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EXECUTIVE SUMMARY 

In 2013, the Department of Housing and Urban Development (HUD) released the Location 
Affordability Index (LAI) as an online portal and downloadable data set. The LAI has 
elevated the U.S. conversation on affordability, moving beyond housing to include 
transportation and access to opportunities, and has been used in state and federal 
programming, by researchers, and by private households. The dataset uses models to 
estimate what households spend on housing and transportation, and calculates “H + T 
Affordability,” the percent of household income spent on these items. However, there is 
virtually no validation of the estimates in any setting, and no studies delving into how 
accurate the estimates are in “shrinking” or weak-market cities, which represent a distinct 
context.  
 
While some researchers have noted concerns and potential limitations of the data, none 
have provided practitioners and researchers with an under-the-hood view of the data, 
analysis of its reliability or validity, or its conceptual limitations. As a result of completing 
such an analysis, we recommend methodological improvements dealing with issues of 
variable construction, aggregation, and modeling. A recreation of the LAI at the Census 
tract level suggests the LAI overestimates both costs and cost burden, but especially among 
renters, and especially in metropolitan areas. On the transportation side, model re-creation 
requires partnership and resourcing to both gain access to restricted data and to develop a 
reliable database on transit supply and use.  
 
To further understand the real costs of housing and transportation in a declining context, 
we implemented a household survey to determine whether the assumptions made in the 
literature and the LAI regarding household expenditures and transportation accessibility 
hold when analyzing shrinking cities—generally cities characterized by a long-term loss in 
occupied housing units. We present results from 12 Census tracts in Cleveland, Ohio, a 
prototypical shrinking city. The 12 tracts were chosen to represent redeveloping, stable, 
and declining neighborhoods. We conclude by synthesizing our analyses and providing 
recommendations for improving the LAI data for shrinking cities, and for informing local 
transportation policy to improve livability.  
 
We completed the project in two major phases. In the first, we rebuilt the LAI from scratch to 
examine its assumptions and potential shortcomings for a shrinking city context. In this phase we 
evaluated margins of error for input variables, variable construction for larger geographic areas 
than the block group (the focal point of HUD’s LAI), and modeling considerations. The key 
conclusions of this research phase include the following: 

• The American Community Survey data used to disaggregate transit costs and allocate 
them to households fails to pass basic reliability metrics for virtually all Census tracts in 
the state of Ohio. The automobile-based costs are estimated through a regression model 
which cannot be fully replicated. The strongest recommendation of this research is that 
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HUD and its partners work to improve the reliability and reproducibility of the 
transportation cost estimates.  

• The margins of error in American Community Survey data for many input variables used 
in the LAI indicate poor reliability at the block group geography. However, reliability is 
greatly improved in data covering the same metrics at the Census tract geography (the 
next larger geography in Census standard geography). To improve reliability, a tract-level 
LAI is recommended, rather than the block group-level index currently provided online.   

• The LAI user’s manual recommends that users estimate tract-level input variables and the 
LAI itself by weighting the block group LAI according to number of households. 
However, our research shows that households represent an appropriate weighting field in 
only some cases, and when applied inappropriately to variables introduces error. This 
project developed R-based code to recalculate the variables from their raw inputs.  

• After reproducing the LAI in its entirety and producing housing cost estimates, a 
comparison suggests the estimates published by HUD over-estimate both housing cost 
and housing cost burden. Over-estimates are larger for renter households, and larger in 
metropolitan areas.  

• For audiences, it is difficult to understand how to use the LAI, owing largely to its 
reliance on eight prototypical household types. This theme is explored further in our 
survey-based research. 

In the second phase of the project we developed, deployed, and analyzed data from a household-
level survey in 12 Census tracts in Cleveland, Ohio. The survey sought to better understand 
household trade-offs for unaffordable transportation costs, and sought to better estimate 
household-level transportation costs as a means of assessing the quality of those published by 
HUD. The key conclusions of this research phase include the following: 

• Following the last bullet point from Phase 1, our survey found that less than 9% of 
households resemble any household type used by the LAI.  

• Also confirming findings from Phase 1, the survey shows that the published LAI 
estimates likely over-estimate housing costs. The survey indicates that the published LAI 
also over-estimates transportation costs, and does so at a much higher margin of error 
than in the housing case. However, these findings come with several caveats:  

o Discrepancies between the LAI and the survey results depend significantly on 
which household type you assume in the LAI data. Since only 9% of the sample 
matches any household type, choosing an appropriate one is difficult.  

o Discrepancies between the LAI and the survey results depend on whether you use 
the mean or the median of the survey results. For the LAI, because it assumes all 
households are identical, the mean and median are equal. In survey data, the mean 
and median are not equal. The published LAI more closely matches the mean total 
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cost (H+T) for Census tracts but use of medians is the norm in data on incomes 
and expenses (and is the moment reported herein).  

• Despite the finding that the LAI overestimates both housing and transportation costs for 
households in our sample neighborhoods, most respondents to our survey face H+T costs 
that are unaffordable.  

• Survey results show that when households must make tradeoffs to pay for transportation, 
two-thirds do so by foregoing paying (or by foregoing fully paying) bills, buying 
essentials (like food and clothing), paying down debt, paying for experiences for children 
(like field trips, educational opportunities, or sports equipment), and investing. Thus, for 
households facing these budgetary decisions, transportation costs more by imposing an 
out-of-pocket cost now, and the cost of interest on overdue bills or lost investment 
income in the future.  

• Finally, our results indicate that many low-income households in shrinking cities lack 
mobility both in terms of housing and transportation. As employment suburbanizes but 
transit budgets remain stable or decline, residents may face increasing difficulties with 
access to jobs, school, or medical care.  
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1.0 IT’S GOOD BUT IS IT RIGHT? AN UNDER-THE-HOOD 
VIEW OF THE LOCATION AFFORDABILITY INDEX 

 

1.1 OVERVIEW 

In 2013, the Department of Housing and Urban Development (HUD) released the Location 
Affordability Index (LAI) as an online portal and downloadable data set. HUD adopted and 
revised the LAI from its origin as the Center for Neighborhood Technology’s H + T 
Affordability Index. This database seeks to inform households and public agencies of the costs of 
living in various places, changing the discussion about affordability from one focused solely on 
housing to one inclusive of transportation costs. Numerous scholars have analyzed the LAI 
estimates, resulting in a special issue of Housing Policy Debate as well as other manuscripts.  
 
These publications have addressed housing subsidies, mortgage risk, and racial disparities in 
costs, among other things. However, these manuscripts have not provided practitioners and 
researchers with an under-the-hood view of the data, analysis of its reliability or validity, or its 
conceptual limitations. As this manuscript shows, some elements of the LAI introduce either 
considerable error or the potential for considerable error. Many of those issues, based in variable 
construction, aggregation, and modeling decisions, can be fixed. Others—notably, data on transit 
use—are more problematic. If left unchecked, such error could misinform decisions regarding 
household location or public policy issues in housing or transportation—potentially costing 
private households or public agencies considerably. This manuscript uses data from across the 
state of Ohio, intending it as an illustrative case study of the national implications of the 
conceptual and technical bounds of the LAI.   
 
Following a brief background section, Section 1 provides conceptual and technical overviews of 
the LAI. The following, more detailed Section 2 evaluates technical issues regarding data 
reliability, variable construction, aggregation, and the LAI’s structural equation model (SEM). 
The final sub-section of Section 2 presents the methods and results of re-estimating the SEM. 
Finally, the manuscript concludes with recommendations for LAI revision, either by HUD or for 
researchers seeking to replicate the index for later years, specific geographies, or to mitigate a 
selection of the issues raised.  
 

 

1.2 LITERATURE REVIEW 

In the 1990s President Bill Clinton focused national economic development policy on integrating 
social and economic systems, using policies such as Empowerment Zones (created through the 
Omnibus Budget Reconciliation Act of 1993). Under the George W. Bush White House, policy 
changed but retained a focus on reducing housing discrimination and addressing some place-
based development issues. One example is brownfield redevelopment, addressed via the Small 
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Business Liability Relief and Brownfields Revitalization Act. President Obama continued in the 
direction of focusing national economic development policy on place-based change, by 
emphasizing strong cities as building blocks for regional development, through efforts such as 
the Smart Cities Initiative. Over President Obama’s two terms the national discussion about 
place-based development evolved to consider more broad-based evaluations of affordability, and 
the interplay of transportation systems, economic opportunity, and housing development that 
influences neighborhood vitality. The Obama administration’s Partnership for Sustainable 
Communities represents one effort toward advancing this conversation. The LAI is an initiative 
of that partnership (HUD, n.d.-a).  

The LAI represents more than a shift in the conversation about affordability; The LAI has direct 
bearing on federal policy through HUD’s Affirmatively Furthering Fair Housing (AFFH) 
program. The effort, an executive order of President Obama, requires some HUD grantees to 
complete Assessments of Fair Housing. The Assessment Tool includes (among other data points) 
eight indices “to help inform communities about segregation in their jurisdiction and region, as 
well as about disparities in access to opportunity” (Abt Associates & Mast, 2015, p. 10). Two of 
those indices use as their basis variables produced in the LAI—the Low Transportation Cost 
Index and the Transit Trips Index. Thus, the recommendations drawn from this manuscript’s 
findings could affect not only the LAI, which is a tool for practitioners and researchers, but also 
policy in the form of AFFH. States such as Minnesota and Illinois have also adopted policies 
relying on location affordability databases (National Conference of State Legislatures, 2011). 

The LAI also indirectly influences federal policy related to public housing programs and 
mortgage lending through peer-reviewed research. Several scholars have investigated the merit 
of adjusting subsidy levels or duration for public housing programs in scale with the presence of 
local amenities (Bieri & Dawkins, 2016) and location efficiency (Lens & Reina, 2016; 
Tremoulet & Adkins, 2016). Kaza, Riley, Quercia, and Tian (2016) analyze mortgage 
performance and location efficiency, arguing that mortgage concessions for low-income families 
in high-efficiency locations may not be warranted.  

The LAI’s potential to influence local and regional policy provides the primary motivation for 
this manuscript. In many metropolitan regions, transit authorities increasingly acknowledge 
issues of racial and socioeconomic segregation and opportunity and promote goals of providing 
transit services where they will most benefit neighborhoods. This is the case, for instance, for the 
Cleveland Regional Transit Authority (henceforth “RTA”), which also faces a long-declining 
budget. With a high marginal utility of public dollars, and a high opportunity cost of investing, 
the RTA views location affordability as a potentially valuable tool in developing programming 
options. The RTA thereby joined this research effort as a match partner, enabling the work to use 
Cleveland as its case study setting for the evaluation of the LAI’s reliability, validity, and 
applicability, as well as other research questions that lie beyond the scope of this manuscript. To 
avoid the bias that the MSA’s distinct economic patterns might exert, this manuscript evaluates 
data across the state of Ohio.  

