
INTEGRATED INS/GPS NAVIGATION
FROM A POPULAR PERSPECTIVE

Mensur Omerbashich
University of New Brunswick

Fredericton, N.B. Canada

ABSTRACT

Inertial navigation, blended with other navigation aids Global Positioning System (GPS) in
particular, has gained significance due to enhanced navigation and inertial reference
performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts
based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation
Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has
decided to implement the system in a sophisticated form as a new standard navigation tool
during this decade. There have been a number of new inertial sensor concepts in the recent
past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation,
as well as lower size and weight, and higher power, fault tolerance and long life.

The principles of GPS are not discussed; rather the attention is directed towards general
concepts and comparative advantages. A short introduction to the problems faced in
kinematics is presented. The intention is to relate the basic principles of kinematics to
probably the most used navigation method in the future-INS/GPS. An example of the
airborne INS is presented, with emphasis on how it works. The discussion of the error types
and sources in navigation, and of the role of filters in optimal estimation of the errors then
follows. The main question this paper is trying to answer is “What are the benefits of the
integration of INS and GPS and how is this, navigation concept of the future achieved in
reality?” The main goal is to communicate the idea about what stands behind a modern
navigation method.

INTRODUCTION—CAPTURING A MOTION

In navigation the systems in which position parameters (e.g., the
coordinates1) change with time, are referred to as kinematic processes or
systems. Here we refer to a kinematic rather than a dynamic process—
studies made under the heading of kinematics differ from dynamical
investigation in that the concept of mass is not considered. Thus kinematics
is sometimes referred to as the geometry of motion. A kinematic model
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describes a moving system (e.g., a vehicle or vessel) by putting parameter
estimates at successive epochs in a mathematical relation.

A particle that is moving in space, and of position given by a system of
curvilinear coordinatesx, as the timet varies describes a certain spatial
curve called trajectory. It is given simply by:

x = x(t). (1)

Here x corresponds to position vectorr of a vehicle or vessel. In
navigation it is functionally related to position finding, thus obviously
representing the main object of interest for avionics personnel working
with navigation applications (see Figure 1). This figure shows the
navigation process, differentiation feedback loop (Wells, 1996 based on
Anderson, 1966). The first derivative of Equation 1 with respect to time is
named velocity vector (v) of the particle. In navigation it comes into the
center of the navigator’s attention during the route following. The second
derivative with respect to time of Equation 1 is called acceleration vector
(a) of the particle. The aspect of navigation that deals with acceleration is
guidance.

In dynamics particles are still idealized as points and their paths are
represented by space curves, but because mass (m) is taken into account,
the study of velocity and acceleration fields along the curves is replaced by
a study of momentum (mv) and force (ma) fields. (Wrede, 1963).

Figure 1. The navigational process and differentiation feedback loop

Note: Wells, D.E. (1996)Hydrographic Surveying. Unpublished lecture notes GGE4053, Department of
Geodesy and Geomatics Engineering, University of New Brunswick , Canada. Reprinted with permission.

Basically, a kinematic model is represented by the mathematical
expression for the predictability of the motion. This predictability is
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another way of saying that the position parameters are not entirely random,
but have values related to their values at an earlier epoch. To illustrate this,
we discuss the error/time frame. (see Figure 2)

Mean error

Figure 2. Precision of positioning under various conditions

Note: FromThe Kalman Filters in GPS Navigation, by B. Merminod, 1989 NSW Australia: University of
New South Wales. Copyrighted 1989 by University of New South Wales. Reprinted with permission.

