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1 Executive Summary 
The North Central Texas Council of Governments (NCTCOG) engaged the Center for Transportation 
Research (CTR) at The University of Texas to conduct a planned four-year study to analyze the status and 
progress of connected/autonomous vehicle (CAV) development, to determine what the wide ranging 
effects of adoption of the technology might be on society and economics in North Central Texas, and, 
ultimately, to begin constructing scenarios and methods to account for these effects in long-range 
planning. Part I begins by examining the state of technology for both autonomous and connected vehicles 
and provides evidence that the discrete technologies to enable both vehicle capabilities are nearing market 
readiness. The paper also draws a contrast between the two technologies as they are each being developed 
in response to distinct factors. Finally, Part I examines certain policy, privacy and security questions. 

In regard to autonomous vehicles, private automakers seeking to affect commercial markets are leading 
the way. With mass production, the components needed for autonomous vehicles, such as a LIDAR units, 
will become exponentially more affordable. Alternatively, a select group of automakers is relying on 
developing advanced artificial intelligence to read camera images and enable autonomous driving. 
Projections by automakers indicate that this technology will be commercially available by 2020 and these 
developments should minimize the end-cost of autonomous systems.  

The implementation of connected vehicle systems is being spurred by a proposed federal mandate for the 
inclusion of vehicle-to-vehicle (V2V) communications in all new vehicles by 2023. The mandate, which is 
being reviewed by the Federal Office of Management and Budget, is expected to be decided on by the 
second quarter of 2017. Upon implementation of a mature V2V system, in conjunction with a vehicle-to-
infrastructure (V2I) communication, more than 80 percent of light vehicle crashes could be avoided. 

Part II of this report looks at CAV adoption and finds that there will likely be decades of mixed use between 
autonomous and human-driven vehicles. In addition, this section discusses existing adoption predictions 
from private consultants and academics, provides adoption estimates of CAVs based on adoption rates of 
similar technologies in the past, and proposes assumptions for three planning scenarios. Although the 
implementation timeline is highly uncertain due to the complexity of factors used, the market is susceptible 
to certain disruptor entities and occurrences that could have significant effects on adoption of autonomous 
vehicles. In particular, ridesharing—which is increasingly becoming a larger part of the portfolio of 
traditional auto manufacturers—is growing rapidly and could potentially disrupt adoption models. 

Finally, Part III describes the approach followed in order to propose 112 potential planning scenarios that 
are expected to reflect the wide range of potential CAV impacts. The proposed scenarios are built based 
on the analysis of possible adoption timelines for vehicle automation and connectivity, and consider the 
impact of additional behavioral and technological factors.  The combinations of assumptions proposed in 
this section lead to scenarios that may be modeled in a simplified manner using existent regional planning 
methodologies. The limitations of traditional modeling tools may limit the observed impacts of CAVs, 
which can motivate the exploration of more advanced tools such as activity-based models and dynamic 
traffic assignment. 
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Part I: The State of CAV Technology 

2 Introduction 
There is substantial anticipation and excitement in the area of connected/automated vehicles (CAVs) and 
their potential to change mobility. Given that metropolitan planning organizations (MPOs) incorporate a 
multi-decade planning horizon, the North Central Texas Council of Governments (NCTCOG) has begun to 
consider the implications of CAVs now, before their widespread implementation. To this end, NCTCOG has 
engaged the Center for Transportation Research (CTR) at The University of Texas to conduct a planned four-
year study to analyze the status and progress of CAV development, what the wide ranging effects of 
adoption of the technology might be on society and economics in North Central Texas and, ultimately, to 
begin constructing scenarios and methods for long-range planning accounting for these effects. In year 
one, CTR was asked to: 

• Survey and categorize existing information concerning CAVs, ranging from existing technologies to 
anticipated policy issues. 

• Explore the potential impacts of CAVs across the entire socio-economic spectrum. 
• Develop potential near-future transportation system scenarios, taking into consideration various. CAVs 

market shares, levels of infrastructure deployment, and assumptions regarding human behavior and 
decision making, while focusing on scenarios appropriate for the characteristics of the NCTCOG region. 

• Study appropriate methodologies to quantify and eventually model the impact of CAVs. 
• Investigate changes needed to the transportation planning process to account for the effects of CAVs 

on both travel demand and transportation network performance.  
 
This report presents the results of the CTR investigation. Part I, presented here, will explore the state of 
technology in-depth, both of autonomous vehicles and connected vehicles, and draw conclusions about 
development timelines. It will then explore private, public, and academic research that has been done to 
develop adoption timelines in an effort to draw conclusions as to when the effects of implementation of 
the new technology will begin to influence mobility. Finally, Part I will offer a brief overview of law, policy, 
security, privacy, and liability issues that surround the development of the CAV technology and will present 
the current state of action taken by governments at all levels. Part II explores adoption timelines and Part 
III examines how this adoption may affect traditional planning models. 

2.1 Background: Connected Vs. Autonomous Vehicles 
CTR researchers found that there are two discernable areas of development in CAV technology: one of 
autonomous vehicle (AV) development and one of connected vehicle (CV) development. While a complete 
system should benefit from vehicles with both autonomous and connected capabilities, the motivation to 
produce the two types is driven by a split between public and private interests. Private automakers 
(sometimes referred to as Original Equipment Manufacturers or OEMs) are competitively developing CVs 
at a very rapid pace. Due to significant market competition and the need to protect business secrets, 
OEMs are not sharing their first-hand information. Instead, the researchers found themselves relying on 
news articles and information from product suppliers that do not have such tight competition for their 
goods. In parallel, CV development has been a goal of the federal government since the bandwidth needed 
to support them, the dedicated short-range communication (DSRC) channel, was first reserved in 1999. In 
the years since, the National Highway Transportation Safety Administration (NHTSA) and the United States 
Department of Transportation (USDOT) have been methodically working toward evaluation of CV 
effects—culminating in early 2016 with the submission of a notice of proposed rulemaking to the Office 
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of Budget (1). NHTSA and other USDOT entities have produced numerous informative reports that provide 
detailed information about the state of CV technology.  

2.2 Background: NHTSA Levels of Automation 
As an ongoing reference throughout this report, the general levels of automation referred to are based 
on standards set by the Society of Automotive Engineers (SAE) as described in Figure 1. Importantly, the 
researchers note that SAE Level 4 is considered an automobile that still has a steering wheel and pedals 
and that might need human control in conditions that are non-conducive to driving (heavy snow, certain 
mountainous areas, etc.) However, at Level 4, in the majority of situations, vehicles will be able to safely 
navigate to their destination without any reliance on a human driver. SAE Level 5 is the instance in which 
steering wheels and pedals are completely removed from the vehicle and the AV will be able to navigate 
in all conditions and locations autonomously. The importance of this distinction is seen in the projections 
of automakers, where it appears that Level 4 vehicles will be commercially available as soon as 2020, while 
Level 5 vehicles may take significantly longer to develop.  
 

 
Figure 1: SAE Levels of Automation (2). 
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3 Autonomous Vehicle Technology 
CV and AV development is following two distinct but parallel paths. As such they will be analyzed in 
discrete sections of this paper. Beginning with AVs, this section moves through every component that may 
be added to a traditional vehicle to enable semi-autonomous and autonomous driving functions. Then the 
commercial availability of the combinations of these technologies to produce semi-autonomous and AVs 
is evaluated, resulting in a predictive conclusion of commercial availability of Level 4 AVs by 2020. In 
addition, the paper predicts that there will be significant increases in roadway safety through the addition 
of semi-autonomous and autonomous features. 

3.1 Sensors 
AV systems receive input from a myriad of information gathering sensors that process the received data 
and ultimately produce two parameters: a longitudinal control that manages the direction in which the 
car travels and a directed rate of speed. Common sensors found in AVs include Light Detection and 
Ranging (LIDAR), video cameras, radar, and ultrasonic sensors that take in information from the 
perception of the physical world, and sensors that obtain their data through signal processing, such as 
through global positioning systems (GPS), vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 
communication. In addition, the modern vehicle contains a host of mechanical sensors, such as odometry 
and pressure sensors, that provide intrinsic data about the activity and performance of the vehicle itself. 
Figure 2 shows the combination of these sensors as described in one of the Google patents for its AV: 

 
Figure 2: Autonomous Vehicle Sensor Suite (3). 

Automated vehicles do not work like the human brain. Humans draw in information via their five senses 
and perceive one three-dimensional world in which they move, generally seeking obstacle avoidance. In 
contrast, AVs take a more piecemeal approach: each sensor is assigned a discrete task, such as detecting 
the color of a traffic light or determining the probable path of a surrounding object (for a potential list of 
tasks, see Figure 3). Upon every performance iteration of its discrete task, the sensors, usually in 
conjunction with an individual graphical processing unit (GPU), relay their findings to a central processing 
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unit (CPU). The CPU then stacks the various 
findings, like building blocks, in complex 
algorithms to chart a path for the vehicle. Since 
there is no ascertainable universal truth as to how 
many building blocks are needed for a “close 
enough” or “better than” approximation of human 
driving, every unique entity working on developing 
a functioning AV appears to have a different view 
of the necessary combination and placement of 
sensors required for safe autonomous driving. 
Usually these combinations are driven by cost, 
available technology, and varying capabilities of 
proprietary hardware and software (3). For 
instance, there is one group of automakers seeking 
to work without LIDAR, while another group relies 
on it as their key sensor (to be explored further 
below). Figure 4 provides a menu of each sensor 
and a corresponding potential functionality. The research team analyzed several private industry car 
formulas: Google, the Singapore-MIT Alliance for Research and Technology (SMART), and Mercedes Benz, 
particularly in regard to their Level 3 autonomous truck. This information is available in Appendix A.  
 

 

Common sensors utilized in AV development and their limiting elements are itemized in Figure 5, and 
explored in greater detail in the sections that follow. 

Figure 4: Menu of discrete sensor roles (4). 

• Traffic-Sign Recognition 
• Obstacle Detection 
• Lane Detection 
• Terrain Mapping 
• Vehicle Detection 
• Oncoming-Vehicle Detection 
• Blind-Spot Monitor 
• Parking-Lot Detection 
• Scene Classification and Tunnel 

Detection 
• Pedestrian Detection 

Figure 3: Potential discrete sensor tasks (4). 
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3.1.1 LIDAR 
Most familiar as the rotating piece of equipment mounted on the roofs of AVs, LIDAR sensors can be used 
for obstacle detection and environmental 
mapping. By emitting pulses of ultraviolet, 
visible, or near infrared light (using lasers) 
and then recording the amount of time to 
read a reflection of the pulse, LIDAR can 
calculate, based on the speed of light, the 
distance to the reflective point. Through 
rotating light emission and multiple lasers 
refracting at different angles, the returned 
readings can be processed to create a three-
dimensional point cloud of the sensor’s 
surroundings (Figure 6) (4).. By matching up 
the point cloud with high resolution map, 
the system can derive information about 
location and dynamic objects in the 
environment.  

Capabilities and limitations 
• High-precision pre-mapping is required to geolocate the vehicle and delineate dynamic and static 

objects in the environment.  
• LIDAR is currently effective to a range of 200 meters. 
• Because each laser remains in one plane at a fixed 

angle in relation to the ground, vertical accuracy is 
heavily dependent on the number of lasers emitted 
from the sensor—common LIDAR is available from 
four lasers to sixty-four lasers (see Figure 7 and 
Figure 8) (5). 

• Costs for LIDAR range from $8,000 for a four-laser 
unit to $75,000 for a 64-laser unit. 

• Because the system produces its own light, LIDAR 
works well at night. 

• Reflection from falling snow and rain can distort the 
LIDAR point clouds and have a negative effect on the 
sensor’s capabilities 

Figure 5: Summary of Common Sensors.

