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EXECUTIVE SUMMARY 
To support improved port operations, three different aspects of multimodal freight distribution 
are investigated: (i) Efficient load planning for double stack trains at inland ports; (ii) 
Optimization of a multimodal network for environmental sustainability; and (iii) Fuel 
consumption and emissions models for heavy duty diesel trucks. The report includes three major 
sections describing these three aspects.  

Decisions on the loading order for double stack trains are difficult to make, especially when a 
human operator has to decide quickly which slot a container should fill. In this project, we 
examine the loading of containers on a double stack train at an inland port that is destined for a 
seaport. Particularly, we develop a model to support the assignment of containers to rail cars, in 
order to maximize the utilization of the available space on the train. Not only is this critical from 
a resource utilization perspective, but it is particularly important for an inland port that typically 
has limited space for container storage (i.e., getting as many containers out of the yard per train 
is important) and limited rail tracks (i.e., inland ports can service a limited number of trains per 
day). The overall problem is formulated as a mathematical optimization problem where two 
types of containers are considered: 20 and 40 foot containers. In the problem formulation, the 
weight capacity restrictions of the railcars are enforced. A case study with various scenarios is 
presented to show how maximum utilization rate is affected as the distributions of container 
weights and types are varied.  

In the second section, a multimodal freight dispatching tool is proposed. The highlights of this 
new dispatching tool include that (i) environmental costs are considered in addition to the 
transportation costs to support environmentally conscious decisions; (ii) all three types of 
economies — economies of scale for quantity (EOQ), economies of scale for vehicle size (EOVS) 
and economies of scale for distance (EOD) — are incorporated; (iii) ensures system optimal 
dispatching solution; (iv) easy to use for practitioners. The proposed model was evaluated in 
terms of total cost, transportation cost and environmental cost. Sensitivity analysis was 
conducted with regard to various demands, and the results prove that the proposed model 
outperforms both the state-of-the-art model and the comparison model which combines the state-
of-the-art model with environmental consideration. The proposed model saves cost up to 6.3% 
over the comparison model and up to 21.3% over the state-of-the-art model, which varies based 
on demand. Detailed investigation revealed that the proposed model has no adverse effect on 
both transportation cost and environmental cost.  

In the third section, fuel consumption and emissions models for heavy duty diesel vehicles 
(HDDVs) are developed and tested. Heavy-duty vehicles (HDVs) are the second largest source 
of greenhouse gas (GHG) emissions and energy use within the transportation sector even though 
they represent only a small portion of on-road vehicles. Heavy-duty diesel vehicles (HDDVs) 
emit around half of on-road nitrogen oxide (NOx) emissions. The majority of microscopic 
emission models suffer from two major limitations: they result in a bang-bang control system, 
and the calibration of model parameters is not viable using publicly available data. The Virginia 
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Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) is extended to 
overcome those two shortcomings to predict HDDV emissions for carbon monoxide (CO), 
hydrocarbons (HCs), and nitrogen oxides (NOx). Due to a lack of publicly available data, field 
measurements are used for model development. The model is calibrated for each individual truck 
and validated by comparing model estimates against in-field measurements as well as CMEM 
and MOVES model estimates. The results demonstrate that the model should be restricted to be 
convex, although empirical measurements do seem to point to a concave function of vehicle 
power, in order to provide realistic driving recommendations from the system perspective. The 
convex model is demonstrated to estimate fuel consumption levels consistent with in-field 
measurements as well as CMEM and MOVES, without significantly sacrificing the model 
accuracy. The optimum fuel economy cruise speed ranges between 32-52 km/h for all of the test 
vehicles varying the grade level from 0% to 8%, and moves towards the negative direction with 
an increase in the vehicle load and grade level; namely, steeper roadway grades and heavier 
vehicles result in lower optimum cruise speeds. The fuel predictions of the model can accurately 
estimate CO2 emissions, which are demonstrated to be consistent with field measurements.  
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I. LOAD PLANNING IN DOUBLE STACK TRAINS FOR IMPROVED EFFICIENCY  
PROBLEM STATEMENT 
Double stack trains are the most common means of rail transport in the United States. With a 
depressed platform, each well car can carry double-stacked containers while maintaining centers 
of gravity within acceptable heights. Double stack trains revolutionized intermodal transport of 
containers in the United States.  The innovative double stack service was first introduced by 
Southern Pacific Railroad in 1977, and it became adopted by American President Lines in 1984 
to improve the efficiency of container transport from Los Angeles to Chicago. Double stack 
trains rapidly replaced Trailer on Flat Car (TOFC) and Container on Flat Car (COFC) because of 
its higher efficiency, and they became the most popular type of rail transport for containers in 
North America. Other countries, such as Australia, China, India, and Panama have adopted 
double stack trains as well. 

Double stack trains are used at inland ports as well. An inland port (also known as dry 
port in other countries in the world) is “an intermodal inland terminal directly connected to a 
seaports with high capacity transport means, where customers can leave/pick up their 
standardized units as if directly to a seaport” [1].“The concept of the dry port is based on a 
seaport directly connected by rail with inland intermodal terminals, where shippers can leave 
and/or collect their goods in intermodal loading units as if directly at the seaport” [2]. 

In addition to providing transshipment cargo service, a dry port may also provide other 
such cargo services as storage, consolidation and customs clearance as well as vehicle services 
such as vehicle repair and maintenance. In China, “customs clearance is the core function of dry 
ports” [3]. “Dry ports have been widely implemented worldwide: typical examples including 
Eskilstuna Dry Port in Sweden, Kansas City and Virginia Inland Port in US, Isaka Dry Port in 
Tanzania and Xian Dry port in China” [4].       

Inland ports are special from a rail load planning perspective in the sense that there is 
only one destination, i.e. the seaport, for its outbound (double stack) trains. In this study, we 
examine the loading of containers on a double stack train at an inland port that is destined for a 
seaport. Particularly, we develop a model to support the assignment of containers to rail cars, in 
order to maximize the utilization of the available space on the train. Not only is this critical from 
a resource utilization perspective, but it is particularly important for an inland port that typically 
has limited space for container storage (i.e. getting as many containers out of the yard per train is 
important) and limited rail tracks (i.e. inland ports can service a limited number of trains per day).  
RESEARCH APPROACH 

While research exists on loading single stack rail cars, limited work has been done for 
double stack trains.  Below is a summary of a sample of research in this area.  

A Decision Support System to Load Containers to Double-Stack Rail Cars[5] 
Decisions on the loading order for double stack trains are difficult to make, especially when a 
human operator has to decide quickly which slot a container should fill.  The quality of such 
decisions tends to be low because of the uncertainties about the exact order and characteristics of 
incoming containers.  Although it is possible to postpone the loading of double stack trains until 
all of the containers have arrived, the extra amount of time and space spent on double-handling 
containers make this option unattractive.  The decision support system, Double Stack Planner 
(DSP), described in this paper incorporates information on incoming containers.  Thus, it can 
assist the human operator in assigning containers to appropriate slots in an efficient fashion that 
evenly distribute weight along the train while maintaining the lowest possible centers of gravity. 
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 DSP includes statistical constraints developed through on-site observations and various 
interviews with subject matter experts.  In addition to the weight limit and height clearance, DSP 
particularly suggests assigning 20-foot or heavy 40-foot containers to the bottom and light 40-
foot containers to the top.   An even weight distribution is an important safety feature because 
derailment is more likely when the weight of the train is concentrated to the latter cars in the 
train.  The goal of DSP, according to the article, is to load double stack trains in a way “that 
maximizes the load factor and minimizes the center of gravity and variations in truck and 
platform loads.”  DSP also has the flexibility to allow users to override the system’s suggestion 
as long as there is no violation to the programmed constraints.    
 Simulation using DSP under various scenarios show positive results.  Reserving slots for 
20-foot containers increases the load factor and utilization of rail car.  Additionally, the 
prioritization of loading heavier containers on the bottom can ensure lower and more uniform 
center of gravity.  Therefore, DSP has the capability to achieve the goal of lowering the center of 
gravity, increasing load factor, and reducing variations in truck and platform loads.  However, 
the load factor could decrease if many containers on the bottom are overly heavy, which limits 
the number of containers that can be loaded on the top due to rail car’s weight capacity. 

Loading Containers on Double-Stack Cars:  Multi-objective Optimization Models and 
Solution Algorithms for Improved Safety and Reduced Maintenance Cost [6] 
This study develops a model of loading double stack trains that optimizes the height of the center 
of gravity and load balance.  The variability in double stack trains’ relatively high center of 
gravity causes safety concerns, especially when trains take corners.  From a horizontal 
perspective, if the center of gravity is concentrated to one end of a rail car, the other end becomes 
more susceptible to the dynamic forces while the train travels at high speed.  These factors cause 
excessive stress that damages trains and rail tracks at the minimum, and perhaps even derailment.  
Therefore, balancing the center of gravity can improve operational safety and reduce 
maintenance costs. 
 Maintaining low centers of gravity and balancing weight distribution are a challenging 
goal.  Although rail operators have created rules for loading double stack trains, these rules are 
too simplistic considering the random nature of the loading process.  The optimization model 
described in this paper can help rail operators achieve the goal with a sophisticated method.  The 
inputs to this model—the payload of rail car, height of the center of gravity, and difference 
between the loads of two rail cars—are based on conditions in China.  For example, only 
Interbox Connector (IBC) rail cars with 20-foot and 40-foot containers are considered—
bulkhead cars and other container sizes are not included because they are not used in China. 
However, the model can be easily adjusted for the requirements of other countries. 
 The optimization model includes three objectives with priorities in the following order:  
maximizing the load, lowering the center of gravity, and balancing the loads.  The authors of this 
paper are able to obtain optimal solutions using three different approaches.  However, a two-
stage heuristic algorithm is identified as the best approach. The first stage involves matching 
pairs of 20-foot containers with 40-foot containers to form an initial solution.  In the second 
stage improvement is made to the initial solution by switching the positions of containers.  This 
approach requires the least amount of computation time; thus, it has the highest practical value.   

