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Executive Summary 
This project demonstrates a potential avenue to use new data sources to support State and local 
agencies in measuring the use and effectiveness of their public transportation systems. It explores 
opportunities for linking General Transit Feed Specification (GTFS) digital transit schedule data, recently 
aggregated in the U.S. Department of Transportation’s (DOT) National Transit Map, with existing 
datasets in order to support multimodal performance management. This joint effort is led by the DOT 
Office of the Under Secretary for Policy (OST-P) with technical assistance from DOT’s Volpe National 
Transportation Systems Center. The tools developed in this project are able to compare vehicle traffic to 
estimated or measured transit ridership along the same road. The potential of this project is shown in 
Figure 1, which compares travel by private motor vehicles and public transit along roads in Minneapolis-
St. Paul, Minnesota.  

Background: Data for Multimodal Performance Measures 

Creating and monitoring performance measures for the transportation system helps agencies track how 
the system is serving the public and make strategic decisions about where to invest limited resources. 
Congress established a system of national performance measures under the 2012 transportation 
authorization, and many State and local agencies around the country have also established 
performance-based planning systems to better meet transportation needs.1   

Performance measures that capture all travel on a corridor (including cars and trucks as well as transit 
riders, pedestrians, and others) present the most accurate picture of access, reliability, roadway 
capacity, and congestion. However, measuring multi-modal travel can be challenging due to the 
difficulty of obtaining and reconciling data that are not from personal motor vehicle travel. For transit in 
particular, there is no nation-wide data on segment-level transit ridership that corresponds to vehicular 
Average Annual Daily Traffic (AADT), which the Federal Highway Administration (FHWA) makes available 
for individual road segments across the country. Transit usage data is nationally available only at the 
regional scale. While some agencies do collect ridership data along routes through automatic passenger 
counters, fare systems, or other means, it can be an expensive process, especially for smaller transit 
agencies. Even where transit agencies collect this data, data analysis can be an issue, and matching 
ridership information to the road network and AADT for multimodal comparison and performance 
measures is not a simple undertaking. The lack of segment-level data means that the new national 
performance measures based on person trips and average vehicle occupancy do not account for major 
differences in transit usage between different roads and corridors. 

  

                                                           
1 For more information, see the FHWA website on Transportation Performance Management: 
https://www.fhwa.dot.gov/tpm/  

https://www.fhwa.dot.gov/tpm/
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Project: GTFS for Estimating Ridership and Performance 

While no national transit ridership dataset exists, transit schedule data is available through the General 
Transit Feed Specification, which has become a near-universal de-facto standard for detailed schedule 
information among U.S. transit agencies. GTFS feeds provided by transit agencies only contain schedule 
data and are primarily intended for use in rider planning apps like Google Maps or the Transit App. But 
DOT’s recent creation of the National Transit Map to aggregate these feeds at a national scale provides 
opportunities to integrate GTFS data with AADT and demographic predictors of ridership. This project 
explores how this existing national transit dataset can be used to help State and local agencies estimate 
segment-level ridership and generate performance data useful for multimodal planning. All of the 
multimodal measures developed in this project can be calculated using measured ridership data for 
agencies that have it, or modeled ridership for agencies that do not.  

American transit agencies operate a wide range of modes, but this project focuses on bus transit and, to 
a lesser degree, rail transit. This is because smaller transit agencies, which may be less able to collect 
segment-level ridership, usually only operate buses and because buses typically travel on public roads 
where transit ridership can be directly compared to overall AADT.  

Results and Opportunities 

This proof-of-concept analysis confirmed that ridership at the road segment level can be estimated using 
GTFS data combined with other national data sources. The methods and results of this project can be 
broken down into three main components. While the third component builds on the others and is the 
most directly applicable to multimodal performance management, each step produced potentially 
relevant deliverables for use of GTFS in multimodal planning.  

Snapping GTFS to the road network and calculating road segment-level transit service: Most transit 
agencies include route shapes in their GTFS feed. But this data is often inconsistent and independent of 
accepted road network data. Creating and maintaining route shapes may be a challenge for agencies 
with limited geographic information systems (GIS) resources, and even the route shapes of larger 
agencies may become inconsistent as routes are updated over time. 

This initial component of this project matched these often-inconsistent GTFS route shapes with FHWA’s 
authoritative All Road Network of Linear Referenced Data (ARNOLD), which is linked to AADT and other 
road characteristic data. Snapping GTFS to the road network also produced a map of transit service 
frequency along individual roads, agglomerating multiple routes and even service providers. This 
conflation generally works well but often required some minor region-specific tweaking in order to 
address discrepancies between ARNOLD and GTFS spatial shapes. Combining the data sets also 
depended on the quality of both the GTFS route shapes and the ARNOLD roads data in that service area. 

This project demonstrated the potential to adapt this project’s ARNOLD snapping code (possibly altered 
to use Open Street Map) into a tool for transit agencies that currently lack high-quality route shapes in 
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their GTFS. It could help them turn basic or outdated route shapes into accurate routes snapped to an 
authoritative road network. This tool could be a GIS asset for agencies that already have geospatial 
resources, but a web-based interface could enable a larger number of agencies to benefit, especially 
those that lack the expertise or resources for GIS software. 

 
Segment-level ridership modeling: As stated previously, ridership information is not nationally available 
at the road segment level. This component estimated ridership at the road segment level using GTFS 
service characteristics (from the prior step) and other nationally-available data like U.S. Census 
demographics. These estimates were calibrated using data from a handful of case study transit agencies 
with measured segment-level ridership. The predictive power of the resulting model for transit ridership 
was similar, in some cases, to that of a typical highway travel demand model. However, the accuracy 
varied widely depending on the agency where the model was estimating ridership, and additional 
refinement to the ridership modeling would improve its accuracy.  

Such models could possibly be used for planning purposes when rerouting, adding, or removing service 
to estimate the ridership impact along key corridors. Additionally, if predictions for changes in 
development, land use, employment, and demographics are available, future year conditions could be 
modeled to predict ridership changes over time. 

Performance measures for multimodal corridor usage: Using ADDT and either the estimated segment-
level ridership from the prior component or actual, measured ridership from an agency, this project’s 
tools can calculate proof-of-concept multimodal transportation measures. In particular, the project 
team estimated total motorized users (private vehicles and transit) on all road segments in certain cities, 
and then determined the percentage of those users who are transit riders.  

Two FHWA-required performance measures for States and metropolitan planning organizations 
consider levels of transit travel: (1) Annual Hours of Peak-Hour Excessive Delay Per Capita (the PHED 
measure) and (2) Percent of Non-Single-Occupancy Vehicle (SOV) Travel. FHWA developed a region-wide 
methodology for calculating these measures, but gave flexibility to use other, more accurate data and 
methodologies. At the national level, FHWA could consider refining this ridership model and allowing 
local agencies to use its outputs as an alternative way of calculating the PHED and non-SOV travel 
measures. Model improvements to support this use could include use of more calibration data from 
agencies with segment-level ridership counts.  

In addition, measures like “transit riders as a percentage of total motorized road users” could be useful 
at a local level in multimodal planning that identifies corridors where on-road transit improvements (e.g. 
bus lanes, pullovers) would be most effective. 

Potential Next Steps for Researchers and Agencies 

This proof-of-concept effort confirmed that GTFS can be a viable foundation for estimating segment-



6 
 

level ridership and matching measured ridership to AADT. While more work is needed to fully take 
advantage of this data, the project team identified a number of ways that the results above could be 
useful for performance management and multimodal planning. To encourage others to take advantage 
of these opportunities, the project team has released the source code for its analysis tools. There are 
three main potential next steps that would further this research and the development of national 
multimodal performance measures: 

1. Refine the estimations for multimodal congestion and delay. While the FHWA transportation 
performance management (TPM) rulemakings use region-wide transit ridership data for 
measuring congestion and delay, flexibilities were incorporated into those rquirements so that 
States and MPOs could use more detailed methods instead. This presents an opportunity for 
public transit agencies and their State and MPO partners to develop more detailed measures. As 
a potential next step from this project, FHWA, FTA, or other stakeholders could refine this 
project’s outputs so that there is a clear method for using GTFS-linked estimated or measured 
ridership data as inputs for existing, defined national TPM measures. 
 

2. Enhance and validate the ridership model. The ridership model developed in this report is 
intended as a proof-of-concept for the use of GTFS to inform segment-level ridership in support 
of multi-modal performance measures. This work demonstrated the usefulness of variables 
derived from GTFS data in estimating segment-level ridership. Building on the foundational work 
described in this report, future work should focus on incorporating GTFS-derived variables into 
more robust statistical frameworks that maximize internal and external validity so that 
estimated ridership could be effectively incorporated into a robust multi-modal performance 
measurement framework. 
 

3. Apply the tools for other transit agency planning activities. Local and State agencies may also 
find these tools useful in their own planning activities. For example, this project’s road snapping 
algorithm could be useful for agencies that currently lack high-quality route shapes in their 
GTFS. In addition, measures like “transit riders as a percentage of total motorized road users” 
could be useful in multimodal planning that identifies corridors where on-road transit 
improvements (e.g. bus lanes, pullovers) would be most effective. This project’s data integration 
and code could be used as a stepping stone for further planning activities not directly related to 
TPM measures.  
 

 

  

https://github.com/VolpeUSDOT/gtfs-measures
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Introduction 
The Moving Ahead for Progress in the 21st Century Act (MAP-21) and subsequent transportation 
legislation requires that the U.S. Department of Transportation (DOT) propose performance measures 
for use by agencies including State Departments of Transportation (State DOTs) and metropolitan 
planning organizations (MPOs). However, while highway usage data is nationally available for individual 
roads, transit ridership data is nationally available only at the region-by-region level. This disconnect 
limits multimodal analysis in performance measures that are based on person trips and average vehicle 
occupancy. 

Transit Data Challenges for Measuring Multimodal System 
Performance 

Baseline measures for highway usage like average annual daily traffic (AADT) are nationally available 
through the Federal Highway Administration’s (FHWA) Highway Performance Monitoring System 
(HPMS). States submit AADT to HPMS on the road segment level, and data from some States even 
shows road usage changes down to a block-by-block scale. However, information on vehicle type and 
occupancy is typically not available at this level of detail.  

While the Federal Transit Administration’s (FTA) National Transit Database (NTD) records unlinked 
passenger boardings, transit agencies only report this usage data by mode (e.g. for all bus service 
operated by one agency). While some agencies do collect ridership data at the segment level through 
automatic passenger counters, fare systems, or other means, it can be an expensive process, especially 
for smaller transit agencies. Additionally, even high-resolution ridership data is rarely tied to 
corresponding data about the underlying road network.  

National Performance Management 

The third rule FHWA promulgated under the National Highway Performance Management Program 
required under MAP-21 includes two traffic congestion measures that consider levels of transit travel: 
(1) Annual Hours of Peak-Hour Excessive Delay Per Capita (the PHED measure) and (2) Percent of Non-
Single-Occupancy Vehicle (SOV) Travel. 2 Because of current national data availability, the baseline 
approach for these measures uses one region-wide number for bus occupancy based on the regional 
number of riders by transit agency and the regional number of vehicles in service. This may limit the 
effectiveness of performance measures for certain uses, especially comparing different corridors. For 
example, using region-wide transit usage numbers will overestimate the person-hours of delay on some 

                                                           
2 https://www.federalregister.gov/documents/2017/05/19/2017-10092/national-performance-management-
measures-assessing-performance-of-the-national-highway-system  These measures apply to urbanized areas that 
contain National Highway System mileage and have a population over 200,000 and are in a nonattainment or 
maintenance area for ozone, carbon monoxide or particulate matter.  

https://www.federalregister.gov/documents/2017/05/19/2017-10092/national-performance-management-measures-assessing-performance-of-the-national-highway-system
https://www.federalregister.gov/documents/2017/05/19/2017-10092/national-performance-management-measures-assessing-performance-of-the-national-highway-system
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corridors where transit may not run or may have limited ridership. It will also underestimate person-
hours of delay on high-transit usage corridors, where full buses are delayed alongside passenger cars.  

But under national performance management rules, State DOTs and Metropolitan Planning 
Organizations (MPOs) have flexibility to use more accurate local data if such data are available. The 
imperfect national picture of public transit passenger ridership at the segment level provides an 
opportunity to develop more granular estimations using emerging data sources. These could be tested 
locally and potentially be the basis for future national refinements. Transit agencies can also set locally-
specific goals and measures for their own purposes This project explores how the near-universal 
availability of digital transit schedule data in particular could help rectify transit data challenges for 
multimodal planning. 

General Transit Feed Specification Data Opportunities 

The most fine-grained, nationally-consistent data about transit systems is schedule data, which most 
agencies share using the General Transit Feed Specification (GTFS) format, developed in 2005. Third-
party developers such as Google Maps, Apple Maps, or Transit App use this data to provide transit 
directions and scheduling to their users.3 In 2016, DOT created the National Transit Map, a voluntary 
system for agencies to submit data, including GTFS feeds, to a publicly-available national database. 
Some other websites aggregate links to agency GTFS feeds, but the National Transit Map, for the first 
time, applies a common usage license and access method across all participating agencies.  

While GTFS is largely a format for transit schedules and does not itself contain any ridership data, it 
contains spatial data about transit stops (and sometimes also routes) and very detailed information 
about the level of transit service offered along those routes at different times of the day, week, or year. 
This complements the NTD, which contains a wider range of data, including ridership, but only at the 
broadest scale (i.e. agency-wide and by mode across the whole year). Combined with other data like 
NTD, GTFS could be the basis for estimating ridership at this same detailed level or otherwise matching 
transit data to existing granular highway data sources.  

Project Purpose 

The goal of this project is to determine if transit ridership at the road segment level can be estimated 
using GTFS data combined with other data sources, and to see what other roles GTFS could play in 
multimodal performance measures. This joint effort is led by the DOT Office of the Secretary of 
Transportation for Policy (OST-P) with technical assistance from DOT’s Volpe National Transportation 

                                                           
3 GTFS is the standard format for scheduled transit data. Data formats for sharing information about real-time 
transit vehicle arrivals (including a GTFS-Realtime specification) are necessarily more complex and a de-facto 
standard has not yet emerged. However, almost all of them depend on existing scheduled GTFS data to function. 
This project does not use any realtime data.  

https://developers.google.com/transit/gtfs/
https://www.rita.dot.gov/bts/ntm
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Systems Center.  

Project Scope 

This is an exploratory, proof-of-concept research project that assesses the feasibility of using GTFS to 
help measure multimodal system performance by linking it to the road network and testing some real-
world approaches using transit agency case studies. There are three general steps to the project. These 
steps build on each other but also produce intermediate deliverables that may have overall value.  

1. Snapping GTFS to the road network and calculating road segment-level transit service. This 
puts transit information from GTFS in the same data structure as AADT and other highway data. 

2. Segment-level ridership modeling that estimates ridership using GTFS service characteristics 
and other nationally-available data. Measured segment-level ridership data from case study 
agencies enabled calibration of the model estimates. 

3. Developing a performance measure for multimodal corridor usage using segment-level transit 
ridership (either estimated or actual) as well as available road usage data.4 

The project team assessed the results and usefulness for each of these steps using objective measures 
(e.g. comparing estimated ridership to actual ridership) as well as through discussions with DOT 
stakeholders.  