Figure 7: Multiple laser LIDAR representation (6). 

Figure 6: 64-laser LIDAR point cloud (5). 
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Technological challenges 
The accuracy of LIDAR is heavily dependent on the 
number of lasers emitted from the LIDAR sensor. 
Common commercially available LIDAR ranges from 
four- to 64-laser systems. The advanced system used by 
Google costs around $75,000 (6). Ford uses four 32-
laser systems (7), with a cost of $30,000 per unit (8). For 
an autonomous solution that utilizes LIDAR, low cost 
units must be developed. To this end, there are several 
market developments that are worth noting:  

• Market leader Velodyne anticipates that when 
demand reaches one million units a year, the per-unit 
production cost will decrease from $75,000 to $500 
for a solid-state 32-laser unit. They see this reduction 
occurring as soon as 2018 (9). Velodyne has already 
developed a 16-channel system that costs only 
$8,000, effectively halving the cost of the early LIDAR 
systems (10). In August 2016, Velodyne received a 
$150 million investment from Ford to further develop their technology (11). 

• Google has begun developing their own LIDAR system in-house to find a competitive solution (12). 
• Quanergy has developed 120-degree solid-state LIDAR which, when in full production, is projected to 

cost $250 or less (13). 
• Tesla believes LIDAR is not necessary for a vehicle, instead relying on radar and cameras (14). 

3.1.2 Global Position Systems (GPS) 
The US Department of Defense operates thirty-one satellites in space that broadcast microwave signals 
to Earth, which contain the coordinates, heading, velocity, and timestamp of the respective satellite. The 
orbits of these satellites are coordinated so that, at any given time, four are visible in the sky from any 
point on earth. With the collective data from these microwave signals, a GPS unit triangulates its position 
on earth (15). Through utilization of GPS technology, AVs are able to define a key reference for their 
positioning on high accuracy maps (16). 

Capabilities and limitations 
• GPS is accurate to eleven feet, and is even less accurate when moving (15). 
• GPS units are very cost effective ($100–$2000). 
• Accuracy is heavily dependent on the ability to see sky. Operation in tunnels and dense urban corridors 

with blocking structures is suspect. 
• GPS works well at night, in rain, and in snow, as these conditions have no effect on the microwave signals 

used by the system. 
 
Technological challenges 
Due to the lack of accuracy, GPS can only be used as an indication for locating a vehicle. GPS data must be 
combined with sensor data and matched to high accuracy maps (tolerances <1cm) to inform the car as to 

Figure 8: Velodyne 64-laser LIDAR: $75,000 (7) , Velodyne 
16-laser Puck: $8,000 (11), Quanergy solid state: $250, 

estimate (14). Not to scale. 
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appropriate paths to take (see Figure 9) 
(16). To further advance GPS accuracy, 
researchers at The University of Texas are 
testing technology that would utilize a 
principle known as “differential GPS.” 
Through the combination of adding 
another signal from a known terrestrial 
position and sensing additional carrier 
waves from the GPS satellites, differential 
GPS can produce readings accurate to 
one centimeter. Further, the cost of 
producing the units needed to broadcast 
from known terrestrial positions hovers 
around $100/unit and researchers 
believe only sixteen are needed to serve an area of 270 square miles (the metro area of Austin) (17). 
Advances in this technology could materially increase the role of GPS in AVs. 

Another challenge to GPS use is ineffectiveness in tunnels or 
mountainous areas, where there is not a clear channel to the 
orbital satellites. An AV will simply rely on all of its other 
sensors to locate itself on a preloaded high accuracy map and 
continue its path when GPS is inaccessible. However, it is 
feasible that by using differential GPS (as shown in Figure 10), 
or the known data from the car’s direction and rate of speed, 
an extra data point can be manufactured to offset the 
absence of a satellite and make this technology funcational in 
all conditions (18). 

3.1.3 Cameras 
Camera systems produce live video output, which is then 
analyzed by a computer system to determine obstacles and 
provide roadway information, such as the vehicle’s relation 
to lane striping and signal interpretation (Figure 11). 
Currently, most automakers appear to be relying on cameras 
for obstacle detection, lane departure, and signal reading, 
while leaving navigation up to data produced from LIDAR and high accuracy maps. However some 
automakers—Tesla in particular—are seeking autonomy through reliance on video cameras and radars in 
conjunction with low resolution mapping. This approach is discussed further in the Software Systems 
section. 

Capabilities and limitations 
• A camera’s ability to look far down the road provides ample visual information. If fully processed, this 

information could negate the need for precompiled high-accuracy maps. 
• Issues working at night, and in limited visibility, can be overcome by high-sensitivity cameras. 
• Because they are heavily software driven, once an advanced artificial intelligence (AI) system is 

developed, implementation of a camera-based system should be a very cost effective sensor method. 

Figure 10: A stationary differential GPS unit deployed by 
researchers at the University of Texas (18). 

Figure 9: Google Car actual location vs. GPS location (17). 
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• There is an unknown timeline for development of the requisite AI. 

 
Technological challenges 
A camera’s ability to assess visual data and look far down the road provides ample information for 
autonomous driving. However, the ability to fully process this data is currently limited. In particular, 
“strong AI” is needed to extract depth information from video—and development of this AI is currently 
proceeding along an unknown timeline. Until strong AI is developed, video cameras can still be used for 
semi-autonomous and particular autonomous driving situations when supplemented with low-resolution 
mapping (19). 

3.1.4 Radar 
Radar emits radio waves and listens for an echo to determine distance and location of surrounding 
objects. 

3.1.4.1 Capabilities and limitations  
• Radar wavelengths can penetrate dust and other visual 

obstacles, allowing the car to “see” in poor visibility (20). 
• Radar works well in snow, rain, low light, and fog (20). 
• Radar works very well along a two-dimensional plane. 

Higher angular resolution needed for 3D images can be 
obtained only with inconveniently large antenna 
apertures (21). 

• Radar—effective at sensing the distance to an object—
can be combined with cameras, which are strong at 
sensing the lateral movement of an object, to determine 
an object’s path vector (22). 

• Radar provides both short- and long-range detection 
capabilities (Figure 12). 

3.1.4.2 Technological challenges 
Radar is a compact, efficient sensor system. However, it only functions along a single plane, thus limiting 
its effectiveness in a three coordinate system. As such, it can serve a strong role in detecting proximity of 
objects for obstacle avoidance, but it must be combined with other sensor data to enable autonomous 
navigation. 

Figure 11: Camera-based object and sign detection and clear space detection (20). 

Figure 12: Radar systems in AVs (24). 
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3.1.5 Ultrasonic Sensors 
Ultrasonic sensors are near-range sensors that utilize high frequency sound waves to detect nearby 
objects. These sensors are currently used in slow-speed operations, such as backing up. Additionally, they 
may be used to track vehicles in adjacent lanes (23). 

3.1.5.1 Capabilities and limitations 
• Ultrasonic sensors have a very limited sensor range of six meters on average. 
• They are very energy efficient and cost effective. 
• They are generally very reliable. 

3.1.6 Odometry Sensors 
Odometry sensors are motion sensors that estimate the change of position over time, sometimes by 
counting the revolutions of a wheel. 

3.1.6.1 Capabilities and limitations 
• Odometry sensors are low cost. 
• Readings are often inaccurate; errors build with every rotation. 
• They can be calibrated over time and combined with other sensors to provide more accurate readings. 

3.1.7 Hardware Computer Systems 
Computers with specially designed chipsets process all the sensor information and produce driving 
instructions for the vehicle. 

Capabilities and limitations  
• Chip maker NVIDIA’s current premier system offers 2.3 

teraflops of processing power (roughly 20 percent more 
computing power than a PlayStation 4) and can handle 
twelve sensor feeds (24). NVIDIA recently began showcasing 
its Drive PX 2 (Figure 13), with an eight teraflop processor 
(equivalent to roughly 150 MacBook Pro computers) (25). 

• Chip maker Mobileye, in conjunction with STMicrolectonics, 
is anticipating making available a twelve teraflop platform by 
2020 that will be able to handle twenty sensor feeds (26). 

• These more advanced CPUs will need water cooling. 
• These units are currently very expensive, around 

$10,000/unit (27). 

3.1.7.1 Technological challenges 
Processing hardware is a significant cost to the AV and continued AV development will benefit from an 
expected drop in the price of computational power. The research team could not find a specific projection 
of cost-over-time for these specific systems. However, following Moore’s law, processing speed should 
double every two years. Following the trend of the iPad2: Considering a corresponding drop in price, in 
five years, these systems should cost in the hundreds of dollars (28). Already, through parallel processing, 
AV computer systems have been physically scaled down in size from filling the trunk of a vehicle to the 
size of a lunchbox. 

Figure 13: NVIDIA Drive PX 2 (27) 
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3.2 Software Systems 
Software requires hardware to translate input from the sensor array and process data to provide driving 
directions to the vehicle. Currently two schools of thought have developed as to how autonomous driving 
should be achieved.  
  
The first group, championed by Google, relies on high-accuracy maps and LIDAR readings. Through 
matching up LIDAR data with precompiled high-accuracy maps, the LIDAR-dependent group can precisely 
locate its vehicle and pick exact (down to a centimeter) paths for its car to follow (29). Additionally, it can 
identify dynamic objects around the vehicle by simply subtracting everything that has already been 
predetermined to be static on its map (Figure 14). The LIDAR-dependent group is hindered by the 
availability of constantly updated high-resolution maps needed for its system to work. To solve this 
mapping need, companies such as Google send out pilot cars with very high resolution LIDAR mapping 
systems to pre-map the areas in which vehicles will be operating. In the future, this mapping issue may 
be solved by crowd sourcing data collected from AVs.  
 

 
  
The second group, championed by Tesla, relies on high-resolution sensing through the use of video 
cameras and radar and utilizes advanced artificial intelligence to interpret video images. Ultimately, the 
goal of this camera-dependent group is to create a system that is comparable in capability to the human 
brain at processing visual cues and responding as a human driver would. However, as this level of AI is 
currently unattainable and with an uncertain development timeline, camera-dependent group has 
supplemented currently available advanced AI with radar and low resolution maps to achieve a level of 
autonomous driving (19). Still, the camera-dependent group has faced criticism from proponents of 
LIDAR-based systems, who believe that AI is not currently at an advanced enough level to support safe 
autonomous functions (30). 
  
Regardless of the methodology, safe autonomous driving software is focused on choosing the right path 
and obstacle avoidance. The sections below explain these two principles in more detail. 

Figure 14: LIDAR Dependent Software Process(31) 



12 

3.2.1 Obstacle Identification and Avoidance 
No matter which practice is being used, the AV must 
identify and avoid obstacles. The software, via the 
suite of available sensors, identifies dynamic objects 
around the vehicle (Figure 15). In the LIDAR-
dependent model, dynamic objects are those that 
remain when the static objects on the high-accuracy 
map are subtracted. In the video-dependent model 
they are identified as moving by artificial 
intelligence interpreting video images. The dynamic 
objects are cataloged and classified as a type of 
object, with a direction vector and a rate of speed 
(31). Object identification directs the AVs to avoid 
obstacles and predict where they will be in the near 
future, allowing AVs to pick a path that will not 
conflict with other objects’ paths. 

3.2.2 Geolocation and Path Determination 
Until the development of Strong AI, both schools 
will make use of maps and landmark matching to 
geolocate their vehicles on a roadway. In the first 
school of thought, through LIDAR readings matched 
against a high accuracy map, the software can 
determine path based on the driver’s preferred 
destination. However, in the second school of 
thought, camera data is analyzed to create a virtual 
grid that demarcates the areas in which the car can 
travel (Figure 16) (32). This, combined with 
landmark identification and low resolution maps, 
allows the vehicle to pick an appropriate path. 