Considering the purely random kinematic mode used to describe a
motion, each determination of the position is independent of the others.
Assuming that all other factors influencing the positioning system (e.g., the
GPS) are constant, the precision of a fix is also constant in time (see Figure
2). If, on the other hand, the static mode is used for determining the position
(say, a ground mark) each new measurement will contribute to the
determination of the same position parameters. Extending an observation
session makes more data available for the estimation of the same number of
parameters, hence improving their precision. The predictability issue is
raised once we accept that the difference in behavior of static versus
kinematic solutions is not due to the movement itself, but to the a priori
knowledge on the movement. If we could predict the movement of a vehicle
as well as that of a ground mark (which, of course, in that case is not
moving), the positions at different epochs could be perfectly related to one
another and the precision obtainable would approach that of the static case.
This applies, e.g., to an object moving along a known trajectory. Therefore,
it is the predictability of the object’s motion that permits the link between
static mode (surveying) and well-behaved kinematic mode (most
navigation) to be established. The dotted line shown on Figure 2 then
represents the resulting improvement in the quality of the position
determination.
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INS/GPS INTEGRATION

Among today’s trends in navigation are the integrated navigation
systems, where the components (sensors) that are usually being integrated
are the Inertial Navigation Systems (INS) and the Global Positioning
System (GPS). Other sensors used in integration are, for instance, the
Doppler Velocity Sensors (DVS). The purpose of combining navigation
subsystems into an integrated system is to take advantage of
complementary strengths of the subsystems. Thus navigation that is more
reliable than that of individual subsystems is provided.

The INS computes the position by a sophisticated form of dead
reckoning. In the simplest form of dead reckoning, as practiced by
navigators in the past, the navigator multiplies the indicated (or estimated)
speed by the estimated time enroute to obtain the estimated distance
traveled from his starting location in a fixed direction usually provided by a
magnetic compass. The assumptions made here are that velocity and
heading are constant. The INS relies upon basically the same principle
except it contains accelerometers that sense all specific forces including
gravity. Further, it contains gyros that sense all angular rates experienced
by the INS with respect to the inertial frame of reference.2 With knowledge
of angular rate, the INS computes the vehicle’s orientation with respect to a
geographic reference in the form of attitude (roll, pitch angles) and heading
(see Figure 3). With the knowledge of vehicle acceleration, the INS
computes the vehicle’s velocity and change in position on the Earth, in form
of latitude, longitude and altitude.

Figure 3. The body frame with respect to the reference frames used in navigation

Note: From “A Report on Navigation Systems Integration and on the Benefits and Costs of Integration,” by
B.M. Scherzinger, 1993, unpublished report. Reprinted with permission.
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Three main forces that an INS has to take into account are: (a)
Gravitational acting down; (b) Centrifugal due to Earth’s rotation and
sensed by gyros—a radial force acting outward from the object, unlike
centripetal that acts toward the object; and (c) Coriolis3 force in the
direction of the movement, coming from compound acceleration of coriolis
(in navigation: Coriolis correction of the sensed acceleration).

aC = 2ωxv1, (2)

whereω (assumed to be constant—variations in earth’s rotation can be
neglected in navigation) represents the angular velocity of the rotating body
(the Earth), andv1 relative velocity (with respect to the Earth).aC correction
is applied with respect to a frame relative to inertial space.

HOW IT WORKS

An INS designed to navigate on the Earth and in its atmosphere must
first subtract the gravitational, centrifugal and the Coriolis effects in form
of the corresponding accelerations, from the sensed specific accelerations
in order to obtain the INS’s acceleration with respect to the Earth. Then it
has to subtract the Earth’s rotation rate (15o per hour) from the sensed
angular rates to obtain the INS’s angular rate with respect to the Earth. The
INS finally integrates the corrected accelerations and angular rates to
obtain changes in velocity, position, attitude and heading, with respect to
the Earth.

On Figure 4 is an example (Scherzinger, 1993) of the simplistic view of
inertial space-stabilized navigation. The accelerometers are mounted on a
platform that can rotate in the azimuth plane on the aircraft and are initially
oriented North, East and Down, sensing North and East accelerations and
the Down force. A single gyro mounted on the same platform senses the
angular rate along the azimuth axis. The aircraft is initially at rest facing
East, and accelerates to a velocity of 1 m/s over 1 second. The East
accelerometer senses this as acceleration aEast that accelerates the airplane.
The INS computes the changes in velocityv Eastand positionr Eastas:

Then the aircraft enters a turn and thereby changes its heading.
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The azimuth-angular rate is sensed by the gyro and is used as a signal to
a torque motor that rotates the platform about the azimuth axis in direction
opposite to the sensed angular rate (clockwise in our case). The platform
rotates with respect to the aircraft’s centerline, and not with respect to the
Earth’s surface below the flying aircraft. Thus the North-East orientation of
the accelerometers is being maintained. Worth noting here is that the
aircraft’s heading is the azimuth angle between the aircraft centerline and
the accelerometer North axis. Finally, during the maneuver (a turn) as the
aircraft changes its velocity from an East velocity to a North velocity this
change is being described by a North acceleration and an East acceleration.
The North and East accelerometers, naturally, sense these. In this way, the
INS computes an increasing North velocity and decreasing East velocity
during the turn. Once the turn is completed, the INS computes a constant
North velocity since both the North and East accelerometers sense no
aircraft accelerations (see Figure 4). Thus the stabilized platform has
maintained its North-East orientation before, during, and after the turn.

In cases when the Down accelerometer senses a specific acceleration as
the aircraft begins, for example, to climb, this (equation 4) is the resultant
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Figure 4. An example of the INS applied in air navigation

Note: From “A Report on Navigation Systems Integration and on the Benefits and Costs of Integration,” by
B.M. Scherzinger, 1993, unpublished report. Reprinted with permission.
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(the sum) of the aircraft’s vertical acceleration and the gravitational
acceleration. Then the INS computes the aircraft altitude change from
initial altitudeh0 and sensed acceleration, as:

In a procedure separate from but analogue to the above-described one
(maintaining the North-East orientation of the platform), the level
orientation of the platform is being preserved as well. Here the platform
ideally defines a navigation frame that is both locally stable and locally
level. The accelerometer triad (North, East, and Down), in this case
mounted on the platform, outputs a sensed acceleration vector given by:

which is resolved in the navigation frame with axes oriented North, East
and Down. Similarly, the gyro triad (North, East, and Down) outputs a
vector of North, East and Down angular rates used for maintaining the
platform’s stability. All subsequent changes in position and velocity are
then computed in the navigation frame defined by the platform.

Let it finally be mentioned how, especially for military applications,
besides the above space stabilized (stable platform and gimbals) and local
level, also in usage nowadays are so-called strap-down inertial equipment
mechanization.

INS Errors

Most INS errors can be attributed to inertial sensors (instrumental
errors). These are the residual errors exhibited by the installed gyros and
accelerometers following calibration of the INS. The dominant error
sources in the INS are shown in Table 1.

As mentioned above, error-characteristics of an INS are the behavior of
the free-inertial INS following a nominal alignment (determination of
position on take-off). For example, aircraft navigators are familiar with the
two dominant error-characteristics. The first is Schüler4 Oscillation,
coming from the fact that the INS is behaving like a pendulum with the
center of rotation in the center of the Earth. The second is Position Error
Growth (PEG) is the most significant performance figure that characterizes

Omerbashich 109

(5).)( Sensed

Down0 ∫∫ −+= dtgahh

(6),
Sensed

Down

Sensed

East

Sensed

North

Sensed

















−
−
−

=
a

a

a

a



an INS. Dominant source of the PEG rate is the gyro bias, contributing 60
nmi/hr. Number of nautical miles per hour position error-rate, that it
typically exhibits, classically characterizes an INS.

Lastly we speak of INS state errors (including initial state errors, and
inaccuracies in the gravity field modeling) (Linkwitz & Hangleiter, 1988).
Equation 4 from our example (Down accelerometer) applies to any sensed
acceleration (East or North). Also, we can express the measured (sensed)
vector of acceleration (a) by a physical law (Linkwitz Hangleiter, 1988):
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Table 1. Errors in the INS

Type/source Description Typical magnitude

Alignmenterrors roll, pitch and heading errors

Accelerometer biasor offset a constant offset in the
accelerometer output that

changes randomly after each
turn-on.

