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Executive Summary 

BACKGROUND 
 

The United States Department of Transportation (USDOT) connected vehicle research program has 

the potential to transform surface transportation system performance [1]. In a connected vehicle 

environment, wireless sub-second data exchange connects vehicles, the infrastructure, and travelers’ 

mobile devices. These data have the promise to transform the geographic scope, precision, and 

latency of transportation system control, thereby resulting in significant safety, mobility, and 

environmental benefits. These vast amounts of data can help transportation system managers get a 

comprehensive and accurate view of their systems, understand the causality of transportation 

problems (e.g., crashes, bottlenecks, delays), and improve the accuracy and latency of decision-

making, thereby facilitating proactive management of the transportation system. However, the new 

data influx also has the potential to over-burden legacy computational and communication systems. 

Although connected vehicle technology can facilitate ubiquitous system coverage, existing prediction 

methods, computational platforms, and data management methods are insufficient to process the 

data within a reasonable timeframe for real-time predictions. With increased market adoption of 

connected vehicle technology, this data explosion is imminent, thereby necessitating big data 

solutions to fully exploit connected vehicle data for transformational improvements to the 

transportation system operations and management. 

 

The focus of this study is to develop and test analytic tools that can handle data that is of such 

volume, velocity, and variety that it cannot be processed or managed using traditional tools (e.g., 

relational database management systems), and requires technologies that support big data. What is 

big data? The most commonly accepted definition is Gartner’s definition – “Big data is high volume, 

velocity and variety information assets that demand cost-effective, innovative forms of information 

processing for enhanced insight and decision making” [2]. Additional qualifiers, such as veracity and 

value, are sometimes added. 

 

The expectation is that connected vehicle data can be processed rapidly using advanced (“big data”) 

analytics and high performance computing to create precise predictions of congestion, prior to the 

deterioration of roadway conditions. Consequently, public agency staff will be able to improve travel on 

their roadways by assessing the predicted congestion levels and undertaking suitable congestion 

mitigating actions. To examine if this expectation was meaningful, an initial effort (Phase 1) was jointly 

funded in late 2013 by USDOT’s Data Capture and Management Program and Noblis internal 

research funds given the technical risk and the uncertain value of findings in this exploratory research. 

This initial effort explored the use of graph analytics and high performance computing (HPC) in 

predicting congestion using SAE J2735 Basic Safety Messages (BSM; [3]). The study resulted in a 

framework that was able to predict congestion in 100 feet (30.5 m) segments at one-minute intervals 

over a time window of 1 hour, 30-60 minutes in advance of actual congestion [4]. Despite sparseness 

of data (data represented only 2% of the vehicle population), the proposed framework predicted highly 

congested locations 40% of the time. Severity of congestion was predicted with an accuracy of 77%.  
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STUDY MOTIVATION 
 

The initial study (Phase 1) was a first step in determining the value of collecting BSMs 

comprehensively. BSMs and the prediction methodology afforded the capability to predict in real time 

transition of traffic flow from an uncongested state to a highly congested state even on arterials where 

traffic detectors are typically not deployed. However, at this stage it is unknown if BSMs need to be 

collected from every connected vehicle at intervals of a 10th of a second. As the amount of data 

increases, the accuracy might increase while the computational efficiency might decrease. Research 

is needed to examine the tradeoff between information insight and cost of data processing and 

management. Thus the motivation of this study was to examine the following two key questions: 

 

1. Should BSMs be collected from every connected vehicle in the system at intervals of a 10th of 

a second to predict traffic flow regimes? 

2. What is the tradeoff between information insight and cost of data processing and 

management? 

 

A secondary motivation for this study was to provide a practical example of how connected vehicle 

(CV) data can improve transportation operations with the intent of motivating others to investigate 

potential applied uses of CV data. Data used for this study along with data from a number of other 

open CV data sets can be found on the USDOT’s Research Data Exchange (RDE; https://www.its-

rde.net) and other sources. The resulting code and documentation from this study is non-proprietary 

and will be posted on the USDOT’s Open Source Application Development Portal (OSADP; 

itsforge.net) alongside many other existing Open Source CV applications. Researchers and 

application developers are encouraged to use the code and data to further research and development 

in this area, and share their results via sites such as the RDE and the OSADP. 

 

STUDY OBJECTIVES 
 

The key objectives of the study are to: 

1. Develop advanced analytical techniques that make use of a dynamically configurable 

connected vehicle message protocol to predict transition of traffic flow regimes in near-real 

time in a virtual environment and examine accuracy for various levels of market penetration 

2. Examine the tradeoff between information insight and cost of data processing and 

management 

 

Data from a virtual (simulated) testbed will be used to conduct the study. The Trajectory Conversion 

Algorithm (TCA V2.3), an open source tool developed by Noblis for the USDOT, will be used to 

emulate SAE J2735 Basic Safety Messages (BSM) for the virtual testbed [5]. The TCA V2.4, also an 

open source tool, will be used to emulate the prototype Dynamic Interrogative Data Capture (DIDC) 

controller in order to model a dynamically configurable connected vehicle message protocol (i.e., the 

Basic Mobility Messages) [6]. Note that the Basic Mobility Message (BMM) is not a published standard 

along the lines of the BSM but rather a concept that is being researched by multiple groups, including 

but not limited to the USDOT. The BMM is an event-driven, configurable message set. 

 

A virtual testbed was used since at this stage, connected vehicle technology has not been deployed 

on a large scale making it difficult to assess Objective 2. Secondly, dynamically configurable 

connected vehicle message protocols are still under development, and hence Objective 1 cannot be 

accomplished without making use of a simulated testbed. Thus, this study suffers from similar 

limitations as any study that makes use of data that represents reality but is not reality. However, it 

https://www.its-rde.net/
https://www.its-rde.net/
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should be noted that the simulation models that were used in the study went through rigorous 

calibration and validation process, as part of a separate study conducted by Noblis for the Federal 

Highway Administration (FHWA) Traffic Analysis Tools Program. 

 

HYPOTHESES 
 

The following hypotheses will be tested in the study. 

 

 Hypothesis #1: Proposed approach that makes use of high-volume connected vehicle data, 

advanced analytics, and cloud computing will meet computational speed requirements for a 

real-time decision support system 

 Hypothesis #2: Proposed approach will be able to predict traffic flow regimes with high 

temporal and geographic precision and accuracy for higher market penetration of messages 

 

ASSUMPTIONS 
 Equipment/device failures are not part of the assessment 

 Traffic regimes/indices are identified based on the work by researchers at Virginia Tech [12] 

and precipitation and visibility levels observed in the data used for the study. Table ES-1 

shows the traffic regimes that were modeled in the study. 

Table ES-1: Traffic Regimes Modeled in the Study 

Traffic 

Regime 

Clear to Light Rain (<=0.1’), Good to 

Medium Visibility (>5 mi) 

Clear to Light Rain (<=0.1’), Low 

Visibility (<=5 mi) 
Index 

Free Flow 

Regime 
Speed > 85% of Free Flow Speed Speed > 74% of Free Flow Speed 1 

Speed at 

Capacity 

Regime 

75% of FF Speed < Speed <= 85% of 

FF Speed 

65% of FF Speed < Speed <= 74% 

of FF Speed 
2 

Congested 

Regime 
Speed <= 75% of Free Flow Speed Speed <= 65% of Free Flow Speed 3 

 

DATA 
 

Data Used for Analysis 
A full-scale deployment of connected vehicle technology has not yet occurred. Hence, a 

representative large scale data set that was created using a traffic simulation tool was used for the 

analysis. The simulated data set was generated as part of a separate project that Noblis conducted for 

FHWA’s Traffic Analysis Tools (TAT) Program [13]. The geographic network (Figure ES-1) used for the 

analysis in this study was the I-405 Corridor, a 29.5 mile long major commuter corridor in the Seattle 

area that is subject to periods of high travel demand and congestion. The I-405 corridor experiences 

significant travel time variability as a result of dynamic incident patterns and frequent rain and fog. The 

Washington State Department of Transportation (WSDOT) provided FHWA and Noblis, traffic, travel 
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time, incident, and weather data for 2012. After removing weekends and holidays, there were 196 

weekdays left that were clustered into six operational conditions for the study – low demand, low 

visibility, weather and incidents, many incidents, bottleneck trouble, and few incidents – and a 

representative day was selected for each cluster [13]. WSDOT also provided a VISSIM model of the I-

405 network as part of the TAT project. Using this VISSIM network as an initial base model, Noblis 

calibrated VISSIM models for each of the six operational conditions [13]. 

 

The simulated vehicle trajectories from the six calibrated VISSIM models were made available to us 

for use in this project. These trajectories were used as input to the Trajectory Converter Analysis 

(TCA) to emulate connected vehicle Basic Safety Messages (BSM). 

 

 

Figure ES-1: I-405 Geographic Network (Source: Google Maps/FHWA) 

 

Experimental Design 
Accuracy of the prediction model is examined by varying the market penetration, operational 

conditions, and communications strategies (Table ES-2). 

Table ES-2: Parameters varied for study and their range of values 

Parameters Range 

Study Period AM Peak (5:30-10:30 AM) 

Operational Conditions 

1. Low Demand 

2. Low Visibility 

3. Weather + Incidents 
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Parameters Range 
4. Many Incidents 

5. Bottleneck Trouble 

6. Few Incidents 

Market Penetration of 

Connected Vehicles 
20%, 75% 

Communication Strategies 
Cellular, DSRC with RSEs deployed at major interchanges (see 

Figure 4-2) 

 

Basic Safety Messages were examined for all combinations of these variables, Basic Mobility 

Messages were examined for all Operational Conditions using just a Cellular communication strategy 

and 20% market penetration. 

 

COMPUTING RESOURCES 
 

The computational resources and analytic environment used for this work were provisioned via the 

Microsoft Azure cloud environment [15], and consisted of two primary elements: file storage and 

computing cluster. 

 

File storage was provided using the Azure Blob Storage service, which is designed to store 

unstructured data in any format as objects or blobs. The Blob Storage service provides easy access to 

extremely large storage space up to 500TB per instance, with built-in redundancy and data protection, 

without requiring management of or even visibility into individual disks or volumes. This allowed 

simulated data files on the order of 150GB to be created and accessed routinely. The Azure Blob 

Storage service is also provisioned as network-local to Azure compute resources; so these data files 

are readily accessible with no WAN bandwidth limitations. 

 

Compute resources were provided via the Azure HDInsight service [16], which is a cloud-native 

distribution of the open-source Apache Hadoop framework [17]. The HDInsight service provides 

template-based provisioning to allow clusters to be spun up and down on demand, without requiring 

manual configuration of either cluster machines or software packages. The template used for this 

work included the open-source Apache Spark data processing package, along with its MLlib machine 

learning library [18]. Code for these analyses was developed using both the Scala and Python 

(PySpark) languages. 

 

The cluster used for these analyses consisted of four nodes in total: 2 head nodes for job submission 

and management and 2 worker nodes for computation. Specific provisioned configurations of these 

nodes are given in Table ES-3. 

Table ES-3: Cluster Configuration 

Cluster Nodes CPU Cores Memory (RAM) 
Local Disk 

(HDFS) 
Head nodes (2 each) 4 28 GB 200 GB 

Worker nodes (2 each) 16 112 GB 800 GB 
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TECHNICAL APPROACH 
 

This section describes the technical approach to predict traffic regimes (see Table ES-1) in 100’ x 100’ 

boxes overlaid on the I-405 traffic network, every 5 minutes an hour ahead of time using simulated 

BSMs. As the key purpose of the prediction algorithm is to classify data into three traffic regimes, this 

is formulated as a classification problem. 

 

Figure ES-2 is a graphical illustration of the traffic regime prediction framework: 

 Field Data: In this stage, field data, including demand, incident, and weather data, were 
obtained for the I-405 corridor from WSDOT and processed (see Section 4.1.1). 
 

 Simulated Data: In the second stage, the processed field data were used as input to a 

VISSIM model for the I-405 network, also obtained from WSDOT, and calibrated (see Section 

4.1.1). Simulated vehicle trajectories were fed into the TCA to emulate SAE J2735 BSMs 

(Section 4.1.3). BSMs were generated every 10th of a second, and transmitted either via 

DSRC-enabled RSEs or cellular networks, as defined in Table 4-1 (see Section 4.1.2). ). 

BMMs were generated and transmitted according to the DIDC Parameters as defined in 

Section 4.1.2.5. 

 

 Data Pre-Processing: The third stage includes feature identification, data assembly, 
normalization, and data set creation. Speed, demand, incident, and weather were identified 
as the key features (Section 5.1.2). Next, a grid network of 100’ x 100’ boxes was overlaid on 
the I-405 network. For each box, the following data were assembled for the past 1 hour: 
average speeds at 5-minute intervals in the subject box, and two boxes upstream and 
downstream of the subject box; northbound and southbound I-405 demand over the past 1 
hour; incident information over the past 1 hour; and precipitation levels and visibility over the 
past 1 hour. Once this was done, data were normalized. Data that are measured on different 
numeric scales are normalized or converted to a common scale so that no single feature 
dominates the others. Then we divided the data into 3 sets – training, validation, and test data 
sets. Training and validation data sets were used for model development and to prevent over-
fitting, and the test set was used to report out the accuracy of the prediction models. 
 

 Feature Extraction: In this stage the most relevant information is extracted from the original 
set of features and represented in a lower dimensionality space. The previous stage resulted 
in 69 raw features, some potentially highly correlated. Highly correlated features effectively 
represent the same phenomenon, causing an overrepresentation of that phenomenon and 
possibly leading to poor generalization. Hence, in this stage, the 69 possibly correlated 
features were transformed into uncorrelated variables using Principal Component Analysis 
(PCA). The number of required principal components was identified by performing a scree 
plot analysis in R using the nFactor package [19] on the Many Incidents, 20% Cellular data. 
The plot showed how much each principal component contributed to the overall variance, 
with each point representing a principal component and its corresponding eigenvalue. The 
scree plot helped choose the number of principal components to use based on variance 
contributions. In this study 6, 8 and 11 principal components were tested as these were the 
three points with noticeable drops in contribution to variance. 
 

 Model Development and Selection: In this stage, Spark’s machine learning libraries for 
Logistic Regression, Decision Tree and Random Forest were used for predicting the traffic 
regimes. Traffic regime indices were predicted at 5-minute intervals, an hour in advance, in 
each of the 100’ x 100’ boxes on the network. For example, if the current time is 7 AM, 
predictions were made for 8 to 8:05 AM. The process was repeated every five minutes. The 
Decision Trees and Random Forest algorithms were tested using two node impurity metrics 
(entropy, Gini). In addition, Random Forest was tested for multiple ensembles of trees (10, 
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250, 1000 trees). The best models were selected based on the accuracy seen for the training 
and validation sets. 
 

 Model Evaluation: In the final stage, the predictions models were evaluated using the test set. 
The selected evaluation metrics include: precision, recall and F1 score. 

 

 

Figure ES-2: Framework for Traffic Regime Prediction Using Simulated Connected Vehicle 

Messages 

KEY FINDINGS 
 

The study validated the two hypotheses. 

 

 Hypothesis #1: Proposed approach that makes use of high-volume connected vehicle data, 

advanced analytics, and cloud computing will meet computational speed requirements for a 

real-time decision support system 

 The best performing model (Random Forest with 250-tree ensemble) was able to fully 

process an hour’s worth of BSMs into the 100’ x 100’ grid boxes, calculate the average 

speed for each box, direction and 5-minute interval, find average speeds in upstream and 

downstream boxes, join environmental features, perform normalization and Principal 

Components Analysis, and make a prediction for the following hour, at 5-minute intervals 

for each of the 100’ x 100’ boxes in 6 to 16 minutes. 

 

 Hypothesis #2: Proposed approach will be able to predict traffic flow regimes with high 

temporal and geographic precision and accuracy for higher market penetration of messages 

 Across all experimental scenarios, the model that used the Random Forest algorithm with 

11 principal components, 250-tree ensemble and the Gini node impurity metric, had the 

best results with an average F1 score of 0.83. The F1 scores were 0.87 for free flow, 0.67 

for at capacity and 0.95 for congested traffic regimes. Predictions were made for 100’ x 

100’ boxes nearly an hour in advance at 5-minute intervals. 

 More data (i.e., increase in market penetration) didn’t necessarily translate into better 

predictions; however, more representative data did produce higher F1 scores as is 

evidenced by the higher F1 scores for free flow and congested regimes than for the 

speed at capacity regime. 
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CONCLUSIONS 
 

In a connected vehicle environment, wireless sub-second data exchange connects vehicles, the 

infrastructure, and travelers’ mobile devices. These data have the promise to transform the 

geographic scope, precision, and latency of transportation system control, thereby resulting in 

significant safety, mobility, and environmental benefits. However, the new data influx also has the 

potential to over-burden legacy computational and communication systems. Although connected 

vehicle technology can facilitate ubiquitous system coverage, existing prediction methods, 

computational platforms, and data management methods are insufficient to process the data within a 

reasonable timeframe for real-time predictions. With increased market adoption of connected vehicle 

technology, this data explosion is imminent, thereby necessitating big data solutions to fully exploit 

connected vehicle data for transformational improvements to the transportation system operations and 

management. 

 

The focus of this analysis was to develop and test analytic tools that can handle data that is of such 

volume, velocity, and variety that it cannot be processed or managed using traditional tools (e.g., 

relational database management systems), and requires technologies that support big data. 

 

The study presented a technical approach that combined Apache Spark’s open source data analytics 

and machine learning techniques to predict traffic flow regimes using simulated connected vehicle 

messages. The computational resources and analytic environment used for this work were 

provisioned via the Microsoft Azure cloud environment. Predictions were made for the following hour 

at 5-minute intervals for 100’ x 100’ boxes in less than 20 minutes. The study demonstrated that 

connected vehicle data can be processed rapidly using advanced (“big data”) analytics and high 

performance computing to create precise predictions of traffic flow regimes, prior to the deterioration of 

roadway conditions. Public agency staff will be able to improve travel within these corridors by 

assessing the predicted congestion levels and undertaking suitable congestion mitigating actions. 

 

Future Research 
The study showed that the model that used the Random Forest algorithm was the best overall, with 

an average F1 score of 0.83. While the overall score is good, for the at capacity regime it was only 

0.67. Overall, at capacity BSMs were about 22% of the total BSMs – which is approximately half of 

what was generated for the other two regimes. This shows that the data was imbalanced. In our study, 

due to schedule and budget constraints, we examined the use of TCA-DIDC to oversample speed at 

capacity regimes using a single set of parameters. There are numerous DIDC parameters as well as 

ranges of possible optimal values for those parameters that can be set using a DIDC Controller. Thus 

there is potential for substantial improvement on prediction accuracy through the use of either different 

control parameters, different control values or both. Future research should focus on developing 

prediction models by either undersampling the majority classes (i.e., free flow and congested traffic 

regimes) or oversampling the minority class (i.e., speed at capacity regime) using TCA-DIDC and/or 

statistical techniques. 

 

Another potential research could focus on predicting other traffic phenomena, such as queue lengths 

at signalized intersections, conflicts, etc. 
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1 Introduction 

1.1 Background 

The United States Department of Transportation (USDOT) connected vehicle research program has 

the potential to transform surface transportation system performance [1]. In a connected vehicle 

environment, wireless sub-second data exchange connects vehicles, the infrastructure, and travelers’ 

mobile devices. These data have the promise to transform the geographic scope, precision, and 

latency of transportation system control, thereby resulting in significant safety, mobility, and 

environmental benefits. These vast amounts of data can help transportation system managers get a 

comprehensive and accurate view of their systems, understand the causality of transportation 

problems (e.g., crashes, bottlenecks, delays), and improve the accuracy and latency of decision-

making, thereby facilitating proactive management of the transportation system. However, the new 

data influx also has the potential to over-burden legacy computational and communication systems. 

Although connected vehicle technology can facilitate ubiquitous system coverage, existing prediction 

methods, computational platforms, and data management methods are insufficient to process the 

data within a reasonable timeframe for real-time predictions. With increased market adoption of 

connected vehicle technology, this data explosion is imminent, thereby necessitating big data 

solutions to fully exploit connected vehicle data for transformational improvements to the 

transportation system operations and management. 

