	for	low	speed	links	or	blocked	links,	the	vehicles	will	send	many	
unnecessary	updates.	Another	drawback	is	for	short	length	links	and/or	high	speed	links,	this	time	
interval	𝑇 may	be	longer	than	the	link	traversal	time.	Consequently,	no	updates	would	be	sent	for	
these	links.	This	drawback	can	be	overcome	by	setting	𝑇 	to	a	value	that	is	shorter	than	the	
minimum	link	travel	time	in	the	network,	however,	this	will	result	in	many	unnecessary	updates	for	
long	links	or	low	speed	links.			

Another	way	to	submit	the	link	cost	updates	is	the	distance	based	updating,	where	the	
vehicles	should	submit	an	update	every	distance	𝐷	it	traverses	on	the	link.	In	contrast	to	the	time	
based	updating,	the	distance	based	method	limits	the	number	of	updates	for	each	link.	But	on	the	
other	hand,	for	blocked	links,	the	updates	will	not	be	sent	and	consequently,	the	cost	will	be	fixed	
for	blocked	links	resulting	in	the	same	problem	as	the	SPF-ECO	algorithm.	
Consequently,	a	compromise	approach	is	proposed,	which	combines	both	the	time-	and	distance-
based	updating	to	take	advantage	of	the	merits	of	each	approach.	Also,	we	used	the	end	of	the	link	
updating	where	the	vehicle	sends	an	update	when	it	leaves	the	link.	To	estimate	the	link	fuel	
consumption,	the	ACO-ECO	algorithm	defines	the	maximum	time	interval	𝑇	and	the	maximum	
distance 𝐷	to	report	conditions.	When	any	of	these	conditions	is	met,	the	vehicle	submits	a	new	
update	quantifying	its	estimation	for	the	overall	link	cost,	and	then	resetting	its	time	and	distance	
counter.	To	calculate	the	fuel	it	consumed,	the	ACO-ECO	periodically	estimates	the	fuel	
consumption	rate	using	the	VT-Micro	model	in	equation	(7).	And	then	uses	equation	(10)	to	
accumulate	the	total	fuel	consumed	in	the	previous	interval.			
	

𝐶 =  𝐹 𝑡  .  ∆𝑡
!

                 (10) 

 
Where	𝐹 𝑡 	is	the	VT-Micro	model	instantaneous	fuel	consumption	rate,	and	∆𝑡 is	the	fuel	

consumption	calculation	interval	which	is	typically	0.1	seconds	in	INTEGRATION.	Whenever	either	
𝑇	or	𝐷	is	reached,	the	ACO-ECO	estimates	the	overall	link	fuel	consumption	𝐶! 	as	shown	in	equation	
(11).	
	

𝐶! =
𝐶 . 𝐿
𝑑

                         (11) 
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Where	𝑑 is	the	distance	traveled	in	the	previous	period	in	meters  (𝑑 ≤ 𝐷 ),	and	𝐿 𝑖𝑠 the	link	
length	in	meters.	This	calculation	assumes	that	the	conditions	on	the	remainder	of	the	link	will	
continue	as	was	observed	by	the	vehicle.	
Pheromone Evaporation 
To	overcome	the	fixed	cost	problem	for	empty	links,	the	cost	of	these	links	must	be	updated	when	
the	TMC	has	not	received	updates	for	a	period	of	time.	In	an	ant	colony,	if	no	pheromone	is	
deposited	for	a	long	time,	the	link	pheromone	level	will	decay	towards	zero	due	to	the	evaporation,	
this	is	an	indication	of	the	low	preference	for	that	route.	In	a	transportation	network,	not	receiving	
an	update	about	a	link	for	a	long	time,	indicates	that	this	link	is	empty.	Consequently,	the	cost	of	this	
link	must	be	updated	toward	the	free	flow	speed	cost  ( 𝐶!!!).	So,	in	this	case,	the	TMC	updates	the	
cost	as	follows.	First,	it	finds	the	minimum	updating	interval	(𝝉𝒍)	for	the	link.	This	value	is	the	
minimum	of	three	parameters;	the	updating	interval	(T),	the	link	travel	time	at	free-flow	speed,	and	
the	updating	interval	in	case	of	distance	based	updating.	These	parameters	are	shown	in	equation	
(12).	The	rationale	is	that	after	receiving	an	update,	the	next	vehicle	will	send	an	update	in	case	of	
one	of	three	situations;	it	reaches	its	updating	interval 𝑇,	it	reaches	its	updating	distance,	or	it	ends	
the	link.	

𝜏! =  𝑚𝑖𝑛 𝑇,
𝐿!
𝑆!!!

,
𝐷
𝑆!!!

        (12) 

	
Where	𝑇	is	the	updating	interval,	𝐷	is	the	updating	distance,	𝑳𝒍 is	the	link	length	and	𝑺𝒇𝒇𝒍 is	

the	free-flow	speed	of	the	link.	Subsequently,	the	ACO-ECO	algorithm	estimates	the	overall	link	cost	
𝐶!  as	shown	in	equation	(13).	This	evaporation	technique	results	in	exponential	increasing	or	
decreasing	in	the	link	cost	towards	the	free-flow	speed	cost.	

𝐶! = 𝐶! −
∆𝑡
𝜏!

 𝐶! −  𝐶!!!            (13) 

Where	 𝐶!!!  is	the	free-flow	speed	fuel	consumption	estimate	for	the	link,	and	∆𝑡 	is	the	
evaporation	interval	after	which	the	evaporation	process	should	be	performed	for	the	link	cost	if	no	
updates	were	received.	
Simulation	Results	
In	this	section,	we	compare	the	proposed	approach	ACO-ECO	to	the	SPF-ECO	for	different	traffic	
rates	using	the	INTEGRATION	software	[92].	The	network	shown	in	Figure	25	is	used	for	
comparing	the	two	approaches.			
	

	
Figure	25:		Road	Network	used	in	Simulation.	

The	network	consists	of	10	zones	with	the	main	highway	(center	horizontal	road)	between	
zone	1	and	zone	2,	and	two	arterial	roads	(side	roads).	The	network	size	is	3.5	km	x	1.5	km.	The	
free-flow	speeds	are	110	and	60	km/h	for	the	highway	and	arterial	roads,	respectively.	The	
highway	has	3	lanes	in	each	direction	while	the	other	roads	have	only	2	lanes	in	each	direction.	
Regarding	the	origin-destination	traffic	demands	(O-D	demands),	we	use	5	different	scenarios,	as	
shown	in	Table	11.	The	main	traffic	stream	is	the	traffic	between	zone	1	and	2	for	each	direction,	
the	side	traffic	streams	are	between	each	two	other	zone	pairs.	This	traffic	rate	is	generated	for	half	



55	
	

an	hour,	and	the	simulation	runs	for	4500	seconds	to	ensure	that	all	the	vehicles	complete	their	
trips.	
	

Table	11:		Origin-Destination	Traffic	Demand	Configuration.	

 Main 
Demand 
(Veh/h) 

Secondary 
Demand 
(Veh/h) 

Total no.  
vehicles 
(Veh) 

1 500  50  1600 
2 1000  75  2650 
3 1500  100  3700 
4 2000  125  4750 
5 2500  150 5800 

	
The	comparison	is	done	in	two	cases;	the	normal	operation	(no	incident)	case	where	there	

is	no	link	blocking,	and	in	the	case	of	blocking	due	to	an	incident	(link	blocking	case).	For	each	case,	
we	run	each	traffic	assignment	technique	(ACO-ECO,	and	SPF-ECO)	20	times	with	different	seeds	to	
consider	the	output	variability	due	to	randomization.	This	is	repeated	for	each	of	the	five	O-D	
demand	configurations.	The	error	factor	is	set	for	both	techniques	to	1%.	For	the	ACO-ECO	
parameters,	the	maximum	update	interval	𝑇	is	180	seconds,	and	the	maximum	update	distance	𝐷	is	
750	meter.			
Normal	Operation	Scenarios	
For	the	normal	operation	scenarios,	the	results	show	no	significant	differences	between	the	ACO-
ECO	and	the	SPF-ECO	for	average	fuel	consumption	levels,	as	shown	in	Figure	26.	The	figure	also	
shows	that	as	the	traffic	demand	increases,	the	average	fuel	consumption	and	the	average	trip	time	
increases	due	to	the	higher	congestion	levels.	Moreover,	the	results	show	the	same	behavior	for	the	
average	trip	time,	the CO! and	𝑁𝑂! 	emissions	levels,	where	ACO-ECO	has	no	significant	effect	on	
any	of	them.	Regarding	the	𝐶𝑂	emission,	the	ACO-ECO	has	a	higher	emission	level	as	shown	in	
Figure	27.	
	
