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Abstract 

The Advance Warning System (AWS), developed by the Nebraska Department of Roads 

(NDOR) has proven to be effective at improving traffic safety at isolated signalized intersections. 

However, the effectiveness of the system has not been analyzed at signalized intersections 

operating in a coordinated mode.  

This project analyzed AWS on arterials where the signals operate in a coordinated mode. 

The test bed consisted of nine sites, which were located at five successive coordinated signalized 

intersections on Highway 281 in Grand Island, Nebraska. A non-intrusive data collection system 

was used to collect a continuous traffic stream of data up to 1200 ft upstream of the stop-line at a 

given intersection.  

The analysis showed that with the AWS, the dilemma zone entrapment rate was, on 

average, 81% smaller than what would have been expected if the AWS was not installed. The 

accelerating/decelerating analysis showed that 94% of the average acceleration/deceleration rates 

were within the comfortable range, 69.7% of the vehicles slowed down after the start of the 

AWS signal, and 92.1% of vehicles slowed down after the start of amber. The red-light running 

analysis showed that the percentage of red-light running occurrence ranged from 0.9% to 2.0%, 

with an average of 1.5% and a standard deviation of 0.4%. These results indicated most of the 

vehicles were in compliance. The simulation-based conflict analysis showed that, on average, 

there was a 55%, 12%, and 51% reduction in rear-end, lane-change, and crossing conflicts, 

respectively, for all nine sites, when the AWS system was applied.  

The overall results suggested that: 1) the AWS was effective at alerting drivers to the 

impending end of the green signal, and 2) the impacted driver, for the most part, slowed down 

when the AWS was activated. 
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Chapter 1 Introduction 

1.1 Background 

As a driver approaches a signalized intersection and the signal transitions from green to 

amber, she or he has to make a decision on whether to stop or proceed through the intersection. 

Historically, there were situations where neither option could be completed safety and/or legally. 

The approach area where this occurred is known as a dilemma zone. In theory, it is possible to 

eliminate the dilemma zone through proper timing of the signal. However, the stochastic nature 

of driving means that some drivers will invariably make the wrong choice. For example, some 

drivers may stop abruptly when they should proceed, and in doing so, increase the risk of a rear-

end collision. As well, drivers might proceed through the intersection when they should stop, 

which increases the risk of red-light running and the possibility of a right-angle collision.  

A great deal of effort is focused on dilemma zone mitigation especially at high-speed 

signalized intersections. The common mitigation methods are the: (1) Advanced Detection 

Systems (ADS), (2) Advance Warning-flasher System (AWS), and (3) Actuated Advance 

Warning System (AAWS), which is a combination of both the ADS and AWS. These different 

mitigation options have been documented to reduce the problem previously described and to 

improve safety (1-5). The communication occurs via flashing signal heads and warning signs to 

warn drivers that they should be prepared to stop as they approach a signalized intersection. 

There are a variety of warning sign and flasher combinations being used in practice.  

NDOR was one of the first state transportation agencies to implement ADS at isolated 

intersections. These systems provide information to drivers indicating that they should be 

prepared to stop as they approach a traffic signal because the signal is about to transition from 

green to amber (and to red). The decision on whether to provide information to the drivers is a 
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function of a number of parameters including the presence of vehicles on the roadway (identified 

via an upstream detector), the phase sequence, and where in the cycle the current signal timing 

plan is operating. While a number of states have adopted similar systems, the NDOR operating 

algorithm is unique to Nebraska. The successes of the NDOR system at improving intersection 

safety at isolated signalized intersections operating in the fully-actuated mode have been 

documented (1, 5). 

1.2 Problem Statement 

Most research on the effectiveness of the AAWS for reducing dilemma zone problems has 

been conducted at rural isolated high-speed signalized intersections. That is, the systems have been 

deployed (and evaluated) at locations outside of the city limits where the approach speeds are 

greater than 40 mph. Because these signals operate in the uncoordinated mode, the transportation 

operators have the freedom to extend green time in accordance with the oncoming traffic. This 

ability, by definition, does not exist in coordinated systems. For this reason, many agency operators 

are skeptical of their effectiveness. 

However, as cities grow, these systems that were initially deployed at isolated locations 

can become part of a coordinated corridor. In a coordinated setting, while green extension(s) are 

not appropriate, the use of AAWS remains an option. The other issue in a coordinated corridor 

with closely spaced intersections is that traffic will arrive in platoons. This can be contrasted to 

the isolated intersection scenario where the traffic arrives randomly. Therefore, the impact of the 

information provided by the AAWS to an individual driver can be different than the impact of the 

same information on a platoon of vehicles. Intuitively, the safety risk that a platoon of vehicles 

having to make a stop or go decision could potentially be much higher depending on the signal 

coordination plan.  
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The intention of this project is to conduct a field evaluation of an AWS when deployed in 

a coordinated setting. More specifically, this study will assess the safety and operational impacts 

associated with combining the advance warning flasher with signal coordination on Highway 

281 in Grand Island, Nebraska. 

1.3 Research Objectives 

It is common practice in traffic control not to combine dilemma zone protection and 

signal coordination systems because the fixed time of coordinated signals typically overrides any 

detectors providing dilemma zone protection. As a city grows, isolated AWS becomes part of a 

coordinated signal corridor. In addition, some city agencies have chosen to implement AWS 

corridor-wide. In these jurisdictions it is hypothesized that using an AWS in a coordinate traffic 

signal system may have some benefit and will not result in riskier driver behavior such as red-

light running and abrupt stopping. The main objective of this research is twofold: 

(1) quantify the effectiveness of AWS in terms of safety and efficiency on a coordinated 

arterial system, and  

(2) develop guidelines for the installation or removal of the AWS. 

This research is directly related to the US DOT’s Strategic Goal of “enhancing safety.” 

Additionally, motor vehicle traffic crashes exact a severe toll in loss of life, injuries, property 

damage, and reduced productivity. The findings of this research will improve the region’s 

economic competitiveness by helping identify where implementation of the NDOR system is 

likely to be beneficial and thus promote better allocation of highway funds. 

1.4 Research Approach and Methods 

The research approach involved a detailed operational analysis of AWS using field data 

in order to monitor the performance of the AWS. Traffic characteristics, including vehicle speed 
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profiles with a particular emphasis on vehicle acceleration profiles both immediately before and 

after the advanced warning signs became active, were observed. A calibrated microsimulation 

model was developed. This simulation model can be used to identify the situations under which 

AWS in coordinated systems will be most successful. The model was calibrated to the observed 

speed profiles obtained in the operation analysis of the empirical data. 

1.5 Organization of the Report 

There are six chapters in this report. Chapter 1 contains an introduction of the problem 

and the objectives of the project. Chapter 2 provides a summary of the literature review of AWS 

operations and relevant safety studies. Chapter 3 details the study sites, the data collection 

system, the data collection process, and the data format. Chapter 4 presents the analytical results 

of the traffic conditions including hourly traffic volume, effective green time, speed, heavy 

vehicle percentages, vehicle trajectories, etc. Chapter 5 analyzes the operational performance of 

the AWS with an emphasis on platoon dispersion and arrival flow profiles. Chapter 6 analyzes 

the data at signalized intersections with an emphasis on red-light running rates and dilemma zone 

entrapment, and discusses the safety issues at signalized, high-speed intersections with AWS. 

