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EXECUTIVE SUMMARY 

In the traffic engineering field, study and analysis often requires the use of multiple datasets. The 

nature of these data often makes them difficult to work with, especially in conjunction with one 

another. The overall goal of this study was to not only design a solution to this problem for the 

Buffalo-Niagara Region of western New York, but to demonstrate its usefulness through two 

specific applications.  To achieve this, three objectives were designed: (1) outline the structure of 

a data warehouse for the Buffalo-Niagara region, (2) use the combined data in the prototype 

warehouse to examine its usefulness in the construction of a real-time incident detection system 

which not only detects incidents but also tries to predict incident characteristics, and (3) use the 

data in the warehouse to test the accuracy of weather impact models which had been previously 

developed by the authors for assessing the impact of inclement weather on average speed and 

traffic volumes.    

 

To meet these objectives a prototype data warehouse was first created. For the first application 

involving the development of a real-time incident detection system, three incident detection 

strategies were created and validated. These were: (1) a speed threshold detection system; (2) a 

binary probit model which uses only speed data; and (3) a binary probit model which uses a 

combination of speed and volume data. The prototype data warehouse showed it was possible to 

construct a fully fleshed-out version for transportation data in the Buffalo-Niagara region with 

useful results. The speed threshold model which used a 10 minute speed drop of 10 mph to detect 

incidents had a 62.5% detection rate, as well as favorable false alarm and classification rates. The 

more complex binary outcome model which used only speed data detected incidents with a 

success rate of 70.4%, an improvement over the speed threshold model despite worse false alarm 

and classification rates. It was also able to predict incident type, number of blocked lanes, and 

incident severity with 75.9%, 70.4%, and 75.9% accuracy, respectively. The binary outcome 

model which used both speed and volume data had a more impressive detection rate of 75.5% 

with similar false alarm and classification rates and was slightly better at predicting incident type 

and severity (both with 77.6% accuracy) but slightly worse at predicting the number of blocked 

lanes (with 69.4% accuracy). Overall, the combined data model is the best strategy for both 

detecting incidents and predicting their characteristics, which emphasizes the importance of a 

transportation data warehouse. 

 

The second application was motivated by the fact that inclement weather could have a significant 

impact on traffic flow conditions. In previous work by the authors, we have attempted to model 

average operating speed and hourly traffic volume, respectively, as a function of weather 

conditions. With the data warehouse constructed, our goal was to validate these models with 

more recent data (specifically date from the 2013-2014 winter in Buffalo).    Using such data, the 

study showed first that the winter of 2013-2014 appeared to have had significantly lower 

minimum and average temperatures than other years examined. In terms of the previous models’ 

accuracy, the speed model performed reasonably well, usually achieving results within 5 mph of 

the observed speed, but accuracy somewhat suffered when inclement weather conditions were 

harsh or when observed speeds were below 40 mph. The volume model, on the other hand, was 

not as accurate, and tended to overestimate hourly volumes. 
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INTRODUCTION 

In the traffic engineering field, study and analysis often requires the use of multiple datasets. The 

nature of these data often makes them difficult to work with, especially in conjunction with one 

another. This results from the fact that each set of data is collected and stored by different 

agencies, each with its own formatting and resolution. For example, in the Buffalo-Niagara 

region of Western New York a variety of datasets, including traffic speeds and volumes on both 

highways and local roads, traffic accidents, weather, and pavement conditions, are all recorded 

by different entities and with different formatting and timing schemes. 

 

This study sought to create a solution to this problem through the creation of a data warehouse. 

According to the Oracle9i Warehousing Guide, “a data warehouse is a relational database that is 

designed for query and analysis rather than for transaction processing [and] it usually contains 

historical data derived from transaction data…” (Oracle, 2015). These characteristics of data 

warehousing make it a fitting solution to the transportation data collection problem discussed 

here. 

 

In addition to creating a data warehouse, this study also sought to demonstrate potential 

applications made possible or facilitated by the warehouse. Two applications were chosen for 

that purpose.  The first involved creating a real-time incident detection and characterization 

system using a combination of speed and volume observations. Since this application would 

require not only all three of these data sets but also information from them in real time, it is a 

perfect representation of the utility of a transportation data warehouse.  

 

Furthermore, a real-time incident detection system has the potential to be highly beneficial in and 

of itself. Faster incident detection times can have a significant impact on incident response and 

clearance times (PB Farradyne, 2015). Currently, most incidents in the Buffalo-Niagara region 

are detected via CCTV cameras by the Niagara International Transportation and Technology 

Coalition (NITTEC). However, there is an inherent limitation in the number of operators 

watching the camera feeds and the number of cameras they can watch. An incident detection 

system based on the data collection processes already in place for speed and volume would aid 

operators in finding and reporting incidents more quickly and thus improving roadway 

performance and safety. 

 

The second application entailed using the data in the warehouse to test the accuracy of weather 

impact models which had been previously developed by the authors for assessing the impact of 

inclement weather on average speed and traffic volumes. This application is motived by the fact 

that inclement weather conditions, such as fog, rain, snow, and ice, are known to negatively 

impact the operational efficiency of networks, as well as user safety. According to the Federal 

Highway Administration (FHWA), for example, weather is responsible for nearly one quarter of 

all traffic accidents, resulting in over 1.3 million crashes and 6,200 deaths annually in the United 

States (FHWA, 2014). Therefore, it is important to have a significant understanding of how both 

inclement weather as a whole and individual weather factors affect the operation conditions of 

traffic networks. 
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Recently, the effect of inclement weather on freeway operating conditions near the city of 

Buffalo, NY has been the topic of multiple studies. Specifically, two studies have attempted to 

model average operating speed and hourly traffic volume, respectively, as a function of weather 

conditions (Zhao et al., 2011; Bartlett et al., 2012). Buffalo provided a unique case study for 

inclement weather research due to the presence of microclimates: small areas which experience a 

wide variety of weather conditions over a short amount of time. 

 

These two previous studies produced a great amount of meaningful results, but were also subject 

to some strict limitations, the greatest being data scarcity. While Buffalo has a reputation for 

harsh weather conditions, some recent winters have been perceived to be exceptionally mild. 

Due to this, the datasets used by both previous studies had very little data about what was 

defined as “inclement weather” relative to the period of time over which the data was collected. 

However, since the release of these studies and the construction of the data ware house, the area 

has returned to more normal conditions.  In particular, the winter of 2013-2014 was perceived as 

being especially severe with low temperatures and heavy precipitation. 