  

                                                           
4 This project focuses on multimodal motorized surface users, i.e. transit and private vehicles. It would be useful to 
be able to integrate nonmotorized users like cyclists and pedestrians, but these modes pose their own distinct 
challenges for consistent data collection and analysis.  
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Methodology and Data 
GTFS is a user-focused data source designed to share schedule information with the public rather than a 
management dataset. The largely consistent format across agencies is an advantage for national 
analysis, but GTFS also poses some challenges when used for performance management rather than 
traveler information, including: 

• GTFS does not contain information about ridership. It is primarily a service schedule with some 
other basic information also available (e.g. agency website, fares, stop accessibility).  

• GTFS has no requirement to include route shapes. Although each stop in GTFS must have a 
latitude and longitude, the specification does not require agencies to include detailed route 
shapes between stops.  

• Route shapes, when provided, are associated with individual route deviations, and there is no 
guarantee that these shapes are consistent even within the same route. 

• Basic service characteristics such as route frequency are only indirectly available. For example, 
someone must calculate frequency based on the scheduled arrivals and departures listed in the 
GTFS feed.  

To explore GTFS’s potential use for multimodal performance measures, the project team needed to 
incorporate complementary data sources and develop automated processes that transform and 
summarize the raw GTFS data. Most of this combination and analysis fell into the three broad steps 
outlined in the previous section. The list below describes the data sources used in each step. These are 
discussed in greater detail in the following sections.  

• Snapping GTFS to the road network and calculating road segment-level transit service  
o Agency-level GTFS schedule from the National Transit Map 
o All Road Network of Linear Referenced Data (ARNOLD) and Highway Performance 

Monitoring System (HPMS) data from FHWA (2015 data used) 
• Segment-level ridership modeling 

o GTFS service characteristics from prior step 
o Spatial demographic data from U.S. Census American Community Survey 
o Spatial employment data from U.S. Census Longitudinal Employer-Household Dynamics 

Origin-Destination Employment Statistics (LODES) 
o Agency and mode-level unlinked passenger trips from NTD 
o Measured segment-level transit ridership from individual transit case study agencies 

• Multimodal performance measures 
o Estimated and actual segment-level ridership from prior step 
o AADT data from HPMS, which uses the ARNOLD network 
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GTFS network snapping and service characteristics 

For the project team to estimate segment-level transit ridership and hence corridor multimodal usage at 
the same scale, it first had to identify the corridors where transit service exists, calculate the attributes 
(in particular, the frequency) of that service, and identify the best way to match this data with the 
corresponding road network. 

Fortunately, GTFS describes the location and supply of transit service at a very granular level. In 
particular, it has the location of transit stops and information that can be used to calculate service 
frequency to those stops. But as outlined above, it is challenging to calculate basic service characteristics 
from GTFS because the data is structured for providing user schedules rather than for analysis, and data 
quality can vary widely even within agencies.  

This contrast is especially apparent when comparing GTFS to spatial tools designed for management and 
analysis. Systems like FHWA’s HPMS are linear referenced, meaning that there is one set of spatial data 
(e.g. ARNOLD), and HPMS characteristics such as speed limit, AADT, or lanes are referenced to the 
network by milepost in a separate table or series of tables that can easily be integrated with the spatial 
data. Therefore, attributes such as the number of lanes can be easily queried with other attributes such 
as AADT, and analysts can quickly answer questions like “what are the highest traffic two-lane roads in 
our system?” 

Figure 2 diagrams the challenges of working with GTFS shapes since they do not inherently line up with a 
consistent road network. In this example, the Red Bus and Green Bus follow the same road for part of 
their routes. However, because of GTFS’s data structure, each of these two bus services has its own 
unique set of coordinates that make up its route shape. In many cases, these route shapes largely align 
where they overlap. However, in this example the route shapes are slightly different. While this is not a 
problem for calculating service frequency along either of the routes in isolation, it presents two 
problems for analysis at the level of the road segment: 

• It makes it difficult to calculate the combined frequency of the routes where they overlap.  
• Neither route aligns with the underlying road network, which makes it difficult to 

programmatically compare road characteristics (e.g. AADT) to transit characteristics (e.g. 
frequency, ridership).  



13 
 

 

Figure 2: GTFS shapes, where route shapes do not align even when they are traversing the same road. 

Snapping to the ARNOLD Network 

To help resolve this challenge, the project team developed a Python script that attaches or “snaps” on-
road transit routes to a master road network. The team chose to use ARNOLD data as the master road 
network, since this is the same network used for linear-referencing HPMS and national AADT data. 
Having transit data referenced to the same network as AADT not only resolves the route shape 
consistency challenge, but also enables automated analysis and comparisons between road data like 
AADT and transit data calculated from GTFS or other sources. Segment-specific data used in FHWA’s 
third performance management rulemaking either come from HPMS or will be conflated with HPMS 
data. 

The shapes table in a GTFS feed contains a series of coordinates representing the path of travel for each 
shape ID—hereafter referred to as a route shape—in a transit network. The ARNOLD snapping process 
attempts to match each route shape and stop from the GTFS feed to the closest location along the 
ARNOLD network. The algorithm describes each route shape as a series of ARNOLD road segments 
broken up at every intersection, transit stop, or change in AADT data. Breaking up the route shape at 
such a granular level along the road network allows detailed analysis of ridership, AADT, and other 
measures. Figure 3 shows the native GTFS route shape compared to the same route shape snapped to 
ARNOLD, with each link shown using brackets. 
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Challenges with Road Snapping 

The success of this snapping process depends on the data quality of both the GTFS route shapes and the 
ARNOLD network. GTFS does not require the shapes table— which details the path of each route 
shape—in the specification, and some agencies do not have this data in their feeds. In those cases, the 
GTFS stops table can be used to roughly identify the outline of a route shape (this is common practice 
for many transit trip planning apps). While these rough lines can be snapped to ARNOLD, the result is 
often inacurrate, with transit routes resolving to roads where they may not actually travel. The current 
route snapping script therefore requires the presence of a GTFS shapes table. 

For ARNOLD, data quality varies from State to State, at least in the 2015 data used for this project. In 
some—such as Florida and Pennsylvania— the ARNOLD submission does not include all public roads, 
and therefore, GTFS route shapes cannot be accurately snapped to the road network. In addition, 
because ARNOLD is submitted on a State-by-State basis and is not yet designed to operate as a seamless 
national network, roads do not typically align at State borders and associated attributes (e.g. AADT) may 
sharply change as routes cross the border. Across each State, there is also an inconsistent approach for 
handling dual carriageways (i.e. two way roads separated by a median). ARNOLD sometimes includes 
both dual carriageways—with HPMS data only attached to one of the two carriageways. In other cases—

Figure 3: Image on the left is the native GTFS route shape. Image on the right shows result of ARNOLD snapping, including 
how links are broken up. 
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only one of the dual carriageways is included but the exclusion of the other dual carriageway negatively 
impacts the street network’s connectivity—and as a result, leads to quality issues with the snapping and 
routing processes. 

These challenges mean that good-quality ARNOLD snapping is not as straightforward for some transit 
agencies, especially those that operate across more than one State or are located in States with 
incomplete ARNOLD data. Using a different road network such as OpenStreetMap (OSM), which is 
widely used in consumer-facing navigation tools such as Google Maps, could potentially address 
ARNOLD data quality issues. However, this would mean that GTFS transit characteristics would not be 
seamlessly attaching to the same road network used to linear-reference HPMS measures such as AADT. 
This connection would have to be made using another process that matches OSM roads to ARNOLD 
counterparts. 

Working with Non-Street-Running Transit 

Another important caveat for conflating GTFS routes to ARNOLD or any road network is that such 
networks are of limited use for transit service that does not run primarily on the road system (e.g. rail, 
some bus rapid transit, ferry). Even bus routes that primarily run on the public road network may have 
certain sections that operate in dedicated rights-of-way such as bus tunnels or on private rights-of-way 
such as parking lots. For this project, the project team manually added these rights-of-way to ensure the 
route is represented accurately. However, these manually-added segments obviously do not have AADT 
data that is linked to the ARNOLD network. 

The project team chose not to snap services that run entirely or primarily apart from public streets. 
There is not a comparable, nationally available master network similar to ARNOLD for modes like rail, 
and any master network would not have AADT data. Also, native GTFS shapes for rail and BRT appeared 
to largely be good quality compared to shapes for other bus services. Comparisons between highway 
usage and transit usage are still possible, but must be mapped and compared manually instead of the 
programmatic spatial comparisons possible when the data are attached to the same network. 

Ridership modeling 

While granular service characteristics such as route location, stop location, and frequency can be 
calculated directly from GTFS feeds, there is no ridership data in GTFS. As stated previously, the focus of 
this project is to explore if this information from GTFS feeds could be combined with other datasets to 
estimate ridership at the road segment level. The main data for this proof-of-concept effort is: 

• Service characteristics calculated from GTFS, 
• Nationally-available ridership predictors such as U.S. Census demographic data, and 
• Actual stop/route-level ridership data from certain case study transit agencies. 

The project team developed a linear-combination ridership model that estimates segment-level 

https://www.openstreetmap.org/
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ridership using the data described above. The model works by estimating ridership for each transit 
segment (path between two stops) based on potentially predictive features which describe the segment 
and the area near the origin stop. GTFS service characteristics are the most fundamental piece, since this 
information determines supply, i.e. there cannot be transit riders on roads where there is no transit 
service. External inputs such as demographic data estimate the usage of this supply while real ridership 
data from case study agencies calibrate the relationship between these predictors and transit ridership. 

It is important to note that this ridership model was developed as a proof-of-concept for demonstrating 
the possibility of using GTFS to estimate segment-level ridership in support of multi-modal performance 
measures. This work demonstrated the usefulness of variables derived from GTFS data in estimating 
segment-level ridership. Building on the foundational work described in this report, future work should 
focus on incorporating GTFS-derived variables into more robust statistical frameworks that maximize 
internal and external validity so that estimated ridership could be effectively incorporated into a robust 
multi-modal performance measurement framework. Additionally, the model was developed using day-
total measures based on a typical 2016 day (total ridership, total service, etc.) to keep in line with AADT 
measures. However, alternative timeframes could be used, such as morning or evening peak periods, in 
order to examine the behavior of transit users who are commuting to and from work rather than those 
using transit for shopping or entertainment purposes. 

Nationally-available ridership predictors 

Because this project focuses on addressing gaps in nationally-available performance data, the project 
team chose to use predictors of transit ridership that are available across the entire country and can be 
used to estimate ridership on any system in the National Transit Map. Volpe consulted with staff at FTA 
and OST on the selection and availability of different national-level measures. The list of data inputs was 
fairly extensive, but the significance of each variable was assessed during calibration to exclude non-
relevant inputs.  

The sections below describe the data sources, specific variables used, and how the model makes use of 
the data. In nearly all cases, demographic-type data were aggregated within a ¼-mile radius of each 
transit stop. This was done regardless of the transit mode serving each stop, although rail ridership 
catchments may be larger than those for bus service. 

U.S. Census American Community Survey (ACS) 

The demographic information from the Census Bureau’s American Community Survey is a standard 
nationwide tool for transportation planners. It describes socio-demographic characteristics of residential 
populations across the country. While ACS includes a number of data products, detailed data at the 
block group scale is only available using the ACS 5-year estimates. This project uses the 2011-2015 
estimates.  

ACS variables were aggregated using a ¼-mile buffer around each stop in the transit system, and either 
summed or averaged based on U.S. Census block group-level information. Because census block group 

https://www.census.gov/programs-surveys/acs/
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geographies do not line up with the ¼-mile buffers around each transit stop, the ACS data is 
proportionally aggregated based on the percentage of each relevant block group that lies within the 
buffered area. Key variables focused on: 

• Population 
• Age 
• Race 
• Education 
• Housing 
• Workers/Commute 
• Income 

U.S. Census Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics 
(LODES) 

The Census LODES dataset includes a variety of spatial data about employment. Particularly relevant for 
this project, it summarizes the number of jobs by employment sector and earnings at various Census 
geographies. This is a useful complement to residentially-focused ACS data since many transit trips are 
commute-to-work trips.  

The model ingests block-level LODES data summarized at ¼ mile buffers around each transit stop. As 
was also the case for the ACS block group-level data, census blocks do not always align with the ¼-mile 
buffers around each transit stop. To address this, the algorithm proportionally aggregates LODES data 
based on the percentage of each relevant block that lies within the buffered area. Jobs data were 
broken out according to average monthly earnings and North American Industry Classification System 
(NAICS) sectors. 

FTA National Transit Database 

Although NTD only collects ridership data at the mode level for each agency, it is valuable as an official 
nationwide source for ridership. The high-level data in NTD provides a mechanism for the model to 
adjust granular ridership within each system based on overall “size” of the agency’s service. While the 
project team discussed using NTD boardings (unlinked trips) as an absolute system-wide ceiling on the 
ridership estimates generated for individual segments, boardings and passenger load are not directly 
comparable figures. While it would be possible to instead compare estimated passenger miles traveled 
(PMT) to PMT as reported in NTD, the project team found that even PMT calculated from measured 
segment-level ridership did not always match with NTD, so using this approach could introduce more 
uncertainty into the model (see Results section).  

FHWA ARNOLD 

The project team primarily used ARNOLD for the road snapping process described above and AADT data 
for comparison to transit usage. However, the project team also used intersection density in ARNOLD as 

https://lehd.ces.census.gov/data/
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a proxy for physical walkability, which is not well captured in demographic data.5  

The model uses the total number of intersections within a ¼-mile radius around the origin stop of each 
two-stop transit segment. 

Measured ridership data from case study transit agencies 

In addition to the inputs above, which are used as potential predictors of segment-level ridership, the 
project team calibrated the model using measured segment-level ridership from several case study 
transit agencies. This was critical for calculating coefficients for national demographic data and GTFS 
inputs and also to identify those inputs that do not appear to be significantly correlated with ridership.  

The OST-P and Volpe project team worked with FTA to identify a subset of transit agencies willing to 
participate in the calibration process. Although the size, context, modes operated, and available data 
varied among each of these agencies, all had at least some stop or segment-level ridership data.  

The following transit agencies provided ridership data to help calibrate the estimation model: 

• Bay Area Rapid Transit – San Francisco, CA 
• Long Island Railroad – New York, NY 
• Massachusetts Bay Transportation Authority – Boston, MA 
• Metro Transit – Minneapolis and St. Paul, MN 
• North Arizona Intergovernmental Public Transportation Authority – Flagstaff, AZ 
• San Joaquin Regional Transit District – Stockton, CA 
• Valley Metro – Phoenix, AZ 

Weekend and off-season ridership data 

While some of these agencies also collect ridership data for weekends and off-season, the baseline 
information across all agencies is for a typical or aggregate weekday. Since GTFS contains weekday as 
well as weekend service schedules, and often includes ridership in different seasons, the model could 
theoretically be used to calculate ridership for a variety of conditions.6 However, the project team chose 
to focus on weekday ridership since this was the common level of data availability across the case study 
transit agencies and is consistent with the single-baseline approach of an AADT value. 