Chapter 7 develops a simulation model to study the potential conflicts at different intersections. 

Chapter 8 summarizes the findings and provides recommendations for targeting the objectives in 

this project. 
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Chapter 2 The Operation of an Advanced Warning System (AWS) 

A dilemma zone exists at a high-speed signalized intersection if a driver can neither stop 

safely nor proceed safely through the intersection when the signal transitions from green to 

amber (4). Crashes at high-speed signalized intersections are particularly horrific because of the 

high speeds involved and the fact that many crashes are at right-angles (e.g., “T-bone” crashes). 

Fortunately, it is possible to eliminate the dilemma zone through proper timing of the traffic 

signal at an intersection. These signal timing methodologies are widely used in the U.S. 

Unfortunately, due to the stochastic nature of drivers’ behavior and their vehicles, some drivers 

will make an incorrect choice putting themselves and others at risk for a crash. For example, the 

drivers may misjudge the distances involved, they may have slower perception reaction times 

than the design standards, or their vehicles may lack the necessary braking power required. 

Because drivers exhibit distinct differences in their desires and/or abilities to stop at the onset of 

the amber indication, they are potentially at risk of being in a crash if they choose incorrectly. 

For example, some drivers may stop abruptly when they should proceed and thereby increase the 

risk of a rear-end collision. Other drivers might proceed through the intersection when they 

should have stopped. By entering the intersection after the amber signal is finished (e.g., running 

the red light), they increase the possibility of a right-angle collision with vehicles entering the 

intersection from the cross road.  

A great deal of research has been focused on helping drivers make the correct decision to 

stop or proceed at signalized intersections. This is because of the high negative impact on safety 

and operations, especially at high-speed signalized intersections (1, 2, 4, 5) when drivers choose 

incorrectly. The mitigation efforts include: (1) reducing the likelihood of a driver making the 

wrong choice by extending the amount of green time (e.g., green extension); (2) increasing the 
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awareness of the driver that the green indication will be changing from green to amber in the 

near future, thus allowing them a greater probability of the driver choosing the appropriate 

action; or 3) a combination of both option 1 and 2. The common methods of providing dilemma 

zone protection at high-speed signalized intersections are the use of advanced detection, advance 

warning flashers, or a combination of both advance detection and advance warning flashers. 

2.1 NDOR Advance Warning System (AWS) and NDOR Actuated AWS 

2.1.1 NDOR AWS 

The Nebraska Department of Roads (NDOR) developed a system, referred to as the 

NDOR Advance Warning System (AWS), which combines advance detectors and advance 

warning flashers. The NDOR AWS assembly is shown in figure 2.1. It includes a pair of flashing 

beacons mounted above a warning sign with the text “PREPARE TO STOP WHEN 

FLASHING.” Below the warning sign, the name of the cross street in the downstream 

intersection will generally be provided.  

 

 

Figure 2.1 Advance Warning System (AWS) assembly on NB 281 in Grand Island, NE 
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The AWS sign is positioned on both sides of the road and placed at a safe distance from 

the downstream intersection. In addition, the AWS is connected to the intersection signal 

controller so that when the downstream signal is about to transition from green to amber, the 

flasher is turned on to warn the approaching drivers of the impending phase change. Based on 

NDOR standards, the AWS signal heads are designed to begin flashing five to seven seconds 

prior to the onset of the amber indication at the downstream signalized intersection (1). 

Once the AWS beacons begin to flash, the green interval will continue for a period of 

time, known as the “lead flash” (1). The duration of the lead flash is the travel time between the 

AWS location and the stop-line for a vehicle traveling at the design speed, which is calculated 

using eq. 2.1. 

    

 𝑡𝑡 =
𝐷𝐷𝑀𝑀

𝑉𝑉
 

 (2.1) 

Where t = the duration of the lead flash (seconds)  

 DM = distance from the AWS location to the stop-line (feet)  

 V = design speed (ft/s)  

2.1.2 NDOR Actuated AWS 

The design algorithm of the NDOR actuated AWS (AAWS) combines the functionality 

of advance detection and advance warning, and uses a short maximum allowable headway 

(MAH) to extend the green at isolated intersections (1). The system has one advance detector in 

each approach lane as well as an AWS assembly positioned on both sides of the roadway 

approach downstream of the advance detector. In addition, stop line detection is also provided in 

the through lanes and left-turn bays. The range of stop-line detection is 30 to 40 feet in the left-

turn bays. The advance detector operates in the pulse mode, which means that each vehicle 
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crossing the detector transmits a single pulse to the controller, regardless of the time that the 

vehicle spends in the detection area. The stop line detectors operate in the presence mode (e.g., a 

continuous call is transmitted to the controller as long as a vehicle is within the detection area), 

but are not active during the extendible portion of the green interval (1). 

The NDOR AAWS is based on the concept of the NDOR dilemma zone, as shown in 

figure 2.2. The beginning of a vehicle’s dilemma zone is the stopping distance (1), i.e. Dbz, 

where a vehicle can complete a stop at the stop-line assuming maximum deceleration. The end of 

the dilemma zone is the stop-line of the intersection (1), i.e. Dez, as can be seen in figure 2.2.  

 

 

Figure 2.2 Dilemma zone definition by NDOR – speed protection 

 

2.2 AWS Safety Studies  

Several researchers have undertaken projects aimed at quantifying the safety and 

operational effectiveness of AWS installations at high-speed isolated signalized intersections. In 

terms of safety, AWS appears to lower left-turn, right angle, and in some instances, rear-end 

crashes (6-10). In addition, Agent and Pigman (9) and Knodler and Hurwitz (4) found that the 

use of AWS should be limited to locations with existing vehicle crash problems or a high 
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potential for them to develop. Gibby et al. (7) provided more detail indicating that high-speed 

approaches equipped with AWS had significantly lower total, left-turn, right-angle, and rear-end 

approach crash rates than those without AWSs. Gibby et al. (7) also observed significantly lower 

ratios of night-time crashes. The research performed by Klugman et al. (8) in Minnesota 

concluded that the use of AWS devices could be effective at reducing right-angle and rear-end 

accidents under certain situations, but they do not automatically increase the safety of all 

intersections and all situations. 

Sayed et al. (10) provided a detailed crash analysis and indicated that AWS intersections 

showed 10% fewer total crashes and 12% fewer severe crashes. Negligible reductions were 

observed with respect to rear-end crashes. The crash reduction was not statistically significant at 

the 95% level. Sayed et al. (10) also found a correlation between the crash frequency of AWS 

sites and the minor street traffic volumes. It was observed that when the minor street traffic 

volumes are low, sites with AWS had a higher frequency of crashes than non-AWS sites. In 

contrast, as traffic volumes in minor streets increased, the crash frequency for AWS-equipped 

intersections was found to be lower than at non-AWS sites. The results indicated that an AWS 

was effective at locations with a minor street annual average daily traffic (AADT) of 13,000 

vehicles per day (vpd) or greater.  