	

	
Figure	26:	Average	Fuel	Consumption	(L/Veh).	

	



56	
	

	
Figure	27:		Average	Vehicle	CO	Emission.	

Incident	Scenarios	
To	simulate	the	link	blocking	in	the	network,	we	configured	an	incident	on	the	highway	from	zone	1	
and	2	at	point	(A)	marked	in	Figure	25,	the	incident	does	not	affect	the	other	direction	from	zone	2	
to	zone	1.	This	incident	occurs	10	minutes	after	starting	the	simulation	and	blocks	50%	of	the	
highway	(1.5	lanes)	for	5	minutes.	Then	the	blocking	is	reduced	to	25%	of	the	highway	for	the	next	
10	minutes,	then	the	incident	is	completely	removed	and	the	highway	works	with	its	full	capacity.			
Figure	28	shows	the	fuel	consumption	in	case	of	an	incident.	The	figure	demonstrates	that	the	ACO-
ECO	algorithm	reduces	the	average	fuel	consumption	level	for	all	traffic	demands.	The	reduction	
ranges	between	2.3%	to	6%	compared	to	the	SPF-ECO.	
	

	
	Figure	28:		The	Average	Fuel	for	the	Link	Blocking	Scenario.	

These	results	show	the	ability	of	ACO-ECO	to	reduce	the	fuel	consumption	level	and	the	trip	
time	in	addition	to	all	the	time-related	measurements.	ACO-ECO	also	succeeds	in	reducing	the	
pollutant	emissions	in	most	cases.	

Table	12	shows	the	percentage	reduction	attributed	to	the	ACO-ECO	for	both	fuel	
consumption,	different	emissions,	and	different	time-related	measurements.	For	instance,	the	fuel	
consumption	is	reduced	by	6%	in	the	moderate	traffic	scenario	and	this	reduction	ratio	decreases	
as	the	traffic	demand	increases.	This	also	applies	for	the	CO!	emissions	and	the	time-related	
measurements.	The	reason	is	that	as	the	traffic	demand	increases,	the	congestion	increases	and	
thus	affects	all	the	alternative	routes,	which	limits	the	ACO-ECO	ability	to	recover	from	the	
congestion.	
	

Table	12:	Percent	of	Reduction	Made	by	ACO-ECO	over	SPF-ECO	in	case	of	Link	Blocking	

	
Traffic	
rate	 Fuel	 CO2	 CO	 HC		 NOX	

Trip	
time	

Stop	
delay	

Accel.	
noise	

Accel./Decel.	
delay	
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500	 2.37	 2.29	 3.75	 3.71	 1.60	 3.64	 4.04	 1.87	 12.02	
1000	 3.72	 3.86	 1.05	 1.73	 0.91	 8.83	 19.04	 4.90	 21.97	
1500	 6.06	 6.42	 -1.51	 0.38	 0.24	 14.98	 27.68	 5.28	 25.43	
2000	 4.57	 4.75	 0.49	 2.19	 0.11	 12.66	 19.75	 4.91	 16.84	
2500	 3.09	 3.32	 -2.10	 -0.58	 -0.75	 7.11	 15.39	 1.61	 11.34	

	
	To	find	the	significance	of	the	reduction	made	by	ACO-ECO,	analysis	of	variance	(ANOVA)	is	

employed	to	compare	means	of	ACO-ECO	to	that	of	SPF-ECO.	The	hypotheses	are:	
	

• Null	hypothesis:	the	means	for	both	algorithms	are	equal	(𝐻!: 𝜇! =  𝜇!)	
• The	alternate	hypothesis:	the	means	are	not	equal  (𝐻! ∶ 𝜇! ≠ 𝜇!).	

	
The	study	applied	this	ANOVA	for	the	fuel	consumption	results	in	the	lowest	traffic	rate.	

Given	this	scenario	has	the	lowest	reduction	in	fuel	consumption.	The	result	shows	that	p-value	is	
less	than	0.0001.	Which	gives	a	strong	evidence	to	reject	the	null	hypothesis.		And	shows	the	
significance	of	the	reduction	mad	by	the	ACO-ECO.	And,	since	the	lowest	reduction	level	is	
significant,	we	can	conclude	that	the	higher	levels	for	other	configuration	are	also	significant.	Table	
12	also,	shows	some	rare	cases	where	the	some	emissions	increase	in	due	to	the	use	of	ACO-ECO.	
For	instance,	CO	and	NOx	emissions	increased	in	case	high	traffic	rates.	
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A	Modeling	Evaluation	of	Eco-Cooperative	Adaptive	Cruise	Control	in	the	
Vicinity	of	Signalized	Intersection	
 
Recently,	the	rapid	growth	of	passenger	car	and	freight	truck	volumes	has	resulted	in	increased	
energy	usage	and	vehicle	emissions.	In	2013,	the	U.S.	transportation	sector	alone	consumed	over	
135	billion	gallons	of	motor	fuel,	70%	of	which	was	consumed	by	passenger	cars	and	trucks	[96].	
Globally,	60%	of	oil	is	consumed	by	the	transportation	sector	[97].	 The	need	to	reduce	the	
transportation	sector	fuel	consumption	levels	requires	researchers	and	policy	makers	to	investigate	
various	advanced	strategies.	Eco-driving,	which	aims	at	improving	fuel	efficiency	of	the	
transportation	sector,	is	one	efficient	and	cost-effective	strategy	[97].	Most	eco-driving	algorithms	are	
operated	by providing	real-time	driving	advice,	such	as	advisory	speed	limits,	recommended	
acceleration	or	deceleration	levels,	and	speed	alerts	to	vehicles.	Drivers	can	then	adjust	their	
driving	behavior	or	take	certain	driving	actions	to	reduce	their	fuel	consumption	and	emission	
levels.	To	date,	numerous	studies	indicate	that	applying	eco-driving	can	reduce	fuel	consumption	
and	greenhouse	gas	emissions	to	about	10%	on	average	[98].	

The	major	causes	of	high	vehicle	emission	and	fuel	consumption	levels	have	been	widely	
investigated.	For	example,	research	in	[99]	showed	that	frequent	accelerations	associated	with	stop-
and-go	waves	were	one	major	cause	of	greenhouse	gas	emissions	in	transportation	systems.	
Excessive	speeds	over	60	mph	and	slow	movements	on	a	congested	road	also	increased	air	
pollutant	emissions	and	fuel	consumption	levels	dramatically	[100].	Obviously,	complete	stops	on	
roads	result	in	 increased	fuel	usage.		Consequently,	it	 is	clear	 that	reducing	traffic	oscillations	and	
avoiding	idling	are	two	critical	ways	to	increase	vehicle	fuel	efficiency	levels.	 In	general,	studies	of	
eco-driving	can	be	categorized	as	freeway-based	and	city-based	strategies.	
On	freeways,	traffic	streams	are	continuous;	and,	vehicles	are	rarely	disturbed	by	signals,	i.e.,	one	
vehicle	can	travel	to	a	particular	destination	without	any	extra	constrains	(except	on	and	off	ramps).	
Developing	eco-driving	strategies	on	freeways,	which	estimate	speed	or	 speed	 limits	based	on	 road	
traffic	conditions	to	 change	driving	behaviors	as	well	as	minimizing	fuel	consumption	and	
emissions,	is	relatively	straightforward.		To	date,	numerous	eco-driving	strategies	have	been	
proposed	to	smoothing	traffic	along	 freeways.		 Barth	and	Boriboonsomsin	utilized	V2I	
communications	to	collect	average	link	speed	and	variation,	and	provide	advisory	speed	for	drivers	
to	reduce	fuel	consumption	and	emissions	[101].		Yang	and	Jin	estimated	advisory	speed	limits	for	
drivers	based	on	the	movements	of	surround	vehicles	with	the	assistance	of	vehicle-to-vehicle	
communications	[102].		Furthermore,	[103-105]	developed	 a	moving-horizon	Dynamic	
Programming	Eco-ACC	system	and	demonstrated	the	potential	benefits	of	this	system.	