Both HUD and scholars have previously identified some concerns regarding data reliability and 
validity in the LAI, but exploration of those concerns has almost universally ended at 
identification. HUD identifies two big-picture known concerns regarding the LAI. First, the 
models assume that all households within a block group match the household type for which 
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estimates have been produced. This is neither realistic nor desirable. The effects of housing and 
household diversity number many, from encouraging aging-in-place to decreasing time on the 
market (for the latter, see McMillan & Chakroborty, 2016). Second, and echoed by Renne, 
Tolford, Hamidi, and Ewing (2016), the housing costs included in the LAI have both temporal 
and spatial resolution issues and do not reflect the cost of entry for homeowners (personal 
communication, September 27, 2016).   

To this, scholars have added concern regarding racial disparities. When other factors are held 
constant, Acevedo-Garcia, McArdle, Hardy, Dillman, Reece, Crisan, Norris, and   
Osypuk (2016) find racial disparities in opportunity still emerge in data covering education, 
health and environment, and social and economic opportunity. Transportation costs carry racial 
differences. Renne et al. (2016) find higher transportation costs in majority African American 
neighborhoods, perhaps, they speculate, due to characteristics of the vehicle fleet owned. African 
American neighborhoods also display lower walkability (Koschinsky & Talen, 2016), which 
could decrease access to opportunities or require higher-cost transportation alternatives. 
Relatedly, numerous scholars mention difficulties in use or interpretation stemming from the 
household types used in the LAI research design, as results are difficult or impossible to modify 
to reflect actual populations (Nguyen, Webb, Rohe, & Noria, 2016; Tighe & Ganning, 2016).  

Finally, several scholars who have used the LAI in research note concern regarding the margin of 
error (MOE) in American Community Survey (ACS) data, especially at the block group level 
(Acevedo-Garcia et al., 2016; Haas, Newmark, & Morrison, 2016; Tighe & Ganning, 2016; 
Walter & Wang, 2016). With the exception of Haas et al. (2016), external review of the LAI on 
the grounds of statistical reliability or validity has gone no further than this. As this manuscript 
shows, though MOE does present a considerable challenge for the LAI as a whole, other 
considerations warrant discussion as well. 

 

1.2.1 A Conceptual Overview 

HUD’s LAI aims to provide “the public with reliable, user-friendly data and resources on 
combined housing and transportation costs to help consumers, policymakers, and developers 
make more informed decisions about where to live, work, and invest” (HUD n.d.-b). At the time 
of this writing, the portal uses data primarily from the 2008–2012 five-year American 
Community Survey and the 2010 Census LODES database. The portal provides two tools: one 
giving housing and transportation costs households might expect to pay in a given location, and 
one that guides a user through prompts to calculate their costs. This section provides a 
conceptual overview of each tool, though briefly, as the LAI website provides this information 
publicly.  

 

1.2.1.1 The index 

The index gives the estimated percentage of income and dollar amount spent on housing and 
transportation costs for eight household types. The online version presents this data at the block 
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group geography; the tabular data available for download provide estimates at various 
geographic levels1. In addition to the housing and transportation cost estimates, the online tool 
provides an estimate of annual vehicle miles traveled, the number of annual transit trips taken, 
and the number of vehicles owned. The online user must select from eight household types as 
they are given and cannot change any of the selected type’s defining characteristics, which are 
various combinations of income level, household size, and number of commuters. The user can 
pan and zoom on a built-in map to their target neighborhood. The LAI technical documentation 
claims the types “are not intended to match the characteristics of any particular family. Rather, 
they were selected to meet the needs of a variety of users, including consumers, planning 
agencies, real estate professionals, and housing counselors” (HUD, n.d.-c, p. 26).  

Directly because users cannot adjust the estimates to reflect a higher or lower income, or more or 
fewer commuters, the index should be used to gauge relative, not absolute, affordability. From a 
technical perspective, this challenge arises from the index’s use of structural equation modeling 
(SEM). In an SEM, the variables, both exogenous (similar to independent variables in traditional 
regression) and endogenous variables (similar to dependent variables in traditional regression) 
are inter-related in multiple and complex ways. The multiple and inter-related nature of the 
variables renders impossible any efforts to guess how much changes in any one variable might 
influence total costs or affordability. For example, in the LAI’s SEM, automobile ownership for 
renters precipitates from a function of 12 exogenous variables and two endogenous variables, 
which are themselves the products of 11 and 13 other variables respectively. How could a 
potential new resident gauge how much neighborhood automobile ownership stems from built 
environment influences versus socioeconomic ones (the SEM includes both)?  

Both practitioners and individual users must then emphasize that LAI affordability estimates are 
intended to reflect typical costs for household types within block groups. This suggested 
terminology— “typical costs”—reflects that the LAI does not actually provide average costs. 
This issue is taken up in the technical considerations section.  

Stylistically, the online index does not break down transportation costs into those incurred via 
automobile and those incurred via public transit. Thus, users cannot reasonably estimate a 
difference between the modeled values and their own actual costs by manually adjusting transit 
costs, for instance, based on their own known behavior. Similarly, the index does not make 
allowances for unusual mortgage or home financing situations. The LAI’s second tool, the online 
calculator, better serves users who desire such a level of accuracy. 

As the index does not permit manipulation of estimated costs to reflect edits to the household 
types, it bears noting that in virtually all cases the index will not represent actual household 
situations. Even if a household is reasonably well-represented by a household type, the index 
estimates automobile ownership as a continuous (e.g., 1.7 cars owned) rather than discrete 
variable (e.g., 2 cars owned), with no information regarding the additional cost incurred by 
owning another 0.3 cars. Finally, the eight household types do not attempt to cover all situations. 
For example, no household type accommodates a four-person household with two commuters 

                                                 
1 In the hierarchy of U.S. Bureau of the Census geographies, Census blocks make up block groups, block groups 
make up Census tracts, and Census tracts make up counties. Census tracts are delineated to capture, ideally, about 
4,000 people, although they range in size from about 1,200 to about 8,000 people.  
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who together earn less than the regional median income. Nor are telecommuters well 
represented. 

To summarize, the LAI represents typical housing and transportation costs at the block group 
level (or other geographies using the tabular, downloadable data) for prototypical but 
unobservable households. Users should not modify the LAI estimates in an effort to tailor the 
household types to individual circumstances. Implicitly, then, the index finds its highest use as 
either of two tools: 1) an estimate of relative locational costs for households considering 
relocation, or 2) a resource for analyzing regions for researchers with questions specific to 
different socioeconomically-defined household groups, such as single parent households, the 
elderly, or young professionals. The LAI’s usefulness for practitioners is less clear, because the 
index does not reflect the situation of actual neighborhood residents, nor can its output be easily 
modified to understand the influence of various characteristics.  

 

1.2.1.2 The calculator 

The second tool caters to households who have reasonable estimates of their average monthly 
expenditures and desire tailored estimates of housing and transportation costs they might incur in 
a given location. The calculator appears to be a series of straightforward calculations based 
solely on user input. If a user lacks an estimate for a given expense—say, monthly public 
transportation costs—the calculator suggests the estimate produced by the LAI. Here, however, 
the LAI technical documentation provides little information, saying only that the calculator 
“takes advantage of the SEM using the progression of choices made by the user” (HUD, n.d.-c, 
p. 27).  

The technical documentation implies that the calculator’s suggested values come from the SEM, 
with no information on how this is accomplished. In a test of various fictional households in 
cities, the calculator’s suggested values do not match the costs estimated by the index for any of 
the eight household types. Nor is it clear whether or how the SEM might instantaneously run and 
produce estimates for user-inputted household characteristics. Nor has HUD provided 
coefficients which researchers could use to estimate costs for households not conforming to the 
eight defined household types. The suggested housing costs also mismatch with published 
figures from the Census Bureau’s American Community Survey.  

On one hand, if reliable, the calculator’s estimates vastly enhance the tool’s usefulness for 
households by providing estimates more tailored than those the index can provide. At the same 
time, for practitioners and researchers, this tool brings limited utility absent more information 
regarding the production of its estimated values for user-generated household profiles.  

 

To conclude this conceptual overview, one aspect of the LAI evinced more questions than any 
other at a recent Location Affordability Round Table session held during the Association of 
Collegiate Schools of Planning conference in November 2016: For whom does the index exist? 
The questions asked mirror the narrative presented here. The eight pre-set household types 
impose unrealistic assumptions on neighborhoods—assumptions that, if held, would drastically 
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and swiftly change the location of opportunities and costs. If, for instance, all of East Cleveland 
were suddenly inhabited by dual-professional households, a growth in the number of commercial 
establishments would quickly follow. Moreover, most index users have difficulty finding their 
household circumstance in the eight pre-set types. Language introducing the calculator might 
clarify its intended uses and audience. 

 

1.3 RESEARCH OBJECTIVES 

While the overall research project has four research questions, this chapter covers just one. Does 
the existing LAI data accurately estimate housing and transportation costs for households in 
declining neighborhoods in shrinking cities? 

1.4 TECHNICAL CONSIDERATIONS 

The index presents affordability information for housing and transportation. The housing 
estimates emerge from an SEM built from Census ACS and LODES data, and the household-
level characteristics of the eight prototypical types (size, number of commuters, and income 
level). For transportation costs, part of the LAI estimates comes from the SEM, while part stems 
from an OLS regression using the SEM outputs as inputs, along with Census data inputs. This 
technical overview begins with concerns relating to data reliability, variable construction, and 
aggregation for data used in both the SEM and OLS portions of LAI estimation. Following, 
technical considerations relating to the SEM are addressed and a re-estimation presented. 
 
1.4.1 Data reliability 

HUD constructs the majority of its variables from ACS 2008–2012 five-year data at the block 
group level, using many transformations both to create new variables and aggregate to larger 
levels of geography. ACS critics have long pointed to margin of error issues. These issues stem 
from sample sizes and tend to be more problematic for small geographic levels such as the block 
group and Census tract levels. An evaluation of the reliability in the underlying data thus sheds 
light on the reliability of LAI variables.  
 
The Bureau of the Census publishes ACS estimates alongside each variable’s margin of error 
(MOE). The Coefficient of Variation (CV; Equation 1, using a 90% Confidence Interval) 
quantifies the reliability of an estimate based on both the estimate and the MOE. After 
converting CV values to ordinal groups researchers can classify observations within datasets as 
having high (CV =< 12.0), medium (12.0 < CV =< 40.0), or low (CV > 40.0) reliability (Esri, 
2014). Table 1.1 summarizes the analysis of reliability for the LAI variables.  
 