                                                           
5 For more on the connection between walkability, intersection density, and transit see Environmental Protection 
Agency, “EnviroAtlas Fact Sheet: Estimated Density of Walkable Roads,” August 2015. 
https://enviroatlas.epa.gov/enviroatlas/DataFactSheets/pdf/Supplemental/Estimatedintersectiondensityofwalkabl
eroads.pdf  
6 Currently, the National Transit Map aggregates the GTFS data available from each agency on one consistent day 
(i.e. all GTFS feeds are downloaded from agencies at around the same time). However, in the future it may be 
possible to agglomerate feed versions so that year-round service data is available even when agencies only post 
one season at a time.  

https://enviroatlas.epa.gov/enviroatlas/DataFactSheets/pdf/Supplemental/Estimatedintersectiondensityofwalkableroads.pdf
https://enviroatlas.epa.gov/enviroatlas/DataFactSheets/pdf/Supplemental/Estimatedintersectiondensityofwalkableroads.pdf
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Running the estimation model 

The ridership estimation model is written in the Python programming language and designed modularly 
so that it can easily be adapted or updated based on different inputs or techniques. In general the use of 
the model can be broken down into the following steps, each of which includes at least one Python 
module that can be modified with minimal impact on the other modules: 

1. Import GTFS feed and assess service parameters 
2. Format measured ridership inputs 
3. Import additional socio-demographic and other information 
4. Fit a ridership model 
5. Estimate ridership with fitted model 

Step 2 is only required when incorporating measured ridership data from transit agencies for the 
purpose of calibrating or validating a ridership model, and both steps 2 and 4 can be omitted if existing 
calibration coefficients are being used to produce ridership estimations in step 5. If a set of accurate 
calibration coefficients is established, a transit agency or other user would only need to set a few 
parameters based on their GTFS feed to estimate ridership. 

1. Import and assess GTFS service parameters 

This module contains functions that read the entire GTFS feed for a given agency and construct a 
relational database which defines all routes, trips, stop times, and service calendars. The module then 
produces segment-based service characteristics for all routes/trips. As discussed above, the project 
team focused on estimation of ridership on a typical weekday, primarily using service schedules from fall 
(October) of 2016. 

2. Format measured ridership inputs 

Each transit agency provided ridership data in slightly varying formats, a challenge and opportunity that 
is discussed later in this document. Most agencies provided either daily passenger loads for segments 
between stops for each route or stop-level boardings and alightings. But some agencies instead 
provided origin-destination pairs, which required route assignments, or trip-by-trip loads that had to be 
aggregated into a full day of data.  

This module includes steps that reformat the boarding, alighting, and passenger loading measurements 
into the same segment-by-segment format used in the prior step. In particular, it aggregates data 
provided on particular route segments into ridership along each road segment across all routes, which is 
consistent with the data structure used by the model and enables mapping of agency data onto the 
ARNOLD network.  

The Python modules in this step are customized to match the ridership format used by each agency 
providing calibration data. This presents a notable but surmountable challenge for this project since only 
seven case study agencies provided data. However, since each individual agency requires at least one 
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customized function, this can quickly become unmanageable as the number of agencies increases. A 
common format for ridership data, possibly directly tied to the GTFS standard, would streamline this 
entire process, and will be discussed at greater length later in the document. 

3. Import socio-demographic/other data 

The final input component to the ridership model includes a series of additional functions to handle 
socio-demographic data from various sources. These data, calculated for every stop within each case 
study agency, are imported and related to the segment-based service and ridership data based on the 
origin stop of each transit segment. For example, a segment from stop 1000 to stop 1001 would 
incorporate socio-demographic or other data from stop 1000. 

4. Fit a ridership model 

To weight the various GTFS and demographic inputs, this step calculates model coefficients based on 
actual ridership measurements. It begins with segment-level ridership (from the calibrating transit 
agencies) and compares it to the input GTFS service characteristics and demographic data to find a set of 
best-fit model parameters. The resulting calibrated coefficients are the key input into the next step of 
the model. Figure 4 diagrams the fitting process starting with input features and ending with these 
calibration parameters. This step also calculates an assessment of the effectiveness and significance of 
the model coefficients using an adjusted R-squared to describe how closely the estimation process 
matches the observed (measured) data. 

 

Figure 4: Diagram showing the fitting process (step 3) for the ridership model 
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The model itself is a linear combination model, which takes the form: 

𝑅𝑅 = 𝛾𝛾0 + �𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

where: 

 R   is predicted ridership 

 γ0, γ1, …, γn are calibrated coefficients assigned to each input parameter (γ0 is the intercept) 

 x1, … ,xn  are input parameters from GTFS or other national data sets 

 n   is the total number of input parameters 

Essentially, the model includes a coefficient on each input parameter as well as an overall intercept 
value (γ0) which are summed to estimate ridership for any given transit segment. An ordinary least 
squares (OLS) optimization within the statsmodels Python package is used. 

This model form was selected for two reasons: it is flexible in dealing with multiple input parameters, 
and it is straightforward to interpret and understand. The project team could calibrate the model using a 
“menu” of input parameters that could be tailored for different model iterations. Data fields from any of 
the data sources could be added or dropped from any given analysis without issue. Optimization 
routines, which are included in scientific Python packages, were also easy to incorporate to produce 
best-fit coefficients. Different models and approaches for further research beyond the scope of this 
project are discussed later in the opportunities and insights section.  

For interpretation, the model generates a coefficient for each input parameter that indicates the 
predictive direction and strength of that parameter. The coefficients help describe the parameters that 
affect ridership most and whether the relationship between each input and ridership is positive or 
negative. This will be discussed in more detail in the results section. 

The coefficients that the model uses to predict ridership in the next step (and for each iterative model 
run) depends on which of the set(s) of ridership data from the case study transit agencies are used for 
calibration. The project team tested a variety of fitting approaches using the various transit agency 
calibration data available. Results are included in a later section, but the calibration approaches included 
using: 

• All case study agencies, regardless of mode 
• All case study agencies, segregated by mode (i.e. different calibration parameters for bus and 

rail) 
• All case study agencies except for a test agency  
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5. Estimate ridership with fitted model 

In this final step the previously defined and calibrated ridership model, as well as the service and 
demographic characteristics, are used to produce an estimate of ridership at the segment level. Figure 5 
diagrams this process ending with the output of estimated ridership for a given agency. 
 

 

Figure 5: Diagram showing the ridership estimation process (step 4) for the ridership model  

The estimated segment-level ridership from this step can be attached to the ARNOLD network for 
visualization/mapping and comparison with other data such as AADT. 

Multimodal performance measures 

The ultimate end product for this project is a prototype, corridor-level multimodal performance 
measure that builds on the availability of AADT road usage data and GTFS schedules. The two proposed 
performance measures discussed here take advantage of having AADT and bus ridership in the same 
data format. The measures are: 

• Total daily motorized road users: Obtained by multiplying AADT on a road segment by an 
average vehicle occupancy. The project team used 1.6, the average vehicle load factor from the 
2009 National Household Travel Survey, although it would be simple to substitute a different or 
regionally-specific number.7 

• Percentage of motorized road users on transit: Obtained by dividing the number of transit 
riders on a road segment by the total motorized road users. 

Importantly, the measures above can be calculated using either the estimated segment-level ridership 

                                                           
7 FHWA, “Summary of Travel Trends: 2009 National Household Travel Survey,” 2011. 
http://nhts.ornl.gov/2009/pub/stt.pdf  

http://nhts.ornl.gov/2009/pub/stt.pdf
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from this project’s model or measured ridership if a transit agency has that data available. This project’s 
code enables the use of measured ridership data since they convert various agency-specific formats for 
sharing ridership data into one format that can be matched with GTFS and ARNOLD.  

As a caveat for the above measures, this project’s case study transit agencies primarily submitted 
weekday ridership data, while AADT is an average annual measure that includes weekends as well. 
While acceptable for the demonstration purposes of this project, future adaptations of this work could 
use weekday AADT data, which is often available at the State/local level, weekend transit usage.  

In addition, the project team also calculated Revenue Vehicle Miles Travelled and Passenger Miles 
Travelled for two systems based on ARNOLD snapping and agency-provided ridership. While these 
performance indicators are already reported in NTD, comparing the calculated and NTD-reported values 
could highlight useful differences. In addition, this project’s approach could be the basis for a 
streamlined way for agencies to calculate and report these numbers.   
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Results 
This exploratory project found that it is possible to, with some degree of accuracy, estimate segment-
level transit ridership using GTFS and other nationally-available data for agencies where granular 
ridership data is not available. Because this modeling effort is working with human-driven behaviors, 
perfect estimation is impossible, but an overall model predictive power (r-squared statistic) greater than 
0.7 generally indicates a strong model which captures relevant features. Predictive power less than 0.5 
indicates that notable underlying factors which affect ridership are not being captured in the model and 
further development should be pursued. This project’s overall r-squared for estimating bus ridership of 
all case study agencies, as discussed in more length below, is 0.695. 

The ridership estimation algorithm was one component of this project, but transportation organizations 
and researchers may also find value in the two other main components: snapping transit service 
characteristics derived from GTFS to the road network, and calculating multimodal road usage by 
combining AADT and segment-level ridership (either estimated or measured).  

GTFS network snapping and service characteristics 

As noted in the methodology section, the success of ARNOLD road snapping is highly dependent on both 
the quality of the shapes in each GTFS feed and the ARNOLD data available for each State. However, 
where this data is good and with some small manual adjustment or road additions, this project’s 
algorithm can successfully attach transit service data to an authoritative road network with few errors.  

Attaching GTFS shapes to the road network allowed the project team to successfully calculate service 
frequency from the GTFS schedule and display it not just route-by-route, but in aggregate frequency 
across all routes that traverse a road. Figure 6 shows the resulting map for the Boston area, where the 
convergence and divergence of routes, and related changes in frequency of service on the roadway, are 
easy to discern. This also sets GTFS schedules into the same data structure as AADT, so that any data 
that is calculated from GTFS (like modeled ridership) or described in terms of GTFS data structures (like 
actual ridership from many agencies) can be combined and described with HPMS AADT or other road 
data.  

For this proof-of-concept effort, the project team focused on calculating service frequency from GTFS 
since it is a key input into the ridership estimation model. However, the code underlying this approach 
could also be adapted to calculate other characteristics such as service hours along a road or average 
scheduled travel speed. The project team looked into calculating average travel speed as an input into 
the ridership model but encountered complexities in calculating and reporting it as a model input. In 
particular, the code’s data structure focuses on service characteristics for road segments rather than 
route segments. An express bus and a local bus sharing the same road would distort the average travel 
speed.  
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One key advantage of this code is that it requires very few data inputs (GTFS and ARNOLD) and 
calculates results based on authoritative schedules rather than estimating with uncertainty, as in the 
ridership model. However, while this makes it easy to apply these analyses broadly, for example across 
the entire National Transit Map, uncorrected data quality issues could create road snapping results that 
do not reflect actual conditions. In addition, the ARNOLD data that was used for this project is more 
detailed than what is available to the general public. 

Non-Street-Running Transit 

As discussed in the methodology section, rights-of-way that are not public streets, like rail lines, 
exclusive BRT routes, and ferries are not included in ARNOLD. The project team developed a method of 
calculating service frequency from GTFS for these services, but it relies more extensively on the native 
GTFS shapes and cannot be cleanly integrated with road-associated data like AADT other than through 
manual comparison. For these reasons, the project team did not extensively pursue calculating service 
characteristics from rail or other off-road transit.    
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Ridership modeling 

Unlike the GTFS service characteristics and road snapping procedure, the segment-level ridership model 
is an estimate rather than a direct calculation and thus includes some inherent uncertainty. Whether 
this uncertainty is sufficiently small depends on the user’s goals for the estimation and the type of 
transit agency data that is being estimated. To test the accuracy of the model, the project team 
compared estimated ridership along each stop-to-stop segment to actual ridership provided by several 
case study transit agencies. If the positive correlation between these two datasets is strong, the r-
squared value will be closer to 1, indicating a more accurate prediction. 

Calibration data 

The ridership data provided by the case study agencies was broken into four sets for calibration analysis. 
The following table details which agencies and modes were included in each calibration data set. 

Table 1: Model iterations run on different modes and calibrated using different case studies and calibration parameters. 

Calibration ID Modes included Agencies Used to Calibrate Calibration Parameters 
1 (all data) All All All 
2a (bus only) 

Bus only (3) All but LIRR, BART 

All 
2b Only significant variables from 2a  
2c Only significant variables from 2b  
2d Only significant variables from 2c  
3 (rail only) Rail only (0, 1, 2) LIRR, BART, MBTA, MetroTransit All 
4a (bus w/o 
Valley Metro) 

Bus only (3) MBTA, MetroTransit, NAIPTA, 
SJRTD 

All 

4b Only significant variables from 4a  
4c Only significant variables from 4b  
4d Only significant variables from 4c  

 

The first calibration set included all ridership data provided from all case study agencies without regard 
to mode. All possible calibration features, listed in the data description sections above, were included. 
Calibrations 2a through 2d focused only on bus trips, thus completely eliminating the ridership data 
from LIRR and BART, which only offer rail service. Moving from calibration 2a to 2d, each subsequent 
calibration omitted prediction variables that were not found to be statistically significant. Thus, features 
which were not statistically significant in 2b were excluded for the next calibration in 2c, although the 
underlying data did not change. 

Calibration set 3 focused on rail ridership, which was only present in LIRR, BART, MBTA, and 
MetroTransit. Three rail modes as defined by the GTFS standard were included: subway, light rail, and 
intercity rail. This included all calibration parameters. The final calibration set 4a through 4d mirrors set 
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2a through 2d, but the underlying ridership data does not include ridership information from Valley 
Metro in Phoenix, Arizona.  

The goal of calibration 4 was to create a set of fitted coefficients using one set of case study agencies in 
order to validate against a separate dataset not included in calibration. The project team used Valley 
Metro for this validation since it is a mid-sized agency which provided a reasonable quantity of ridership 
data. It is important to note that Valley Metro was selected prior to any of the analyses being 
completed. It was not selected because it followed a different pattern than the other case study 
agencies, although it later emerged that its patterns were different. 

Overall model prediction accuracy 

Figure 7 shows the results of calibration 2a, with each measured-versus-estimated ridership point 
colored according to transit agency. Along the x-axis is the measured (real) ridership for each transit 
segment (that is, every stop-to-stop pair) while the y-axis indicates the estimated ridership based on the 
calibrated model. The line at 45° indicates a perfect estimate, any points under the line indicate an 
underestimate by the model, and all points above the line are overestimates. 

R-squared and adjusted r-squared 

The results described below use the adjusted r-squared measure to describe how closely estimated 
ridership matches with measurements from the various case study transit agencies. R-squared (not 
adjusted) compares the measured ridership for each segment versus the average value of ridership for 
all segments – this represents a ‘fit’ using no input parameters, just a constant value – against the 
estimated ridership for each segment. A model calibrated on a given data set will have an r-squared 
value between 0 and 1, with higher values indicating that the model fits or ‘explains the data’ more 
closely. 

Adjusted r-squared modifies r-squared by accounting for the number of input parameters and the total 
number of data points used for calibration. When the number of input parameters approaches the 
number of data points, the adjusted r-squared drops. This is because including too many parameters 
with too few data points produces an over-fitted model – all the data can be ‘explained’ but the model is 
meaningless.  