In terms of operations, Farraher et al. (11) collected data on red-light-running and vehicle 

speeds at isolated intersections equipped with an AWS. They observed an overall reduction of 

29% in red-light-running, a 63% reduction in truck red-light-running, and an 18.2% reduction in 

the speed of trucks. Although the data indicates that AWS was effective at the sites studied, the 

number of overall violators and their speeds remained unacceptably high (11). Pant and Xie (12) 

compared the way drivers respond to various types of AWS at isolated intersections. The study 
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was based on a speed and intersection conflict analysis and the effectiveness of the three advance 

warning systems presented above. The authors found that two types (e.g., a warning sign with 

the text “Prepare to Stop When Flashing” complemented by a pair of flashing yellow beacons, 

and a warning sign with a schematic of a traffic signal and complemented by a pair of flashing 

yellow beacons) increased vehicular speeds. This increase in speed was attributed to drivers 

attempting to “sneak through” the yellow signal phases. 

2.3 Safety Studies of Actuated Advanced Warning Systems (AAWS) 

Transportation agencies may use a variety of dilemma zone protection systems that 

combine features of both advance detection and advance warning flashers. These modified 

systems are referred to in this report as actuated advanced warning systems (AAWS) (1). 

2.3.1 Advance Warning for End-Of-Green System (AWEGS) 

Messer et al. (2) developed the Advance Warning for End-Of-Green System (AWEGS) 

for high-speed (≥ 45mph) traffic signals in Texas. The AWEGS uses a combination of advance 

detection and advance warning flashers. Three architectures (e.g., Levels 0, 1, and 2) of AWEGS 

were examined during the course of this study. The level 1 technology used “trailing overlaps” to 

provide a fixed amount of advance warning of the end-of-green phase, but this method was 

rejected because it eliminated the existing dilemma zone protection. The level 1 technology used 

average speed and predicted when the traffic-actuated controller would gap-out. The level 2 

AWEGS added a feature that was capable of identifying aggregate vehicle classification (e.g., 

car, truck) and an individual speed measurement to better estimate when the signal controller 

would gap-out. The AWEGS was found to reduce red-light running by 38-42% during the 

targeted first 5 seconds of red (13). The level 2 architecture was the preferred option because it 
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provided extra dilemma zone protection for trucks and high-speed passenger cars while 

simultaneously reducing delay. 

2.3.2 NDOR AAWS  

The system continually monitors traffic at an upstream detector as well as at stop line 

detectors to predict the onset of the yellow indication, and provides information to drivers (via 

flashing signal heads and a warning sign) regarding whether they should be prepared to stop as 

they approach a traffic signal. 

The system has been documented as being effective at improving traffic safety at isolated 

signalized intersections where the controller operates in the fully actuated mode. A study 

evaluating the safety effectiveness of the NDOR actuated AWS at high-speed isolated 

intersections showed crash reduction rates of 0.5% for heavy vehicle crashes, 1.2% for rear-end 

crashes, 43.6% for right-angle crashes, 11.3% for injury crashes, and 8.2% for all crashes 

combined (5). However, this system has not been examined in the context of a coordinated 

arterial system. 

2.4 Summary 

Most of the research on the effectiveness of the advance warning systems to date was 

conducted at isolated intersections. For example, via the green extensions at the isolated 

signalized intersection, AAWS has been shown to be effective in slowing drivers down when it 

is active.  

As this project studied the use of the NDOR AWS in a corridor that operates under 

coordinate control, the NDOR AAWS would not be appropriate. Consequently, there was no 

advance detection on any approach on the corridor. Instead, the NDOR AWS was initiated by a 

pre-determined time period (i.e., the lead flash time) about 7-8 seconds prior to the start of the 
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phase change from green to amber at the intersections. This is because in a coordinated system, 

all the intersections share a common cycle length. This limits the ability of the traffic agency to 

extend the green phase at a certain single intersection. Thus, it is unclear if AWS in this situation 

is still effective.  
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Chapter 3 Data Collection and Reduction 

This chapter details the data collection process at the AWS test bed in Grand Island, 

Nebraska. The data collection system was designed from December 2015 to February 2016. A 

preliminary data study was conducted from March 6, 2016 through April 10, 2016. An extensive 

data collection effort was conducted from April 12, 2016 through June 23, 2016. The entire data 

collection process will be introduced in the following subsections.  

3.1 Data Collection System  

3.1.1 Mobile Trailer Data Collection (MTDC) System 

The Nebraska Transportation Center (NTC) mobile trailer data collection (MTDC) 

system, as shown in figure 3.1, was utilized in the data collection. The MTDC system consisted 

of two Wavetronix smartsensor Advances (ADs), one Wavetronix smartsensor high definition 

(HD), and two internet protocol (IP) cameras. These were all installed on the trailer mast. The 

AD sensors utilize digital wave radar technology to track the vehicles upstream and downstream 

of the trailer and record vehicles’ time, speed, lane, and distance. They can track vehicles over a 

distance of 600 feet in both the upstream and downstream directions. The videos cover the range 

of the AD sensors and are used to confirm traffic behavior and eliminate false calls. The HD 

sensor counts vehicles and records vehicle length and vehicle speed as the vehicles pass through 

the detection zone adjacent to the trailer.  
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Figure 3.1 Mobile trailer data collection (MTDC) system 

 

All the sensors are powered by batteries stored in the trailer cabinet, located near the 

trailer wheels. These are automatically charged by a solar panel. Located in the trailer cabinet is 

the local server that consists of a laptop and a digital hard drive. The data from different devices 

are sent to the server and are saved into the hard drive automatically. Note that the time stamp 

for all the sensors are synchronized to the server in the trailer cabinet. Thus, the different data 

sources have the same time baseline.  

Wavetronix AD 

IP Camera 

Wavetronix HD 

Local Server 

Solar Panel 



 

15 

 

3.1.2 Traffic Signal Phase Identification (TSPI) System 

The signal phases and the AWS timing are identified by utilizing non-invasive current 

sensors attached to the traffic signal circuit in the traffic control cabinet. This TSPI system was 

developed by NTC and uses both C++ and python programming. As shown in figure 3.2, the 

sensors were attached to the power lines within the traffic cabinet. The current sensor is 

connected to an Arduino Pro Mini microcontroller. The Arduino Pro Mini has an analog to 

digital converter that converts the current sensors’ reading to a digital value. When a large 

change in current is detected it is compared to the threshold values set in the program to 

determine if the traffic signal has transitioned to a new phase.  

 

 

 
Figure 3.2 TSPI in the traffic cabinet close to the intersection 

 

After processing the data for each of the attached current sensors, the status of the traffic 

signal phase is then passed on to a Raspberry PI connected to the Arduino via a USB connection. 

The Raspberry PI then checks for a change in status. If a change is detected, it records this 

change, along with a time stamp, in the data file.  
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The TSPI system is comprised of the following components. 