Optimizing the Aerodynamic Efficiency of Intermodal Freight Trains[7] 
This article focuses on the method of loading intermodal trains that maximizes fuel efficiency by 
reducing aerodynamic drag.  Intermodal trains suffer from very high air resistance due to the 
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loads and design of rail car.  For example, an intermodal train has 25% higher aerodynamic drag 
coefficient than a fully loaded coal train.  The high air resistance when travelling at high speed—
typically 70 mph—greatly reduces the fuel efficiency of intermodal trains.  Previous research has 
found that air resistance can be decreased by 27% by improving the assignment of loads to cars, 
which reduces fuel consumption by 1 gallon per mile.  An Aerodynamic loading assignment 
model (ALAM) is developed in this paper to assist rail operators in assigning containers to slots 
more efficiently.  The model can be applied to all types of intermodal load and rail car. 
 The model is developed based on the route of BNSF Railway between Los Angeles and 
Chicago.  Only about 20 percent of trains travelling on this route make one or two intermediate 
stops that are close to destinations; therefore, the authors consider the effect on aerodynamic 
performance based on only the initial loading pattern.  This study is different from the other two 
as it takes into account not only double stack trains, but also spine-cars that have one slot per unit.  
The model includes two factors that affect aerodynamics:  containers’ positions in train and the 
length of gap between loads. 
 Aerodynamic drag increases when the gap between loads becomes larger.  Furthermore, 
the result of wind tunnel tests indicates that aerodynamic drag declines continuously from the 
lead locomotive to the 10th car, from which point onward drag becomes almost constant.  The 
authors address this phenomenon by introducing the concept of “total adjusted gap length 
(TAGL)”—gap length weighted by its relative position.  Gaps in the front of the train are 
weighed more heavily than gaps in the back.  For double stack trains only the upper level gap is 
considered.  Therefore, the objective of ALAM is to assign loads with shorter gaps in the front of 
the train in order to minimize the TAGL.  The algorithm of ALAM requires reasonably short 
amount of computation time; therefore, it can be used in real-world rail operations. 
 Several scenarios with various types of trains and containers are taken into account.  
When the number of containers equals the number of slots, double stack trains carrying domestic 
containers have the greatest potential for improvement in reducing TAGL.  If the number of 
containers exceeds the number of slots, only double stack trains carrying international containers 
show little potential for improvement.  However, if the number of containers is less than the 
number of slots, then all configurations show great potential for improvement because the 
calculation of TAGL ignores empty rail cars.  In this scenario, the authors recommend loading 
all containers in the front of the trail while removing all empty units from the end.  In general, 
assigning loads to TOFC and COFC presents the greatest opportunity to reduce TAGL and fuel 
consumption.  By contrast, ALAM adds little benefit to assigning 20-foot and 40-foot 
international containers to double stack trains.  

METHODOLOGY 
Model Formulation 
Figure 1 shows the four loading patterns for a double stack train, for 20 and 40 foot containers, 
the most common container sizes. For example, in Loading Pattern 1, two 40 foot containers are 
stacked on top of each other, whereas in Loading Pattern 2 two twenty foot containers are at the 
bottom of the well car and one 40 foot container on top. Clearly, Loading Patterns 1 and 2 will 
lead to a higher utilization of the space compared to Loading Patterns 3 and 4. Note that 
technically, a fifth loading pattern could be having only one twenty foot container loaded on a 
well car. However, since in practice the 40 foot container is much more often used than a 20 foot 
container, the more space efficient Loading Pattern 3 can always be used (instead of this “fifth 
loading pattern”). 
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Figure 1: Loading patterns double stack train 

Sets 
{ }1,2...,I m=    Set of 20 foot containers to be loaded on train 

{ }1,2,...,J n=    Set of 40 foot containers to be loaded on train 

{ }1,2...,K r=     Set of railcars 

Parameters 
iw    Weight of 20 foot container i I∈  

jv    Weight of 40 foot container j J∈  

kc    Weight capacity of railcar k K∈  
Decision variables 
ikx    Equals 1 if 20 foot container i is loaded on rail car k, 0 otherwise. 

jky    Equals 1 if 40 foot container j is loaded on rail car k, 0 otherwise. 

kz  Equals 1 if there is at least one 20 foot container to be loaded on rail car j, 
0 otherwise. 

Objective Function and Constraints 

Max ( )1 2
4 | | ik jkk K i I k K j J

x y
K ∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑
 	

(1)	

Subject to 	

2ik ki I
x z

∈
=∑ , k K∀ ∈  (2) 

1ikk K
x

∈
≤∑ , i I∀ ∈  (3)	

2jkj J
y

∈
≤∑ , k K∀ ∈  (4) 

3 2jk kj J
y z

∈
≤ −∑ , k K∀ ∈  (5) 

1jkk K
y

∈
≤∑ , j J∀ ∈  (6) 

j jk i ik kj J i I
v y w x c

∈ ∈
+ ≤∑ ∑ , k K∀ ∈  (7) 

{ }0,1ikx ∈ , ,i I k K∀ ∈ ∈  (8) 

{ }0,1jky ∈ , ,j J k K∀ ∈ ∈  (9) 

{ }0,1kz ∈ , k K∀ ∈    (10) 

The objective function (1) expresses the goal to maximize the utilization of the double 
stack train, i.e. to load as many twenty foot equivalent units (TEUs). Constraint (2) ensures that 
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either two 20 foot containers are loaded on railcar k, or none. Constraint (3) states that a given 20 
foot container can be assigned to at most one rail car. In (4), it is ensured that the number of 40 
foot containers loaded on any railcar cannot exceed two. However, if 20 foot containers are to be 
loaded on railcar k (i.e. 𝑧! = 1), then at most one 40 foot container can be loaded on the same 
railcar, as dictated by constraint (5). Note that on the other hand, if 𝑧! = 0, then constraint (4) 
will ensure that at most two 40 foot containers can be placed on the railcar. As with 20 foot 
containers, a given 40 foot container can be assigned to at most one rail car (6). In (7), the weight 
capacity restrictions of the railcars are enforced. Finally, constraints (8) to   (10) state the 
binary nature of the decision variables. 
CASE STUDY AND RESULTS 
The max gross weight of containers is assumed to be 67,200 lbs. for 20 foot containers, and 
71,650 lbs. for 40 foot containers [8]. The capacity of the rail cars is set at 100,000 lbs. five 
problem instances were randomly generated in Table 1 by varying the lower limit of the 
container weights. For example, in instance 1, containers weights for 20 foot containers were 
randomly generated from the range 10,000 lbs. to 67,200 lbs. and weights for 40 foot containers 
from the range 20,000 lbs. to 71,650 lbs. The lower limits are gradually increased in instances 1 
to 4. In problem instance 5, instead of a uniform distribution, a normal distribution has been used 
to generate the container weights. For 20 foot containers, the mean was 40,000 lbs. For 40 
containers, the mean was 50,000 lbs. The standard deviation was set at 10,000 lbs. for both 
container types. 

Only 40 railcars are considered in the calculation; therefore, the double stack train can 
carry a maximum of 160 TEUs.  For every problem instance, calculation of utilization rate 
begins with a pool of thirty 20-foot and eighty 40-foot containers, i.e., a total of 190 TEUs.  The 
number of each type of containers is reduced by five for three subsequent calculations in every 
problem instance which helps us identify the effect on the utilization rate from having fewer 
containers.   
 By comparing the utilization rates within each column of the first four instances, one can 
notice that utilization rate decreases as containers become heavier.  This is because the capacity 
of railcars is set at 100,000 lbs. and the model does not allow overloading.  Consequently, 
utilization rate becomes 50% in Instance No. 4 when the lower bounds are increased to 50,000 
lbs. for twenty-foot containers and 60,000 lbs. for 40 foot containers, each railcar can carry at 
most one 40-foot container. 

Table 1: Train utilizations 
Instance Number 30 20’s   

80 40’s 

25 20’s   

75 40’s 

20 20’s   

70 40’s 

15 20’s   

65 40’s 

1-10,000lbs/20,000lbs 100% 100% 100% 90.62% 

2-20,000lbs/30,000lbs 100% 98.75% 96.25% 90.62% 

3-40,000lbs/50,000lbs 54.38% 54.38% 53.75% 52.50% 

4-50,000lbs/60,000lbs 50% 50% 50% 50% 

5-40,000k/50,000lbs (10000) 94.37% 93.12% 92.50% 88.75% 
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 Comparison among utilization rates within each problem instance reveals that reducing 
the number of available containers decreases utilization rate.  Utilization rate is higher when the 
number of containers exceeds the available slots of a train because there are more options for 
matching containers to railcars.  However, such options become more limited as the weights of 
containers increase. Figure 2 provides a visual summary of the results. 

 

	
Figure 2: Summary of Results 
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II. OPTIMIZATION OF MULTIMODAL NETWORK SYSTEM FOR 
ENVIRONMENTAL SUSTAINABILITY INCORPORATING ECONOMIES OF 
SCALE 

PROBLEM STATEMENT 
It is a common practice that freight logistics systems are operated under multimodal freight 
system where transports are carried out by combinations of different modes of transportation 
systems (e.g., trucks, rails and vessels) to reduce total logistics costs. In freight transportation 
market, the economies of scale mainly consist of three types: economies of scale for quantity 
(EOQ), economies of scale for distance (EOD), and economies of scale for vehicle sizes (EOVS). 
Each type of economies of scale is gained through the declining unit cost over greater cargo 
quantity, longer haulage distance, and heavier capacity of vehicles. Such effectiveness of costs, 
unlike the single-mode freight system, incurs mainly through the economies of scale which 
represents the behavior of costs that increase less-than-proportionate to the output increase.  

The economies of scale are often simplified in the existing models. Figure 3 shows two 
kinds of unit cost curves of various freight modes with respect to the level of cargo quantity. For 
visualization, the distance is assumed constant for the case of Figure 3. Figure 3-(a) is the true 
unit cost curve where instant jumps are observed due to discrete increase in vehicle number. 
Figure 3-(b) is a smoothed fitted unit cost curve which is an approximation of the true unit cost 
curve. The smoothed fitted unit cost is what has been widely adopted for computation simplicity 
[9-16]. However, this assumption sacrifices accuracy and actually could lead to incorrect optimal 
solution. In addition, economies of scale in the existing studies are commonly partially 
represented. For example, the economies of scale were implicitly considered by applying scale 
factors to account for taking advantage of hub facilities [17-19]. O’Kelly and Bryan [14] and 
Kim, et al. [13] solely considered the economies of scale for quantity (EOQ) by imposing 
incentives on the inter-hub links. The model developed in Sitek and Wikarek [16] explicitly 
considered the economies of scale for vehicle sizes (EOVS) by defining different unit costs 
functions for each freight modes. However, the management of multimodal freight system 
requires more complex dispatch model.  As discussed in Jara-Dıaz and Basso [20], all the three 
factors including EOQ, EOD and EOVS significantly impact on marginal costs. Kim, et al. [21] 
also stated that different freight modes have different sensitivity towards each type of economies 
of scale (e.g., trucks are more likely to be distance-sensitive and vessels are more likely to be 
vehicle-size sensitive). Thus, considering the comprehensive components of the economies of 
scale is of critical in developing a freight optimization tool. In light of this perspective, the most 
advanced model was developed by Kim, et al. [21] who explicitly incorporated all three types of 
economies of scale (e.g., EOQ, EOD, and EOVS) and solved the model with Genetic Algorithm 
(GA). The model successfully emulated the mechanism of multimodal systems. In the Kim’s 
model [21], however, the optimal solutions were found using a heuristic searching strategy 
which does not guarantee a system-wide optimal.   

Another limitation of the existing models is that they do not properly consider 
environmental impacts. Freight companies are now subject to considering eco-friendly practices 
due to regulations or incentives by federal government. According to the US Environment 
Protection Agency report [22], the freight transportation accounts for about 10% of total 
greenhouse gas (GHG) emissions and 38% of the GHG emissions generated from the 
transportation sector in the US in 2013. This share of 38% is split into freight transportation 
modes as truck (22.5%), rail (2.6%) and vessels (2.2%)[22]. Another statistics reported that from 
1990 to 2007, emissions from freight transportation have been continuously risen by 35% mainly 
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due to the increase in emissions from commercial trucks [23]. With such substantial impacts 
from the freight transportation sector, the US federal government agencies have been taken the 
lead in emphasizing environmental sustainability. For example, the US Environmental Protection 
Agency (EPA) released the first federal standard for heavy-duty trucks in which specified a load-
specific fuel consumption standard for medium- and heavy-duty trucks [24]. In addition, since 
freight transportation market is typically operated by private sectors, government is actively 
introducing incentives or financial support for eco-friendly logistics practices through several 
programs (e.g., Smart Way) [25]. Despite these efforts, most of the existing freight optimization 
models solely optimize operational efficiencies, such as transportation costs, travel time, or 
traffic volumes, without sufficient attentions on environmental measures.  