However, there are certain fringe cases that must be considered. If the number of calibration 
parameters exceeds the number of data points, adjusted r-squared can exceed 1. This occurs in only one 
case in the results below: for rail in Minneapolis because Metro Transit only operates two relatively 
short light rail lines. Many other cases show the other end of the spectrum, where the adjusted r-
squared drops below zero. In those instances, the model estimates are worse than a simple mean 
constant value. This occurs because the model is calibrated using one set of data (e.g. all case study bus 
systems) and adjusted r-squared values are determined for subsets of that data that do not follow the 
same trend as the larger body of data (e.g. Valley Metro’s bus system, as discussed below).
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Figure 7: Measured (real) versus estimated ridership for buses for all case study agencies. 
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Accuracy and predictive power of model iterations 

Table 2 below shows the complete set of adjusted r-squared values for each calibration, comparing not 
only the overall data set against itself (as is shown in the figure), but also for each agency individually. 
So, for example, all agency data and all calibration features were used in calibration 2a, which yielded an 
r-squared of 0.695. However, as shown in the table below, the fitted model’s effectiveness varied when 
used to estimate ridership for each agency individually. 

Table 2: Model goodness-of-fit for various calibration conditions. 

Adjusted R-Squared 
Number of MBT Metro Valley 

Calibration ID Parameters All Data BART LIRR A Transit NAIPTA SJRTD Metro 
1 (all data) 37 0.327 0.358 -0.005 0.351 -0.806 0.586 -0.392 -232.205 

2a (bus only) 37 0.695 --- --- 0.792 0.558 0.758 0.804 -13.172 
2b 28 0.695 --- --- 0.791 0.557 0.548 0.792 -13.277 
2c 25 0.695 --- --- 0.791 0.557 0.478 0.783 -13.263 
2d 24 0.695 --- --- 0.791 0.556 0.451 0.781 -13.298 

3 (rail only) 37 0.737 0.818 0.358 0.766 1.033 --- --- --- 
4a (bus w/o 

Valley Metro) 37 0.708 --- --- 0.797 0.554 0.789 0.648 -18.556 
4b 27 0.708 --- --- 0.797 0.553 0.573 0.621 -18.859 
4c 24 0.707 --- --- 0.797 0.551 0.510 0.616 -18.499 
4d 23 0.707 --- --- 0.797 0.551 0.486 0.614 -18.678 

 

The model performed well when bus and rail data were separated. For the bus-only calibrations (2a-d 
and 4a-d), the overall models achieved adjusted r-squared values of roughly 0.70. In particular, the 
model accurately predicted ridership for the Boston (MBTA) and Stockton (SJRTD) systems. Interestingly, 
the Flagstaff system (NAIPTA) achieved strong explanatory power when more variables were included, 
but as insignificant factors (for the entire data set) were removed, the adjusted r-squared fell 
significantly (from 0.758 to 0.451 between 2a and 2d, and from 0.789 to 0.486 between 4a and 4d). This 
suggests that at least some of the parameters which were removed during those iterations were 
important predictors for the NAIPTA system but not for other systems. However, collinearity issues (as 
described below) make this difficult to ascertain.  

The model also achieved a good fit for the rail case study agencies, with an overall adjusted r-squared 
slightly better than that for bus (0.737 versus 0.695). Notably, LIRR performs much more poorly than the 
other agencies, suggesting that the commuter rail LIRR system is subject to different demand patterns 
than the other subway/light rail systems. (Again, note that the 1.033 adjusted r-squared value for Metro 
Transit is due to the small quantity of rail data for that system and should not be considered a robust 
value.) 

Some sets of calibration coefficients do not produce accurate results for certain agencies. In particular, 
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Valley Metro has extremely poor fits across all the calibration sets. The model estimates are much worse 
than a simple average of only the data describing Valley Metro’s ridership. Since Valley Metro 
contributes relatively little data to the calibration process, the larger systems (namely MBTA and Metro 
Transit) dominate the resulting calibration coefficients. A calibration using only Valley Metro’s data 
produces a reasonable model fit (adjusted r-squared of 0.621) but the coefficients are entirely unlike 
those produced in calibrations 2a-d or 4a-d. This suggests that the tested predictors affect ridership 
differently at Valley Metro than other agencies, or that there are other major factors affecting ridership 
for Valley Metro far more than other agencies that are not considered in this model.  

Self-calibration of model runs 

For model iterations 1 through 3, the project team did not attempt to avoid testing the model on 
systems that were used to calibrate the same model. In these cases, the overall model was calibrated on 
all available data (all systems, all bus systems, or all rail systems depending on the iteration) and tested 
on all available agencies. This means, for example, that the coefficients predicting NAIPTA’s ridership 
were calibrated in part using actual NAPITA ridership data. This obviously increases the predictive power 
of the model and does not fully reflect a real-world scenario where measured ridership is not known in 
advance.  

However, given the limited case study ridership data available, the desire to create calibration 
parameters that are a composite of many agencies, and the general goal to demonstrate a proof-of-
concept rather than a fully production-ready model, the project team deemed this acceptable. Model 
run 4 attempted to separate out Valley Metro as a way to show the potential predictive power of a 
naively calibrated model, but unrelated differences in Valley Metro’s results limited the usefulness of 
this iteration. Because there is more overall data from larger agencies like MBTA and Metro Transit, this 
potential over-prediction effect would be greater for them and lesser for agencies like NAIPTA or SJRTD. 
However, the results show that while the model generated consistently accurate estimates for MBTA, 
the model predicted NAIPTA and SJRTD at a better or similar accuracy to Metro Transit.  

Effect of individual predictive variables 

In a well-specified model, the individual parameters of the model provide insight into the results 
produced by the model. For example, two input parameters that are similar in magnitude but have 
dramatically different coefficients assigned to them by the optimization routine can be differentiated in 
importance to the ultimate result of the estimation. Similarly, positive and negative coefficients indicate 
that input parameters are positively or negatively correlated with the result of the estimation. 

Throughout this modeling effort, an ordinary least squares optimization within the statsmodels Python 
package is used, which automatically examines the calibration parameters. The function, ols, also 
examines the underlying data and results to produce a simple report which includes statistical tests on 
the fitted calibration. In every case for this analysis, the results indicate that there are strong 
collinearities within the data, both among the ridership data itself and among the model inputs. This is 
expected especially for ridership data given its nature. Ridership at each segment along any transit line is 
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highly dependent on the ridership immediately upstream. Furthermore, riders often use multiple lines 
to reach their destination, so the connection points between routes also have collinearities.  

Beyond collinearity issues within the calibration ridership data, several of the input parameters are also 
correlated with one another. For example, total population, population age 25+, and working population 
16+ are all closely related. This makes individual parameter interpretation difficult, but does not affect 
the overall performance of the model. 

For the purpose of examining individual variables, strong collinearity significantly limits the ability to 
understand how each individual parameter is related to ridership. Table 3 is included below to show 
only the sign of each coefficient (or ‘o’ if the parameter was not included in the particular calibration). In 
some cases, these relationships seem reasonable, such as frequency of service which is always positively 
correlated. Given that these data are from existing agencies that regularly adjust supply (i.e. re-plan 
routes) to respond to demand, routes where there is greater demand have higher frequency service. 

Stability can be considered – coefficients that are always positively or negatively correlated are likely 
more stable and meaningful than those which change sign. For example, the number of jobs that are 
categorized as ‘professional, scientific, or technical’ (NAICS Sector 54) is both positively and negatively 
correlated in various models, and ultimately falls out of significance for the last several models. If the 
underlying models were well specified, this would be meaningful. Given the strong collinearity issues 
within the data, it is difficult to say whether people in this category of jobs tend to interact with transit 
significantly differently than workers in other categories. Coefficients that are stable suggest that the 
relationship is more robust – more frequency always means more overall ridership and should always be 
a factor in the model.  

The magnitude of each coefficient cannot be directly examined as an indicator of ‘strength’ both 
because of the collinearity issues described above, but also because the underlying parameters fall in 
different ranges. Table 4 shows minimum and maximum values for each input parameter based on data 
from all systems combined. Values that range between higher values but which are more important 
within the model may nevertheless have smaller coefficients (in absolute terms). 
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Table 3: Correlation summary of calibration parameters to estimated ridership: positive (+), negative (-), or not included in 
calibration (o). 

Calibration ID 
Calibration Parameters 1 2a 2b 2c 2d 3 4a 4b 4c 4d 
Frequency of service + + + + + + + + + + 
Number of serving routes - - - - - + - - - - 
Total population - + + + + - + + + + 
Percent minority population + + + + + + + + + + 
Number of households - - - - - + - - - - 
Percent households under poverty line - - o o o + - o o o 
Population age 25+ + - o o o + - o o o 
Population with high school degree + - o o o - + o o o 
Population with college degree + + + + + - + + + + 
Population with advanced degree + - - o o - + o o o 
Number of housing structures + + + + + - + + + + 
Number of 1 unit dwellings - - - - - + - - - - 
Number of 2-4 unit dwellings - - - - - + - - - - 
Number of 5-19 unit dwellings - - - - - + - - - - 
Number of 20+ unit dwellings - - - - - + - - - - 
Working population (age 16+) - - - - - - - - - - 
Working population using transit for commute + + + + + + + + + + 
Percent working population using transit - + + + o - + o o o 
Number of households which are renting - + + + + - + + + + 
Median age - + o o o - + + + + 
Median household income - + + + + + + + + + 
Median rent + + o o o - + + + + 
Percent of households without a vehicle - + + + + + + + + + 
Number of jobs + - - o o + - + o o 
Jobs with $1250 monthly income or less - - o o o - - - - - 
Jobs with $1251 - $3333 monthly income - - - - - + + o o o 
Jobs with $3334 monthly income or more + + + + + + + + o o 
Jobs in NAICS sector 51 - information - + o o o - - o o o 
Jobs in NAICS sector 52 - finance and insurance - - - - - + - - + + 
Jobs in NAICS sector 53 - real estate, rental and leasing - - o o o - - - o o 
Jobs in NAICS sector 54 - professional, scientific, and technical - + + + + - + o o o 
Jobs in NAICS sector 55 - management - - - - - + - - - - 
Jobs in NAICS sector 56 - administrative and support + - - o o - - - - - 
Jobs in NAICS sector 61 - education - - - - - - - - - o 
Jobs in NAICS sector 62 - health care - + + + + - - o o o 
Number of ARNOLD intersections - + o o o - + + + + 
Annual ridership reported to NTD (by mode) + + + + + + - o o o 
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Table 4: Calibration parameter minimum and maximum observed values. 

Calibration Parameters Minimum Value Maximum Value 
Frequency of service (daily) 1 722 
Number of serving routes 1 34 
Total population 0 12295 
Percent minority population 0% 99.6% 
Number of households 0 5096 
Percent households under poverty line 0% 85.4% 
Population age 25+ 0 8777 
Population with high school degree 0 4891 
Population with college degree 0 3527 
Population with advanced degree 0 3086 
Number of housing structures 0 5751 
Number of 1 unit dwellings 0 1106 
Number of 2-4 unit dwellings 0 2837 
Number of 5-19 unit dwellings 0 2126 
Number of 20+ unit dwellings 0 4860 
Working population (age 16+) 0 6068 
Working population using transit for commute 0 3994 
Percent working population using transit 0% 78.9% 
Number of households which are renting 0 4727 
Median age 0 77 
Median household income 0 250001 
Median rent 0 2001 
Percent of households without a vehicle 0% 84.7% 
Number of jobs 0 101941 
Jobs with $1250 monthly income or less 0 21753 
Jobs with $1251 - $3333 monthly income 0 23199 
Jobs with $3334 monthly income or more 0 75190 
Jobs in NAICS sector 51 - information 0 12841 
Jobs in NAICS sector 52 - finance and insurance 0 34868 
Jobs in NAICS sector 53 - real estate, rental and leasing 0 7439 
Jobs in NAICS sector 54 - professional, scientific, and technical 0 28013 
Jobs in NAICS sector 55 - management 0 8974 
Jobs in NAICS sector 56 - administrative and support 0 23853 
Jobs in NAICS sector 61 - education 0 19834 
Jobs in NAICS sector 62 - health care 0 33160 
Number of ARNOLD intersections 0 212 
Annual ridership reported to NTD (by mode) 57384 14961417 

 

 



35 
 

Maps of Model Results 

Because the model algorithm ties both the model results and the measured ridership data from case 
study agencies to the ARNOLD network, it is possible to compare the results spatially. The figures below 
show the measured ridership data for the Boston area provided by the transit agency, the estimated 
ridership from the model, and a ratio of both figures showing where the model may be overestimating 
or underestimating ridership.  

The project team used these maps during the project to identify areas where additional data could help 
improve the accuracy of the model. For example, underestimation of ridership in employment centers 
such as downtowns led the team to use incorporate employment information from the Census’s LODES 
dataset into the model.  
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Figure 8. Actual Bus Ridership: MBTA Core (Boston, MA)

Ridership data received from MBTA represents
a typical weekday in Fall 2015.
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Figure 9. Modeled Bus Ridership: MBTA Core (Boston, MA)
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Multimodal performance measures 

The main multimodal measures developed for this project are the percentage of total motorized road 
users on transit and its intermediate measure of total motorized road users. This project calculates 
both at the road segment level. It is possible to use either modeled or measured data to calculate this 
measure, but the project team focused on results using measured data from case study transit agencies.  

The limitations of the percentage of total motorized road users on transit measure comes primarily from 
potential mismatches between the inputs. For example, it is possible that the AADT, GTFS, and transit 
ridership data were all measured or recorded in separate years. If, for example, a transit agency 
rerouted a bus route (and updated its GTFS to match) after collecting ridership data, it would create a 
mismatch where transit riders, and hence transit riders as a percentage of road users, could not be 
calculated for that portion of the route. Similarly, if older AADT data does not reflect traffic growth or 
newly-added routes present in GTFS/ridership data, it would inflate transit’s share of total road users.  

However, even with these limitations, the project team believes this measure has advantages that could 
be incorporated into the national performance management baseline measures. These measures rely on 
region-wide transit vehicle occupancy rates, which gloss over considerable differences between 
corridors. But data from this project allows for reporting and analysis at the corridor or even road 
segment level, similar to the scale of AADT data available through HPMS.  

Maps of Performance Measures 

The figures below show percentage of motorized users on transit for Boston using measured ridership 
data. Comparing these maps to the ridership maps from earlier in the report indicates that the highest 
ridership transit corridors are not always those where transit riders make up the largest portion of road 
users. However, some of these roads where transit riders make up a high percentage of users are not 
corridors at all, such as where a bus route that primarily follows an arterial road loops around in 
neighborhood streets near the end of a route (this is most evident in the Metro Transit maps in the 
appendix). In addition, these performance measures require both ridership data and AADT information 
on a road segment to function. Where one or both of those is not available, the maps indicate that there 
is no data. As discussed above, the quality of GTFS, measured ridership data, and AADT varies by transit 
agency and State.  
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Figure 11. Multimodal Users on Roads with Transit: MBTA Core (Boston, MA)
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41



42 
 

Non-Street-Running Transit 

Programmatically calculating the percentage of motorized users on transit requires road and transit data 
to be aligned in the ARNOLD framework. Although this is not possible for non-street-running transit, an 
alternative is to manually compare vehicle occupants on a road with the corresponding transit service.  

Figure 13 makes this comparison for a portion of the Metro Transit Green Line light rail line between 
Minneapolis and St. Paul. Although this a more straightforward rail comparison since the Green Line 
operates along University Avenue for almost the entirety of its route, it does highlight challenges around 
the definition of a corridor. For example, Interstate 94 also runs parallel to the Green Line and University 
Avenue, and may serve some—but not all—of the same transportation needs as the Green Line. It is 
possible to try and programmatically or manually match service like the Green Line to roads like 
University Avenue, but for rail or ferry systems that do not align so closely with the road network, it 
could be difficult to find the right corresponding road. And, as demonstrated with Interstate 94, there is 
not always one directly corresponding road. These issues are present for bus services as well, but 
become more complex with rail, ferries, and other non-street-running transit, especially when they are 
less clearly aligned with the road network than the Green Line, e.g. MetroRail in Washington, D.C. or the 
MBTA subway in Boston.  