50-100µg
(1µg=9.81x10-6m/s2)

Accelerometer scale factor
error

results in an acceleration
error proportional to sensed

acceleration

75-200 ppm

Accelerometer and gyro
nonorthogonality

the axes of accelerometer and
gyro uncertainty and

misalignment

5"-25"

Gyro bias or driftdue to
temperature changes(and
gas circulation*)

a constant gyro output
without angular rate presence

0.002-0.01o/hr

Gyro scale factor errorfrom
temperature changes

error in the assumed degrees
per second per pulse

< 10 ppm

Random noise spectral density of
(0.002o)2/hr

* when the gas gyro is used
Note: From “A Report on Navigation Systems Integration and on the Benefits and Costs of Integration,” by
B. M. Scherzinger, 1993, unpublished report. Reprinted with permission.
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whereb expresses rotational acceleration of the accelerometer frame with
respect to inertial space, andg is the gravity vector. The above-mentioned
errors are then exhibited as relative position-errors as the integration takes
place:

For integration intervals of several minutes these position-errors are of
the order of several centimetres, and grow to hundreds of metres for
integration intervals of several hours (Linkwitz & Hangletier, 1988). Thus
high (decimetre accuracy) short-term stability and poor (hectometre
accuracy) long-term stability can characterize the error behavior of inertial
positioning (Schwarz, 1986). The way to handle these errors consists in
bringing the inertial platform to a complete rest (zero velocity update) after
which velocity is reset to 0 value. However this is not feasible during the
flight, for which an In-flight Update is performed. For further references on
INS errors, see, for example Scherzinger, 1993.

To get a better understanding of the effect of the most significant INS
errors, let us consider an aircraft on a 5,000 km long route. Assuming the
average speed of v = 800 km/hr, we apply this information on the typical
magnitudes column from Table 1:

1. accelerometer bias;50-100µg
- best-case scenario: 0.0004905 m/s2

- worst-case scenario: 0.000981 m/s2

2. accelerometer scale factor error
- best-case scenario: 75 ppm on 5,000 km trajectory: 375 m
- worst-case scenario: 200 ppm on 5,000 km trajectory: 1000 m

3. gyro bias
- best-case scenario: 0.002o/hr on 800 km: 28 m
- worst-case scenario: 0.01o/hr on 800 km: 140 m

4. gyro scale factor
- best-case scenario: 0 m
- worst-case scenario: 10 ppm on 5,000 km: 0.05 km = 50 m
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Summarizing the above errors we conclude that total INS error would
be, in

- best-case scenario: 0.375 km over 5,000 km + 0.028 km over 800 km
+ 0.01 km over 5,000 km = 560 m≈ 1/2 km

- worst-case scenario:1 km over 5,000 km + 0.140 km over 800 km +
0.05 km over 5,000 km = 1925 m≈ 2km.

It is indicative that the accuracy of a stand-alone INS decreases
significantly: the error reaches the order of kilometres. The well-known
accuracy of even absolute GPS positioning (stand-alone GPS) is about 100
m horizontally and 150 m vertically. Thus these two systems definitely
represent complementary subsystems for the navigation integration, error-
wise. In the following we will discuss some characteristics that make them
complementary to one another for reasons other than dissimilarity for fault
tolerance.

Of course, this very rough investigation did not include all the errors
listed in Table 1, or errors from the discussion of equations 7 through 10.
The results above should therefore be addressed with great caution.

GLOBAL POSITIONING SYSTEM IN NAVIGATION

Global Positioning System (GPS) can be regarded as a new navigation
sensor. GPS provides range and range-rate measurements. The primary role
of GPS is to provide highly accurate position and velocity worldwide,
based on range and range-rate measurements. The acceleration vector is
then determined from positions at different time epochs, by differentiation
of these positions with respect to time. Worth noting is that by accuracy we
mean how close the average measurement is the actual true value (accuracy
measures systematic error), distinguishing it thus from precision that
describes how close the measurements are to one another (precision
measures random error).