 

Given the above, the second application we considered in this research, used the data warehouse 

to: (1) determine if the public perception about weather in Buffalo was true: that recent winters 

had been milder than normal but the (2013-2014) winter has been harsher; (2) ascertain whether 

the models developed by the previous two studies, for predicting freeway speed and volumes as 

function of weather conditions (Zhao et al, 2011 and Bartlett, 2012) would still yield decent 

results when applied to a winter much harsher than the winters that yielded the data from which 

the models were developed.  To do this, the study examined weather, volume, and speed on 

seven freeway links near Buffalo (Figure 1) and used data from only winter months, since this 

data contained the highest frequency of inclement weather. 

 

 
 

Figure 1: Freeway Links Used in Validation (Bartlett et al., 2012) 

There are several aspects of this project which make it both significant and unique. The first is 

the area of study; neither the data warehouse nor the automated incident detection component has 

ever been attempted in the Buffalo-Niagara region. Also, while the methodologies explored for 
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incident detection were inspired by those described in the literature review, these specific 

techniques have not before been applied to this problem, especially the binary outcome models 

based on speed and volume. Third, the idea of an incident detection system which is also used to 

predict incident characteristics based on speed and volume data is a concept on which little 

previous research has been done.  Finally, the idea of developing and validating models for 

assessing the impact of inclement weather on traffic flow and speed is critical for efforts aimed at 

developing weather-responsive traffic management strategies. 

  

It should be noted that this study had two main objectives. The first was to outline the creation of 

a transportation data warehouse to bring these different datasets together so that not only are they 

all in a central location, but also have compatible formatting for simplified cross analysis. This 

will focus less on the technical aspects of warehouse creation and more on the data processing 

and formatting required. The second objective was to use the combined data in the prototype 

warehouse to examine two applications of the data warehouse, as just mentioned above, to show 

the utility of the data warehouse.  

  

The remainder of this report will be organized as follows. First, the Literature Review section 

will examine: (1) techniques in data warehouse development; (2) past experiences in creating 

real-time incident detection systems; and (3) the previous two studies by Zhao et al (2011) and 

Bartlett et al (2012) which developed models for predicting the impact of inclement weather on 

traffic flow. Next, the data description and processing, along with the development of the data 

warehouse prototype will be described; this section will present each dataset used in this project 

including its source, collection procedure, and formatting. Following this will be the 

Methodology section which will explain the development of the data warehouse prototype. Two 

sections will then follow: the first will discuss the incident detection application and the second 

will describe the inclement weather model validation application. The Conclusions section will 

summarize the findings of the project and the Future Work section will outline the steps which 

need to be taken to bring the data warehouse to fruition, and to build upon the two applications 

considered in tis research. 

 

LITERATURE REVIEW 

Data Warehouse Development 

Given the scope of this study, this report will not place great focus on the technical design of a 

data warehouse. However, a brief overview of basic data warehouse development will be 

discussed here in terms of the attributes which make it ideal for application to transportation 

data. 

 

The Oracle9i Data Warehousing Guide presents an overview of data warehouses in a business 

context and describes many traits which make them an ideal technique for storing and related 

transportation data. The guide explains that data warehouses handle data modification by using 

bulk data modification techniques which are run on a regular basis. This results in users being 

unable to directly update the data warehouse. Additionally, data warehouses hold large amounts 

of historical data and can query thousands or millions of rows. It is also explained that data 

warehouses often have “staging areas” where data is cleaned in processed before being entered 
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into the warehouse. These are the features of a data warehouse that make it ideal for this project 

(Oracle, 2015). 

 

Incident Detection 

Real-time automatic incident detection has the potential to be beneficial for agencies by 

decreasing incident response times for either monitoring agencies or emergency response teams. 

For the lasts several years, several efforts have been made to apply a variety of statistical 

methods to traffic data as it is collected to see how incidents can be detected most accurately.  

 

One study performed by Wang et. al. (2006) used a partial least squares regression (PLSR) 

algorithm to detect incidents. A simulated section of an expressway in Singapore was created 

and 300 incident cases were generated. For each incident, volume, occupancy, and speed were 

measured upstream and downstream of the incident during the time leading up to and following 

it. Additionally, that study outlined the criteria used to measure detection effectiveness as 

detection rate (DR), false alarm rate (FAR), mean time to detection (MTTD), and classification 

rate (CR). The calculation of these measures is shown below. 

 

DR =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 

[Equation 1] 

 

MTTD =
∑ 𝑡𝑖

𝑚
 

[Equation 2] 

 

Where ti represents the time between the incident and the time it was detected for incident i, and 

m represents the number of incidents examined. 

 

FAR =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑐𝑎𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑐𝑎𝑠𝑒𝑠
 

 
[Equation 3] 

 

CR =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

[Equation 4] 

It was concluded that this approach was viable, but further work would be needed to enhance its 

predictive abilities. This was caused by the linear nature of the PLSR used and the use of 

simulated data (Wang et al, 2006). 
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Another study was performed by Raiyn and Toledo (2014) which took a different approach. 

Here, speed was measured both upstream and downstream of the incident and compared to the 

average speed for that link on the same day of the week and at the same time. If the observed 

speed was 30 km/hr (18.6 mph) lower than the average, then an incident was predicted to have 

occurred. While this methodology showed promise, there were several problems encountered 

when a speed reading of 0 was recorded, since this could indicate either no vehicle or a failure of 

the recording device to measure the speed correctly (Raiyan and Toledo, 2014). 

 

Another approach to incident detection was undertaken by Motamed and Machemehl (2014), 

where a dynamic time warping model and support vector machine were used to detect short-term 

congestion in Dallas, Texas. The algorithms used speed, standard deviation of speed, and 

occupancy as parameters and examined two thresholds: one to start collecting data, and another 

to indicate the occurrence of an incident. This was done to decrease the abundance of false 

alarms found in other detection algorithms. It was found that both algorithms were highly 

effective but requires large datasets and extensive amounts of training and validation (Motamed 

and Machemehl, 2014). 

 

A study done by Cheung and Truong (2011) for Auckland Motorways in New Zealand used a 

time series model to detect incidents in an effort to reduce incident response time. Here, speed 

and volume (or occupancy) were used to detect accidents and found they were able to 

differentiate between recurrent congestion and accidents based on the volume/occupancy’s rate 

of change. In this case, it was concluded that an automated detection system was a critical 

addition to the CCTV monitoring system already in place in terms of incident detection and 

response time (Cheung and Truong, 2011). 