Green Line LRT: 30,332 daily users

University Ave: 17,214 AADT * 1.6 = 27,542 
daily users

52.4% transit riders

But if you include the 252,800 daily users 
on I-94…

9.7% transit riders
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Revenue vehicle miles traveled and passenger miles traveled 

As part of the route snapping process, characteristics such as system-wide transit Revenue Vehicle Miles 
Traveled (transit VMT) along the ARNOLD network can be calculated from GTFS. The project team 
calculated these for two agencies as a secondary goal of this project and compared them to the same 
performance indicators as reported in the NTD. These serve primarily as a proof-of-concept for using 
GTFS and ridership estimates to calculate required NTD fields, but also highlight some differences 
between the results of this project and NTD-reported data.  

Vehicle Revenue Miles Traveled 

When routes are snapped to a road network, the length of a road segment can be multiplied by the 
number of trips that traverse that segment to calculate the transit VMT for that road segment. These 
calculations can be summarized at the system level, resulting in a measure similar to the Vehicle 
Revenue Miles reported in the NTD. The following table compares these calculations for an average 
weekday bus VMT (based on 2016 GTFS data) to the corresponding 2015 NTD system-wide bus VMT. 
While estimated transit VMT for the MBTA was very similar to what is published in the NTD, VMT for 
Metro Transit was about 32.3% higher. There are a variety of factors that could result in this mismatch, 
including: 

• Different years of analysis (2016 for GTFS vs. 2015 for NTD) 
• Differences between service offered on the selected typical weekday and the average of 

services offered on all weekdays throughout the year 
• Quality or completeness issues with the underlying road network, especially ARNOLD dual 

carriageway issues 

While further work and investigation would be needed, the results do suggest the possibility of 
calculating revenue VMT from readily available GTFS feeds. This could be useful for transit agencies, 
which must report this information to NTD and to other stakeholders.  

Table 5: Comparison of GTFS-calculated and NTD-reported bus VMT 

Transit Agency Revenue Vehicle Miles Revenue Vehicle Miles Percent difference vs 
Traveled (2016 GTFS Traveled (2015 NTD, NTD 
bus data Snapped to Bus Only) 
ARNOLD) 

Massachusetts Bay 
Transportation 
Authority (MBTA) 

78,495 76,951 +2.0% 

Metro Transit 103,738 78,398 +32.3% 

Passenger Miles Traveled 

Similarly, system-wide Passenger Miles Traveled (PMT) can be estimated as part of the route snapping 
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process, based either on the actual ridership data provided by the transit agencies or the ridership 
estimates output by the model. These values can in turn be compared to the passenger miles traveled 
reported in the NTD. For the MBTA, actual and modeled passenger miles traveled are around 15-17% 
lower than what is reported in the NTD. For Metro Transit, passenger miles traveled estimated based on 
actual ridership data are approximately 38% higher than what is reported in the NTD, but passenger 
miles traveled based on modeled ridership are only about 5% higher. Like VMT, PMT differences could 
be due to a variety of different factors, including the different year of analysis (2016 GTFS data and 2015 
NTD data) and the accuracy and completeness of the ARNOLD data, which is the basis for the mileage 
for each passenger. 

Depending on the further development of this project’s ridership estimation capabilities, this method 
for calculating PMT could help agencies that do not currently have measured ridership report this 
required NTD element without conducting additional, expensive rider surveys or estimating from 
outdated surveys.  

Transit Agency Passenger Miles Passenger Miles Passenger Percent Percent 
Traveled (Actual Traveled (Modeled Miles difference difference 
Ridership Data, Ridership Data, Traveled Actual vs Modeled 
GTFS routes GTFS routes (2015 NTD vs NTD 
snapped to snapped to NTD, Bus 
ARNOLD—bus ARNOLD—bus Only) 
only) only) 

Massachusetts 
Bay 
Transportation 
Authority (MBTA) 

961,083 940,588 1,126,438 -14.7% -16.5% 

Metro Transit 1,154,807 878,512 834,648 +38.4% +5.3% 
 

Finally, this project’s tools can calculate VMT and PMT at a segment level. While not currently useful 
(they are largely a different way of displaying the frequency and ridership measures already discussed in 
this report) this may be an opportunity depending on the future development of other data systems. For 
example, if transit crashes could be reported at the segment level an agency could also report segment-
level crashes or injuries per VMT or PMT, similar to common measures for highway safety.  
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Opportunities and Insights 
The National Transit Map is a relatively new data resource and this project is among the first efforts to 
explore the GTFS data housed in the NTM and see how it can feed into other departmental priorities 
such as performance management. Because of this, the project team ensured that it noted insights and 
opportunities for the NTM, other data sources, and the products of this effort. The team also held 
discussions with staff from FTA, BTS, and other stakeholders throughout the project, and these 
conversations helped shape the discussions below.  

Opportunities 

Based on discussions with stakeholders, the project team outlined some possible further opportunities 
for use of GTFS in multimodal planning, and for use of this project’s analytical tools in other ways.  

Multimodal planning 

By combining transit and roads data structures, products from this project could help planners better 
understand and account for multimodal use of roads. The specific measure and tool used may depend 
on the data available or particular local needs. 

State and local identification of road/transit improvement opportunities 

For example, a regional planning organization could calculate the percentage of motorized users riding 
transit using ridership data from its transit agency as well as State DOT AADT data. It could use this 
information to identify corridors where transit riders make up a large percentage of road users. These 
could be corridors where it would make sense to allocate additional road space to transit (e.g. bus lanes, 
pullovers). Because the data is attached to ARNOLD, agencies may also be able to combine it with local 
data on road condition or congestion to understand to what degree transit riders are affected by these 
issues.  

Even for simple data such as frequency, the maps generated by this project differ from typical agency 
route maps since they show the total level of transit service available along the road system rather than 
route-by-route frequencies. This may be useful as a basic data source for road planners identifying 
where additional road space could be allocated for transit users (e.g. bus lanes, enhanced stops). 

Table 6 shows the main outputs of potential value to multimodal planners as well as tradeoffs such as 
data needs and uncertainty.  
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Table 6: Summary of key multimodal measure outputs 

Measure Required Data Uncertainty Notes 
On-road transit 
frequency 

GTFS and ARNOLD Low Differs from typical route-focused frequency 
and could be used to understand key bus 
corridors.  

Transit riders as % of all 
multimodal road users 
(modeled ridership) 

GTFS, ARNOLD, 
AADT, and model 
inputs 

High Truly multimodal measure, but relies on 
estimated transit ridership. 

Transit riders as % of all 
multimodal road users 
(measured ridership) 

GTFS, ARNOLD, 
AADT, and 
measured ridership  

Low Truly multimodal measure based on measured 
data, but project code needs to be adapted to 
each transit agency’s ridership data format. 

 

As other data systems increase in sophistication, GTFS and this project’s tools could be the basis for 
calculating other segment-level performance measures such as breakdowns per VMT/PMT or crashes 
per VMT/PMT. Transit agencies could use this data to identify routes, road segments, or general areas 
where additional investments in safety would be most effective.  

While the project team released the code to develop these measures as open-source software and 
performed outreach to stakeholders as part of this effort, it may be useful for DOT to work more 
extensively with partners to understand the measures that could be useful to them and explore 
opportunities for refinement.  

National transportation performance management 

However, the primary goal of this project is to explore potential inputs into national performance 
measures in federally-required transportation performance management (TPM). While FHWA 
rulemakings have defined performance measures for multimodal congestion and delay using region-
wide transit data from NTD, States and MPOs may request to use more detailed methods instead.  

As a potential next step from this project, FHWA, FTA, or other stakeholders could refine this project’s 
outputs so that there is a clear method for using GTFS-linked estimated or measured ridership data as 
inputs for existing, defined national TPM measures. This would require enhancement to the tools 
developed for this project and new calibration inputs. For example, this project focuses on daily 
ridership and service, but the Annual Hours of Peak-Hour Excessive Delay requires data that is narrowed 
to peak commuting hours. Similarly, this project can calculate transit trips as a percentage of all road 
users, but the non-SOV Travel measure may need to take into account non-motorized users as well.  

To help States and MPOs generate these more detailed measures, FHWA and FTA would also need to 
describe in more detail how to use tools like those developed for this project to generate national TPM 
measures. As GTFS and segment-level ridership data become more widely available, this could elevate 
the nationally-available information on multimodal performance for TPM.  

  

https://github.com/VolpeUSDOT/gtfs-measures
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Further refinement of ridership model 

Because this was a proof-of-concept project, the team was only able to develop a basic model 
demonstrating the possibility of using GTFS to estimate segment-level ridership. This ridership model 
was developed as a proof-of-concept for demonstrating the possibility of using GTFS to estimate 
segment-level ridership, and the exploratory results are fit for their purpose of being an initial approach 
to estimate road segment level ridership for TPM measures. Although discussed at length in the 
appropriate sections above, the limitations of the current ridership model include: 

• No mechanism for addressing collinearity between stops along the same road or route, i.e. 
ridership on stop 11 of a route is usually highly correlated with ridership on stop 12.  

• Limited number of case study agencies to provide calibrating ridership data and the related 
need to validate the model on agency data also used to partially calibrate input coefficients. 

• A data structure based around road segments rather than routes. While this may be a strength 
for comparisons with road-based data like AADT, it makes it challenging to incorporate other 
potential inputs like scheduled transit speed.  

• A focus on bus transit systems rather than rail 
• Idiosyncrasies in the ARNOLD network that may interfere with correct matching of transit routes 

to roads (see below discussion of ARNOLD and OpenStreetMap) 

However, the project team identified a number of enhancements to the ridership model in particular 
that would be possible with additional time and resources. These could help increase the accuracy of 
ridership estimations and make them more useful for real-world performance measurement and 
reporting.  

The team identified the following data sources as ridership predictors not fully accounted for in the 
current model: 

• Intermodal Passenger Facilities 
• Land use patterns 
• Street design characteristics (e.g. sidewalks) 

Other refinements would not require new data: 

• Calculating scheduled speed of transit service (from GTFS) and using it as a model input 
• Accounting for proximity to alternative transit options (e.g. bus service that replicates parallel 

heavy rail service) 
• Using ridership from previous stop as a predictive input for subsequent stops 

Accounting for collinearity of ridership data 

Regarding ridership from previous segments (the last bullet above), the model could either be adjusted 
to work from the change in ridership along each portion of a route instead of absolute ridership, or a 
lagged variable could be incorporated into the model which accounts for upstream ridership, possibly in 

https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=640&Link=0
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the form: 

𝑅𝑅 = 𝛾𝛾0 + �𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝒚𝒚𝒍𝒍𝒓𝒓𝒔𝒔−𝟏𝟏 

where rs-1 is the ridership of the previous segment. A more significant restructuring of the data could 
also be explored where ridership along each route is treated as panel data, allowing for examination of 
serial correlation effects. 

Alternatively, the underlying structure of the model could be altered. A linear combination model, while 
simple to implement and understand, may not be the best choice for modeling ridership. Instead, a 
more traditional demand generation approach could be taken using the same demographic data already 
incorporated into the model. Origin-destination data could be produced for every stop pair, and routing 
could be performed using the transit system, with service characteristics such as frequency being used 
to adjust or weight these estimates. 

Road snapping refinements 

Although not an input into the ridership model itself, validating ARNOLD data with OpenStreetMap 
(OSM) could help reduce issues related to ARNOLD snapping and enable road characteristics in to be 
used as model inputs. 

Estimation for particular dates or times of day 

Finally, the model could be adjusted to calculate service characteristics and ridership by time of day or 
different seasons. For example, it would be possible to calculate peak-hour headways along all routes on 
a system or estimate peak hour ridership. However, only a handful of transit agencies report ridership at 
the hourly scale, so more calibration data from transit agencies would be needed.  

Summarizing transit service in the National Transit Map 

Relatedly, another opportunity from this project may be the ability to describe transit service across the 
United States in a more detailed and coordinated way. Currently, the National Transit Map has some 
basic national maps based on the submitted GTFS feeds, including the location of transit stops across 
the country and participating agencies. BTS or partners could adapt code from this project to generate 
more detailed information on these services, such as on-road frequency or operating hours.  

While the ARNOLD snapping process described in this report is not without challenges, most could likely 
be resolved by supplementing ARNOLD with OpenStreetMap and a small amount of case-by-case review 
of snapping results to ensure that resolved routes match each agency’s network.  

Creating public online maps of estimated ridership is possible, but the public-facing character of the 
NTM could risk implying that estimated ridership is more reliable than it actually is. However, 
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implementing ARNOLD or OSM snapping in the NTM would allow BTS to easily map ridership data from 
a potential future GTFS-based ridership data standard (see below). 

Transit agency ridership forecasting 

The results of the predictive models described in previous sections show that reasonable estimates of 
transit ridership can be developed using widely available data and a GTFS feed for a given region. Such 
models could possibly be used for planning purposes when rerouting, adding, or removing service to 
estimate the ridership impact along key corridors. Additionally, if predictions for changes in 
development, land use, employment, and demographics are available, future year conditions could be 
modeled to predict ridership changes over time. While they both function very differently than the 
model in this project, Florida DOT provides future ridership estimation in its Tbest tool, and FTA’s 
Simplified Trips-on-Project Software (STOPS) model helps transit agencies evaluate potential fixed-
guideway investments.  

Ridership estimation using partial data 

An alternative use case that was considered for preliminary analysis was an agency using a subset of 
measured data to extrapolate ridership across their entire system. As smaller agencies are able to 
upgrade their buses and trains, automatic passenger counters or fare tracking mechanisms can be 
installed. However, due to cost, this is generally done in a slow roll-out across an agency’s fleet rather 
than all at once.  

A predictive ridership model, calibrated using a wider set of measured data (from, for example, a one-
time ridership survey) could then inform both which routes and areas within an agency should be 
prioritized for data collection, and the subset of data from those systems could be used to provide a 
complete, albeit estimated, picture of ridership for the entire agency. The project team looked into 
testing this approach on this project’s model, but partial estimation is challenging under the road 
segment data structure the model uses. E.g., it is difficult to handles cases where one route has data and 
is used for calibration but it shares road segments with other routes that must be estimated.  

Route snapping tool for transit agencies  

Accurate GTFS shapes in the “shapes.txt” table are important for development of the multimodal 
measures in this project, but also have value for sharing digital traveler information with transit riders. 
However, creating and maintaining route shapes may be a challenge for systems with limited geospatial 
technology resources, and even the route shapes of larger agencies may become inconsistent as routes 
are updated over time.  

FTA, the American Public Transportation Association (APTA) or another stakeholder could adapt this 
project’s ARNOLD snapping code (possibly altered to use OSM) into a tool for transit agencies that could 
help them turn basic or outdated route shapes into accurate routes snapped to an authoritative road 

http://tbest.org/
https://www.transit.dot.gov/funding/grant-programs/capital-investments/stops
https://www.transit.dot.gov/funding/grant-programs/capital-investments/stops
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network. This tool could be a GIS toolset for agencies that already have geospatial resources, but a web-
based interface could enable a larger number of agencies to benefit, especially those that lack the 
expertise or resources for GIS software.  