 

 

	
Figure 3: Unit cost curves (a) with economies of scale vs. (b) Smoothed fitted economies of scale 

In summary, the body of the literature review revealed that the current state-of-the-
practice on fleet dispatch tools need to be improved to comprehensively consider all factors of 
economies of scale. It was also revealed that current freight optimization tools need to be 

(a) 

(b) 
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upgrade for room for highlighting environmental impacts. In addition, the existing state-of-the-
art tool do not ensure system optimal solution and is hard for practitioner to pick up. Therefore, it 
is needed to develop a multimodal freight optimization tool that is enhanced in the 
aforementioned aspects. The objective of this paper is to develop a multimodal fleet dispatching 
decision tool that has the following features: 

• environmental cost is considered in addition to the transportation cost to support the 
environmentally conscious decisions;  

• all three types of economies—economies of scale for quantity (EOQ), economies of 
scale for vehicle size (EOVS) and economies of scale for distance (EOD) —are 
incorporated; 

• ensures system optimal dispatching solution;  
• easy to use for practitioners 
The rest of this section is organized as following: Problem Formulation section 

introduces the formulation of the MILP-based optimization tool. Model Evaluation section 
presents a case study and associated results. The Conclusions and Future Research section 
provides conclusion remarks and potential future research suggestions.    
METHODOLOGY 
The optimization problem was formulated as a Mixed Integer Linear Programming (MILP) 
model. Typically, a multimodal freight system comprises of hubs where cargos are stocked, 
distributed and/or transshipped among different freight modes. Thus the nodes in a typical 
network can be categorized as: origin (Oi), hub of origin (ho), hub of destination (hd), and 
destination (Dj). Thereby the links connecting two nodes can be grouped in four categories: from 
origin (Oi) to hub of origin (ho), from hub of origin (ho) to hub of destination (hd), from hub of 
destination (hd) to destination (Dj), and from origin (Oi) to destination (Dj). The decision 
variables and parameters for each of this category are assigned separately to appropriately 
incorporate the economies of scale into the MILP model. The detail efforts to realize the 
economies of scale under the MILP framework will be discussed later in this section. Remainder 
of this section explains the notations on the indices, parameters, decision variables, objective 
functions and constraints in detail.  

The efforts of incorporating all three elements of the economies of scale (i.e., the 
economies of scale for quantity, the economies of scale for vehicle size, and the economies of 
scale distance) into a MILP scheme are described as follows: 

• Economies of scale for quantity: The true economies of scale for quantity is 
incorporated into the model. It follows the pattern presented in Figure 3-(a), where 
unit cost shows instant jumps and no simplification is applied.  

• Economies of scale for vehicle size: each vehicle size is assigned with its unique 
group of cost functions on various quantity levels. In other words, even for the same 
transport mode, different vehicle sizes are with different unit cost functions. 

• Economies of scale for distance: Similar with the economies of scale for vehicle size, 
economies of scale for distance is incorporated by assigning unique unit distance 
transport cost to each link (i.e., from origin to hub of origin, from hub of origin to hub 
of destination, from hub of destination to destination, and from origin to destination).  
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Task 1: Formulation of Optimization Problem 
Notation 
The following lists the indices, parameters and variables utilized hereafter. The Twenty-foot 
Equivalent Unit (TEU) was used to describe the capacity of a cargo hereafter. 

iO            Index for origin node, where Ii∈  

jD            Index for destination node, where Jj∈  

oh            Index for hub node at origin area, where Oo Hh ∈  

dh            Index for hub node at destination area, where Dd Hh ∈  
k                   Index for transporting mode system and vehicle size, where {=∈Kk light truck, 

mid truck, heavy truck, light rail, mid rail, heavy rail, light vessel, mid vessel, 
heavy vessel} 

knmd ,,      Traveling distance from node 𝑚 to node 𝑛 using transporting mode k in km, where

},,,{ DO HHJIMm =∈ , },,,{ DO HHJINn =∈ , Kk ∈  

khoiTa ,,  Transporting cost of haulage from origin i  to hub at origin area oh  using transport 

mode k  in kmvehdollars ⋅/ , where Ii∈ , Oo Hh ∈  and Kk ∈  

khoiEa ,,  Environmental cost of haulage from origin i  to hub at origin area oh  using 

transport mode k  in kmvehdollars ⋅/ , where Ii∈ , Oo Hh ∈  and Kk ∈  

khdhoTb ,,  Transporting cost of haulage from hub at origin area oh  to hub at destination area 

dh  using transport mode k  in kmvehdollars ⋅/ , where Oo Hh ∈ , Dd Hh ∈  and 
Kk ∈  

khdhoEb ,,  Environmental cost of haulage from hub at origin area oh  to hub at destination 

area dh  using transport mode k  in kmvehdollars ⋅/ , where Oo Hh ∈ , Dd Hh ∈  
and Kk ∈  

kjhdTc ,,  Transporting cost of haulage from hub at destination area dh  to destination node 

j  using transport mode k  in kmvehdollars ⋅/ , where Dd Hh ∈ , Jj∈  and Kk ∈  

kjhdEc ,,  Environmental cost of haulage from hub at destination area dh  to destination node 

j  using transport mode k  in kmvehdollars ⋅/ , where Dd Hh ∈ , Jj∈  and Kk ∈  

kjiTd ,,  Transporting cost of haulage from origin 𝑖 to destination j  using transport mode 
k  in kmvehdollars ⋅/ , where Ii∈ , Jj∈  and Kk ∈  

kjiEd ,,  Environmental cost of haulage from origin i  to destination j  using transport 
mode k  in kmvehdollars ⋅/ , where Ii∈ , Jj∈  and Kk ∈  

iWI  Terminal warehouse capacity at origin node i  in TEU, where Ii∈  

hoWHo              Terminal warehouse capacity at hub at origin area oh  in TEU, where Oo Hh ∈  

hdWHd  Terminal warehouse capacity at hub at destination area dh  in TEU, where 

Dd Hh ∈  
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jWJ              Terminal warehouse capacity at destination node j  in TEU, where Jj∈  

jD              Demand at destination node j  in TEU, where Jj∈  

kR  Available number of vehicles of transporting mode k , where Kk ∈  

kVS  Capacity of individual vehicle of transporting mode k , where Kk ∈  

Decision Variables 
Decision variables are specified as follows. As shown below, this model comprises of the three 
types of decision variables: cargo quantities (i.e., ZYX ,, and V for each type of link category), 
binary variables which indicate whether arcs serve for any cargos (i.e., ZaYaXa ,,  and Va  for 
each type of link category) and number of vehicles associated with each link (i.e., ZbYbXb ,, and 
Va  for each type of link category).   

khoiX ,,  Cargo quantity from origin i  to hub at origin area oh  using transport mode k , 

where Ii∈ , Oo Hh ∈  and Kk ∈  

khdhoY ,,  Cargo quantity from hub at origin area oh  to hub at destination area dh  using 

transport mode k , where Oo Hh ∈ ,  Dd Hh ∈  and Kk ∈  

kjhdZ ,,  Cargo quantity from hub at destination area dh  to destination node 𝑗  using 

transport mode k , where Dd Hh ∈ , Jj∈  and Kk ∈  

kjiV ,,  Cargo quantity from origin i  to destination 𝑗 using transport mode k , where Ii∈ , 
Jj∈  and Kk ∈  

khoiXa ,,  If cargo is carried from origin i  to hub at origin area oh  using transport mode k , 

then 1, otherwise 0, where Ii∈ , Oo Hh ∈  and Kk ∈  

khdhoYa ,,  If cargo is carried from hub at origin area oh  to hub at destination area dh  using 

transport mode k , then 1, otherwise 0, where Oo Hh ∈ , Dd Hh ∈  and Kk ∈  

kjhdZa ,,  If cargo is carried from hub at destination area dh  to destination node 𝑗 using 

transport mode k , then 1, otherwise 0, where Dd Hh ∈ , Jj∈  and Kk ∈  

kjiVa ,,  If cargo is carried from origin i  to destination 𝑗 using transport mode k , then 1, 
otherwise 0, where Ii∈ , Jj∈  and Kk ∈  

khoiXb ,,  Number of vehicles of transport mode k served from origin 𝑖 to hub at origin area

oh , where Ii∈ , Oo Hh ∈  and Kk ∈  

khdhoYb ,,  Number of vehicles of transport mode k  served from hub at origin area oh  to hub 

at destination area dh , where Oo Hh ∈ , Dd Hh ∈  and Kk ∈  

kjhdZb ,,  Number of vehicles of transport mode k  served from hub at destination area dh  

to destination node𝑗, where Dd Hh ∈ , Jj∈  and Kk ∈  

kjiVb ,,  Number of vehicles of transport mode k  served from origin 𝑖 to destination𝑗, 
where Ii∈ , Jj∈  and Kk ∈  
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Objective Function  
As aforementioned, the proposed MILP-based multimodal freight optimization model takes into 
account two types of costs (i.e., haulage costs and environmental cost). As shown in (11) the 
objective function is formulated in an additive form of four elements. Each element estimates the 
arc-specific total costs associated with the freight activities. For each element, the unit cost of 
haulage (e.g., TcTbTa ,,  andTd ) and environmental cost (e.g., EcEbEa ,,  andEd ) per trip are 
augmented with the respective trip distance ( d ) and the number of vehicles which made the trips 
(e.g., ZbYbXb ,,  andVb ). It should be noted that the unit cost-parameters of haulage costs and the 
environmental costs are a function of cargo quantity (i.e., ZYX ,, and V for each type of link 
category) and trip distance. 
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Unit Cost Functions Incorporating Economies of Scale 
Unit cost estimation plays a key role in terms of cost optimization model. The proposed MILP-
based freight optimization model adopted a set of unit cost functions which explicitly considered 
three types of economies scale. This research integrates the knowledge from literatures, the 
functions of unit cost of haulage for truck and rail system are borrowed from [12, 26] and the 
vessels unit cost of haulage is based on [10]. The estimation of environmental cost is adopted 
from [27] and [28]. The details of the unit cost functions adopted from these studies are found in 
the literatures [10, 12, 26-28]. The details of the unit cost functions adopted from these studies 
are shown in the Appendix.  
Constraints 
Constraint (12) and (13) specify the physical restrictions that the quantity of cargo outflow from 
a particular hub node should be less than or equal to the inflow of the corresponding hub node.  
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Constraint (14) through Constraint (17) specify that all cargos delivered to and from a 
particular node should not exceed the capacity of the terminal warehouse which is termed as iWI ,

hoWHo , hdWHd and jWJ  for the origin, Hub of origin, Hub of destination, and destination, 
respectively.  
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Constraint (18) states that the cargo delivered to each destination node should meet the 
demand of the destination node. The cargos can be reached to the destination nodes either 
through hubs ( kjhdZ ,, ) or through on-grounds option ( kjiV ,, ). Delivery of cargos more than the 
demand was allowed to make the optimization problem more flexible.   
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Constraint (19) through Constraint (21) state that the total vehicle used should not exceed 
the total number of available vehicles.     
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Constraint (22) through (29) entail that the number of vehicles used should match the 
quantity of cargo shipped.  