Unlike	freeways,	 traffic	stream	motion	on	 arterial	 roads	 is	 typically	interrupted	by	 traffic	
control	devices,	 including	traffic	signals.		Vehicles	are	 forced	to	stop	ahead	of	traffic	signals	when	
encountering	red	indications,	producing	shockwaves	within	the	traffic	stream.	These	shock-waves	in	
turn	result	 in	vehicle	acceleration/deceleration	maneuvers	and	 idling	events,	which	increase	
vehicle	fuel	consumption	and	emission	levels.		Most	research	efforts	have	focused	to	optimizing	
traffic	signal	timings	using	approach	volumes	and	vehicular	queue	lengths	[106,	107].	Recently,	with	
the	introduction	of	vehicle	connectivity	(also	known	as	connected	vehicles),	individual	vehicles	can	
be	controlled	to	reduce	fuel	consumption	and	emission	levels,	i.e.,	Eco-CACC.	Connected	vehicles	
enable	these	vehicles	to	exchange	traffic	information	and	establish	communications	with	traffic	
signal	controllers	to	receive	SPaT	data	and	vehicle	queue	information	[108].	Using	these	data	
vehicle	trajectories	can	be	optimized	to	reduce	fuel	consumption.	

In	the	past	several	years,	environmental	Connected	Vehicle	(CV)	applications	have	attracted	
researchers’	interests.	These	applications	typically	assist	individual	drivers	in	their	travel	along	
signalized	roads	by	computing	fuel-optimum	trajectories.		Mandava	et	al.	and	Xia	et	al.	proposed	a	
velocity	planning	algorithm	based	on	signal	information	to	maximize	the	probability	of	
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encountering	a	green	indication	when	approaching	multiple	intersections	[109,	110].	 The	algorithm	
attempts	to	reduce	fuel	consumption	by	minimizing	acceleration/deceleration	levels	while	
avoiding	complete	stops.	It	should	be	noted,	however,	that	lowering	acceleration/deceleration	levels	
does	not	necessarily	imply	reducing	fuel	consumption	levels.	Asadi	and	Vahidi	utilized	signal	
information	to	design	optimal	cruise	speeds	for	equipped	vehicles	to	minimize	the	probability	of	
stopping	at	signalized	intersection	during	red	indications	[111].	 Malakorn	and	Park	used	SPaT	
information	and	developed	a	cooperative	adaptive	cruise	control	system	to	minimize	absolute	
acceleration	 levels	of	equipped	vehicles	[112].		 Barth	et	 al.	 developed	a	dynamic	eco-driving	
system	for	arterial	roads	that	computes	the	optimum	acceleration/deceleration	levels	to	minimize	
the	total	tractive	power	demand	and	idling	time	so	that	the	fuel	consumption	levels	were	reduced	
[110].	Rakha	and	Kamalanathsharma	constructed	a	dynamic	programming	based	fuel-optimization	
strategy	using	recursive	path-finding	principles,	and	evaluated	it	using	an	agent-based	model	[113-
115].	De	Nunzio	et	al.	used	a	combination	of	pruning	algorithms	and	optimal	control	to	find	the	best	
possible	green	wave	if	the	vehicles	were	to	receive	signal	phasing	information	from	multiple	
upcoming	intersections	[116].	Munoz	and	Magana	developed	a	Smartphone	application	to	evaluate	
the	impact	of	an	eco-driving	assistant	that	maintains	moderate	deceleration/acceleration	behavior	
on	vehicle	fuel	consumption	[117].	

In	[118],	Yang	et	al.	 proposed	an	Eco-CACC	algorithm	based	on	V2I	communication	that	
optimizes	vehicle	fuel	consumption	levels	in	the	vicinity	of	signalized	intersections.	Unlike	other	
algorithms	in	the	literature,	the	algorithm	accounts	for	the	impact	of	surrounding	traffic.	Moreover,	
the	advisory	speed	limits	computed	by	the	algorithm	are	provided	to	vehicles	both	upstream	and	
downstream	of	signalized	intersections,	to	optimize	vehicle	accelerations	downstream	of	an	
intersection.	 This	study	develops	a	simulation	environment	based	on	INTEGRATION	to	assess	the	
benefits	of	the	proposed	Eco-CACC	algorithm.	The	study	first	incorporates	the	proposed	Eco-CACC	
algorithm	in	the	INTEGRATION	software	to	realize	vehicle-to-signal	communications	and	to	estimate	
advisory	speed	limits.	 Subsequently,	a	sensitivity	analysis	is	conducted	to	quantify	the	impact	of	
Eco-CACC	vehicle	market	penetrate	rate	(MPR),	 traffic	signal	timing,	 length	of	control	segments,	
and	demand	levels	on	the	algorithm	performance.	 The	effectiveness	of	the	algorithm	for	different	
intersection	configurations	is	also	investigated.	Finally,	the	limitations	of	the	algorithm	under	some	
extreme	road	and	traffic	conditions	are	examined.	

	
Model	Description	
This	study	attempts	to	assess	 the	environmental	benefits	of	 the	Eco-CACC	algorithm	proposed	in	
[24]	using	the	INTEGRATION	microscopic	traffic	assignment	and	simulation	model.	In	this	section,	
a	brief	description	of	the	proposed	Eco-CACC-Q	algorithm	is	presented.	

The	algorithm	utilizes	SPaT	data	obtained	via	V2I	communication	to	develop	a	fuel-
optimum	vehicle	trajectory	in	the	vicinity	of	signalized	intersections.	The	equipped	vehicles’	
trajectories	are	optimized	by	computing	a	speed	limit	using	the	Eco-CACC-Q	algorithm	and	sending	it	
to	the	equipped	vehicles.	Unlike	the	algorithm	in	[113],	Eco-CACC-O,	which	does	not	consider	queue	
effects,	it	applies	vehicle	queue	length	in	computing	the	fuel-optimum	trajectory.	



60	
	

	
(a)	

	
(b)	

Figure	29:	One	sample	Eco-CACC-Q	controlled	vehicle:	(a)	trajectories,	(b)	speed	profiles	
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As	shown	in	Figure	29	(a),	a	series	of	vehicles	approach	and	attempt	to	proceed	through	an	

intersection.		The	signal	 is	 located	at	position	𝑥!.		 Once	an	equipped	vehicle	enters	 the	 section	
[𝑥!, 𝑥!],	 the	Eco-CACC-Q	algorithm	is	 activated	and	continues	to	be	activated	until	 the	vehicle	
leaves	the	section.		Upstream	of	 the	 intersection,	[𝑥!, 𝑥!],	 when	the	probe	vehicle	is	delayed	by	
the	red	light	or	the	vehicle	queue	ahead,	the	algorithm	estimates	an	advisory	speed	limit,	𝑣!(𝑡),	to	
minimize	the	vehicle	fuel	consumption	over	the	entire	section	[𝑥!, 𝑥!].		The	advisory	speed	limit	
allows	the	vehicle	to	decelerate	at	 a	 constant	deceleration,	𝑎!,	 to	 a	 cruise	speed,	𝑣! ,	 so	 that	 it	
arrives	at	the	tail	of	the	queue	just	when	the	queue	is	dissipated,	𝑡 = 𝑡! ,	or	the	stop	bar	when	the	
signal	turns	to	green,	𝑡 = 𝑡!,	 if	 there	is	no	queue	upstream	of	the	traffic	signal.		Downstream	of	
the	intersection,	[𝑥!, 𝑥!],	the	algorithm	optimizes	the	vehicle	acceleration	from	𝑣! 	to	the	road	speed	
limit,𝑣! 		at	a	constant	level	𝑎!.	 Figure	29	(b)	illustrates	the	trajectory	of	the	vehicle	using	the	Eco-
CACC-Q	algorithm.	 Compared	with	 the	 based	 case	 (black	 line),	 the	 trajectory	of	 the	Eco-CACC-Q	
controlled	vehicle	is	much	smoother,	and	the	stopped	delay	is	avoided	completely.	