3.3 Commercial Path to Autonomy 
As described above, there are still some facets of autonomy that have not yet fully matured. As such, 
the actual date of commercially available AVs is unknown. Some proponents, such as Tesla founder 
Elon Musk are very optimistic that autonomous systems are just around the corner—fewer than two 
years away (33). Notably, American automakers, spurred by Google and Tesla, seem to have made a 
shift in recent years toward an accelerated timeline to make Level 4 vehicles commercially available. 
In recent months, high ranking officials for both Ford and GM have declared that 2020 will likely see 
the first commercially available AVs (34, 35). In addition, Ford has put a potential date for Level 5 
autonomy by 2021 (36). However, globally, Volvo seems to be leading the industry. Volvo has 
announced a partnership with Uber to use self-driving cars in Pittsburg in August of 2016 (37). 
Additionally, in 2017, it will be providing 100 AVs to local families to use in select corridors around 
Gothenburg, Sweden—with similar plans for London in 2018 (38). Through media releases and 
statements by car officials, the research team put together Figure 17, which displays the general trend 
towards commercial availability early next decade.  
 

Figure 16: Grid-based Occupancy Mapping (34). 

Figure 15: Obstacle Identification and Vectoring (33). 
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3.4 Semi-autonomous Systems 
Semi-autonomous features are already being offered by 
automakers in their current lines. While most automakers appear 
to be utilizing their high-end models for their semi-autonomous 
features, Honda is offering a host of features (Figure 18) as part of 
a $1000 package on most of their vehicles—including a Honda Civic 
that will cost around $20,000 (39). Looking market-wide, common 
semi-autonomous features currently available are described in 
Figure 19. Notably, in March of 2016, twenty auto makers agreed 
to voluntarily make automatic braking standard on all new light 
vehicles by September 2022 (40). As a result, the Insurance Institute 
of America projects, with full market penetration, a 40 percent 
reduction in rear-end crashes. While the research team was unable 
to find any studies on the impact of semi-autonomous features to 
the overall efficiency of transportation systems as a whole, what is 
manifest is that most or all of these features will have an impact on 
vehicle safety and lead to reduced accidents (41). 

 

 
 

Figure 17: Private automaker projections for commercial availability of their AVs  
(blank spaces indicate no found public data on projections). 

• Adaptive Cruise Control 
w/low-speed follow 

• Collision Mitigating 
Braking System 

• Lane Departure 
Warning 

• Forward Collision 
Warning 

• Lane Keeping Assist 
• Road Departure 

Mitigation 

Figure 18: Honda Sensing Package (39).
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3.5 Aftermarket Opportunities 
While most of the focus is on automakers and new vehicles due to the apparent holistic complexity of 
autonomous systems, there are some companies in the market that are seeking to offer aftermarket 
solutions. Led by a prodigy hacker, the start-up Comma.ai promises to offer a semi-autonomous 
aftermarket system with lane keep and adaptive cruise control commercially available by the end of 2016, 
for a cost less than $1000 (42, 43). Comma.ai’s system is designed to work on any vehicle with electronic 
braking and steering (generally model year 2012 or later). Otto, a recent start-up founded by former 
Google employees, is developing a $30,000 kit that would make semi-trucks built after 2013 semi-
autonomous (with lane keep and adaptive cruise control) (44). Both start-ups have created working 
prototypes of their systems. The research team believes that while there is not enough information to 
fully evaluate the efficacy of these market claims, they reveal two key considerations: 1) although 
aftermarket systems could lead to a bump in semi-AVs on the road, the additional penetration may be 
limited due to aftermarket ineffectiveness on vehicles without electronic braking and steering (pre-2012 
models), and 2) both systems only reach Level 3 autonomy (although both companies intend to keep 
progressing) which, while it may help transportation safety, will make less of an impact on network 
behavior.  

4 Vehicle and Infrastructure Communication 
In parallel to the development of AVs, there is an ongoing push for CVs employing V2V, V2I, and vehicle-
to-other (V2X) communications. In essence, V2X technology connects vehicles, infrastructure, and any 
other communicating devices. By sending and receiving short communications, known as Basic Safety 
Messages (BSMs), vehicles will receive key information about their surroundings that can be relayed to 
their drivers to aid safe operations. The potential for safety applications under a mature V2X system is 
tremendous: through use of a system with just V2V communications, NHTSA studies indicate that up to 
76 percent of unimpaired crashes could be avoided. Using just a mature V2I communication system, 
NHTSA estimates that 26 percent of unimpaired crashes could be avoided. And, using both systems 
together, NHTSA studies indicate that 81 percent of all unimpaired crashes could be avoided (45). See 
Figure 20. 
 

Figure 19: Commercially available autonomous features already in the market. 
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The Society of Automotive Engineers (SAE) has established messaging standards for CVs (compiled in SAE 
J2735) (46). At the most basic communication level, V2X communications rely on the broadcast of BSMs 
from individual vehicles within a vehicular ad-hoc network (VANET) (47). Messages are broadcasted by 
each vehicle at an adjustable rate of up to ten per second (46)(48). BSMs contain a standard data set 
about the vehicle, known as BSM I, and optional data, known as BSM II, which reflects specified car 
behavior at time of broadcast (see Figure 21) (49). Through sending and receiving BSMs, V2V 
communication can enable in-car warnings via an alarm or view screen (see Figure 22, Figure 23) (49, 50). 
In an advanced configuration the communications could even direct semi-autonomous or autonomous 
maneuvers. 
 

 

Figure 20: NHTSA V2V Light Vehicle Crash Reduction Scenarios (45). 

Figure 21: BSM Contents (49). 
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Figure 22: V2V Dashboard Warning (50). Figure 23: V2V warnings (49). 

 
The information communicated across the VANET can be supplemented with data broadcasted by the 
infrastructure. Broadcasts of this type are currently contemplated to include Signal Phasing and Timing 
(SPaT), Intersection Geometry (MAP Data), position correction, and traveler information messages (TIM) 
(51). Through use of broadcast information, there is opportunity for increased safety applications (Figure 
24) and for information gathering applications (Figure 25) (49). 
 

 

 
 

 

Figure 24: Potential V2I Safety Applications (51). 

Figure 25: Potential V2I Mobility Applications (51). 
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4.1 Dedicated Short-Range Communication (DSRC) 
To enable the wireless transmission of BSMs and other messages in VANETs, the Federal 
Communications Commission (FCC) reserved the range between 5850 and 5925 MHz for DSRC for 
intelligent transportation systems (52) (Figure 26). Dedicated bandwidth is necessary to handle the 
volume of transmissions that will likely be sent in V2X systems—congested bandwidth can be 
ineffective at conveying data. Already, there is anticipation that the allotted bandwidth will not be 
able to handle high density vehicle corridors without certain message aggregation and coordination 
(53). The dedicated range, which sits on top of the highest frequency used by cell phones and Wi-
Fi devices, has recently come under legislative scrutiny because Wi-Fi device makers are seeking to 
relax federal regulations that prohibit their use of the range (54). 

 
 
DSRC is expected to be the primary channel for BSM 
broadcasting but, due to its limited range, it will be 
insufficient to enable more advanced mobile applications 
such as those listed in Figure 27 that will still require the 
information found in the BSMs, but will also demand 
advanced processing and analysis. For this, the data 
produced in the VANETs must be cached, bundled and 
transmitted over long distances to a central processing 
warehouse. For these advanced applications, cellular 
transmissions or 5G protocols may offer future 
communication solutions (49). However, this remains a 
point of research. 

4.1.1 Considerations for Cellular Technology 
Given DSRC’s limited bandwidth to handle large amounts of data, especially in high density vehicle 
corridors, fifth-generation (“5G”) cellular networks offer a promising alternative. Although 5G technology 
is still under development, researchers comment that the ultra-reliable, low-latency connection is well-
suited for automotive applications (55). In addition to transmitting data at more than 10 gigabits per 
second, 5G also has the ability to function with existing networks, thus reducing the relatively high capital 
expenditures that telecommunication companies generally spend on new cellular infrastructure. Many 
private firms have already demonstrated the power of 5G networks and have commissioned research to 
test the compatibility of 5G with V2I. One of the most relevant scenarios revolves around automated 
vehicles, which are connected to the cloud via a 5G connection, receiving detailed maps with up-to-update 
information on road conditions including traffic, weather, and lane closures. Compared to DSRC, 5G will 

Figure 26: DSRC Frequency (53).

Figure 27: Advanced V2X Applications (52).
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provide automated vehicles with greater and more reliable access to the cloud to pull information that 
will ultimately improve driving and mobility. Today, Tesla has been using cellular technology in their cars 
with active first generation Autopilot hardware to collect and transmit more than 300 million miles of 
data(56). As more CVs are deployed on roads, the use of 5G networks will become vital in improving the 
overall autonomous experience. 

4.1.2 Equipment 
To create the VANETs, technical hardware must be networked using communication equipment and 
standards, known as Wireless Access in Vehicular Environment (WAVE). WAVE standards mandate the 
operational parameters of the equipment within the network, such as defining frequencies and security 
protocols (57). The equipment that works within the VANET can generally be divided into onboard units 
(OBUs) inside the car and roadside 
units (RSUs) that are exterior to the 
vehicle. Figure 28 provides an 
overview of RSUs. Generally 
onboard unit design and 
specification has been left to the 
private sector; however, the federal 
government has released guidance 
on hardware specifications for RSUs 
(51). The latest version of these 
specifications (Version 4) was 
released in April of 2014 and is 
expected to receive an update in 
summer 2016 (58). These 
specifications mandate that RSUs 
weigh less than fifteen pounds and 
be capable of being installed on a 
mast arm or traffic pole or installed 
in an adjacent cabinet. Generally, 
RSUs should have a range of 300 
meters with a maximum packet 
error rate of 10 percent (59). 

4.1.3 Security and Privacy 
In a report to congress, the USDOT included appropriate privacy protection and credential security as 
requirements of the V2V system design. For instance, system requirements include the splitting of system 
functionalities so that no one entity has the ability to match records that would lead to identification of a 
specific driver or vehicle, digital credentialing using frequently changing random identifiers, and an 
element to obscure location coordinates, among other measures (54). Importantly, representatives at 
FHWA believe that their entire credential management security system will be completed by 2020—
necessitating an RSU specification that might lead to the need for installation of new communication 
hardware (58). Further issues related to security and privacy are addressed in the Policy section below. 

4.1.4 System Costs 
USDOT has sponsored several V2I installations across the country to begin real world testing of DRSC 
systems. Further, it have begun a subsequent phase by selecting and funding three more test sites, as 

Figure 28: Overview of RSU Functions (51). 
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covered in the next session. Based on USDOT tests, RSU costs—including the hardware systems, 
installation labor, design, and planning—can be approximated as follows (60): 
• The average direct DRSC RSU equipment and installation cost per site is estimated to be $17,600. 
• The cost to upgrade backhaul (connection to a TMC) to a DSRC RSU is estimated to vary between $3,000 

and $40,000 depending on an agency’s existing investments, at an estimated national average of 
$30,800. 

• The typical cost of signal controller upgrades for interfacing with a DSRC RSU is estimated to be $3,200. 
• The annual operations and maintenance cost for a DSRC RSU site is estimated to be $3,050. 
 
Regarding vehicles, NHTSA estimates that new vehicle installation of a DSRC system with a view screen to 
provide driver information would cost around $350 to consumers in 2020 (45). This number is a markup 
on an original equipment manufacturer (OEM) installation cost of around $220. For aftermarket 
installations, NHTSA estimates a range of $160 to $390 for a commercially installed system, depending on 
the underlying technology of the vehicle (45). 