 

The focus of this study is to develop and test analytic tools that can handle data that is of such 

volume, velocity, and variety that it cannot be processed or managed using traditional tools (e.g., 

relational database management systems), and requires technologies that support big data. What is 

big data? The most commonly accepted definition is Gartner’s definition – “Big data is high volume, 

velocity and variety information assets that demand cost-effective, innovative forms of information 

processing for enhanced insight and decision making” [2]. Additional qualifiers, such as veracity and 

value, are sometimes added. 

 

The expectation is that connected vehicle data can be processed rapidly using advanced (“big data”) 

analytics and high performance computing to create precise predictions of congestion, prior to the 

deterioration of roadway conditions. Consequently, public agency staff will be able to improve travel on 

their roadways by assessing the predicted congestion levels and undertaking suitable congestion 

mitigating actions. To examine if this expectation was meaningful, an initial effort (Phase 1) was jointly 

funded in late 2013 by USDOT’s Data Capture and Management Program and Noblis internal 

research funds given the technical risk and the uncertain value of findings in this exploratory research. 

This initial effort explored the use of graph analytics and high performance computing (HPC) in 

predicting congestion using SAE J2735 Basic Safety Messages (BSM; [3]). The study resulted in a 

framework that was able to predict congestion in 100 feet (30.5 m) segments at one-minute intervals 

over a time window of 1 hour, 30-60 minutes in advance of actual congestion [4]. Despite sparseness 

of data (data represented only 2% of the vehicle population), the proposed framework predicted highly 

congested locations 40% of the time. Severity of congestion was predicted with an accuracy of 77%.  



1 Introduction 

U.S. Department of Transportation 

Intelligent Transportation System Joint Program Office 

Predicting Traffic Flow Regimes From Simulated CV Using Data Analytics and ML: FINAL |  16 

1.2 Study Motivation 

The initial study (Phase 1) was a first step in determining the value of collecting BSMs 

comprehensively. BSMs and the prediction methodology afforded the capability to predict in real time 

transition of traffic flow from an uncongested state to a highly congested state even on arterials where 

traffic detectors are typically not deployed. However, at this stage it is unknown if BSMs need to be 

collected from every connected vehicle at intervals of a 10th of a second. As the amount of data 

increases, the accuracy might increase while the computational efficiency might decrease. Research 

is needed to examine the tradeoff between information insight and cost of data processing and 

management. Thus the motivation of this study was to examine the following two key questions: 

 

1. Should BSMs be collected from every connected vehicle in the system at intervals of a 10th of 

a second to predict traffic flow regimes? 

2. What is the tradeoff between information insight and cost of data processing and 

management? 

 

A secondary motivation for this study was to provide a practical example of how connected vehicle 

(CV) data can improve transportation operations with the intent of motivating others to investigate 

potential applied uses of CV data. Data used for this study along with data from a number of other 

open CV data sets can be found on the USDOT’s Research Data Exchange (RDE; https://www.its-

rde.net) and other sources. The resulting code and documentation from this study is non-proprietary 

and will be posted on the USDOT’s Open Source Application Development Portal (OSADP; 

itsforge.net) alongside many other existing Open Source CV applications. Researchers and 

application developers are encouraged to use the code and data to further research and development 

in this area, and share their results via sites such as the RDE and the OSADP. 

1.3 Study Objectives 

The key objectives of the study are to: 

1. Develop advanced analytical techniques that make use of a dynamically configurable 

connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual 

environment and examine accuracy for various levels of market penetration 

2. Examine the tradeoff between information insight and cost of data processing and 

management 

 

Data from a virtual (simulated) testbed will be used to conduct the study. The Trajectory Conversion 

Algorithm (TCA V2.3), an open source tool developed by Noblis for the USDOT, will be used to 

emulate SAE J2735 Basic Safety Messages for the virtual testbed [5]. The TCA V2.4, also an open 

source tool, will be used to emulate the prototype Dynamic Interrogative Data Capture (DIDC) 

controller in order to model a dynamically configurable connected vehicle message protocol (i.e., the 

Basic Mobility Messages) [6]. Note that the Basic Mobility Message (BMM) is not a published standard 

along the lines of the BSM but rather a concept that is being researched by multiple groups, including 

but not limited to the USDOT. The BMM is an event-driven, configurable message set. 

 

A virtual testbed was used since at this stage, connected vehicle technology has not been deployed 

on a large scale making it difficult to assess Objective 2. Secondly, dynamically configurable 

connected vehicle message protocols are still under development, and hence Objective 1 cannot be 

accomplished without making use of a simulated testbed. Thus, this study suffers from similar 

limitations as any study that makes use of data that represents reality but is not reality. However, it 

https://www.its-rde.net/
https://www.its-rde.net/
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should be noted that the simulation models that were used in the study went through rigorous 

calibration and validation process, as part of a separate study conducted by Noblis for the Federal 

Highway Administration (FHWA) Traffic Analysis Tools Program. 

1.4 Report Organization 

Section 2 provides a summary of existing literature on predicting travel times and traffic conditions 

using probe data and advanced analytics. Section 3 presents the hypotheses and assumptions of the 

study. Section 4 includes a description of the data and computing resources used for the analysis, 

followed by a description of the technical approach in Section 5. Section 6 presents the data analysis, 

and Section 7 discusses the results of the study. Finally, conclusions, including key findings and future 

research, are discussed in Section 8. 
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2 Literature Review 

This section summarizes research conducted in predicting travel times and traffic conditions using 

probe data and advanced analytics, and assesses their strengths and limitations for possible 

adaptation or use in our study. 

2.1 Travel Time Predictions Using Probe Data 

2.1.1 Large-Scale Estimation in Cyberphysical Systems Using 

Streaming Data 

2.1.1.1 Purpose 

University of California Berkeley researchers sought to predict a driver’s travel times in a large city 

area given sparse GPS traces [7]. The primary basis of the study addresses the utility of extracting 

travel time distributions from sparse, noisy GPS measurements collected in real-time from vehicles 

over a large network. The paper’s pipeline evaluates probabilistic distribution of travel times over road 

segments by using GPS data from probe vehicles.  

2.1.1.2 Data 

The study made use of GPS traces collected at 1-minute intervals from taxi cabs in San Francisco for 

more than a year, creating hundreds of millions of GPS points. Ground truth was calculated using data 

over a 2-day period from 10 taxicabs that generated GPS data every 1 second. 

2.1.1.3 Methodology 

Raw GPS readings were first projected onto the road network. Feasible paths were identified between 

each pair of candidate points, and each path was assigned a probability using a stochastic model for 

vehicle dynamics and probabilistic driver preferences learned from data. Travel times were allocated 

to each link that was on the trajectory using Expectation Maximization (EM) algorithm. Lack of 

coverage was handled by including data from the same day before the current time step (between 20 

minutes and 2 hours); as well as previous days, corresponding to same day of the week (1 to 10 

weeks). Estimations were made every 20 minutes, and only trips of duration 10 to 30 minutes were 

examined. The study used Spark, which is an in-memory batch processing framework started in UC 

Berkeley and now open sourced through Apache. 

2.1.1.4 Results 

The best performance was observed when using more historical data (i.e., 2 hours prior to current 

time, 10 weeks prior to current day). Errors were lowest for trips of duration 4 to 11 minutes. Mean 

absolute deviation was approximately 0.5 minutes (percent error of 5-13%). Travel time estimates got 

worse when vehicles were stopped at red lights for unusually long times. 

2.1.1.5 Strengths 
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The approach is highly scalable; given twice as many computation nodes, the algorithm performs the 

same task about twice as fast. Their approach was able to update the traffic state within a few 

seconds with sufficient computing resources. 

2.1.1.6 Limitations 

Their approach may not be suitable for longer trips as errors increased monotonically for durations 

greater than 11 minutes. 

2.1.2 Real-Time Estimation of Distributed Parameters Systems 

2.1.2.1 Purpose 

The key purpose of this study was to develop a real-time estimation algorithm for monitoring traffic 

using velocity data from mobile devices [8]. Travel times were estimated using GPS-enabled cell 

phones. 

2.1.2.2 Data 

The study made use of GPS traces collected from cars driven by 77 students on I-880 NB, in San 

Francisco Bay Area, at virtual trip lines (VTL) creating 1100 vehicle trajectories. Loop detector data 

were obtained from PeMS. Ground truth travel time data were obtained from video license plate re-

identification. 

2.1.2.3 Methodology 

First, Lighthill-Whitham-Richards (LWR) density model (which makes use of flow conservation) was 

transformed into a velocity-based function. Next, the LWR generalized velocity was transformed into 

discrete velocity evolution. Velocity at the next time step in a given cell is computed as a function of 

the velocity at the previous time step in the current cell and the immediately upstream and 

downstream cells. 

 

Scenarios were modeled by varying: 

 Number of loop detectors between 0 and 16 

 Number of probe vehicle trajectories used between 0 and 1100 (100%) 

 Number of virtual trip lines between 9 (spacing of 8.68 miles) and 99 (spacing of 0.79 miles) 

2.1.2.4 Results 

Errors of less than 10% was achieved whether using data from only loop detectors; only probe data; 

or a combination of both. Adding more than 8 loop detectors stations (average spacing of 0.83 miles) 

did not yield additional benefits; errors remained between 6% and 13%. Increasing the number of 

probe measurements by more than 31 VTL (i.e., spacing of 2.54 miles) did not improve the accuracy. 

2.1.2.5 Strengths 

The approach may be applicable for estimating travel times on freeways, especially when probe 

messages or BSM are sparse. While the research did not make use advanced analytics or tools, the 

methodology can be implemented on high performance computing due to its multi-threading 

capability. 
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2.1.2.6 Limitations 

The accuracy of the algorithm is unknown on interrupted facilities. Secondly, scalability and latency of 

approach have not been tested. 

2.1.3 Learning the Dynamics of Arterial Travel from Probe Data 

Using a Dynamic Bayesian Network 

2.1.3.1 Purpose 

The study estimated and predicted arterial travel times using probe vehicle data that were received at 

random times at random locations [9]. 

2.1.3.2 Data 

The study made use of GPS traces at 1-minute intervals from a fleet of 500 probe vehicles in San 

Francisco. 

2.1.3.3 Methodology 

The researchers used Dynamic Bayesian Network to estimate and make a short term forecast of 

probability distribution function (pdf) of travel times. First, a probability density was assigned to each 

observation (made up of two GPS readings) that depends on the pdf of travel times on links traversed 

between the two measurements and the spatial distribution of vehicles over the links. Next, dynamic 

model of the dependence between travel time observations and the congestion state of a link at a 

given time were created. Finally, expectation-maximization algorithm and historical learning 

techniques were used to estimate the current state of traffic on the network and predict the probability 

of congestion in real time. Validation was performed by splitting data into training (70%) and validation 

(30%) sets. 

2.1.3.4 Results 

When market penetration was high, the error in estimating travel times was 6.8% and error in 

predicting travel times 15 minutes into the future was 24%. With sparse market penetration, the 

estimation error was 7.2% and the prediction error was 24.3%. 

2.1.3.5 Strengths 

Differences in the estimation and prediction errors at dense and sparse market penetrations were 

small. This is because the effect of sparse data was compensated by using a larger pool of historical 

data to train the model. 

2.1.3.6 Limitations 

Travel times were predicted only 15 minutes in advance, which is likely not enough time for a decision 

support system. 

2.1.4 Arterial Travel Time Forecast with Streaming Data 

2.1.4.1 Purpose 
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A key purpose of the study was to estimate and predict travel times on an arterial network using probe 

data with the help of a hybrid modeling framework [10]. 

2.1.4.2 Data 

The study made use of GPS traces at 1-minute intervals from a fleet of 500 probe vehicles in San 

Francisco. 

2.1.4.3 Methodology 

The researchers developed a hybrid modeling framework that combined statistical and traffic theory 

models to take advantage of the availability of robust historical data. They defined a set of parameters 

(cycle time, red time, saturation number of vehicles, parameters of the free flow pace distribution) to 

characterize the probability distribution of travel times on the network. The parameters were trained 

using machine learning techniques with historical data. Parameters were assigned to each link and 

were then used to predict travel times in real time. 

 

Validation was performed in two ways: 

 The GPS traces from 500 vehicles were split into training (70%) and validation (30%) sets 

 A field experiment was conducted to collect probe data every second from 20 drivers over 

three days on four routes. 

2.1.4.4 Results 

The mean percentage error of 37.67% was observed for the large scale validation set and 33.24% for 

the limited field test. 

2.1.4.5 Strengths 

Use of machine learning techniques and historical data to estimate the parameters for travel time 

estimation reduced errors. 

2.1.4.6 Limitations 

Errors are higher than what we were able to achieve in Phase 1 (23%). Latency and scalability of 

approach are untested. 

2.1.5 Real-Time Traffic Modeling and Estimation with Streaming 

Probe Data using Machine Learning 

2.1.5.1 Purpose 

The study estimated arterial (non-highway, major city streets) traffic conditions using speed and 

location data provided by sparse GPS probe data from mobile devices [11]. 

2.1.5.2 Data 

VTL data comprised data from 20 vehicles driven at the ITS World Congress in New York City 

representing 2% of vehicle flow as well as data from the Paramics micro-simulation software based on 

the SR41 corridor in Fresno, CA representing 5% of the vehicle flow.  
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The model was tested using probe data from a fleet of about 500 taxis in San Francisco. Each taxi 

provided a measurement of its location approximately once every minute (generally between 40 and 

100 seconds). 

2.1.5.3 Methodology 

The author developed a hybrid modeling framework utilizing multiple models: 

 VTL system using STARMA and logistic regression models. 

 Bayesian real-time estimation model 

 Graphical Coupled Hidden Markov Model 

2.1.5.4 Results 

The STARMA model estimation accuracy ranged from 71% to 78%. The mean percentage error of the 

baseline Bayesian model was 44.4%, and that of the graphical model was 30.1%. 

2.1.5.5 Strengths 

The Bayesian model provided a robust estimate of the general distribution of traffic patterns; although 

untested, the model should be able to work on larger networks. The graphical model leveraged traffic 

conditions over many days to identify traffic patterns. 

2.1.5.6 Limitations 

Both regression methods have high data requirements. Majority of Bayesian input data span several 

links per observation, limiting the precision of estimates. Updates are made only at 15 minute 

intervals. Errors are higher than what we were able to achieve in Phase 1. 

2.2 Key Findings 

 The reviewed literature dealt with the estimation of travel times, either on a freeway or on an 

arterial; only one approach predicted travel times 15 minutes in advance. 

 The studies estimated or predicted travel times for the entire trip, versus 100’ x 100’ boxes in 

Phase 1 of our study. 

 Errors in the reviewed literature were comparable to what was seen in Phase 1 of our study 

and in some cases worse than what we achieved. 

 Predictions were made 15 minutes in advance in reviewed literature versus 1 hour in Phase 1 

of our study; accuracy should be higher if the future time is closer to current time. 
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3 Hypotheses and Assumptions 

3.1 Hypotheses 

The following hypotheses will be tested in the study. 

 

 Hypothesis #1: Proposed approach that makes use of high-volume connected vehicle data, 

advanced analytics, and cloud computing will meet computational speed requirements for a 

real-time decision support system 

 Hypothesis #2: Proposed approach will be able to predict traffic flow regimes with high 

temporal and geographic precision and accuracy for higher market penetration of messages 

3.2 Assumptions 

 Equipment/device failures are not part of the assessment. 

 Traffic regimes/indices are identified based on the work by researchers at Virginia Tech [12] 

and precipitation and visibility levels observed in the data used for the study. Table 3-1 shows 

the traffic regimes that were modeled in the study. 

Table 3-1: Traffic Regimes Modeled in the Study 

Traffic 

Regime 

Clear to Light Rain (<=0.1’), Good to 

Medium Visibility (>5 mi) 

Clear to Light Rain (<=0.1’), Low 

Visibility (<=5 mi) 
Index 

Free Flow 

Regime 
Speed > 85% of Free Flow Speed Speed > 74% of Free Flow Speed 1 

Speed at 

Capacity 

Regime 

75% of FF Speed < Speed <= 85% of 

FF Speed 

65% of FF Speed < Speed <= 74% 

of FF Speed 
2 

Congested 

Regime 
Speed <= 75% of Free Flow Speed Speed <= 65% of Free Flow Speed 3 
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4 Data and Computing Resources 

4.1 Data 

4.1.1 Data Used for Analysis 

A full-scale deployment of connected vehicle technology has not yet occurred. Hence, a 

representative large scale data set that was created using a traffic simulation tool was used for the 

analysis. The simulated data set was generated as part of a separate project that Noblis conducted for 

FHWA’s Traffic Analysis Tools (TAT) Program [13]. The geographic network (Figure 4-1) used for the 

analysis in this study was the I-405 Corridor, a 29.5 mile long major commuter corridor in the Seattle 

area that is subject to periods of high travel demand and congestion. The I-405 corridor experiences 

significant travel time variability as a result of dynamic incident patterns and frequent rain and fog. The 

Washington State Department of Transportation (WSDOT) provided FHWA and Noblis, traffic, travel 

time, incident, and weather data for 2012. After removing weekends and holidays, there were 196 

weekdays left that were clustered into six operational conditions for the study – low demand, low 

visibility, weather and incidents, many incidents, bottleneck trouble, and few incidents – and a 

representative day was selected for each cluster [13]. WSDOT also provided a VISSIM model of the I-

405 network as part of the TAT project. Using this VISSIM network as an initial base model, Noblis 

calibrated VISSIM models for each of the six operational conditions [13]. 

 

The simulated vehicle trajectories from the six calibrated VISSIM models were made available to us 

for use in this project. These trajectories were used as input to the Trajectory Converter Analysis 

(TCA) to emulate connected vehicle Basic Safety Messages (BSM) and Basic Mobility Messages 

(BMM). Section 4.1.3 discusses the emulation process in detail. 



4 Data and Computing Resources 

U.S. Department of Transportation 

Intelligent Transportation System Joint Program Office 

Predicting Traffic Flow Regimes From Simulated CV Using Data Analytics and ML: FINAL |  25 

 

 

Figure 4-1: I-405 Geographic Network (Source: Google Maps/FHWA) 

 

4.1.2 Experimental Design 

This section includes a description of the experimental design, including the operational conditions, 

the connected vehicle market penetrations, and communication technologies examined in the study. 

4.1.2.1 Variables Examined 

Accuracy of the prediction model are examined for the following variables whose ranges are defined 

in Table 4-1. 

 Market penetration of connected vehicles, as our expectation is that market penetration of 

connected vehicles will increase gradually over time 

 Operational conditions (by varying demand levels, weather impacts, incident), to examine 

accuracy for varying operational conditions 

 Communication strategies, to examine the accuracy of the use of a Dedicated Short Range 

Communications (DSRC) via Roadside Equipment (RSE) or Cellular networks 
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Table 4-1: Parameters varied for study and their range of values 

Parameters Range 

Study Period AM Peak (5:30-10:30 AM) 

Operational Conditions 

1. Low Demand 

2. Low Visibility 

3. Weather + Incidents 

4. Many Incidents 

5. Bottleneck Trouble 

6. Few Incidents 

Market Penetration of 

Connected Vehicles 
20%, 75% 

Communication Strategies 
Cellular, DSRC with RSEs deployed at major interchanges (see 

Figure 4-2) 

 

Basic Safety Messages were examined for all combinations of these variables, Basic Mobility 

Messages (BMM) were examined for all Operational Conditions using just a Cellular communication 

strategy and 20% market penetration. The parameters used to generate BMMs using TCA-DIDC are 

given in Section 4.1.2.5. 

4.1.2.2 Market Penetration of Connected Vehicles 

Prediction model development and testing was performed for two market penetrations of connected 

vehicles 20% and 75%. In TCA, the probability that a vehicle is an equipped vehicle capable of 

transmitting BSMs, is equal to the specified market penetration. For example, if the market penetration 

is set as 20%, then in TCA a vehicle has a 20% probability that it is a connected vehicle. 

4.1.2.3 Operational Conditions 

Prediction model development and testing was performed for six operational traffic conditions, 

including: 

1. Low Demand 

2. Low Visibility 

3. Weather + Incidents 

4. Many Incidents  

5. Bottleneck Trouble 

6. Few Incidents 

 

The incidents were modeled as a speed reduction over all lanes for the incident duration and incident 

area. 

 

The simulation period was for the AM peak period from 5:30 AM to 10:30 AM.  