1)1( ,,,, +⋅−> kkhoikhoi VSXbX    NXbNX khoikhoi ∈∈ ∀∀
,,,, , where N = 

integer 

(22)	

1)1( ,,,, +⋅−> kkhdhokhdho VSYbY    NYbNY khdhokhdho ∈∈ ∀∀
,,,, , where N = 

integer 

(23)	

1)1( ,,,, +⋅−> kkjhdkjhd VSZbZ    NZbNZ kjhdkjhd ∈∈ ∀∀
,,,, ,  where N = 

integer 

(24)	

1)1( ,,,, +⋅−> kkjikji VSVbV    NVbNV kjikji ∈∈ ∀∀
,,,, , where N = integer (25)		

kkhoikhoi VSXbX ⋅≤ ,,,,    NXbNX khoikhoi ∈∈ ∀∀
,,,, , where N = integer (26)	

kkhdhokhdho VSYbY ⋅≤ ,,,,    NYbNY khdhokhdho ∈∈ ∀∀
,,,, , where N = integer (27)	

kkjhdkjhd VSZbZ ⋅≤ ,,,,    NZbNZ kjhdkjhd ∈∈ ∀∀
,,,, ,  where N = integer (28) 

kkjikji VSVbV ⋅≤ ,,,,    NVbNV kjikji ∈∈ ∀∀
,,,, , where N = integer (29)	

Constraint (30) to Constraint (37) ensures that cargo shipped through each link matches 
its associated binary variable:  

khoikhoi XaMX ,,,, ⋅≤    }1,0{, ,,,, ∈Ν∈ ∀∀
khoikhoi XaX where N = integer (30)	
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khdhokhdho YaMY ,,,, ⋅≤    }1,0{, ,,,, ∈Ν∈ ∀∀
khdhokhdho YaY where N = integer (31)	

kjhdkjhd ZaMZ ,,,, ⋅≤    }1,0{, ,,,, ∈Ν∈ ∀∀
kjhdkjhd ZaZ  where N = integer (32)	

kjikji VaMV ,,,, ⋅≤    }1,0{, ,,,, ∈Ν∈ ∀∀
kjikji VaV where N = integer (33)	

}1,0{,0 ,,,,,,,, ∈Ν∈≤− ∀∀
khoikhoikhoikhoi XaXXXa  where N = integer (34)	

}1,0{,0 ,,,,,,,, ∈Ν∈≤− ∀∀
khdhokhdhokhdhokhdho YaYYYa  where N = integer (35)	

}1,0{,0 ,,,,,,,, ∈Ν∈≤− ∀∀
kjhdkjhdkjhdkjhd ZaZZZa  where N = integer (36)	

}1,0{,0 ,,,,,,,, ∈Ν∈≤− ∀∀
kjikjikjikji VaVVVa  where N = integer (37)	

Task 2: Model Evaluation 
To evaluate the performance of the proposed freight optimization model, the proposed model 
was compared against the two types of model: state-of-the-art model and a comparison model 
which was developed by combining the state-of-the-art model with an objective function 
considering the environmental costs [9-16]. Major features of the three models are described in 
the followings:    

• Proposed Model: The proposed model incorporates all three economies of scale 
without simplification. As shown in Figure 3-(a), unit total cost estimations are 
discrete by different quantity, distance category and different vehicle types. The 
objective function both considers transportation cost and environmental cost.  

• State-of-the-art Model: The state-of-the-art model considers all three economies of 
scale as well. However, it utilizes simplified smoothed fitted economies of scale as 
shown in Figure 3-(b) in the estimation of unit total cost. The objective function only 
considers transportation cost.  

• Comparison Model: The comparison model also employs the simplified smoothed 
fitted economies of scale as featured by the state-of-the-art model. The objective 
function considers transportation cost and environmental cost as the same as the 
proposed model for a fair comparison. 

Experimental Setup 
As noted, a hypothetical multimodal network used for the case study is illustrated in Figure 4. 
The network comprised of six nodes:  two Origin (Oi), two Destination (Dj), one Hub of origin 
(HO) and one Hub of destination (HD). Under this type of road network, cargos can be delivered 
through either truck-only freight option or intermodal freight option. The truck-only freight 
option represents a transport journey served only by trucks, and the intermodal freight option 
refers to a transport journey served by multiple transporting modes including truck, rail and 
vessel.  

In this study, it was assumed that the cargos can be reserved in the hub unless they 
exceed the capacity of the warehouse facility. It implies that there is a possibility of transferring 
more cargos out of origin nodes than that arrive at the destination, thus some units of cargos can 
be left undelivered in the hub nodes as long as the demands at the destinations are met. Details 
on the case study settings are as follows:  

• Maximum capacity of hub facility = 5,000 TEU 
• Minimum demand at destination = 3,000 TEU 
• Three types of vehicles are available: truck, rail and vessel 
• Three levels of vehicle sizes are available for each vehicle type 
• Available number of trucks for each vehicle size category = 700 vehicles 
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• Available number of rails for each different vehicle sizes = 30 vehicles 
• Available number of vessels for each different vehicle sizes = 7 vehicles 

	

Figure 4: Network of multimodal freight system 

All the proposed optimization formulation and the two models for comparisons were 
coded in the MATLAB [29] and the intlinprog solver were used to find the solution resulting in 
the minimum total costs subject to integer constraints. The key parameters of the intlinprog 
solver chosen for this research are summarized in Table 2.  

Table 2: Parameters of intlinprog Solver 
Parameter Description and Features Value 
AbsoluteGapTolerance 
(i.e., Stopping 
criterion) 

Solver stops if the difference between the 
internally calculated upper and lower bounds on 
the objective function is less than or equal to this 
value (subject to nonnegative real number)  

0 

BranchRule Rule for choosing the component for branching Maxpscost 
(i.e., Branch-
and-bound) 

ConstraintTolerance The maximum discrepancy that linear constraints 
can have and still be considered satisfied. The 
available range of the parameter is between 10-9 
and 10-3 

10-4 

CutGeneration Level of cut generation Basic 
(i.e., Normal 
cut generation) 

CutMaxIterations Number of passes through all cut generation 
methods before entering the branch-and-bound 
phase. The available range of the parameter is 

10 
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between 1 through 50.  
RESULTS AND ANALYSIS  
As shown in Table 3, the results demonstrate that the proposed model is significantly different 
from both of the state-of-the-art model and the comparison model. The results show that the 
state-of-the-art and the comparison model inclined to utilize the truck-only freight scheme over 
the intermodal freight scheme in their optimal strategy, while the proposed model takes more 
advantage of the Intermodal freight scheme. In addition, the proposed model produced the fair 
distributions of cargos among different vehicle sizes, while the comparison model assigned 
cargos with preference to relatively heavier-sized vehicles. This results clearly show one of the 
challenges of not considering the economies of scale in a proper way for the comparison model; 
the comparison model merely takes advantage of the low unit costs associated with the heavier-
sized vehicles as it was demonstrated in Figure 3-(b), but the optimization model ignores the 
effect of having additional vehicles on the unit costs that results in the fluctuations in the unit 
costs as in Figure 3-(a). Table 4 shows the comparison of the total costs between the proposed 
model and the two models compared. The proposed model saves cost by 6.3 % over the 
comparison model and by 21.3% over the state-of-the-art model.  

Table 3 Comparisons of Optimal Strategies between the State-of-the-art Model vs. the 
Comparison Model vs. Proposed Model 

State-of-the-art Model 

(Origin-
Destination) 

Light  
Truck 

Mid  
Truck 

Heavy  
Truck 

Light 
Rail 

Mid 
Rail 

Heavy 
Rail 

Light  
Vessel 

Mid  
Vessel 

Heavy  
Vessel 

O1 - D1 4 0 0 N/A N/A N/A N/A N/A N/A 

O1 - D2 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D1 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D2 696 0 0 N/A N/A N/A N/A N/A N/A 

O1 - Ho 0 1376 830 1740 1050 0 N/A N/A N/A 

O2 - Ho 0 16 0 0 0 288 N/A N/A N/A 

Ho - Hd 0 0 0 0 0 0 0 1800 3500 

Hd - D1 0 8 0 60 1200 1728 N/A N/A N/A 

Hd - D2 0 0 0 0 0 2304 N/A N/A N/A 

Comparison Model 

(Origin-
Destination) 

Light  
Truck 

Mid  
Truck 

Heavy  
Truck 

Light 
Rail 

Mid 
Rail 

Heavy 
Rail 

Light  
Vessel 

Mid  
Vessel 

Heavy  
Vessel 

O1 - D1 4 0 0 N/A N/A N/A N/A N/A N/A 



25 
 

O1 - D2 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D1 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D2 696 0 0 N/A N/A N/A N/A N/A N/A 

O1 - Ho 0 1392 829 1800 975 0 N/A N/A N/A 

O2 - Ho 0 4 0 0 300 0 N/A N/A N/A 

Ho - Hd 0 0 0 0 0 0 0 1800 3500 

Hd - D1 0 4 1 0 975 2016 N/A N/A N/A 

Hd - D2 0 0 0 0 0 2304 N/A N/A N/A 

Proposed Model 

(Origin-
Destination) 

Light  
Truck 

Mid  
Truck 

Heavy  
Truck 

Light 
Rail 

Mid 
Rail 

Heavy 
Rail 

Light  
Vessel 

Mid  
Vessel 

Heavy  
Vessel 

O1 - D1 0 0 0 N/A N/A N/A N/A N/A N/A 

O1 - D2 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D1 0 0 0 N/A N/A N/A N/A N/A N/A 

O2 - D2 50 0 0 N/A N/A N/A N/A N/A N/A 

O1 - Ho 620 1398 1482 1500 0 0 N/A N/A N/A 

O2 - Ho 11 0 0 0 75 864 N/A N/A N/A 

Ho - Hd 0 0 0 0 0 0 0 2450 3500 

Hd - D1 9 0 0 240 2175 576 N/A N/A N/A 

Hd - D2 10 0 0 60 0 2880 N/A N/A N/A 
 

Table 4: Total Cost Comparison 

Model Type 
Total Cost  
(in dollars) 

State-of-the-art Model  $ 302,008,000 
Comparison Model $ 253,841,000 
Proposed Model $ 237,785,000 

Sensitivity analysis on varying demands was conducted for the proposed model in terms 
of total cost, transportation cost and environmental cost. As shown in Figure 5, the proposed 
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model generally outperforms the both of the comparison model and state-of-the-art model and 
saves cost by up to 6.3% over the comparison model and 21.3% over the state-of-the-art model.  

The results of the state-of-the-art model are intuitive that it shows higher total costs as the 
objective function of the model did not consider the environmental costs. The results of the 
comparison model are also explanatory that the difference between the proposed model and the 
comparison model is whether or not considering the discrete increment of unit cost according to 
the batch strategies. No benefit could be gained by applying the proposed model in case where 
the cargo quantity equals to the capacity of the vehicle fleet picked, while the benefit from the 
proposed model over the comparison model becomes maximized when a new vehicle fleet is just 
added which is partially filled with small cargo quantity.  