4.2 Path to V2X 
In 2014, NHTSA submitted advanced notice of proposed rulemaking concerning V2V implementation. In 
January 2017, it offered Federal Motor Vehicle Safety Standard (FMVSS) 150—Vehicle to Vehicle (V2V) 
Communication in draft form.  This proposed rule is expected to become a federal rule in the second 
quarter of 2017 (61). As the rule is currently constructed, phase in of V2V on all new models would begin 
in 2021 and all new vehicles would be expected to be in compliance by 2023 (61). This mandate is 
discussed in further detail in Part II below. 
  
Regarding infrastructure and V2I, there is not anticipated to be any federal mandate to install V2I systems, 
however, the AASHTO Connected Vehicle Deployment Coalition has set goals as shown in Figure 29.  
 

 

4.3 Pilot Programs 
Currently, USDOT provides funding to implement real-world testing of V2V systems in three test corridors, 
which each have unique qualities that will allow for V2X systems to be widely tested among various use 
cases:  
 
• Wyoming DOT – I-80, a heavy freight corridor subject to heavy snow and ice conditions 
• New York City – a heavy pedestrian area with numerous traffic signals 
• Tampa, Florida (Figure 30) – a heavy urban corridor with a freeway, a trolley, and a bus system operating 

in the area (62) 
 

Figure 29: AASHTO Connected Vehicle Deployment Coalition V2I implementation goals (61). 
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As of the date of this writing, each project is developing their comprehensive implementation plans. 
Actual deployment of their systems appears to be around the middle to end of 2017. USDOT anticipates 
selecting another round of pilot cities, with application opportunities beginning in 2017 (62). Close 
following of the development of these projects will inform future decisions about V2X infrastructure 
implementation in the NCTCOG region. 

 

4.4 Big Data Opportunity 
The implementation of CVs also affords the opportunity for new sources of data to provide information 
on the transportation system as a whole, and to perhaps provide better insights on how to model human 
behavior. Figure 31 provides a roadmap for handling data produced by a CV system (63). With early CV 
data sets becoming available, and the additional data that will be added through the three new pilot 
projects, the ability to handle and translate data into meaningful information that can provide insights 
and influence long-range transportation planning is an enticing research field that may warrant further 
exploration. As part of this study, the researchers analyzed CV data released from a pilot study in Michigan 
and developed a computing framework for processing and visualizing this data (see 107). 

Figure 30: Tampa V2X Pilot Deployment (62).
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To fully maximize CV data, there must be a certain number of CVs working within the transportation 
system. Various studies have analyzed the level of penetration that might be needed to realize meaningful 
analysis. In a 2016 study, Day and Bullock found that more than 20 percent of CVs on the road would be 
required for real-time operational strategies. However, they also found that this could be reduced to 
below 10 percent through inclusions of estimates of the non CV states. Going even further, through data 
aggregation over an extended period of time they found that they could potentially produce tangible 
results with as little as 1 percent penetration. Using this data aggregation they also found that with just 5 
percent penetration they could offer “rudimentary elements” needed for adaptive signal control (64). 
Another study by Argote et al., found that accuracy of Measures of Effectiveness (MOEs) were dependent 
on saturation, with over saturated conditions providing more reliable statistical analysis of the 
transportation system. Still, the study concluded that penetration rates of less than 15 percent would 
produce reliable (within 1 percent) analysis of multiple MOEs such as average acceleration noise, average 
rate of speed, and average delay per distance (65). 

5 Policy and Societal Concerns 
Currently policy and legislation regarding CAVs is in a nascent stage. As these technologies move closer to 
commercial availability, federal, state, and local governments are beginning to investigate legislation to 
address accompanying concerns. The following provides a brief overview of national and state efforts, 
and examines the challenges in security, privacy, and liability that must be addressed. 

Figure 31: Big data framework (63). 
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5.1 National Guidelines on Autonomous Vehicles 
In September of 2016, FHWA released its federal guideline on AVs (66).  These new guidelines include a 
model legislative policy for state regulation (67). However, states still have full discretion to adopt or 
ignore the guidance. In addition to the model guidelines, the release includes a 15-point safety assessment 
to be utilized in the design, manufacture and deployment of HAVs Additionally it reiterates the 
opportunity to use existing tools NHTSA can employ concerning HAVs: (1) letters of interpretation; (2) 
exemptions; (3) rulemaking; and (4) enforcement of safety standards.  Finally, it also lists off potential 
new tools for NHTSA, including (1) safety assurance; (2) pre-market approval of new technologies; (3) 
cease and desist; (4) expanded exemptions to safety standards; and (5) post-sale regulation of software 
changes (66). Performance standards will likely come in the form of a modification to the Federal Motor 
Vehicle Safety Standards (FMVSS) (68). Notably, NHTSA has signaled a willingness to accommodate AVs 
through current rule interpretation. The most publicized case was NHTSA’s decision to interpret the word 
“driver” in the FMVSS to include self-driving software (68). 

5.2 Texas Law 
Currently, Texas law is silent on the use of AVs. Google interpreted this silence to indicate that AV use is 
not restricted and is currently operating a pilot program for AVs in Austin (69). In the 2015 Texas 
Legislature, three bills related to autonomous driving were offered for consideration, all containing very 
similar language to that shown in Figure 32.  
 

 

5.3 Other States 
In mid-2016, Florida House Bill 7027 changed Florida law to allow for consumer use of AVs (70). This 
legislation appears to put them at the forefront of legalization of AVs, joining Washington D.C. in allowing 
AV use by consumers. Four other states have implemented some sort of testing policy, and three have 
commissioned studies on the issue. Additionally, in 2015, sixteen states introduced legislation related to 
AVs. The National Conference of State Legislatures provides an overview of state-enacted regulations of 
AVs and Figure 33 summarizes their findings (71). 

Figure 32: Proposed 2015 Texas Legislation.
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5.4 Privacy 
Data generated by CAVs contains information on origin of trip, destination of trip, and location throughout 
the trip. This data, if accessed by a third party with malicious intent, could be used to track system users 
and inform criminal activity. As such, private groups such as the Electronic Privacy Information Center 
(EPIC) are calling for complete anonymity and assurances that data will not be stored (72). In response, 
NHTSA guidelines proposed to scrub the data, ensuring that vehicles are not identified nor tracked (45). 
However, since V2X systems will be operated by state and local agencies, there is a limit on how much 

Federal Privacy Protection will 
have to be adopted (73). The 
extent to which Texas enforces 
privacy protection will have a 
significant impact on the use of 
the data for real time operations 
and planning. At an extreme, 
such as the privacy settings 
implemented by New York for 
their DOT pilot program, the 
utility of the data could be 
nearly eliminated (74). There, 
the data will be stripped of all 
geo-locating information 
including longitude and latitude, 
time of day, and street 
identifiers. Figure 34 displays 
the level of scrubbing to be used 
by New York to protect user 
privacy.  

Figure 33: National Conference of State Legislatures (71).

Figure 34: New York Obfuscation (74) 
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5.5 Data Ownership 
Currently no rules regulate the ownership of data produced by vehicles driven by consumers. In a survey 
of twenty of the United States’ largest automakers, conducted by the office of Senator Edward Markey 
(D-MA), 50 percent admitted to actively transmitting and storing data off-board from their in-use vehicles 
(75). In response to concerns over this unadulterated access, Global Automakers and Auto Alliance, two 
consortiums collectively representing the largest automakers in the United States, publicly committed to 
a set of “Consumer Privacy Protection Principles” in 2014 (76). However, as described by Senator Markey, 
these principles leave many privacy matters to the discretion of the manufacturers (75). As such, Senator 
Markey proposed the “Security and Privacy in Your Car Act of 2015,” to mandate NHTSA oversight of both 
data ownership and use and cybersecurity (discussed below) (77). Although Markey’s bill did not make it 
out of committee it may provide some insight into future regulations. Regarding data collection, the bill 
proposed conspicuous notice of data collection and the ability for drivers to opt out of the collection of 
their personal data. However, the bill did not touch on government collection of data, and currently there 
is no federal legislation that explicitly enables collecting data from V2X communication. 

5.6 Security 
Another significant issue highlight by 
Senator Markey revolved around 
cybersecurity protections for CAVs. In a 
2014 survey of the twenty largest 
automakers in America, Senator Markey’s 
office found huge gaps in the 
cybersecurity protocols for automobiles. 
Major findings of his study related to 
cyber security are included in Figure 35. 

Researchers at the University of Texas 
verify that many of security issues remain 
today, two years after Senator Markey’s 
survey (78). Everything from ODB-II 
diagnostic ports wireless access to vehicle 
computers could provide an entry point for hackers. Additionally, V2X communications provide another 
risk, not only in providing access to vehicles, but also in potential issues that could arise via spoofing of 
V2X signals that would effectively misinform traveling vehicles. In response to these concerns, NHTSA is 
working on cybersecurity protocols for V2X, expected in 2020. Automakers, however, do not appear to be 
focused on establishing cybersecurity protocols (58). 

5.7 Liability 
In states in which there are regimented programs for testing of AVs, it appears that automakers generally 
retain liability for accidents caused by their AVs. California, Nevada, and Florida all require $5 million in 
coverage for these automakers (79). In addition, in 2015, Google, Volvo and Mercedes-Benz all stated that 
they would accept liability for car wrecks while their vehicles are in autonomous driving mode (80). While 
this seems logical, ownership of liability becomes more complex in semi-AVs, AVs owned by private 
parties, or vehicles with aftermarket installations. As such, many of these liability issues will probably be 
left up to the courts applying well established principles of tort law and product liability.  
  
In Texas, there is a well-defined product liability statute and well settled tort law that would likely be 
extended or reaffirmed to cover issues with autonomous systems (81). This statute provides a rebuttable 

Figure 35: Cybersecurity Concerns (78). 
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presumption of non-negligence if a product meets a federal safety regulation. In addition, Texas is a 
modified comparative negligence state, which means that if someone is more than 50 percent responsible 
for a tort, they cannot recover damages for their injuries (82). For instance, in a semi-autonomous 
situation, if the auto manufacturer can show that the driver should not have enabled semi-autonomous 
control due to inappropriate conditions, there is a chance that the negligence of the driver will rise above 
this threshold and preclude any recovery from the automaker. However, if the driver of the vehicle can 
prove that his fault did not rise to more than 50 percent of the total fault and that there was a safer 
alternative design and that the defect caused the injury, the driver should be able to recover against the 
auto manufacturer. If a third party is involved, they too will have to undergo a similar process. If they can 
prove that, in total, their responsibility for any accident is 50 percent or less they will be able to recover 
against the driver and/or the automaker. While there are already existing applicable laws, the exact lines 
of liability in these instances may develop over several years of rulings in various courts and jurisdictions 
in Texas. 

5.8 Summary 
The federal government will provide guidance on AVs. 
On a state level as to implementation of AV regulations. States are free to choose what they would like to 
follow or ignore, but these guidelines will likely be highly persuasive. 

Liability will be solved by the courts. 
Over time, the judiciary will apply established Texas law to new situations that arise in AV driving. Likely 
this will be an ever-evolving process 

Privacy will be determined by the states. 
Privacy is a true concern for many and the federal government will suggest guidelines. However, each 
state will have to determine their own set of rules regarding privacy with the understanding that too many 
protections could make data gathered by the government unusable for planning or traffic operations. 

Cybersecurity is a real problem.  
Cybersecurity will have to be well developed over the next four years to keep up with the rest of 
autonomous technology. This may necessitate limited communications to the car or independent critical 
system architecture or mechanical overrides—whatever the solution, there will be attacks against the 
system and they will need to be addressed by auto manufacturers.  