1) Current Sensor: the CR3110-3000 current sensors are used to detect the electrical 

current from the power lines. Large current change indicates a phase change. This is a 

split core transformer and can support a maximum current of 75 amps.  

2) Arduino: the Arduino Pro Mini is a microcontroller utilizing an ATmega328 chip. It 

was selected for its small size and its onboard analog to digital converter. There are 6 

analog input pins allowing up to 6 current sensors being attached to the Pro Mini. It 

operates at 16 MHz (i.e., 1 instruction every 62.5 ns). The Analog pins can be sampled 

at a rate of 100 µs. Because the Arduino Pro Mini operates at 5 volts the analog pins 

need to be protected from voltages over 5 volts by utilizing Zener diodes. Ceramic 

capacitors are used to filter any noise in the system. The Arduino sends the status of 

the traffic signals every 100 ms via a USB cable to the Raspberry PI. 

3) Raspberry PI: the Raspberry PI minicomputer is used to store the on and off times of 

the phases. Upon receiving the data from the Arduino, the Raspberry PI checks the 

data to see if any of the signals have changed their states. If there is a change, a time 

stamp is taken and this data is recorded into the file. There are separate files for each 

of the 6 connected sensors. In addition, a real time clock is added to the Raspberry PI 

so that it could be synchronized to the master clocks. The files were accessed from the 

Raspberry PI via a browser connected to the same local network.  

3.2 Sensor Performance Evaluation 

Figure 3.3 (a) shows a screen shot of the user interfaces of the Wavetronix smartsensors 

while they are collecting data. The left side interface (e.g., labeled “AD_upstream”) shows the 

output from the AD sensor that targets the traffic upstream of the trailer. Each data record (e.g., 
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line) consists of the range, speed, and ETA (i.e., Estimated Time to Arrival) of an identified 

vehicle that is moving toward the sensor location. The right side interface (e.g., labeled 

“AD_downstream”) is from the AD sensor that targets the traffic downstream of the trailer. Each 

data record (e.g., line) consists of the range and speed of the identified vehicle that is moving 

away from the sensor location. Note that in this case ETA is not applicable and is shown as a 

series of dashes. The middle interface (e.g., labeled “HD”) is from the HD sensor, where each 

data record represents a vehicle passing by the sensor location. The time of detection, 

instantaneous speed, length of vehicle, and distance to the sensor location are all collected and 

stored. 

 

 

(a) Real-time data collection by Wavetronix ADs (right and left) and HD (middle) interfaces 

AD_upstream AD_downstream HD 
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(b) Real-time video recording of the approach lane and intersection 
 

Figure 3.3 Sensor interface - onsite data collection interface 

 

Figure 3.3(b) shows a screen shot of the camera control server. The server is used to 

assemble the views from the four cameras. It may be seen that the upper left and upper right 

cameras cover the views upstream and downstream of the trailer, respectively. The lower two 

cameras focused on the AWS signal heads (lower left) and the intersection signal heads (lower 

right). Note that the angles of all the camera heads can be adjusted using the panel shown on the 

right hand of the screen (e.g., labeled “Camera tilt”).  

In addition to the real-time data collection, the performance specifications of the 

Wavetronix AD and HD sensors, as reported by manufacturer, are shown in figure 3.4. Note that 

the specification for the percentages of small vehicles and large vehicles identified by the AD 

sensor within 400 ft of the trailer location are 90% and 95%, respectively. This means the two 

upstream and downstream sensors have an effective 800 ft vehicle tracking range with at least 



 

19 

 

90% accuracy. Speed accuracy is within 5 mph for 90% of the measurements for both the AD 

sensor and the HD sensor.  

 

 

Figure 3.4 Performance of Wavetronix smartsensors provided by product manufacturer 

 

In a previous study (14), 55 test runs were performed with a portable GPS to validate the 

accuracy of Wavetronix AD. The speed difference of the two sensors were used to measure 

accuracy. It was found that the error is distributed with the mean close to 0.01 mph and the 

standard deviation at 1.39 mph. This indicates the Wavetronix AD sensor provides acceptable 

values for speed and distance. 
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The Wavetronix HD has been widely used in traffic vehicle count and speed detection. A 

study of evaluation of the non-intrusive Wavetronix HD for traffic detection (15) has found that 

the volume accuracy is within 2 percent in free flow conditions. The error determined in the 30 

min average speed between the HD sensor and the manual measurement was 0.6 mph. The 

length-based vehicle classification had an error of 2.3 percent for passenger cars and an error of 

15.3 percent for trucks, compared with the Piezo-Loop-Piezo baseline. The overall error for all 

vehicles is approximately 3.0 percent. 

The sensors in the Raspberry PI system were sampled every 1/10th milliseconds for 10 

milliseconds. Its performance is rated for an error margin of 1% to 1.7%, depending on the strength 

of the electric power of the traffic signal (e.g., incandescent bulb or LED bulb). In the study sites 

at the 281 Highway corridor, all the traffic signals have LED bulbs. 

3.3 Test Sites 

3.3.1 Site Selection 

The specific signalized intersections in the test bed that were studied were identified 

using the selection criteria, which included:  

1) intersections equipped with NDOR AWS;  

2) signal-coordinated corridors;  

3) vehicle platoons formed during each cycle; 

4) ability to set-up data collection trailers and access to a traffic controller cabinet; and 

5) cooperation from local transportation agencies. 

Based on input from the NDOR Technical Advisory Committee, the north-south 

Highway 281 corridor between US Route 30 and Nebraska Route 2 in Grand Island, NE, was 

selected as the study area. The test sites are shown in figure 3.5. This N-S corridor consisted of 



 

21 

 

five signalized intersections, each of which was instrumented with the NDOR AWS. In total, 4 

NB and 5 SB approaches were studied in detail, as shown by the red rectangle in figure 3.5, 

where the name and direction of the approach are labeled. The test bed serves as a major N-S 

arterial corridor and is located in the western section of the city of Grand Island. Note that 

Highway 281 intersects Interstate 80 approximately 8 miles south of Grand Island. 

 

 

Figure 3.5 Site selection map in Grand Island (the number 1 or 2 in the parentheses indicates the 

number of the warning flashers at both sides of the approach) 
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3.3.2 MTDC Location 

For each site, the data collection mobile trailer was placed between the AWS and 

300~350 ft upstream of the stop-line, as illustrated in figure 3.6. The two Wavetronix AD 

sensors cover approximately 600 ft of the upstream approach, including the AWS, and 

approximately 600 ft of the downstream approach, including the stop-line. The distance of the 

AWS location and the actual mobile trailer placement for each of the nine sites are shown in 

table 3.1. 