4.1.2.4 Communication Strategies 

Two communication strategies were tested in this study. The first was a wide area cellular network 

which could collect all BSMs generated and transmitted anywhere on the network. The second was a 

Dedicated Short Range Communication network where BSMs were collected through Roadside 

Equipment placed at all major interchanges. In the second case, only BSMs generated and 
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transmitted within range of an RSE would be captured by the network and available for analysis. Ten 

RSEs were placed along the entire I-405 corridor at major interchanges as shown in Figure 4-2. 

 

 

Figure 4-2: Locations of Roadside Equipment at Major Interchanges on I-405 

 

For this study, two message types were used: a periodic message with a target of 20 BMMs per 100 

feet and a Speed at Capacity event based message triggered whenever vehicle speed fell between 

52.5 and 59.5 MPH (or 45.5 and 51.8 MPH for Low Visibility). Periodic message rates were optimized 

every 270 seconds, while Speed at Capacity messages were optimized every 15 seconds. 

4.1.2.5 DIDC Parameters 

For this study, two message types were used: a periodic message with a target of 20 BMMs per 100 

feet and a Speed at Capacity event based message triggered whenever vehicle speed fell between 

52.5 and 59.5 MPH (or 45.5 and 51.8 MPH for Low Visibility). Periodic message rates were optimized 

every 270 seconds, while Speed at Capacity messages were optimized every 15 seconds. 

4.1.3 Emulated Connected Vehicle Messages  

Basic Safety Messages (BSM) used in this analysis were emulated using the Trajectory Converter 

Analysis (TCA) software version 2.3, developed by Noblis. The TCA software uses vehicle trajectories 

(i.e., dynamic representation of vehicle kinematics) to replicate the generation of connected vehicle 

messages (e.g., BSMs). The messages are then transmitted via DSRC or cellular communications. 

The generation and transmission of messages are dictated by user-defined parameters. Please see 

the TCA Concept of Operations for a detailed discussion of the TCA [14]. 

 

Basic Mobility Messages (BMM) used in this analysis were emulated using the Trajectory Converter 

Analysis (TCA) DIDC software version 2.4, developed by Noblis. This version of the TCA software 

uses vehicle trajectories along with an emulated Dynamic Interrogative Data Capture (DIDC) 
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Controller to replicate the generation of prototype Basic Mobility Messages. The primary goal of DIDC 

Controlled Basic Mobility Messages is to dynamically throttle and/or control data capture and 

transmission rates from wireless entities while still providing the data set needed to optimize system 

management. The DIDC Controller is defined by the DIDC Parameters (Section 4.1.2.5) that specifies 

when event-based messages are triggered and the target number of messages desired for periodic or 

event based messages. Message generation rates are then adjusted to meet these thresholds at a 

specific optimization interval rate. 

 

In this study, time-dependent records of vehicle position and speed as generated by the VISSIM 

model of the I-405 network were used as input to the TCA. Control variables, including market 

penetration and communication strategy, as defined in Section 4.1.2 are then used by the TCA to 

emulate the BSMs and BMMs that would be generated by equipped vehicles. 

4.2 Computing Resources 

The computational resources and analytic environment used for this work were provisioned via the 

Microsoft Azure cloud environment [15], and consisted of two primary elements: file storage and 

computing cluster. 

File storage was provided using the Azure Blob Storage service, which is designed to store 

unstructured data in any format as objects or blobs. The Blob Storage service provides easy access to 

extremely large storage space up to 500TB per instance, with built-in redundancy and data protection, 

without requiring management of or even visibility into individual disks or volumes. This allowed 

simulated data files on the order of 150GB to be created and accessed routinely. The Azure Blob 

Storage service is also provisioned as network-local to Azure compute resources; so these data files 

are readily accessible with no WAN bandwidth limitations. 

Compute resources were provided via the Azure HDInsight service [16], which is a cloud-native 

distribution of the open-source Apache Hadoop framework [17]. The HDInsight service provides 

template-based provisioning to allow clusters to be spun up and down on demand, without requiring 

manual configuration of either cluster machines or software packages. The template used for this 

work included the open-source Apache Spark data processing package, along with its MLlib machine 

learning library [18]. Code for these analyses was developed using both the Scala and Python 

(PySpark) languages. 

The cluster used for these analyses consisted of four nodes in total: 2 head nodes for job submission 

and management and 2 worker nodes for computation. Specific provisioned configurations of these 

nodes are given in Table 4-2. 

Table 4-2: Cluster Configuration 

Cluster Nodes CPU Cores Memory (RAM) 
Local Disk 

(HDFS) 
Head nodes (2 each) 4 28 GB 200 GB 

Worker nodes (2 each) 16 112 GB 800 GB 
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5 Technical Approach 

This section describes the technical approach, including data pre-processing, feature identification, 

feature extraction, and development and test of machine learning algorithms, to predict traffic regimes 

(see Table 3-1) in 100’ x 100’ boxes overlaid on the I-405 traffic network, every 5 minutes an hour 

ahead of time using simulated BSMs and BMMs. As the key purpose of the prediction algorithm is to 

classify data into three traffic regimes, this is formulated as a classification problem. This section also 

discusses the evaluation criteria for estimating the accuracy of the prediction models. 

 

Figure 5-1 is a graphical illustration of the traffic regime prediction framework: 

 Field Data: In this stage, field data, including demand, incident, and weather data, were 
obtained for the I-405 corridor from WSDOT and processed (see Section 4.1.1). 
 

 Simulated Data: In the second stage, the processed field data were used as input to a 

VISSIM model for the I-405 network, also obtained from WSDOT, and calibrated (see Section 

4.1.1). Simulated vehicle trajectories were fed into the TCA to emulate SAE J2735 BSMs 

(Section 4.1.3). BSMs were generated every 10th of a second, and transmitted either via 

DSRC-enabled RSEs or cellular networks, as defined in Table 4-1 (see Section 4.1.2). BMMs 

were generated and transmitted according to the DIDC Parameters as defined in Section 

4.1.2.5.  

 

 Data Pre-Processing: The third stage includes feature identification, data assembly, 
normalization, and data set creation. Speed, demand, incident, and weather were identified 
as the key features (Section 5.1.2). Next, a grid network of 100’ x 100’ boxes was overlaid on 
the I-405 network. For each box, the following data were assembled for the past 1 hour: 
average speeds at 5-minute intervals in the subject box, and two boxes upstream and 
downstream of the subject box; northbound and southbound I-405 demand over the past 1 
hour; incident information over the past 1 hour; and precipitation levels and visibility over the 
past 1 hour. Once this was done, data were normalized. Data that are measured on different 
numeric scales are normalized or converted to a common scale so that no single feature 
dominates the others. Then we divided the data into 3 sets – training, validation, and test data 
sets. Training and validation data sets were used for model development and to prevent over-
fitting, and the test set was used to report out the accuracy of the prediction models. 
 

 Feature Extraction: In this stage the most relevant information is extracted from the original 
set of features and represented in a lower dimensionality space. The previous stage resulted 
in 69 raw features, some potentially highly correlated. Highly correlated features effectively 
represent the same phenomenon, causing an overrepresentation of that phenomenon and 
possibly leading to poor generalization. Hence, in this stage, the 69 possibly correlated 
features were transformed into uncorrelated variables using Principal Component Analysis 
(PCA). In this study 6, 8 and 11 principal components were tested. See section 5.2 for details. 
 

 Model Development and Selection: In this stage, Spark’s machine learning libraries for 
Logistic Regression, Decision Tree and Random Forest were used for predicting the traffic 
regimes. Traffic regime indices were predicted at 5-minute intervals, an hour in advance, in 
each of the 100’ x 100’ boxes on the network. For example, if the current time is 7 AM, 
predictions were made for 8 to 8:05 AM. The process was repeated every five minutes. The 
best models were selected based on the accuracy seen for the training and validation sets. 
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 Model Evaluation: In the final stage, the predictions models were evaluated using the test set. 
The selected evaluation metrics include: precision, recall and F1 score. 

 

 

Figure 5-1: Framework for Traffic Regime Prediction Using Simulated Connected Vehicle 

Messages 

5.1 Data Pre-Processing 

5.1.1 Overlaying Box Network on Simulated Network 

In order to group the simulated data for analysis, a means of relating BSMs to the road network was 

necessary. This results from the limited nature of the BSM data, which does not maintain any 

connection to the VISSIM network of roads used to generate traffic. To perform this grouping, the 

study area was overlaid with a 100’ x 100’ grid, and simulated BSMs were assigned to grid boxes by 

latitude and longitude, and tagged with a direction corresponding to the quadrant 

(North/South/East/West) the BSM heading falls into. A total of 1,332,834 boxes were defined on the 

network. The BSM records were also quantized into five-minute time buckets based on the time data. 

 

Given that the BSMs are disconnected from any reference to the road network, identifying upstream 

and downstream traffic posed a significant challenge. More concretely, the challenge lies in 

determining which box should be considered “next” or “previous” for a given grid box with flow in a 

given direction (quadrant). 

 

To solve this problem, the VISSIM network links were also mapped into grid boxes using the latitude 

and longitude coordinates. Then, the following algorithm was applied for each box/direction 

combination: 

1. Identify the adjacent candidate boxes in the following order of preference: 

a. Directly adjacent in the same direction 

b. Ahead and to the left, relative to the direction 

c. Ahead and to the right, relative to the direction 

d. Directly to the left, relative to the direction 

e. Directly to the right, relative to the direction 

2. Select as “next” the first box in order that: 

a. Shares a network link with the starting box, and 
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b. Has flow in the correct direction 

3. If no box meets the criteria, then there is no “next” box for that box/direction combination. 

 

“Previous” (upstream) boxes are identified using the same algorithm, with the directions appropriately 

reversed. The algorithm is illustrated using Figure 5-2. Figure 5-2 shows a notional curved road 

segment with Eastbound traffic. In this example, the box labeled “1” would be the first box examined 

(as directly adjacent in the same direction). However, there are no VISSIM links shared with the 

starting box; so the algorithm would proceed to examine the box labeled “2”. In this box there are links 

shared with the starting box, so the algorithm would look for Eastbound traffic; if it finds any then it will 

select that box as “next” and stop. In the example, box 2 is identified as the next box. 

 

 

Figure 5-2: An Example Illustration of the Next Box Algorithm for a Curved Road 

5.1.2 Feature Identification 

5.1.2.1 Speed 

Average speed is computed for each grid box for each direction quadrant: north, south, east and west 

and is quantized into 5-minute buckets using the Basic Safety Messages identified in that box 

travelling in that direction. Additional average speeds were calculated as features including average 

speed over 5-minute intervals for the past one hour in: the current box, two boxes upstream of the 

current box and two boxes downstream of the current box. 

 

As noted in Section 5.1.1, determining upstream and downstream speeds is not trivial since grid 

boxes and BSMs are inherently tied to the road network. However, the next or previous box needs to 

be identified both by direction and roadway curvature as demonstrated in Figure 5-2. First boxes were 

manually mapped to VISSIM links representing roadway segments following the geographical 

coordinates of each box. Then code was developed that for each box-direction pair found the first box 

that shared a roadway segment and had flow in the correct direction. This process was then repeated 

for two boxes upstream and the second box downstream. 

5.1.2.2 Weather 

Weather data was provided by WSDOT at the request of FHWA for the representative days selected 

for each operational condition. This data included hourly observations reported for Seattle-Tacoma 

International Airport (KSEA) on the identified days. The observations of interest were visibility, reported 

in statute miles to the nearest tenth, and precipitation for the preceding 1 hour period, reported in 

inches and hundredths. 
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Prior to use, the weather data were pre-processed to replace “no data” observations with either the 

maximum (10.0 sm) for visibility or the minimum (0.00 in) for precipitation, as appropriate. The time of 

each observation record was also mapped to a minute-in-day offset in the period of interest, to align 

with the time scale used in the simulated BSM data.  

5.1.2.3 Incidents 

In the VISSIM models, incidents were identified as areas with reduced speed. The six models were 

used to manually identify the links where reduced speed areas occur. Once identified, VISSIM 

provided information on start and end time, duration, the length, number of impacted lanes, the free 

flow speed, the reduced speed, and a link ID for each incident. A Python script was used to identify the 

affected boxes corresponding to each link ID. The process is illustrated using an example in Figure 

5-3. The red link shown in Figure 5-3 passes through four boxes (shaded); so the incident 

corresponding to this link would have four affected boxes associated with it. The Python script is used 

to identify the IDs of each of these boxes that the link passes over. The result was an incident file, 

showing the distinct operational condition, incident, link, and box ID combinations (Table 5-1). 

 

 

Figure 5-3: Example Incident 

Table 5-1: Sample Incident file data 

OC# Incident 

ID 

Start 

Time 

End 

Time 

Duration 

(min) 

Length 

(ft) 

Number 

of 

Impacted 

Lanes 

Link Affected 

Box ID# 

Free 

Flow 

Speed 

(mph) 

Reduced 

Speed 

(mph) 

1 1 9:34 AM 9:39 AM 5 500 2 62 750805 70 2.7 

1 1 9:34 AM 9:39 AM 5 500 2 62 750806 70 2.7 

1 1 9:34 AM 9:39 AM 5 500 2 62 750807 70 2.7 

1 1 9:34 AM 9:39 AM 5 500 2 62 750808 70 2.7 

1 1 9:34 AM 9:39 AM 5 500 2 62 750809 70 2.7 

5.1.2.4 Demand 

The goal when representing demand was to have a separate demand file for each operational 

condition, each containing columns for origin zone, destination zone, and hourly flow rate in vehicles 

per hour, for each hour in the 5:30 AM to 10:30 AM period. The sample file in Table 5-2 shows what 

part of the demand file for operational condition #1 looks like – it shows hourly flow rate for vehicles 

starting at zone 1 and going to zones 1 through 5. 
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In order to develop this file, Noblis used O-D matrices for each operational condition that were 

provided with the I-405 VISSIM network. These were 193 x 193 matrices representing the origin and 

destination for the 193 zones in the network. The matrices specified the total number of vehicles 

traveling from one zone to another in a 30 minute period. In order to determine the hourly flow rate, 

the 30-minute matrices were summed to create one matrix per hour, per operational condition, for the 

entire period of 5:30 AM to 10:30 AM. 

 

An issue was that over 90% of the O-D pairs had 0 vehicles traveling to and from those zones in a 

given hour, resulting in hourly matrices not ideal for feature identification. This issue was resolved by 

grouping the 193 zones into 13 larger zones, as shown in the image of the VISSIM network in Figure 

5-4. Python scripts were developed to sum the values in the 193 x 193 O-D matrices by new zone to 

create new 13 x 13 O-D matrices, one for each hour and operational condition. Another script 

collapsed these matrices into the file format shown in Table 5-2. 

 

 

Figure 5-4: VISSIM Zones on the I-405 Network 

Table 5-2: Sample Demand File Data: Operational Condition #1 

Origin Zone Destination Zone 5:30 - 6:30 6:30 - 7:30 7:30 - 8:30 8:30 - 9:30 
9:30 - 

10:30 

1 1 1502 1689 3054 3017 2628 

1 2 2365 3069 5415 4439 3633 

1 3 737 803 1249 793 640 

1 4 0 0 2 5 15 
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Origin Zone Destination Zone 5:30 - 6:30 6:30 - 7:30 7:30 - 8:30 8:30 - 9:30 
9:30 - 

10:30 

1 5 90 39 75 104 96 

5.1.3 Data Assembly 

Data corresponding to the features discussed in Section 5.1.2 were assembled into 69 raw features, 

including: 

 Average speed in subject box at current time 

 Average speeds over 5-minute intervals for the past 1 hour in: 

o Subject box 

o Two boxes immediately upstream of subject box 

o Two boxes immediately downstream of subject box 

 Northbound network demand 

 Southbound network demand 

 Number of incidents in past 1 hour 

 Reduced speed (for incident) in past 1 hour 

 Number of lanes impacted by incident in past 1 hour 

 Duration of incident in past 1 hour 

 Precipitation levels in past 1 hour 

 Visibility for past 1 hour 

5.1.4 Data Normalization 

In the feature extraction and prediction stages larger valued features would be overweighted. When 

using tools like Principal Component Analysis which maximizes variance, features that have larger 

values would contribute more to the overall variance. In this study, speed ranged from 0-70 MPH, 

while precipitation values were from 0-0.08 inches. If data are not normalized, speed would explain 

nearly all the variance while precipitation would not have much of an impact. 

 

Data normalization is a process that transforms the data so that all feature values are within the same 

range, between 0 and 1 inclusive, while preserving variance in the data. In order to perform data 

normalization on Spark, the study utilizes PySpark’s Normalizer API which normalizes samples 

individually to Normalizer API which normalizes samples individually to unit Lp norm, default is p=2 for 

Euclidean norm. The Euclidean norm is the length of the vector, x, as determined by the ordinary 

distance formula. In order to utilize the PySpark Normalizer the raw feature columns were into a single 

features vector and normalization was performed on these vectors. 

5.1.5 Creating Data Sets 

For the prediction phase, Spark Machine Learning algorithms need two inputs, a features vector (or 

predictors) and a label, which is what is being predicted. For this study, data is labeled by the traffic 

regime index calculated using the speed in the current box an hour ahead of the current time and the 

visibility in the current box an hour ahead of the current time to create a label-feature pair. 

 

Data from each operational condition is combined into one master data set for each market 

penetration and communication strategy in order to train and test the model on the full data set. Prior 

to combining them, each data record is labeled by the operational condition it came from to support 

further analysis of individual operational conditions. 
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Data are then split into three sets: training, validation and test. The first split of the data creates 80% 

for training and validation combined and reserves 20% for testing. The 80% of the data is further 

randomly split into training (70% of the 80% data) and validation (30% of the 80% data) data sets for 

model development. 

 

The training data set is used to develop and train the prediction model in the development phase. 

Using the label-feature pair created earlier, the selected model learns the mapping of the features onto 

the labels. The validation data set is used to fine tune the mapping of the features to the labels. The 

validation process in the development phase ensures that the model isn’t over fitted to the training 

data; when training set accuracy increases and validation set accuracy decreases overfitting has 

occurred. The test data set is used to test the accuracy of the prediction model once the development 

phase is completed. In the testing phase the model is trained on the entire development data, then the 

traffic regime index is predicted for the test data. The predicted indices are compared to the known 

index, and the accuracy of the model is reported. 

5.2 Feature Extraction 

The last step before model prediction is performing feature extraction to select the best set of features 

to perform predictions with. With 69 total features and the likelihood that identified features are highly 

correlated, there is the risk of creating a poor performing model since the highly correlated features 

may be over represented. By reducing the feature space to the smallest number of features that 

contribute the highest amount of variance the model can more accurately map features onto labels 

creating better predictions. 

 

This study utilized Principal Components Analysis (PCA), which is an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. The first principal component has the largest 

possible variance and each subsequent component has the highest possible variance without being 

correlated to the previous component(s). PCA also performs dimensionality reduction, reducing the 

number of features to the most predictive number by selecting the top X number of principal 

components.  

 

The number of required principal components was identified by performing a scree plot analysis in R 

using the nFactor package [19] on the Many Incidents, 20% Cellular data. Figure 5-5 shows the result 

of the scree plot analysis. The plot shows how much each principal component contributes to overall 

variance, with each point representing a principal component and its corresponding eigenvalue. The 

scree plot helps choose the number of principal components to use based on variance contributions; 

points chosen are when there is a significant drop in the contribution to overall variance by an 

individual component. In this study 6, 8 and 11 principal components were tested as indicated on the 

plot, as these were the three points with noticeable drops in contribution to variance. 
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Figure 5-5: Scree Plot generated by R using the nFactor package on Many Incidents, 20% 

Cellular 

5.3 Model Development 

To analyze the preprocessed data and to develop and assess the performance of prediction models 

for traffic regimes, models were trained and evaluated using three different standard classification 

algorithms with Spark/MLlib implementations [18]: logistic regression, decision tree, and Random 

Forest. In all cases preprocessing of the data, including feature extraction, normalization, and principal 

component analysis, was performed prior to model training and evaluation, and identically-

preprocessed data were used for each algorithm. Note that each algorithm was developed using 6, 8, 

and 11 principal components. 