6 Overall Conclusions 
The findings of this section indicate three major implications for NCTCOG. The first is that, as a whole, 
roadways will become much safer, beginning in the short term because the likelihood of government 
mandated V2V implementation plus the growth of the semi-autonomous and, eventually, AV production 
(beginning in 2019) will result in fewer accidents. Relying on V2V alone, by 2030 or 2035, there should be 
almost full market penetration, which will lead to a 76 percent reduction in accidents. If NCTCOG is 
proactive and implements V2I communications, this could increase to an 81 percent reduction. However, 
due to unsettled regulations and policies, NCTCOG should plan for a roll out of V2I technologies beginning 
in 2020. Until then, NCTCOG should pursue federal funding opportunities to implement pilot V2I 
programs. 
  
The second major implication of these findings is that there will be decades of mixed roadway traffic, 
comprised of autonomous, semi-autonomous, and human drivers, likely extending beyond NCTCOG 
planning horizons (40+ years). Unfortunately, the network effects of this mixed environment are 
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unknown, and require more research, but NCTCOG should not scrap long-term planning for new roadways 
and facilities. Further, traditional structures needed for human drivers, such as parking lots, will be 
necessary for the foreseeable planning future. 
  
The third major implication of this study is that CAVs provide a boundless resource for system data, 
however cybersecurity and privacy protections will play a significant role in how useful this data ultimately 
becomes. With powerful data, a smart city transportation grid becomes a viable prospect, with potentially 
significant mobility ramifications—however, citizen concerns could prevent this system.  
  
As CAV technology reaches final maturation over the next few years, it will continue to make headlines 
and spark the interest, or alarm, of citizens of North Texas. NCTCOG should continue to serve as a resource 
to its member organizations to provide updates and information on the effects to mobility that these 
changes will bring. Part II of this report will begin to look at effects that will affect the wider society 
through implementation of the AV—such as socioeconomic ramifications—and begin to construct a 
foundation on which to plan future scenarios. 
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Part II: Adoption Scenarios 

7 Introduction 
Part II discusses potential adoption timelines for both CAVs, as the first step toward identifying relevant 
scenarios to be considered in planning models. Such scenarios, which are the main deliverable for the first 
year of this research effort, will describe possible combinations of multiple factors that are expected to 
shape the actual impact of CAVs. Relevant factors include the number of CAVs in the market, the 
pervasiveness of ride-share systems, residential and car-ownership choices, trip making, route choice 
behavior, and the impact of CAVs on capacity. While ideally all these factors would be accounted for 
endogenously in an integrated modeling framework, further research is required in order to design 
appropriate methodologies. The proposed scenarios will serve two purposes: to provide a framework to 
estimate the range of potential impacts of CAV technologies with existing modeling tools, and to support 
the development of methodologies to explicitly capture the behaviors that ultimately determine the 
impact of CAVs.  

The adoption rate of CAVs in the short, medium, and long range is central to the study of their impacts on 
mobility, and a key component of planning scenarios. For AVs, adoption is expected to be the result of a 
complex combination of interdependent factors, such as vehicle ownership decisions, availability of 
alternative transportation modes, and prevalent traffic conditions. Part II provides simple AV adoption 
estimates based on the adoption rates of similar technologies in the past (6), and discusses existing 
methodologies to model CAV adoption based on behavioral considerations (7).  

Additionally, Part II will look at deploying vehicle connectivity capabilities, which is less complex than 
implementing automation, and significantly less expensive. The adoption of CVs is largely dependent on 
a federal mandate from the National Highway Transportation Safety Administration (NHTSA) which will 
mandate that all new vehicles are V2V enabled by 2023. The mandate was proposed  by NHTSA in January 
2017 and is expected to become a federal rule in the second quarter of 2017. From the support of this 
mandate, a federally researched adoption prediction is readily available.  

The following sections briefly summarize some of the challenges involved in estimating the adoption of 
CAVs, and the approach taken by CTR in providing estimates for the short, medium, and long range (2025, 
2035, and 2045, respectively) and provides proposed criteria for modeling assumptions. 

8 Adoption of Connected Vehicles 
The expected adoption of CVs in the United States relies heavily on the implementation of a federal 
mandate which was proposed in draft form in January of 2017 and is expected to become a federal rule 
in the second quarter of 2017 (61). As the rule is currently constructed, phase in of V2V on all new models 
would begin in 2021 and all new vehicles would be expected to be in compliance by 2023 (61). Within the 
proposed rule-making, NHTSA notes that they are mandating connectivity, either by DSRC or any other 
means that meets the protocol standards, but not safety application installation (61). As discussed in Part 
I, safety applications are the individual programs that utilize DSRC to improve driving safety. As such, while 
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NHTSA indicated it may consider mandating safety applications in the future, currently NHTSA offers a 
split predicted adoption table, as shown in Table 1.  
 
Table 1: V2V Connectivity Deployment for Proposed Planning Horizons (1). 

Year Calendar With DSRC Radios With Apps 
 Year Number of 

Vehicles 
(Million) 

Percent Number of 
Vehicles 
(Million) 

Percent 

1 2021 8.1 3.3% 0.0 0.0% 
5 2025 68.13 27.4% 6.3 5.2% 

10 2030 144.3 55.8% 87.2 33.7% 
15 2035 208.4 77.6% 163.7 61.0% 
20 2040 253.0 90.8% 226.1 81.2% 
25 2045 276.6 96.2% 265.3 92.3% 
30 2050 291.3 98.6% 286.9 96.8% 
35 2055 300.6 99.7% 298.1 98.9% 
40 2060 305.2 100.0% 304.6 99.8% 

 
While this timeline for adoption seems to be more certain than that of AVs, potential regulatory 
challenges remain. The proposed rule has to make it through a 90 day comment period and has to be 
enacted by the new presidential administration. Still, there is a very high likelihood that this mandate will 
be enacted as proposed (61), and the proposed rates of adoption for the selected planning years will be 
adopted for the purpose of this study.  
 
While the main expected impact of connectivity surrounds safety, the availability of data from CVs may 
allow for the deployment of more efficient ITS technologies, and support the development of more 
advanced planning models. In order to fully capture the impacts of connectivity on the performance of 
transportation systems, assumptions must be made concerning the availability of both real-time and 
historical data. Section 8.1 discusses potential data availability scenarios. 
 
8.1 Availability of Connected Data 
Under the currently proposed rulemaking, the data produced and recorded by a vehicle cannot be stored 
on the vehicle “except for a limited time needed to maintain awareness of nearby vehicles for safety 
purposes or in case of equipment malfunction” (61). However, beyond this limitation, any public or private 
entity can collect the basic safety messages through roadside installations (61). Additionally, drivers may 
be able to voluntarily participate in data collection efforts, similar to those conducted for pilot CV 
deployments (83). While the data must not be “directly identifying or ‘reasonably linkable’ data” regarding 
driver identification, the transmission of Basic Safety Messages (BSMs) could still produce substantial data 
regarding current traffic conditions and performance, and could be integrated with smart infrastructure 
on varying levels to improve traffic operations (61). Depending on the availability of V2I capabilities, 
improvement can be deployed at the intersection, corridor, or system level. The latter may require 
backhauling data to a centralized Traffic Management Center (TMC) that could coordinate infrastructure 
system wide. AASHTO proposed V2I installation goals, which are used in this study to develop assumptions 
concerning the availability of CV data, compared to the dates of DSRC Application penetration in Table 2 
(60).  
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Table 2: Infrastructure Connectivity Timeline. 

Year Percent of CVs  Percent of System Connected 
to Infrastructure 

2025 27.4% 20% 
2035 77.6% 65% 
2045 96.2% 95% 

 

The connectivity for each of these years will be assumed for model input when considering the ability of 
the infrastructure to adapt to changing traffic conditions and perhaps provide higher performance related 
to capacity. 

9 Adoption of Autonomous Vehicles 
Thanks to innovations from companies such as Google and Tesla, what was once thought to be a timeline 
that would introduce AVs by 2035 (35) has turned into a race to produce AVs as fast as possible. AVs in the 
United States are expected to be commercially available at the beginning of the next decade (36). With 
stated timelines that include Level 4 autonomy within the next five years common across the private sector, 
the public sector must begin to prepare for a future with CVs and AVs.  
 
To date, there have been various studies conducted in academia focusing on predicting the timeline for 
AV adoption in the coming decades, some of which are summarized in Section 9.1 (84–90). Generally 
researchers have determined that there is a high likelihood that there will be a prolonged mix of human-
piloted, semi-autonomous, and AVs sharing the roadways. Potentially, this mix could last decades. 
Considering that there are approximately 260 million vehicles in the United States (91) and that just over 
17.5 million light passenger and commercial vehicles were sold in 2015 (92), if every new car sold was an 
AV, it would take nearly 15 years for all existing vehicles on the road to be replaced. However, supply is 
not the only factor determining the future adoption rates of AVs: the actual number of AVs on the roads 
will also depend on consumer acceptance and use of these technologies, which at this point is highly 
uncertain. Further, there is the real possibility of a disruptor influence in the market that could drastically 
affect adoption timelines. Among such influences, ridesourcing services are envisioned by many to 
become the preferred mobility alternative in the future, which may result in a reduction of the vehicle 
fleet size and a considerably higher fraction of AVs (93).  
 
Given the complexity of the factors that will ultimately determine the adoption of AVs, and the significant 
uncertainty concerning the data and parameters that ultimately determine the results of adoption 
models, a relatively general approach has been selected for this project. The methodology, described in 
Section 9.3, is based on the use of adoption curves from past technologies, and informed by a recent 
worldwide expert survey (94). The outcomes of this analysis will be used to define AV adoption 
assumptions for the purpose of generating alternative planning scenarios. The process may be revisited 
in latter project stages. Ridesourcing plays a critical role in understanding the number of trips and AVs on 
the road, and is discussed in Section 9.4.  
 
9.1 Adoption of Autonomous Vehicles: Existing Predictions 
Although the variables for adoption of AVs remain nebulous in nature, a number of qualitative and 
quantitative estimates have been provided by experts, consultants and researchers. Private sector 
consultants have released various reports in support of business decisions, which are discussed in Section 
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9.1.1. The literature presents several examples of relatively systematic methodologies to estimate AV 
adoption, including surveys, macro-economic models, and discrete-choice models, some of which are 
described in Section 9.1.2. 
 

9.1.1 Adoption Estimates by Private Consultants 
A number of private-sector consultants have provided qualitative timelines for the adoption of AVs. 
Excepting Morgan Stanley, consultants from private industry are generally more pessimistic or in line with 
academic predictions. While many consultants do not freely release their detailed findings or 
methodologies, key graphics available on the Internet provide some insight into their projections. Ticoll, 
from the University of Toronto, cataloged several consultants’ predictions, and these predictions were 
updated or added to create Table 3 (95). From this table, the great variability of consultant predictions is 
evident. As such, since the consultant methodologies are private, the value of the consultants’ work for 
this research lies perhaps not in their predictions, but in the confirmation of the great uncertainty that 
surrounds the adoption of AVs. 
 
Table 3: Consultant Predictions. 

 
 

9.1.2 Prediction of AV Adoption through Modeling  
Researchers have used surveys to estimate AV adoption (85, 86, 88). These survey results show a high 
variability in possible outcomes based on assumptions of future influences. For instance, one research 
team at the University of Texas conducted a survey involving more than 2,100 people from a wide 
representation of socioeconomic status, producing a long term choice model based on their collected 
responses (85). The survey (and subsequently the model) considered factors such as price decreases at 
different rates, willingness to pay over time at different rates, and the addition, or lack thereof, of 
regulations to mandate technology use. From the study, the research team found that the wide variety of 
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influencing factors led to a wide range of adoption curve possibilities, with potential curves ranging from 
a conservative case of 25 percent penetration to an optimistic case of 87 percent penetration by 2045.  