    

 

Figure 3.6 Trailer placement on the roadside of the approach at the study sites  
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Table 3.1 Information on approaches 

Crossroad Location Speed Limit Flasher1 Trailer1 

Capital SB 45 mph 507 ft 310 ft 

 NB 45 mph 495 ft 315 ft 

State St. SB 45 mph 550 ft 307 ft 

 NB 45 mph 519 ft 306 ft 

13th St. SB 45 mph 554 ft 314 ft 

 NB 45 mph 535 ft 327 ft 

Faidley  SB 45 mph 528 ft 330 ft 

 NB 45 mph 528 ft 351 ft 

Old Potash SB 45 mph 526 ft 302 ft 
1 Distance measured upstream from stop-line  

 

3.3.3 Signal Control 

The signal timing plan for this test bed was provided by the city of Grand Island. The five 

signalized intersections in the study have the same 8-phase signal plan. The phase diagram is 

shown in figure 3.7. The left-turn phases (phases 1, 3, 5, and 7) are actuated, the major through 

phases (phases 2 and 6) are coordinated, and the minor through phases (phases 4 and 8) operate 

in minimum recall mode. The exceptions are that phases 3 and 7 at the Faidley intersection are 

not used, and phases 4 and 8 at the Old Potash intersection are actuated.  
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Figure 3.7 The 8-phase signal plan at the test intersection 

 

Because the N-S through phases are not actuated, the intersections operate under semi-

actuated control. In other words, detectors are only used for optimizing the signal timing of the 

minor streets. The phases associated with the major road (i.e., N-S of Hwy 281 corridor) through 

movements are operated in a "non-actuated" mode. That is, these phases are not provided 

detection information. In this type of operation, the controller is programmed to dwell in the non-

actuated phase and, thereby, sustain a green time for the highest flow movements (i.e., the N-S 

through movements). The minor movement phases (e.g., E-W) start only after a call for their 

service is received by the controller.  

The AWS signal flashers for the N-S through movements are coordinated with phase 2 

and phase 6, respectively. When the downstream signal is approximately 7-8 seconds from 

beginning the transition from green to amber, the flasher is turned on to warn the approaching 
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drivers of the impending phase change. As discussed previously, this period of advance warning 

flashing is called lead flash, which is illustrated in figure 3.8. The AWS flasher will remain 

active until the end of the red indication for the N-S through traffic phase. 

 

 

Figure 3.8 Schematic of an AWS timing coordination on N-S corridor 

 

Because the signals in the test bed operate on an 8-phase signal plan, the NB and SB 

through green phases do not necessarily end at the same time. If the southbound and northbound 

green phases do not end at the same time, the AWS flashers on the NB and SB approaches will 

not start at the same time. However, the lead flash time periods are kept constant for each of the 

nine sites, as they are fixed lengths and begin prior to the end of the green (or the start of the 

amber).  

It should be noted that because the corridor intersections are coordinated, all of their 

signal plans have a common cycle length. In this corridor, the coordination cycle length is 79 

seconds for all the intersections. Other signal time information for each site is provided in table 

3.2. Note that the lead flash time is measured on site by the TSPI system, as discussed in section 
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3.1.2. The universal parameters (e.g., yellow, all-red, cycle length) were obtained from the signal 

timing report provided by the city of Grand Island and were confirmed in the field. 

 

Table 3.2 Signal time for each site 

Site Loc. Cycle Length Lead Flash* Yellow All-red  

Capital SB 79 s 7 s 4.5 s 1.5 s 

 NB 79 s 7 s 4.5 s 1.5 s 

State St. SB 79 s 8 s 4.5 s  1.5 s 

 NB 79 s 8 s 4.5 s 1.5 s 

13th St. SB 79 s 7 s 4.5 s 1.5 s 

 NB 79 s 7 s 4.5 s 1.5 s 

Faidley  SB 79 s 7 s 4.5 s 2 s 

 NB 79 s 7 s 4.5 s 2 s 

Old Potash SB 79 s 7 s 4.5 s 2 s 
 

 
3.4 Data Format 

There are four types of data that were collected. The MTDC data and the TSPI data were 

all automatically saved in text files. In addition, the video data were backed up in a NVR-

software-readable format. Figure 3.9 shows the screen shots of the raw data from the data 

collection system. Figure 3.9 (a) shows the Wavetronix AD (upstream and downstream) data, 

figure 3.9 (b) shows the Wavetronix HD data, and figure 3.9 (c) shows the Raspberry PI data that 

takes care of the signal phase of green, yellow, and red in the intersection and the flasher time of 

the AWS, respectively. 
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                             (a) Wavetronix AD 

 

 
         (b) Wavetronix HD 

                                                      
     (c) Raspberry PI 

 
Figure 3.9 Raw data sample from the data collection system 

AD 1: Downstream 
Coverage 

AD 2: Upstream 
Coverage 

Green 
Flash 

Yellow 
Red 
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3.5 Data Reduction 

In total, 277 hours of data from the nine sites were collected. As the daytime driver 

behavior was the focus of this study, the analysis duration was constrained to the time period 

between 06:00:00 and 22:00:00. Because the data were collected continuously over 24 hours, the 

night period (e.g., 22:00:00 – 06:00:00 next day) was included in the raw data. This data was not 

considered in the analysis. The resulting total effective data analysis time is 189 hours. The 

information on the data collection at each site is shown in table 3.3. The files from ADs 

(upstream and downstream), HD, Video, and Raspberry PI signals were named by date and the 

minor street of the site. All the test data files were stored in .txt format.  

3.6 Summary 

This chapter discussed the test site location, the data collection devices, and the data 

collection systems (i.e., MTDC system and TSPI system) that were used in the study. Chapter 4 

will provide a preliminary analysis of the data. 
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Table 3.3 Data collection period 

*Overnight indicates the data recording period included the duration of 22:00 - 6:00 (next day), thus should minus 8 hours per time
 

No. Street 
Name Direction Link 

Length Collection Date Total 
Hours Overnight* 

1 Capital SB  5/15, 5/17, 5/18 25 hrs -8 

2  NB 2677 ft 5/13, 5/14, 5/15 44 hrs -16 

3 State St. SB  5/18, 5/19, 5/20 43 hrs -16 

4  NB 2603 ft 5/27, 5/28 26 hrs -8 

5 13th St. SB  5/4, 5/5 28 hrs -8 

6  NB 2596 ft 4/22, 4/23 24 hrs -8 

7 Faidley SB  4/3, 4/8 12 hrs  

8  NB 2680 ft 4/11, 4/12, 4/13 28.5 hrs -8 

9 Old-Potash SB  6/3, 6/4, 6/22, 6/23 46.5 hrs -16 
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Chapter 4 Preliminary Data Analysis and Vehicle Trajectory 

This chapter analyzes the Grand Island data that were collected, as described in chapter 3. 

The goal was to study the operational effectiveness of the AWS and to identify if the NDOR 

AWS was operating in an effective and safe manner on a coordinated arterial. To achieve the 

goal, a preliminary data analysis was conducted to obtain the basic information of the traffic flow 

and operational conditions at the study sites. The preliminary analysis is the focus of this chapter.  