	
Figure 5: Sensitivity study on demand 

The proposed model was further investigated by breaking down the total cost into 
transportation cost and environmental cost. As shown in Figure 6, no adverse effect was caused 
by the proposed model with respect to the various demands. Depending on the cargo demands, 
the savings varied, but the proposed model benefit both the transportation cost and 
environmental cost. When the proposed model was compared with the comparison model, the 
savings in transportation cost was up to 6.9% at the demand of 3,900 TEU (+30% of the base 
case) and the savings in environmental cost was up to 17.1% at the demands of 2,700 TEU (-10% 
of the base case). When it was compared with the state-of-the-art model, the savings in 
transportation cost was up to 15.1% at the demand of 3,000 TEU (the base case) and the savings 
in environmental cost was up to 61.4% at the demands of 2,400 TEU (-20% of the base case).  
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Figure 6: Breakdown into transportation cost and environmental cost 

CONCLUSIONS & RECOMMENDATIONS 
A multimodal freight dispatching tool is proposed. The highlights of this new dispatching tool 
include that (i) environmental costs is considered in addition to the transportation cost to support 
the environmentally conscious decisions; (ii) all three types of economies — economies of scale 
for quantity (EOQ), economies of scale for vehicle size (EOVS) and economies of scale for 
distance (EOD) — are incorporated; (iii) ensures system optimal dispatching solution; (iv) easy 
to use for practitioners. The proposed model was evaluated in terms of total cost, transportation 
cost and environmental cost. Sensitivity analysis was conducted with regard to various demands, 
and the results prove that the proposed model outperforms both the state-of-the-art model and the 
comparison model which combines the state-of-the-art model with environmental consideration. 
The proposed model saves cost up to 6.3% over the comparison model and up to 21.3% over the 
state-of-the-art model, which varies based on demand. Detailed investigation revealed that the 
proposed model has no adverse effect on both transportation cost and environmental cost.  

Although the proposed fleet dispatching tool successfully showed its robustness as well 
as significant benefit, the current proposed model could only provide suggestions when cargo 
demand does not exceed capacity. Future research could consider strengthening the dispatching 
model by enabling the capability of determining number of extra vehicle needed when capacity 
is insufficient.  
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III. FUEL CONSUMPTION AND EMISSIONS MODEL FOR HEAVY DUTY DIESEL 
TRUCKS: MODEL DEVELOPMENT AND TESTING 

PROBLEM STATEMENT  
Transportation activities account for 28% of the total U.S. energy use and 33.4% of carbon 
dioxide (CO2, the major component of greenhouse gas (GHG) emissions) production [30, 31]. 
Consequently, numerous efforts are being tested in an attempt to reduce transportation-related 
energy consumption and GHG emissions with the incremental intensification of the global 
energy crisis and negative GHG effects. Furthermore, the energy use also results in severe air 
pollution (e.g. Hydrocarbon HC, Carbon Monoxide CO, Nitric Oxide NOx), significantly 
deteriorating air quality and dwelling environment.  As the majority of vehicle fleet, passenger 
cars have attracted significant attention in the past decade, and reduction in fuel consumption and 
emission levels have been achieved through the development of relevant regulations and 
technical solutions. As a counterpart, however, the investigation of heavy duty diesel truck 
(HDDT) fuel consumption behavior is relatively less mature compared to that of gasoline 
passenger cars. Although HDDTs make up only a fraction of the total vehicle population, they 
are major contributors to GHG emissions and air pollutants, accounting for 22.8% of the total 
CO2 production [31] and 50% of NOx emissions [32] in the transportation sector. 

HDDTs are receiving increasing attention from legislators, the government and society at 
large. For example, in September 2011, the National Highway Traffic Safety Administration 
(NHTSA) and the U.S. Environmental Protection Agency (EPA) jointly promulgated the first-
ever federal regulations mandating improvements in fuel economy of heavy-duty commercial 
vehicles [33]. Furthermore, researchers have been committed to developing road eco-freight 
strategies [34-37] in order to support “green transportation” policy making. 

Accurate and efficient models are needed to provide robust estimates in support of 
quantifying potential reductions in fuel consumption and emission levels induced by 
implementing eco-friendly strategies, such as developing eco-routing [38-40] or eco-driving 
systems [41-45] and utilizing advanced fuel techniques [46-48] or alternative fuels [49-52]. 
Among the existing modeling efforts, most are operated at a macroscopic or microscopic level. 
The macroscopic models, such as MOBILE 6.2 [53], were demonstrated to produce unreliable 
estimates due to their inability of capturing transient vehicle activities [54]. Consequently, they 
are incapable of being utilized for the energy and environmental assessment of traffic operational 
projects. Microscopic models were introduced in order to better capture the variability associated 
with vehicle dynamics. A wide range of instantaneous models have been developed using in-
laboratory or field data, and some of them are applicable to modeling HDDTs, such as MOVES, 
VT-Micro [55], the Passenger Car and Heavy Duty Emission Model (PHEM) [56], VERSIT [57], 
the Comprehensive Modal Emissions Model (CMEM) [58, 59]. 

The majority of the aforementioned models, however, have limitations in use. For 
example, MOVES, which was developed as an inventory model based on a wide range of data 
sources, is capable of providing robust estimates. Nonetheless, it requires massive user inputs for 
each run, which significantly increases the time required to run multiple scenarios and large 
networks. CMEM generally underestimates fuel consumption levels for acceleration maneuvers; 
more importantly, it characterizes fuel consumption as a linear function of vehicle power, which 
produces a bang-bang type of control system. A bang-bang control may arise when the partial 
derivative of the response with respect to the control variable is not a function of the control 
variable (a more detailed description of a bang-bang control system is provided in subsequent 
sections. The fuel estimate module for CMEM is addressed in (38):  
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FR =
𝐾×𝑁×𝑉 + 𝑃𝜂

43.2 × 1+ 𝑏!× N− N! !        (38)	

Here FR is the fuel rate in g/s, K is the engine friction factor, N is engine speed in 
(revolutions per second), V is engine displacement in liters, η is the efficiency for diesel engines, 
b1 equals to 1E− 04,  N! is a constant related to engine displacement, 43.2 KJ/g is the lower 
heating value of a typical diesel fuel, and P is the vehicle power which is the control variable of 
the fuel model. Since the fuel rate is affine to the vehicle power, its partial derivative with 
respect to power is independent of the power. This results in the minimum fuel consumption 
levels being achieved only at the point of Pmin or Pmax, which implies that a vehicle should be 
in ”full throttle/full braking” to capture optimal events. Another limitation of CMEM is that it 
cannot be easily calibrated without engine data (e.g. engine speed), which increases the difficulty 
for its efficient use in simulation systems. Like CMEM, PHEM and VERSIT also produce a 
bang-bang control. VT-Micro is capable of circumventing the bang-bang control; however, it 
requires a large amount of in-laboratory or field data to be calibrated, which is cost-prohibitive 
and time-consuming. 
RESEARCH OBJECTIVE AND APPROACH 
Overall, the existing models either produce a bang-bang type of control system or cannot be 
easily calibrated or efficiently used. Consequently, a simple, accurate and efficient model is 
needed.  Rakha et al. [60] developed the Virginia Tech Comprehensive Power-based Fuel 
consumption Modeling (VT-CPFM) framework by characterizing fuel consumption levels as a 
second-order polynomial function of vehicle power to circumvent the bang-bang control problem. 
Furthermore, the model offers a unique ability to be calibrated using publicly available data (a 
more detailed description of the calibration procedure is provided in [60]) without massive data 
collection. Recent efforts have validated the applicability of the model for light duty vehicles 
(LDVs) [61] and transit buses [62, 63] under real-world driving conditions; however, it has not 
been expanded to HDDTs yet. Consequently, the study is intended to develop the VT-CPFM-
based fuel consumption and emission model for HDDTs in order to circumvent the bang-bang 
problem in the modeling practice. The developed model will support to design eco-routing and 
eco-driving systems in future studies. 
METHODOLOGY 
The HDDT model is developed using a framework which is very similar to that of other models 
within the VT-CPFM program. As a power-based model, the VT-CPFM framework uses a 
bottom-up approach. Namely, the parameters, such as resistance force, used for power estimation 
are first computed by a resistance force module; and thereafter the vehicle power is estimated 
with an engine power module which characterizes the vehicle power as a function of the 
resistance forces. The fuel consumption is then estimated using a fuel rate module that models 
the fuel consumption as a polynomial function of the vehicle power. Finally, the emissions for 
HC, CO, NOx were mathematically characterized as a function of fuel consumption and speed.  
Model Structure 
Resistance Force Module 
The resistance force is computed considering a combination of aerodynamic, rolling, and grade 
resistance forces, as expressed in (39): 
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R t =
𝜌

25.92𝐶!𝐶!𝐴!𝑣 𝑡 ! + 9.8066𝑚
𝐶!
1000 𝑐!𝑣 𝑡 + 𝑐!

+ 9.8066𝑚𝐺 𝑡 	

(39)	

where R(t) is the vehicle resistance force (N); 𝜌 is the air density at sea level at a temperature of 
15 ℃(59 ℉) (equal to 1.2256 kg/m!); 𝐶! is the drag coefficient (unitless) which is determined 
by truck type, 0.78 is used for the tested trucks (no aerodynamic aids) in this study [64]; 𝐶! is the 
correction factor for altitude (unitless), calculated by 1-0.085H (H is the altitude in km); 𝐴!is the 
frontal area of trucks (m!), 10.7 m! is used based on the truck type; v(t) is the velocity in km/h; 
m is the vehicle mass in kg; Cr, c1 and c2 are the rolling resistance parameters (unitless), which 
vary as a function of road surface type and conditions as well as vehicle tire type; their typical 
values could be obtained from [64, 65]. 𝐺(𝑡) is the instantaneous road grade which is determined 
by elevation profiles. 

Vehicle Power Module 
The power exerted at any instant t is formulated by [66] as expressed in (40): 

P t =
𝑅 𝑡 + 1+ 𝜆 + 0.0025𝜉𝑣 𝑡 ! 𝑚𝑎 𝑡

3600𝜂 𝑣 𝑡 	 (40)	

	

where P(t) is the vehicle power in kW; 𝜆 is the mass factor accounting for rotational masses, a 
value of 0.1 is used for heavy duty vehicles (HDVs) [67, 68]; 𝜉 is the gear ratio and assumed to 
be zero in this paper due to the lack of engine gear data. 𝑎 𝑡  is the instantaneous acceleration 
(𝑚/𝑠!); 𝜂 is the driveline efficiency. 

Fuel Consumption Module 
As illustrated in Figure 7, HDDTs present similar fuel consumption behavior compared to transit 
buses as seen in Wang and Rakha [62] with the fuel consumption rate a concave function of 
vehicle power for the positive power condition, and almost constant for the negative condition. 
Consequently, the general structure of the model has been specified as a two-regime mechanism. 
Rakha et al. [60] developed two VT-CPFM frameworks (VT-CPFM-1 and VT-CPFM-2) for 
LDVs each of which is a two-regime model and characterizes fuel consumption as a second-
order polynomial function of vehicle power. The use of a second order model ensures that a 
bang-bang control does not result from the application of the model. Furthermore, the model 
higher than second-order may not be calibrated using standard drive cycles given the complexity 
of the higher order model. Consequently, a second-order model achieves a good trade-off 
between model accuracy and applicability. Only VT-CPFM-1 is utilized to develop the model in 
this study given that VT-CPFM-2 requires additional gear data which is typically not available. 
The VT-CPFM-1 framework is expressed in (41): 

FC = 𝛼! + 𝛼!𝑃 𝑡 + 𝛼!𝑃 𝑡 !,         ∀𝑃 𝑡 ≥ 0   
𝛼! ,                                                ∀𝑃 𝑡 < 0   	

(41) 

Here FC (t) is the fuel consumption rate at instant t [l/s]; 𝛼!, 𝛼! and 𝛼! are the vehicle 
specific model coefficients that remain to be calibrated. 
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Figure 7: Vehicle power vs. Truck fuel consumption functional form 

It should be noted that the model coefficients, 𝛼!, 𝛼!, and 𝛼!, could be calibrated using 
publicly available data using (42), (43), and (44): 

α! =
𝑃!"#𝜔!"#$𝑑
22164 𝐻𝑉 𝑁	 (42)	

α! =
𝐹!"#$ − 𝐹!!"