 

The final incident detection study examined was performed by Ahmed and Hawas (2012). While 

all previous studies examined freeway links, this study focused on urban roadways. Vehicle 

counts and speeds were recorded with stop line detectors and used in a threshold-based linear 

regression model. DRs and FARs were found to be sufficient in all cases, with the exception of 

periods with low hourly volumes. The study also concluded that further research would be 

needed in the areas of sensitivity analysis, collection techniques, and model sophistication 

(Ahmed and Hawas, 2012). 

 

Inclement Weather models for Western New York 

Due to the nature of the second application considered in this study as a validation effort, the 

literature review pertaining to that application mainly focused on the two previous papers which 

describe the models being validated.   

 

Average Operating Speed Model 

The details of the creation of this model are described in Zhao et al, 2011. One of the 

contributions of that study was the creation of several indices for weather data which were much 

more suitable for modeling than the raw data. These included a visibility index, weather type 

index, temperature index, and precipitation index. Raw wind speed was used, as opposed to an 

index. In addition to weather data, two other parameters were used in the creation of the 

operating speed model. First was a day index, which captured the effect of changing traffic 

patterns across different days of the week. The second was a normal average hourly speed, which 
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was equal to the average speed for an hour of the day averaged over a given time period (e.g. one 

month). The details of these indices are given in Zhao et al, 2011. 

 

The linear regression model for average operating speed is shown in [Equation 5]. All of the 

included variables were found to be highly statistically significant with the exception of 

temperature index. The R2 value of the model was 56.1%, which compared favorably to previous 

models reported in the literature attempting to predict weather impact on traffic flow. The sign of 

each variable was intuitive in terms of its effect on operating speed, further supporting the 

accuracy of the model. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑
= 7.23 + 0.77[𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥] + 0.358[𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑇𝑦𝑝𝑒 𝐼𝑛𝑑𝑒𝑥]
+  0.132[𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥] − 0.0469[𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑]
− 1.92[𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛] + 0.853[𝑁𝑜𝑟𝑚𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝑆𝑝𝑒𝑒𝑑]
− 0.935[𝐷𝑎𝑦 𝑖𝑛𝑑𝑒𝑥] 

[Equation 5] 

Hourly Volume Model 

This model was both created and validated in Zhao et al, 2012. Specifically, that study created a 

model to predict hourly traffic volume using many of the indices created in the speed model 

study, including the weather type index, temperature index, and cumulative precipitation index. 

However, this model incorporated visibility and wind speed data directly, without the use of 

indices. In addition, the volume model used a baseline variable, which captured the effect of hour 

of day. 

 

This study also created a system for defining inclement weather. After determining that there 

was a significant difference in volume between times with inclement weather and times without, 

the model was created using only inclement weather data to predict traffic volume. 

 

The linear regression model for average hourly volume is shown in [Equation 6]. The regression 

model was found to fit the data closely, with an R2 value of 97.4%. The included parameters of 

the model were all found to be highly statistically significant with the exception of visibility and 

temperature index. With the exception of wind speed, the sign of each variable was intuitive as 

well. 

 

𝑉𝑜𝑙𝑢𝑚𝑒 = 65.07 [𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑇𝑦𝑝𝑒 𝐼𝑛𝑑𝑒𝑥] +  24.52[𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑] + 28.06[𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦]
− 419.73[𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛] + 61.06[𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥]
+ 0.76[𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒] 

[Equation 6] 

Using inclement weather and volume data not used in model creation, the hourly volume model 

was validated by plotting volumes predicted by the model against observed volumes. The 

resulting plot was mostly linear, showing the model to have significant predictive ability. 

However, the study also acknowledged that the lack of data resulted in a small validation sample. 

  



 

8 

 

METHODOLOGY 

DATA DESCRIPTION AND PROCESSING 

In this project there were several datasets which founded the motivation and foundation for the 

data warehouse. These included the data about freeway volumes, freeway speeds, incidents, and 

weather. Below, each type of data will be discussed, including the source, raw format, and 

necessary processing for inclusion in the warehouse and for use in model creation. For 

demonstration, all data was collected for two months (July 2014 and May 2015) so that one 

could be used for model creation, while the other for validation. The choice of these two specific 

months was made due to convenience of data availability. 

 

Thruway Volume 

The thruway volume data was obtained from the New York State Thruway Authority (NYSTA) 

and included count data for all thruway links between exits 49 and 54 of I-90, the section of the 

thruway which is close to Buffalo. Volumes were recorded in vehicles per lane per 15 minutes. 

For use in this study, these were converted to hourly volumes for all lanes combined. Links were 

defined by their thruway ID, a number assigned by the collecting agency. 

 

Thruway Speed 

The thruway speed data was obtained from NITTEC for the same links as the volume data. The 

speeds were given in miles per hour (mph) at 10 minute intervals. Links were defined by their 

TRANSMIT ID, a number assigned by the collecting agency. 

 

Incident Data 

The incident dataset, also obtained from NITTEC, contained a large number of fields containing 

information about each incident. Of the numerous fields, four were extracted for the purposes of 

this study: Incident Type, Incident Start Time, Number of Closed Lanes, and Incident Severity. 

Incident Type categorized the incident as either an accident, congestion, disabled vehicle, or 

incident (a generic catchall for incidents that do not fall into the first three classifications). 

Incident Start Time was formulated as a date and time stamp giving the year, month, day, hour, 

and minute the incident was reported to start. Number of Closed Lanes gave the lane closures 

associated with the incident, ranging from 0 to the number of lanes of the given link. Finally, 

Incident Severity ranked the severity of the incident in terms of human injuries and fatalities on a 

scale from 0 to 3, 0 being property damage only and 3 being most severe. 

 

Weather Data 

As with the incident data, the weather data, collected from the National Oceanic and 

Atmospheric Administration (NOAA), contained numerous fields of information and only a few 

were selected for use in this study (NOAA, 2015). These weather factors were: Temperature 

(⁰F), Precipitation (inches), Wind Speed (mph), and Visibility (miles) . The weather data was 

recorded approximately hourly, but not regularly. For example, data might be recorded at 12:04 

AM, 12:54 AM, 1:54 AM, 2:54 AM, and 3:12 AM. To solve this problem, weather data 

collection times were “rounded” to the nearest hour and duplicates were removed. 