4.1 Preliminary Analysis of Key Traffic Parameters 

4.1.1 Green Time 

The green time duration for a given approach is calculated as the difference between the 

time of a recorded “off” signal and the time of a recorded “on” signal. The output of the TSPI 

system was used to calculate green time. Note in this research the phase of interest is the NB and 

SB straight through movements, as applicable, for each test site. Figure 4.1 (a) and figure 4.1 (b) 

show the green time as a function of the time of day for the SB Capital approach and SB Old 

Potash approach, respectively. Note that these two graphs are representative of all nine sites. The 

green time distribution for the other seven approaches may be found in Appendix A. It may be 

seen that the period from 10 pm to 6 am the following day has the longest green time on average. 

The green time during the daytime period (7 am to 7 pm) is generally shorter. This phenomenon 

occurs because the signals are in semi-actuated control. At night there is not a lot of cross street 

traffic so the N-S green time is higher. As the cross street traffic increases during the day time, 

the corresponding N-S green time decreases. 
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Figure 4.1 Distribution of the length of green time over a day for (a) SB Capital approach, and 

(b) SB Old Potash approach 
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It should be noted that sometimes the TSPI system misses a green time recording. In that 

case, the estimated green time is unreasonably high, as shown by circles A, B, C, and D in figure 

4.1 (b). In this situation the green time is set to the average green time of the phases before and 

after the one in question. 

Table 4.1 summarizes the statistics of the green time distribution at each site. Appendix A 

contains the distribution plot for all nine sites. It may be seen that the night time (e.g., 8 pm to 6 

am in the next day) has a greater length of average green time than the day time (e.g., 6 am to 8 

pm). This is due to the low traffic flow during the night on the minor cross street where the 

signal is semi-actuated, which leads to a shorter green time of the minor phases (E-W) and a 

longer green time of the major phases (N-S). Similarly, during the day time, traffic flow rate is 

comparatively high. Therefore, the green time on the minor phases is longer and results in a 

comparatively shorter green time on the major arterial. 
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Table 4.1 Statistic summary of green time 

Site Time period Obs. Max. (s) Min. 
(s) Mean (s) Sd. (s) 

Capital SB 
Day (6:00-20:00) 730 66 24 37.6 8.9 

Night (20:00-6:00 next day) 365 66 30 57.4 9.3 

Capital NB 
Day(6:00-20:00) 729 51 21 40.3 10.7 

Night (20:00-6:00 next day) 364 66 24 52.2 10.4 

State SB 
Day(6:00-20:00) 729 60 24 32.6 11.6 

Night (20:00-6:00 next day) 364 69 24 50.3 11.9 

State NB 
Day(6:00-20:00) 730 60 27 35.2 11.3 

Night (20:00-6:00 next day) 365 69 30 48.6 10.2 

13th SB 
Day(6:00-20:00) 729 63 27 38.3 10.3 

Night (20:00-6:00 next day) 364 63 36 52.0 9.6 

13th NB 
Day(6:00-20:00) 729 63 24 38.5 12.8 

Night (20:00-6:00 next day) 363 63 36 56.7 8.8 

Faidley SB 
Day(6:00-20:00) 274 51 12 31.7 12.6 

Night (20:00-6:00 next 
day)* - - - - - 

Faidley NB 
Day(6:00-20:00) 647 57 21 33.4 9.1 

Night (20:00-6:00 next day) 323 63 36 50.6 11.2 

Old-Po. SB 
Day(6:00-20:00) 714 54 24 30.7 8.9 

Night (20:00-6:00 next day) 357 63 30 51.4 10.5 

*lack of data on that day (see Appendix A(g)) 
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A disadvantage of the semi-actuated operation is that continuous demand on the phases 

associated with one or more minor movements can cause excessive delay to the major road 

through movements if the maximum green and passage time parameters are not appropriately set. 

This issue will be examined further in the following sections. 

4.1.2 Traffic Volume 

Figure 4.2 shows traffic flow as a function of the time of day from 0:00 to 23:59 (i.e., 

midnight). Figure 4.2 (a) shows the relationship between traffic volumes as a function of the time 

of day at the Capital NB site on Saturday, May 14, 2016. Figure 4.2 (b) shows the same 

relationship for the Old-Potash SB site on Wednesday, June 22, 2016. As would be expected, 

there is a definite afternoon peak for both sites. The latter shows typical weekday peaking (e.g., 

morning, lunch, and afternoon). The former indicates a typical weekend pattern where there is 

one peak in the afternoon and volumes are lower than a weekday. 
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Figure 4.2 Examples of two sites with low and high traffic volume over a day 

(a) 

(b) 
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In general, the traffic volume is bimodal with the peaks around 6-7 am, 12-13 pm, and/or 

16-17 pm. The exact time varies by site. These volumes depict the early morning period, lunch 

breaks, and evening peak. Traffic volumes for the other sites are also obtained in the same 

manner, as shown in table 4.2.  

Table 4.2 provides the highest hourly volumes for the nine approaches studied. Note that 

because the data was collected on different dates, it would not be expected that the volume 

would be highly correlated.  

 

Table 4.2 Traffic volume characteristic at different sites 

No. Approach 
Volume  
Analysis 
Date 

Volume Analysis 
Weekday 

Highest 
Hourly 
Volume 

Hour of 
Highest 
Volume 

1 Capital SB 5/17-5/18 Tue-Wed 511 6-7 

2 Capital NB 5/14 Saturday 436 12-13 

3 State St. SB 5/19-5/20 Thu-Fri 780 10-11 

4 State St. NB 5/27-5/28 Fri-Sat 635 6-7 

5 13th St. SB 5/4-5/5 Wed-Thu 944 6-7 

6 13th St. NB 4/22-4/23 Fri-Sat 814 7-8 

7 Faidley SB 4/3, 4/8 Sun, Fri 819 16-17 

8 Faidley NB 4/12-4/13 Tue-Wed 952 11-12 

9 Old-Potash SB 6/22 Wednesday 1074 16-17 

 

 



 

37 

 

4.1.3 Speed 

Figure 4.3 (a) and Figure 4.3 (b) are graphs of the instantaneous speed, obtained by the 

sensors on traffic adjacent to the trailer, as a function of the time of day for NB Capital Street 

and SB Old Potash Street, respectively. It may be seen in Figure 4.3 (a) that there is a wide 

distribution in speed. This would be expected on an arterial roadway that has coordinated signals. 

Figure 4.3 (b) shows a similar scatter, and it should be noted that there are three distinct times 

when speeds are noticeably lower. These times correspond to the peak demonstrated in figure 

4.2, and it is hypothesized that they represent “congestion” during the peak periods.  

 

 

(a) Speed distribution in the low traffic volume scenario 
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(b) Speed distribution in the high traffic volume scenario 

Figure 4.3 Examples of speed scatter distribution over a day 

 

Not surprisingly, the speed distribution is correlated to the traffic volume distribution in 

that as volume increases, the speed decreases. The speed drops indicate congestion during the 

peak hour periods. 