𝑃!"#$
𝑃!!"

− 𝑇!"#$ − 𝑇!!"
𝑃!"#$
𝑃!!"

𝛼!

𝑃!"#$! − 𝑃!!"! 𝑃!"#$
𝑃!!"

	 (43)	

α! =
𝐹!!" − 𝑇!!"𝛼! − 𝑃!!"! 𝛼!

𝑃!!"
	  (44)	

Here 𝑃!"# is the idling fuel mean pressure (400,000 Pa); d is the engine displacement 
(liters); HV is the fuel lower heating value (43,200,000 J/kg for conventional diesel fuel); N is 
the number of engine cylinders; 𝜔!"#$  is the engine idling speed (rpm); Fcity and Fhwy (liters) are 
the fuel consumed for the EPA city and highway drive cycles; Pcity, 𝑃!"#$! , Phwy, 𝑃!!"!  are the sum 
of the power and power squared over the EPA city- and highway cycle respectively; Tcity and 
Thwy are the duration of EPA city and highway drive cycles (s). Most of the parameters typically 
correspond to either physical characteristics of the vehicles or fuel type, so that they are stated as 
specifications by the vehicle manufacturers and readily available.  

Nonetheless, the fuel economy, used to estimate Fcity and Fhwy, cannot be obtained in this 
study given that HDDTs do not report their fuel economy for standard drive cycles (e.g. the EPA 
highway and city drive cycles). Consequently, the HDDT model, unlike LDVs, currently cannot 
be developed using publicly available data; instead, real-world data were gathered. 

Emissions Module 
The VT-CPFM model was extended to modeling HC, CO, NOx emissions based on the 

estimated fuel consumption levels. Different model specifications were tested to determine 
which parameters would be used in the emission model. Stepwise regression analysis was used 
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to determine the mathematical functionality. The final emission modeling framework is 
illustrated in (45), in which the square root of the emission is characterized as a polynomial 
function of speed and fuel consumption, and 𝑎, 𝑏, 𝑐,𝑑, 𝑒, 𝑓,𝑔, ℎ are model parameters to be 
calibrated. The square root model guarantees that the emission results will always be positive. 

𝐸(𝑡) = 𝑎 + 𝑏. 𝑣 𝑡 + 𝑐.𝐹 𝑡 + 𝑑. 𝑣 𝑡 .𝐹 𝑡 + 𝑒.𝐹(𝑡)! + 𝑓.𝐹(𝑡)!
+ 𝑔. 𝑣 𝑡 .𝐹 𝑡 ! + ℎ. 𝑣 𝑡 .𝐹 𝑡 !	

(45)	

Data Preparation 
The data used for model development were collected and provided by the researchers at 
University of California (UC) at Riverside. 
Vehicle Recruitment 
The modeling effort is aimed to test the applicability of the VT-CPFM framework to modeling 
the HDDTs within diverse vehicle-technology categories. Consequently, the recruited trucks 
should differ in a wide range of vehicle-specific parameters. To this end, a total of eight trucks 
were randomly recruited from used vehicle fleets in Southern California within test categories by 
vehicle model year and engine model/displacement, and a balance between horse power and 
manufacturers was attempted. The detailed vehicle information is presented in Table 5. For 
simplicity, the eight vehicles, from the top to the bottom of Table 5Error! Reference source not 
found. are labeled as HDDT1, HDDT2, HDDT3, HDDT4, HDDT5, HDDT6, HDDT7, and 
HDDT8 respectively in the following sections. 

Table 5: Vehicle Information 
Make/Model Model 

Year 
Engine 
Make/Model 

Rated Power 
(hp) 

Engine Size 
(l) 

Vehicle 
Mass (kg) 

International/ 9800 
SBA 

1997 Cummins/M11-330 330 10.8 7182 

Freightliner/ D120 1997 DDC/C-60 360/400 12.7 7758 
Freightliner/ D120 1997 Cummins/N14 370/435 14 7029 
Freightliner/ C-120 1997 Cummins/N14 370/435 14 7623 
Freightliner/ C-120 1998 DDC/C-60 370/430 12.7 8028 
Freightliner/ FDL 120 1999 DDC/C-60 470 12.7 8118 
Freightliner/ FDL 120 1999 DDC/C-60 360 12.7 8118 
Freightliner/FLD 120 2001 CAT/C-15 475 14.6 7092 
Data Set 
Given that in-laboratory data (i.e. chassis dynamometer testing) are not always reflective of real-
world driving conditions, on-road data were gathered instead. 

To measure real-world fuel consumption and emission levels more realistically, UC 
Riverside developed a mobile emissions research laboratory (MERL) that contains all 
instrumentation that is normally found in a regular vehicle emission laboratory. MERL weighs 
approximately 45,000 lbs. and could serve as a truck load, so that it is capable of capturing the 
transient fuel consumption and emissions of a truck pulling it when the truck is being tested. 
Further details of MERL can be found in [59, 69]. 

The HDDT test was conducted, by the Center for Environmental Research and 
Technology at UC Riverside, on the roadways in California’s Coachella Valley involving long, 
uninterrupted stretches of road, approximately at sea level. All trucks were tested using standard 
fuel from the same source. The data were recorded at a frequency of 1 Hz and a total of 238,893 
seconds of data were gathered with a collection of 8 parameters for each truck, including CO2, 
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Carbon Monoxide (CO), and Hydro Carbon (HC), Oxides of Nitrogen (NOx), velocity, fuel rate, 
engine speed and elevation. For more details on data collection procedure, the reader is 
encouraged to read Barth, et al. [59].  

Data Post-processing 
The raw fuel consumption rates were in g/s and then converted to l/s in order to use the VT-
CPFM framework to develop the proposed model. Simultaneously, the unit of velocity was 
converted from mi/h to km/h for modeling purposes. 

Through comparing the second-by-second emissions with engine control unit (ECU) data 
(i.e. velocity, fuel rate and engine speed), a time delay was found to exist. Consequently, a time 
alignment was needed to synchronize the raw data. Since fuel rates have a strong relationship 
with emissions, they were utilized to determine the value of the required time shift. The proper 
time shift was determined through a cross-correlation analysis by which the correlation 
coefficients between emissions and fuel rates were estimated by a correlation function for a 
range of lag times. The lag times with the highest correlations were selected as the optimal 
events. It should be noted that the emission data for some of the testing trucks (CO2 collected by 
HDDT 4 and HDDT 5, CO by HDDT 4, and HC by HDDT 7) are invalid due to an error in the 
emission sensors of MERL during data collection, and thus the model does not cover these 
vehicles. 

The aligned data was smoothed by a moving average filter, and outliers were identified 
using a cook’s distance procedure. 
RESEARCH FINDINGS 
The modeling results are presented for fuel consumption and emission respectively in this 
section.  

Fuel Consumption Model Development 
Each tested truck was individually modeled. Table 6 gives a generalization of the model inputs 
along with their sources. Some of the variables are capable of being gathered in the field (e.g. 
vehicle speed), and some can be obtained from either the literature or manufacturer websites (e.g. 
drag coefficient, vehicle mass). 

Table 6: Parameters required for model calibration 
Parameter Value Source 
Drag coefficient (C!) 0.78 [64] 
Altitude correction factor (C!) N/Aa Computed from field data 
Vehicle frontal area (A!) 10.0 m! [64] 
Vehicle speed (v) N/Aa Measured in field 
Mass (m) N/Aa Measured in field 
Rolling coefficient (C!) 1.25 [64] 
c! 0.0328 [64] 
c! 4.575 [64] 
Road grade(G) N/Aa Computed from field data 
Acceleration (a) N/Aa Computed from field data 
Driveline efficiency (η) 0.94 [64] 
aThe parameter is not a single value. 

Fuel Consumption Model Calibration Challenges 
The model was calibrated using general linear regression analysis, and model coefficients are 
summarized in Table 7. Unlike LDVs, the second-order parameters(α!) are negative, which 
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demonstrates that fuel consumption varies as a concave polynomial function of vehicle power 
and exhibits a mild growth when vehicle power is increasing. This is similar to transit buses in 
[62, 63] in which the concave model was demonstrated to accurately predict fuel consumption 
levels. 

Table 7: The concave model for each truck 
Truck classification α! α! α! 
HDDT 1 1.13E-03 1.11E-04 -1.71E-07 
HDDT 2 1.88E-03 1.01E-04 -1.27E-07 
HDDT 3 1.56E-03 1.09E-04 -1.24E-07 
HDDT 4 1.42E-03 1.03E-04 -1.22E-07 
HDDT 5 1.38E-03 1.10E-04 -1.64E-07 
HDDT 6 1.02E-03 1.06E-04 -9.28E-08 
HDDT 7 9.18E-04 1.06E-04 -8.75E-08 
HDDT 8 2.02E-03 8.78E-05 -3.33E-08 

Nonetheless, the concave model may produce unrealistic driving recommendations as 
demonstrated by the sensitivity of estimated optimum fuel economy cruise speed to road grade 
and vehicle weight, as illustrated in Figure 8 and Figure 9, respectively. The road grade varies 
from -8% to 8% with a span of 2%, and the vehicle weight varies from 17,000 kg to 38,000 kg 
by having an identical span of 1000 kg. Figure 8 characterizes the variation of fuel consumption 
levels over cruise speed at different grade levels, which produces counter intuitive fuel 
consumption levels, especially when the road grade is high. This implies that the optimum fuel 
economy cruise speed may increase with the rise of road grade. Figure 9 also gives unrealistic 
results that heavier vehicles have higher optimum cruise speeds, implying that, drivers of heavier 
vehicles, compared to those driving lighter vehicles, are recommended to achieve higher cruise 
speed to minimize their fuel consumption levels. This is obviously not correct in reality. 

Given that the concave model generates a mild increase of fuel consumption with the 
growth of vehicle power, the unrealistic driving recommendations cannot be avoidable. 

	

Figure 8: Fuel consumption levels vs. cruise speed at different grade levels (concave model) 
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Figure 9: Impacts of vehicle weight on the optimum fuel economy cruise speed at different grade 

levels (concave model) 
Fuel Consumption Model Enhancement 
Given the deficiency of the concave model, an enhancement was considered to make the model 
more realistic. The convex model had been developed for LDVs and validated to be capable of 
generating reasonable driving instructions in existing eco-driving and eco-routing [40, 41, 70]. 
Consequently, the model was alternatively developed by ensuring that the second-order 
parameter is positive (linear model has not been considered given that it produces a bang-bang 
control). 