 

Logistic regression is a classification method in the family of linear regression methods, which are 

mathematically formalized as convex optimization problems. That is, given a vector of features, it 

seeks to find a set of weights which, when linearly combined, predict a dependent variable in such a 

way as to minimize the error between the prediction and true value. Formally, the optimization problem 

is, given 𝑛 training data feature vectors 𝒙𝑖 with length 𝑑 and their corresponding labels 𝑦𝑖, to find the 

vector of weights 𝒘 that minimizes the loss function 𝑳: 

 

 

 

(1) 

 

 

𝒎𝒊𝒏𝒘∈ℝ𝒅  𝒇 𝒙 =  
𝟏

𝒏
 𝑳 𝒘; 𝒙𝒊, 𝒚𝒊 

𝒏

𝒊=𝟏
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For training logistic regression models, the loss function given below is the logistic loss function over a 

linear combination of weights and features (the 𝒘𝑇𝒙 term): 

 

(2) 

 

Once the model is trained (i.e., the error-minimizing weights are found), the prediction step is made by 

applying the logistic sigmoid function below: 

 

 

(3) 

 

 

(4) 

 

To perform multiclass prediction, as in this work, a multinomial logistic regression model was built, 

consisting of two classifiers using the first class as a baseline: one evaluates the relative probability of 

class two over class one, and the other the relative probability of class three over class one. The class 

with the highest probability is then chosen as the final prediction (e.g., if classes two and three are 

both more likely than class one, the class with the highest-magnitude relative probability will be 

chosen). Finding the appropriate weights was accomplished using the the L-BFGS optimization 

algorithm, included in the Spark/MLlib implementation of logistic regression [20]. 

 

Decision trees are classification models that work by recursively splitting the solution space into 

binary classes, and thereby essentially creating a large tree of yes/no decision branches. The splitting 

criterion for each branch is determined by selecting the criterion that maximizes the difference 

between the two branches, according to a chosen metric. In this work, entropy and Gini impurity were 

evaluated as the splitting metric. The entropy metric seeks to maximize the information gain of the 

split; that is, to find the split that most rapidly narrows down the choice of predicted state. Formally, the 

split 𝑠 is chosen at each tree node, applied to dataset 𝐷 of size 𝑁, to create two subsets 𝐷𝑙𝑒𝑓𝑡 and 

𝐷𝑟𝑖𝑔ℎ𝑡 of sizes 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 so as to maximize entropy 𝐸 𝑥  with respect to the number of discrete 

classes 𝐶, where 𝑓𝑖 is the frequency of class 𝑖 at a node: 

 

      

       (5) 

 

 

 

(6) 

 

The Gini impurity metric also seeks to maximize the information gain of a split, but instead of 

preferring the most efficient split, optimizes for minimizing the chance of misclassification given a 

particular split. The Gini impurity 𝐺 𝑥  is computed as below, and the split again chosen to maximize 

𝐺 𝑥 :  

(7) 

 

 

(8) 

𝑳(𝒘; 𝒙, 𝑦) =  𝐥𝐨𝐠(1 + 𝒆−𝑦𝒘𝑇𝒙) 

𝑓 𝑤; 𝑥 =  
1

(1 + 𝑒−𝒘𝑇𝒙)
 

𝑐𝑙𝑎𝑠𝑠 𝒘; 𝒙 =  
1, 𝑓(𝒘; 𝒙) > 0.5

0, 𝑓 𝒘; 𝒙 ≤ 0.5
  

𝐸 𝑥 =  −𝑓𝑖 log 𝑓𝑖

𝐶

𝑖=1

 

arg max
𝑠

 𝐸 𝐷 −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐸 𝐷𝑙𝑒𝑓𝑡 , 𝑠 −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐸(𝐷𝑟𝑖𝑔ℎ𝑡 , 𝑠)  

𝐺 𝑥 =   𝑓𝑖(1 − 𝑓𝑖)

𝐶

𝑖=1

 

arg max
𝑠

 𝐺 𝐷 −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐺(𝐷𝑙𝑒𝑓𝑡 , 𝑠) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐺(𝐷𝑟𝑖𝑔ℎ𝑡 , 𝑠)  
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Random forests fall in the class of ensemble methods, whereby multiple classification models are 

trained and applied, with the highest-probability prediction being selected across all models. The 

intuition behind the approach is that while all classification models have error, the errors are not 

uniformly distributed across models, and running all the models in parallel minimizes the impact of the 

individual model errors.  

 

Random forests specifically are implemented by creating an ensemble of many partially-random 

decision trees and then polling the ensemble to choose a predicted label. Randomization applied in 

the Spark/MLlib implementation includes bootstrapping from random subsamples, and using random 

subsets of features to define a split. With this randomization applied, although any individual random 

decision tree is likely to be a suboptimal predictor, each of them is flawed in a slightly different way, 

and so in aggregate these errors become diffuse and the result turns out to be surprisingly effective. In 

this work, multiple ensembles (i.e., 10, 250, 1000) of decision trees were used, again with both 

entropy and Gini impurity as information gain metrics. 

5.4 Model Evaluation Metrics 

Three evaluation metrics were chosen to evaluate the prediction models. 

 

 Precision: For a given traffic regime index, how many of the predicted instances of the traffic 

regime index were correct? 

 

(7) 

 

 Recall: For a given traffic regime index, how many of the actual instances of the traffic regime 

index were predicted accurately? 

 

(8) 

 

 F1 Score: It is a balanced effectiveness measure and is measured as the harmonic mean of 

precision and recall. 

 

(9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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6 Data Analysis 

For each operational condition and experimental condition (market penetration and communication 

strategy combination), the total set of BSMs was classified by traffic regime index. Table 6-1 through 

Table 6-6 show the number of BSMs by traffic regime index for the six operational conditions. 

 

For the Low Demand condition (Table 6-1), there were approximately three times as many ‘1’ indices 

as there were ‘3’ indices, with few ‘2’s. It is important to note that for this operational condition (and all 

subsequent operational conditions), these percentages were similar for both Cellular (20%, 75%), and 

DSRC (20%, 75%) scenarios. However, the two DSRC conditions had only 12% the number of BSMs 

as the two Cellular scenarios. 

Table 6-1: Number of BSMs by Traffic Regime Index – Operational Condition #1, Low Demand 

Index 
Cellular 

20%  
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 163184472 68% 618206973 68% 20927875 72% 78567703 72% 

2 20874666 9% 79128929 9% 2615508 9% 9788777 9% 

3 55944597 23% 214215981 24% 5383903 19% 20294171 19% 

 

Table 6-2 and Table 6-3 show that the results for the Low Visibility condition and the Weather + 

Incidents condition were similar. For the Low Visibility condition, there were less than 25% ‘1’ indices 

with the rest split between ‘2’s and ‘3’s, and for the Weather + Incidents condition, there were less 

than 10% ‘1’ indices, with the rest split between the ‘2’s and ‘3’s. Both of these conditions represent 

the highest percentage of ‘2’ indices across all operational conditions. 

Table 6-2: Number of BSMs by Traffic Regime Index – Operational Condition #2, Low Visibility 

Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 43626122 21% 164298333 21% 5815912 24% 22028094 24% 

2 92349577 44% 347523341 43% 11448305 47% 42980111 47% 

3 76083120 36% 288631944 36% 6912038 29% 26509479 29% 
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Table 6-3: Number of BSMS by Traffic Regime Index – Operational Condition #3, Weather + 

Incidents 

Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 21443269 7% 80875386 7% 2651965 8% 10016519 8% 

2 147389633 49% 553823879 49% 18614098 53% 69741674 53% 

3 130794421 44% 497506469 44% 13725134 39% 52031882 39% 

 

The Many Incidents (Table 6-4) operational condition was characterized by the lowest percentage of 

‘2’ indices, with the rest split between ‘1’s and ‘3’s. The Bottleneck Trouble (Table 6-5) condition was 

similar in that it also had an extremely low percentage of ‘2’ indices, but the percentages of ‘1’s and 

‘3’s were flipped (i.e. approximately 60% ‘1’s for Many Incidents, and approximately 60% ‘3’s for 

Bottleneck Trouble.) The Few Incidents (Table 6-6) condition had BSM numbers very similar to those 

of the Bottleneck Trouble condition, but slightly more ‘2’ indices. 

 

Looking at the entire data, traffic flow was free flow 42% of the time, at capacity 22% of the time, and 

congested 36% of the time. Thus the analysis revealed that the data were imbalanced. 

 

For the scenario where only 20% of the vehicles were equipped and communication occurred via 

DSRC-based RSEs deployed at major interchanges, approximately 156 million BSMs were 

generated. When market penetration increased to 75%, the number of BSMs quadrupled to 

approximately 586 million BSMs. When BSMs were generated continuously by a vehicle throughout 

the trip and transmitted via cellular communication, the number of BSMs was 1.3 billion when the 

market penetration of connected vehicles was 20%. This was twice the number of BSMs generated 

via DSRC-based RSE at 75% market penetration. When the market penetration rose to 75%, the 

number of BSMs again quadrupled to nearly 4.9 billion BSMs. 

Table 6-4: Number of BSMs by Traffic Regime Index – Operational Condition #4, Many 

Incidents 

Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 32733591 40% 122665798 40% 4062396 35% 15217482 35% 

2 912238 1% 3426433 1% 162367 1% 618845 1% 

3 48886809 59% 182707769 59% 7490774 64% 28106390 64% 

Table 6-5: Number of BSMs by Traffic Regime Index – Operational Condition #5, Bottleneck 

Trouble 

Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 160487495 59% 601257752 59% 19958084 60% 74933985 60% 
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Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

2 5050257 2% 18928059 2% 861601 3% 3205688 3% 

3 108006490 39% 405966647 39% 12282569 37% 46233313 37% 

 

Table 6-6: Number of BSMs by Traffic Regime Index – Operational Condition #6, Few Incidents 

Index 
Cellular 

20% 
Count 

Cellular 
20% 

Percentage 

Cellular 
75% 

Count 

Cellular 
75% 

Percentage 

DSRSC 
20% 

Count 

DSRC 20% 
Percentage 

DSRC 
75% 

Count 

DSRC 75% 
Percentage 

1 110521077 60% 414614270 59% 14222182 62% 53427423 62% 

2 14983442 8% 55984497 8% 1833542 8% 6819867 8% 

3 59551092 32% 226391096 32% 6887865 30% 25816717 30% 
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7 Results 

7.1 Prediction Results Using Validation Data 

7.1.1 Prediction Results by Operational Condition Using BSM 

This section presents the prediction results by operational condition for the validation data comprising 

BSMs. Each prediction model performed about the same relative to the others across operational 

conditions. For most operational conditions Logistic Regression had the lowest F1 scores, while 

Random Forest and Decision Tree performed nearly equally, with small differences in favor of 

Random Forest. With respect to principal component k-values, results for predictions using 11 

principal components were substantially and consistently better than using 6 or 8 principal 

components. Results for the latter two were near equal across operational conditions, traffic regimes 

and prediction models. While relative results were the same across operational conditions, the actual 

values varied, with substantially better results for certain traffic regime indices depending on the 

operational condition. With respect to the node impurity metrics, both Gini and entropy produced 

nearly similar results, with Gini outperforming entropy. With respect, to the tree configurations, the 

differences were nominal; however, the model that used random algorithm with 250 trees was the best 

overall. 

 

Figure 7-1 to Figure 7-4 show a Trellis plot [21] of F1 scores for three prediction models ((i) Logistic 

Regression, (ii) Decision Trees with entropy node impurity metric, and (iii) Random Forest with entropy 

node impurity metric and 10 trees) by operational condition, traffic regime index and PCA k-value for 

DSRC-20%, DSRC-75%, Cellular-20%, and Cellular-75% scenarios, respectively. 

 

For most experimental scenarios, models that used the Random Forest algorithm was the best 

performing model. outperforming the models that used the Decision Tree algorithm in F1 score by an 

average of 0.4% and Logistic Regression algorithm by an average of 11.2%. There were exceptions 

for specific cases. 

 

For example, as shown in Figure 7-1, for the DSRC-20% experimental scenario all three models 

performed equally across traffic regimes for the Many Incidents (OC 4) operational condition. 

 

For most operational conditions Logistic Regression had the lowest F1 scores, however, in a few 

instances, it was the best performing model. For Weather+Incidents (OC 3), Logistic Regression was 

the best at predicting free flow and speed at capacity regime for DSRC-75% (Figure 7-2) and Cellular-

75% (Figure 7-4) scenarios. 

 

All three models performed poorly in predicting speed at capacity regimes across operational 

conditions and across all scenarios, except for the Low Visibility (OC 2) and Weather+Incidents (OC 3) 

conditions. This divergence was because for these two operational conditions (Table 6-2 and Table 

6-3), the data were imbalanced in favor of the at capacity regime. There were more than twice as 

many “2” than “1” and “3”. For these two operational conditions, index 2 data points were 44 and 49 

percent of the total number of recorded BSMs respectively, while for the other operational conditions, 
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index 2 data points ranged between 1 and 9 percent of the total number of recorded BSMs. Increased 

representation of index 2 in the training set allowed for a more accurate prediction. 

 

 

Figure 7-1: Trellis plot of F1 scores for each prediction model by operational condition, traffic 

regime index and PCA k-value for DSRC-20% 
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Figure 7-2: Trellis plot of F1 scores for each prediction model by operational condition, traffic 

regime index and PCA k-value for DSRC-75% 
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Figure 7-3: Trellis plot of F1 scores for each prediction model by operational condition, traffic 

regime index and PCA k-value for Cellular-20% 
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Figure 7-4: Trellis plot of F1 scores for each prediction model by operational condition, traffic 

regime index and PCA k-value for Cellular-75% 

 

Table 7-1 presents the overall F1 scores of the three prediction models by communication mode and 

market penetration. The results show that across four scenarios, tree-based prediction models were 

consistently superior to Logistic Regression-based model. There wasn’t a significant difference in the 

accuracy with increase in market penetration or change in communication model, implying that the 

prediction models are robust.  

 

Prediction models were also developed using the Decision Trees and Random Forest algorithms with 

the Gini impurity metric. For Random Forest, two additional tree configurations (250, 1000 trees) were 

also examined. These validation results are included in Appendix A. 

Table 7-1: Comparing F1 Scores of Prediction Models by Communication Mode and Market 

Penetration for Validation Data 

Prediction Model DSRC-

20% 

DSRC-

75% 

Cellular-

20% 

Cellular-

75% 

Logistic Regression (11 PC) 0.579 0.596 0.531 0.594 

Decision Trees (11 PC, Entropy) 0.670 0.656 0.638 0.650 

Random Forest (11 PC, Entropy, 10 Trees) 0.675 0.666 0.654 0.646 
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7.1.2 Summary Prediction Results Using BSM 

The overall results for each model were compared for only 11 principal components since each model 

had the best performance for 11 principal components. Figure 7-5 to Figure 7-8 show Trellis plots of 

precision, recall, and F1 scores for three prediction models ((i) Logistic Regression, (ii) Decision Trees 

with entropy node impurity metric, and (iii) Random Forest with entropy node impurity metric and 10 

trees), by traffic regime index for DSRC-20%, DSRC-75%, Cellular-20%, and Cellular-75% scenarios, 

respectively. 

 

Precision and recall for both Decision Tree and Random Forest is above 0.8 for the free flow and 

congested (index 3) traffic regimes for both DSRC scenarios (Figure 7-5 and Figure 7-6) and the 

Cellular, 75% scenario (Figure 7-8). For these scenarios, the tree-based models had nearly similar F1 

scores. In general, Decision Tree and Random Forest results were substantially better than Logistic 

Regression for all three metrics for free flow (index 1) and at capacity traffic regimes (index 2). 

 

The results were, however, much different for the Cellular-20% scenario (Figure 7-7), where Logistic 

Regression was the best performing model by all three metrics. In this case, Logistic Regression had 

F1 scores an average of 0.068 points higher than Random Forest and Decision Tree across traffic 

regime indices. The Logistic Regression model also had a substantially higher precision for the free 

flow traffic regime and higher recall for the at capacity traffic regime. In this case Random Forest still 

outperformed Decision Tree, with F1 scores an average of 0.033 points greater. Despite the Cellular-

20% exception, Random Forest still had the best results across scenarios for all three metrics. Across 

all experimental scenarios Random Forest had on average a precision 0.097 points, a recall 0.064 

percentage points and an F1 score 0.082 points higher than Logistic Regression. While Random 

Forest and Decision Tree performed similarly, Random Forest was better able minimize the poor 

results for the Cellular-20% scenario. 

 

Validation data results can be summarized as follows: 

 Results using 11 principal components were substantially better across communication 

strategies, market penetrations and operational conditions. 

 Overall, Random Forest had the best results across scenarios for all three metrics; Random 

Forest also minimized poor results when it wasn’t the best metric. 

 More representative data led to better predictions. 

 Across all scenarios, the F1 score was 0.67 for the at capacity traffic regime (22% of total 

BSMs generated) prediction compared to 0.87 for free flow (42% of BSMs) and 0.95 for 

congested (36% of BSM) regimes. 

 For operational conditions with more BSMs for the at capacity traffic regime (Low Visibility 

and Weather + Incidents), F1 scores were about 0.6 points better. 
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Figure 7-5: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined DSRC-20% validation data using 11 principal 

components 

 

 

 

Figure 7-6: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined DSRC-75% validation data using 11 principal 

components 
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Figure 7-7: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined Cellular-20% validation data using 11 principal 

components 

 

Figure 7-8: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined Cellular-75% validation data using 11 principal 

components 

7.1.3 Summary Prediction Results Using BMM 

This section discusses the prediction results for the validation data comprising BMMs. DIDC 

Controlled BMMs were generated and transmitted according to rules that were intended to increase 

the representation of messages at the Speed at Capacity traffic regime (index 2), since they were 

found to be underrepresented in the BSM data (Section 6). It was expected that more balanced 
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representation of all three traffic regimes would lead to improved results for the Speed at Capacity 

regime, bringing it closer to the Free Flow and Extreme Congestion Regimes results found using 

BSMs. A prediction model was developed using the Random Forest algorithm with 11 principal 

components, 10 trees and entropy metric. Table 7-2 shows the prediction results using BMMs 

transmitted over a Cellular communication network at 20 percent market penetration, averaged across 

all 6 operational conditions. The average F1 score for the Free Flow regime (0.93) was better than 

when using BSMs (0.87); however the average F1 score for the Congested regime (0.77) was 

substantially worse than when using BSMs (0.96) and the average F1 score for the Speed at Capacity 

regime was also worse (0.53) than when using BSMs (0.60). The results show that additional 

messages within Speed at Capacity traffic regime range did not help balance results and overall, had 

worse results than BSMs. 

Table 7-2: Prediction Results Using Random Forest for Validation Data Comprising Basic 

Mobility Messages (BMM) for Cellular-20% Scenario 

Traffic Regime  Precision Recall F1 

Free Flow 0.99 0.87 0.93 

Speed at Capacity 0.69 0.43 0.53 

Congested 0.67 0.92 0.77 

 

7.2 Prediction Results Using Test Data 

7.2.1 Summary Prediction Results Using BSM 

The performance of the three models using 11 principal components were evaluated using the test 

data set. Results for the test data mirrored the overall validation data results, with Random Forest 

being the best performing model overall, while Logistic Regression performed best for the Cellular-

20% experimental scenario. Figure 7-9 to Figure 7-12 show for the test data Trellis plots of precision, 

recall, and F1 scores for the evaluated prediction models ((i) Logistic Regression (LR), (ii) Decision 

Trees (DT) with both entropy  and Gini node impurity metrics, and (iii) Random Forest (RF) with both 

entropy and Gini node impurity metrics and ensembles of 10, 250, and 1000 trees), by traffic regime 

index for DSRC-20%, DSRC-75%, Cellular-20%, and Cellular-75% scenarios, respectively. 

 

As shown in Figure 7-9, for the DSRC 20% scenario each model had the best precision for a single 

traffic regime index, with all three models having a precision above 0.8 for the free flow regime and 

above 0.9 for the congested regime. Decision Tree had the highest recall for the at capacity regime 

(index 2), but lowest for other regimes implying that it was able to predict over 80% of at capacity 

states. However, by F1 score, Random Forest was the best performing model for two of the three 

traffic regime indices and was second best for the congested traffic regime (index 3). This pattern held 

for the DSRC 75% (Figure 7-10) and Cellular 75% (Figure 7-12) experimental scenarios, where 

Random Forest performed substantially better for the free flow and at capacity traffic regimes and 

slightly worse for the congested traffic regime. Figure 7-11 shows the only exception to this pattern. As 

observed in the overall validation results, Logistic Regression had a much higher precision for the free 

flow traffic regime and much higher recall for the at capacity regime leading to Logistic Regression 

having the highest F1 scores for all three traffic regimes. In this case there was a difference of 0.05 

points for the free flow traffic regime between Logistic Regression and Random Forest. 
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As seen for the validation data, Random Forest had the best overall results, with an F1 score on 

average 0.09 points higher than Logistic Regression and 0.03 points higher than Decision Tree. 