A histogram of instantaneous speed, measured at the mobile trailer location, for SB 13th 

street (e.g., site 5), is shown in figure 4.4. Because the speed limit is 45 mph, any vehicle 

traveling faster than this value is considered speeding. For this site, approximately 12.5% of the 

vehicles are speeding.  
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Figure 4.4 Histogram of vehicle’s instantaneous speed at the trailer location for each site 

 

The instantaneous speed histograms for the other eight sites may be found in Appendix 

B. Table 4.3 shows the average speed, standard deviation, and percentage of speeding for all nine 

sites. It may be seen that the range in percentage of speeding vehicles is from 6.93% to 21.72%, 

with an average of 15.0% and a standard deviation of 5.8%.  
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Table 4.3 Summary of vehicular instantaneous speed 

No. Approach Average speed (mph) Std. dev. (mph) Percent of speeding 

1 Capital SB 38.6 7.4 19.85% 

2 Capital NB 39.0 6.6 20.66% 

3 State St. SB 36.4 8.4 19.58% 

4 State St. NB 39.1 6.8 21.72% 

5 13th St. SB 34.8 8.7 12.53% 

6 13th St. NB 40.2 7.8 8.04% 

7 Faidley SB 35.6 8.1 16% 

8 Faidley NB 36.3 6.4 6.93% 

9 Old-Po. SB 35.4 7.7 9.84% 

 
 

4.1.4 Vehicle Classification 

Vehicle classification in this study is based on the measured length of the vehicle. 

Vehicle classification was conducted by the Wavetronix HD detector, where vehicles are 

classified based on their lengths. In this analysis, any vehicle over 25 feet was considered a large 

vehicle, and anything less was considered a passenger car. The 25 ft cut-off values was derived 

from an earlier report (16). 

Previous researchers compared the results of the Wavetronix SmartSensor HD length 

data to manually-measured vehicle lengths. This comparison was conducted with highway data 
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collected during free-flow traffic periods. It was found that the average error among passenger 

vehicles was 0.6 feet with an absolute average error of 1.6 feet. The average error for trucks was 

1.7 feet with an absolute average error of 2.8 feet. The reported percent errors were -2.3%, -

15.3%, and -3.0% for passenger cars, trucks only, and total vehicles, respectively.  

A histogram of vehicle length, measured at the mobile trailer location, for NB Highway 

281 at Capital Street (e.g., site 2) is shown in figure 4.45. For this site, approximately 7% of the 

vehicles are classified as large.  

 

 

Figure 4.5 Distribution of the vehicle length at each site 

 

The vehicle length histograms for the other eight sites may be found in Appendix C. 

Table 4.4 shows the average vehicle length, standard deviation, and percentage of large vehicles 
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for all nine sites. It may be seen that the percentage of large vehicles ranges from 6.9% to 13.2%, 

with an average of 9.6% and a standard deviation of 1.8%.  

 

Table 4.4 Summary of vehicle length 

No. Approach Average vehicle length 
(ft) Std. dev. (ft) Percent of large 

vehicles 

1 Capital SB 19.4 7.7 8.5% 

2 Capital NB 17.7 5.8 6.9% 

3 State St. SB 18.7 6.9 9.9% 

4 State St. NB 17.9 6.6 8.2% 

5 13th St. SB 18.7 7.6 10.9% 

6 13th St. NB 19.5 7.9 9.5% 

7 Faidley SB 19.6 8.8 13.2% 

8 Faidley NB 20.0 7.5 10.3% 

9 Old-Po. SB 18.5 6.6 8.9% 

 

 
4.2 Vehicle Trajectory 

The two AD sensors track vehicles traveling from the upstream intersection to the 

downstream intersection. The distance covered by each sensor is measured relative to the 

location of the sensor (i.e., sensor location is as baseline as 0 ft). After the trailer distance to the 

stop-line is determined, all the detected vehicle travel distances are transformed into distance 
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from the upstream stop-line. Note that when a vehicle is within 50 ft of the sensor, it ceases to be 

tracked because the sensor has trouble detecting vehicles that are “under” the sensor. 

Because the AD sensors operate independently, each AD sensor assigns a separate ID to 

each vehicle. It is not easy to identify which two ID numbers correspond to the same vehicle. 

This is especially true in busy traffic where multiple vehicles can be under surveillance at the 

same time. In this report, a filtering methodology was developed to estimate a complete 

trajectory. This methodology uses the distance, vehicle type, and time gaps to match the vehicles.  

In addition to the speed trajectories from AD sensor, the HD sensor also provides a spot 

speed of the vehicle passing by at the trailer location. Information from all three sensors can be 

used to identify and match the two parts of the speed profiles of a particular vehicle.  

4.2.1 Example 1: Stopping for a Red Signal during an AWS Activation 

To illustrate the procedure, a vehicle was identified from the video recording and its two 

trajectories were identified manually. Figure 4.6 (a) shows the vehicle speed as a function of 

distance from the upstream stop-line. The orange line represents the location of the AWS 

flashers, the black line represents the location of the trailer, and the red line represents the 

upstream stop-line location. The blue data points represent the speed measured from the AD 

sensor pointed upstream, and the purple data points represent the speed measured from the AD 

sensor pointed downstream. Note that neither AD sensor can measure vehicle speed within 50 ft 

of the trailer. The green dot represents the spot speed, measured by the HD sensor. The goal is to 

develop a methodology for identifying these three measurements which all come from the same 

vehicle. 

Figure 4.6 (b) shows the vehicle’s speed as a function of time. The orange dotted line, 

green-yellow dotted line, and the red-yellow dotted line show when the AWS flasher is turned 
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on, when the upstream signal transitions from green to yellow, and when the upstream signal 

transitions from yellow to red, respectively.  

Observations of the speed profiles in figure 4.6 are described below. 

1) The first capture of the vehicle is at around 690 ft, where it is still upstream of the 

AWS, the signal phase is green, and the AWS has not been activated yet.  

2) The vehicle travels at a constant speed of approximately 40 mph which is lower than 

the 45 mph speed limit. When the vehicle is approximately 450 ft from the AWS 

sign, the AWS begins to flash, and the driver reduces the speed to 30 mph at the end 

of the detected upstream trajectory. 

3) As the vehicle passes by the trailer, its speed is measured at 30 mph by the HD sensor. 

4) After passing the trailer location, the vehicle is identified about 300 ft from the stop-

line by the downstream AD sensor traveling at approximate 30 mph. Note that it is 

still in the lead flash period (i.e., AWS is active while the signal is still green).  

5) The signal phase turns to amber and the vehicle continues to decelerate until it comes 

to a complete stop at the stop-line. 

As can be seen, this vehicle behaves a typical process of compliance to the traffic rules. 

The driver is not speeding and begins to slow down when the AWS flasher is activated. The 

vehicle continues to decelerate until it comes to a complete stop. It is hypothesized that for this 

driver, the AWS worked effectively in helping alert the driver of the impending end of green. 
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Figure 4.6 An example of compliance stopping vehicle during the actuation of AWS 

 

4.2.2 Example 2: Red-light Running during the Actuation of AWS 

Similar to example 1 in section 4.2.1, figure 4.7 (a) shows the speed versus distance 

graph of a driver who ultimately enters the upstream intersection after the signal turns red (e.g., 

“red-light runner”). The same color coding of figure 4.6 (a) applies. Similarly, figure 4.7 (b) 

shows the vehicle speed as a function of time. The same color coding of figure 4.6 (b) applies. 