To develop a convex model, the order of magnitude of the second-order parameter, which 
impacts the degree of convexity of the function, needs to be determined. Basically, a lower order 
of magnitude generates estimates of the convex model less consistent with those of the concave 
model. Nonetheless, a higher order of magnitude, although more accurate, is very similar to a 
linear model. A trade-off is thus needed between the accuracy of the model and the degree of 
convexity. The performance of the convex model in terms of R!  values has been 
comprehensively investigated by varying the order of magnitude from 1E− 05 to 1E− 11, as 
illustrated in Figure 10. For each model, the R-square value increases with the growth of the 
order of magnitude, while the performance achieves little improvement when the coefficient is 
higher than1E− 08. Consequently, 1E− 08 was considered as the best order of magnitude in 
balancing the model performance and the degree of convexity of the model. Convex model is 
summarized in Table 8. 

Table 8: The convex model for each truck 
Truck classification α! α! α! 
HDDT 1 1.56E-03 8.10E-05 1.00E-08 
HDDT 2 2.48E-03 7.14E-05 1.00E-08 
HDDT 3 2.26E-03 7.82E-05 1.00E-08 
HDDT 4 1.80E-03 7.96E-05 1.00E-08 
HDDT 5 2.02E-03 7.59E-05 1.00E-08 
HDDT 6 1.45E-03 8.48E-05 1.00E-08 
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HDDT 7 1.31E-03 8.63E-05 1.00E-08 
HDDT 8 2.16E-03 7.98E-05 1.00E-08 

	

Figure 10: Model performance vs. order of magnitude of the second-order parameter 
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The effects of road grade and vehicle weight on the optimum fuel economy cruise speed 
were evaluated for the convex model using the same method. As illustrated in Figure 11, the 
model produces a bowl-shaped curve as a function of cruise speed and higher road grades result 
in higher fuel consumption levels, which is similar to LDVs. Specifically, Figure 12 reveals that, 
when moving downhill, high cruise speeds can minimize fuel consumption levels, yet not 
recommended for safety purposes. For uphill, steeper roads result in lower optimum cruise 
speeds, implying that drivers have to reduce their cruise speed to minimize their fuel 
consumption levels with an increase in the roadway grade. 

 

Figure 11 Fuel consumption levels vs. cruise speed at different grade levels (convex model) 
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Figure 12 Impacts of road grade on the optimum fuel economy cruise speed 
Heavier vehicles, as demonstrated in Figure 13, have higher optimum cruise speeds when 

moving downhill while lower when moving uphill. It should be noted that, Figure 13-(a), 
optimum cruise speeds remain constant with an increase in vehicle weight when the road grade is 
-8%, -6% and -4%. This is because the sensitivity analysis was performed only for the speed 
range of 0-100 km/h and the optimum cruise speeds already reached the maximum level when 
vehicle weights were at a low level (e.g. 17,000 kg). Furthermore, Figure 13- (b) clearly 
indicates that the optimum cruise speeds are more sensitive to vehicle weight at higher grade 
levels. In short, the convex model can provide reasonable driving recommendations and thus be 
applicable to eco-driving or eco-routing systems. 
Fuel Consumption Model Validation 
A rigorous validation procedure was designed using an independent dataset. The validation 
process was firstly initiated by comparing the model estimates with field measurements along 
with CMEM and MOVES estimates at an instantaneous fuel consumption level. Furthermore, the 
variation of fuel estimates over cruise speed was compared between the proposed model and 
CMEM. Finally, CO2 emissions were computed using fuel estimates and validated against in-
field measurements. 
Instantaneous Fuel Consumption Validation 
Figure 14 provides two example illustrations of the instantaneous model validation, 
demonstrating that the model estimates in general provide a good agreement with in-field 
measurements as well as CMEM and MOVES predictions by following the peaks and valleys of 
the fuel rates. Specifically, Table 9 statistically summarizes the performance of different models. 
Basically, CMEM performs the best in terms of R! values, whereas it produces a bang-bang type 
of control. Although convex models have a slightly lower R! value compared to concave models, 
they can provide realistic driving recommendations. MOVES performs the worst among the 
models given that it is designed for conformity use instead of instantaneous analysis; however, it 
can reflect a large proportion of transient fuel consumption behavior by producing relatively high 
R! values. 

Based on the slopes of the regression lines between model estimates and field 
measurements, all of the models tend to underestimate the fuel consumption levels with slopes 
smaller than 1.0, whereas the VT-CPFM model produces better approximation to measurements 
with higher slope values. MOVES has extremely low slope values given that the MOVES 
database has no trucks as heavy as the combination of the test truck plus the MERL trailer. The 
researchers at UC Riverside used MERL to collect data which was accounted for as part of truck 
load, which makes the total truck load extremely high. 
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(a) downhill	

	

(b) uphill	
Figure 13: Impacts of vehicle weight on the optimum fuel economy cruise speed at different grade 

levels (convex model) 
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(a) HDDT1 

	
(b) HDDT2 

Figure 14: Instantaneous model validation 

Table 9: Comparison of model performance 
Truck 
Type 

VT-CPFM (concave) VT-CPFM (convex) CMEM MOVES 
R! Slope R! Slope R! Slope R! Slope 

HDDT1 0.82 0.93 0.8 0.87 0.87 0.78 0.72 0.42 
HDDT2 0.83 0.81 0.81 0.76 0.87 0.75 0.76 0.39 
HDDT3 0.84 0.92 0.83 0.81 0.9 0.78 0.77 0.42 
HDDT4 0.87 0.91 0.86 0.88 0.9 0.77 0.78 0.42 
HDDT5 0.66 0.75 0.64 0.69 0.71 0.65 0.57 0.39 
HDDT6 0.78 0.89 0.77 0.86 0.83 0.72 0.72 0.38 
HDDT7 0.81 0.82 0.81 0.78 0.85 0.64 0.74 0.35 
HDDT8 0.84 0.86 0.84 0.84 0.89 0.79 0.78 0.43 
Optimum Cruise Speed 
In validating the proposed model, the variation of fuel predictions over cruise speed was 
compared against CMEM estimates, as illustrated in Figure 15 which gives one example result. 
The two models have highly consistent bowl shaped curves as a function of cruise speed, 
demonstrating that the proposed model can produce robust fuel estimates. Specifically, the 
optimum cruise speed ranges between 32-52 km/h (lower than LDVs: 60-80 km/h) for all of the 
test trucks varying the grade level from 0% to 8%, and moves towards the negative direction 
with the increase of vehicle load and grade level. 



41 
 

	

Figure 15: Impact of cruise speed on fuel consumption levels: VT-CPFM vs. CMEM 
CO2 Emissions 
CO2 can be estimated from the carbon balance equation using the fuel consumption, HC and CO 
estimates. Given that the magnitude of CO2 emissions is significantly higher than HC and CO 
emissions, the fuel consumption level is thus the primary factor that affects CO2 emissions. As 
demonstrated in Rakha, et al. [60], CO2 emission is linearly related to fuel consumption. 
Equation (46) was used to capture the relationship between CO2 and fuel predictions. The model 
was firstly calibrated for each truck with CO2 in g/s and fuel consumption in l/s, and the values 
of 𝜃 were then averaged over individual models to generate the average model given that the 
relationship between CO2 and fuel consumption is only related to fuel type rather than vehicle 
type. The value of 2070 was used to compute CO2 emissions from fuel consumption estimates. It 
is found that model estimates are in general consistent with field measurements, as the example 
results illustrated in Figure 16. The results of other validation efforts are summarized in Table 10 
which has an R2 values ranging between 0.74 and 0.85. In general, the model provides reliable 
CO2 predictions. Noticeably, the model cannot be validated for HDDT 4 and HDDT 5 due to a 
lack of valid CO2 field measurements, thus the model performance is not discussed for these 
vehicles. 

θ =
𝐶𝑂!(𝑡)
𝐹𝐶(𝑡)

 (46) 
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Figure 16: CO2 estimation using fuel consumption model (HDDT 1) 

Table 10: The performance of CO2 models 

 
Truck Classification 

Coefficients of determination (R2) Slope 

HDDT 1 0.78 0.95 
HDDT 2 0.85 0.72 
HDDT 3 0.81 0.82 
HDDT 4 NAa NAa 
HDDT 5 NAa NAa 
HDDT 6 0.74 0.73 
HDDT 7 0.81 0.65 
HDDT 8 0.79 0.82 

aCO2 model cannot be validated due to the invalid CO2 in-field measurements. 
Emission Model Calibration 
Like fuel consumption modeling, each testing truck was individually modeled for the three types 
of pollutant emissions HC, CO and NOx. A sample modeling result is illustrated in Table 11.  

Table 11: Sample Model Coefficients for HDDT 1 
Emission a b c d e f g h 

CO -0.023 0.003 58.967 -1.089 -3201.70 70.879 47595 -1209.50 

HC 0.035 0.001 11.219 -0.216 -796.41 16.847 22888 -456.31 

NOx 0.049 0.002 100.098 -1.017 -10536.00 161.680 339250 -5640.50 

Emission Model Validation 
The models were tested using the dataset independent of the calibration data. Due to the space 
limitation, this report only presents the example results for one truck; namely, HDDT 1. The 
results are illustrated in Figure 17, Figure 18 and Figure 19 to represent the behavior of 
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emissions as a function of VT-CPFM fuel consumption and speed. It is found that emissions 
increase with the increasing fuel consumption, and the highest emission levels occur at the peak 
of fuel consumption. NOx has the highest level of emissions and is the well-distributed emission 
compared with CO and HC. NOx makes up the largest portion of diesel emissions at more than 
50% because diesel engines are lean combustion engines and the concentration of CO and HC is 
minimal [71]. 

The VT-CPFM emission model maintains consistency using the same model to predict 
emissions. The accuracy of the model was evaluated by estimating the coefficient of 
determination (R2) of CO, HC, and NOx for the eight trucks. Table 12 shows R2 values for each 
truck across the three emissions and the average values for each emission. NOx has the highest 
R2 values, followed by CO then HC, which has the lowest R2 values. Figure 18 illustrates this 
by showing the well-distributed data for NOx, which were measured more easily and captured 
more accurately than CO and HC for some trucks. Diesel engines emit low levels of HC [71], 
making it more difficult to predict accurately compared with NOx. Consequently, NOx has the 
highest average R2 of 0.857, followed by CO then HC (0.749 and 0.582, respectively). 