GTFS-based ridership data standard 

While the multimodal measures based on estimated ridership can be useful depending on the context 
and need, more and more transit agencies have at least some actual, measured stop/route-level 
ridership data. The project team encountered first-hand the lack of a standard format for this granular 
ridership information as it processed data volunteered by the case study transit agencies.  

Each calibrating transit agency that contributed ridership data to this effort used a different format to 
share the information. While this project developed automated scripts to standardize these into a 
common format for the ridership model, these will likely be of only limited use since current ridership 
data formats appear to essentially be agency-specific. Projects like this one help place segment-level 
ridership data in the context of other modes (e.g. highway AADT) and highlight the benefits of sharing 
this information with planners outside of the transit agencies themselves. However, while modeling can 
fill the gap for systems with limited resources, the lack of a unified format for ridership makes it more 
difficult for States and local governments to calculate multimodal performance measures using stop or 
segment-level data some agencies already collect. 

The NTM and the current focus on performance management may be an opportunity to pilot a stop or 
segment-level ridership reporting format that is embedded into GTFS, perhaps as an optional table. BTS 
could give agencies the option to submit this table along with their usual GTFS submission. This would 
build up the level of information in the NTM available for national-level planning, similar to the AADT 
usage data in HPMS. It could also be used as calibration data for a ridership estimation model like the 
one developed in this project. FTA and partners could explore benefits to transit agencies such as 
automatically calculating some NTD report items (already possible using existing GTFS for fields like 
Revenue Vehicle Miles Traveled) or the availability of this same level of data for adjacent transit 
agencies.  

This is an opportunity to collaborate with and build on the work of State and local stakeholders. Oregon 
DOT has identified the need for a common ridership data standard and has developed a scope of work in 
coordination with Oregon State University. They have developed a prospective ridership standard as an 
extension to GTFS that they were circulating for comment and review at the time this report was under 
development. Florida DOT also uses a supplemental “stop_ridership.txt” table in GTFS to help the 
State’s transit agencies model ridership for planned service. 

Data insights 

Using National Transit Map data 

http://tbest.org/gtfs-interoperability/
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Although GTFS is well-studied and has been a de facto standard for transit schedules for a number of 
years, this project is among the first to take advantage of the 2016 launch of the National Transit Map, 
the first official agglomeration of GTFS data at the national level in the United States. Because of this, 
the Volpe/OST-P team worked closely with BTS so that the project team could understand the 
opportunities of this new data source and BTS could receive feedback about use of the feeds in a 
research project.  

Based on this feedback, BTS released the original GTFS feeds that transit agencies submitted to DOT as a 
supplemental format to the single, nationally aggregated feed. This gives NTM users flexibility in the 
type of GTFS data that meets their research or analytical needs. This still provides an advantage over 
obtaining feeds directly from the agencies, due to licensing issues and also because NTM collects GTFS 
from all agencies on the same day, increasing consistency of the time period covered by the various 
GTFS feeds. A future opportunity could be aggregating the seasonal feeds that agencies usually provide 
into a full year of data.  

GTFS shapes and calendars 

Though not specific to the National Transit Map, the project team also noted some challenges in 
working across GTFS feeds that may be relevant to other researchers. In particular, agencies were not 
consistent in the use of the “shapes.txt” table as well as the calendar tables. 

Shapes availability 

As discussed in the methodology section, the GTFS specification does not actually require agencies to 
submit line shapes for transit routes, and shapes.txt is an optional table. Typically, commercial trip 
planners will try to approximate route shapes as close as possible by connecting the required 
latitude/longitude locations for stops along a route, either in as-the-crow-flies lines or by calculating the 
shortest road network path. However, both of these methods are prone to misrepresent actual route 
shapes, especially for express routes where stops may be far apart.  

Although this project’s route snapping algorithm can theoretically resolve stop-by-stop as-the-crow-flies 
shapes, the project team chose not to do so because of accuracy concerns. To help other researchers, 
the NTM could include a flag for individual feeds or trips within the national feed that do not have an 
associated shape. And as discussed below, tools developed for this project could be adapted to help 
transit agencies improve their shapes by snapping them to the road network. 

Formats for describing calendars 

Similarly, although dates of service are obviously required in GTFS schedules, there are two competing 
ways to describe them. The recommended use, described in Google’s online GTFS reference, is that 
agencies should specify general service availability by day of the week in the calendar.txt table and 
exceptions in the calendar_dates.txt table. For example, calendar.txt would specify the services typically 
available on Mondays, and calendar_dates.txt would specify the (potentially reduced) services available 

https://developers.google.com/transit/gtfs/reference/calendar_dates-file
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on a holiday such as Memorial Day. However, agencies can (and do) bypass the calendar.txt file entirely 
(although they do provide an empty file since calendar.txt is strictly required by the specification) and 
instead use calendar_dates.txt to describe the service availability on every individual day in the 
schedule. This dramatically increases the amount of information that must be parsed to compile service 
characteristics. 

While potentially appropriate for some systems, researchers should be aware of these different uses 
when working with NTM or other GTFS data. The project team encountered this use in one of the case 
study systems and was able to account for it in the analysis code. However, it may be worth 
investigating whether these two uses work compatibly within NTM’s nationally aggregated feed.  

ARNOLD data inconsistencies and alternatives 

As described in the methodology section, the format of official DOT ARNOLD data posed a few 
challenges for the purposes of this project. In particular, data is currently only available within DOT and 
only on a State-by-State basis. This reflects the process where each States submits its ARNOLD data to 
FHWA. The quality of the ARNOLD network and the level of detail can hence vary significantly from State 
to State, with some States only including major roads (such as the National Highway System) and 
omitting smaller roads where many local transit services operate. There can also be conflicts at State 
borders where the same road may not align on either side of the border due to spatial projection or 
other issues. This was not a major factor for the case study agencies in this project, but could be an 
obstacle in future applications of these tools.  

The project team discussed using OpenStreetMap as a potential alternative network to ARNOLD. OSM is 
an open-source, community-edited map database that is the basis of many private-sector trip planners 
and mapping services. Unlike ARNOLD, it is available to the general public on a national scale. And its 
network in the United States appears to be fairly complete, accurate, and consistent across State 
boundaries. The team chose to use ARNOLD since it is easily tied to HPMS AADT data, but OSM may be 
an appropriate choice for other applications of this work. Alternatively, it would be possible to try 
matching data from ARNOLD onto the OSM network.  
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Conclusions and Next Steps 
While exploratory in nature, this project suggests that matching GTFS schedule data to the authoritative 
road system can help agencies and DOT estimate transit ridership and understand multimodal 
performance. Attaching transit usage data (either modeled or measured) to GTFS/ARNOLD, enables 
agencies to make multimodal comparisons at a very fine level and make the most of data sources that 
already exist (i.e. GTFS and AADT). This could also be the basis for future refinement of national TPM 
performance measures.  

The OST-P and Volpe project team highlighted the following potential next steps for making use of GTFS 
in multimodal planning and performance management: 

• Refine ridership model and add additional calibration data: Additional calibration data (i.e. 
measured segment-level ridership) could enhance the ridership estimation model greatly, to the 
point where DOT might be comfortable encouraging its use for performance measures.  
 

• Integrate Oregon DOT’s GTFS ridership addendum (or another format) into the National 
Transit Map: Settling on a national standard for segment-level ridership data would help lay the 
groundwork for transit usage data that is as readily-available nationally as highway usage is 
today. In addition, measured data from additional agencies could help refine the ridership 
model.  
 

• Apply road snapping or ridership estimation for all National Transit Map data: Although it 
would require some amount of manual preparation, BTS or a partner could apply this project’s 
tools to all or some National Transit Map agencies. This could be a way to create publicly 
available maps about the nation’s transit network or provide a benefit/incentive for 
participating transit agencies (i.e. smaller agencies would have an incentive to submit feeds 
since they will receive routes and ridership estimates snapped to their road network). 
 

• Document an alternative way of calculating proposed national performance management 
measures using this project’s tools: This project provides proof-of-concept that public agencies 
can use GTFS data to calculate performance measures generally. Particularly for transit agencies 
that do not collect robust ridership information at the route level, or do not have the internal 
capacity to leverage this information, this proof-of-concept could be a more precise estimation 
at the segment level compared to the baseline calculation required in the most recent national 
performance management rule. But to help local governments adopt this approach, DOT or its 
partners should pilot and document the use of these tools to calculate the specific national 
performance measures defined in the most recent TPM rule, which are currently based on 
region-wide NTD usage data. 

DOT itself or external partners could pursue these steps. To this end, the project team has made the 
source code for all of its analytical tools publicly available as open-source software. As this project 

https://github.com/VolpeUSDOT/gtfs-measures
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demonstrates, transit data intended for one specific use (e.g. public trip planning) can be adapted to 
other uses (e.g. multimodal performance management) as a way to efficient use resources. Creative 
companies, public agencies, and non-profits will continue to find new uses for GTFS and other emerging 
transit data such as the GTFS-Real Time addendum and competing formats that some agencies are 
already using to share live transit arrivals. DOT should continue to track these developments to see if 
they could further enhance the data and tools available for transportation planning and understanding 
multimodal system performance.   
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Appendix A: Maps 

Map Notes 

All maps show bidirectional (e.g. inbound and outbound) trips and are derived using manual 
classification schemes in an effort to best distinguish the variation in ridership, frequency, and road user 
characteristics unique to each transit system. The jenks natural breaks optimization is used as a starting 
point—minimizing each class’s average deviation from the class mean, while maximizing each class’s 
deviation from the means of other bins. The class breaks are then rounded to more meaningful numbers 
and may also be fine-tuned to ensure there is clear representation in each class. Due to the unique 
characteristics of each transit agency and in an effort to best show differences within a system, the class 
breaks vary system to system but all use the natural jenks algorithm with this basic manual rounding. 

Also, the project team was unable to generate a complete set of maps for Valley Metro (Phoenix area) 
due to errors in reconciling its GTFS feed and the Arizona ARNOLD data.  

Metro Transit (MN) 
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San Joaquin RTD (CA) – Not all routes have measured ridership data 
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Northern Arizona Intergovernmental Public Transportation Authority (AZ) 
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Appendix B: List of Model Input 
Parameters 

U.S. Census American Community Survey (ACS) 

• Total population 
• Non-white population 
• Number of households 
• Households with total income under the poverty line 
• Education: 

o Population age 25+ 
o Population with attainment of high school diploma or lower 
o Population with attainment of some college or a college degree 
o Population with attainment of an advanced degree 

• Housing: 
o Number of housing structures 
o Number of single-family dwellings 
o Number of 2-4 unit buildings 
o Number of 5-19 unit buildings 
o Number of 20+ unit buildings 

• Total working-age population 
• Total working-age population which use transit 
• Number of households which are renting 
• Median age 
• Median household income 
• Median rent 

U.S. Census Longitudinal Employer-Household Dynamics Origin-
Destination Employment Statistics (LODES) 

 

• Total jobs 
o Total number of jobs 

• Jobs by earnings 
o Number of jobs with earnings $1250/month or less 
o Number of jobs with earnings $1251/month to $3333/month 
o Number of jobs with earnings greater than $3333/month 
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• Selected NAICS sectors 
o Number of jobs in NAICS sector 51 (Information) 
o Number of jobs in NAICS sector 52 (Finance and Insurance) 
o Number of jobs in NAICS sector 53 (Real Estate and Rental and Leasing) 
o Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services) 
o Number of jobs in NAICS sector 55 (Management of Companies and Enterprises) 
o Number of jobs in NAICS sector 56 (Administrative and Support and Waste Management 

and Remediation Services) 
o Number of jobs in NAICS sector 61 (Educational Services) 
o Number of jobs in NAICS sector 62 (Health Care and Social Assistance) 

 

Other 

• Frequency of transit service (daily) 
• Number  of serving routes 
• Number of ARNOLD intersections in a .25 mile radius 
• Annual ridership reported to NTD by mode and agency 
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Appendix C: Detailed Model Results 
Note: Raw statistical package results are provided for only technical context and to assist other 
researches with reproducing results. For example, not all statistical tests in the raw output below are 
appropriate for the model approach or iteration.  