The	objective	of	the	Eco-CACC-Q	algorithm	is	to	minimize	the	vehicle	fuel	consumption	over	
the	distance	[𝑥!, 𝑥!].	 In	addition	to	the	shapes	of	the	vehicle	trajectories,	the	algorithm	finds	the	
optimum	upstream	deceleration	level,	𝑎!,	 and	the	optimum	downstream	acceleration	level,	𝑎!	
that	minimizes	the	total	fuel	consumed	while	traveling	over	the	section	[𝑥!, 𝑥!].	The	mathematical	
formulation	of	the	algorithm	can	be	cast	as	

min!!,!! 𝐹(𝑡)!!!!
!!

𝑑𝑡,																																																			(14a)	
s.t.	

𝑣! 𝑡 =

𝑣! − 𝑎!(𝑡 − 𝑡!) 𝑡! ≤ 𝑡 < 𝑡! + 𝛿𝑡!
𝑣! 𝑡! + 𝛿𝑡! ≤ 𝑡 < 𝑡!

𝑣! + 𝑎!(𝑡 − 𝑡!) 𝑡! ≤ 𝑡 < 𝑡! + 𝛿𝑡!
𝑣! 𝑡! + 𝛿𝑡! ≤ 𝑡 ≤ 𝑡! + 𝑇

,																					(14b)	

𝛿𝑡! =
!!!!!
!!

,																																																																																		(14c)	

𝑣!𝛿𝑡! −
!
!
𝑎!𝛿𝑡!! + 𝑣! 𝑡! − 𝑡! − 𝛿𝑡! = 𝑑 − 𝑑!,																														(14d)	

𝛿𝑡! =
!!!!!
!!

,																																																																																		(14e)	

𝑣!𝛿𝑡! +
!
!
𝑎!𝛿𝑡!! + 𝑣! 𝑡! + 𝑇 − 𝑡! − 𝛿𝑡! = 𝑙 + 𝑑!,																									(14f)	
0 < 𝑎! ≤ 𝑎!! ,																																																																												(14g)	
0 < 𝑎! ≤ 𝑎!! .																																																																												(14h)	

Here,	we	define	that	
• 𝐹 (𝑡 ) :	the	vehicle	 fuel	 consumption	at	 any	 instant	t	 computed	using	 the	VT-CPFM	model	
[27];	

• 𝑣! :	the	speed	of	the	vehicle	at	location	xd	;	
• 𝑑 :	the	length	of	the	upstream	control	segment,	[𝑥!, 𝑥!];	
• 𝑙:	the	length	of	the	downstream	control	segment,	[𝑥!, 𝑥!];	
• 𝑇 	:	 the	 time	 duration	 for	 which	 the	 equipped	 vehicle	 travels	 on	 the	 control	 segment,	
[𝑥! , 𝑥!];	

• 𝑡!:	the	time	instant	that	the	vehicle	arrives	at	𝑥!;	
• 𝑡!:	the	time	instant	that	the	traffic	signal	indication	turns	green;	
• 𝑡!:	the	time	instant	that	the	queue	ahead	of	the	subject	vehicle	is	dissipated;	
• 𝛿𝑡!:	the	time	duration	of	the	upstream	vehicle	deceleration	maneuver;	
• 𝛿𝑡!:	the	time	duration	of	the	downstream	vehicle	acceleration	maneuver;	
• 𝑑!:	the	length	of	the	queue	ahead	of	the	probe	vehicle;	
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• 𝑎!! :	the	saturation	deceleration	level;	
• 𝑎!! :	the	saturation	acceleration	level.	

	
Equation	(14b)	demonstrates	that	given	the	traffic	stream	state,	including	queue	length,	

the	start	and	end	times	of	each	traffic	signal	indication,	and	the	approaching	speed	of	the	equipped	
vehicles,	the	speed	profile	varies	as	a	function	of	𝑎!	and	𝑎!.	 The	Eco-CACC-Q	algorithm	finds	the	
two	acceleration	levels	within	the	ranges	defined	in	equation	(14g)	and	equation	(14h)	to	minimize	
the	fuel	consumption	of	the	equipped	vehicle	over	the	entire	control	section.	The	details	of	the	Eco-
CACC-Q	algorithm	are	described	below.	

1. For	 an	 equipped	 vehicle	 k	 that	 enters	 the	 segment	[𝑥!, 𝑥!],	 the	 Eco-CACC-Q	 algorithm	 is	
activated.	

2. Upstream	of	the	intersection	
a. The	 algorithm	 provides	 a	 time-dependent	 desired	 speed	 to	 the	 vehicle’s	 ACC	 sys-	

tem	considering	the	following	two	scenarios;	otherwise,	the	desired	speed	is	set	as	
the	road	speed	limit/free-flow	speed,	𝑣! .	

i. Currently,	 the	 indication	 is	 green;	 however	 the	 indication	will	 turn	 to	 red	
when	the	vehicle	arrives	at	the	stop	bar	if	it	continues	at	its	current	speed.	

ii. Currently,	the	traffic	signal	indication	is	red	and	will	continue	to	be	red	when	
the	vehicle	arrives	at	the	stop	bar	at	its	current	speed.	

b. Once	either	of	 the	scenarios	described	above	occurs,	we	compute	the	queue	 length	
based	 on	 the	 number	 of	 vehicles	 ahead	 of	 the	 equipped	 vehicle,	 and	 estimate	 the	
dissipation	time	of	the	queue,	tc,	based	on	the	speed	of	the	rarefaction	wave.	

c. In	this	study,	we	assume	that	vehicles	in	the	queue	stop	completely,	and	the	density	
along	 the	 queue	 is	 the	 maximum	 road	 density,	 i.e.,	 the	 jam	 density,	𝜌! .	 Once	 the	
traffic	 signal	 indication	 turns	 to	 green,	 the	queue	 is	 released	at	 the	 saturated	 flow	
rate,	𝑞! .	 Hence,	 based	 on	 the	 kinematic	 wave	 model	 [119,	 120],	 the	 speed	 of	 the	
rarefaction	wave	is	𝑣! = !!

!!!!!
.	

d. The	 algorithm	 estimates	 the	 optimum	upstream	 deceleration	 level	 and	 the	 down-	
stream	acceleration	level	using	equation	(14a)	to	minimize	the	total	fuel	consumption	
level	over	the	control	segment,	and	provides	a	desired	speed	to	the	CACC-equipped	
vehicle	to	be	used	over	the	next	time	step	𝑡 + Δ𝑡,	where	Δ𝑡	is	the	updating	interval.	

3. Downstream	of	the	intersection	
The	algorithm	computes	 the	 fuel-optimum	acceleration	 level	 from	 its	 current	speed	 to	the	
roadway	speed	limit		𝑣! 		over	the	roadway	segment	[𝑥!, 𝑥!].	

4. Once	the	equipped	vehicle	arrives	at	position	𝑥! ,	the	algorithm	is	deactivated.	
	

	
Sensitivity	Analysis	
This	section	makes	a	sensitivity	analysis	of	the	proposed	algorithm.	The	analysis	considers	the	
impact	of	the	MPRs	of	the	equipped	vehicles,	the	number	of	lanes	of	the	controlled	segments,	the	
timing	plan	of	the	traffic	signal,	the	length	of	the	control	segments,	and	the	traffic	demand	levels.	
Subsequently,	the	limitations	of	the	algorithm	are	analyzed	and	discussed.	
As	a	starting	point,	a	simple	intersection	is	simulated	(as	shown	in	Figure	29	(a)),	where	vehicles	
are	only	loaded	from	one	origin	and	exit	at	one	destination,	i.e.,	only	one-direction	through	traffic	is	
simulated.	For	the	SPaT	plan,	the	cycle	length	is	set	at	𝐶 = 84	seconds,	and	the	green	and	amber	
durations	are	40	and	2	seconds,	respectively.	For	all	case	studies	below,	we	assume	that	the	speed	
limits	of	all	 roads	are	𝑣! = 50	mph	and	 the	saturation	flow	rates	are	all	𝑞! = 1600	vph/lane.	The	
INTEGRATION	software	is	used	to	model	the	movements	of	individual	vehicles	including	the	control	
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of	CACC-equipped	vehicles,	and	to	quantify	the	network-wide	energy	and	environmental	impacts	of	
the	system.	
	