Across experimental scenarios, Random Forest had the best results with an average F1 score of 0.87 

for free flow, 0.67 for at-capacity and 0.95 for congested traffic regimes (Table 7-3). Gini impurity also 

performed slightly better for both Decision Tree and Random Forest, generally achieving 0.01 higher 

F1 scores. The model with 1000-tree ensemble generally provided no additional performance over 

250-tree ensembles, but required longer training time (average of 13.5 minutes versus 20.3 minutes). 

Therefore, Random Forest using 11 principal components, Gini impurity, and a 250-tree ensemble is 

the best model for predicting traffic regime indices on the I-405 network. Additional test results are 

included in Appendix B. 

 

 

Figure 7-9: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined DSRC-20% test data using 11 principal components 
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Figure 7-10: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined DSRC-75% test data using 11 principal components 

 

 

Figure 7-11: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined Cellular-20% test data using 11 principal components 

 



7 Results 

U.S. Department of Transportation 

Intelligent Transportation System Joint Program Office 

Predicting Traffic Flow Regimes From Simulated CV Using Data Analytics and ML: FINAL |  53 

 

Figure 7-12: Trellis plot of precision, recall and F1 scores for each prediction model for each 

traffic regime for combined Cellular-75% test data using 11 principal components 

 

Table 7-3: Average Prediction Results Using Random Forest for Test Data Comprising BSM 

Across All Scenarios 

Index Precision Recall F1 Score 

1 0.80 0.96 0.87 

2 0.81 0.58 0.67 

3 0.99 0.92 0.95 

 

Test data results can be summarized as follows: 

 Overall, model that used the Random Forest algorithm with 250-tree ensemble and Gini 

impurity had the best results across scenarios for all three metrics. 

 Gini impurity produced slightly better results than entropy information gain metric for Decision 

Trees and Random Forest. 

 More data (i.e., increase in market penetration) didn’t necessarily translate into better 

predictions; however, more representative data did produce higher F1 scores as is evidenced 

by the higher F1 scores for free flow and congested regimes than for the speed at capacity 

regime. 

7.2.2 Summary Prediction Results Using BMM 

This section discusses the prediction results for the test data comprising BMMs. Table 7-4 shows the 

prediction results using BMMs transmitted over a Cellular communication network at 20 percent 

market penetration, across all 6 operational conditions. The results were nearly the same as that seen 

for the validation data. 
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Table 7-4: Prediction Results Using Random Forest for Test Data Comprising Basic Mobility 

Messages (BMM) for Cellular-20% Scenario 

Traffic Regime Precision Recall F1 

Free Flow 0.99 0.87 0.93 

Speed at Capacity 0.69 0.43 0.53 

Congested 0.67 0.93 0.78 

 

The worse prediction performance using BMMs compared to BSMs is likely due to the use of burst 

messaging. DIDC uses event-based burst messaging to receive extra messages from around a 

vehicle when an event is triggered for the vehicle to determine whether the event was vehicle-specific 

or network induced. In this case, when a vehicle entered the Speed at Capacity traffic regime it 

triggered burst messages from any vehicle within 100 feet for the next 2-12 seconds. However, 

vehicles within the burst zone weren’t necessarily all transmitting within the Speed at Capacity range. 

If one vehicle just drops below the divider between the Speed at Capacity regime, the surrounding 

vehicles are all likely on the border as well. If more fall on the Free Flow regime side, then the burst 

messages would increase representation of Free Flow regime messages relative to Speed at 

Capacity and Congested regimes, leading to better results for Free Flow, but worse for Speed at 

Capacity and Congested. 

 

There are numerous DIDC parameters as well as ranges of possible optimal values for those 

parameters that can be set using a DIDC Controller. For this study only a single set of parameters and 

one value was tested. Thus there is potential for substantial improvement on prediction accuracy 

through the use of either different control parameters, different control values or both. 

7.3 Tradeoffs between Information Insight and 

Cost/Timing 

It is expected that connected vehicle data can be processed rapidly using advanced analytics, such as 

Apache Spark data processing package and machine learning libraries, and high performance 

computing, such as Microsoft Azure environment, to create precise predictions of traffic flow regimes, 

prior to the deterioration of roadway conditions. For an agency to consider advanced analytics in 

predicting traffic flow regimes, predictions should be made in a reasonable time to allow public agency 

staff to take the necessary congestion mitigating actions. Secondly, advanced analytics shouldn’t be 

so expensive that it is not a viable option. Thus, it is essential to examine the tradeoffs between 

information insight and the cost and timing of data processing and prediction. 

 

Figure 7-13 shows on the primary Y-axis, the time taken to train the models for the study, and on the 

secondary Y-axis, the time taken for prediction. The time taken for training the model includes the time 

taken for the following activities: 

1. assign connected vehicle messages (BSM, BMM) to the more than 1 million 100’ x 100’ 

boxes; 

2. calculate the average speeds for each box at 5-minute intervals; 

3. combine data for all features for the previous 1 hour; 

4. normalize the data; 

5. perform principal component analysis to transform the normalized data; and 

6. train the data. 
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Figure 7-13: Comparing Time taken for Model Training and Prediction 

It should be pointed out that the time taken for training does not include the time taken for defining a 

grid network and processing demand, incident, and weather data, as these are a factor of the type of 

data that are available to the agency and the geographic scope of the network. 

 

The time taken for prediction includes the time taken for predicting the traffic regimes using the trained 

model. The prediction time also includes the time taken for items 1 to 5 above, since the user will need 

to process the data for the previous 1 hour. 

 

The average training time was 13.4 minutes. The model that used the Decision Trees algorithm took 

the least time for training (6.8 minutes) for the scenario where messages were transmitted from 20% 

of the vehicles via DSRC every 10th of a second. The model that used the Random Forest Algorithm 

with 1000 trees took the most time for training (32.8 minutes) for the scenario where messages were 

transmitted from 75% of the vehicles via Cellular every 10th of a second. In general, the differences 

between the models are negligible, except for the model that used Random Forest with 1000 trees. 

 

As was seen in Section 6, the DSRC-20% scenario had the least amount of data (~156 million BSMs), 

followed by the DSRC-75% scenario (~586 million BSMs), then the Cellular-20% scenario (~1.3 billion 

BSMs), and finally the Cellular-75% scenario with approximately 4.9 billion BSMs. With increase in 

data, the training time increased on average across models from 8.5 minutes for DSRC-20% scenario 

to 22.2 minutes for Cellular-75% scenario, but, there wasn’t a corresponding increase in accuracy as 

seen in Section 7.2. This may have been a factor of the measure chosen (i.e., traffic flow regimes) 

and/or the network type (freeway). 
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The average prediction time was 9.4 minutes, and ranged from 6.1 to 16.3 minutes. The prediction 

times varied only by a few seconds across the models developed in this study since the differences in 

the models are in the training algorithms. Once the models are trained, the process is nearly identical. 

 

In summary, for a network the size of I-405 corridor, developing and training prediction models may 

take less than an hour depending on the number of connected vehicles in the network. Once, the 

models are trained, an agency will be able to make predictions in less than 15-30 minutes, depending 

on the number of connected vehicles. The monthly cost of setting up the Azure environment, as 

defined in Section 4.2, and for processing and management of data for a network the size of the I-405 

corridor was $4,500. 
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8 Conclusions 

In a connected vehicle environment, wireless sub-second data exchange connects vehicles, the 

infrastructure, and travelers’ mobile devices. These data have the promise to transform the 

geographic scope, precision, and latency of transportation system control, thereby resulting in 

significant safety, mobility, and environmental benefits. However, the new data influx also has the 

potential to over-burden legacy computational and communication systems. Although connected 

vehicle technology can facilitate ubiquitous system coverage, existing prediction methods, 

computational platforms, and data management methods are insufficient to process the data within a 

reasonable timeframe for real-time predictions. With increased market adoption of connected vehicle 

technology, this data explosion is imminent, thereby necessitating big data solutions to fully exploit 

connected vehicle data for transformational improvements to the transportation system operations and 

management. 

 

The focus of this analysis was to develop and test analytic tools that can handle data that is of such 

volume, velocity, and variety that it cannot be processed or managed using traditional tools (e.g., 

relational database management systems), and requires technologies that support big data. A 

secondary motivation for this study was to provide a practical example of how connected vehicle (CV) 

data can improve transportation operations with the intent of motivating others to investigate potential 

applied uses of CV data. 

 

The study presented a technical approach that combined Apache Spark’s open source data analytics 

and machine learning techniques to predict traffic flow regimes using simulated connected vehicle 

messages. The computational resources and analytic environment used for this work were 

provisioned via the Microsoft Azure cloud environment. Predictions were made for the following hour 

at 5-minute intervals for 100’ x 100’ boxes in less than 20 minutes. The study demonstrated that 

connected vehicle data can be processed rapidly using advanced (“big data”) analytics and high 

performance computing to create precise predictions of traffic flow regimes, prior to the deterioration of 

roadway conditions. Public agency staff will be able to improve travel within these corridors by 

assessing the predicted congestion levels and undertaking suitable congestion mitigating actions. 

 

Data used for this study along with data from a number of other open CV data sets can be found on 

the USDOT’s RDE (https://www.its-rde.net) and other sources. The resulting code and documentation 

from this study is non-proprietary and will be posted on the USDOT’s OSADP (itsforge.net) alongside 

many other existing Open Source CV applications. Researchers and application developers are 

encouraged to use the code and data to further research and development in this area, and share 

their results via sites such as the RDE and the OSADP. 

8.1 Key Findings 

The study validated the two hypotheses. 

 

 Hypothesis #1: Proposed approach that makes use of high-volume connected vehicle data, 

advanced analytics, and cloud computing will meet computational speed requirements for a 

real-time decision support system 

https://www.its-rde.net/
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 The best performing model (Random Forest with 250-tree ensemble) was able to fully 

process an hour’s worth of BSMs into the 100’ x 100’ grid boxes, calculate the average 

speed for each box, direction and 5-minute interval, find average speeds in upstream and 

downstream boxes, join environmental features, perform normalization and Principal 

Components Analysis, and make a prediction for the following hour, at 5-minute intervals 

for each of the 100’ x 100’ boxes in 6 to 16 minutes. 

 

 Hypothesis #2: Proposed approach will be able to predict traffic flow regimes with high 

temporal and geographic precision and accuracy for higher market penetration of messages 

 Across all experimental scenarios, the model that used the Random Forest algorithm with 

11 principal components, 250-tree ensemble and the Gini node impurity metric, had the 

best results with an average F1 score of 0.83. The F1 scores were 0.87 for free flow, 0.67 

for at capacity and 0.95 for congested traffic regimes. Predictions were made for 100’ x 

100’ boxes nearly an hour in advance at 5-minute intervals. 

 More data (i.e., increase in market penetration) didn’t necessarily translate into better 

predictions; however, more representative data did produce higher F1 scores as is 

evidenced by the higher F1 scores for free flow and congested regimes than for the 

speed at capacity regime. 

8.2 Future Research 

The study showed that the model that used the Random Forest algorithm was the best overall, with 

an average F1 score of 0.83. While the overall score is good, for the at capacity regime it was only 

0.67. Overall, at capacity BSMs were about 22% of the total BSMs – which is approximately half of 

what was generated for the other two regimes. This shows that the data was imbalanced. In our study, 

due to schedule and budget constraints, we examined the use of TCA-DIDC to oversample speed at 

capacity regimes using a single set of parameters. There are numerous DIDC parameters as well as 

ranges of possible optimal values for those parameters that can be set using a DIDC Controller. Thus 

there is potential for substantial improvement on prediction accuracy through the use of either different 

control parameters, different control values or both. Future research should focus on developing 

prediction models by either undersampling the majority classes (i.e., free flow and congested traffic 

regimes) or oversampling the minority class (i.e., speed at capacity regime) using TCA-DIDC and/or 

statistical techniques. 

 

Another potential research could focus on predicting other traffic phenomena, such as queue lengths 

at signalized intersections, conflicts, etc. 
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APPENDIX A: Prediction Results – 
Validation Data 

The tables in Appendix A displays the prediction results using validation data by operational condition, 

market penetration, and communication strategy. Precision, recall, and F1 score are reported for each 

prediction algorithm by traffic regime index (‘Index’.) 

Table A-1: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6751 

0 

0.5385 

 

0.9960 

0 

0.0134 

0.8047 

0 

0.0262 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7747 

0 

0.9433 

0.9900 

0 

0.4981 

0.8692 

0 

0.6520 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7740 

0 

0.9744 

0.9956 

0 

0.4889 

0.8710 

0 

0.6512 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6766 

0 

0.5597 

0.9944 

0 

0.0425 

0.8052 

0 

0.0425 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7747 

0 

0.9433 

0.9900 

0 

0.4981 

0.8692 

0 

0.6520 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7844 

0 

0.9701 

0.9944 

0 

0.5300 

0.8770 

0 

0.6855 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8929 

0 

0.9940 

0.9988 

0 

0.9281 

0.9429 

0 

0.9599 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8913 

0.1776 

0.9975 

0.9830 

0.0658 

0.8841 

0.9349 

0.0960 

0.9374 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8882 

0 

0.9983 

0.9998 

0 

0.9084 

0.9407 

0 

0.9512 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8838 

0 

0.9982 

0.9995 

0 

0.9010 

0.9381 

0 

0.9471 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8838 

0 

0.9982 

0.9995 

0 

0.9010 

0.9381 

0 

0.9471 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8845 

0 

0.9995 

0.9999 

0 

0.9030 

0.9387 

0 

0.9488 
 

Table A-2: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6802 

0 

0.5155 

0.9960 

0 

0.0132 

0.8083 

0 

0.0257 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7834 

0 

0.9530 

0.9920 

0 

0.5222 

0.8754 

0 

0.6747 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7889 

0 

0.9656 

0.9944 

0 

0.5435 

0.8798 

0 

0.6955 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6856 

0 

0.6391 

0.9929 

0 

0.0433 

0.8111 

0 

0.0811 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7835 

0 

0.9530 

0.9920 

0 

0.5224 

0.8755 

0 

0.6748 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7901 

0 

0.9636 

0.9943 

0 

0.5481 

0.8805 

0 

0.6987 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9061 

0.3333 

0.9862 

0.9985 

0.0004 

0.9671 

0.9501 

0.0007 

0.9766 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8998 

0.1565 

0.9865 

0.9604 

0.0940 

0.9098 

0.9291 

0.1175 

0.9466 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8890 

0 

0.9943 

0.9990 

0 

0.9166 

0.9408 

0 

0.9539 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8867 

0 

0.9951 

0.9993 

0 

0.9105 

0.9397 

0 

0.9509 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8886 

0 

0.9898 

0.9976 

0 

0.9170 

0.9400 

0 

0.9520 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8901 

0 

0.9926 

0.9986 

0 

0.9214 

0.9412 

0 

0.9557 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.8887 

0 

0.9901 

0.9979 

0 

0.9167 

0.9401 

0 

0.9520 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8895 

0 

0.9926 

0.9988 

0 

0.9191 

0.9410 

0 

0.9544 
 

Table A-3: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6589 

0 

0 

1 

0 

0 

0.7944 

0 

0 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8438 

0 

0.7721 

0.9163 

0 

0.7674 

0.8786 

0 

0.7697 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8450 

0 

0.8687 

0.9634 

0 

0.7557 

0.9003 

0 

0.8083 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6647 

0 

0.5887 

0.9888 

0 

0.0407 

0.7950 

0 

0.0762 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8247 

0 

0.8359 

0.9504 

0 

0.7037 

0.8831 

0 

0.7641 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8247 

0 

0.8359 

0.9504 

0 

0.7037 

0.8831 

0 

0.7641 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9075 

0 

0.9825 

0.9947 

0 

0.9501 

0.9491 

0 

0.9660 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8833 

0.4492 

0.9970 

0.9993 

0.0033 

0.8859 

0.9377 

0.0066 

0.9382 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8994 

0 

0.9917 

0.9984 

0 

0.9309 

0.9463 

0 

0.9603 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8934 

0 

0.9862 

0.9959 

0 

0.9151 

0.9419 

0 

0.9493 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8932 

0 

0.9878 

0.9965 

0 

0.9146 

0.9420 

0 

0.9498 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8930 

0 

0.9884 

0.9967 

0 

0.9140 

0.9420 

0 

0.9498 
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Table A-4: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6666 

0 

0.6378 

0.9871 

0 

0.0591 

0.7958 

0 

0.1082 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8044 

0 

0.7957 

0.9450 

0 

0.6329 

0.8690 

0 

0.7050 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8004 

0 

0.9397 

0.9864 

0 

0.6247 

0.8837 

0 

0.7505 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6800 

0 

0.7813 

0.9868 

0 

0.1253 

0.8052 

0 

0.2160 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8044 

0 

0.7957 

0.9450 

0 

0.6329 

0.8690 

0 

0.7050 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8029 

0 

0.9239 

0.9824 

0 

0.6302 

0.8836 

0 

0.7493 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9093 

0 

0.9879 

0.9979 

0 

0.9616 

0.9516 

0 

0.9746 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8951 

0.6641 

0.9527 

0.9825 

0.0456 

0.9142 

0.9368 

0.0853 

0.9331 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8889 

0 

0.9847 

0.9957 

0 

0.9084 

0.9393 

0 

0.9450 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8912 

0 

0.9890 

0.9971 

0 

0.9142 

0.9412 

0 

0.9501 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8918 

0 

0.9916 

0.9975 

0 

0.9173 

0.9417 

0 

0.9530 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8916 

0 

0.9934 

0.9982 

0 

0.9168 

0.9419 

0 

0.9535 
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Table A-5: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0 

0.6653 

0.7092 

0 

0.8800 

0.5663 

0 

0.7577 

0.6297 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.2321 

0.7629 

0.9403 

0.0362 

0.9551 

0.8112 

0.0626 

0.8482 

0.8710 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1682 

0.7733 

0.9673 

0.2345 

0.8036 

0.7853 

0.1959 

0.7882 

0.8668 

Logistic Regression (8 PCA) 
1 

2 

3 

0 

0.6451 

0.6992 

0 

0.8833 

0.5062 

0 

0.7457 

0.5873 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.2321 

0.7629 

0.9403 

0.0362 

0.9551 

0.8112 

0.0626 

0.8482 

0.8710 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1867 

0.7585 

0.8928 

0.2920 

0.7425 

0.7615 

0.2278 

0.7504 

0.8220 

Logistic Regression (11 PCA) 
1 

2 

3 

0.0625 

0.8114 

0.9981 

0.0003 

0.9990 

0.9419 

0.0006 

0.8955 

0.9692 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.4007 

0.7824 

0.9918 

0.0629 

0.9790 

0.8565 

0.1087 

0.8697 

0.9192 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2220 

0.8276 

0.9935 

0.3082 

0.7929 

0.9375 

0.2581 

0.8099 

0.9647 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1729 

0.8148 

0.9918 

0.4122 

0.6246 

0.9297 

0.2436 

0.7071 

0.9597 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1729 

0.8148 

0.9918 

0.4122 

0.6246 

0.9297 

0.2436 

0.7071 

0.9597 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1736 

0.8153 

0.9893 

0.4141 

0.6232 

0.9304 

0.2447 

0.7064 

0.9589 
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Table A-6: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0 