𝐶𝐶𝐶𝐶 =  
𝑀𝑀𝑀𝑀𝑀𝑀
1.645

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
× 100 
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Medium to poor reliability variables and tenure 
 
Across the board, a greater proportion of observations have high reliability among owner-
occupied households than among renter-occupied households (Tables 1.1 and 1.2). This is more 
pronounced at the block group level (Table 1.1). At this level, medium reliability is the modal 
category for renter households for most variables. For some variables, few block groups have 
high reliability. Esri labels medium reliability data as “use with caution” (2014, p. 6). However, 
exercising caution requires an understanding of the LAI’s underlying structure.    
 
For example, that the LAI models four of its six endogenous variables using fraction rental units 
as an input. At the block group level, 46% of block groups have medium reliability for total 
households and 62% for number of renter households. Ohio block groups are modally 
moderately reliable for estimates of the percentage of single family detached dwelling units, as 
well as for the number of vehicles available. These variables collectively enter the SEM seven 
times.    
 
Across all variables, Table 1.2 shows improved data reliability when measured at the Census 
tract level. This finding contributes directly to one recommendation of this manuscript: The LAI 
should be recreated and presented at the tract level rather than the block group level. In an ideal 
case, a block group-level LAI would be more useful since between-block group variation could 
be captured. Unfortunately, the available data’s reliability metrics support a move to the larger 
Census tract geography, which is still considered a small geography for most policy-oriented 
datasets. Additionally, Table 1.2 includes several variables that exist only at the tract-level, 
although they are used in the block group-level LAI models—a practice widely discouraged in 
quantitative methodologies. This further bolsters the recommendation to shift to a Census tract-
level presentation of the LAI, eschewing the block group-level database.     
 
Data too unreliable for ethical use 
 
Reliability metrics for the Journey to Work (JTW) data on transit use warrant jettisoning these 
data altogether (Table 1.2). Similarly, in very few cases statewide can the number of commuters 
be reliably distinguished from the number of workers. Realistically, removing the transit use data 
brings far-reaching consequences. At a high level, it requires a replacement estimation 
methodology be designed and implemented for estimating annual transit trips—an important data 
point for consumers. Absent this, auto-based costs would replace transportation costs in the LAI. 
For the Cleveland RTA system area this would overlook approximately $48,614,000 in 
consumer expenditures in 2010 (Rogoff, 2011). Relatedly, HUD undertook a significant effort to 
estimate MSA-based total transit expenditures in cases where multiple transit authorities serve a 
region, but unfortunately this information is not provided in the LAI database, making the 
transit-based costs very difficult to replicate anyway. Beyond the LAI, transit use data used in 
the LAI is leveraged for the Affirmatively Furthering Fair Housing (AFFH) Assessment Tool, an 
important tool for fair housing policy implementation.  
 
Given the importance of transit data for place-based housing and community development 
practice and policy, priority should be given to making the data reliable. The LAI could be 
improved by incorporating transit supply data, which require considerable data and processing 
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demands. The temptation should be avoided to convert regional fare receipts to household 
expenditure simply by weighting tracts by number of households. In low income neighborhoods 
in Cleveland and East Cleveland, for instance, the LAI auto cost model’s estimated costs of 
owning a vehicle are cost-prohibitive for many households. Access to employment and other 
opportunities for these populations thus disproportionately requires access to and use of public 
transportation, which would be underestimated in a household-weighted distribution of transit 
expenditures. The situation of using the LAI for shrinking cities like Cleveland, or the AFFH for 
virtually any setting, would not be markedly improved by such a household-weighted approach.  
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Table 1.1: Reliability of LAI SEM inputs at block group level 
 

  
ACS 

Table % High Reliability % Medium Reliability % Low Reliability 
    Total Owners Renters Total Owners Renters Total Owners Renters 
                 
Fraction of rental 
units                     
   = Renter-
occupied/Total 
households B25003 54.1%   2.3% 45.8%   62.0% 0.2%   35.7% 
Fraction of SF 
detached units B25024 36.9%     59.7%     3.4%     
Number of rooms in 
OO HU B25021   91.9% 61.9%   7.8% 33.2%   0.3% 4.9% 
Avg HH size B25010   65.1% 21.1%   34.4% 76.1%   0.4% 2.8% 
Average commuters 
per HH                     
    Population in HH 
(used to scale 
variable) B11002 32.8%     66.8%     0.4%     
Median selected 
monthly owner 
costs B25088   65.8%     31.2%     3.1%   
Median gross rent B25064     46.8%     42.1%     11.1% 
Autos per HH                     
    Aggregate 
number vehicles B25046    17.8% 0.6%  76.0% 56.0%   6.2% 43.4% 
    Households B25003   32.5% 2.3%   63.3% 62.0%   4.2% 35.7% 
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Table 1.2: Reliability of LAI SEM inputs at the Census tract level  
 

  
ACS 

Table % High Reliability % Medium Reliability % Low Reliability 
Census tracts   Total Owners Renters Total Owners Renters Total Owners Renters 
Fraction of rental units B25003 98.9%   27.4% 1.0%   68.6% 0.2%   4.0% 
Fraction of SF 
detached units B25024 89.4%     9.4%     1.2%     
Number of rooms in 
OO HU B25021   98.2% 86.3%   1.7% 13.0%   0.1% 0.7% 
Median HH income* B25119   66.6% 20.8%   30.4% 64.5%   3.0% 14.7% 
Avg HH size B25010   91.8% 61.9%   8.1% 37.8%   0.1% 0.3% 
Average commuters 
per HH                     
    Workers*   B08137   64.8% 3.3%  33.0% 86.1%   2.2% 10.6% 
    Workers who do not 
commute* B08137   0.0% 0.0%  20.9% 0.1%   79.1% 99.9% 
    Population in HH 
(used to scale 
variable) B11002 96.4%     3.4%     0.2%     
Median selected 
monthly owner costs B25088   90.9%     8.3%     0.7%   
Median gross rent B25064     71.3%     25.9%     2.8% 
Autos per HH                
    Aggregate number 
vehicles B25046    76.8% 6.4%  21.9% 87.3%   1.3% 6.3% 
    Households B25003   83.6% 27.4%   15.4% 68.6%   1.1% 4.0% 
% transit JTW                
    Workers*   B08137   64.8% 3.3%  33.0% 86.1%   2.2% 10.6% 
    Means of 
transportation: 
Transit* B08137   0.0% 0.0%   1.9% 7.5%   98.1% 92.5% 
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1.5 VARIABLE CONSTRUCTION 

As is common, several variables necessary to produce both the SEM and the automobile cost 
estimates are constructed from other variables or represent calculations done on spatial data sets. 
This section presents reliability and validity considerations relating to variable construction and 
aggregation.  
 
 
1.5.1 Representative reliability in employment densities 

The variables for job density and retail job density purport to measure the density of nearby jobs. 
However, the LAI uses one of three distinct rules for drawing the polygons in which proximate 
jobs are counted, depending, effectively, on the size and shape of the block group. If the block 
group rests entirely inside the half mile buffer extending from its population-weighted centroid, 
the buffer area is used. If the buffer area and the block group boundary are “about the same” 
(HUD, n.d.-c, p. 16), their union area is used. If the buffer falls entirely within the block group, 
the block group polygon is used. The employment density variables (total employment and retail 
employment) therefore face two challenges: representative reliability and reproducibility.  
 
Representative reliability asks whether a measure produces consistent results across social 
groups—in this case, residents of (sometimes) more and less dense block groups. In this 
example, residents of high density block groups only access jobs within a half mile buffer, while 
residents of lower density block groups access jobs within a potentially larger area. Residents of 
medium density block groups, or, possibly, block groups of any density drawn in irregular 
geometry such as oblong rectangles, access jobs within less than a half mile buffer. There is no 
evidence that this approach provides representative reliability. The given technical 
documentation also provides insufficient information to enable a researcher to replicate the 
variable, although some information could be gleaned from the code base. HUD is aware of this 
issue and is addressing it through program updates (personal communication, September 27, 
2016).  
 
Beyond this representative reliability issue, this variable also introduces a measurement 
reliability concern. The LODES data used to construct these density variables (as well as median 
commute distance, discussed below) represents 2010—the target year of the whole LAI. 
However, as has been widely documented by the Census Bureau, it is methodologically 
indefensible to interpret 2008–2012 five-year data as representing roughly 2010. 
 
1.5.2 Aggregation 

 
The LAI Data Dictionary (HUD, n.d.-d) instructs users interested in geographies larger than 
block groups to aggregate by weighting block groups according to the number of households. 
Leading the way, HUD provides most of the input variables needed to estimate the LAI 
aggregated to the tract level using the household weighting scheme. HUD also provides the LAI 
itself at the tract level, apparently also by weighting the block group-level estimates, although 
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this is not clear. For some input variables this approach yields results matching the Census tract-
level data published by the Bureau of the Census. However, for other variables this aggregation 
method poses one of two challenges: 1) using households as a weight might be appropriate, but 
weighting data representing medians introduces unnecessary error, or; 2) households represent an 
inappropriate variable for weighting.  
 
 
 

1.5.2.1 Creating a weighted average from data representing medians 

 
The LAI uses LODES data to find the median distance commuted. It accomplishes this by 
creating a table with block of origin, block of work location, straight-line distance between the 
two2, and commuter flow, then sorting block-block pairs by block group of origin and distance 
traveled, and identifying the median commuter at the block group level. Mathematically 
speaking, taking the household-weighted mean of a group of block group medians will not yield 
the median at the Census tract level. At the mean, estimating the median commute distance via 
the household-weighting strategy (as recommended by the LAI) yields a value of 9.245 miles for 
Ohio Census tracts. Recalculating the median by replicating the LAI’s process with LODES data 
yields an average median of 8.480 miles. Thus, at the mean, the LAI underestimates the median 
by 1.11 miles—an added 13.1% error. 
 
As is the case for the variables assessed in the next sub-section, added error introduces two 
problems. First, it leaves opportunity for heteroscedasticity to enter the estimates, which the LAI 
either did not encounter at the block group level or did not mention in its technical 
documentation. While heteroscedasticity may appear for other variables upon aggregation, a 
Breusch-Pagan test on a bivariate OLS regression (household-weighted and recalculated median 
commute distance) is negative, meaning that the error does not significantly vary across values 
of the variable. Moreover, the correlation between the household-weighted median and the newly 
calculated median is linear and high (0.96), suggesting that household-weighted commute 
distance might serve as a reasonable proxy for median commute distance.  
The second issue is that it is unclear if the LAI’s underlying models can or should be recreated at 
the tract level without more information than is currently available. While this logic applies to 
multiple parts of the LAI construction, the most straightforward illustration rests in the 
estimation of VMT. Transportation costs consist of automobile costs and transit costs.  
 