Impact	of	Market	Penetration	Rates	
In	this	subsection,	the	impact	of	MPRs	of	equipped	vehicles	on	the	network-wide	fuel	consumption	
levels	is	studied.	 Once	an	equipped	vehicle	arrives	within	𝑑 = 500	meters	of	the	intersection,	the	
Eco-CACC-Q	algorithm	is	activated,	and	the	equipped	vehicle	receives	a	desired	speed	based	from	
the	algorithm	that	is	updated	at	every	second.	The	vehicle	continues	to	receive	an	updated	desired	
speed	until	it	travels	a	distance	𝑙 = 200	meters	downstream	of	the	traffic	signal	to	ensure	that	the	
vehicle	acceleration	is	optimized.	

In	this	simulation,	only	single-lane	intersection	approaches	are	initially	considered	to	
ensure	that	all	vehicles	do	not	pass	their	leaders,	so	that	the	Eco-CACC-Q	algorithm	is	not	affected	by	
lane-changing	behaviors.	Moreover,	the	demand	from	the	origin	to	the	destination	is	constant	as	300	
vph	during	the	one-hour	simulation	period.		To	evaluate	the	performance	of	the	proposed	Eco-CACC	
system	for	different	MPRs,	only	a	portion	of	vehicles	are	assumed	to	be	equipped	with	the	system,	
and	other	vehicles	drive	normally	using	the	standard	car-following	models.	Figure	30(a)	illustrates	
the	overall	network-wide	energy	and	environmental	benefits	of	the	Eco-CACC-Q	system	considering	
different	MPRs	(dash-green	line).	The	figure	demonstrates	that	a	higher	MPR	results	in	greater	
savings	in	the	overall	fuel	consumption	level.	Once	all	vehicles	are	controlled	using	the	algorithm,	
savings	in	the	fuel	consumption	as	high	as	19%	are	achievable.	The	savings	come	from	two	aspects:	
(1)	the	fuel	savings	associated	with	the	equipped	vehicles;	(2)	the	non-equipped	vehicles	benefit	by	
following	the	equipped	ones	resulting	in	savings	in	their	fuel	consumption	levels.	

To	quantifying	the	impacts	of	the	Eco-CACC-Q	algorithm,	the	algorithm	performance	was	
compared	to	a	similar	algorithm,	Eco-CACC-O	[21],	which	does	not	consider	vehicle	queues	in	
deriving	the	optimum	vehicle	trajectory.	The	settings	of	Eco-CACC-O	are	the	same	to	the	example	
above.	 Figure	30(a)	demonstrates	that	the	Eco-CACC-O	algorithm	produces	larger	fuel	savings	as	
the	MPRs	increase	(blue-solid	line).	 However,	the	savings	are	smaller	than	those	obtained	from	the	
Eco-CACC-Q	algorithm.		Specifically,	without	considering	the	queue	effects,	the	fuel	consumption	
rate	is	reduced	from	19%	to	approximately	17%.	

	
(a)	
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(b)	

	
(c)	

Figure	30:	ECACC	in	the	simple	intersection:	(a)	fuel	consumption	savings	under	different	MPRs	
with	a	fixed	green	split	(42:84),	(b)	fuel	consumption	under	different	green	splits	with	MPR=20%,	

(c)	fuel	consumption	savings	under	different	green	splits	with	MPR=20%	

	
Algorithm	Performance	on	Multi-lane	Roads	
In	the	aforementioned	subsection,	we	investigated	single-lane	intersection	approaches,	where	lane-
changing	behavior	is	restricted.		However,	in	reality	lane	changes	exist	and	cannot	be	ignored.		In	
this	subsection,	we	apply	both	the	Eco-CACC-Q	and	Eco-CACC-O	algorithms	on	multi-lane	
intersection	approaches,	where	the	links	approaching	and	leaving	the	signal	have	more	than	one	
lane.	Here	we	assume	that	both	links	have	two	lanes,	and	the	demand	is	300	vph/lane.	The	settings	
of	the	two	algorithms	are	the	same	to	the	subsection	above.	

Figure	30(a)	compares	the	energy	benefits	of	both	the	two	algorithms	for	different	MPRs	
under	a	two-lane	intersection.	Unlike	the	single-lane	analysis,	fuel	savings	are	not	always	observed	
for	different	MPRs.	When	the	MPR	is	less	than	30%,	applying	both	algorithms	increases	the	overall	
fuel	consumption	levels.		The	negative	impact	under	low	MPRs	is	caused	by	lane-changing	
behaviors	of	non-equipped	vehicles	on	the	two-lane	roads.	 In	both	algorithms,	equipped	vehicles	
typically	travel	slower	than	the	non-equipped	ones	around	them,	leaving	larger	gaps	ahead.	 Then	
when	the	MPR	is	small,	the	non-equipped	vehicles	can	accelerate	to	pass	equipped	ones	and	cut	into	
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the	gaps	ahead.		These	behaviors	result	in	traffic	oscillations	on	the	roads	as	well	as	increasing	the	
network-wide	fuel	consumption	levels.	 However,	when	the	MPR	is	greater	than	30%,	it	 is	very	
possible	that	two	equipped	vehicles	move	side-by-side	to	block	both	lanes,	restricting	the	non-
equipped	ones	from	passing.	Thus,	the	number	of	lane	changes	is	reduced	significantly.	Both	
algorithms	produce	positive	results	once	the	MPR	is	greater	than	30%.	 If	all	vehicles	are	
controlled,	the	Eco-CACC-Q	algorithm	produces	fuel	savings	as	high	as	19%,	and	the	Eco-CACC-O	
algorithm	produces	savings	of	16%.	Similar	to	the	single-lane	intersection,	the	Eco-CACC-Q	algorithm	
performs	better	than	Eco-CACC-O	algorithm.	
	
Sensitivity	to	Phase	Splits	
The	SPaT	plan	determines	the	split	of	each	phase,	and	the	performance	of	the	intersection	is	highly	
related	to	the	split.	 As	the	Eco-CACC	algorithms	utilize	the	SPaT	information	to	compute	the	
optimum	trajectories	of	equipped	vehicles,	the	impact	of	the	phase	split	has	to	be	carefully	
examined.	In	this	subsection,	a	sensitivity	analysis	of	the	phase	split	is	introduced.	

The	single-lane	intersection	analyzed	in	section	3.1	is	simulated	using	the	same	link	
characteristics	and	Eco-CACC	algorithm	settings.	Vehicles	were	loaded	at	a	rate	of	300	vph,	and	
MPR=20%.	The	phase	split	varied	from	0.3	to	0.7	along	the	road.		Figure	30	(b)	compares	the	
average	fuel	consumption	rates	of	each	vehicle	from	the	base	case	without	control,	Eco-CACC-O,	
and	Eco-CACC-Q	for	different	phase	splits.	The	results	demonstrate	that	for	longer	phase	lengths,	
vehicles	have	a	higher	probability	to	pass	the	intersection	without	experiencing	the	red	indication,	
i.e.,	they	are	less	likely	to	be	stopped	by	the	signal.	Hence,	they	can	travel	smoothly	to	their	
destination	with	less	fuel	consumption.	Regarding	the	savings	in	the	fuel	consumption,	Figure	30	
(c)	shows	that	the	phase	length	does	not	affect	the	algorithm	performance	with	differences	not	
exceeding	1%.		Moreover,	the	comparison	between	Eco-CACC-Q	and	Eco-CACC-O	also	verifies	the	
benefits	of	considering	the	queue.	 For	all	phase	lengths,	Eco-CACC-Q	produces	the	lowest	fuel	
consumption	with	savings	in	the	range	of	1-2%	higher	than	that	for	Eco-CACC-O	control.	

	
Impact	of	Control	Segment	Length	on	Algorithm	Performance	
The	length	of	the	control	segment,	especially	the	upstream	segment	length,	𝑑	is	expected	to	have	a	
significant	impact	on	the	algorithm	performance.		In	this	subsection,	we	conduct	a	sensitivity	
analysis	on	the	impact	of	𝑑	on	the	algorithm	performance	for	the	single-lane	and	two-lane	
intersections.	