Integration with one or more external systems capable of sensing forces,
for example, with an INS, has the goal of achieving reliability in
navigation, as the GPS signals may not be available at all times. In that
sense, the basic idea behind the integration of GPS and INS is to estimate
the inertial sensor errors online using GPS. This means an in-flight
calibration (update) or identification of the INS’s state and instrument
errors in order to provide a precise inertial navigation solution—even
during the loss of GPS signal (a few seconds to over a minute)—based on
previous knowledge of INS errors. At the same time, the INS can be used to
bridge cycle slips and times of loss of lock, but most important it can be
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used to bridge the time between two GPS position computations. (Liang,
1992).

Usually a filter code (a mathematical algorithm) that will optimally
process such (by an integrated system) collected information is written,
burned into a chip and integrated into the integration structure itself. Of
course, a filter implementation is not a necessity, but rather an option—an
especially desirable one in military aircraft navigation—when losses of
GPS signal due to sudden maneuvers are often. Due to a filter
implementation the final solution becomes consistently reliable. For
example, short-term highly reliable three-axis attitude and heading (from,
e.g. INS) may accompany long-term highly accurate position and velocity
(from, e.g. DGPS and say, a Kalman filter). The benefit of such
(INS/GPS/filter) integration is then obvious. The INS error estimates may
be used to improve INS/GPS navigation should GPS become unavailable.

Further, if there would be only INS, then the final solution performance
would degrade consistently to the level prescribed by the available aiding
sensors. Also, GPS can be subject to jamming and spoofing (Leick, 1995).
The INS on the other hand is an autonomous navigator and therefore
unaffected by external influences of this sort. Integration also proved to
improve estimates of acceleration, attitude, and body rates that can be used
for guidance and control. During testing at the NASA Ames Research
Center in 1992, Precision (P) Code DGPS/INS positioning root mean
square (RMS) achieved was 1 m horizontal and 3 m vertical (Liang, 1992).

GPS can be implemented in navigation in a few basic ways. It can be a
stand-alone receiver, as a part of recreational application of GPS (but also a
military application, e.g., in Gulf and Kosovo on Tornado aircraft). The
operator reads the output on the receiver’s display and manually inserts the
GPS position into the main computer (if there is one) or applies it in manual
navigation. Second, it can be input to a main computer via, for example,
digital interfacing. Third, it can be a fixing aid as a part of an integrated
navigation system, for example INS/GPS, and input with ability of the main
computer to use the GPS data in the navigation solution together with other
sensors and to aid GPS data with navigation data. Fourth, it can be input to
mission computer, as a form of a military application of GPS: enabling fast
adjusting (satellites reacquisition) to sudden maneuvers when the loss of
the signal is highly possible using velocity (course and speed) data from
INS.

Another benefit of integration is when DGPS is used for precision
approach (autonomous all-weather landing)—in a (civil) aviation
application of GPS. But such a task is not solved by DGPS itself. The
standard integrity requirements for air navigation precision approach
require GPS to be integrated with a complementary sensor system like an
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INS (Liang, 1992). Only this way (by the strength of the integration), can
the Instrument Landing System (ILS) or Microwave Landing System
(MLS) (the expensive systems in use at the airports) be replaced by a
worldwide (in a unique coordinate frame), all-weather system, that is not
expensive and not dependent on the closeness of an airport flight-control.

GPS ERRORS; INS/GPS APPLICATION CLASSIFICATION
BASED ON GPS TYPES

Position accuracy of GPS pseudo-range absolute positioning is affected
by measurement noise (few metres) and unmodelled short- and long-term
systematic effects of the order of a few tens of metres. The propagation of
these errors into the position solution can be characterized by a Dilution of
Precision (DOP) factor DOP is greater than 1, expressing the geometry
between the satellite and the receiver. Therefore, GPS pseudo-range
absolute positioning can be said to have medium (tens of metres) short- and
long-term stability.