 
Discrete choice models based on current vehicle ownership, 
use of car-sharing and ride-sourcing services, and 
residential location have also been proposed to estimate AV 
adoption (88, 89). These models, when combined with local 
data, could provide insight into local adoption trends of 
ridesourcing and AVs. Behavioral models also provide a 
better understanding of the relative importance of the 
multiple factors affecting ridesourcing and AV adoption, 
ultimately supporting the design of appropriate strategies 
to promote beneficial behaviors. Lavieri et al. suggests that 
AV adoption via ridesourcing is more likely to occur in dense 
neighborhoods (88). Their work also found a relatively high 
opposition to sharing of AVs, as shown in Figure 36. Discrete 
choice models are likely to be important components of 
comprehensive methodologies to assess the impact of 
CAVs. While they will not be implemented at the current 
stage of this project, given the higher-level-approach used 
to define general scenarios, they will be revisited for 
prototype implementation at later stages. 
 
Another option available to researchers is to use diffusion 
models to predict the propagation of new goods into the market. The Bass Diffusion Model, first published 
by Frank Bass in 1969 (96), is widely accepted in the economics community, and has been used in at least 
one study to estimate the adoption of AV technologies using historic data from high tech devices such as 
cell phones, internet adoption, and hybrid vehicle adoption (21). The Bass Model predicts the market 
penetration curve of a new technology by considering two types of consumers: Innovators, who would 
buy a product due to effective marketing or a belief in the potential of the product; and, Imitators, who 
adopt the product after observing its use by others 
(Figure 37). Using this model, the above-mentioned study 
predicts that there will be, cumulatively, more than 87 
million AVs sold in the United States by year 2060, which 
signifies a saturated market of 75 percent AV use (21). 
However, researchers in another study found that the 
wide range of Bass Model coefficients may lead to widely 
disparate numbers and cautioned against reliance on this 
model before the initial data points are established (97). 
In an effort to study the feasibility of implementing the 
Bass Model in the context of this project, CTR created a 
web-based tool to visualize the results of the Bass Model 
under various assumptions. The application may be used 
to develop insights as to what would happen if AVs and/or 
ridesourcing were to be diffused through the general 
market at the same rate as various established technology. Table 4 provides an overview of some select 
adoption curves, showcasing the great variability in model results depending on the selected comparable 
technology (with a beginning year assumption of 2021).  

Figure 36: Lavieri et al. Attitudes on AV Sharing (88)

Figure 37:  Bass Diffusion Model (21)
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Table 4: Computed Bass Diffusion Comparisons. 

Scenario  Percent Penetration in Year 
2025 2035 2045 

At the Rate of Automobiles 0% 3% 9% 
At the Rate of Electric Vehicles 2% 16% 66% 
At the Rate of Mobile Phones 2% 20% 78% 
At the Rate of HEVs 10% 88% 100% 
At the Rate of the Internet 12% 80% 100% 
At the Rate of Air Conditioners 10% 92% 100% 
At the Rate of Color TV 11% 100% 100% 
At the Rate of Smartphones 16% 100% 100% 
At the Rate of the Home PC 67% 100% 100% 

 
Since the above table provides such a wide range of predictions for the adoption of AV, choosing any one 
such comparative technology to predict future penetration of AVs is very much a guessing game. As such, 
in an attempt to still utilize a Bass curve in our final proposed scenarios offered below, we chose to match 
a Bass adoption curve to the results of a survey of world-wide experts that revealed their collective 
judgment as to the availability and commercial penetration of AVs.   This survey, process and results are 
detailed below. 
 
9.2 Autonomous Vehicle Adoption Scenarios  
Given the wide variability of results for behavioral studies, the research team chose to use the Bass 
Diffusion Model to predict adoption scenarios of AVs. The selection of model parameters was guided by 
the outcomes of a Delphi survey conducted in August of 2016. A Delphi consists of rounds of surveys 
among acknowledged experts in a field until a consensus is reached. The study used in this work was 
conducted by Kineo Analytics and included 33 professionals from around the world, with about two-thirds 
of the respondents residing in North America and Europe (94). The results are displayed in Table 5. 
Notably, the world outside of the United States and Canada was much more pessimistic on their prediction 
paradigms. For this effort, the world’s combined responses will be used to generate a conservative case; 
while the results of the United States and Canada are the basis for an aggressive adoption scenario.  
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Table 5: Results from the Delphi Analysis. 

Question Respondents 
World (33) US & Canada (9) 

Average Standard Dev Average Standard Dev 
Year AV’s will be available 2023 2.9 2021 2.0 
AVs will be 10% of the car fleet 2032 7.0 2028 5.7 
AVs will be 20% of the car fleet 2037 8.5 2033 8.0 

 
Using the year of AV availability in Table 5 as the start date, researchers identified Bass model parameters 
that led to 10 percent and 20 percent adoption rates for the corresponding group (World or US & Canada) 
in the years cited. For the “World” group, used to develop a conservative scenario, the innovator and 
imitator coefficients were found to be 0.008 and 0.09, respectively. For the aggressive scenario the values 
are 0.01 ad 0.09. The resulting curves are the basis for the adoption estimates presented in Table 6. 
 

Table 6: AV Adoption Assumptions for Conservative and Aggressive Scenarios. 

Year Adoption 
Conservative Aggressive 

2025 5% 6% 
2035 20% 25% 
2045 45% 51% 

 
The above predictions seem reasonable in light of the collected material currently available on the subject. 
However, the researchers caution that there is ample opportunity for variance in these predictions. As 
such, further research should be done to refine and explore the prediction methodology, and there should 
be updates on an annual or biannual basis to check the status of the market. As adoption occurs and starts 
to inform the beginning of the curve, long-range prediction paradigms should become more realistic. 
 

9.3 The Impact of Ridesourcing 
Ridesourcing services allow users to contact and utilize third party ride providers to complete their trips. 
Some researchers envision that, in post-2020 scenarios, such third parties will be AVs. An estimated 5.8 
million people globally are already using ridesourcing services, a number expected to grow to 15 million 
by 2020 (98). The popularity of these services is also evident in the impressive growth of the ridesourcing 
providers. The largest, Uber, is the most valuable venture-capital-backed private company in the world 
after just seven years of operations (99). Valued around $50 billion, the service is conceptually worth more 
than GM. Uber has more than one million active drivers and is working in more than 300 cities worldwide. 
Uber also has a purported goal of replacing its human driven fleet with AVs as soon as possible (37). While 
still just a small portion of total global mobility portfolio, the conceptual impact of ridesourcing is 
profound, and the traditional automotive companies are noticing. Besides Ford’s bold claim of a 2021 
Level 5 ridesourcing vehicle (36), other traditional car manufacturers are making meaningful investments 
in ridesourcing companies as displayed in Table 7 (100).  
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Table 7: Investments in Ridesourcing (23). 

Investor Investee Investment 
GM Lyft $500 M 
Volkswagen Gett $300 M 
Toyota Uber Undisclosed 
Apple Didi Chuxing (China) $1 B 

 
While the total reach of ridesourcing as a primary means of transportation is yet to be determined, the 
effects of such a system could be significant. The fraction of drivers choosing to use ridesourcing for their 
trips may be estimated through behavioral choice modeling (88, 89, 93). While some currently available 
models (88) suggest a fairly negative attitude towards ridesharing (77 percent), attitudes may change a 
these technologies evolve. As more data becomes available, the research team may be able to better 
estimate the change of attitude towards ridesharing over time. For the purpose of this study, the 
assumptions concerning the fraction of travelers choosing ridesourcing will be based on Lui et al.’s findings 
(93). The authors estimate that ridesourcing has the potential to capture between 13 percent and 50 
percent of the trips depending on the cost per mile. The previous estimates correspond to $0.5 and $0.75 
per mile, respectively. Industry experts such as Larry Burns, a former head of research at GM and a 
professor of engineering practice at the University of Michigan, predicts that AV costs could be brought 
to as low as $0.25 per mile—which would likely expand the influence of ridesourcing even beyond the 50 
percent  predicted above (101).  
 
Based on the previous discussion, three ridesourcing assumptions will be considered when developing 
planning scenarios, as shown in Table 8. 
 
Table 8: Ridesourcing Influence Scenarios. 

Conservative case Middle Case Aggressive Case 
10% mode share, same fraction of AV 
as in General fleet (Table 6). 

23% mode share, all AV 50% mode share, all AV 

 

10 Current Applications of Autonomous Vehicle Technology 
While widespread adoption is probably a decade away, the technology is being introduced now.  As 
such, public entities should begin working with the new transportation paradigms to ensure that these 
technologies are responsibly introduced into their respective areas.  For instance, several current real 
world uses of AVs are summarized below: 

• USDOT AV Proving Grounds: In January 2017, the U.S. Department of Transportation designated ten 
regions across the U.S. as “Proving Grounds” where CV and automated vehicle technologies can be 
tested. The Texas AV Proving Grounds Partnership, which includes CTR, was selected as one of the ten 
regions and offers a wide range of testing environments including the University of Texas at Austin, the 
city of Austin, and the Austin-Bergstrom International Airport (102). 

• Uber’s Pittsburgh Pilot Program: Launched in September 2016, Uber’s pilot program allows customers 
to hail an AV, either a Ford Fusion or a Volvo XC90 SUV, in the downtown Pittsburgh area. Per state 
regulation, there must be a safety driver in the driver’s seat that can take over control of the vehicle in 
the case of an emergency. Although the vehicles are limited to predetermined routes that have been 
extensively mapped, the fact that customers are riding AVs in a commercial setting represents a major 
milestone (103).  
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• Otto’s First Self-Driving Truck Delivery: Otto, which was acquired by Uber in August 2016, completed 
the first autonomous truck commercial delivery in the U.S. in October 2016. Otto partnered with 
Anheuser-Busch to deliver over 50,000 cans of Budweiser from Fort Collins to Colorado Springs in 
Colorado. Otto’s technology allowed the driver to monitor the system from the back seat of the truck 
for the 120-mile trek on the freeway (104). 

• Self-Driving Public Buses in Helsinki: Helsinki’s Metropolia University of Applied Sciences, in partnership 
with the city of Helsinki, tested a fleet of autonomous buses late last year. The buses, which can carry 
up to 12 passengers each on public roads, were previously tested on closed roads in the Netherlands. 
Finland has become a testing ground of AV technology because Finnish law does not require drivers in 
vehicles on public roads. Helsinki hopes to convert its entire public bus system to a fully autonomous 
fleet by 2025 (105). 

11 Summary 
The implementation timeline for CVs and AVs is highly uncertain. This section proposes assumptions for 
the rate of adoption of AVs and CVs at three planning horizons, based on existing knowledge. Assumptions 
concerning the adoption of CVs are based on a Federal Mandate (61) to requires V2V connectivity in all 
vehicles starting in 2023. For autonomous technologies, optimistic and pessimistic assumptions are 
provided based on a simple model used in economics (96), and the outcomes of a world-wide Delphi study 
(94). Assumptions concerning the potential role of ridesourcing are also provided, given the major role 
that this mod can play in determining the ultimate impact of CAV technologies.  
 