First,	the	single-lane	intersection	in	section	3.1	is	simulated	using	the	same	link	
characteristics	and	SPaT	plan.	Vehicles	are	loaded	at	a	rate	of	500	vph.	The	settings	for	the	Eco-CACC-
Q	algorithm	are	 the	 same,	 except	 the	upstream	control	 segment	 length,	𝑑,	 varies	from	200	to	700	
meters.	This	range	is	chosen	based	on	the	effective	distance	of	the	Dedicated	Short-Range	
Communication	(DSRC)	Technology,	which	is	implemented	to	construct	communications	between	
vehicles	and	signals.	 [ 1 2 1 ] 	indicated	that	the	effective	distance	varies	from	10	meters	to	1	km.	
Given	that	the	control	length	cannot	be	very	short.	Hence,	a	range	of	[200,	700]	meters	is	arbitrarily	
selected.	

Figure	31(a)	compares	the	fuel	savings	for	different	control	lengths	for	various	MPRs.	Similar	
to	the	conclusion	in	section	3.1,	with	higher	MPRs,	the	savings	for	different	𝑑’s	are	larger.	Moreover,	
comparing	different	𝑑’s,	we	find	that	the	longer	lengths	results	in	larger	savings.	 At	an	MPR	=	
100%,	700-meter	control	segment	reduces	fuel	consumption	by	as	high	as	18%,	while	for	a	200-
meter	segment	savings	in	fuel	consumption	are	approximately	12%.		The	observation	is	
reasonable	as	the	longer	length	allows	the	CACC	vehicles	to	receive	SPaT	information	earlier,	and	
they	have	longer	time	to	control	their	movements.	 In	addition,	Figure	31(a)	shows	that	when	the	
control	length	is	longer	than	500	meters	the	savings	do	not	improve.	The	study	demonstrates	that	a	
500-meter	segment	is	sufficiently	long	to	achieve	the	desired	benefits.	
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(a)	

	
(b)	

Figure	31:	Fuel	consumption	savings	for	different	control	lengths:	(a)	single-lane	intersection,	(b)	
two-lane	intersection	

In	the	second	example,	the	two-lane	intersection	in	Section	3.2	is	simulated.	 T h e 	 link	
characteristics	and	the	settings	of	the	Eco-CACC-Q	algorithm	are	kept	the	same	with	only	changes	
in	the	upstream	control	segment.		Vehicles	are	loaded	at	a	rate	of	500	vph/lane.	 Figure	31(b)	
compares	the	fuel	consumption	savings	for	different	control	lengths	for	different	MPRs.	 For	low	
MPRs	(<	30%),	the	algorithm	produces	negative	effects	on	fuel	consumption	due	to	intense	lane	
changing	around	the	controlled	vehicles.	With	a	longer	control	length,	regular	vehicles	are	able	to	
pass	more	equipped	vehicles,	and	thus	the	frequency	of	lane	changes	is	higher.	Consequently,	as	the	
control	length	increases,	the	algorithm	results	in	increased	overall	fuel	consumption	levels.		While,	
for	high	MPRs	(≥	30%),	the	controlled	vehicles	are	able	to	force	the	regular	vehicles	to	follow	them	
given	that	the	regular	vehicles	have	less	opportunities	to	maneuver	around	them.	Hence,	the	benefits	
of	the	algorithm	are	similar	to	those	for	the	single-lane	intersection.	 The	fuel	savings	are	similar	
when	the	length	is	longer	than	500	meters.	 At	MPR	=	100%,	the	500-meter	control	segment	can	
reduce	fuel	consumption	by	as	high	as	18%,	while	for	the	200-meter	segment	the	fuel	savings	are	
only	11%.	



67	
	

	
Impact	of	Traffic	Demand	Level	
In	the	evaluation	of	the	Eco-CACC-Q	algorithm,	the	impact	of	demand	levels	should	be	carefully	
studied,	as	they	are	directly	related	to	the	number	of	equipped	vehicles	controlled	and	the	
performance	of	the	network.	 This	subsection	deals	with	the	sensitivity	of	demands	on	the	energy	
and	environmental	benefits	of	the	algorithm	under	a	single-lane	and	a	multi-lane	intersection.	
First,	the	single-lane	intersection	in	Section	3.1	is	simulated	using	the	same	link	characteristics,	
the	SPaT	plan,	and	the	Eco-CACC-Q	algorithm	settings.	 However,	the	demand	level	varies	from	300	
to	700	vph.	Figure	32	(a)	illustrates	the	savings	in	fuel	consumption	as	a	function	of	the	demand	
level.	The	results	indicate	that	for	the	given	settings	of	control	length	and	phase	split,	the	algorithm	
can	obtain	the	highest	savings	in	fuel	consumption	for	a	specific	demand	as	a	function	of	the	MPR.	In	
this	example,	loading	vehicles	at	a	rate	of	500	vph	can	achieve	the	lowest	fuel	consumption,	i.e.,	the	
greatest	saving.	

	

	
(a)	

	
(b)	

Figure	32:	Fuel	consumption	savings	for	different	demand	levels:	(a)	single-lane	intersection,	(b)	
two-lane	intersection	
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The	second	example	entails	modeling	the	two-lane	intersection	defined	in	Section	3.2.	The	

link	 and	 Eco-CACC-Q	 algorithm	 parameters	 are	 kept	 the	 same,	 however	 the	 demand	 varies	 from	
300	to	700	vph/lane.		Figure	32	(b)	illustrates	the	savings	in	fuel	consumption.		As	was	observed	in	
Section	3.2,	for	lower	MPRs	the	algorithm	produces	negative	fuel	consumption	impacts.	With	higher	
demands,	 the	 algorithm	 generates	 more	 fuel	 consumption,	 and	 needs	 a	 larger	 MPR	 to	 obtain	
positive	 benefits.	 This	 is	 intuitively	 ture,	 as	 larger	 demands	 result	 in	 more	 vehicles	 traveling	
simultaneously	on	the	control	segment.	 	Hence,	more	non-equipped	vehicles	produce	 increases	 in	
lane	changes,	and	it	is	more	difficult	for	the	controlled	vehicles	force	the	non-equipped	ones	to	
follow	 them.	 In	 the	 case	 of	 high	 MPRs	 (>	 50%),	 the	 conclusion	 is	 similar	 to	 the	 first	
example.	 Loading	vehicles	at	the	rate	of	600	vph	can	achieve	the	lowest	fuel	consumption	
level.	

	
Algorithm	Shortcomings	
In	the	development	of	the	Eco-CACC-Q	algorithm,	one	critical	assumption	is	that	the	studied	
network	should	not	be	over-saturated;	otherwise,	the	estimation	of	queue	length	is	not	accurate.	In	
that	sense,	the	advisory	speed	limits	cannot	control	the	behavior	of	probe	vehicles	appropriately	to	
minimize	their	fuel	consumption	levels.	In	this	subsection,	we	simulate	the	single-lane	intersection	
defined	in	Section	3.1	to	demonstrate	this	limitation.	

The	link	parameters,	the	SPaT	plan,	and	the	Eco-CACC-Q	algorithm	parameters	are	kept	the	
same	 in	 the	 simulation	runs.		 Vehicles	 are	 loaded	at	 a	 rate	 of	 800	 vph,	which	 is	 greater	than	the	
actual	capacity	of	the	control	segment,	and	thus	results	in	over-saturated	delay.	Figure	33	shows	the	
vehicular	trajectories	around	the	intersection	before	and	after	applying	the	Eco-CACC-Q	algorithm,	
where	the	signal	is	located	at	𝑥 =	2000	meters.	From	Figure	33	(a),	the	queues	upstream	of	the	
signal	are	very	long,	and	some	vehicles	in	queue	have	to	wait	for	two	or	three	cycles	to	proceed	
through	the	intersection.	This	demonstrates	that	they	experience	more	than	one	stop-and-	go	
maneuver.	 Figure	33	(b)	shows	the	trajectories	of	all	vehicles	when	MPR=20%.	Clearly,	we	see	once	
the	queue	is	not	dissipated	by	the	next	green	interval,	the	algorithm	fails	at	providing	appropriate	
desired	speeds	to	the	equipped	vehicles.	