0.6601 

0.7078 

0 

0.8926 

0.4964 

0 

0.7590 

0.5836 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.1044 

0.8029 

0.9632 

0.2324 

0.8214 

0.6030 

0.1441 

0.8121 

0.7417 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1526 

0.8078 

0.9471 

0.2383 

0.8078 

0.8014 

0.1861 

0.8078 

0.8682 

Logistic Regression (8 PCA) 
1 

2 

3 

0 

0.6321 

0.8488 

0 

0.9656 

0.3530 

0 

0.7640 

0.4986 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.1044 

0.8029 

0.9632 

0.2324 

0.8214 

0.6030 

0.1441 

0.8121 

0.7417 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1626 

0.7716 

0.9589 

0.2525 

0.8128 

0.7303 

0.1978 

0.7917 

0.8291 

Logistic Regression (11 PCA) 
1 

2 

3 

0 

0.8307 

0.9996 

0 

0.9997 

0.9426 

0 

0.9074 

0.9703 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.1491 

0.8247 

0.9590 

0.4070 

0.6076 

0.9142 

0.2182 

0.6997 

0.9361 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2358 

0.8463 

0.9875 

0.2878 

0.8434 

0.9321 

0.2592 

0.8449 

0.9590 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1867 

0.8434 

0.9954 

0.3017 

0.7927 

0.9242 

0.2306 

0.8173 

0.9585 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.1486 

0.8249 

0.9884 

0.3973 

0.6247 

0.9246 

0.2163 

0.7110 

0.9555 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1907 

0.8445 

0.9937 

0.3298 

0.7752 

0.9274 

0.2416 

0.8083 

0.9594 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.1484 

0.8253 

0.9933 

0.3969 

0.6274 

0.9243 

0.2161 

0.7129 

0.9576 
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Table A-7: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0 

0.5415 

0.4290 

0 

0.6700 

0.4152 

0 

0.5989 

0.4220 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.1471 

0.7808 

0.8873 

0.2284 

0.7681 

0.7642 

0.1789 

0.7744 

0.8212 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1594 

0.7914 

0.8258 

0.4198 

0.5224 

0.8159 

0.2311 

0.6294 

0.8208 

Logistic Regression (8 PCA) 
1 

2 

3 

0 

0.5859 

0.5599 

0 

0.7662 

0.4881 

0 

0.6640 

0.5215 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.1408 

0.7724 

0.8709 

0.1791 

0.7899 

0.7753 

0.1577 

0.7811 

0.8203 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1408 

0.7724 

0.8709 

0.1791 

0.7899 

0.7753 

0.1577 

0.7811 

0.8203 

Logistic Regression (11 PCA) 
1 

2 

3 

0 

0.7939 

0.9912 

0 

0.9953 

0.9375 

0 

0.8833 

0.9636 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.2057 

0.8464 

0.9935 

0.8111 

0.3554 

0.9286 

0.3282 

0.5006 

0.9600 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1919 

0.8083 

0.9853 

0.6101 

0.4659 

0.9293 

0.2919 

0.5911 

0.9564 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1828 

0.7917 

0.9851 

0.4166 

0.6173 

0.9142 

0.2541 

0.6937 

0.9483 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1900 

0.7978 

0.9832 

0.3458 

0.6953 

0.9207 

0.2452 

0.7430 

0.9509 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1893 

0.7981 

0.9832 

0.3545 

0.6870 

0.9203 

0.2468 

0.7384 

0.9507 
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Table A-8: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0 

0.6264 

0.5658 

0 

0.7052 

0.6187 

0 

0.6635 

0.5911 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.0812 

0.7362 

0.9791 

0.0831 

0.9490 

0.5810 

0.0821 

0.8292 

0.7292 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1925 

0.7996 

0.8462 

0.2950 

0.7152 

0.8506 

0.2330 

0.7550 

0.8484 

Logistic Regression (8 PCA) 
1 

2 

3 

0 

0.6193 

0.5713 

0 

0.7166 

0.5999 

0 

0.6644 

0.5853 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.0812 

0.7362 

0.9791 

0.0831 

0.9490 

0.5810 

0.0821 

0.8292 

0.7292 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1505 

0.7924 

0.8050 

0.4880 

0.4724 

0.7762 

0.2300 

0.5919 

0.7904 

Logistic Regression (11 PCA) 
1 

2 

3 

0 

0.8121 

0.9976 

0 

0.9989 

0.9464 

0 

0.8958 

0.9713 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.1926 

0.7925 

0.9937 

0.2933 

0.7896 

0.8595 

0.2325 

0.7910 

0.9217 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1676 

0.8083 

0.9824 

0.4184 

0.6141 

0.9201 

0.2394 

0.6979 

0.9502 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1691 

0.8035 

0.9854 

0.4138 

0.6200 

0.9155 

0.2401 

0.6999 

0.9492 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1679 

0.8059 

0.9915 

0.4005 

0.6317 

0.9206 

0.2366 

0.7082 

0.9547 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1679 

0.8069 

0.9907 

0.3990 

0.6324 

0.9224 

0.2364 

0.7091 

0.9553 
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Table A-9: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6021 

0.7844 

0.8171 

0.8918 

0.8807 

0.5294 

0.7189 

0.8298 

0.6425 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.5531 

0.8436 

0.6945 

0.5629 

0.8083 

0.7372 

0.5579 

0.8255 

0.7153 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3799 

0.8609 

0.8745 

0.8842 

0.7582 

0.6698 

0.5314 

0.8063 

0.7586 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6112 

0.7655 

0.8132 

0.8867 

0.8843 

0.4922 

0.7236 

0.8206 

0.6132 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.5529 

0.8436 

0.6935 

0.5578 

0.8083 

0.7381 

0.5554 

0.8255 

0.7151 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2479 

0.8500 

0.9435 

0.8986 

0.5406 

0.6939 

0.3886 

0.6609 

0.7997 

Logistic Regression (11 PCA) 
1 

2 

3 

0.5533 

0.7883 

0.9755 

0.0351 

0.9827 

0.8834 

0.0661 

0.8748 

0.9272 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.5779 

0.8663 

0.9868 

0.8896 

0.8777 

0.7944 

0.7006 

0.8720 

0.8802 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3514 

0.8869 

0.9920 

0.8988 

0.6935 

0.8445 

0.5053 

0.7784 

0.9123 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.3580 

0.8860 

0.9924 

0.8972 

0.7021 

0.8416 

0.5118 

0.7834 

0.9108 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3580 

0.8860 

0.9924 

0.8972 

0.7021 

0.8416 

0.5118 

0.7834 

0.9108 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3113 

0.8738 

0.9948 

0.8562 

0.6504 

0.8421 

0.4566 

0.7457 

0.9121 
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Table A-10: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6262 

0.7950 

0.7965 

0.9228 

0.8558 

0.5826 

0.7461 

0.8243 

0.6730 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.3048 

0.8774 

0.9859 

0.9567 

0.6723 

0.6799 

0.4623 

0.7613 

0.8048 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3101 

0.8617 

0.9370 

0.8759 

0.6401 

0.7681 

0.4580 

0.7346 

0.8442 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6364 

0.7701 

0.8448 

0.9044 

0.8910 

0.5259 

0.7471 

0.8262 

0.6483 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.3048 

0.8774 

0.9859 

0.9567 

0.6723 

0.6799 

0.4623 

0.7613 

0.8048 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2888 

0.8451 

0.9120 

0.8919 

0.5780 

0.7548 

0.4363 

0.6865 

0.8260 

Logistic Regression (11 PCA) 
1 

2 

3 

0.7872 

0.9120 

0.9770 

0.9368 

0.9385 

0.8743 

0.8555 

0.9251 

0.9228 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.3171 

0.8652 

0.9807 

0.8394 

0.6651 

0.8247 

0.4603 

0.7521 

0.8959 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3034 

0.8777 

0.9911 

0.8669 

0.6278 

0.8450 

0.4494 

0.7320 

0.9122 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.3182 

0.8676 

0.9942 

0.8314 

0.6711 

0.8394 

0.4603 

0.7568 

0.9103 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.3271 

0.8720 

0.9911 

0.8613 

0.6716 

0.8355 

0.4742 

0.7588 

0.9067 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3275 

0.8737 

0.9938 

0.8578 

0.6763 

0.8360 

0.4740 

0.7624 

0.9081 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.3273 

0.8701 

0.9912 

0.8530 

0.6752 

0.8350 

0.4731 

0.7604 

0.9064 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3328 

0.8747 

0.9939 

0.8659 

0.6800 

0.8364 

0.4808 

0.7651 

0.9084 
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Table A-11: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5586 

0.6389 

0.6173 

0.5748 

0.8510 

0.3186 

0.5666 

0.7299 

0.4203 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.3371 

0.8959 

0.8567 

0.8681 

0.6588 

0.7867 

0.4857 

0.7593 

0.8202 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2694 

0.8800 

0.8077 

0.8308 

0.4986 

0.8166 

0.4069 

0.6366 

0.8121 

Logistic Regression (8 PCA) 
1 

2 

3 

0 

0.6082 

0.6102 

0 

0.7280 

0.6167 

0 

0.6627 

0.6135 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.3455 

0.8949 

0.8582 

0.8681 

0.6571 

0.8051 

0.4943 

0.7578 

0.8308 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3455 

0.8949 

0.8582 

0.8681 

0.6571 

0.8051 

0.4943 

0.7578 

0.8308 

Logistic Regression (11 PCA) 
1 

2 

3 

0.0020 

0.7923 

0.9981 

0.0001 

0.9968 

0.9066 

0.0002 

0.8829 

0.9502 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.2558 

0.8621 

0.9981 

0.9309 

0.4908 

0.8434 

0.4014 

0.6255 

0.9143 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2735 

0.8539 

0.9874 

0.7919 

0.5979 

0.8638 

0.4065 

0.7033 

0.9215 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.2790 

0.8537 

0.9861 

0.7834 

0.6220 

0.8479 

0.4115 

0.7196 

0.9118 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.2903 

0.8641 

0.9893 

0.8103 

0.6301 

0.8545 

0.4274 

0.7288 

0.9170 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.2912 

0.8642 

0.9896 

0.8137 

0.6301 

0.8541 

0.4289 

0.7288 

0.9169 
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Table A-12: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6342 

0.7721 

0.8138 

0.9028 

0.8395 

0.6189 

0.7450 

0.8044 

0.7031 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.4492 

0.8279 

0.6904 

0.8692 

0.6260 

0.7420 

0.5923 

0.7129 

0.7153 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.4326 

0.8604 

0.8876 

0.8028 

0.7703 

0.8038 

0.5622 

0.8128 

0.8436 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6448 

0.7817 

0.8278 

0.9421 

0.8598 

0.6064 

0.7656 

0.8189 

0.7000 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.4492 

0.8279 

0.6904 

0.8692 

0.6260 

0.7420 

0.5923 

0.7129 

0.7153 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2546 

0.9030 

0.8895 

0.9094 

0.4843 

0.8190 

0.3979 

0.6305 

0.8528 

Logistic Regression (11 PCA) 
1 

2 

3 

0.7849 

0.9113 

0.9839 

0.9251 

0.9402 

0.8915 

0.8493 

0.9255 

0.9354 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.3033 

0.8629 

0.9926 

0.8828 

0.6430 

0.8100 

0.4514 

0.7369 

0.8920 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2815 

0.8862 

0.9677 

0.8943 

0.5691 

0.8572 

0.4282 

0.6931 

0.9091 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.2789 

0.8637 

0.9817 

0.8240 

0.6028 

0.8535 

0.4168 

0.7100 

0.9131 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3014 

0.8827 

0.9857 

0.8868 

0.6189 

0.8556 

0.4499 

0.7276 

0.9161 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3020 

0.8821 

0.9853 

0.8780 

0.6245 

0.8558 

0.4495 

0.7313 

0.9160 
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Table A-13: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.8688 

0 

0.9953 

0.9777 

0 

0.9810 

0.9201 

0 

0.9881 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8079 

0 

0.9976 

0.9880 

0 

0.9664 

0.8889 

0 

0.9817 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8230 

0 

0.9963 

0.9803 

0 

0.9694 

0.8948 

0 

0.9827 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8536 

0 

0.9957 

0.9801 

0 

0.9775 

0.9125 

0 

0.9865 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8079 

0 

0.9976 

0.9880 

0 

0.9664 

0.8889 

0 

0.9817 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8362 

0 

0.9962 

0.9798 

0 

0.9736 

0.9023 

0 

0.9848 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9468 

0 

0.9996 

0.9976 

0 

0.9977 

0.9715 

0 

0.9986 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9041 

0 

1 

0.9994 

0 

0.8672 

0.9494 

0 

0.9289 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9245 

0 

1 

1 

0 

0.9915 

0.9608 

0 

0.9957 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9210 

0 

0.9969 

0.9837 

0 

0.9926 

0.9514 

0 

0.9947 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9210 

0 

0.9969 

0.9837 

0 

0.9926 

0.9514 

0 

0.9947 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9205 

0 

0.9969 

0.9837 

0 

0.9925 

0.9511 

0 

0.9947 
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Table A-14: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.8113 

0 

0.9859 

0.9230 

0 

0.9696 

0.8636 

0 

0.9777 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.6988 

0 

0.9981 

0.9908 

0 

0.9337 

0.8195 

0 

0.9648 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8300 

0 

0.9861 

0.9247 

0 

0.9732 

0.8748 

0 

0.9796 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8051 

0 

0.9858 

0.9225 

0 

0.9681 

0.8598 

0 

0.9769 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.6988 

0 

0.9981 

0.9908 

0 

0.9337 

0.8195 

0 

0.9648 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8691 

0 

0.9836 

0.9115 

0 

0.9817 

0.8898 

0 

0.9826 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9372 

0 

0.9990 

0.9946 

0 

0.9955 

0.9650 

0 

0.9973 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7524 

0.0135 

1 

1 

0.0263 

0.9369 

0.8587 

0.0179 

0.9674 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9077 

0 

0.9880 

0.9356 

0 

0.9853 

0.9215 

0 

0.9867 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8833 

0 

0.9884 

0.9355 

0 

0.9853 

0.9087 

0 

0.9869 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8943 

0 

0.9885 

0.9355 

0 

0.9874 

0.9144 

0 

0.9879 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8962 

0 

0.9885 

0.9355 

0 

0.9880 

0.9154 

0 

0.9882 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.8957 

0 

0.9885 

0.9355 

0 

0.9874 

0.9152 

0 

0.9879 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8999 

0 

0.9885 

0.9355 

0 

0.9886 

0.9174 

0 

0.9885 
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Table A-15: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.7250 

0 

0.9945 

0.9706 

0 

0.9413 

0.8300 

0 

0.9672 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7950 

0 

0.9946 

0.9715 

0 

0.9624 

0.8745 

0 

0.9782 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7454 

0 

0.9979 

0.9887 

0 

0.9480 

0.8500 

0 

0.9723 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8173 

0 

0.9930 

0.9617 

0 

0.9679 

0.8836 

0 

0.9803 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7308 

0 

0.9980 

0.9902 

0 

0.9374 

0.8409 

0 

0.9667 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7308 

0 

0.9980 

0.9902 

0 

0.9374 

0.8409 

0 

0.9667 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9416 

0 

0.9992 

0.9962 

0 

0.9947 

0.9681 

0 

0.9970 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8832 

0 

1 

1 

0 

0.9832 

0.9380 

0 

0.9915 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9014 

0 

1 

1 

0 

0.9869 

0.9481 

0 

0.9934 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7239 

0 

0.9959 

0.9782 

0 

0.9418 

0.8321 

0 

0.9681 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8668 

0 

0.9961 

0.9783 

0 

0.9799 

0.9192 

0 

0.9879 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8199 

0 

0.9961 

0.9789 

0 

0.9689 

0.8924 

0 

0.9823 
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Table A-16: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.9113 

0 

0.9967 

0.9814 

0 

0.9908 

0.9451 

0 

0.9937 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.4484 

0 

0.9838 

0.9324 

0 

0.8213 

0.6056 

0 

0.8952 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7436 

0 

0.9994 

0.9969 

0 

0.9504 

0.8518 

0 

0.9743 

Logistic Regression (8 PCA) 
1 

2 

3 

0.9033 

0 

0.9961 

0.9781 

0 

0.9893 

0.9392 

0 

0.9927 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.4484 

0 

0.9838 

0.9324 

0 

0.8213 

0.6056 

0 

0.8952 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8870 

0 

0.9932 

0.9644 

0 

0.9855 

0.9241 

0 

0.9893 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9437 

0 

0.9993 

0.9962 

0 

0.9968 

0.9692 

0 

0.9981 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8420 

0 

1 

1 

0 

0.9127 

0.9142 

0 

0.9543 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8623 

0 

1 

1 

0 

0.9807 

0.9260 

0 

0.9902 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8356 

0 

1 

1 

0 

0.9744 

0.9104 

0 

0.9871 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8654 

0 

1 

1 

0 

0.9816 

0.9278 

0 

0.9907 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8660 

0 

1 

1 

0 

0.9818 

0.9282 

0 

0.9908 
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Table A-17: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.7039 

0 

0.8030 

0.9904 

0 

0.1109 

0.8229 

0 

0.1949 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8766 

0.0920 

0.5646 

0.7010 

0.2916 

0.7042 

0.7790 

0.1399 

0.6267 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8518 

0.1173 

0.8426 

0.9227 

0.1709 

0.6321 

0.8858 

0.1391 

0.7223 

Logistic Regression (8 PCA) 
1 

2 

3 

0.7212 

0 

0.8640 

0.9893 

0 

0.1918 

0.8343 

0 

0.3139 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8980 

0.0920 

0.5805 

0.7010 

0.2916 

0.7503 

0.7874 

0.1399 

0.6546 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8667 

0.1089 

0.8560 

0.9169 

0.1940 

0.6661 

0.8911 

0.1395 

0.7492 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9519 

0 

0.9869 

0.9984 

0 

0.9765 

0.9746 

0 

0.9817 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9637 

0.0852 

0.9961 

0.8066 

0.4873 

0.8863 

0.8782 

0.1451 

0.9380 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9567 

0.1716 

0.9962 

0.9602 

0.2488 

0.9393 

0.9584 

0.2031 

0.9669 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9532 

0.1924 

0.9943 

0.9666 

0.2371 

0.9369 

0.9599 

0.2124 

0.9648 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9532 

0.1924 

0.9943 

0.9666 

0.2371 

0.9369 

0.9599 

0.2124 

0.9648 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9527 

0.2042 

0.9967 

0.9694 

0.2402 

0.9368 

0.9610 

0.2207 

0.9658 
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Table A-18: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.7029 

0 

0.7774 

0.9861 

0 

0.1284 

0.8208 

0 

0.2205 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8086 

0.0891 

0.9077 

0.9215 

0.1707 

0.5269 

0.8614 

0.1171 

0.6667 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8492 

0.1462 

0.6735 

0.8329 

0.2596 

0.6509 

0.8410 

0.1870 

0.6620 

Logistic Regression (8 PCA) 
1 

2 

3 

0.7317 

0 

0.8925 

0.9888 

0 

0.2545 

0.8410 

0 

0.3960 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8086 

0.0891 

0.9077 

0.9215 

0.1707 

0.5269 

0.8614 

0.1171 

0.6667 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8739 

0.1253 

0.7209 

0.8444 

0.2854 

0.6845 

0.8589 

0.1742 

0.7022 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9503 

0 

0.9927 

0.9987 

0 

0.9772 

0.9739 

0 

0.9849 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9575 

0.1407 

0.9848 

0.9279 

0.3414 

0.9111 

0.9424 

0.1993 

0.9465 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9534 

0.1794 

0.9898 

0.9584 

0.2485 

0.9395 

0.9559 

0.2084 

0.9640 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9547 

0.1528 

0.9945 

0.9436 

0.2796 

0.9366 

0.9491 

0.1976 

0.9647 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.9542 

0.1756 

0.9921 

0.9598 

0.2664 

0.9258 

0.9570 

0.2117 

0.9578 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9534 

0.1809 

0.9956 

0.9608 

0.2656 

0.9297 

0.9571 

0.2152 

0.9615 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.9541 

0.1709 

0.9920 

0.9586 

0.2686 

0.9229 

0.9563 

0.2089 

0.9562 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9533 

0.1839 

0.9955 

0.9647 

0.2539 

0.9289 

0.9590 

0.2133 

0.9610 
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Table A-19: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6614 