Calibration 01 
Dep. Variable: y  R-squared: 0.328 
Model: OLS  Adj. R-squared: 0.327 
Method: Least Squares  F-statistic: 317.8 
No. Observations: 23489  Prob (F-statistic): 0 
Df Residuals: 23452  Log-Likelihood: -2.32E+05 
Df Model: 36  AIC: 4.63E+05 
Covariance Type: nonrobust  BIC: 4.63E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept -4305.5574 3248.037 -1.326 0.185 -1.07E+04 2060.807 
freq 53.5148 0.806 66.429 0 51.936 55.094 
routes -800.0916 28.45 -28.122 0 -855.856 -744.327 
pop -0.3271 0.133 -2.465 0.014 -0.587 -0.067 
minority 1697.4612 263.034 6.453 0 1181.898 2213.024 
house -13.6213 1.152 -11.827 0 -15.879 -11.364 
poverty -658.2289 576.673 -1.141 0.254 -1788.545 472.087 
pop 25+ 1.091 0.253 4.309 0 0.595 1.587 
high school 1435.9038 3363.017 0.427 0.669 -5155.828 8027.636 
college 6048.09 3382.55 1.788 0.074 -581.928 1.27E+04 
adv degree 1132.9496 3404.812 0.333 0.739 -5540.704 7806.603 
housing 12.5874 0.944 13.341 0 10.738 14.437 
1 unit -1676.0519 829.644 -2.02 0.043 -3302.209 -49.895 
2-4 unit -6494.2214 877.149 -7.404 0 -8213.49 -4774.953 
5-19 unit -1978.7578 915.505 -2.161 0.031 -3773.208 -184.308 
20+ unit -2982.158 851.828 -3.501 0 -4651.796 -1312.52 
workers -0.8263 0.305 -2.711 0.007 -1.424 -0.229 
workers use transit 3.0666 0.359 8.539 0 2.363 3.77 
perc work transit -5445.9748 641.483 -8.49 0 -6703.323 -4188.627 
renting -0.2298 0.389 -0.591 0.555 -0.992 0.532 
age -3.7884 6.796 -0.557 0.577 -17.11 9.533 
hh income -0.0054 0.002 -2.38 0.017 -0.01 -0.001 
renting 0.0381 0.098 0.388 0.698 -0.155 0.231 
no vehicle -37.7346 583.874 -0.065 0.948 -1182.166 1106.697 
jobs 0.3413 0.026 13.241 0 0.291 0.392 
low pay jobs -0.547 0.134 -4.085 0 -0.809 -0.285 
mid pay jobs -0.1954 0.151 -1.292 0.196 -0.492 0.101 
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high pay jobs 1.0837 0.054 20.169 0 0.978 1.189 
info jobs -3.454 0.134 -25.699 0 -3.717 -3.191 
finance jobs -1.9314 0.071 -27.369 0 -2.07 -1.793 
real estate jobs -3.4115 0.221 -15.405 0 -3.846 -2.977 
professional jobs -0.2171 0.096 -2.25 0.024 -0.406 -0.028 
mgmt jobs -1.2193 0.123 -9.881 0 -1.461 -0.977 
admin jobs 1.0343 0.14 7.373 0 0.759 1.309 
edu jobs -0.8723 0.063 -13.896 0 -0.995 -0.749 
health jobs -0.9204 0.043 -21.364 0 -1.005 -0.836 
ARNOLD intersections -23.6755 2.557 -9.258 0 -28.688 -18.663 
NTD riders 0.0006 2.26E-05 27.224 0 0.001 0.001 
Omnibus: 42502.884  Durbin-Watson: 0.585 
Prob(Omnibus): 0  Jarque-Bera (JB): 87943751 
Skew: 13.155  Prob(JB): 0 
Kurtosis: 301.605  Cond. No.: 1.06E+16 
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Calibration 02a 
Dep. Variable: y  R-squared: 0.696 
Model: OLS  Adj. R-squared: 0.695 
Method: Least Squares  F-statistic: 1482 
No. Observations: 22707  Prob (F-statistic): 0 
Df Residuals: 22671  Log-Likelihood: -1.70E+05 
Df Model: 35  AIC: 3.41E+05 
Covariance Type: nonrobust  BIC: 3.41E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 107.4032 65.725 1.634 0.102 -21.423 236.23 
freq 13.6439 0.086 159.556 0 13.476 13.811 
routes -27.2943 2.885 -9.462 0 -32.948 -21.64 
pop 0.0404 0.014 2.938 0.003 0.013 0.067 
minority 102.3412 26.442 3.87 0 50.513 154.17 
house -0.8241 0.12 -6.842 0 -1.06 -0.588 
poverty -72.2492 57.045 -1.267 0.205 -184.062 39.564 
pop 25+ -0.0228 0.028 -0.818 0.413 -0.077 0.032 
high school -9.2191 31.041 -0.297 0.766 -70.062 51.623 
college 199.338 35.193 5.664 0 130.356 268.319 
adv degree -82.7156 40.742 -2.03 0.042 -162.572 -2.859 
housing 0.6127 0.099 6.219 0 0.42 0.806 
1 unit -417.9707 80.39 -5.199 0 -575.541 -260.401 
2-4 unit -465.1916 85.712 -5.427 0 -633.194 -297.189 
5-19 unit -318.4579 89.11 -3.574 0 -493.119 -143.797 
20+ unit -611.729 82.902 -7.379 0 -774.223 -449.235 
workers -0.1017 0.031 -3.247 0.001 -0.163 -0.04 
workers use transit 0.1666 0.039 4.326 0 0.091 0.242 
perc work transit 142.7787 65.724 2.172 0.03 13.955 271.603 
renting 0.359 0.04 8.978 0 0.281 0.437 
age 0.9812 0.674 1.456 0.145 -0.34 2.302 
hh income 0.0011 0 4.88 0 0.001 0.002 
renting 0.0105 0.01 1.077 0.282 -0.009 0.03 
no vehicle 370.0085 58.111 6.367 0 256.107 483.91 
jobs -0.0242 0.003 -8.116 0 -0.03 -0.018 
low pay jobs -0.0124 0.014 -0.887 0.375 -0.04 0.015 
mid pay jobs -0.0551 0.015 -3.568 0 -0.085 -0.025 
high pay jobs 0.0433 0.007 6.164 0 0.03 0.057 
info jobs 0.0035 0.019 0.185 0.854 -0.033 0.04 
finance jobs -0.0174 0.008 -2.185 0.029 -0.033 -0.002 
real estate jobs -0.0379 0.024 -1.601 0.109 -0.084 0.009 
professional jobs 0.0367 0.011 3.482 0 0.016 0.057 
mgmt jobs -0.0502 0.013 -3.899 0 -0.075 -0.025 
admin jobs -0.0357 0.017 -2.089 0.037 -0.069 -0.002 
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edu jobs -0.0314 0.007 -4.763 0 -0.044 -0.019 
health jobs 0.0171 0.005 3.612 0 0.008 0.026 
ARNOLD intersections 0.3984 0.273 1.461 0.144 -0.136 0.933 
NTD riders 8.96E-06 2.43E-06 3.693 0 4.20E-06 1.37E-05 
Omnibus: 9057.785  Durbin-Watson: 1.268 
Prob(Omnibus): 0  Jarque-Bera (JB): 390503.19 
Skew: 1.202  Prob(JB): 0 
Kurtosis: 23.173  Cond. No.: 1.06E+16 
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Calibration 02b 
Dep. Variable: y  R-squared: 0.696 
Model: OLS  Adj. R-squared: 0.695 
Method: Least Squares  F-statistic: 1852 
No. Observations: 22707  Prob (F-statistic): 0 
Df Residuals: 22678  Log-Likelihood: -1.70E+05 
Df Model: 28  AIC: 3.41E+05 
Covariance Type: nonrobust  BIC: 3.41E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 131.061 79.548 1.648 0.099 -24.858 286.98 
freq 13.6402 0.085 160.212 0 13.473 13.807 
routes -27.2185 2.874 -9.469 0 -32.853 -21.584 
pop 0.0337 0.013 2.609 0.009 0.008 0.059 
minority 80.9583 23.681 3.419 0.001 34.542 127.374 
house -0.8534 0.111 -7.718 0 -1.07 -0.637 
college 210.6002 46.851 4.495 0 118.77 302.431 
adv degree -68.5503 42.536 -1.612 0.107 -151.924 14.824 
housing 0.6462 0.098 6.622 0 0.455 0.837 
1 unit -418.0342 80.29 -5.207 0 -575.409 -260.659 
2-4 unit -461.8632 83.856 -5.508 0 -626.226 -297.5 
5-19 unit -322.943 88.858 -3.634 0 -497.111 -148.775 
20+ unit -610.2539 82.474 -7.399 0 -771.909 -448.598 
workers -0.115 0.028 -4.084 0 -0.17 -0.06 
workers use transit 0.1821 0.036 5.07 0 0.112 0.253 
perc work transit 118.7757 64.557 1.84 0.066 -7.76 245.312 
renting 0.3434 0.035 9.805 0 0.275 0.412 
hh income 0.0012 0 5.57 0 0.001 0.002 
no vehicle 352.7676 52.721 6.691 0 249.431 456.104 
jobs -0.0277 0.015 -1.845 0.065 -0.057 0.002 
mid pay jobs -0.0562 0.028 -2.037 0.042 -0.11 -0.002 
high pay jobs 0.0461 0.015 3.113 0.002 0.017 0.075 
finance jobs -0.0148 0.007 -2.152 0.031 -0.028 -0.001 
professional jobs 0.0305 0.01 3.194 0.001 0.012 0.049 
mgmt jobs -0.0635 0.01 -6.114 0 -0.084 -0.043 
admin jobs -0.0321 0.017 -1.908 0.056 -0.065 0.001 
edu jobs -0.0311 0.006 -5.233 0 -0.043 -0.019 
health jobs 0.0185 0.004 4.619 0 0.011 0.026 
NTD riders 1.15E-05 2.27E-06 5.044 0 7.01E-06 1.59E-05 
Omnibus: 9025.73  Durbin-Watson: 1.268 
Prob(Omnibus): 0  Jarque-Bera (JB): 392800.1 
Skew: 1.19E+00  Prob(JB): 0 
Kurtosis: 23.236  Cond. No.: 4.20E+08 
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Calibration 02c 
Dep. Variable: y  R-squared: 0.696 
Model: OLS  Adj. R-squared: 0.695 
Method: Least Squares  F-statistic: 2073 
No. Observations: 22707  Prob (F-statistic): 0 
Df Residuals: 22681  Log-Likelihood: -1.70E+05 
Df Model: 25  AIC: 3.41E+05 
Covariance Type: nonrobust  BIC: 3.41E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 135.1227 79.551 1.699 0.089 -20.802 291.048 
freq 13.6078 0.084 161.193 0 13.442 13.773 
routes -25.937 2.848 -9.106 0 -31.52 -20.354 
pop 0.0346 0.013 2.687 0.007 0.009 0.06 
minority 94.111 22.496 4.183 0 50.018 138.204 
house -0.8456 0.111 -7.649 0 -1.062 -0.629 
college 228.2596 44.108 5.175 0 141.806 314.713 
housing 0.6353 0.097 6.522 0 0.444 0.826 
1 unit -424.9896 80.044 -5.309 0 -581.881 -268.098 
2-4 unit -466.6783 83.441 -5.593 0 -630.228 -303.129 
5-19 unit -344.8874 86.875 -3.97 0 -515.168 -174.607 
20+ unit -634.8078 81.299 -7.808 0 -794.16 -475.455 
workers -0.119 0.028 -4.229 0 -0.174 -0.064 
workers use transit 0.1945 0.036 5.457 0 0.125 0.264 
perc work transit 94.8937 63.335 1.498 0.134 -29.248 219.035 
renting 0.3451 0.035 9.875 0 0.277 0.414 
hh income 0.001 0 6.056 0 0.001 0.001 
no vehicle 345.6629 52.503 6.584 0 242.754 448.572 
mid pay jobs -0.1136 0.011 -10.478 0 -0.135 -0.092 
high pay jobs 0.0229 0.005 5.03 0 0.014 0.032 
finance jobs -0.0214 0.006 -3.438 0.001 -0.034 -0.009 
professional jobs 0.0246 0.009 2.633 0.008 0.006 0.043 
mgmt jobs -0.0651 0.01 -6.328 0 -0.085 -0.045 
edu jobs -0.0372 0.006 -6.739 0 -0.048 -0.026 
health jobs 0.0196 0.004 4.96 0 0.012 0.027 
NTD riders 1.18E-05 2.22E-06 5.328 0 7.47E-06 1.62E-05 
Omnibus: 9034.028  Durbin-Watson: 1.269 
Prob(Omnibus): 0  Jarque-Bera (JB): 391898.7 
Skew: 1.195  Prob(JB): 0 
Kurtosis: 23.211  Cond. No.: 4.17E+08 
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Calibration 02d 
Dep. Variable: y  R-squared: 0.696 
Model: OLS  Adj. R-squared: 0.695 
Method: Least Squares  F-statistic: 2160 
No. Observations: 22707  Prob (F-statistic): 0 
Df Residuals: 22682  Log-Likelihood: -1.70E+05 
Df Model: 24  AIC: 3.41E+05 
Covariance Type: nonrobust  BIC: 3.41E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 126.6618 79.352 1.596 0.11 -28.874 282.198 
freq 13.6306 0.083 164.139 0 13.468 13.793 
routes -26.1423 2.845 -9.188 0 -31.719 -20.565 
pop 0.0326 0.013 2.541 0.011 0.007 0.058 
minority 104.5818 21.383 4.891 0 62.669 146.495 
house -0.8294 0.11 -7.539 0 -1.045 -0.614 
college 236.2635 43.784 5.396 0 150.444 322.083 
housing 0.6289 0.097 6.462 0 0.438 0.82 
1 unit -427.3063 80.031 -5.339 0 -584.173 -270.439 
2-4 unit -456.9206 83.188 -5.493 0 -619.975 -293.866 
5-19 unit -339.5779 86.805 -3.912 0 -509.721 -169.435 
20+ unit -633.8385 81.299 -7.796 0 -793.19 -474.487 
workers -0.125 0.028 -4.487 0 -0.18 -0.07 
workers use transit 0.2273 0.028 8.074 0 0.172 0.282 
renting 0.3357 0.034 9.764 0 0.268 0.403 
hh income 0.001 0 6.125 0 0.001 0.001 
no vehicle 363.4461 51.145 7.106 0 263.199 463.694 
mid pay jobs -0.1134 0.011 -10.461 0 -0.135 -0.092 
high pay jobs 0.0226 0.005 4.969 0 0.014 0.032 
finance jobs -0.0214 0.006 -3.427 0.001 -0.034 -0.009 
professional jobs 0.0251 0.009 2.684 0.007 0.007 0.043 
mgmt jobs -0.0649 0.01 -6.309 0 -0.085 -0.045 
edu jobs -0.0368 0.006 -6.679 0 -0.048 -0.026 
health jobs 0.0198 0.004 5.014 0 0.012 0.028 
NTD riders 1.30E-05 2.07E-06 6.258 0 8.92E-06 1.71E-05 
Omnibus: 9033.979  Durbin-Watson: 1.269 
Prob(Omnibus): 0  Jarque-Bera (JB): 393148.6 
Skew: 1.195  Prob(JB): 0 
Kurtosis: 23.244  Cond. No.: 4.16E+08 
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Calibration 03 
Dep. Variable: y  R-squared: 0.749 
Model: OLS  Adj. R-squared: 0.737 
Method: Least Squares  F-statistic: 61.79 
No. Observations: 782  Prob (F-statistic): 3.22E-197 
Df Residuals: 745  Log-Likelihood: -8.53E+03 
Df Model: 36  AIC: 1.71E+04 
Covariance Type: nonrobust  BIC: 1.73E+04 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept -2.79E+04 1.01E+04 -2.76 0.006 -4.78E+04 -8069.05 
freq 211.4199 8.991 23.514 0 193.769 229.071 
routes 2061.4137 590.28 3.492 0.001 902.603 3220.225 
pop -1.9343 1.539 -1.257 0.209 -4.956 1.087 
minority 230.4797 3688.118 0.062 0.95 -7009.86 7470.82 
house 30.3802 11.704 2.596 0.01 7.404 53.356 
poverty 1.59E+04 9735.478 1.633 0.103 -3214.91 3.50E+04 
pop 25+ 8.8861 2.069 4.295 0 4.824 12.948 
high school -1.02E+05 3.81E+04 -2.68 0.008 -1.77E+05 -2.73E+04 
college -5.07E+04 3.74E+04 -1.357 0.175 -1.24E+05 2.27E+04 
adv degree -1.20E+05 3.90E+04 -3.083 0.002 -1.97E+05 -4.36E+04 
housing -21.2162 9.68 -2.192 0.029 -40.22 -2.212 
1 unit 9.08E+04 3.54E+04 2.569 0.01 2.14E+04 1.60E+05 
2-4 unit 9.04E+04 3.50E+04 2.581 0.01 2.17E+04 1.59E+05 
5-19 unit 1.00E+05 3.58E+04 2.797 0.005 2.99E+04 1.71E+05 
20+ unit 9.33E+04 3.52E+04 2.649 0.008 2.42E+04 1.62E+05 
workers -6.5717 4.299 -1.529 0.127 -15.012 1.868 
workers use transit 4.6822 3.809 1.229 0.219 -2.795 12.159 
perc work transit -5.01E+04 8062.066 -6.216 0 -6.59E+04 -3.43E+04 
renting -16.4297 4.055 -4.051 0 -24.391 -8.468 
age -287.7872 129.927 -2.215 0.027 -542.853 -32.721 
hh income 0.0858 0.034 2.524 0.012 0.019 0.153 
renting -2.4901 1.486 -1.676 0.094 -5.407 0.427 
no vehicle 5.31E+04 9239.267 5.744 0 3.49E+04 7.12E+04 
jobs 0.5701 0.253 2.252 0.025 0.073 1.067 
low pay jobs -1.177 1.991 -0.591 0.555 -5.085 2.731 
mid pay jobs 1.2462 2.008 0.621 0.535 -2.696 5.189 
high pay jobs 0.501 0.459 1.091 0.276 -0.401 1.403 
info jobs -3.5548 1.368 -2.598 0.01 -6.241 -0.869 
finance jobs 0.0733 0.697 0.105 0.916 -1.296 1.442 
real estate jobs -14.8335 2.699 -5.496 0 -20.132 -9.535 
professional jobs -0.2548 0.92 -0.277 0.782 -2.061 1.552 
mgmt jobs 0.186 1.697 0.11 0.913 -3.146 3.518 
admin jobs -0.1706 0.999 -0.171 0.865 -2.133 1.792 
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edu jobs -1.5372 0.537 -2.861 0.004 -2.592 -0.482 
health jobs -0.5908 0.381 -1.55 0.121 -1.339 0.157 
ARNOLD intersections -183.8302 32.316 -5.688 0 -247.272 -120.389 
NTD riders 2.20E-03 0.00E+00 11.502 0 2.00E-03 3.00E-03 
Omnibus: 155.613  Durbin-Watson: 0.684 
Prob(Omnibus): 0  Jarque-Bera (JB): 1081.578 
Skew: 0.701  Prob(JB): 1.38E-235 
Kurtosis: 8.588  Cond. No.: 1.06E+16 
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Calibration 04a 
Dep. Variable: y  R-squared: 0.708 
Model: OLS  Adj. R-squared: 0.708 
Method: Least Squares  F-statistic: 1525 
No. Observations: 22017  Prob (F-statistic): 0 
Df Residuals: 21981  Log-Likelihood: -1.65E+05 
Df Model: 35  AIC: 3.30E+05 
Covariance Type: nonrobust  BIC: 3.30E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 327.1806 70.914 4.614 0 188.184 466.177 
freq 13.8538 0.086 160.196 0 13.684 14.023 
routes -22.5433 3.054 -7.381 0 -28.53 -16.557 
pop 0.0533 0.014 3.848 0 0.026 0.08 
minority 142.3086 26.734 5.323 0 89.909 194.708 
house -1.0272 0.123 -8.339 0 -1.269 -0.786 
poverty -0.1663 57.406 -0.003 0.998 -112.686 112.354 
pop 25+ -0.0273 0.028 -0.978 0.328 -0.082 0.027 
high school 49.3366 32.347 1.525 0.127 -14.065 112.738 
college 259.6816 37.066 7.006 0 187.03 332.333 
adv degree 18.1624 41.789 0.435 0.664 -63.747 100.072 
housing 0.7579 0.101 7.467 0 0.559 0.957 
1 unit -713.942 89.187 -8.005 0 -888.754 -539.13 
2-4 unit -712.369 93.876 -7.588 0 -896.372 -528.366 
5-19 unit -503.4617 97.542 -5.161 0 -694.651 -312.273 
20+ unit -921.3264 91.569 -10.062 0 -1100.81 -741.845 
workers -0.1103 0.031 -3.514 0 -0.172 -0.049 
workers use transit 0.1815 0.039 4.711 0 0.106 0.257 
perc work transit 121.8641 65.8 1.852 0.064 -7.109 250.837 
renting 0.3862 0.04 9.669 0 0.308 0.464 
age 2.2014 0.706 3.119 0.002 0.818 3.585 
hh income 0.0011 0 4.783 0 0.001 0.002 
renting 0.026 0.01 2.634 0.008 0.007 0.045 
no vehicle 184.8786 59.388 3.113 0.002 68.474 301.283 
jobs -0.016 0.003 -4.605 0 -0.023 -0.009 
low pay jobs -0.0808 0.018 -4.568 0 -0.116 -0.046 
mid pay jobs 0.0258 0.021 1.232 0.218 -0.015 0.067 
high pay jobs 0.039 0.007 5.206 0 0.024 0.054 
info jobs -0.0355 0.02 -1.773 0.076 -0.075 0.004 
finance jobs -0.0252 0.008 -2.995 0.003 -0.042 -0.009 
real estate jobs -0.0504 0.024 -2.118 0.034 -0.097 -0.004 
professional jobs 0.0213 0.011 1.954 0.051 -6.79E-05 0.043 
mgmt jobs -0.0637 0.013 -4.85 0 -0.089 -0.038 
admin jobs -0.0638 0.018 -3.521 0 -0.099 -0.028 
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edu jobs -0.022 0.007 -3.097 0.002 -0.036 -0.008 
health jobs -0.0011 0.006 -0.193 0.847 -0.012 0.01 
ARNOLD intersections 0.8579 0.277 3.101 0.002 0.316 1.4 
NTD riders -2.86E-06 2.54E-06 -1.126 0.26 -7.84E-06 2.12E-06 
Omnibus: 8864.621  Durbin-Watson: 1.279 
Prob(Omnibus): 0  Jarque-Bera (JB): 413205.8 
Skew: 1.198  Prob(JB): 0 
Kurtosis: 24.087  Cond. No.: 1.05E+16 
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Calibration 04b 
Dep. Variable: y  R-squared: 0.708 
Model: OLS  Adj. R-squared: 0.708 
Method: Least Squares  F-statistic: 1976 
No. Observations: 22017  Prob (F-statistic): 0 
Df Residuals: 21989  Log-Likelihood: -1.65E+05 
Df Model: 27  AIC: 3.30E+05 
Covariance Type: nonrobust  BIC: 3.30E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 383.2226 91.179 4.203 0 204.506 561.939 
freq 13.8947 0.084 164.543 0 13.729 14.06 
routes -23.6621 3.021 -7.832 0 -29.584 -17.74 
pop 0.047 0.013 3.643 0 0.022 0.072 
minority 152.0443 23.693 6.417 0 105.605 198.484 
house -1.0449 0.114 -9.197 0 -1.268 -0.822 
college 238.9616 43.372 5.51 0 153.95 323.973 
housing 0.7496 0.1 7.471 0 0.553 0.946 
1 unit -727.5955 88.751 -8.198 0 -901.555 -553.636 
2-4 unit -731.7234 90.871 -8.052 0 -909.837 -553.609 
5-19 unit -516.3981 95.042 -5.433 0 -702.687 -330.109 
20+ unit -943.1862 90.018 -10.478 0 -1119.63 -766.743 
workers -0.1236 0.03 -4.168 0 -0.182 -0.065 
workers use transit 0.2188 0.029 7.585 0 0.162 0.275 
renting 0.3893 0.035 11.017 0 0.32 0.459 
age 1.7829 0.625 2.852 0.004 0.558 3.008 
hh income 0.001 0 6.509 0 0.001 0.001 
renting 0.0249 0.009 2.66 0.008 0.007 0.043 
no vehicle 216.5226 53.693 4.033 0 111.281 321.765 
jobs 0.0125 0.02 0.632 0.527 -0.026 0.051 
low pay jobs -0.1057 0.034 -3.099 0.002 -0.173 -0.039 
high pay jobs 0.0078 0.023 0.336 0.737 -0.038 0.053 
finance jobs -0.0165 0.007 -2.385 0.017 -0.03 -0.003 
real estate jobs -0.0297 0.021 -1.447 0.148 -0.07 0.011 
mgmt jobs -0.0614 0.012 -5.103 0 -0.085 -0.038 
admin jobs -0.0541 0.017 -3.223 0.001 -0.087 -0.021 
edu jobs -0.0205 0.006 -3.513 0 -0.032 -0.009 
ARNOLD intersections 0.896 0.265 3.377 0.001 0.376 1.416 
Omnibus: 8914.058  Durbin-Watson: 1.278 
Prob(Omnibus): 0  Jarque-Bera (JB): 405299.6 
Skew: 1.216  Prob(JB): 0 
Kurtosis: 2.39E+01  Cond. No.: 4.84E+06 
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Calibration 04c 
Dep. Variable: y  R-squared: 0.707 
Model: OLS  Adj. R-squared: 0.707 
Method: Least Squares  F-statistic: 2214 
No. Observations: 22017  Prob (F-statistic): 0 
Df Residuals: 21992  Log-Likelihood: -1.65E+05 
Df Model: 24  AIC: 3.30E+05 
Covariance Type: nonrobust  BIC: 3.30E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 400.7734 91.269 4.391 0 221.879 579.668 
freq 13.8621 0.084 164.378 0 13.697 14.027 
routes -22.4093 3.012 -7.439 0 -28.314 -16.505 
pop 0.0442 0.013 3.422 0.001 0.019 0.069 
minority 154.4978 23.694 6.52 0 108.055 200.94 
house -1.0029 0.113 -8.838 0 -1.225 -0.78 
college 229.5346 43.401 5.289 0 144.466 314.603 
housing 0.718 0.1 7.16 0 0.521 0.914 
1 unit -738.8122 88.817 -8.318 0 -912.901 -564.724 
2-4 unit -747.6193 90.901 -8.225 0 -925.791 -569.447 
5-19 unit -535.9454 95.093 -5.636 0 -722.335 -349.556 
20+ unit -944.965 90.091 -10.489 0 -1121.55 -768.379 
workers -0.1224 0.03 -4.126 0 -0.181 -0.064 
workers use transit 0.2226 0.029 7.708 0 0.166 0.279 
renting 0.3769 0.035 10.679 0 0.308 0.446 
age 1.4088 0.624 2.259 0.024 0.186 2.631 
hh income 0.0011 0 7.135 0 0.001 0.001 
renting 0.0241 0.009 2.565 0.01 0.006 0.042 
no vehicle 236.0861 53.574 4.407 0 131.078 341.094 
low pay jobs -0.0425 0.01 -4.096 0 -0.063 -0.022 
finance jobs 0.0172 0.005 3.619 0 0.008 0.026 
mgmt jobs -0.0329 0.008 -4.031 0 -0.049 -0.017 
admin jobs -0.0681 0.016 -4.169 0 -0.1 -0.036 
edu jobs -0.009 0.005 -1.668 0.095 -0.02 0.002 
ARNOLD intersections 0.9909 0.264 3.749 0 0.473 1.509 
Omnibus: 8878.216  Durbin-Watson: 1.276 
Prob(Omnibus): 0  Jarque-Bera (JB): 403821.7 
Skew: 1.208  Prob(JB): 0 
Kurtosis: 23.841  Cond. No.: 4.84E+06 
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Calibration 04d 
Dep. Variable: y  R-squared: 0.707 
Model: OLS  Adj. R-squared: 0.707 
Method: Least Squares  F-statistic: 2310 
No. Observations: 22017  Prob (F-statistic): 0 
Df Residuals: 21993  Log-Likelihood: -1.65E+05 
Df Model: 23  AIC: 3.30E+05 
Covariance Type: nonrobust  BIC: 3.30E+05 