There	are	two	major	causes	of	the	problem.		First,	when	the	road	is	over-saturated,	the	
queue	might	not	be	dissipated	during	a	single	green	indication.	Subsequently,	in	the	next	cycle,	the	
unreleased	queue	is	not	formed	at	the	stop	bar,	located	at	position		𝑥!;	instead,	it	is	rolls	between	the	
intersection	and	the	starting	point	of	the	control	segment,	𝑥!.	 Thus,	the	queue	estimation	method	
based	on	the	kinematic	wave	model	proposed	in	[118]	cannot	update	the	queue	length	correctly	
based	on	the	instantaneous	traffic	information	collected	by	the	loop	detectors.		Unless	historical	
road	conditions	are	provided,	the	estimation	cannot	be	accurate.	 Second,	the	algorithm	assumes	
that	controlled	vehicles	only	perform	deceleration	upstream	of	the	traffic	signal,	and	they	enter	the	
segment	with	a	high	speed	(such	as	the	road	speed	limit).	But,	the	rolling	queue	generates	several	
stop-and-go	waves	on	the	control	segment,	which	prevents	the	equipped	vehicles	from	
maintaining	the	recommended	speed	estimated	by	the	algorithm.		When	they	enter	the	rolling	
queue,	they	will	slow	down	and	maintain	a	low	speed	even	there	is	a	large	gap	ahead	(see	black	
box	in	Figure	33	(b)).		These	two	causes	can	be	eliminated	when	vehicle-to-vehicle	
communications	are	introduced.	 With	the	assistance	of	the	technology,	the	queue	length	can	be	
updated	in	real-time,	and	the	stop-and-go	behavior	can	be	identified.	 The	algorithm	also	has	to	be	
updated	to	reflect	that	fact	that	the	vehicle	will	stop	multiple	times.	
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(a)	

	

(b)	

Figure	33:	Vehicular	trajectories	under	an	over-saturated	intersection:		

(a)	base	case,	(b)	Eco-CACC-Q	

	
Evaluation	OF	ECO-CACC-Q	
In	the	aforementioned	sections,	only	one	approach	to	an	intersection	is	simulated.	In	reality,	
vehicles	can	pass	through	the	intersection	from	typically	four	approaches	(see	Figure	34	(a)).		In	
this	section,	a	comprehensive	simulation	analysis	is	conducted	considering	a	four-legged	
intersection,	and	examines	the	energy	efficiency	of	the	Eco-CACC-Q	algorithm.		
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(a)	

	
Figure	34:	Four-legged	intersection:	(a)	configuration,	(b)	savings	in	fuel	consumption	

	
Figure	34	(a)	 illustrates	the	configuration	of	the	simulated	intersection,	where	vehicles	 are	

loaded	 from	 four	origins,	 {1,	2,	3,	4},	 and	 travel	 to	 the	 remaining	three	destinations,	{5,	6,	7,	8}.	
The	speed	limits	of	all	roads	are	𝑣! = 50	mph,	and	their	capacities	are	𝑞! 	=	1600	vph/lane.	 The	
length	of	the	upstream	control	segment	for	the	major	roads	(1	and	3	to	the	signal)	is	set	at	500	
meters,	and	for	the	minor	roads	(2	and	4	to	the	signal)	at	300	meters.	 All	downstream	control	
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segments	are	set	as	200	meters.	 The	deceleration	and	acceleration	rates	are	3	m/s2	 and	2	m/s2,	
respectively.		
	

Table	13:	Simulation	setting	of	the	four-legged	intersection	

	
Origin	 Destination	 Movement	 Demand	(vph)	 Green	+	Amber:	Cycle	(second)	
1	 5	 Through	 1000	 72:113	
1	 6	 Left	 150	 12:113	
2	 6	 Through	 50	 12:113	
2	 7	 Left	 150	 17:113	
3	 7	 Through	 1000	 72:113	
3	 8	 Left	 150	 12:113	
4	 8	 Through	 50	 12:113	
4	 5	 Left	 150	 15:113	

	
Table	13	shows	the	simulation	settings,	the	demand,	and	SPaT	plan	used	in	the	simulation	

(To	simplify	the	simulation,	the	right-turn	demands	are	ignored).	As	demonstrated	in	the	table,	the	
through	traffic	on	the	major	roads	is	as	high	as	1000	vph,	and	on	the	minor	roads	the	left-turn	
volumes	are	higher	than	the	through	volumes.	Figure	34	(b)	illustrates	the	savings	in	fuel	
consumption	of	all	vehicles	traveling	through	the	intersection.	As	the	through	traffic	on	the	major	
road	is	very	high,	the	benefits	of	the	algorithm	should	mainly	be	determined	by	the	equipped	
vehicles,	and	the	results	are	similar	to	the	example	presented	in	Section	3.2.	As	was	the	case	
earlier,	for	lower	MPRs	(<	25%),	the	algorithm	results	in	an	increase	in	the	overall	fuel	
consumption.	As	long	as	the	MPR	is	greater	than	25%,	the	algorithm	imparts	positive	benefits	to	
the	network.	Once	all	vehicles	are	equipped,	the	fuel	consumption	can	be	reduced	by	as	much	as	25%. 
 

CONCLUSIONS	AND	RECOMMENDATIONS	
The	study	investigates	the	eco-routes	and	route	choice	behaviors	under	connected	vehicle	
environment.	In	particular,	the	study	demonstrates	the	various	conceptual	development	for	an	eco-
routing	system	which	includes	an	individual	route	choice	behavior	model,	travel-time	or	delay	
prediction	model,	Vehicular	Network	Integrated	Simulator,	ant	colony	based	eco-routing	method,	
and	Eco-Cooperative	Adaptive	Cruise	Control.		

A	data-driven	method	is	developed	and	tested	for	predicting	travel	times	or	speeds	under	
incident	scenarios.	Given	the	availability	of	large	datasets	for	incidents	and	travel	times,	such	methods	
hold	a	strong	promise	to	yield	predictions	with	reasonable	accuracy.	The	proposed	data-driven	
method	is	tested	with	the	archived	incident	and	travel	time	data	collected	in	2013	at	the	Hampton	
Roads	Bridget	Tunnel	(HRBT)	in	Hampton	Roads,	VA.	Travel	times	are	predicted	for	5	to	30	minutes	
into	the	future	in	reference	to	the	start	time	of	an	incident.	The	results	demonstrate	that	the	
prediction	errors	are	relatively	small.	Mean	Absolute	Percentage	Errors	(MAPEs)	are	in	the	4	to	7%	
range.	The	predicted	travel	times	or	speeds	can	be	used	as	an	input	in	the	fuel	consumption	and	speed	
relationships	to	predict	fuel	consumption	in	the	downstream	on	alternative	routes.	The	route	with	the	
least	fuel	consumption	can	be	recommended	to	the	driver	to	minimize	CO2	emissions.	However,	for	
these	predictions	to	be	reliable	a	strong	correlation	between	average	speeds	and	fuel	consumption	is	
needed.	The	results	show	that	while	for	relatively	low	average	speeds	(e.g.,	less	than	20	mph)	such	
relationship	can	be	established,	for	higher	speeds	there	is	a	significant	scatter	in	this	relationship.	
This	makes	reliable	fuel	consumption	prediction	a	challenge.	
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This	study	also	addressed	the	heterogeneity	issue	existing	in	traditional	perspective	of	route	
choice	behavior	modeling	and	improved	the	performances	of	route	choice	behavior	model	by	
establishing	individual	route	choice	behavior	models.	With	more	and	more	data	communicating	and	
processing	technologies	emerging	nowadays	(i.e.,	GPS,	connected	vehicles,	smart	phone,	etc.),	it	is	
feasible	to	collect	personal	route	choice	behavior	data	and	to	use	them	for	calibrating	his/	her	own	
route	choice	behavior	either	remotely	or	locally.	A	stated	preference	survey	was	designed	and	
conducted	among	28	participants.	Individual	route	choice	model	for	every	participant	and	aggregated	
route	choice	models	were	established	with	three	methods:	Binary	Logit	model,	NN	and	SVM.	Models’	
performances	are	tested.	It	is	concluded	that	with	all	three	methods	the	individual	route	choice	
behavior	models	outperform	the	aggregated	ones	with	4.3%	to	12.2%	higher	prediction	accuracy.	
The	higher	prediction	accuracy	of	the	individual	route	choice	behavior	models	is	expected	to	be	even	
higher	than	the	aggregated	model	when	applied	in	a	more	heterogeneous	population	than	the	sample	
used	in	this	study.	Furthermore,	when	the	individual	route	choice	behavior	models’	performances	are	
compared	among	three	methods,	SVM	showed	significantly	better	performance	than	the	other	two	
methods.	