 

Prototype Data Warehouse 
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The first organizational step taken in the creation of the prototype data warehouse was to split the 

structure into two tables. One, the Link ID Table, contained the data about the link, including 

location, speed limit, number of lanes, road functional class, TRANSMIT ID, thruway ID, 

length, and direction. The other, the Link Data Table, contained the count, speed, travel time, 

delay, incident, and weather data for each link. These two tables were joined by a link ID. The 

link ID was a new number assigned to each link and then matched with the corresponding 

TRANSMIT and thruway IDs so that no matter what data was being examined there would be a 

common link identifier. 

 

The processed speed, volume, and weather data was linked by time and date and inserted into the 

Link Data Table. Since each was recorded at different time intervals, the dataset with the highest 

resolution (speed) was used. This meant expanding volume and weather data by copying the 

most recent reading so every 10 minute interval had speed, volume, and weather data. Next the 

incident data was inserted during the time interval containing the incident start time (e.g. 1:00 

PM if the incident occurred at 1:03 PM). Finally the travel time, delay, and density were 

calculated for each reading using data from both the Link ID and Link Data Tables and the 

following equations. 

 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 60

𝑆𝑝𝑒𝑒𝑑
 

[Equation 7] 

𝐷𝑒𝑙𝑎𝑦 =  {
𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 − (

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 60

𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡
) , 𝑖𝑓 𝐷𝑒𝑙𝑎𝑦 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

[Equation 8] 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑆𝑝𝑒𝑒𝑑
 

[Equation 9] 

 

DATA WAREHOUSE APPLICATION 1: REAL-TIME INCIDENT DETECTION 

Based on the literature review and the available data, several incident detection strategies were 

developed and tested to determine how both incidents and their properties could be detected or 

predicted in real time. Three different methods were analyzed in terms of their ability to detect 

either incidents only or both incidents and their properties. The methods used were simple speed 

threshold method, a binary outcome model which uses only speed-related factors as input, and a 

binary outcome model which uses volume-related factors in addition to the speed data. In 

addition to detecting incidents, the two types of binary outcome models were used to predict the 

incident properties, including incident type (congestion vs. accident), severity, and how many 

lanes were blocked. This section will outline the three methods and how each was applied to the 

collected data. 

 

Speed Threshold Detection 
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Speed threshold detection was the simplest incident detection method used and relied solely on 

the observed speed data for each freeway link. This method attempted to determine whether and 

incident had occurred based on irregularities in the observed speed. Despite its simplicity, the 

best way to define the parameters of detection had yet to be determined. First, a decision had to 

be made between detecting incidents using instances where the speed was significantly below 

free flow speed or instances where speed was significantly lower than the immediately preceding 

speed observation. By examining the link speeds which correlated to several incidents, it was 

seen that regardless of the incident type a large majority were characterized by a sudden drop in 

speed followed by a return to normal operating speeds some time later, as shown in Figure 2 and 

Figure 3. In these figures, the vertical red line represents the Incident Start Time. Since the 

central objective was to detect the incident as soon as it occurs, it was decided that the difference 

in speed from one observation to the next would be the best measure of speed to detect incidents. 

 

Once it was concluded that speed difference should be used, the threshold of speed change which 

should be used to determine if an incident had occurred needed to be determined. An obvious 

trade off exists between using either a high or low value as the threshold. A lower speed change 

threshold would detect nearly all incidents that occur but would have many false positive 

readings resulting from normal fluctuations in speed. Alternatively, a high value would avoid 

many of the false positive readings but could potentially miss some less severe incidents. 
 

 
 

Figure 2: Accident Speed Impact 
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Figure 3: Congestion Speed Impact 

Speed-Based Binary Probit Model 

Binary probit models are a technique used in discrete choice analysis to predict outcomes when 

there are only two possibilities. The probability of one alternative outcome (i) is given as the 

probability that the difference between the two alternative systematic utility functions (V) is 

greater than or equal to the difference in the utility errors (ε), where the difference is errors is 

assumed to follow a normal distribution (9). 

 

𝑃𝑛(𝑖) = Pr (𝜀𝑗𝑛−𝜀𝑖𝑛 ≤ 𝑉𝑖𝑛 − 𝑉𝑗𝑛) 
[Equation 10] 

 

The systematic utility is composed of independent variables (x) and coefficients (β’) as shown: 

𝑉𝑖𝑛 = 𝛽′1𝑥1 + 𝛽′2𝑥2 … 
 

[Equation 11] 

The statistical modeling software Limdep was used to construct the models in this study based 

on the available data. 

 

It was decided that binary outcome models for incidents and their properties should first be 

created using only speed related factors and independent variables and then again with both 

speed and volume related factors. This was done in order to determine whether the inclusion of 

volume data allowed by the data warehouse could improve detection accuracy. The speed related 

factors attempted in the iterations of these models are listed and defined in Table 1. 
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Table 1: Speed-Related Variables 

Variable Definition Mean Min Max 

SPEED Link speed, measured in miles per hour (mph) 44.414 6 70 

TENSPEDI 

Difference in speed between the current observation 

and the pervious observation (10 minutes prior), 

measured in mph 

0.0504 -53 36 

LOW 
Binary variable, 1 if the observed speed is less than 15 

mph below the speed limit, 0 otherwise 
0.4872 0 1 

LOWFIRST 

Binary variable, 1 if the currently observed speed is 

less than 15 mph below the speed limit but the 

previously observed speed was not, 0 otherwise 

0.0570 0 1 

CUMLOW 

Binary variable, 1 if the observed speed has been less 

than 15 mph below the speed limit for at least three 

consecutive observations, 0 otherwise 

0.3857 0 1 

 

When creating iterations of each model, a few criteria were used as general indicators of model 

quality. First, the p value of each included variable needed to show that the variable was 

significant in the model. In general practice, this means only using variables with p values less 

than 0.1, meaning the variable is significant at a 90% level of confidence. Also, no included 

variables could be highly correlated with other included variables as this leads to problems of 

multicollinearity. For example, multiple variables derived from raw speed data would not be 

included in the same model since they are likely highly correlated. Finally, the prediction 

outcomes were used to gauge one model iterations performance against another. High accuracy 

was the goal of the incident characteristic models.  For the incident detection models, high 

detection rate was considered more important than low false alarm rate or high classification 

rate.  