The assumptions proposed in this section will be combined with an analysis of several behavioral and 
technological factors that may affect the ultimate impact of CAV technologies on travel. These will include 
activity and residential location choice, vehicle ownership, trip making behavior, mode choice, and route 
selection paradigms. The analysis, which will be presented in the third part of this report, will lead to the 
identification of a number of planning scenarios that may be used to assess the range of potential impacts 
of CAVs in future research efforts. It will also provide a better understanding of the type of methodological 
research that may be required in order to explicitly capture the complex impacts of CAVs. 
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Part III: Development of Planning Scenarios to Assess the Impacts of 
Autonomous and Connected Vehicles 

12 Introduction 
This section of the report proposes an approach to generate a comprehensive list of planning scenarios 
to estimate the impacts of CAVs. Such scenarios combine assumptions about the availability and adoption 
of CAV technologies, presented in Part II, with the analysis of behavioral and other technological factors 
which are ultimately expected to shape the system-wide impact of CAVs.   

Understanding the impact of CAVs over time requires integrative modeling approaches that can capture 
the complex processes that determine travel demand and the corresponding transportation system 
performance.  Among others, travel demand estimation in such models should consider the impact of 
CAVs on individual choices, such as vehicle ownership, residential choice, activity patterns, and mode 
choice. The system performance estimation needs to be sensitive to the impacts of CAVs by capturing the 
multiple mechanisms through which these may affect traffic flow, such as increased efficiency at 
intersections, reduced headways, and increased availability of network-wide information, among many 
others.  

Developing an integrated model such as the one described above is challenging for a number of reasons, 
foremost of which is the considerable uncertainty that characterizes both the availability of CAV 
technology and the response of travelers to such availability. The goal of this section is to identify the 
most critical factors to be considered when assessing the impacts of CAVs, and to describe existing 
hypotheses of how these may change in response to CAV technologies.  This section also proposes a 
number of scenarios that result from combining assumptions regarding the behavior of all the considered 
factors. Such assumptions may be incorporated into existing modeling methodologies to assess the 
potential range of impacts of CAVs.    

As more data becomes available from pilot projects and surveys, researchers will be able to develop 
methodologies to integrate critical behavioral and technological factors within a modeling framework (88, 
106), progressively replacing assumptions with endogenous estimates.  Data analysis will be critical in the 
development of new methodologies, and CAVs have the potential to dramatically increase the availability 
of information.  Preliminary work conducted by CTR and partially funded through this effort discusses the 
potential impact of data availability on the planning process(107) based on data from Michigan’s pilot CV 
deployment (83), and the use of new computational technologies which are expected to facilitate the 
manipulation and use of complex datasets (108).   

The following sections describe the multiple factors considered relevant in the definition of planning 
scenarios and propose combinations of assumptions concerning their behavior, which are expected to 
exemplify the range of potential CAV impacts (Section 2). These assumptions may be used in future project 
stages to build simple models to quantify CAV impacts in the NCTCOG region. 

13 Relevant Factors to be Considered in a Comprehensive Assessment of 
CAVs’ Impact 

Potentially disruptive technologies, such as CAVs, are likely to have complex impacts that may not be 
assessed without appropriate modeling techniques.  
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Planning models are intended to capture the complex interactions between travel demand and 
transportation supply (provided by the roadway infrastructure and transit systems), and are expected to 
provide an adequate framework to evaluate the potential impacts of CAVs. In planning models, traffic 
conditions emerge from the supply-demand interaction, which in turn shapes activity and travel patterns.  
In order to describe supply-demand interactions, the transportation planning process includes two broad 
categories of models: travel demand estimation and traffic assignment. The latter models estimate system 
performance for a given travel demand pattern, and their outputs may be used in a feedback loop to 
adjust travel demand estimates.  In order to successfully study CAV impacts using existing frameworks, it 
is crucial to understand how these technologies may affect behavioral assumptions, as well as other 
modeling inputs and parameters. In light of the CAV research done to date, the research team established 
Figure 38 as a list of the most relevant components of planning methodologies for the purposes of this 
section. 
 

Travel Demand 

o Trip Making Behavior - Understanding the propensity of individuals to make trips is central to 
determining travel demand.   

o Location choice/Residential choice – This ultimately determines the travel patterns that may 
place more or less stress on existing transportation systems. 

o Mode choice - The number of personal vehicles on the roadway is also affected by the choice of 
travel mode, which in turn is related to individual preferences, vehicle ownership, and the 
characteristic and availability of alternative modes. 

o Vehicle Ownership – A key factor affecting mode choice. 
o Parking Demand – A special consideration in light of the CAV paradigm (see below). 

 
Travel Behavior 

o Route choice - Another behavioral factor to be considered in the assessment of CAV, while this 
does not affect the number of trips directly, it has an impact on system performance, which 
ultimately impacts travel patterns, as well as mode and residential choices.   

 
System Performance 

o Capacity - Currently, vehicles are designed to account for human drivers.  However, the 
transition towards machine conductors, and away from human error, affords ample opportunity 
for the transformation of the automobile and driving behavior.      

o Safety – Another special consideration in light of the CAV paradigm (see below). 
 

13.1 Possible CAV Impacts 
Building from Figure 1, the research team established a lengthy list of some of the possible CAV impacts 
that could be classified into each of the above components, available in this section.  Understanding the 
magnitude and positive or negative influence of each possible effect of CAVs is important in order to 
define scenarios to explore the complete range of potential CAV effects. The availability of CAV 
technologies, described in Part I of this report, and  the behavioral acceptance and adoption of CAVs, 
described in Part II, are expected to determine the magnitude of the observed impacts, and are also 
considered in the definition of planning scenarios.   

Figure 38: Modeling Inputs and Parameters
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13.1.1 Travel Demand 

13.1.1.1 Trip Making Behavior 
• Wider access to transportation: With AVs, a class of people that do not currently have access to car 

transportation will be suddenly receive this access.  These groups include the elderly, disabled and youth 
that are not yet old enough to drive.  In addition, inanimate objects and animals can be moved around 
without direct supervision by a human (109, 110).  For instance, if someone travels to work and forgets 
something at home, they can send a car to retrieve the missing item with great ease. All of this could 
lead to more trips in the system. 

• Fewer barriers to making trips:  Some researchers (109, 111) hypothesize that AVs will increase the 
number of trips taken by individuals by increasing comfort and reducing the perceived burden of travel.  
When a traveler decides to travel for any given purpose, they might factor in the value of the trip itself: 
usually considering factors such as cost of time, gas and emotional stress that might come through 
travel.   With AVs, travelers might find that the barrier to making trips is reduced or eliminated; as such, 
they may be more likely to judge trips worthwhile—leading to more trips.  Also included in this 
consideration is the effect of AVs on transportation of low value items, particularly revolving around 
delivery services. Whereas in the past, the cost of the trip itself would make the transportation of the 
item undesirable, the reduction or elimination of this cost might precipitate more trips of low value 
items. 

• A lower burden of travel:  This consideration relates to the decision tied to the distance of any given 
trip.  If an AV provides a low enough burden of travel, populations may be inclined to accept longer trips.  
This would influence the distance of trips such as daily commutes, inter-community trips or even those 
trips seeking out education, entertainment or other social options.   

• Reliable service: On a daily basis, some proportion of the traveling public is limited by mechanical 
problems of their vehicles.  However, in a robust ridesharing paradigm, these travelers will simply turn 
to AV/ridesharing services to complete their desired trips. 

• Empty trips: Passenger-less trips may become common, as AVs with no passengers may still move from 
place to place to retrieve a person or thing (112). 

13.1.1.2 Location/Residential Choice 
• Sprawl: As the burden to travel becomes lower, residential decisions may change.  More cost effective 

land, usually found further away from the city center, will become more palatable to buyers as commute 
burden is decreased.  This may accelerate residential sprawl. 

13.1.1.3 Mode Choice 
• Opportunities for trip-sharing:  Ridesharing or transit services that experience expanded capacity due 

to autonomy may increase shared ridership opportunities.  This expanded opportunity would influence 
traveler decisions to ride in a vehicle alone, or otherwise utilize a shared vehicle (via a transit service or 
otherwise). 

• Ridesharing effects on transit:  In transit, there is a problematic concept known as First Mile / Last Mile.  
This concept revolves around the idea that transit does not generally pick up or drop off at a user’s 
origination point or final destination.  As such, the uncertain segments of travel between these points 
and the transit stop deter transit use.  AVs could potentially solve this through a floating fleet of 
ridesharing vehicles that offer cost effective service to move travelers from their origin and/or final 
destination to the appointed transit stops.  Under this scenario transit may become more reliable, 
eliminating the uncertain segments of travel and less burdensome (113).  However, also under this 
scenario, the issue of transfer to a transit stop becomes the focal point of the traveler decision.  Perhaps 
the user of the ridesharing service would be more content to simply pay for a ride directly from their 
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origin to their final destination and cut out the middle transit ride.  Depending on costs and ease of use, 
a fleet of ridesharing vehicles could severely undercut transit ridership (114). 

• Sprawl effects on transit:  As contemplated above, AVs may lead to residential sprawl.  This spread of 
people may make transit lines/gathering points infeasible in terms of distance from origination points.  
On the other hand, it may make the gathering points feasible for smaller transit vehicles (vans instead 
of buses at more locations). 

• Intermodal cooperation:  Through CVs, there may be increased coordination between all modes of 
transportation.  This could make intermodal transportation more attractive as wait times are decreased 
through precise and/or adaptive schedules of arrivals and departures. 

• A reduction in walking and bicycle traffic: AVs may reduce the barriers and burden of travel so much 
that they may materially affect walking and bicycling activities for non-recreational transportation.  If 
small intercity shuttles can move passengers a few blocks at a time, walking and/or biking may become 
less necessary for local transportation—instead being replaced by autonomous transport.  Additionally, 
AVs may lead towards autonomous intersections.  These intersections, with their regular flow, would 
seemingly not allow crosswalk opportunities for foot traffic, further discouraging foot/bicycle traffic. 

13.1.1.4 Vehicle Ownership 
• CAV adoption/use:  There are many Human Decision Factors (for example: number of kids, propensity 

to share vehicles, distrust of the technology, enjoyment of driving, etc.) that will influence the adoption 
and use of AVs versus other forms of transportation.  If travelers own their own vehicle, or rely on 
ridesharing, or rely on transit or rely on a mix of any of these factors, the potential for significant change 
in this paradigm as compared to current factors is significant (88, 89). 

13.1.1.5 Parking Demand 
• A reduction in parking needs: Both AVs and ridesharing scenarios would seem to lead to a reduced 

demand in parking.  Instead of being parked in a high value local space, vehicles could be sent to park 
away from urban cores, or, in a ridesharing scenario they could simply continue in pursuit of their next 
passenger.   However, there is also a scenario in which individual ownership of CAVs could increase the 
demand for parking if more people have access to vehicles (such as the elderly, blind, young, etc.) and 
these groups all begin to visit higher density urban cores with more frequency. 

13.1.2 Travel Behavior 

13.1.2.1 Route Choice 
• Sensitivity to travel times:  Travelers may become less sensitive to travel times as a result of a decrease 

in the perceived burden of travel, which may lead to a desire to select a route for different reasons.  For 
instance, perhaps someone would like to take the “scenic route,” or perhaps they are watching the 
nightly news in the vehicle and they would like to time their arrival to coincide with the completion of 
the program.  All of this could lead to new routing decisions. 

• Alternative routing paradigms:  AVs and CVs open up the opportunity for adaptive route selection 
based on system-wide real-time information.  This informed route selection could be made on a user by 
user basis or could be coordinated through a centralized system designed to create optimal routing 
across the system as a whole.  Most existing modeling approaches assume that drivers selfishly minimize 
their travel cost based on their perception of travel times across the system. Such approaches typically 
ignore the availability of real-time information, which can change travel and congestion patterns.  The 
information expected to be collected and shared by CAVs (115) may require new modeling paradigms 
which explicitly account for the availability such data. Still, even the effects of the availability of this 
information opens potential assumptions along a spectrum; for instance, ubiquitous real-time 
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information provision may not lead to improved system performance, particularly if all drivers behave 
in a purely reactive fashion without considering the reaction of other drivers. However, in a fully 
connected system, CAVs may enable the deployment of new routing strategies that optimize system 
performance, such as cooperative routing strategies, in which some drivers may be assigned to slightly 
longer routes in order to avoid congestion and promote system-wide travel time savings. 