While	this	study	proposed	a	new	approach	to	address	the	heterogeneity	issue	existing	in	the	
route	choice	behavior	modeling	using	Binary	Logit,	NN	and	SVM,	additional	methods	could	be	
explored	to	find	the	one	works	better	than	SVM	in	the	individual	route	choice	behavior	modeling.	
These	include	decision	tree,	fuzzy	logic	and	hybrid	model,	etc.	In	addition	to	these	methods,	another	
important	issue	can	be	considered	in	the	modeling	is,	for	example,	driver’s	experience.	In	practice,	
more	influencing	factors	can	be	included,	for	example,	familiarity,	trip	purpose,	and	weather.	The	
individual	model	can	also	be	updated	as	additional	route	choice	data	are	obtained.		

An	important	application	of	the	individual	route	choice	behavior	model	is	traffic	assignment	
under	traffic	information	provision.	Existing	route	choice	models	in	traffic	assignment	usually	treat	
users	as	homogeneous	population	multiple	classes	of	users	or	assuming	certain	distribution.	The	
possibility	of	utilizing	individual	route	choice	behavior	model	within	traffic	assignment	framework	
should	be	explored	in	a	future	research.	Improvement	of	prediction	accuracy	for	each	individual	
driver	in	the	system	can	finally	aggregately	improve	the	prediction	accuracy	of	the	whole	system	
condition.	

The	study	also	presented	VNetIntSim,	an	integrated	platform	for	simulating	and	modeling	
vehicular	networks.	VNetIntSim	integrates	a	transportation	simulator	(INTEGRATION)	with	a	data	
communication	network	simulator	(OPNET	modeler).	Results	obtained	from	the	simulation	scenarios	
are	realistic	and	consistent	with	protocol	behavior.	VNetIntSim	has	the	capability	to	fully	simulate	the	
two-way	interdependency	between	the	transportation	and	communication	systems,	which	is	
necessary	for	many	applications.	In	addition	it	provides	the	power	of	both	simulators	to	study	global	
network	parameters	as	well	as	very	detailed	parameters	for	each	system	at	a	microscopic	level	
considering	a	0.1	second	granularity.		

Subsequently,	the	VNetIntSim	modeler	is	used	to	quantify	the	effect	of	mobility	parameters	on	
the	communication	performance.	The	results	show	that	the	effect	of	vehicle	density	is	of	higher	
significance	than	that	of	the	speed.	More	specifically,	the	higher	speed	results	in	a	lower	drop	ratio	
and	lower	jitter	due	to	the	lower	traffic	stream	density.		

Proposed	future	work	entails	enhancing	the	model	scalability	by	creating	a	vehicle	module	
with	the	necessary	sub-modules.	Further	work	entails	implementing	the	DSRC	module	in	the	OPNET	
modeler.		The	most	important	future	work	is	to	implement	some	ITS	applications	such	as	speed	
harmonization,	eco-driving,	congestion	avoidance	and	vehicle	routing.	A	study	of	the	effect	of	quality	
of	services	and	different	routing	mechanisms	on	the	performance	of	the	transportation	system	and	
services	offered	for	both	users	and	vehicles	is	also	warranted.	

Further,	the	study	proposes	an	ACO-ECO	traffic	assignment	technique	that	is	inspired	from	
the	ant	colony	optimization	algorithm.	ACO-ECO	attempts	to	enhance	the	SPF-ECO	algorithm	that	is	
currently	implemented	in	the	INTEGRATION	software.	These	enhancements	include	cases	in	which	
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the	links	are	blocked	or	no	vehicles	traverse	the	link.		ACO-ECO	employs	the	ant	colony	techniques	to	
minimize	the	fuel	consumption	and	emission	levels.	It	uses	the	route	construction	to	build	routes	and	
assign	them	to	vehicles,	it	also	applies	pheromone	deposition	and	pheromone	evaporation	to	update	
the	route	link	costs.	These	ant	colony	techniques	are	customized	to	be	suitable	for	transportation	
networks.	In	the	case	of	normal	operation,	the	ACO-ECO	performance	is	similar	to	the	SPF-ECO.	While	
for	link	blocking	scenarios,	the	ACO-ECO	reduces	the	fuel	consumption,	average	trip	time,	stopped	
delay,	and	most	of	the	emission	levels.	An	important	advantage	of	the	ACO-ECO	is	its	flexibility;	where	
its	parameters	(error	factor,	maximum	updating	time,	maximum	updating	distance,	and	evaporation	
interval)	can	be	tuned	in	order	to	achieve	better	performance.	The	fine	tuning	and	testing	of	these	
parameters	are	an	important	future	extension	of	the	work	presented.		

Another	future	research	is	to	study	the	effect	of	each	of	the	new	updating	methods	on	the	
network	traffic	and	studying	the	trade-off	between	the	reduction	in	the	fuel	consumption	and	
emission	levels	and	the	communication	network	traffic	load.	The	market	penetration	rate	is	an	
effective	and	important	parameter	that	should	be	studied.	Also,	it	is	important	to	study	the	effect	of	
the	communication	network	on	the	ACO-ECO	performance.	

The	study	also	presents	the	results	of	an	evaluation	of	an	Eco-CACC-Q	algorithm	using	the	
INTEGRATION	simulation	software.	The	algorithm	uses	SPaT	data	received	from	the	traffic	signal	
controller	via	V2I	communication	and	predicts	the	expected	queue	at	the	approach	to	compute	a	fuel-
optimum	vehicle	trajectory	both	upstream	and	downstream	the	signalized	intersection.	The	
algorithm	provides	desired	speed	estimates	to	ACC-equipped	vehicles.	The	study	presents	a	
comprehensive	sensitivity	analysis	to	quantify	the	environmental	benefits	of	the	algorithm	in	
reducing	fuel	consumption	levels.		The	simulation	of	a	single-lane	intersection	indicated	that	with	
higher	MPRs	of	equipped	vehicles,	the	fuel	consumption	savings	were	greater.	When	all	vehicles	were	
equipped	with	the	Eco-CACC-Q	algorithm,	the	overall	fuel	consumption	was	reduced	by	as	high	as	
19%.	While,	the	results	on	multi-lane	intersections	were	different	due	to	intense	lane-changing	
behaviors	around	equipped	vehicles	resulting	in	increased	overall	fuel	consumption	levels	for	MPRs	
less	than	30%.		Only	when	the	MPR	was	greater	than	30%,	could	positive	benefits	be	achieved;	and	
with	higher	MPRs,	the	benefits	increased.	Moreover,	the	comparison	of	Eco-CACC-Q	and	Eco-CACC-O	
algorithms	demonstrated	that	considering	the	impact	of	vehicle	queues	ahead	of	traffic	signals	
enhanced	the	algorithm	performance.	

The	study	further	demonstrated	that	for	longer	phase	lengths	the	overall	fuel	consumption	
was	reduced.	However,	the	phase	length	had	a	minimum	impact	on	the	algorithm	performance.	In	
addition,	the	results	indicated	that	the	fuel	consumption	savings	increased	with	an	increase	in	the	
control	length,	with	a	500-meter	control	segment	providing	the	highest	fuel	consumption	savings.	
Finally,	in	the	case	of	a	four-legged	intersection	the	Eco-CACC-Q	algorithm	reduced	the	network-	wide	
fuel	consumption	by	as	high	as	12.5%.	

The	current	algorithm	is	not	designed	to	deal	with	over-saturated	conditions.		There	are	
two	potential	solutions	for	this	drawback.		First,	 through	V2V	communication	a	better	estimate	of	
vehicle	queues	could	be	achieved.	Second,	the	introduction	of	speed	harmonization	could	be	used	
to	restrict	traffic	entering	intersections	to	ensure	that	the	traffic	signal	does	not	become	
oversaturated.	 Alternatively,	the	green	driving	algorithm	could	be	used	to	mitigate	the	impact	of	
stop-and-go	waves.	Currently,	the	algorithm	only	minimizes	fuel	consumption	of	vehicles	crossing	a	
single	intersection.	 Further	enhancements	would	entail	extending	the	logic	to	consider	multiple	
intersections.	 Finally,	the	algorithm	could	be	tested	considering	other	factors,	including:	road	
capacity,	speed	limit,	vehicle	composition,	and	road	grade.	
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