Speed-and-Volume-Based Binary Probit Model 

After the completion of the speed-based models the volume data was introduced and several new 

variables were derived. These included both those related only to volume and those which were 

derived from a combination of speed and volume data. These new volume-related and speed-

and-volume-related factors are listed and defined in Table 2. These new factors, along with the 

original speed-related factors, were used to create new models for the four prediction scenarios 

examined previously. 
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Table 2: Volume-Related and Speed-and-Volume-Related Variables 

Variable Definition Mean Min Max 

VOLUME Link volume, measured in vehicles per hour (vph) 3268.479 567 7549 

PAVVOL 
Ratio of volume to the average volume for the 

corresponding link and hour of day 
1.0781 0.1383 1.9439 

PAVVOLO 
Binary variable, 1 if the PAVVOL is greater than or 

equal to 1, 0 otherwise 
0.6654 0 1 

DENSITY 
Link density, the ratio of volume to speed, measured 

in vehicle per mile (vpm) 
89.387 8.723 784.1 

TENDENDI 

Difference in density between the current 

observation and the pervious observation (10 

minutes prior), measured in mph 

-0.5171 -588.1 359.1 

 

RESULTS AND VALIDATION 

Speed Threshold Detection 

Several speed change thresholds were examined for their accuracy, especially in terms of 

incidents detected and number of false positive readings. The threshold alternatives used were 15 

mph, 12 mph, 10 mph, and 8 mph drops in speed from one observation to the next (over 10 

minutes). Following a comparison of all four alternatives the 10 mph threshold was the best 

option, based on the low percentage of missed incidents as well as relatively low number of false 

positive readings. 

 

While it was considered that the threshold method could be used to predict incident attributes, 

the data did not show strong correlation between the magnitude of the speed change and any 

properties of the incident. Therefore, this method was only examined for its ability to detect 

incidents, not characterize them. After using the April 2014 speed and incident data to determine 

that the 10 mph threshold was the best, the May 2015 data was used to validate the speed 

threshold detection strategy’s effectiveness. The validation results are shown in Table 3. 

 
Table 3: Speed Threshold Results 

Model Measure Speed Threshold 

Incident 

Detection 

DR 62.5% 

FAR 4.5% 

CR 92.0% 

Speed Models 

Using a binary probit model, four models were created using only the speed-related factors: one 

which detects whether and incident has occurred and three which predict different attributes of 

incidents. The final model chosen for each detection or characterization goal is described below 

in terms of its variable composition. The details of each model are shown in Table 4, in which 

the coefficient (top number) and p value (bottom number) of each variable in given, as well as 

the predictive ability of each model. 
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1) Incident Detection 

The first model created was used to determine whether an incident had occurred with the 

binary outcomes being no incident (0) and incident (1). After several trials with different 

variables and combinations the best model was found to include only TENSPEDI. 

2) Incident Differentiation 

The next model attempted to use speed related factors to determine incident type. In the 

data examined, only two incident types were present: congestion (0) accidents (1). Here, 

the best model used both TENSPEDI and CUMLOW and independent variables. 

3) Blocked Lanes Detection 

Another model was created to predict lane blockages associated with incidents. There 

were not enough data points for incidents with many lanes blocked so this model only 

predicted whether no lanes were blocked (0) or any number of lanes were blocked (1). As 

with the incident detection model, the best model incorporated only TENSPEDI as an 

independent variable. 

4) Severity Detection 

The final model was used to predict incident severity level. NITTEC classifies incident 

severity in terms of human injuries and fatalities on a scale from 0 to 3, 0 being property 

damage only and 3 being most severe. However, as with the blocked lanes model, there 

were not enough instances of high severity incidents, so this model only predicted 

whether there was no injury (0) or at least minor injury (1). As with the incident detection 

model, the best model used TENSPEDI and CUMLOW as independent variables. 

 

Speed and Volume Models 

As with the speed models four models were created using the binary probit method. These 

models, however, included speed-related, volume-related, and speed-and-volume-related factors. 

Each of the final models chosen is described below in terms of its variable composition. The 

details of each model are shown in Table 4 along with the speed data only models. 

1) Incident Detection 

In predicting whether an incident had occurred in was found that the best model used 

TENDENDI and PAVVOLO as independent variables. 

2) Incident Differentiation 

The best model which was created to determine which type of incident occurred included 

TENSPEDI, PAVVOLO, and CUMLOW as variables. 

3) Blocked Lanes Detection 

The Lane blockage detection model which yielded the best results included only 

TENDENDI as an independent factor. 

4) Severity Detection 

Finally, the model which best predicted incident severity was found to also use only 

TENDENDI. 
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Table 4: Binary Probit Model Results 

 

The speed-only and speed-and-volume models were created using the speed and incident data 

from April 2014. The May 2015 data was used to validate these models and the results are given 

in Table 5. The incident detection models were validated in terms of the three common incident 

detection measures discussed in the literature review: detection rate, false alarm rate, and 

classification rate. The differentiation, blacked lanes, and severity models are examined only in 

terms of classification rate as a measure of accuracy. 

 
Table 5: Validation Results 

Model Measure Speed Speed and Volume 

Incident 

Detection 

DR 70.4% 75.5% 

FAR 35.8% 36.5% 

CR 64.4% 63.9% 

Incident 

Differentiation 
CR 75.9% 77.6% 

Blocked Lanes CR 70.4% 69.4% 

Incident 

Severity 
CR 75.9% 77.6% 

Speed Data Only Models 

 Incident Detection Incident Differentiation Blocked Lanes Incident Severity 

TENSPEDI 
-0.0099 0.0434 0.0381 0.0263 

(0.0274) (0.0114) (0.0372) (0.0124) 

CUMLOW 
 -1.4286  -1.7999 

 (0.0002)  (0.0000) 

Actual\Predicted 0 1 0 1 0 1 0 1 

0 62.2% 34.7% 50.9% 14.5% 67.3% 3.6% 81.2% 11.5% 

1 0.9% 2.2% 7.3% 27.3% 18.2% 10.9% 5.5% 1.8% 

Speed and Volume Data Models 

 Incident Detection Incident Differentiation Blocked Lanes Incident Severity 

TENSPEDI 
 0.09298171   

 (0.002)   

CUMLOW 
 -0.92452933   

 (0.0572)   

TENDENDI 
0.00199598  -0.01570891 -0.00968812 

(0.0448)  (0.0234) (0.1008) 

PAVVOLO 
 -1.23184803   

 (0.0052)   

Actual\Predicted 0 1 0 1 0 1 0 1 

0 86.1% 9.9% 60.0% 6.0% 64.0% 6.0% 58.0% 4.0% 

1 3.1% 1.0% 14.0% 20.0% 18.0% 12.0% 24.0% 14.0% 
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DISCUSSION 

The speed threshold detection method showed promising results, especially for such a simple 

model. While the detection rate was not at high as other models, the false alarm rate and 

classification rates were very favorable. However, the low detection rate and inability to predict 

incident characteristics are clear disadvantages of this method. 