0 

0.4112 

0.9867 

0 

0.0204 

0.7919 

0 

0.0388 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8820 

0.0915 

0.7960 

0.8955 

0.0862 

0.7743 

0.8887 

0.0888 

0.7850 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9213 

0.0951 

0.8230 

0.8794 

0.1586 

0.8556 

0.8999 

0.1189 

0.8390 

Logistic Regression (8 PCA) 
1 

2 

3 

0.6946 

0 

0.7596 

0.9748 

0 

0.1787 

0.8112 

0 

0.2894 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8895 

0.0516 

0.8107 

0.8611 

0.1058 

0.7941 

0.8751 

0.0693 

0.8023 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8895 

0.0516 

0.8107 

0.8611 

0.1058 

0.7941 

0.8751 

0.0693 

0.8023 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9468 

0 

0.9860 

0.9953 

0 

0.9613 

0.9705 

0 

0.9735 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9469 

0.1251 

0.9963 

0.9806 

0.1252 

0.9219 

0.9635 

0.1252 

0.9576 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9558 

0.1706 

0.9977 

0.9734 

0.2175 

0.9365 

0.9645 

0.1912 

0.9661 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9498 

0.1323 

0.9937 

0.9617 

0.2031 

0.9234 

0.9557 

0.1602 

0.9573 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9546 

0.1537 

0.9944 

0.9556 

0.2630 

0.9335 

0.9551 

0.1940 

0.9630 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9534 

0.1512 

0.9943 

0.9601 

0.2357 

0.9335 

0.9568 

0.1843 

0.9629 
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Table A-20: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.7125 

0 

0.7708 

0.9624 

0 

0.2799 

0.8188 

0 

0.4107 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8265 

0.0500 

0.8136 

0.8275 

0.1576 

0.6677 

0.8270 

0.0759 

0.7335 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8711 

0.0595 

0.8116 

0.7972 

0.2428 

0.7512 

0.8325 

0.0956 

0.7802 

Logistic Regression (8 PCA) 
1 

2 

3 

0.7238 

0 

0.8754 

0.9816 

0 

0.3082 

0.8332 

0 

0.4559 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8265 

0.0500 

0.8136 

0.8275 

0.1576 

0.6677 

0.8270 

0.0759 

0.7335 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8766 

0.1292 

0.8219 

0.8973 

0.1726 

0.7598 

0.8868 

0.1478 

0.7896 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9539 

0 

0.9905 

0.9980 

0 

0.9783 

0.9755 

0 

0.9844 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9315 

0.0602 

0.9947 

0.8898 

0.2140 

0.8768 

0.9101 

0.0939 

0.9321 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9484 

0.0969 

0.9906 

0.9282 

0.2226 

0.9304 

0.9382 

0.1350 

0.9596 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9493 

0.1066 

0.9901 

0.9315 

0.2334 

0.9312 

0.9403 

0.1463 

0.9598 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9479 

0.1269 

0.9914 

0.9540 

0.1959 

0.9339 

0.9510 

0.1541 

0.9618 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9483 

0.1210 

0.9907 

0.9475 

0.2071 

0.9343 

0.9479 

0.1527 

0.9617 
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Table A-21: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.8112 

0 

0.7865 

0.9226 

0 

0.6995 

0.8633 

0 

0.7404 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8423 

0.0757 

0.6395 

0.6864 

0.1335 

0.8075 

0.7564 

0.0966 

0.7137 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8565 

0.1333 

0.8781 

0.9603 

0.0013 

0.8122 

0.9054 

0.0026 

0.8439 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8393 

0 

0.8093 

0.9339 

0 

0.7638 

0.8841 

0 

0.7859 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8423 

0.0757 

0.6395 

0.6864 

0.1335 

0.8075 

0.7564 

0.0966 

0.7137 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8576 

0.2784 

0.7595 

0.8944 

0.0160 

0.8244 

0.8756 

0.0302 

0.7906 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8913 

0 

0.9944 

0.9985 

0 

0.9221 

0.9419 

0 

0.9569 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9194 

0.0999 

0.9931 

0.7536 

0.3872 

0.8357 

0.8283 

0.1588 

0.9076 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8949 

0.1474 

0.9974 

0.9940 

0.0241 

0.9158 

0.9418 

0.0414 

0.9548 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8896 

0.1438 

0.9949 

0.9964 

0.0095 

0.9102 

0.9400 

0.0178 

0.9507 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8896 

0.1438 

0.9949 

0.9964 

0.0095 

0.9102 

0.9400 

0.0178 

0.9507 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8884 

0 

0.9967 

0.9987 

0 

0.9135 

0.9404 

0 

0.9533 
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Table A-22: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.8011 

0 

0.7340 

0.8982 

0 

0.6900 

0.8469 

0 

0.7113 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8534 

0.0978 

0.9769 

0.8511 

0.2146 

0.7368 

0.8522 

0.1344 

0.8400 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8927 

0 

0.8612 

0.9561 

0 

0.8965 

0.9233 

0 

0.8785 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8439 

0 

0.8257 

0.9442 

0 

0.7804 

0.8912 

0 

0.8024 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8534 

0.0978 

0.9769 

0.8511 

0.2146 

0.7368 

0.8522 

0.1344 

0.8400 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8891 

0 

0.7372 

0.8800 

0 

0.9014 

0.8845 

0 

0.8111 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8874 

0 

0.9981 

0.9993 

0 

0.9273 

0.9401 

0 

0.9614 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8831 

0.1824 

0.9771 

0.9850 

0.0305 

0.8969 

0.9313 

0.0522 

0.9353 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8887 

0 

0.9951 

0.9986 

0 

0.9181 

0.9404 

0 

0.9551 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8845 

0 

0.9966 

0.9989 

0 

0.9185 

0.9382 

0 

0.9559 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8859 

0 

0.9893 

0.9970 

0 

0.9205 

0.9382 

0 

0.9537 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8843 

0 

0.9947 

0.9985 

0 

0.9175 

0.9379 

0 

0.9545 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.8864 

0 

0.9897 

0.9972 

0 

0.9219 

0.9385 

0 

0.9546 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8847 

0 

0.9957 

0.9987 

0 

0.9188 

0.9382 

0 

0.9557 
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Table A-23: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.8033 

0 

0.8159 

0.9303 

0 

0.6895 

0.8622 

0 

0.7474 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8640 

0.0890 

0.8149 

0.9165 

0.0121 

0.8329 

0.8895 

0.0212 

0.8238 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8648 

0 

0.9026 

0.9656 

0 

0.8392 

0.9124 

0 

0.8697 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8229 

0 

0.8219 

0.9356 

0 

0.7305 

0.8756 

0 

0.7735 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8796 

0.0866 

0.8532 

0.8798 

0.0928 

0.8424 

0.8797 

0.0896 

0.8478 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8796 

0.0866 

0.8532 

0.8798 

0.0928 

0.8424 

0.8797 

0.0896 

0.8478 

Logistic Regression (11 PCA) 
1 

2 

3 

0.9046 

0 

0.9836 

0.9941 

0 

0.9513 

0.9472 

0 

0.9672 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8857 

0.6331 

0.9917 

0.9972 

0.0061 

0.9012 

0.9382 

0.0122 

0.9443 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8941 

0.1851 

0.9976 

0.9962 

0.0127 

0.9207 

0.9424 

0.0238 

0.9576 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8888 

0 

0.9904 

0.9963 

0 

0.9117 

0.9395 

0 

0.9494 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8907 

0.0952 

0.9911 

0.9965 

0.0001 

0.9165 

0.9406 

0.0003 

0.9524 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8903 

0 

0.9914 

0.9967 

0 

0.9156 

0.9405 

0 

0.9520 
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Table A-24: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.6861 

0 

0.5915 

0.9056 

0 

0.3057 

0.7807 

0 

0.4031 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8702 

0.0747 

0.8207 

0.8906 

0.0393 

0.8477 

0.8803 

0.0515 

0.8340 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8703 

0.1522 

0.7899 

0.9054 

0.0014 

0.8582 

0.8875 

0.0027 

0.8227 

Logistic Regression (8 PCA) 
1 

2 

3 

0.8109 

0 

0.6945 

0.8605 

0 

0.7261 

0.8349 

0 

0.7099 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8702 

0.0747 

0.8207 

0.8906 

0.0393 

0.8477 

0.8803 

0.0515 

0.8340 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8754 

0.2874 

0.8172 

0.9213 

0.0022 

0.8675 

0.8978 

0.0044 

0.8416 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8948 

0 

0.9951 

0.9985 

0 

0.9290 

0.9438 

0 

0.9609 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8794 

0.0825 

0.9924 

0.8982 

0.1243 

0.8633 

0.8887 

0.0992 

0.9234 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8856 

0.1538 

0.9871 

0.9951 

0.0006 

0.9058 

0.9372 

0.0012 

0.9447 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8871 

0.0213 

0.9873 

0.9950 

0.0001 

0.9096 

0.9380 

0.0001 

0.9469 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8876 

0 

0.9906 

0.9966 

0 

0.9108 

0.9389 

0 

0.9490 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8877 

0 

0.9893 

0.9960 

0 

0.9113 

0.9388 

0 

0.9487 
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Table A-25: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and DSRC-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5546 

0.4501 

0.3897 

0.7208 

0.1260 

0.4213 

0.6268 

0.1969 

0.4049 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.8035 

0.6909 

0.7496 

0.7591 

0.7704 

0.7473 

0.7807 

0.7285 

0.7485 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7549 

0.7857 

0.9165 

0.9285 

0.6791 

0.7173 

0.8328 

0.7285 

0.8048 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5444 

0.3584 

0.4137 

0.6946 

0.1206 

0.4448 

0.6104 

0.1804 

0.4287 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.8086 

0.6909 

0.7515 

0.7588 

0.7704 

0.7556 

0.7830 

0.7285 

0.7535 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7200 

0.7520 

0.8914 

0.9106 

0.9330 

0.7329 

0.8042 

0.8328 

0.8044 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8327 

0.7198 

0.9967 

0.9162 

0.6428 

0.9343 

0.8725 

0.6791 

0.9645 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8904 

0.6137 

0.9939 

0.8254 

0.8344 

0.8516 

0.8567 

0.7073 

0.9173 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.7822 

0.7539 

0.9751 

0.9294 

0.5751 

0.8842 

0.8495 

0.6525 

0.9274 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8217 

0.8155 

0.9961 

0.9547 

0.6471 

0.9181 

0.8832 

0.7216 

0.9555 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7979 

0.8203 

0.9946 

0.9610 

0.5847 

0.9138 

0.8719 

0.6828 

0.9525 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7904 

0.8156 

0.9959 

0.9594 

0.5627 

0.9177 

0.8667 

0.6659 

0.9552 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.7979 

0.8203 

0.9946 

0.9610 

0.5847 

0.9138 

0.8719 

0.6828 

0.9525 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.7854 

0.8145 

0.9957 

0.9595 

0.5481 

0.9184 

0.8637 

0.6553 

0.9555 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.7885 

0.8165 

0.9956 

0.9607 

0.5590 

0.9149 

0.8661 

0.6636 

0.9536 
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Table A-26: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and DSRC-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5559 

0.4901 

0.4005 

0.7161 

0.1080 

0.4574 

0.6259 

0.1770 

0.4271 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7072 

0.7052 

0.9676 

0.9034 

0.6534 

0.9676 

0.7934 

0.6783 

0.7865 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7483 

0.7913 

0.8822 

0.9005 

0.6260 

0.8822 

0.8173 

0.6990 

0.8218 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5443 

0.3963 

0.4336 

0.6879 

0.1269 

0.4801 

0.6078 

0.1922 

0.4557 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7072 

0.7052 

0.9676 

0.9034 

0.6534 

0.6625 

0.7934 

0.6783 

0.7865 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7447 

0.7510 

0.8590 

0.8837 

0.5993 

0.7637 

0.8083 

0.6667 

0.8086 

Logistic Regression (11 PCA) 
1 

2 

3 

0.6454 

0.3779 

0.9996 

0.8734 

0.1554 

0.9288 

0.7423 

0.2202 

0.9629 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7862 

0.7442 

0.9810 

0.9335 

0.5674 

0.8953 

0.8536 

0.6439 

0.9362 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.7844 

0.7732 

0.9825 

0.9420 

0.5672 

0.8978 

0.8560 

0.6544 

0.9383 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8139 

0.8264 

0.9910 

0.9544 

0.6338 

0.9188 

0.8786 

0.7174 

0.9535 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8101 

0.8107 

0.9941 

0.9491 

0.6335 

0.9150 

0.8741 

0.7112 

0.9529 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7911 

0.8110 

0.9899 

0.9578 

0.5681 

0.9140 

0.8665 

0.6681 

0.9504 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8106 

0.8237 

0.9933 

0.9564 

0.6288 

0.9155 

0.8775 

0.7132 

0.9528 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.7917 

0.8088 

0.9909 

0.9571 

0.5709 

0.9135 

0.8666 

0.6693 

0.9506 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8011 

0.8234 

0.9936 

0.9603 

0.5990 

0.9151 

0.8735 

0.6935 

0.9527 
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Table A-27: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and Cellular-20 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5540 

0.2132 

0.4391 

0.7445 

0.0236 

s0.4591 

0.6353 

0.0424 

0.4489 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7778 

0.8131 

0.8443 

0.8904 

0.5976 

0.8103 

0.8302 

0.6889 

0.8270 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7557 

0.7816 

0.8636 

0.9173 

0.4374 

0.8352 

0.8287 

0.5609 

0.8492 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5321 

0.4830 

0.5101 

0.8551 

0.0262 

0.3784 

0.6560 

0.0496 

0.4345 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7809 

0.7320 

0.8649 

0.8788 

0.6079 

0.8066 

0.8270 

0.6642 

0.8347 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7362 

0.8014 

0.8434 

0.9178 

0.3791 

0.8201 

0.8170 

0.5147 

0.8316 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8893 

0.7679 

0.9904 

0.9334 

0.7211 

0.9606 

0.9108 

0.7437 

0.9753 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7589 

0.8121 

0.9962 

0.9845 

0.3843 

0.9044 

0.8571 

0.5217 

0.9481 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.8007 

0.7845 

0.9911 

0.9589 

0.5350 

0.9122 

0.8727 

0.6362 

0.9500 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7915 

0.7950 

0.9935 

0.9696 

0.4796 

0.9233 

0.8715 

0.5983 

0.9571 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7975 

0.7858 

0.9896 

0.9593 

0.5359 

0.9052 

0.8709 

0.6372 

0.9455 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8027 

0.7953 

0.9913 

0.9618 

0.5426 

0.9125 

0.8751 

0.6451 

0.9502 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8097 

0.7910 

0.9906 

0.9570 

0.5648 

0.9152 

0.8772 

0.6591 

0.9514 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.8010 

0.7867 

0.9914 

0.9592 

0.5381 

0.9126 

0.8730 

0.6390 

0.9504 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8080 

0.7951 

0.9908 

0.9590 

0.5616 

0.9134 

0.8770 

0.6582 

0.9505 
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Table A-28: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and Cellular-75 Scenario for Validation Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5785 

0.4112 

0.4452 

0.5756 

0.0828 

0.6549 

0.5770 

0.1379 

0.5301 

Decision Trees (6 PCA, Entropy) 
1 

2 

3 

0.7619 

0.6972 

0.8217 

0.8576 

0.6778 

0.7128 

0.8069 

0.6873 

0.7634 

Random Forest (6 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7756 

0.6439 

0.8692 

0.8710 

0.6564 

0.8023 

0.8205 

0.6974 

0.8344 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5957 

0.3785 

0.4890 

0.6839 

0.0956 

0.6160 

0.6368 

0.1527 

0.5452 

Decision Trees (8 PCA, Entropy) 
1 

2 

3 

0.7619 

0.6972 

0.8217 

0.8576 

0.6778 

0.7128 

0.8069 

0.6873 

0.7634 

Random Forest (8 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9233 

0.8044 

0.8683 

0.7243 

0.4223 

0.8016 

0.8118 

0.5539 

0.8336 

Logistic Regression (11 PCA) 
1 

2 

3 

0.6475 

0.3501 

0.9989 

0.8776 

0.1370 

0.9320 

0.7452 

0.1969 

0.9643 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7920 

0.6808 

0.9873 

0.9001 

0.6317 

0.8689 

0.8426 

0.6553 

0.9243 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.8505 

0.6498 

0.9920 

0.8559 

0.8042 

0.8474 

0.8532 

0.7188 

0.9140 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7730 

0.7833 

0.9846 

0.9486 

0.5195 

0.9131 

0.8519 

0.6247 

0.9475 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7784 

0.7767 

0.9885 

0.9463 

0.5382 

0.9124 

0.8542 

0.6358 

0.9489 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7834 

0.8042 

0.9893 

0.9546 

0.5464 

0.9177 

0.8606 

0.6507 

0.9522 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.7838 

0.8051 

0.9914 

0.9564 

0.5496 

0.9158 

0.8615 

0.6532 

0.9521 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.7917 

0.8088 

0.9909 

0.9571 

0.5709 

0.9135 

0.8666 

0.6693 

0.9506 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.7845 

0.8010 

0.9912 

0.9539 

0.5529 

0.9162 

0.8610 

0.6542 

0.9522 
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APPENDIX B: Prediction Results – Test 
Data 

The tables in Appendix B displays the prediction results using test data by operational condition, 

market penetration, and communication strategy. Precision, recall, and F1 score are reported for each 

prediction algorithm by traffic regime index (‘Index’.) 

Table B-1: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8941 

0.1888 

0.9841 

0.9816 

0.0635 

0.8893 

0.9358 

0.0950 

0.9343 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8868 

0 

0.9923 

0.9987 

0 

0.9158 

0.9393 

0 

0.9525 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8883 

0 

0.9984 

0.9995 

0 

0.9109 

0.9406 

0 

0.9526 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8861 

0 

0.9987 

0.9996 

0 

0.9040 

0.9394 

0 

0.9490 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8862 

0 

0.9987 

0.9996 

0 

0.9045 

0.9395 

0 

0.9493 
 

Table B-2: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8977 

0.1643 

0.9861 

0.9574 

0.1015 

0.9105 

0.9266 

0.1255 

0.9468 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8868 

0 

0.9923 

0.9983 

0 

0.9158 

0.9393 

0 

0.9525 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8856 

0 

0.9911 

0.9979 

0 

0.9117 

0.9384 

0 

0.9497 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8872 

0 

0.9906 

0.9977 

0 

0.9172 

0.9393 

0 

0.9525 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8901 

0 

0.9926 

0.9986 

0 

0.9214 

0.9412 

0 

0.9557 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.8866 

0 

0.9915 

0.9981 

0 

0.9151 

0.9391 

0 

0.9518 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8861 

0 

0.9939 

0.9988 

0 

0.9136 

0.9391 

0 

0.9520 
 

Table B-3: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8941 

0.3231 

0.9973 

0.9980 

0.0130 

0.9512 

0.9432 

0.0250 

0.9512 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9018 

20.3571 

0.9927 

0.9985 

0.0004 

0.9328 

0.9477 

0.0008 

0.9618 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8951 

0 

0.9861 

0.9959 

0 

0.9144 

0.9428 

0 

0.9489 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8954 

0 

0.9878 

0.9965 

0 

0.9154 

0.9433 

0 

0.9502 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8951 

0 

0.9863 

0.9960 

0 

0.9143 

0.9428 

0 

0.9489 
 

Table B-4: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Demand 

Operational Condition (OC #1) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8983 

0.6269 

0.9526 

0.9841 

0.0331 

0.9176 

0.9392 

0.0630 

0.9348 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8902 

0 

0.9876 

0.9963 

0 

0.9079 

0.9403 

0 

0.9461 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8924 

0 

0.9755 

0.9917 

0 

0.9144 

0.9394 

0 

0.9440 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8924 

0 

0.9901 

0.9972 

0 

0.9141 

0.9419 

0 

0.9506 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8919 

0 

0.9907 

0.9973 

0 

0.9129 

0.9417 

0 

0.9502 
 

Table B-5: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.3481 

0.7917 

0.9240 

0.0543 

0.9422 

0.8815 

0.0941 

0.8604 

0.9022 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2306 

0.8524 

0.9939 

0.3171 

0.8370 

0.9245 

0.2670 

0.8446 

0.9580 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1674 

0.8134 

0.9919 

0.4129 

0.6197 

0.9252 

0.2382 

0.7035 

0.9574 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1654 

0.8167 

0.9863 

0.4008 

0.6245 

0.9288 

0.2342 

0.7078 

0.9567 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1649 

0.8166 

0.9887 

0.3977 

0.6272 

0.9289 

0.2331 

0.7095 

0.9579 
 

Table B-6: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.1440 

0.8126 

0.9838 

0.4248 

0.6017 

0.8919 

0.2150 

0.6915 

0.9356 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2306 

0.8524 

0.9939 

0.3171 

0.8370 

0.9245 

0.2670 

0.8446 

0.9580 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.2068 

0.8527 

0.9925 

0.3102 

0.8176 

0.9277 

0.2482 

0.8348 

0.9590 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.1833 

0.8471 

0.9887 

0.3460 

0.7586 

0.9249 

0.2397 

0.8004 

0.9558 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1907 

0.8445 

0.9937 

0.3298 

0.7752 

0.9274 

0.2416 

0.8083 

0.9594 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.1705 

0.8438 

0.9923 

0.3936 

0.6999 

0.9245 

0.2379 

0.7651 

0.9572 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.2061 

0.8514 

0.9941 

0.3102 

0.8163 

0.9280 

0.2476 

0.8335 

0.9599 
 

Table B-7: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.2044 

0.8484 

0.9351 

0.7688 

0.3488 

0.9276 

0.3229 

0.4944 

0.9313 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1985 

0.8137 

0.9897 

0.6010 

0.4916 

0.9347 

0.2984 

0.6129 

0.9614 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1862 

0.7886 

0.9804 

0.3570 

0.6730 

0.9125 

0.2447 

0.7262 

0.9452 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1903 

0.7953 

0.9838 

0.3441 

0.6928 

0.9233 

0.2451 

0.7405 

0.9526 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1878 

0.7946 

0.9841 

0.3595 

0.6756 

0.9213 

0.2467 

0.7303 

0.9517 
 

Table B-8: Comparing Precision, Recall, F1 Score of Prediction Models for the Low Visibility 