Automobile costs consist of the number owned and miles traveled, both of which are calculated 
based on a range of input variables. The LAI documentation describes the regression-based 
estimation method for VMT and provides the coefficients. Those coefficients, calibrated for the 
block group model, will not adequately accommodate the downward bias inserted into the 
median commute data via household-weighting to the tract level. In other words, the household-
weighted estimates would provide a reasonable instrumental or proxy variable for actual 
commuting distance, if the model’s partial coefficients were not already fixed based on non-

                                                 
2 To improve the data for this manuscript, a network-based distance calculation was attempted. The computational 
requirements necessary for the state of Ohio alone were insurmountable. As such, the straight-line approach is 
necessary, if flawed. 
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instrumented values. Also, the model cannot be re-estimated because it was calibrated using 
odometer data from Illinois which is not publicly available. Finally, regardless of the biased 
commute distance variable, modifiable areal unit problem may invalidate the block-group 
model’s coefficients for application on tract-level data.  
 
 

1.5.2.2 Using a weighting scheme misaligned with variable definition 

 
In a few cases, weighting by number of households to aggregate uses the wrong variable, 
because the variables use land area as their denominator. This weighting issue appears in 
calculating household density, block density, retail density, local jobs density, and employment 
access. Prior to re-estimation, one would hypothesize that weighting by households rather than 
basing density calculations on area would logically lead to over-estimates of employment density 
for retail jobs and for all jobs. Consider the hypothetical case presented in Table 1.3.  
 
Table 1.3. Hypothetical case used to illustrate inappropriate aggregation method 
 

Block 
Group # 

Jobs Households Area 
(acres) 

Density with HH-
weighting scheme 

Density with Area-
based weighting 

1 500 750 50 (750*(500/50)) +  
(750*(500/25)) = 
15.0 

(500+500)/(50+25) 
= 13.3 2 500 750 25 

 
Table 1.4 shows, for Ohio Census tracts, the difference in estimates produced using the 
household weighting scheme versus a recalculation based on land area. Notably, jobs density and 
retail jobs density recalculations also introduce uniform buffer areas, as discussed previously; 
Differences in those variables’ estimates thus stem from both the weighting scheme and the 
research design. As hypothesized, the household-weighted figures over-estimate all but the 
employment access variable, the calculation of which is more complicated than simple density. 
The household-weighting scheme introduces additional error ranging from 4.5% in the 
employment access index to 114% in retail density. As a slight aside, HUD provides the block 
group level data necessary to calculate the household-weighted Census tract variables. HUD 
does not, however, provide the data necessary to reconstruct LODES-based variables (retail 
jobs/acre, job/acre, and employment access), although it is publicly available elsewhere. 
 
Table 1.4. Aggregating area-based variables according to household weighting introduces 
unnecessary error 
 

Variable Household-
weighted Estimate 

Recalculated 
Estimate 

Added % 
Error 

Household density 2.0764 1.72 20.7 
Block density 0.0889 0.0773 15.1 
Retail jobs per acre 0.17704 0.08255 114.5 
Jobs per acre 2.0163 .955646 111.0 
Employment access 17,743 18,575 4.5 
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1.6 THE LAI STRUCTURAL EQUATION MODEL 

An SEM sits at the heart of the LAI methodology. The method is well-paired to the reality that 
socioeconomic characteristics, features of the built environment, and resulting costs have 
complex interactions. However, an effort to reproduce and improve the SEM reveals 
methodological concerns pertaining to model logic, diagnostics, and reproducibility.  
 
SEMs accommodate inter-related variables, and as such require the researcher to identify and 
define those relationships. In the LAI documentation (HUD, n.d.-c, p. 6), its architects provide a 
table elucidating the hypothesized relationships between variables. Only some of those 
hypothesized relationships find backing in existing theory or empirical research. Whether this 
constitutes a flaw in research design may be up to the beholder. On one hand, as Haas et al. note, 
“the model was designed to maximize predictive accuracy—not to best explain the underlying 
phenomenon—and therefore includes some highly collinear variables that complicate 
interpretation” (2016, p. 576). On the other hand, the users’ manual for the AMOS SEM program 
(SPSS’s program) states, “Do not make changes based on [modification index] and [expected 
predicted change] unless they make theoretical sense” (Munger, 2002; see also Garson, 2015).  
 
The model’s technical documentation defends model fit based on three diagnostic tests: Root 
Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Standardized 
Root Mean Square Residual (SRMR). While the LAI’s SEM does fare well on these metrics, its 
architects omit the chi-square, a standard diagnostic for SEM. As a rule of thumb, an SEM’s chi-
square should be less than 10. The chi-square for the LAI is not reported. As elaborated on 
below, efforts to re-create the LAI for Ohio yielded chi-square values ranging from 300 into the 
thousands. 

1.7 THE IMPACT OF REVISIONS ON LAI ESTIMATE OUTCOMES 

To summarize, the recommendations for modification to the LAI include: shift from the block 
group level to the Census tract level to improve reliability; recalculate the area-based and 
median-based variables rather than weighting by number of households; and make minor 
modifications to enhance the SEM fit. To estimate the effect of these issues on the LAI’s 
estimates, the SEM was re-run for Household Type 1, producing new estimates of location 
affordability for the median household type. 
 

1.8 METHODS 

Table 1.5 summarizes the variables used in the SEM, including data sources and any 
methodological notes on deviations from the original HUD methods. In some cases, the variables 
resemble those immediately downloadable from the U.S. Bureau of the Census. For others, such 
as the median commute distance, R-based programming (the scripts for which are available from 
the author upon request) was used to calculate the variables.  
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Table 1.5: Summary of methods 
Variable Variable 

Symbol 
Data 
Source 
(ACS 
unless 
otherwise 
noted) 

Methods Notes 

Median rooms per 
household unit for renters 

Medroomsrent  Used data published at Census 
tract level.  

Job density JobDensity Census 
LEHD 

R code available upon request. 
Recreated HUD’s original 
methodology at the Census tract 
level. 

Commuters per 
household—renters 

commHHRent  Used data published at Census 
tract level. 

Household size—renters hhsz_rent  Used data published at Census 
tract level. 

Median commute 
distance  

med_dist Census 
LODES  

R code available upon request. 
Recreated HUD’s original 
methodology for the Census tract 
level by organizing all origin-
destination flows by distance, 
finding the median commuter, 
and recording the distance 
commuted for each tract. 

Area income fraction—
renters 

inc_frac_rent  Used data published at Census 
tract level and MSA/county level. 

Fraction single family 
detached dwelling units 

SF1Det  Used data published at Census 
tract level. 

Median number of 
rooms—owner-occupied 
dwelling units 

Medroomsown  Used data published at Census 
tract level. 

Gross household density GrossHHDen  R code available upon request. 
Number of households divided by 
the land area reported in Census 
TIGER/Line files. 

Fraction rental units FracRental  Used data published at Census 
tract level. 

Employment access EmpAccess Census 
LEHD 

R code available upon request. 
Recreated HUD’s original 
methodology at the Census tract 
level.  

Commuters per 
household—owners 

commHHOwn  Used data published at Census 
tract level. 

Household size—owners hhsz_own  Used data published at Census 
tract level. 
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Area median household 
income 

AreaMedInc  Used data published at MSA or 
county level, per the original 
HUD methods. 

Area income fraction—
owners 

inc_frac_own  Used data published at Census 
tract level and MSA/county level. 

Selected monthly owner 
costs 

SMOC  Used data published at Census 
tract level. 

Median rent MedRent  Used data published at Census 
tract level. 

Vehicles available per 
household—owners 

VehHHOwn  Used data published at Census 
tract level. 

Transit used in 
commuting—owners 

TransitOwn  Used data published at Census 
tract level. 

Vehicles available per 
household—renters 

VehHHRent  Used data published at Census 
tract level. 

Transit used in 
commuting—renters 

TransitRent  Used data published at Census 
tract level. 

 

Having assembled the LAI database at the tract level, the AMOS package of SPSS was used to 
recreate the LAI’s SEM using the causal pathways prescribed in the HUD documentation and 
given in Figure 1.2, with variables constructed as in Table 1.5. The SEM outputs were then input 
into equations (R script available upon request) estimating housing costs for Household Type 1, 
the Regional Median Household. As in the LAI Methodology document, precautions were taken 
to temper extreme estimates.  
 
The results of this estimation—abbreviated “R1” below—were then compared to the tract-level 
estimates published in the LAI. A second comparison is also presented: one in which Household 
Type 1 is redefined. Household Type 1 purports to represent the regional median household, but 
of the three defining characteristics (income, number commuters, and household size), only 
income reflects the regional median. Thus, in the estimation abbreviated “R2” below, Household 
Type 1 was altered to use the regional (or county, in non-metropolitan areas) average household 
size and number of commuters, in addition to using the regional/county median income. 
 

1.9 RESULTS 

The SEM as designed by HUD fares poorly on all three evaluation metrics when run using the 
revised data at the tract level. The Comparative Fit Index (CFI), which the LAI Data and 
Methodology document notes should surpass 0.90, instead measures at 0.360. The Root Mean 
Square Error of Approximation (RMSEA), which the same document suggests should fall below 
0.10, is estimated instead at 0.232. The chi-square measures at 25,317.778, where values less 
than 10 are preferred. That the model diagnostics differ from HUD’s published results fails to 
surprise; HUD executed its model at the block group level with several variables calculated 
differently.   
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The model was modified first based on a causal path diagram designed to reflect theoretically- 
grounded relationships between variables. The path diagram was further edited by adding 
additional covariances and causal arrows to the model based on the Modification Index values. 
Figure 1.3 presents the resulting path diagram. With these revisions, model diagnostics easily 
pass the standards given above. The chi-square is 2.640; the CFI equals 1.000, and the RMSEA 
equals 0.000. Notably, however, this model has only 10 degrees of freedom. The outputs from 
this SEM were entered into equations, per the LAI methodology, to produce the R1 estimates. 
The same SEM model design was used, with the updated household types, to produce the R2 
estimates.  
 
The results show notable departures from the LAI published cost and affordability estimates. 
HUD LAI estimates for Selected Monthly Owner Costs exceed those of R1 by, on average, 
5.6%, or $70, which corresponds to an additional 1.6% of household income. The variation 
between the LAI and R2 estimates is less than 1%. The difference in the estimate of Median 
Rent, however, exceeds 20% when comparing the HUD estimates to either R1 or R2 estimates 
(Figure 1.1). These differences correspond to 5.0% and 5.8% differences, respectively, in cost 
burden as a percent of household income. In other words, the HUD LAI estimates appear not to 
be robust, especially in the estimation of median rent; this will impact the conclusions of all 
analyses drawn from research and policy decisions based on those estimates.  