 

The binary probit model which used only speed-related factors was an improvement over the 

speed threshold method in terms of its detection rate, while it suffered from a higher false alarm 

rate and lower classification rate. This method was also able to predict all three of the examined 

incident properties with reasonable accuracy. 

 

The binary probit model which included factors related to both speed and volume yielded a 

significant improvement in detection rate of 5.1%. Smaller improvements in incident 

differentiation and incident severity detection were found, in addition to slight decreases in 

detection rate and blocked lane detection accuracy. 

 

These results indicate that, overall, the combination of speed and volume data results in the 

model which is capable of detecting the greatest percentage of incidents. Without the data 

warehouse, these two sets of data would not be readily accessible in real time by a single agency, 

nor would they be in compatible formats. Therefore, the desirable performance of the combined 

data incident detection model highlights the importance and usefulness of a transportation data 

warehouse. 
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DATA WAREHOUSE APPLICATION 2: VALIDATION OF INCLEMENT WEATHER 

TRAFFIC MODELS IN BUFFALO, NEW YORK 

DATA COLLECTION AND PROCESSING 

Weather Comparison Data 

As mentioned before, the first objective of this study was to discern whether the most recent 

winter was indeed harsher than previous years, and hence may present a challenge to forecasting 

the impact on travel conditions using the models previously developed, based on data from those 

previous years.  To achieve that objective, weather data was collected and examined. The 

weather data used was obtained from the National Oceanic and Atmospheric Administration 

(NOAA). This data was originally collected at the Buffalo-Niagara International Airport’s 

weather station, which is close to the section of Interstate 90 near Buffalo. Monthly weather 

summary data used for this comparison was collected from 2000 to 2014 and included number of 

days with a minimum temperature below freezing, maximum snow depth (mm), total snowfall 

(mm), minimum monthly temperature (tenths of °C), and average monthly temperature (tenths of 

°C) (NOAA, 2015). 

 

These five factors were chosen because they each explore a different facet of winter weather. 

Minimum monthly temperature will capture the extreme temperature reached during the month. 

Alternatively average monthly temperature will examine a trend in temperature change less 

effected by outliers. Number of days below freezing will examine the effect of duration of cold 

temperatures. Total snowfall will capture the impact of all precipitation while maximum snow 

depth will account for total snow accumulated on the ground. 

 

Before conducting the comparison, the data was modified to improve workability. Maximum 

snow depth and total snowfall were converted from millimeters to inches and temperature 

readings were converted from tenths of °C to °F. 

 

Model Validation Data 

For the two validations performed in this study, three sets of data were obtained. First, hourly 

weather data from NOAA was used, including hourly precipitation (inches), temperature 

(degrees Fahrenheit), wind speed (miles per hour), and weather type (an abbreviation which 

indicated variety and severity of weather). Weather data was collected from November 2012 to 

February 2014 to cover the entire period of study. 

 

Link speed data was provided by the Niagara International Transportation Technology Coalition 

(NITTEC), an international organization comprised of several agencies. NITTEC acts as the 

region’s traffic operations center and collects several types of data, including TRANSMIT speed 

data. This system uses the detection of E-ZPasses in vehicles to generate speed data for links, 

recorded at five minute intervals. While the original study used only the three links closest to the 

airport, this validation expanded the area to include the same seven links as the volume study, to 

provide more data points. Speed data was examined from December 2012 to March 2013 and 

from December 2013 to January 2014. 

 

Link volume data was also provided by the New York State Thruway Authority, through 

NITTEC, and consisted of traffic counts for freeway links in the region. Data from the same 

seven links as the previous study was used in this validation. Volume data, collected at 15 minute 
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intervals, was examined from November 2012 to March 2013 and from December 2013 to 

February 2014. 

 

Before the validation could be conducted, several changes had to be made to the datasets to make 

them usable. First, the weather data was recorded approximately hourly, but irregularly (e.g. first 

at 12:53 AM, then 1:51 AM). Therefore, the time of each weather reading was rounded to the 

nearest hour. Next, several pieces of weather data were modified to match that used in the 

previous studies. The first of these changes was to convert temperature readings to a temperature 

index based on whether the temperature was below freezing, as shown below. 

 

If Temperature > 32 °F, Temperature_Index = 0; 

If Temperature ≤ 32 °F, Temperature_Index = -1. 

 

A system created in the previous speed study was used to convert each weather type to a 

numerical weather type index (Zhao et al, 2011). The system gives each variety of weather a 

number and also provides modifiers to account for severity. For example, the weather type index 

of “Heavy Rain” would be -5 (-3 for rain plus -2 for heavy). This is shown in Table 6. 
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Table 6: Weather Type Index Conversion 

Weather Type Description Weather_Type_Index 

RA RAIN -3 

DZ DRIZZLE -1 

SN SNOW -3 

SG SNOW GRAINS -1 

GS 
SMALL HAIL AND/OR 

SNOW PELLETS 
-3 

PL ICE PELLETS -5 

FG+ 
HEAVY FOG (FG & LE 0.25 

MILES VISIBILITY) 
-5 

FG FOG -3 

BR MIST -3 

FZ FREEZING -2 

HZ HAZE -2 

BL (SN) BLOWING (SNOW) -3 

BCFG PATCHES FOG -3 

TS THUNDERSTORM -2 

Modifiers Description   

- LIGHT 2 

+ HEAVY -2 

"NO SIGN" MODERATE 0 

 

As done in the previous speed study, limited visibility was assumed to only have an effect to a 

certain extent. Therefore, a visibility index was used as shown below. 

 

If Visibility > 4 miles, Visibility_Index = 5; 

If Visibility ≤ 4 miles, Visibility_index = 1.25*Visibility. 

 

The final change made to the weather data was to create a parameter for cumulative 

precipitation, which represented the sum of all precipitation (in inches) that had occurred during 

a day up until the given time. 

 

In addition to the weather data, changes were made to the speed and volume datasets as well. 

From the speed data, data points which did not have a value for speed were removed, as well as 

any reading that did not occur on the hour. This was done to ensure that the speed data and 

weather data were recorded as close to one another as possible. In the volume data, volumes 

from multiple lanes from the same link and direction, as well as from fifteen minute intervals in 

the same hour, were summed to create single values for hourly volume counts. 