 coefficient std error t P > |t| [95.0% Conf. Int.] 
Intercept 397.6027 91.253 4.357 0 218.74 576.465 
freq 13.8603 0.084 164.363 0 13.695 14.026 
routes -22.4396 3.013 -7.449 0 -28.344 -16.535 
pop 0.0394 0.013 3.131 0.002 0.015 0.064 
minority 159.6447 23.493 6.795 0 113.596 205.693 
house -0.9778 0.112 -8.694 0 -1.198 -0.757 
college 231.2377 43.391 5.329 0 146.189 316.286 
housing 0.7084 0.1 7.076 0 0.512 0.905 
1 unit -738.0075 88.82 -8.309 0 -912.1 -563.914 
2-4 unit -742.0762 90.844 -8.169 0 -920.136 -564.016 
5-19 unit -535.8075 95.097 -5.634 0 -722.204 -349.41 
20+ unit -943.4332 90.09 -10.472 0 -1120.02 -766.849 
workers -0.1265 0.03 -4.275 0 -0.184 -0.068 
workers use transit 0.2276 0.029 7.927 0 0.171 0.284 
renting 0.3764 0.035 10.665 0 0.307 0.446 
age 1.4569 0.623 2.338 0.019 0.236 2.678 
hh income 0.0011 0 7.105 0 0.001 0.001 
renting 0.0238 0.009 2.534 0.011 0.005 0.042 
no vehicle 228.4479 53.38 4.28 0 123.82 333.076 
low pay jobs -0.05 0.009 -5.364 0 -0.068 -0.032 
finance jobs 0.0175 0.005 3.692 0 0.008 0.027 
mgmt jobs -0.0303 0.008 -3.784 0 -0.046 -0.015 
admin jobs -0.0655 0.016 -4.03 0 -0.097 -0.034 
ARNOLD intersections 0.994 0.264 3.76 0 0.476 1.512 
Omnibus: 8862.552  Durbin-Watson: 1.275 
Prob(Omnibus): 0  Jarque-Bera (JB): 404109.5 
Skew: 1.204  Prob(JB): 0 
Kurtosis: 23.85  Cond. No.: 4.84E+06 
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Appendix D: Description and availability 
of project code 

Libraries and tools used (dependencies) 

• ArcGIS 
• Python 
• Sqlite3 
• PyGTFS 

Source code availability 

Source code is available here: https://github.com/VolpeUSDOT/gtfs-measures 

 

http://www.esri.com/arcgis/about-arcgis
https://www.python.org/
https://www.sqlite.org/
https://github.com/jarondl/pygtfs
https://github.com/VolpeUSDOT/gtfs-measures

	Executive Summary
	Background: Data for Multimodal Performance Measures
	Project: GTFS for Estimating Ridership and Performance
	Results and Opportunities
	Potential Next Steps for Researchers and Agencies

	Introduction
	Transit Data Challenges for Measuring Multimodal System Performance
	National Performance Management

	General Transit Feed Specification Data Opportunities
	Project Purpose
	Project Scope

	Methodology and Data
	GTFS network snapping and service characteristics
	Snapping to the ARNOLD Network
	Challenges with Road Snapping
	Working with Non-Street-Running Transit

	Ridership modeling
	Nationally-available ridership predictors
	U.S. Census American Community Survey (ACS)
	U.S. Census Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES)
	FTA National Transit Database
	FHWA ARNOLD

	Measured ridership data from case study transit agencies
	Weekend and off-season ridership data

	Running the estimation model
	1. Import and assess GTFS service parameters
	2. Format measured ridership inputs
	3. Import socio-demographic/other data
	4. Fit a ridership model
	5. Estimate ridership with fitted model


	Multimodal performance measures

	Results
	GTFS network snapping and service characteristics
	Non-Street-Running Transit

	Ridership modeling
	Calibration data
	Overall model prediction accuracy
	R-squared and adjusted r-squared
	Accuracy and predictive power of model iterations
	Self-calibration of model runs
	Effect of individual predictive variables

	Maps of Model Results

	Multimodal performance measures
	Maps of Performance Measures
	Non-Street-Running Transit
	Revenue vehicle miles traveled and passenger miles traveled
	Vehicle Revenue Miles Traveled
	Passenger Miles Traveled



	Opportunities and Insights
	Opportunities
	Multimodal planning
	State and local identification of road/transit improvement opportunities
	National transportation performance management

	Further refinement of ridership model
	Accounting for collinearity of ridership data
	Road snapping refinements
	Estimation for particular dates or times of day

	Summarizing transit service in the National Transit Map
	Transit agency ridership forecasting
	Ridership estimation using partial data
	Route snapping tool for transit agencies
	GTFS-based ridership data standard

	Data insights
	Using National Transit Map data
	GTFS shapes and calendars
	Shapes availability
	Formats for describing calendars

	ARNOLD data inconsistencies and alternatives


	Conclusions and Next Steps
	Appendix A: Maps
	Map Notes
	Metro Transit (MN)
	San Joaquin RTD (CA) – Not all routes have measured ridership data
	Northern Arizona Intergovernmental Public Transportation Authority (AZ)

	Appendix B: List of Model Input Parameters
	U.S. Census American Community Survey (ACS)
	U.S. Census Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES)
	Other

	Appendix C: Detailed Model Results
	Appendix D: Description and availability of project code
	Libraries and tools used (dependencies)
	Source code availability




Accessibility Report


		Filename: 

		MM-GTFS Report_2017 Final298_20180827.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 27

		Failed: 3




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