 

 

Figure 1.1: Comparison of housing costs 

Moran’s I tests for spatial patterning in the estimate differentials (HUD-R1, HUD-R2, and R1-
R2, for owners and renters) reveal statistically significant (pseudo-p-value < 0.001, using queen-
based first order weights) positive spatial autocorrelation for all six differentials. This means that 
high differentials are often found adjacent to other tracts with high differentials, and the inverse 
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is also true. While all six differentials showed significant, positive global spatial autocorrelation, 
tests for local spatial autocorrelation (clusters) show variation. Table 1.6 describes the patterns 
observed.   
 
 
Table 1.6: Results of univariate local Moran’s tests 

 

As Table 1.6 shows, the HUD methodology is most likely to overestimate costs in metropolitan 
areas and either underestimate costs or have low differentials in more rural areas, such as 
southeast Ohio3. The estimate differentials between methods R1 and R2, which reflect 
differences in household size and number of commuters, also show urban-rural patterns, but 
inconsistently. Method R1 shows lower differentials for owner-occupied housing costs in urban 
areas, but higher differentials for rental costs. 
  
Transportation costs were not re-estimated due to the data limitations noted in this manuscript. 
Briefly, the OLS coefficients are published for the block group models, but not the Census tract 
models. The odometer readings from Illinois are not publicly available, which might allow 
reconstruction of the regression model, making the first concern obsolete. Regardless, this would 
                                                 
3 Relative population density across the state can be seen via this U.S. Census Bureau thematic map: 
http://www2.census.gov/geo/pdfs/maps-data/maps/thematic/us_popdensity_2010map.pdf 
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provide only a partial view of transportation costs, as the Census data on transit use among 
commuters bear margins of error prohibiting use; data on transit supply should be curated for 
future model implementation.    

1.10 UNDER-THE-HOOD CONCLUSIONS 

The effort on the part of the federal government to illuminate issues of segregation and 
opportunity and to shift the conversation about affordability to be inclusive of these issues is 
both commendable and just. There is nothing to be gained in going backwards, away from a 
location-efficiency view of household affordability.  
 
The LAI attempts to provide such a view of affordability by estimating housing and 
transportation costs for eight prototypical households at the block group level across the U.S. As 
shown by this manuscript, using data from the diverse state of Ohio, the LAI appears more 
robust in estimating housing costs for homeowners than renters. The published LAI likely 
significantly over-estimates median rents for Household Type 1, and for both owners and renters 
likely overestimates costs in metropolitan areas and underestimates them or has relatively lower 
error in rural areas.  
 
For renters and for all transportation cost estimates, some measures need to be taken to shore up 
reliability and validity issues in the underlying data and metrics, and thus to protect the LAI and 
its related programs nationally. Some of the issues raised in this manuscript could be resolved 
relatively easily. HUD could, for instance, publish tract-level data based on the ACS and stop 
advising users to create the data from household-weighting the block group data, introducing 
unnecessary error. However, that effort would repair only part of the problem.  
 
Of greater assistance would be a wholesale recalculation at the Census tract level—of the LAI 
and its subparts, including the vehicle cost model. Three reasons recommend the switch to a 
tract-level LAI. First, some of the input variables already represent Census tracts, yet are used to 
support estimates at smaller geographies, which is not methodologically ideal. Second, block 
group-level data suffer from unacceptable margins of error for both owners and renters in some 
variables, and present modally medium- or low-reliability data for most variables among renter-
occupied households. Using Census tract-level data ameliorates much of this concern, as shown. 
Third, calculating the index at the tract-level would prevent users from introducing error via 
inappropriate methods of aggregation, or by using regression coefficients intended for use in 
block group models.   
 
In addition to changing the underlying data as suggested above, users may benefit from an 
ancillary database presenting place-based affordability for people currently residing in 
neighborhoods. Part of such a database can be readily developed from existing ACS data on 
housing affordability. Estimates of automobile-based affordability could be produced using the 
regressions and techniques developed for the LAI, but coefficients appropriate for use at the 
Census tract level need to be produced and provided.  
 
Finally, users deserve a clearer articulation of what questions the existing LAI can address—
pending improvements to data reliability as noted above—and those it should not try to address. 
The conversation about location affordability advances national policy in the U.S. The LAI 
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provides an important tool in advancing that conversation and, hopefully, in advancing more 
equitable and sustainable place-based planning outcomes. Someday those outcomes will be 
measured, and the location efficiency effort as a whole evaluated. Taking steps proactively to 
ensure the reliability, validity, and usefulness of the LAI today will ensure that the evaluation of 
tomorrow focuses on social issues—not technical ones—and productive next steps. 
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Figure 1.2: HUD LAI path diagram 
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Figure 1.3: Revised path diagram 
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2.0 ON THE GROUND: WHAT DO WE KNOW ABOUT 
LOCATION AFFORDABILITY IN U.S. SHRINKING CITIES? 

HUD’s Location Affordability Index (LAI) portal is used by transportation policymakers and 
planners across the country to aid in their decision-making. The dataset uses models to estimate 
what households spend on housing and transportation, and calculates “H + T Affordability,” the 
percent of household income spent on these items. However, there is virtually no validation of 
the data at all, with no studies delving into how accurate the estimates are in “shrinking” or 
weak-market cities. This study fills this gap by using a resident survey to determine whether the 
assumptions made in the literature regarding household expenditures and transportation 
accessibility hold when analyzing cities struggling with population decline. We present results 
from a household survey in Cleveland, Ohio, a prototypical shrinking city, which focuses on the 
travel and spending behavior of people living in different types of neighborhoods, focusing 
primarily on poor households in struggling neighborhoods. We conclude by synthesizing our 
analyses and providing recommendations for improving the LAI data for shrinking cities, and for 
informing local transportation policy to improve livability.  

2.1 INTRODUCTION 

Planners, policymakers, and regional scientists have studied how housing and transportation 
expenses interact for decades (Bogdon & Can, 1997; Coulton, Leete & Bania, 1999; Hamidi & 
Ewing, 2015; Jain & Brecher, 2014). Within this work, research has emerged exploring how best 
to provide access to both affordable housing and affordable transportation for poor households 
(Acevedo-Garcia, et al., 2016; Lipman, 2006; Pendall et al., 2015; Wachs, 2010). Recent studies 
suggest that transportation expenditures impose a heavy burden on low-income households (Fan 
& Huang, 2011; Sanchez, 2007), and that the poor make budgetary trade-offs when faced with 
escalating housing or transportation costs (Blumenberg & Agrawal, 2014; Litman, 2016; 
Sanchez et al., 2006). 
 
In late 2013, HUD launched the Location Affordability Index (LAI) portal. Their dataset uses 
models to estimate what households spend on housing and transportation, and calculates “H + T 
Affordability,” the percent of household income spent on these items. Whether the model 
estimates costs for one of the LAI’s eight household types or for user-input characteristics 
(online calculator only), the model assumes all households in the neighborhood are identical, 
rather than reflecting the characteristics of households who actually live in the given 
neighborhood. That this complicates interpretation is a known problem (see Chapter 1 of this 
report), yet the research to date to address that shortcoming has focused only on single case study 
cities (e.g., Fan & Huang, 2011). As a result, there is virtually no validation of the data at all, 
much less for weak market settings. We seek to focus on shrinking, or legacy cities, to determine 
whether the assumptions made in the literature regarding household expenditures and 
transportation accessibility hold when analyzing cities struggling with population decline.  
 
Shrinking cities differ from their growing counterparts in a number of ways, particularly in terms 
of policy approaches and available tools in the areas of housing and transportation (Dewar & 
Thomas, 2012; Hoornbeek & Schwartz, 2009; Mallach, 2010; Tighe & Ganning, 2016). In terms 
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of transportation policy, shrinking cities also face challenges that differ from other metropolitan 
areas. Public transit depends on adequate population density to function efficiently and equitably 
(Cervero, 1998). In cities where population and household numbers are declining, the concurrent 
loss in density poses a particular challenge for regional transit agencies. Furthermore, such cities 
have experienced significant job loss and economic decline for decades and, more recently, 
struggle to recover from the Great Recession (Greater Ohio Policy Center, 2016). Galster (2012) 
demonstrates that in Detroit, outward land consumption far outpaces population growth. For 
transit agencies, this trend means covering more ground without more money.  

Based on these facts, it is unlikely that estimates based on national medians or pre-determined 
household types would estimate accurate housing or transportation costs and tradeoffs for people 
living in shrinking cities. We seek to remedy this issue by analyzing the existing literature 
regarding household transportation and housing affordability as well as examining budgetary 
tradeoffs made by poor households. We present results from a household survey in Cleveland, 
Ohio, a prototypical shrinking city, which focuses on the travel and spending behavior of people 
living in different types of neighborhoods, focusing primarily on poor households in struggling 
neighborhoods. We conclude by synthesizing our analyses and providing recommendations for 
improving the LAI data for shrinking cities, and for informing local transportation policy to 
improve livability.  

2.2 TRANSPORTATION NEEDS OF POOR HOUSEHOLDS AND 
NEIGHBORHOODS IN SHRINKING CITIES 

While most Americans rely on cars for transportation, the urban poor are often dependent on 
public transportation. Household transportation expenditures have increased from the sixth 
largest share (less than 2%) of household budgets in 1917 to the second largest share in 2000 
(Hass et al., 2008). Continuing this trend, housing and transportation costs rose 52% and 33% 
respectively in the largest metropolitan areas from 2000-2010, which is much higher than the 
household income increase (25%) over the same period (Hickey et al., 2012). Such increases 
disproportionately affect very low-income households, who saw their transportation costs rise to 
approximately 44% of household income (Hass et al., 2008)—a far cry from the 15% threshold 
deemed “affordable” by policymakers and scholars, and a higher percentage than that spent by 
higher-income households (Hickey et al., 2012).  

In any context, increased transit costs result in individuals making tough choices regarding their 
household-level budgetary choices. Many low-income households cope with transportation costs 
by reducing purchases of discretionary items and by reducing car maintenance costs by learning 
to perform those services themselves (Agrawal et al., 2011). However, research to more clearly 
understand the nature and extent of use of various tradeoffs is quite limited. A number of studies 
(Agrawal et al., 2011; Fan & Huang, 2011) conclude that transportation policy should reflect 
lifecycle-based transportation needs, but neighborhood-level cost estimations seldom take these 
into account.  