 

To mimic the parameters of the speed study, normal average hourly speed (as described in the 

Literature Review) and a day index were used. The day index was defined as follows. 
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If weekday (Monday – Friday), Day_Index = 1, 

If weekend (Saturday-Sunday), Day_Index = -1. 

 

Additionally, to recreate the conditions of the original volume study baselines for each hour of 

the day were taken from the original study, given in Table 7 (Bartlett et al, 2012). 

 
Table 7: Baseline Volumes 

Time Baseline Time Baseline 

12:00 AM 588.626 12:00 PM 3635.603 

1:00 AM 311.978 1:00 PM 3727.665 

2:00 AM 239.227 2:00 PM 4232.384 

3:00 AM 278.539 3:00 PM 5042.075 

4:00 AM 454.486 4:00 PM 5352.192 

5:00 AM 1155.670 5:00 PM 5135.184 

6:00 AM 3019.478 6:00 PM 3921.348 

7:00 AM 4978.068 7:00 PM 2864.226 

8:00 AM 4569.668 8:00 PM 2468.197 

9:00 AM 3587.800 9:00 PM 2226.611 

10:00 AM 3333.133 10:00 PM 1558.301 

11:00 AM 3512.792 11:00 PM 1078.142 

 

Only volume data which was recorded at times when inclement weather occurred was used in the 

creation of the volume model, so only this data was used in the validation. In the previous study, 

inclement weather was defined as high wind speeds (greater than 16 mph), low visibility (less 

than 3 miles), and precipitation (greater than 0 inches per hour) (Bartlett et al, 2012). 

 

METHEDOLOGY 

To determine if a factor or factors change across several times or locations, a two-way analysis 

of variance (ANOVA) table without replication is recommended (Helsel and Hirsch, 2002). This 

method for comparing several independent groups involves examining the variances and errors 

of group means and determining the significance of a factor’s effect on the group measure. This 

will result in a p value which indicates the factor’s significance. If the p value is low (close to 0), 

then it can be said that the factor varies significantly between groups. 

 

Once a factor has been determined to change across different groups, Tukey’s multiple 

comparison test is a method which can be used to determine which groups differ in terms of that 

factor. This is done by calculating the least significant range (LSR) for each possible pair of 

groups and comparing it to a critical value. LSR values are calculated using [Equation 12. 

 

𝐿𝑆𝑅 =  𝑞1−𝛼,𝑘,𝑁−𝑘√𝑀𝑆𝐸/𝑛  
[Equation 12] 
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If the LSR for a pair exceeds the critical value, it can be said that the two groups differ with 

statistical significance in terms of that factor. In addition, if two groups are shown to be different, 

this test will determine which is greater. 

 

Weather Data Analysis 

Prior to the analysis of the recently collected speed, volume, and weather data, it was important 

to show that the primary motivation of this validation study is true: that the perceived increased 

severity of weather conditions in the most recent winter is correlated with an actual increase in 

number of inclement weather days and hence a truly harsher winter. 

 

To show this, winter weather data from 2000 to 2014 was examined with the following 

objectives: 

1. Determine if winter weather conditions varied significantly between specific years 

2. If conditions vary, determine which years are significantly different from others 

To determine if any of the years are different from the others a two-way ANOVA table was used. 

This test allowed the effect of the month data was collected in to be ignored and focused only on 

the year effect. A separate ANOVA table was created for each of the five weather factors and the 

resulting F value will be compared to a critical value from the F distribution to get a p value. If 

this p value is significant (below 0.10) then that weather data type can be said to vary across 

different years. 

 

For any weather factors which were found to vary significantly across years, Tukey’s multiple 

comparison test was used to determine which years were significantly different. In this test, each 

difference between years was examined and if it was greater than the critical LSR value, then it 

was said that those two years are significantly different. 

 

Speed and Volume Data Analysis 

To perform the validation of the linear regression model created for speed in the original study, 

the weather data collected was put into the developed model and the predicted speeds were 

compared with the actual observed speeds. To assess the predictive ability of the model, the 

accuracy within several margins of error from the actual observed speed was calculated. 

 

In addition, while the original study used all days, this analysis was repeated for inclement 

weather days only (as defined in Table 6) to see how extreme conditions affected accuracy. 

 

The analysis of volume data was performed in the same manner as the speed data analysis, 

comparing the observed traffic volumes with the volumes predicted from the original study’s 

model. Since volume can vary greatly over time and across different links, volume prediction 

accuracy was assessed using the percent difference from the observed volume. The volume 

model was designed for inclement weather, so it was only assessed under those conditions.  
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RESULTS 

Weather Data Comparison 

The weather data from each winter between 2000 and 2014 were compared using a two-way 

ANOVA table to determine if different weather factors varied across years, and Tukey’s multiple 

comparison test was used to determine which years were different. 

 

Table 8 contains the p value for each measure of inclement weather from the two-way ANOVA 

tables, indicating the significance with which it varies across the years examined (with lower p 

values indicating greater significance). In addition, the table shows the LSR values which were 

used in Tukey’s multiple comparison test to determine which years were different from one 

another with respect to each measure of inclement weather. 

 
Table 8: Winter Weather Comparison Results 

Measure of Inclement Weather P Value LSR 

Number of Days Below Freezing 0.011 8.910 

Maximum Snow Depth 0.108 11.925 

Total Snow Fall 0.451 24.712 

Minimum Temperature 0.001 10.701 

Average Temperature 0.000 6.917 

 

From the ANOVA tables, it was found that only number of days below freezing, minimum 

temperature, and average temperature vary significantly across years. Additionally, Tukey’s 

multiple comparison test showed that the winter of 2013-2014 had significantly lower minimum 

and average temperatures than other years examined, especially those since 2010. These results 

indicated that the new dataset which included the 2013-2014 winter would have more inclement 

weather data than the previous studies. 

 

This was later shown by the number of inclement weather data points found in the new dataset. 

While in the original volume study fewer than 300 data points were collected during inclement 

weather over a study period of 18 months, this new dataset collected over just 8 months 

contained over 500 inclement weather data points. 

 

Speed Data Analysis 

Each observed speed was matched with its corresponding predicted speed determine from the 

weather conditions measured at the time. In total there were over 25,000 pairs of matched speed 

data. The absolute differences between observed and predicted speeds were calculated and 

analyzed for accuracy. The percentage of differences which fell within different accuracy bounds 

were found, as presented in Table 9. This was done both for the entire set of data and for 

inclement weather data only to determine the model’s predictive ability under extreme 

conditions. 
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Table 9: Accuracy of Average Operating Speed Model 

Accuracy Bounds 

Accuracy 

All Data 
Inclement 

Weather Only 

± 5 mph 80.75% 39.09% 

± 4 mph 51.35% 33.33% 

± 3 mph 39.89% 27.31% 

± 2 mph 27.93% 17.67% 

± 1 mph 13.90% 10.04% 

This table shows that at a five-mph accuracy level the model performs reasonably well. It can 

also be seen that the model is much less accurate under inclement weather conditions than 

overall. 