• Departure times: AVs in a coordinated and controlled system could lead to reliable travel times, which 
could eliminate the need to plan for contingency time.  For example, if system wide optimization 
virtually guarantees your travel time to be a certain amount, you would be less likely to leave your origin 
early, which you might normally do to afford time for traffic or other unforeseen slow-downs in the 
route.  This could have a widespread effect on departure times.  Additionally, highly coordinated 
ridesharing during heavy traffic hours could optimize trip distribution over the period to help avoid 
congestion.  Finally, departure times for the delivery of goods or inanimate objects could be shifted to 
periods of low traffic. 

13.1.3 System Performance 

13.1.3.1 Capacity 
• Vehicle performance: Roadways could see an increase in capacity due to the elimination of human 

error, the optimization of driving behavior (116), and the influence of CVs (115).  Notably, while the 
benefits of connectivity may be attained at relatively low penetration rates, some of the benefits of 
automation are only possible if the entire fleet is automated (117). Assumptions concerning the market 
penetration of these technologies (provided in Part II) are important in order to assess their impact. 
These system advancements include: 

o Platooning 
o Weaving/Movement Coordination  
o Reduced Headways (117) 
o Faster Speeds 
o String stability in mixed traffic (smoother vehicle spacing that leads to system gains)(118) 

• Roadway performance:  Additionally, potential reconstruction of existing infrastructure could lead to 
further capacity gains, potentially through: 

o Precise lateral control allowing for reduced lane widths and removal of shoulders, which 
should allow for the addition of more lane miles in the existing right of way 

o Removal of on-street parking that could also provide additional space for new lanes. 

• Intersection performance:  AVs and CVs could potentially produce optimized movement at 
intersections.  Lag time between vehicle acceleration could be minimized, allowing more vehicles to 
pass through each light phase.  Additionally, in an advanced system, traffic signals could be entirely 
eliminated, with the coordinated crossing of vehicles serving to allow changes in direction (109). 

• Vehicle size: Vehicle size could be affected, as vehicles that currently carry many in-built safety 
measures could be reduced in size due to the decrease in collisions (119).  Alternatively, size could 
increase as travelers could opt for larger cars with amenities to pass the time during long trips or to 
handle multiple passengers (109). 

• Reliability due to fewer collisions: The prevention of accident-caused traffic disruptions could greatly 
increase roadway efficiencies and help maintain free flowing traffic. 

13.1.3.2 Safety 
• Vehicle accident reductions:  Safety could increase significantly with fewer wrecks on the roadway.  

Estimates of up to 80% of unimpaired roadway accidents could be avoided through V2V communication 
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(115), and with the addition of AVs, this could likely go higher. 
• Vehicle/Pedestrian accident reduction:  In the same mode as vehicle accident reduction, vehicle 

pedestrian accidents should also decrease. 
• Evacuation system: Vehicle coordination in evacuation situations could help save lives after natural 

disasters or terrorist events and aid transportation of populations away from any disaster area. 
• High-speed chases/fugitive searches: These could be safer through automated alerts to other vehicles 

along the route to move away from the activity. 
• Transportation of hazardous materials:  Hazardous cargo could alert other vehicles to maintain a buffer 

space around transports. 
 

Since there is extensive variability in the potential impacts listed above, the research team selected the 
key factors that they believed would have the most influence on planning methodologies.  To this end, 
Table 9 summarizes the aspects of planning methodologies that may be affected as a result of changes in 
human behavior as a response to CAVs, while Table 10 describes changes required to account for the 
impact of the technologies on the operations and design of the transportation system. The team believes 
that these factors should be either modeled explicitly, or clearly captured by simplified modeling 
assumptions when assessing CAV impacts. 

Table 9: Behavioral factors to be considered in the modeling of CAVs impacts. 

Category Factor Response to CAV deployment Impact  
Travel Demand  Trip Making Rates • Remain unchanged. 

• Increase. 
• Total number of 

trips. 
Vehicle ownership • Remains unchanged. 

• Decreases. 
• Increases. 

• Modal split 
• Trip making rates 

Residential Choice • Remain unchanged. 
• Increased sprawl. 

• Location of home-
based-trip origins. 

Activity Location 
Choice 

• Remains Unchanged. 
• Less sensitive to travel 

time. 

• Location of trip 
destinations. 

Modal Split • Remains unchanged. 
• Increased use of 

ridesourcing (Part II)  

• Trips by mode. 
• Number of vehicles 

on the road. 
Traffic 
Assignment 

Route selection 
paradigms for CAVs 

• Remains unchanged. 
• User optimal w/ real-time 

and/or historical 
information. 

• System optimal or other. 

• Path choice & 
resulting travel 
times. 

• Modal split 
(indirectly). 
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Table 10: Technological factors to be considered in the assessment of CAVs impacts. 

Category Factor Possible Assumptions Impact 
System 
Performance 

Vehicle fleet 
characteristics 

• Remains unchanged. 
• Decrease in vehicle size 
• Increase in vehicle size 
 

• Arterial and freeway 
performance. 

• Residential location choice 
(Indirect). 

System 
Performance 

Automation  • Optimistic adoption rate for 
personal vehicles (Part II). 

• Pessimistic adoption rate for 
personal vehicles (Part II). 

• Automation of transit fleet. 
• Automation of freight fleet. 

• Headways. 
• Traffic control strategies. 
• Safety. 
• Indirect: Arterial and 

highway performance. 
• Indirect: Modal Split 

System 
Performance 

Communications • Technology adoption. 
timeline dictated by DSRC 
deployment. 

• Technology adoption 
timeline accelerated through 
cellular technologies. 

• V2V. 
• V2V+V2I. 
• V2X+Backhaul (enabling 

centralized data collection 
and traffic management). 

 
 

The following section combines assumptions for the factors described in Tables 9 and 10 in order to define 
planning scenarios for preliminary modeling exercises. 

14 Proposed Planning Scenarios 
Different combinations of assumptions regarding the behavior of the factors described lead to distinct 
planning scenarios. In order to select a representative range of scenarios, researchers distinguish between 
assumptions that are likely to result in a worse performance of the transportation system, mostly through 
an increase in vehicle miles traveled (VMT), and those that may lead to predicting improved system 
performance as a result of operational efficiencies.  In Table 11 we have broken out these factors; for 
simplicity, vehicle ownership decisions are assumed to be reflected by the trip making rates.  

Table 11: Classification of modeling assumptions based on expected impact on transportation system 

Increase VMT or Reduce Capacity Improve System Performance 
• Increase in sprawl 
• Decrease in travel-time sensitivity 
• Increase in trip making rates 
• Increase in ridesourcing 
• Increase in vehicle size 

• Automation in personal vehicles
• Automation in transit 
• Improved routing paradigms 
• Vehicle connectivity 
• Decrease in vehicle size 
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Optimistic scenarios may be constructed by assuming that all the factors that can potentially lead to 
worsening the transportation system will remain unchanged, and that all the benefits of vehicle 
automation are realized.  Conversely, pessimistic scenarios will include assumptions that lead to increased 
VMT and/or reduced capacity.  Otherwise, mid-level scenarios can be constructed by combining 
assumptions for each of the specified factors. Table 12 proposes a list of basic scenarios considered 
meaningful for the next phases of this project.  The table considers four possible combinations of 
automation and connectivity adoption (corresponding rates are provided in Part II). Scenarios 1-4 
represent an optimistic case, or the early-stage impacts of CAVs during which trip making behavior is not 
significantly affected.  Scenarios 5-8, 9-12, and 13-16 progressively incorporate changes in trip making 
behavior which may be expected as individuals become more comfortable with the new technologies.   
Additionally, due to potential disruptor influences, Table 13 is included to highlight several more 
independent variables that may affect the model. 

Table 12: Basic Planning Scenarios 

Automation Connectivity Route Choice 
(VMT) 

Trip making 
behavior 

(VMT) 

Capacity 

Scenario 1 Optimistic Optimistic Same Same Same 
Scenario 2 Optimistic  Pessimistic Same Same Same 
Scenario 3 Pessimistic  Optimistic Same Same Same 
Scenario 4 Pessimistic  Pessimistic Same Same Same 
Scenario 5 Optimistic Optimistic Decrease Same Same 
Scenario 6 Optimistic  Pessimistic Decrease Same Same 
Scenario 7 Pessimistic  Optimistic Decrease Same Same 
Scenario 8 Pessimistic  Pessimistic Decrease Same Same 
Scenario 9 Optimistic Optimistic Decrease Increase Same 
Scenario 10 Optimistic  Pessimistic Decrease Increase Same 
Scenario 11 Pessimistic  Optimistic Decrease Increase Same 
Scenario 12 Pessimistic  Pessimistic Decrease Increase Same 
Scenario 13 Optimistic Optimistic Decrease Increase Increase 
Scenario 14 Optimistic  Pessimistic Decrease Increase Increase 
Scenario 15 Pessimistic  Optimistic Decrease Increase Increase 
Scenario 16 Pessimistic  Pessimistic Decrease Increase Increase 

 
Table 13: Scenario Variations 

Ridesourcing (Part II) Low/Very High/High 

Freight & Transit No change/Automated 

Vehicle size No change/Increase 

Routing Paradigm* User Equilibrium/User Equilibrium with 
information/System optimum/other 

*These variations are not expected to be considered in the near term due to the modeling complexities. 

Different variations of the 16 basic scenarios may be considered depending on assumptions concerning 
ridesourcing, vehicle size, and the automation of the transit and freight fleets (Table 13), which lead to a 
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total of 112 scenarios.  The change in routing paradigms is not included in the final list of scenarios at this 
point because of the significant research required to meaningfully incorporate it in regional modeling 
approaches.  It may be considered in the latest stages of this project.  Using the constructs above, one 
such plausible planning scenario is shown in Figure 39. 

 
Figure 39: A plausible timeline for evolution of the transportation system under CAVs 

 
Evaluating the proposed scenarios requires mapping assumptions into a meaningful adjustment of 
modeling inputs or parameters.  Given the limitations of existing modeling tools, particular those 
appropriate for regional-level analysis, significant simplifications will be necessary to represent desired 
assumptions in early project stages. Table 14 suggests possible modeling approaches when using a 
traditional four-step model, which may be an appropriate tool for initial assessments.  

Table 14: Potential modeling approach using a traditional 4-step model 

Automation • Capacity increase in freeways proportional to the adoption rate 
• Delay decrease in arterials proportional to adoption rate 

Connectivity • Delay decrease in arterials proportional to adoption rate 

Travel Time 
Sensitivity • Trip distribution parameters 

Trip Making Rates • Trip generation parameters 

Sprawl • Land use assumptions 

Ridesourcing • Mode choice—may not be able to capture additional VMT due to 
ridesourcing. 

Vehicle size • Capacity reduction 

Freight & transit 
automation • To be determined 
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15 Future Research 
Future research includes: 

• Specify the details of the methodology to be used to conduct the simplified modeling of the proposed 
scenarios. 

• Provide appropriate values for all required parameters.  Study the sensitivity of the model to the value 
of the parameters, and increase the number of scenarios if considered appropriate. 

• Through further modeling, refine the analysis of the range of potential CAV impacts in the NCTCOG 
region. 

• Identify mode limitations and prioritize further research directions to address the issues considered 
most relevant. 
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