Agrawal et al. (2011) discovered how low-income families manage their transportation 
expenditures given limited resources from 70 face-to-face interviews. Strategies the interviewees 
were using to lower their transportation costs included: informal income-generating activities, 
soliciting formal and informal support from others, and other “creative” ways to minimize costs . 
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The informal income-generating activities included panhandling, recycling cans, selling 
merchandise at flea markets, and charging other people for rides or for the use of their car if they 
have an automobile. Formal support was from government agencies, nonprofit organizations, 
employers, and landlords, while informal support was from rides with family members or 
friends.  Creative ways to minimize costs included efforts to seek out the cheapest gas, 
maintaining and repairing vehicles themselves, fare evasion on public transit, or completely 
depending upon free fare zones. Agrawal et al. (2011) find that low-income households also cope 
with transportation costs by reducing purchases of discretionary items like cigarettes, meals out, 
entertainment, and other items.  

Finally, transportation costs and cost burdens correspond to more than just household income. 
Variation in household transportation costs correlates more closely with variations in 
neighborhood characteristics such as location, built form, or proximity to opportunities than to 
household characteristics (Haas et al., 2008). Moreover, in all urban contexts, there is significant 
divergence across neighborhoods within cities (Tighe & Ganning, 2015). Thus, we would expect 
not only that low-income populations in shrinking cities have different transportation 
experiences than those in growing cities, but that those living in different neighborhoods within 
shrinking cities would as well. The LAI deals with these distinctions in the sense that it includes 
data on employment accessibility, retail proximity, and other related information. The regional 
science and economics literature remains under-developed in its understanding of market 
mechanisms in weak market cities. As such, the LAI does not and cannot predict the impact of 
accessibility and retail proximity, for example, on housing costs for weak market versus strong 
market settings.  

2.2.1 Approach 

In our previous research, we analyzed 80 shrinking cities (see Ganning & Tighe, forthcoming) to 
determine how location affordability differs across various neighborhoods. Our results suggest 
that households in declining neighborhoods, as compared to stable or redeveloping 
neighborhoods, face the greatest H + T affordability challenges in shrinking cities, according to 
LAI data. Furthermore, in declining neighborhoods, virtually all of the additional affordability 
challenges encountered can be accounted for by differences in transportation affordability rather 
than housing (Tighe & Ganning, 2016).  

Since there is virtually no research to either validate or suggest bias in the LAI data, and a 
declining neighborhood in a shrinking city presents both a relatively common yet entirely 
dissimilar context to the norm, this project sought to evaluate the reliability and validity of the 
LAI data, and its accuracy in a shrinking city context. Chapter 1 of this report shows that the 
LAI’s underlying data contains serious reliability issues at the block group-level, and a tract-
level LAI is recommended. A reproduction of the index at that level indicates the LAI likely 
overestimates housing cost and cost burden, but more so among renters, and especially in 
metropolitan areas. More germane to this chapter, the transportation cost estimates could not be 
reproduced at all due to data reliability issues that cannot be overcome by shifting geographic 
levels, and due to insufficient provision of data from HUD.  

This study utilizes survey methodology to produce transportation cost estimates for 
neighborhoods across Cleveland, Ohio, a prototypical shrinking city, as a means of testing the 
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accuracy of LAI estimates where quantitative recalibrations from secondary data proved 
impossible. Following the presentation of survey results, this chapter explores potential 
alternatives and produces recommendations for policymakers and urban planners to better serve 
low-income households through transportation policy interventions in shrinking cities. While 
some of these strategies could be reflected better in the existing LAI model, this research is 
specific to the very low income, not to shrinking cities, and does not leverage the very recent 
research finding that residents of declining neighborhoods are sometimes able to access 
transportation resources in nearby neighborhoods as a coping strategy (Tighe & Ganning, 2016).  

In order to further understand the housing and transportation costs and challenges facing those 
living in shrinking cities, we implemented a household level survey. In previous work (Tighe & 
Ganning, 2016), we identified neighborhood types. To measure change in neighborhoods, we 
created a Redevelopment Index, which is the average of the standardized values of population 
change (2000–2010) and employment change (2002–2010) at the block group level. To calculate 
the population change component of the Index, we apportioned 2000 block-level population data 
to the 2010 block group boundaries, then calculated population change, and standardized the 
values to z-scores. The employment change sub-index was calculated using the U.S. Census 
Bureau’s Longitudinal Employer-Household Dynamics (LEHD) program’s database. For both 
variables, the values were standardized into z-scores. The Redevelopment Index is a simple 
average of the two sub-indices.  

Having calculated the Redevelopment Index value for each block group within the city of 
Cleveland, we then used the Local Indicator of Spatial Association (LISA) tool (with k-nearest 
weights, where k=4, and a confidence level of 95%) in GeoDa to identify the centers of clusters 
experiencing low or high index values, or values not statistically significantly low or high. We 
then designated the cluster centers with low values as “declining” neighborhoods, those with 
high values as “redeveloping” neighborhoods, and those with insignificant values as “stable” 
neighborhoods.  

Our data consists of 484 households in 11 Cleveland Census tracts, classified as “stable,” 
“redeveloping,” or “declining.” Overall, our sample population closely resembled the resident 
population, based on American Community Survey (ACS) data from the U.S. Bureau of the 
Census. However, there were a few notable exceptions. In Tract 1187 (Green D, where the color 
refers to a geographic cluster of surveyed tracts and the letter indicates it as a declining tract), our 
sample population consisted of considerably more African American households (60% vs 20% 
according to the ACS) and was highly skewed toward renters (88% vs 38% according to the 
Census data) and households earning below $50,000 (77% vs the Census 61%). This bias is 
partially remediated, though, by a bias in the other direction in the second Green D tract (1184) 
we sampled, where the population included more white households and fewer renter households. 
In sum, our sample demographics indicate that people responding to our survey are more likely 
to be African American, poor, and renters than what the Census demonstrates. This could be a 
result of either sampling error, changes in the demographics of these neighborhoods, or that the 
incentive offered (the chance to be entered in a drawing for a $25 gift card) was more appealing 
to lower-income families.   

We received 176 surveys from residents of declining neighborhoods; 150 from those in 
redeveloping neighborhoods and 157 from those in stable neighborhoods, all generally in the 
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northeast section of Cleveland (see Figure 2.1). Our responses represent between 3 and 8% of 
households in the selected neighborhoods4. 

 

Figure 2.1: Map of Cleveland neighborhoods with surveyed tracts indicated  

2.2.2 Survey results 

2.2.2.1 Households and employment 

Overall, our survey results indicate a diverse adult population living in the central neighborhoods 
of a shrinking city.5 They are long-time residents of their neighborhoods (an average of 12.7 
years living in their current home) who present a mix of renters and owners (60% of our 
respondents rent; 35% own; the remainder live with family). Thirty-two percent have a high 
school education or less; 30% have a bachelor’s or higher. The average age of our respondents is 
53 and only half currently work outside the home.  

The average housing costs in Cleveland vary considerably by neighborhood, but according to 
2015 ACS five-year estimates, median owner costs (with a mortgage) were $1,017 ($366 for 
                                                 
4 Percent of target population responding by tract: 1136.00 : 7%; 1141.00: 7%; 1965.00: 7%; 1149.00: 5%;  
1187.00: 8%; 1184.00: 8%; 1185.00 8%; 1183.01: 5%; 1083.01: 3%; 1112.02: 6%; 1078.02: 3%; 1131.01: 3% 
5 Throughout this section, percentages may not add up to 100% due to question non-response. 
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those without a mortgage) while median renter costs were $654. Our survey respondents reported 
spending an average of $1,086 on housing. While such costs may seem relatively affordable6 to 
those living outside of the Rust Belt, our respondents were spending an average 40% of their 
household income on housing, with one-third of our respondents reporting that they spend more 
than 50% of their income on housing.  

Our respondents reported a variety of reasons for choosing to live where they do. Considering 
that nearly a third of our respondents earn less than $11,170 per year (43% of the city median 
household income), it is not surprising that the most common rationale (37%) given was cost or 
price of the home. Another 15% indicated the quality of their home (6.2%), schools (2.3%) or 
neighborhood (6.4%) was the most important reason for their decision. Three percent had no 
choice to make, as they either live with family or inherited their home. The remainder of the 
population (43%) chose where to live based on location: 15% because it is convenient to work; 
10% because it is convenient to friends and family; 8% because of proximity to public 
transportation and the remainder due to proximity to health care (1%), schools (4%), shopping 
(4%), or recreation (1%). 

Only half of our respondents reported that they currently work for pay, although an additional 
12% of respondents are looking for work. Of those who do not work, 10% were temporarily 
absent from their job; 12% were looking for work; 16% were homemakers; 6% were full-time 
students; 47% were retired; and 22% were disabled. Of those who do work, however, one-
quarter work at two or more jobs, averaging 41 hours of work each week.  

2.2.2.2 Transportation access and costs 

For those who do work, the majority (57%) drive alone using a primary vehicle to their job. 
Another 20% walk (12%), bike (4%), or carpool (4%). The remaining 18% of respondents rely 
on public transit. Fifteen percent of working respondents had no vehicle available. The average 
distance to work is 7.8 miles or 21 minutes (we asked both time and distance). Among non-
workers, 45% have no vehicle available. Although they did not respond to the commuting-mode 
question, based on answers to other survey questions, we can comfortably assume that they are 
more dependent on public transit than their working counterparts. 

We asked respondents to rank in importance five factors that might make public transit a better 
option for them: Close to work and home; Faster than driving; Reasonable in cost; Consistently 
on time; Fits your schedule. Amongst all respondents, being closer to home was most important, 
followed closely by transit being consistently on time and cheaper. Among just workers, 
however, timeliness was the most important choice, followed by closer to work/home and fitting 
their schedule. Among non-workers, proximity to home and cost were by far the most important 
factors. This makes sense considering that 45% of non-workers have no access to an automobile 
compared to 15% of workers. As for transportation costs, the average spent on transportation 
(including car payments, fuel, insurance, transit fares, and parking) whether working or non-

                                                 
6 A household’s housing expenses are deemed “affordable” if they do not exceed 30% of the monthly income of that household. 
The median household income in the city of Cleveland is $26,150. Thus, median owner costs with a mortgage comprise of 47% 
of the city median; rental costs 30%; and owners without a mortgage 18% 
 
  



33 
 

working is about 18% of monthly income ($270 overall; $365 for workers; $157 for non-
workers). Among those who do not have access to a car, costs comprised 22% of their monthly 
income.  