 

Figure 4 shows a plot of predicted speed versus observed speed. Plotting all of the data points 

resulted in an unreadable plot and the trends were not clearly visible, mostly due to the overlap 

of many points. Therefore, the plot in Figure 4 was created by sorting all of the data by observed 

speed and averaging every 100 observed and predicted speeds. The corresponding averages were 

then plotted.  As can be seen, with a few exceptions, especially those with quite low observed 

speeds (specifically less than 40 mph), the predicted values appear to be close to the observed. 

In addition, the plot shows that the model tends to overestimate speed when the observed speed 

is low and slightly underestimate it when observed speeds are high.  The reason behind the 

significant difference between the model’s predictions and the observed values during low 

speeds can probably be attributed to the fact that the previous years’ data, upon which the model 

was based, lacked sufficient numbers of days with severe inclement weather.  This may point to 

the need to recalibrate the models using the more recent data. 
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Figure 4: Predicted Speed vs. Observed Speed, Averaged for Every 100 Points 

 

Volume Data Analysis 

Accuracy of the hourly volume model was assessed with a similar method to the speed model. 

Each observed volume under inclement weather was matched with its accompanying predicted 

volume and the absolute difference between the two values was calculated. However, in this case 

accuracy as assessed using the percent difference between observed and predicted volumes. In 

addition to the absolute difference, the difference between predicted and observed volume (non-

absolute) was calculated to examine whether the model tended to underestimate or overestimate 

volume. The results are shown in Table 10. The first three rows give the accuracy of the model 

within different accuracy bounds. The fourth row shows how often the model does not 

underestimate volume; in other words, the percentage of observed volumes that were less than 

the corresponding predicted volumes. Similarly, the last row gives the percentage of observed 

volumes that were not less than predicted volumes by more than 25%. 

 
Table 10: Accuracy of Hourly Volume Model 

Accuracy Bounds Accuracy 

± 150% 84.10% 

± 100% 73.18% 

± 50% 46.93% 

Prediction does not 

underestimate volume 
86.97% 

Prediction does not 

underestimate volume by 

more than 25% 

98.66% 

53

54

55

56

57

58

59

60

61

0 10 20 30 40 50 60 70 80

P
re

d
ic

te
d

 S
p

ee
d

 (
m

p
h

)

Observed Speed (mph)



 

25 

 

 

The results in the table show that the volume model was not as accurate as the speed model.  As 

can be seen, for 75% of the model’s predictions, the predicted values were within 100% of the 

observed. The results also clearly demonstrate that model tended generally to overestimate the 

volume, which means that the model tended to err on the conservative side. Figure 5 is a plot of 

predicted hourly volume versus observed hourly volume.  
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Figure 5: Predicted Hourly Volume vs. Observed Hourly Volume under Inclement Weather Conditions 

CONCLUSIONS AND FUTURE RESEARCH 

The prototype data warehouse developed in this research shows that a data warehouse can be 

constructed for transportation data in the Buffalo-Niagara region with useful results.  The study 

then demonstrated the utility of the data warehouse using two specific case studies or application 

areas; the first involved developing real-time incident detection algorithms, whereas the second 

used the data warehouse to validate previously developed inclement weather traffic models. The 

specific conclusions regarding each of the two application areas considered are shown below. 

Conclusions Regarding The Real-Time Incident Detection Application 

 A simple speed threshold model which used a 10 minutes speed drop of 10 mph to detect 

incidents had a 62.5% detection rate, as well as favorable false alarm and classification 

rates 

 A more complex binary outcome model which used only speed data detected incidents 

with a success rate of 70.4%, an improvement over the speed threshold model despite 

worse false alarm and classification rates 

 The speed only model was able to predict incident type, number of blocked lanes, and 

incident severity with 75.9%, 70.4%, and 75.9% accuracy, respectively 

 A binary outcome model which used both speed and volume data had a more impressive 

detection rate of 75.5% with similar false alarm and classification rates 
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 The combined data model was slightly better at predicting incident type and severity 

(both with 77.6% accuracy) but slightly worse at predicting the number of blocked lanes 

(with 69.4% accuracy) 

 Overall, the combined data model is the best strategy for both detecting incidents and 

predicting their characteristics, which emphasizes the importance of a transportation data 

warehouse 

Conclusions Regarding The Validation Of Inclement Weather Traffic Models Application 

 The winter of 2013-2014 had significantly lower minimum and average temperatures 

than other years examined. 

 The speed model performed reasonably well, usually achieving results within 5 mph of 

the observed speed. 

 The speed model did not perform as well during inclement weather or when observed 

speeds were below 40 mph. 

 The volume model did not perform as well as the speed model, usually achieving results 

within 100% of the observed volume. 

 The volume model tended to overestimate volume, providing a safer estimate for volume 

for use in predictions. 

 

Future Work 

One future project that could stem from this work is the creation of a fully functional 

transportation data warehouse for the Buffalo-Niagara region. This project will allow for all 

current and historical transportation data in the region to be formatted and linked in a way that 

makes traffic monitoring and future transportation studies much more efficient. 

 

Another project which can be explored is the deployment of a real-time incident detection 

system. Now that the best model for incident detection has been determined, an application could 

be developed which monitors real-time traffic data and detect and characterizes incidents based 

on the model. This application could be used by agencies like NITTEC to aid in manual 

detection and facilitate and improve incident detection times and rates. 

 

In terms of the inclement weather traffic models, while the models, especially the speed model, 

were shown to be valid in this study, there are still improvements which could be made. First, 

with the new weather data it is possible that more accurate models could be developed for both 

volume and speed. In addition, a separate model which predicts speed under inclement weather 

conditions could help to improve accuracy. It could also be possible to develop and calibrate 

similar models to predict traffic on roadways other than the thruway. 

 

There are several possible applications of the models considered in this study, now that they have 

been validated. First, the models could be used to provide travelers with more accurate travel 

information during inclement weather (e.g., estimated arrival times during inclement weather).  

In addition, they could be used by agencies or municipalities to predict the effects of storms or 

other weather-related events and prepare accordingly. 
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