In pseudo-range GPS relative positioning, the position of a receiver is
determined relative to another receiver at a known location, from
simultaneous pseudo range observations to at least four GPS satellites.
Although most of the systematic effects are eliminated in this differencing
process, the errors in these position differences remain dominated by
metre-level measurement noise and can be characterized by medium (tens
of metres) short- and long term stability.

If one of the two stations involved in the relative positioning remains
static and the other starts moving, simultaneous GPS carrier phase
observations at two locations can be used to determine the change in
relative position. As carrier phase measurement noise is much lower than
pseudo-range noise, and most systematic errors are removed in the
observation differencing, the relative position errors are of the order of a
few centimetres over distances of a few tens of kilometres. Therefore,
changes in relative positions from GPS carrier phases exhibit high short-
and long-term stability.

A GPS receiver becomes an orientation and position sensor if pseudo-
ranges and carrier phases are measured simultaneously through three
different antennae mounted on a common antenna platform. The position is
determined using the pseudo-range observations of one of the three
antennae. The carrier-phase observations then determine two linearly
independent relative position-vectors between the three antennae and,
therefore, yield the platform orientation. (Linkwitz & Hangleiter, 1988).

After acquiring the above-described division for GPS positioning and
orientating, to summarize our discussion on INS/GPS integration by
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classifying the integration into four types. First integration in absolute
positioning requires continuous reception of GPS signals in reasonable
geometry (say DOP < 6). Due to the possible GPS signal loss, as well as in
the high dynamic applications, INS derived position changes can serve as
an interpolator. Typical applications are in precise air and marine
navigation. Here the integration has to take place in real time. INS is
considered as primary navigation system, GPS pseudo-ranges as position-
updates provider, and a filter (e.g., Kalman) as the adequate formulation for
the system integration. Second, integration in relative positioning provides
an improved long-term stability resulting from the elimination of
systematic errors in the GPS pseudo-ranges. Typical applications are in
(hydrographic) surveying, inshore and river navigation and airborne
photogrammetry. INS can be used as interpolator in case of GPS signal
loss. Integration in orientation determination is where fiber-gyros are part
of the INS. Fourth, is integration for gravity field determination. For more
details about this type see, for example, Schwarz, 1986.

ESTIMATION, FILTERING, AND BLENDING

A final (blended) navigation solution is the correct navigation solution
(either from a stand-alone or integrated sensors). The corrections to the, for
example, INS solution can be computed within an integration (usually by
the Kalman filter) which then compares the INS data with the aiding (from
the integration) sensor data.

Figure 5. Three types of estimation problems

Note: Wells, D.E. (1996)Hydrographic Surveying. Unpublished lecture notes GGE4053, Department of
Geodesy and Geomatics Engineering, University of New Brunswick , Canada. Reprinted with permission.

Figure 5 considers the relations between prediction and filtering, as the
two very first steps in an estimation procedure. To summarize and relate
them to navigation, let us state how prediction understands the computation
of expected position (and its precision) of the vehicle at some subsequent
time tk, based upon the latest measurement at tk-1. In this way we now term
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filtering to be a process of computing the vehicle’s position at tk (i.e., in
real-time: while observations are taken also at tk). Similarly, we define the
third step in the estimation process as smoothing—the estimation of where
the vehicle was (say, at time tk) once all the measurements are post-
processed to tk+1 . Here we actually talk about the reprocessing (of all the
measurements) after the last measurement has been made and the filtering
step has been completed.

Previously discussed predictability of the motion makes it an ideal
candidate for filter estimation methods. If we imagine a vehicle traveling
along a straight line, we soon realize how, after a couple of positions have
been determined, future positions can be predicted by extrapolation. Here
the uncertainty associated with the prediction grows with time—while a
position predicted a few seconds ahead may be more accurate than new
measurements-based determination, this will certainly not be the case if
positions are predicted over some hours. Therefore, a kinematic model
comprises two components: (a) the functional part—the prediction of a
position based upon previous results, and (b) the stochastic part—the
estimation of the precision associated with the predicted position (see
Figure 5).