 Overall, our survey results indicate that low-income residents in shrinking cities have limited 
mobility—both in terms of housing and transportation. Survey respondents have lived in the 
same location an average of 12 years. In some areas, this may indicate housing stability and 
homeownership—signs of neighborhood strength and household wealth building. But in a 
shrinking context, this may indicate households without many options. As populations decline, 
so do housing prices. Retired and disabled non-working populations will see their home 
declining in value, the market for their home shrinking, and neighborhood amenities 
disappearing. Since a significant percentage do not have access to a car and rely on public 
transportation, this compounds their lack of mobility.  

2.2.3 Analysis 

Our first research question asks how well the LAI estimates costs for households in shrinking 
cities. Based on earlier research (the previous chapter of this report), we expect the survey 
research to find that the LAI over-estimates at least housing costs, if not both housing and 
transportation costs. Answering the research question, however, is less than straightforward 
owing to the LAI’s structure: it provides eight cost estimates for both housing and transportation, 
one for each of eight household types (Table 2.1). As shown below, the costs can vary 
substantially depending on the household type chosen. The LAI assumes all households in a tract 
identically match the prototypical household type. Therefore, determining how well the LAI 
predicts costs requires matching each tract to a household type. As this section argues, this 
requirement is not empirically reasonable, but given our best effort at matching each 
neighborhood with an LAI type, it appears the LAI overestimates both H and T costs. If LAI 
estimates are accurate, households in some tracts would spend nearly all income paying only 
housing and transportation costs. The second sub-section of our analysis presents data on how 
households cope with costs.  

2.2.3.1 Comparing LAI and survey-based estimates of housing and transportation 
costs 

We filtered the survey responses to identify households matching each of the LAI household 
types’ given household size and number of commuters. Our survey question for household 
income used the income ranges specified by LAI household types. For instance, the lowest 
income bracket was the national poverty line or below. The next was the national poverty line 
through 50% of the median regional household income; the third category captured households 
with incomes ranging from 50%-80% of the median regional household income. To identify 
Working Individual households, then, we selected households of size=1, with a single commuter, 
and an income reported in either the second or third income group. Thus, our identification of 
households matching the LAI types likely over-estimates the true number of matches, since we 
allow income to range above or below the target. Table 2.1 shows the results.  

Table 2.1: LAI household types 
Household Type Income Income HH # Commuters # Found in 
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Only 41 (8.5%) of our respondents fit into any of the LAI established household types. As one 
example of the disjuncture between the household types and our survey sample, consider that the 
only LAI household type that does not have any commuters is the retired couple. Our sample 
included many households without commuters (n=155, or 32%), but 94 of them (60%) were a 
single-person household, not a couple. Additionally, 78% of those zero-commuter households 
reported an annual income using survey codes 1 or 2, but the retired couple LAI type matches 
income code 3-4. These findings indicate that the LAI household types fail to represent the vast 
majority of households found in Cleveland, suggesting the LAI estimates also might not align 
with lived experiences.  

To compare LAI estimates to our survey results, we nevertheless had to categorize each study 
tract as one LAI type. Based on income levels and household sizes, most tracts best matched 
either the Single Parent type, or were debatably best matched to either the Moderate Income type 
or the Retired Couple type. Figures 2.2 and 2.3 compare our survey results for household and 
transportation costs to those estimated by the LAI for each household type. In Figure 2.2, seven 
tracts are matched to the Single Parent type and five to the Moderate Income type. In Figure 2.3, 
the Moderate Income tracts have been categorized instead as Retired Couple tracts. It is 
important to emphasize, however, that very few households in any tract actually match the 
defining characteristics of these household types.  

 

 

 

Codes in 
Survey 

Size Sample 

Median-income 
family MHHI 4-5 4 2 3 

Very low-income 
individual 

National 
poverty 

line 
1 1 1 0 

Working individual 50% of 
MHHI 2-3 1 1 5 

Single professional 135% of 
MHHI 5-6 1 1 0 

Retired couple 80% of 
MHHI 3-4 2 0 13 

Single-parent family 50% of 
MHHI 2-3 3 1 11 

Moderate-income 
family 

80% of 
MHHI 3-4 3 1 8 

Dual prof family 150% of 
MHHI 7 4 2 1 
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Figure 2.2: Survey results compared to LAI “moderate-income” and “single-parent” 
household types 
 

 

Figure 2.3: Survey results compared to LAI “retired-couple” and “single-parent” 
household type 
 
As these figures show, in virtually all cases the LAI over-estimates both housing and 
transportation costs. The use of the retired couple type (rather than the moderate income type) 
reduces the difference between the survey and LAI estimates, but not enough to call them close. 
In this scenario (Figure 2.4), the LAI overestimates housing costs by 17.7% and transportation 
costs by 126.4%. This outcome does not contradict expectations. Earlier research (Chapter 1 of 
this report) finds that the LAI likely overestimates housing by 5.6% for owners and 21% for 
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renters, and that existing secondary data on transportation was too unreliable for use.  

It bears mentioning that the LAI’s goodness of fit relative to the survey results also depends 
considerably on whether the survey results are presented at their median or mean. From the 
perspective of the LAI, there is no distinction between an average and a median cost within a 
neighborhood, because all households within neighborhoods are identical; the average equals the 
median. Empirical data rarely if ever show this characteristic, and are typically reported at the 
median. Building from Figure 2.3, using Single Parent and Retired Couple household types to 
classify the study tracts, Table 2.2 shows the difference in cost burden based on the survey 
versus the LAI estimates, using the survey median versus mean.  

Table 2.2: LAI estimates and comparisons to survey data 

Tract Number 
Median 

Survey Result 

Mean 
Survey 
Result 

LAI 
Estimate 

Total 
Difference: 
Median-LAI 

Total 
Difference: 
Mean-LAI 

196500 $895 $1,076 $1,443 -$549 -$367 
114100 $895 $1,076 $1,383 -$488 -$307 
108301 $869 $1,189 $1,240 -$371 -$51 
118301 $1,180 $1,385 $1,351 -$171 $34 
114900 $723 $1,127 $1,489 -$766 -$362 
107802 $1,018 $1,819 $1,276 -$259 $543 
113101 $1,018 $1,819 $1,456 -$438 $363 
118500 $1,023 $1,360 $1,485 -$463 -$125 
113600 $1,151 $1,380 $1,639 -$488 -$259 
111202 $763 $1,098 $1,460 -$697 -$362 
118700 $1,060 $1,368 $1,181 -$121 $187 
118400 $1,060 $1,368 $1,514 -$454 -$146 

Sum of Absolute Difference     $5,264 $852 
 

As Table 2.2 shows, the LAI better represents households’ reported costs at the mean than at the 
median. However, there is a reason the U.S. Bureau of the Census, among others, reports median 
gross rent and median selected monthly owner costs, rather than means or averages: outliers 
influence averages. The use of means is not recommended for income or cost data in most 
empirically-based research for this reason.  

2.2.3.2 Assessing the trade-offs households engage in to cope with unaffordable 
costs 

Our second research question asked how households afford housing and transportation costs if, 
in fact, the LAI estimates are accurate, or if reported costs exceed the 45% considered affordable. 
Although our analysis indicates the LAI over-estimates both housing and transportation costs, it 
is nonetheless the case that only three of our 12 study tracts have a median H+T cost burden 
below 45% (Table 2.3).  
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Table 2.3: H+T affordability across neighborhoods 
Tract 
Name HH Income 

Housing 
Cost 

Transportation 
Cost 

Total 
Cost 

Total H+T 
Affordability 

Pink R  $             11,663  $682 $213 $895 92.0% 
Orange R  $             26,924  $739 $130 $869 38.7% 
Green R  $             28,555  $1,000 $180 $1,180 49.6% 
Pink S  $             15,447  $573 $150 $723 56.1% 
Orange S  $             40,141  $838 $180 $1,018 30.4% 
Green S  $             24,475  $850 $173 $1,023 50.1% 
Pink D  $             26,679  $875 $276 $1,151 51.8% 
Orange D  $             19,486  $625 $138 $763 47.0% 
Green D  $             33,546  $830 $230 $1,060 37.9% 

 

Building off of Agrawal’s work (2011), we asked survey respondents what they would do with 
money saved on transportation costs. Due to the distribution of household incomes of our 
respondents (Figure 2.4), these tradeoffs are made not only for transportation costs, but for 
housing costs and other costs that are difficult to either change or forego. Nearly a third of 
household earn less than $11,170 and fully one-half earn less than $24,475 per year. Figure 2.5 
shows the responses given.  

 

Figure 2.4: Household incomes of survey respondents 
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More than 60% of respondents reported covering their costs by trading off saving or investing 
money, paying bills (or paying them in full), paying down debt, or purchasing household 
essentials. Foregoing saving or investing means foregoing future investment income or interest, 
household financial security in the face of unexpected expenses, or the loss to the neighborhood 
of the businesses residents might have invested in. Missing bill payments or paying only 
minimum amounts increases the cost of everyday goods and services via interest charges such as 
those charged by credit card companies. Another 16 respondents discussed another category of 
investments foregone: those in children. These respondents desired to invest in family members’ 
educations or sometimes do simpler things to enrich children’s lives, like take them on day trips. 
In all these cases, the long-term costs of unaffordable housing and transportation are likely 
significant in ways that could jeopardize households’ and neighborhoods’ financial security in 
the long run.  

 

Figure 2.5: Budgetary trade-offs  

Similarly, it is difficult to overstate the household-level implications of going without essentials. 
Thirty-four respondents said they would purchase more groceries. Others said they would pay 
medical co-pays, find housing (distinct from spending money to renovate or update housing, this 
item reflects the need to find housing), or “buy my grandson some diapers.”  

Among those who do not currently have a car, 10% said they would spend more on 
transportation, including those saying they would, “take more bus rides to different places,” “ride 
more often” or “take [their] kids to more functions and activities.”  Other respondents (8%) said 
they would invest in upgrading their homes.  

Relatively few responses (15%) indicated additional funds would be used on entertainment or 
recreation. While the majority of responses in this category indicated a desire for vacation travel, 
other respondents desired simpler things such as gym memberships, sewing classes, and to 
purchase movies from Amazon. The rarity of intention to spend additional monies on leisure 

Bills, Debt, and 
Essentials, 29%

Save/Invest, 33%Transportation, 7%

Housing, 8%

Recreation, 15%

Children/Education
, 4%

Other, 4%



39 
 

may correspond to the income distribution of our respondents (Figure 2.4); responses were not 
coded to allow us to cross-reference the incomes of respondents with their write-in answers to 
the question regarding tradeoffs.  