	

Figure 17: Sample randomized CO emission data with speed and VT-CPFM fuel consumption 

	

Figure 18: Sample randomized NOx emission data with speed and VT-CPFM fuel consumption 
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Figure 19: Sample randomized HC emission data with speed and VT-CPFM fuel consumption 

Table 12: Coefficient of Determination for Each Truck 
Vehicle ID CO HC NOx 

HDDT 1 0.752 0.753 0.898 

HDDT 2 0.749 0.226 0.821 

HDDT 3 0.710 0.583 0.897 

HDDT 4 NA 0.651 0.915 

HDDT 5 0.721 0.440 0.676 

HDDT 6 0.752 0.796 0.858 

HDDT 7 0.739 NA 0.862 

HDDT 8 0.821 0.626 0.929 

Average 0.749 0.582 0.857 

The performance of the VT-CPFM emission model was further evaluated and validated 
by comparing it with CMEM’s results Table 13.The predicted emission values were plotted 
against measured field data to fit the regression line to estimate R2 for each model (Table 13, 
Figure 20, Figure 21, Figure 22). Table 13 summarizes the individual and average R2 values, 
revealing the robustness of the model based on its goodness of fit. It is evident that the average 
R2 values of the VT-CPFM emission model are higher than those for the CMEM model, 
demonstrating the superior performance of the model. In general, the VT-CPFM model has 
higher R2 values for almost all the vehicles compared to CMEM. 
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Table 13: R2 Values for Emission Field Data vs. Estimates for CMEM and VT-CPFM 
Vehicle 

ID 
VT-CPFM 

(CO) 
CMEM 

(CO) 
VT-CPFM 

(HC) 
CMEM 

(HC) 
VT-CPFM 

(NOx) 
CMEM 
(NOx) 

HDDT 1 0.728 0.586 0.745 0.695 0.924 0.904 

HDDT 2 0.779 0.708 0.172 0.148 0.832 0.820 

HDDT 3 0.665 0.487 0.566 0.525 0.925 0.951 

HDDT 4 NA NA 0.658 0.512 0.934 0.938 

HDDT 5 0.707 0.594 0.423 0.404 0.700 0.661 

HDDT 6 0.789 0.645 0.162 0.107 0.880 0.866 

HDDT 7 0.743 0.510 NA NA 0.896 0.824 

HDDT 8 0.836 0.613 0.578 0.392 0.955 0.939 

Average 0.750 0.592 0.472 0.397 0.881 0.863 

The two models are similar in terms of the order of goodness of fit for NOx emissions. 
Table 13 shows that the average coefficient of determination (R2) NOx emission values for the 
two models are the highest. Alternatively, the coefficient of determination is the lowest for HC 
emission estimates. The values imply that NOx has the best fit. VT-CPFM has a slightly higher 
R2 value than CMEM (0.881 versus 0.863). On the other hand, the average R2 values for HC 
demonstrate the relatively poor fit between the predicted and measured field data, which is due to 
the low HC emission levels as mentioned before. Nevertheless, VT-CPFM has better HC 
estimates than CMEM as expressed in the average R2 values (0.472 versus 0.397). Finally, the 
VT-CPFM model has a relatively average fit of R2 = 0.750 compared to CMEM with a relatively 
poor fit of R2 = 0.592 for CO emissions. 

The VT-CPFM model is simple, with only eight coefficients and two main parameters, 
speed and fuel. CMEM requires extensive and complicated data to estimate emissions. For 
instance, CMEM requires engine speed data, which would require installation of onboard 
diagnostics to measure. On the other hand, the data used by VT-CPFM are publicly available 
except for the speed data, which can be easily collected using a GPS device. 

 
(a) CMEM 
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(b) VT-CPFM 
Figure 20: Comparison between (a) CMEM and (b) VT-CPFM of CO estimates 

 
(a) CMEM 

	
(a) VT-CPFM 

Figure 21: Comparison between (a) CMEM and (b) VT-CPFM of HC estimates 
 

 

(a) CMEM 
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(a) VT-CPFM 
Figure 22: Comparison between (a) CMEM and (b) VT-CPFM of NOx estimates 

Figure 20, Figure 21, and Figure 22 illustrate the correlation of estimated emissions from 
CMEM and VT-CPFM with in-field measurements from HDDT 1. NOx, the key target emission 
and the main concern in HDDT emissions, is highly correlated compared with CO and HC 
emissions. Moreover, VT-CPFM had better estimates for NOx, CO, and HC compared to 
CMEM based on the R2 values. The VT-CPFM estimated emissions are uniformly scattered and 
have better distribution around the regression line than CMEM. This is additional evidence that 
VT-CPFM provides better fuel estimates than CMEM. 

Table 14: Average MAE and SMAPE for CMEM and VT-CPFM 

Emissions 
CMEM VT-CPFM 

MAE SMAPE MAE SMAPE 

CO 0.021786 0.54016 0.017014 0.455586 

HC 0.000888 0.21699 0.000732 0.193229 

NOx 0.023443 0.24979 0.022614 0.246200 

The performance of the model was further investigated and analyzed by estimating mean 
absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) for CO, HC, and 
NOx estimates Table 14 and SMAPE were calculated for vehicle trips estimated by the VT-
CPFM and CMEM model structure to compute the difference in estimates against in-field 
measured data. SMAPE can be used as an alternative to mean absolute percentage error (MAPE) 
when there are zero or near-zero values in the data, which could result in infinitely high error 
rates that will increase the average error rate and will not represent the correct value. SMAPE 
was used as benchmark for the two models since some of the emissions values were near-zero. 
SMAPE yields higher error rates than usual due to the near-zero values but it limits the error to 
200% as shown in (47), where 𝐴! is the actual value and 𝐹! is the forecast value at time 𝑡. 

𝑆𝑀𝐴𝑃𝐸 =
𝐴! − 𝐹!
𝐴! + 𝐹!
2

 
(47) 

 
NOx had an approximately similar SMAPE for both models, although SMAPE and MAE 

for CMEM were slightly higher than for VT-CPFM. The HC and CO error rates were higher for 
CMEM than for VT-CPFM, which corroborates the evident goodness of fit of VT-CPFM over 
CMEM. 



48 
 

 
Figure 23: Model validation and comparison with CMEM for CO 

 
Figure 24: Model validation and comparison with CMEM for HC 
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Figure 25: Model validation and comparison with CMEM for NOx 

Figure 23, Figure 24, and Figure 25 show sample estimated instantaneous emissions of 
the two models along with in-field measured data. The figures illustrate the ability of the models 
to capture the transient behavior of the three pollutants. The high error rates, which correspond to 
near-zero values are interpreted by the figures showing the large drops in empirical data. For 
NOx, the two models were similar and fit the measured data well. The VT-CPFM model had 
better estimates for CO and HC, especially at lower values, where CMEM overestimates the 
emissions at these values. The VT-CPFM estimates were more consistent with in-field measured 
data for the three pollutants, specifically for HC and CO, which was expected from the 
demonstrated goodness of fit of the VT-CPFM model in previous tables and figures. 
CONCLUSIONS & RECOMMENDATIONS 
The model developed in this paper circumvents the bang-bang type of control in the family of 
HDDTs fuel consumption and emission modeling. Due to a lack of publicly available data, field 
measurements are used for model development. The model is calibrated for each individual truck 
and validated by comparing model estimates against in-field measurements as well as CMEM 
and MOVES model estimates. 

The results of the fuel consumption modeling demonstrate that the model should be 
restricted to be convex, although empirical measurements do seem to point to a concave function 
of vehicle power, in order to provide realistic driving recommendations from the system 
perspective. The convex model is demonstrated to estimate fuel consumption levels consistent 
with in-field measurements as well as CMEM and MOVES, without significantly sacrificing the 
model accuracy. The optimum fuel economy cruise speed ranges between 32-52 km/h for all of 
the test vehicles varying the grade level from 0% to 8%, and moves towards the negative 
direction with an increase in the vehicle load and grade level; namely, steeper roadway grades 
and heavier vehicles result in lower optimum cruise speeds. The fuel predictions of the model 
can accurately estimate CO2 emissions, which are demonstrated to be consistent with field 
measurements.  
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The results of the emission modeling demonstrate that the pollutant emissions, HC, CO, 
NOx, can be mathematically formulated as a polynomial function of fuel consumption and 
vehicle speed. The developed emission models are demonstrated to generate results consistent 
with in-field measurements, especially for NOx model which produces a better fit compared to 
CO and HC. The model is also demonstrated to provide better performance than CMEM in terms 
of the coefficient of determination. 

It is recommended that EPA require HDDTs to report their fuel economy in the future so 
that the model can be calibrated using publicly available data without mass in-field data 
collection, which can maximize the cost-effectiveness of model development
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APPENDIX 
APPENDIX A. PER-TRIP HAULAGE UNIT COST FUNCTION 
A-1. Truck System 
The original equations for truck and rails were obtained from Janic [12].  

Cost (USD dollars) = Xd ×× βα )( 1 , where α = 5.46 and β = -0.278. 

S11 = 1 TEU  XdSdXC ×××= +111111 )(
2

2.1),,( βα  

S12 = 2 TEU  XdSdXC ××= +111211 )(
2

),,( βα  

S13 = 3 TEU  XdSdXC ×××= +111311 )(
2

9.0),,( βα  

A-2. Rail System 
The original equations for truck and rails were obtained from Janic [26]. 

Cost (USD dollars) = XddW v ×××× 22 )( βα , where α = 5.46, β = 0.74, and Wv (total weight of 
a train) = VW0 (locomotive weight) + VW1 (flatcars weight) + Xij × 14.3 (loads weight) for v type 
of train. 

S21 = 60 TEU  ijij ddXSdXC ×××+×+××= ]})3.14242089{58.0[07.1),,( 74.022122  

S22 = 75 TEU  ijij ddXSdXC ×××+×+××= ]})3.14242589{58.0[07.1),,( 74.022222  

S23 = 144 TEU ijij ddXSdXC ×××+×+×××= ]})3.142448289{(58.0[07.1),,( 74.022322  

A-3. Vessel System  
The haulage cost of vessels was estimated using the equation developed by [10]. 

S31 = 200 TEU  XdXdSdXC b ××=×××××= 333133 04.0)609.1/1(08.08.007.1),,(  

S32 = 500 TEU  XdXdSdXC ××=×××××= 333233 025.0)609.1/1(05.08.007.1),,(  

S33 = 800 TEU  XdXdSdXC ××=×××××= 333133 02.0)609.1/1(04.08.007.1),,(  

APPENDIX B. PER-TRIP UNIT COST FUNCTIONS OF FUEL CONSUMPTIONS 
B-1. Truck and Rail System 
The total fuel consumptions of heavy trucks and rails (in gallon) are calculated using the formula 
developed by Barth and Boriboonsomsin [27]. 

FR (g) = ϕ·d(k·N·V + P/η)/(44·v) 
where, 

P (total engine power (kW)) = d(M·a + M·g·sinθ + 0.5·Cd·ρ·A·v2 + M·g·Cr·cosθ) /(1000· ηtf ) + 
(Pacc·d / v), 
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Φ = fuel-to-air mass ratio 
d = traveling distance (m) 

k = engine friction factor (typically 0.2) 
V = engine displacement (liters, typically between 2 and 8) 

N = engine speed (in rpm) 
η = efficiency parameter for diesel engines (typically 0.4) 

v = speed (m/s) 
M = weight (kg) 

a = acceleration (m/s2) 
g = gravitational constant (m/s2, typically 9.81) 

ρ = air density (kg/m3, typically 1.2041) 
A = frontal surface area (m2, typically between 2.1 and 5.6) 

Cd = coefficient of aerodynamic drag (typically 0.7) 
Cr = coefficient of rolling resistance (typically 0.01) 

ηtf = vehicle drive train efficiency (typically 0.4) 
Pacc = engine power demand associated with running losses of the engine and the operation of 
vehicle accessories such as usage of air conditioning (typically 0) 
B-2. Vessel System 
The per-trip fuel consumptions of vessels were calculated using the formula developed by [28]. 

1
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⎛
⋅=  

where, 
MF = main engine(s) daily fuel consumption (MF = 206 g/kWh) 

AF = auxiliary engine(s) daily fuel consumption (AF = 221g/kWh) 
s1 = operational speed of vessel (in nautical miles) 

s0 = design at-sea speed of vessel (in nautical miles)  
d = traveling distance (nautical miles) 

The MF = 206 g/kWh and AF = 221g/kWh were used based on the activity assumptions 
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