Operational Condition (OC #2) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.1597 

0.7945 

0.9865 

0.4032 

0.6082 

0.9033 

0.2288 

0.6890 

0.9431 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.1674 

0.8036 

0.9792 

0.4027 

0.6211 

0.9178 

0.2365 

0.7007 

0.9475 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.1710 

0.8081 

0.9881 

0.4471 

0.5960 

0.9191 

0.2474 

0.6860 

0.9523 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.1675 

0.8066 

0.9883 

0.4005 

0.6268 

0.9243 

0.2362 

0.7054 

0.9552 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.1675 

0.8068 

0.9919 

0.3998 

0.6300 

0.9238 

0.2361 

0.7075 

0.9566 
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Table B-9: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.5679 

0.8819 

0.9484 

0.8892 

0.8549 

0.8227 

0.6931 

0.8682 

0.8811 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3335 

0.8778 

0.9973 

0.8948 

0.6796 

0.8294 

0.4859 

0.7661 

0.9056 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.3290 

0.8816 

0.9943 

0.9027 

0.6603 

0.8388 

0.4823 

0.7550 

0.9099 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3082 

0.8742 

0.9924 

0.8627 

0.6424 

0.8419 

0.4541 

0.7406 

0.9110 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3101 

0.8737 

0.9929 

0.8598 

0.6471 

0.8417 

0.4558 

0.7435 

0.9111 
 

Table B-10: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.3131 

0.8669 

0.9914 

0.9117 

0.6488 

0.7945 

0.4661 

0.7422 

0.8821 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.3335 

0.8778 

0.9973 

0.8948 

0.6796 

0.8294 

0.4859 

0.7661 

0.9056 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.3375 

0.8850 

0.9947 

0.9079 

0.6856 

0.8244 

0.4920 

0.7726 

0.9016 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.3555 

0.8698 

0.9944 

0.8785 

0.7111 

0.8254 

0.5062 

0.7825 

0.9020 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3275 

0.8737 

0.9938 

0.8578 

0.6763 

0.8360 

0.4740 

0.7624 

0.9081 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.3500 

0.8731 

0.9944 

0.8793 

0.7060 

0.8266 

0.5007 

0.7807 

0.9028 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3519 

0.8775 

0.9954 

0.8946 

0.7043 

0.8273 

0.5051 

0.7814 

0.9036 
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Table B-11: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.2739 

0.8824 

0.9899 

0.9285 

0.5245 

0.8638 

0.4230 

0.6580 

0.9226 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2574 

0.8478 

0.9914 

0.7939 

0.5570 

0.8661 

0.3888 

0.6723 

0.9246 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.2860 

0.8528 

0.9860 

0.8057 

0.6186 

0.8428 

0.4222 

0.7171 

0.9088 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.2997 

0.8689 

0.9888 

0.8361 

0.6302 

0.8532 

0.4412 

0.7305 

0.9160 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.3008 

0.8692 

0.9894 

0.8400 

0.6300 

0.8535 

0.4429 

0.7305 

0.9164 
 

Table B-12: Comparing Precision, Recall, F1 Score of Prediction Models for the Weather + 

Incidents Operational Condition (OC #3) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.2852 

0.8157 

0.9876 

0.5986 

0.7249 

0.8356 

0.3863 

0.7677 

0.9053 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.2841 

0.8727 

0.9852 

0.8536 

0.6039 

0.8516 

0.4263 

0.7139 

0.9135 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.2914 

0.8774 

0.9904 

0.8735 

0.6116 

0.8513 

0.4370 

0.7207 

0.9156 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.3055 

0.8762 

0.9893 

0.8629 

0.6382 

0.8552 

0.4512 

0.7385 

0.9174 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.2945 

0.8778 

0.9893 

0.8599 

0.6214 

0.8568 

0.4387 

0.7277 

0.9183 
 

Table B-13: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9184 

0 

0.9990 

0.9952 

0 

0.8691 

0.9553 

0 

0.9295 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8898 

0 

0.9898 

0.9466 

0 

0.9849 

0.9173 

0 

0.9873 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9285 

0 

0.9959 

0.9779 

0 

0.9916 

0.9526 

0 

0.9938 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9396 

0 

0.9959 

0.9779 

0 

0.9942 

0.9584 

0 

0.9950 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9390 

0 

0.9959 

0.9779 

0 

0.9940 

0.9581 

0 

0.9950 
 

Table B-14: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7538 

0 

1 

0.9994 

0 

0.9357 

0.8594 

0 

0.9668 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8898 

0 

0.9898 

0.9466 

0 

0.9849 

0.9173 

0 

0.9873 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7999 

0 

0.9898 

0.9472 

0 

0.9637 

0.8673 

0 

0.9766 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8997 

0 

0.9900 

0.9472 

0 

0.9878 

0.9228 

0 

0.9889 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8962 

0 

0.9885 

0.9355 

0 

0.9880 

0.9154 

0 

0.9882 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.8942 

0.0000 

0.9900 

0.9472 

0.0000 

0.9867 

0.9199 

0.0000 

0.9883 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8964 

0 

0.9900 

0.9472 

0 

0.9872 

0.9211 

0 

0.9886 
 

Table B-15: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8947 

0 

1 

1 

0 

0.9857 

0.9444 

0 

0.9928 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9092 

0 

1 

1 

0 

0.9888 

0.9525 

0 

0.9944 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8269 

0 

0.9959 

0.9779 

0 

0.9707 

0.8960 

0 

0.9831 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8836 

0 

0.9960 

0.9778 

0 

0.9837 

0.9283 

0 

0.9898 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8773 

0 

0.9960 

0.9777 

0 

0.9824 

0.9247 

0 

0.9891 
 

Table B-16: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #4) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8737 

0 

1 

1 

0 

0.8806 

0.9326 

0 

0.9365 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8296 

0 

1 

1 

0 

0.9724 

0.9069 

0 

0.9860 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8308 

0 

1 

1 

0 

0.9727 

0.9076 

0 

0.9861 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8596 

0 

1 

1 

0 

0.9798 

0.9245 

0 

0.9898 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8548 

0 

1 

1 

0 

0.9787 

0.9217 

0 

0.9892 
 

Table B-17: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9608 

0.0886 

0.9883 

0.8079 

0.4518 

0.9198 

0.8777 

0.1482 

0.9528 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9534 

0.1854 

0.9932 

0.9572 

0.2765 

0.9320 

0.9553 

0.2219 

0.9617 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9501 

0.2063 

0.9955 

0.9721 

0.2098 

0.9401 

0.9609 

0.2081 

0.9670 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9510 

0.2130 

0.9965 

0.9666 

0.2509 

0.9395 

0.9588 

0.2304 

0.9671 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9512 

0.2129 

0.9967 

0.9671 

0.2509 

0.9389 

0.9591 

0.2303 

0.9669 
 

Table B-18: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9363 

0.1077 

0.9968 

0.9573 

0.1724 

0.8813 

0.9467 

0.1325 

0.9355 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9534 

0.1854 

0.9932 

0.9572 

0.2765 

0.9320 

0.9553 

0.2219 

0.9617 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9521 

0.1734 

0.9929 

0.9545 

0.2671 

0.9300 

0.9533 

0.2103 

0.9604 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.9558 

0.1771 

0.9896 

0.9528 

0.2986 

0.9244 

0.9543 

0.2224 

0.9559 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9534 

0.1809 

0.9956 

0.9608 

0.2656 

0.9297 

0.9571 

0.2152 

0.9615 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.9558 

0.1823 

0.9887 

0.9549 

0.2910 

0.9279 

0.9553 

0.2241 

0.9573 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9552 

0.1884 

0.9906 

0.9565 

0.2918 

0.9296 

0.9558 

0.2290 

0.9591 
 

Table B-19: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9528 

0.1452 

0.9975 

0.9744 

0.1654 

0.9384 

0.9634 

0.1546 

0.9671 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9530 

0.1665 

0.9974 

0.9768 

0.1745 

0.9411 

0.9648 

0.1704 

0.9685 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9437 

0.1053 

0.9931 

0.9590 

0.1613 

0.9151 

0.9513 

0.1274 

0.9525 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9478 

0.1357 

0.9936 

0.9639 

0.1742 

0.9345 

0.9558 

0.1526 

0.9631 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9472 

0.1325 

0.9947 

0.9646 

0.1695 

0.9329 

0.9558 

0.1487 

0.9628 
 

Table B-20: Comparing Precision, Recall, F1 Score of Prediction Models for the Bottleneck 

Trouble Operational Condition (OC #5) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9456 

0.0577 

0.9912 

0.7565 

0.3904 

0.9108 

0.8406 

0.1006 

0.9493 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.9471 

0.1179 

0.9896 

0.9375 

0.2339 

0.9273 

0.9423 

0.1567 

0.9574 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.9458 

0.1361 

0.9939 

0.9596 

0.1950 

0.9277 

0.9527 

0.1603 

0.9597 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.9465 

0.1318 

0.9925 

0.9529 

0.2020 

0.9339 

0.9497 

0.1595 

0.9623 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.9466 

0.1339 

0.9925 

0.9529 

0.2047 

0.9345 

0.9497 

0.1619 

0.9626 
 

Table B-21: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.9095 

0.1034 

0.9930 

0.7743 

0.3443 

0.8446 

0.8364 

0.1591 

0.9128 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8880 

0.1467 

0.9975 

0.9980 

0.0053 

0.9168 

0.9398 

0.0102 

0.9555 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8871 

0.0643 

0.9950 

0.9972 

0.0054 

0.9095 

0.9389 

0.0100 

0.9504 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8830 

0 

0.9951 

0.9981 

0 

0.9127 

0.9370 

0 

0.9521 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8833 

1 

0.9950 

0.9980 

0.0005 

0.9137 

0.9372 

0.0010 

0.9526 
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Table B-22: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8854 

0.1705 

0.9961 

0.9840 

0.0537 

0.8865 

0.9321 

0.0816 

0.9381 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8880 

0.1467 

0.9975 

0.9980 

0.0053 

0.9168 

0.9398 

0.0102 

0.9555 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8841 

0.0920 

0.9965 

0.9961 

0.0038 

0.9083 

0.9368 

0.0074 

0.9504 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8879 

0.1667 

0.9868 

0.9953 

0.0010 

0.9192 

0.9385 

0.0019 

0.9518 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8843 

0 

0.9947 

0.9985 

0 

0.9175 

0.9379 

0 

0.9545 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.8888 

0.1538 

0.9881 

0.9958 

0.0010 

0.9216 

0.9392 

0.0019 

0.9537 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8873 

0.1818 

0.9946 

0.9979 

0.0010 

0.9185 

0.9394 

0.0019 

0.9551 
 

Table B-23: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8813 

0.1313 

0.9980 

0.9879 

0.0229 

0.8896 

0.9316 

0.0390 

0.9407 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8941 

0.3129 

0.9973 

0.9990 

0.0073 

0.9226 

0.9436 

0.0142 

0.9585 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8877 

0.0833 

0.9900 

0.9962 

0.0001 

0.9091 

0.9388 

0.0002 

0.9479 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8905 

0.1429 

0.9903 

0.9962 

0.0001 

0.9166 

0.9404 

0.0002 

0.9520 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8896 

0 

0.9913 

0.9967 

0 

0.9144 

0.9401 

0 

0.9513 
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Table B-24: Comparing Precision, Recall, F1 Score of Prediction Models for the Many Incidents 

Operational Condition (OC #6) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8867 

0.0744 

0.9855 

0.9321 

0.0695 

0.8940 

0.9088 

0.0719 

0.9375 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8849 

0.0630 

0.9842 

0.9933 

0.0006 

0.9093 

0.9360 

0.0012 

0.9452 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.88607 

0.04098 

0.99282 

0.99713 

0.00038 

0.91169 

0.93833 

0.00076 

0.95053 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8866 

0 

0.9900 

0.9963 

0 

0.9140 

0.9382 

0 

0.9505 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8863 

0 

0.9902 

0.9964 

0 

0.9131 

0.9381 

0 

0.9501 
 

Table B-25: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and DSRC-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5564 

0.4532 

0.3918 

0.7228 

0.1262 

0.4253 

0.6288 

0.1975 

0.4078 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5469 

0.3571 

0.4137 

0.6945 

0.1211 

0.4483 

0.6119 

0.1808 

0.4303 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8336 

0.7218 

0.9967 

0.9155 

0.6475 

0.9349 

0.8726 

0.6826 

0.9648 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.8873 

0.6294 

0.9710 

0.8319 

0.8051 

0.8699 

0.8587 

0.7065 

0.9177 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.7819 

0.7540 

0.9756 

0.9293 

0.5763 

0.8845 

0.8492 

0.6533 

0.9278 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8188 

0.8269 

0.9941 

0.9574 

0.6558 

0.9124 

0.8827 

0.7314 

0.9515 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7902 

0.8190 

0.9951 

0.9638 

0.5605 

0.9145 

0.8684 

0.6655 

0.9531 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7910 

0.8160 

0.9953 

0.9594 

0.5664 

0.9171 

0.8671 

0.6687 

0.9546 
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Prediction Algorithm Index Precision Recall F1 Score 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.7862 

0.8170 

0.9941 

0.9600 

0.5546 

0.9154 

0.8645 

0.6607 

0.9531 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.7860 

0.8163 

0.9952 

0.9596 

0.5527 

0.9178 

0.8642 

0.6591 

0.9549 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.7873 

0.8169 

0.9946 

0.9598 

0.5579 

0.9154 

0.8650 

0.6630 

0.9534 
 

Table B-26: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and DSRC-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5539 

0.5060 

0.4047 

0.7183 

0.1112 

0.4589 

0.6255 

0.1823 

0.4301 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5433 

0.4026 

0.4371 

0.6878 

0.1309 

0.4824 

0.6071 

0.1976 

0.4586 

Logistic Regression (11 PCA) 
1 

2 

3 

0.6439 

0.3838 

0.9995 

0.8728 

0.1591 

0.9273 

0.7411 

0.2250 

0.9621 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7754 

0.7478 

0.9923 

0.9463 

0.5549 

0.8784 

0.8524 

0.6371 

0.9319 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.7827 

0.7767 

0.9831 

0.9436 

0.5676 

0.8966 

0.8556 

0.6559 

0.9379 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.8188 

0.8269 

0.9941 

0.9574 

0.6558 

0.9124 

0.8827 

0.7314 

0.9515 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8128 

0.8279 

0.9930 

0.9563 

0.6507 

0.9065 

0.8787 

0.7287 

0.9478 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7819 

0.7540 

0.9756 

0.9293 

0.5763 

0.8845 

0.8492 

0.6533 

0.9278 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8106 

0.8237 

0.9933 

0.9564 

0.6288 

0.9155 

0.8775 

0.7132 

0.9528 

Random Forest (11 PCA, Entropy, 

1000 trees) 

1 

2 

3 

0.7827 

0.8022 

0.9894 

0.9535 

0.5445 

0.9190 

0.8597 

0.6487 

0.9529 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8206 

0.8273 

0.9931 

0.9571 

0.6596 

0.9123 

0.8836 

0.7340 

0.9510 
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Table B-27: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and Cellular-20 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5551 

0.2220 

0.4392 

0.7445 

0.0248 

0.4597 

0.6360 

0.0446 

0.4492 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5333 

0.4748 

0.5100 

0.8554 

0.0260 

0.3784 

0.6570 

0.0493 

0.4345 

Logistic Regression (11 PCA) 
1 

2 

3 

0.8887 

0.7684 

0.9902 

0.9342 

0.7179 

0.9608 

0.9109 

0.7423 

0.9753 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7694 

0.8082 

0.9887 

0.9783 

0.4046 

0.9141 

0.8614 

0.5392 

0.9499 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.8580 

0.7138 

0.9719 

0.9047 

0.7373 

0.8874 

0.8808 

0.7254 

0.9277 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7874 

0.8002 

0.9949 

0.9711 

0.4629 

0.9262 

0.8697 

0.5865 

0.9593 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.8031 

0.7825 

0.9889 

0.9578 

0.5494 

0.9058 

0.8737 

0.6456 

0.9455 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.8022 

0.7926 

0.9911 

0.9614 

0.5392 

0.9121 

0.8746 

0.6418 

0.9499 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.8098 

0.8031 

0.9903 

0.9607 

0.5620 

0.9161 

0.8788 

0.6613 

0.9518 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.8007 

0.7845 

0.9911 

0.9589 

0.5350 

0.9122 

0.8727 

0.6362 

0.9500 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.8078 

0.8031 

0.9906 

0.9614 

0.5568 

0.9149 

0.8780 

0.6576 

0.9512 
 

Table B-28: Comparing Precision, Recall, F1 Score of Prediction Models Overall (All 

Operational Conditions) and Cellular-75 Scenario for Test Data Set 

Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (6 PCA) 
1 

2 

3 

0.5774 

0.4136 

0.4457 

0.5757 

0.0838 

0.6544 

0.5765 

0.1394 

0.5303 

Logistic Regression (8 PCA) 
1 

2 

3 

0.5958 

0.3833 

0.4900 

0.6850 

0.0964 

0.6170 

0.6373 

0.1540 

0.5462 
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Prediction Algorithm Index Precision Recall F1 Score 

Logistic Regression (11 PCA) 
1 

2 

3 

0.6469 

0.3510 

0.9988 

0.8775 

0.1373 

0.9320 

0.7448 

0.1974 

0.9643 

Decision Trees (11 PCA, Entropy) 
1 

2 

3 

0.7855 

0.6171 

0.9834 

0.8593 

0.6014 

0.8887 

0.8208 

0.6091 

0.9337 

Decision Trees (11 PCA, Gini) 
1 

2 

3 

0.8494 

0.6504 

0.9916 

0.8557 

0.8031 

0.8472 

0.8525 

0.7187 

0.9137 

Random Forest (11 PCA, Entropy, 10 

trees) 

1 

2 

3 

0.7774 

0.7847 

0.9873 

0.9484 

0.5390 

0.9104 

0.8544 

0.6390 

0.9473 

Random Forest (11 PCA, Gini, 10 

trees) 

1 

2 

3 

0.7763 

0.8045 

0.9900 

0.9575 

0.5318 

0.9121 

0.8574 

0.6404 

0.9495 

Random Forest (11 PCA, Entropy, 250 

trees) 

1 

2 

3 

0.7892 

0.8113 

0.9902 

0.9589 

0.5676 

0.9115 

0.8658 

0.6679 

0.9493 

Random Forest (11 PCA, Gini, 250 

trees) 

1 

2 

3 

0.7856 

0.8028 

0.9915 

0.9547 

0.5568 

0.9161 

0.8619 

0.6576 

0.9523 

Random Forest (11 PCA, Entropy, 1000 

trees) 

1 

2 

3 

0.7832 

0.8016 

0.9894 

0.9537 

0.5447 

0.9186 

0.8601 

0.6487 

0.9527 

Random Forest (11 PCA, Gini, 1000 

trees) 

1 

2 

3 

0.7824 

0.8029 

0.9922 

0.9546 

0.5501 

0.9160 

0.8600 

0.6529 

0.9526 
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