2.3 POLICY RECOMMENDATIONS 

Cleveland’s Regional Transit Authority (GCRTA) faces considerable challenges exemplified by 
this study. Steady population decline, aging infrastructure, and shifts in job location have all 
presented major challenges to the GCRTA’s mission of providing public transportation to the 
area’s residents. Compounding this are ample and inexpensive parking both in downtown areas 
and suburban job sites as well as a lack of traffic congestion (GCRTA, 2014).  

These issues face many cities in the U.S., but particularly shrinking cities such as St. Louis, 
Buffalo, Detroit, and Cleveland. In response, transit authorities in such cities are faced with 
difficult choices. Maintaining adequate service levels to all neighborhoods in the region is 
impossible. Some potential solutions, such as community circulators (trolley-like small 
busses/vans that continuously circulate through the neighborhood) have been popular in the past, 
but low ridership forced their cancellation outside of the downtown core in 2009 (GCRTA, 
2012). In Cleveland, the GCRTA has responded by identifying core priority transit corridors, 
shown in Figure 2.6. While our surveyed tracts are located near a few of these corridors, many 
households within those areas may still face “first mile” problems of accessing the stations, 
posing a potential barrier to residents (Cervero, 1998; Lesh, 2013). 
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Figure 2.6: GCRTA priority corridors and survey neighborhoods 

The key issue for GCRTA and similar agencies is how to provide sufficient service to those 
households that are not proximate to their priority corridors, particularly how to get low-income 
workers living in such areas to job centers. A secondary issue of particular importance to the 
respondents of our household survey is related to access and accessibility for retired and disabled 
individuals who lack access to private vehicles. The following section outlines three potential 
areas of interest for GCRTA, and likely also for their counterparts in other shrinking cities. 

2.3.1 Rideshare and van pools 

One of the biggest challenges for public transit service is how to overcome first/last mile issues. 
Distance to bus or train stops is often cited as a main reason why people do not use public transit 
as their primary commuting option (Canepa, 2007; Cervero, 1998; Hess, 2012; Lesh 2013). 
Rideshare could be effectively employed to do so, but would require explicit partnerships with 
public transit agencies. To date, there are few examples where private rideshare firms have 
partnered with public transportation agencies, but this represents a potential opportunity for 
future growth and partnership.  
 

In recent years, private rideshare companies such as Lyft and Uber have become nearly 
ubiquitous in American cities (Henao & Marshall, 2017; Hermawan & Regan, 2017; Rayle et al., 
2016). Such companies offer on-demand taxi-style services that can be requested via smartphone 
applications. Such services provide a flexible alternative to driving, but also serve workers who 
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cannot rely on public transportation, such as shift workers who commute after public transit 
service ends. While such options provide increased choice and flexibility to those who can afford 
to use them, there have been few examples of their utility to low-income communities. Barriers 
to their application in low-income communities include not only cost, but discrimination. Unlike 
publicly funded transportation services, research shows that private companies like Lyft and 
Uber often discriminate based on a rider’s race and/or the racial or class makeup of the pick-up 
or destination neighborhoods (Ge et al., 2016).  

Vanpool or vanshare programs can be effective for getting workers to areas of concentrated 
employment, or to shuttle workers between existing transit lines and those job centers (Chan, 
2011; Margonelli, 2011; Pointer, 2013). There are a number of different types of vanpool 
systems—some that rely on volunteer drivers (e.g., church vans); formal shuttle systems that can 
be operated either by regional transit authorities or private firms (e.g., Google Bus); and informal 
microbus systems (camionetas or jitneys). Each of these models could serve Cleveland 
neighborhoods where there are gaps in service either due to schedule or geography. According to 
journalist Lisa Margonelli (2011), “What's interesting about dollar vans, if they're properly 
licensed and insured -- and reasonably legal -- is that they could gravitate to where the riders are 
and where they want to go faster than public transit, which requires more infrastructure and 
meetings. In some cities, bus routes have histories going back decades, and they don't change to 
reflect how people's lives and work habits have changed.” 
 

Such models are common in immigrant communities, particularly in cities with a large Spanish-
speaking population such as Los Angeles, New York, or Miami (Valenzuela, Schweitzer & 
Robles, 2005). As King and Goldwyn state, “Jitney services, generally, flourish in areas or 
amongst groups that are excluded from planning or outright ignored by transit agencies and 
private operators.” (King & Goldwyn, 2014, p. 187). These services, referred to as camionetas in 
Latino communities and jitneys in many other areas (King & Goldwyn, 2014; Pointer, 2013) can 
be either formal and regulated or informal and unregulated. Various cities (see King & Goldwyn, 
2014) have pursued efforts at regulating or formalizing jitneys with mixed results. Regardless of 
whether they are formally regulated, however, they can serve as a low-cost alternative to formal 
transportation networks for low-income individuals (Baker et al., 2010).  
 

2.3.2 Bike/Ped 

Bicycling and walking are not only a growing segment of the commuter pool, but those 
commuters come from the same racial and income groups as transit users (Alliance, 2016). The 
data also suggests that immigrant households in large cities are a significant portion of pedestrian 
and bicycle commuters (Bhat et al., 2013). While pedestrian- and cyclist-friendly infrastructure 
is linked to improved health outcomes, access to those facilities is lowest in the low-income and 
minority communities that have morbidity rates that could be most improved (Hutch et al., 
2011). Furthermore, pedestrian and cycling fatalities are highest in poor and minority 
neighborhoods (Cottrill & Thakuriah, 2010). Improving cyclist safety would reduce minority 
communities’ perceived barriers to cycling while offering potentially improved health outcomes 
for residents (Salis et al., 2013).  
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However, planners must be sensitive to the social and political history of these communities 
when proposing expanded facilities, as many cities have experienced significant backlash when 
new routes, particularly to a central business district, are seen as a step towards gentrification 
(Hunter College, 2011; Zavestoski & Agyeman, 2014).  Similarly, bikeshare programs have 
historically ignored poor and minority neighborhoods, resulting in part in much lower usage rates 
(Buck, 2013; Giuliano, 2005) and fomenting distrust in the planning process (Hunter College, 
2011). 
 
Moreover, we are in an opportune time to harness the potential of improved cycling 
infrastructure. According to Census data, the number of bicycle commuters in Cleveland 
increased 314% between 2000 and 2010. Conversely, walk commuting levels decreased by 12% 
over the same period (Alliance, 2016). There are also many commuters who cycle to a transit 
hub (Heinen & Bohte, 2014). However, as critics have pointed out, more could be done to 
encourage bicycling; in 2014 there were six bike parking rack spaces at bus stations and 52 at 
rail stations, versus 652 and 7,493 in Chicago (Alliance, 2016). While not every area is 
appropriate to designate for enhanced cycling infrastructure, low-income neighborhoods are 
underserved in this realm. Improving bicycling infrastructure, bicycle safety, and bicycle access 
through partnerships with appropriate agencies may prove to be a low-cost yet effective measure 
to overcome first-last mile challenges as well as improve transit access and usage in many 
Cleveland neighborhoods.  
 

2.3.3 Serving elderly and disabled populations  

One of the more surprising findings of our survey was the percentage of people living in our 
neighborhoods who are retired or disabled and do not have access to private vehicles. Transit 
agencies, including GCRTA, already provide considerable support to such populations by 
partnering with paratransit companies to transport individuals to work, school, medical 
appointments, and other necessary destinations (Cervero, 1997; Fu, 2003). However, paratransit 
does not cover all people in need of transportation and difficulties using regular transit services 
result in other public costs, suggesting that financial partnership with other federal agencies and 
public services might result in more efficient outcomes for all involved.  
 

Many of the trips made by such households are for medical care. However, Medicare and 
Medicaid do not provide any subsidy for transit. For those who may not qualify for paratransit 
(such as the retired population in our study who are transit-dependent), a lack of adequate 
transportation results in late and missed appointments. This affects not only the individual health 
and well-being of the patient, but the hospital or medical provider’s bottom line (Pesata et al., 
1999; Wallace et al., 2015). According to one study,  
 

“About 3.6 million Americans do not obtain medical care because of a lack of 
transportation in a given year. On average, they are disproportionately female, poorer, 
and older; have less education; and are more likely to be members of a minority group 
than those who obtain care. Although such adults are spread across urban and rural areas 
much like the general population, children lacking transportation are more concentrated 
in urban areas” (Wallace et al., 2015, p. 76). 
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One study found that missed appointments cost roughly $200 per patient, and nearly 20% of all 
appointments are missed (Kheirkhah et al., 2016). Given that transportation issues are cited as 
one of the main reasons that people miss medical appointments, these cost burdens may provide 
some justification for establishing a transportation subsidy in conjunction with Medicare and/or 
Medicaid.  
 

2.4 ON-THE-GROUND CONCLUSIONS 

 

We would be remiss to conclude our paper without discussing that transit authorities such as 
GCRTA are in the position they currently find themselves due not only to ridership decline, but 
also due to sprawl and the failure of regions to take adequate action against it. The Rust Belt 
enactment of this scenario is perhaps best illustrated for Detroit (Galster, 2012). As he shows, 
ongoing land consumption at the urban fringe, without regional population growth, imposes 
inordinate costs on the region both economically and socially. As job centers are increasingly 
found in suburban locations, it becomes more of a challenge for regional transit authorities to 
serve the region. As such, large employment centers may need to take a greater role in providing 
or paying for transportation.  
 
What seems necessary is greater connectivity among and between all modes of transportation. 
Currently, GCRTA is investing in servicing their priority corridors by purchasing larger buses. 
However, equal attention must be given to access—how to get those living in other parts of the 
city to those priority corridors in order to get to where they need to go. Rideshare programs can 
be used to shuttle residents to those priority corridors where service is more frequent and robust. 
Bike lanes can be planned in ways that enhance connections between neighborhoods in need and 
key access points on priority corridors. Bikeshare locations can be planned in ways that also 
connect neighborhood residents to priority bike lanes and thus to priority transit corridors. 
Sidewalks can also be prioritized as pedestrian corridors—linking key destinations like hospitals 
and job centers with existing bike and transit corridors.  
 

However, for GCRTA to respond to the needs of the Cleveland region’s diverse communities it 
must have accurate information. They currently rely on Census ACS data for estimates of transit 
ridership by Census tract, which the previous chapter of this report has shown to be unreliable. 
They, like researchers, continue to hope for better, more accurate data showing not only transit 
use by residential area, but household-level costs for transportation. Our work has shown that 
while the LAI itself cannot be reproduced, its estimates likely significantly overestimate 
transportation costs for households. Even if this were not the case, its estimates are difficult to 
interpret for practitioners, as they exist for household types that seldom exist in reality. We hope 
our survey-based data provide novel utility to the GCRTA. We also stand with them in the 
pursuit of better systematic estimates of location affordability.  
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