Similarly, we speak of two classes or approaches for modeling a
trajectory. These depend on whether emphasis is on functional modeling or
on stochastic modeling. This, however, is not a finite division. Functional
modeling contains predicted positions whose stochastic properties were
derived from the precision of the estimated parameters. On the other hand,
in stochastic modeling contains a position for which the assumed
uncertainty applies must be computed as a function of previous position
estimates.

The reasoning behind the functional approach to kinematic modeling is
to replace the time-varying parameters again (e.g., coordinates) by
auxiliary constant parameters (e.g., coefficients of a polynomial). Thus, the
outcome of the kinematic model takes the form of a direct measurement of
(some or all of) the position parameters, with associated precision
estimates. Now the role of a filter is to optimally combine these pseudo-
measurements with new actual measurements, that is, to combine the
position predicted via the kinematic model with a new position
determination derived from subsequent measurements. Thus the kinematic
system becomes the static one.

In practical terms, this means that a filter becomes an optimal estimator.
By definition, an optimal estimator is a computational algorithm that
processes measurements to deduce a minimum error estimate (in
accordance with some stated criterion of optimality) of the state of a
system. For this purpose the algorithm uses knowledge of system and
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measurement dynamics, assumed statistics of system noises and
measurement errors, and initial condition information (Gelb, 1994). Thus,
for example, the Kalman filter encompasses both filtering (trying to cut off
the noise from the signal) and estimating (optimality in providing state5 of
the system).

Functional approach (e.g., the polynomial filter) is suitable only for very
well behaved motions. The stochastic approach possesses an important
property. The noise added in each extrapolation progressively reduces the
weight attributed to previous position determinations (thus enabling
selective weighting of the information). This, so-called fading memory,
together with the absence of predefined signature for the trajectory,
increase the ability to adapt to a new system behavior, which with this being
highly desirable in navigation, makes the stochastic approach in modeling
the favorite one. The stochastic approach (e.g., the Kalman filter) to
kinematic modeling thus makes the basis of filtering techniques.
(Merminod, 1989).

In order for the final navigation solution to be computed, an integrated
navigation system combines the navigation data supplied by
complementary sensors. Navigation sensors are complementary if they
meet the following conditions: (a) the set of sensors generates all the
information required to compute a complete navigation solution, and (b)
the sensors have complementary error dynamics—all of their error
dynamics are observable. Two thus complementary sensors can calibrate
each other’s errors because their errors are separately observable in any
linear combination of their outputs.

Applying this on, for example, an INS/GPS navigation system, we could
compare the position obtained from, for example, INS with the one from
GPS. The difference in, for example, North component of the position from
these two methods equals the difference in the errors these quantities carry.
This is obvious since they are actually sums of the true value of position and
the specific error(s) (true-position components cancel out). Next we
introduce the a priori knowledge on errors: the INS position error grows,
say, on the order of 1 nmi/hr in the long-term, and is smooth in the short-
term, with a strongly recognizable Schüler oscillation (full cycle every 84
minutes). Also, the GPS North position error is noisy in the short-term but
of a constant offset (few metres) in the long-term. Clearly, the INS and GPS
position errors exhibit complementary error dynamics. Applying a simple
low-pass filter that smoothes out the random noise and passes the INS error
plus small GPS offset, we simply subtract this estimate from the INS North
position to obtain a blended North error, containing only the constant
position offset from GPS that the filter passed. The blended solution now
has the best characteristics of both the INS and the GPS: the position
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solution is smooth and has a bounded error less than or equal to the GPS
position error.

ENDNOTES

1. There are ten basic navigation parameters: three components of each of the vectors (1),
v anda, plus a time tag ( Xu, 1996). There can be more parameters, e.g. attitude components
and their derivatives.

2. The inertial frame of referenceis one which experiences no acceleration or angular
rates (Newton’s laws of motion apply without corrections for accelerations or rotations of the
reference frame).

3. Gustave Gaspard de Coriolis (1792–1843).

4. Maximillian Schüler

5. For more details on observables and their properties, see, e.g., Vaní�ek & Krakiwsky,
1986.
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