The speed profiles in figure 4.7 (a) and figure 4.7 (b) indicate the following information.  

1) The first identification of the vehicle is at around 730 ft, where it is upstream of the 

AWS, the signal phase is green, and the AWS has not been activated yet.  
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2) Before arriving at the AWS location, the vehicle travels at approximately 43 mph 

(close to the 45mph speed limit). After the start of the AWS flasher, the vehicle speed 

decreases below 40 mph.  

3) As the vehicle passes by the trailer, its speed is measured at 39 mph by the HD sensor.  

4) After passing the trailer location, the vehicle is identified at approximately 300 ft from 

the stop-line. Its speed is approximately 35 mph. Note that it is still in the lead flash 

period (i.e., AWS is active while the signal is still green) and the vehicle reduces its 

speed to approximately 25 mph. It is about 200 ft away from the stop-line at the onset 

of amber. 

5) During the amber (4.5 seconds), the vehicle accelerates to a speed over 40 mph. The 

vehicle passes the stop-line after the onset of the red signal. 
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Figure 4.7 An example of red-light running vehicle during the actuation of AWS 

 

As can be seen in figure 4.7, this vehicle is a red-light runner, meaning this vehicle 

crossed the stop-line after the onset of the red signal. It should be noted that the driver reduced 

the speed after the activation of the AWS and could have stopped safely. It is assumed that this 

driver changed his or her mind approximately 200 ft from the stop-line, and that the original 

decision was to stop (slow down). Because the vehicle began to slow down initially during the 

green phase, it is hypothesized that the driver’s speed reduction is a result of the AWS activation. 

This example also indicates that the AWS does not always lead to safer behavior. Interestingly, if 
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the driver had not maintained his or her initial speed, and did not slow down when the AWS 

began to flash, the driver could have entered the intersection safely. The critical question, of 

course, is whether safety is improved at the crossing. 

4.3 Summary  

In this chapter, basic traffic flow and operational information were obtained, including 

the distribution of green time, the distribution of traffic volume as a function of time, the 

distribution of speed as a function of time, and the classification of vehicle length.  

Three Wavetronix devices: upstream AD, HD, and downstream AD, were used to record 

the trajectory of each vehicle traveling from 600 ft upstream of the trailer to 600 ft downstream 

of the trailer. The goal was to develop a methodology for identifying these three measurements, 

which all come from the same vehicle, for later data analysis usage. 

For illustration purposes, two manually extracted vehicular trajectory examples were 

used to show the vehicle trajectory of the speed over distance and time. The interpretation from 

the trajectory showed two examples of driver behaviors as they approached an intersection. This 

information, in conjunction with the signal information, can be used to identify whether a vehicle 

is a red-light runner or not.  
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Chapter 5 Operational Performance Analysis 

 When optimizing traffic signals on a corridor, the start of green at a downstream 

intersection is often set so that the waiting vehicles discharge prior to the platoon arrival from the 

upstream intersection. A key input to an optimal signal coordination strategy is understanding 

how the platoon of vehicles that are released from the upstream intersection arrives at the 

downstream intersection. This chapter studies the operational performance of the AWFs on the 

coordinated Highway 281 corridor in Grand Island. In particular, the effect of AWS on platoon 

dispersion is analyzed. 

5.1 Platoon Dispersion 

When the green phase at the upstream intersection starts, it releases a platoon of vehicles 

that travel to the downstream signalized intersection. As this platoon moves downstream, the 

vehicles that comprise the platoon disperse or spread out. In other words, the headway between 

vehicles increases due to the differences in vehicle speed, vehicle interactions (lane changing, 

merging, etc.), and roadway “friction” (e.g., on-road parking, pedestrians, etc.). This 

phenomenon is called platoon dispersion (PD). When a platoon of vehicles is released from an 

upstream traffic signal, the degree to which this platoon has dispersed at the next downstream 

signalized intersection, in part, determines whether significant benefits can be achieved from 

signal coordination. The effectiveness of signal timing and progression diminishes when 

platoons are fully dispersed. 

It is important to understand how AWS affects the platoon dispersion so that this can be 

accounted for in the signal coordination methodology. The manner in which the platoon is 

affected will also indicate whether the AWS is working effectively. This section focuses on the 

performance of the signal coordination among intersections in terms of platoon dispersion.  
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Figure 5.1 shows the percentage saturation, which is a measure of the flow rate, as a 

function of time step t at the two intersections A and B. For a coordinated corridor, the two 

signalized intersections A and B will have a common cycle length. Note that the green time tgA 

and tgB are not necessarily the same. Robertson’s platoon dispersion model is used to describe the 

dispersion behavior (17). The model assumes an upstream departure flow qA, which discharges at 

the saturation flow starting at the beginning of the effective green. The first vehicle shifts a lag 

time of T when arriving at intersection B. The average travel time of the arrival vehicles is 

denoted by to. It is assumed that for each time step the arrival flow qB follows a geometric 

distribution after the dispersion, as illustrated in the first time step in figure 5.1 (shaded area). 

 

Figure 5.1 Robertson’s platoon dispersion model illustration 

 

The process can be described by Robertson’s platoon dispersion model in equation 5.1.  
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 𝑞𝑞𝐵𝐵(𝑡𝑡) = 𝐹𝐹𝑞𝑞𝐴𝐴(𝑡𝑡 − 𝑇𝑇) + (1 − 𝐹𝐹)𝑞𝑞𝐵𝐵(𝑡𝑡 − 1) (5.1) 

Where qA = discharge flow at upstream location A of the link (in units of veh/time step) 

 qB = arrival flow at downstream location B of the link (in units of veh/time step) 

 
 T = a lag time for the arrival of the first vehicle in platoon, a.k.a., platoon arrival time 

(in units of time step) 

 F = smoothing factor (unitless) 

 

The Robertson’s platoon dispersion model in eq. 5.1 indicates that any arrival flow to the 

downstream location B is a weighted combination of: i) the traffic flow at the upstream location 

A, where the traffic flow departed T time ago, and ii) the arrival flow at location B in the 

previous second (t-1).  

The variable F, which is a smoothing factor, is a function of the platoon travel time to the 

downstream signal and roadway impedance to traffic flow or "friction.” Platoon travel time is 

defined as the average running time of all vehicles in a platoon from the upstream location to the 

downstream location. With reference to the start of the green at the upstream intersection, the 

average platoon travel time (e.g., travel time of vehicles in platoon) is marked as to in figure 5.1, 

where point o is a virtual point that represents the average of the platoon vehicles. Based on 

empirical evidence, Robertson (17) found that the platoon arrival time T is a portion of the 

average of the platoon travel time to, and F is a function of two parameters: the platoon 

dispersion factor α (0 ≤ α ≤ 1), and the travel time factor β (0 ≤ β ≤ 1). These can be estimated 

using eqs. (5.2) and (5.3). 
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𝑇𝑇 = 𝛽𝛽𝑡𝑡𝑜𝑜  (5.2) 

𝐹𝐹 =
1

1 + 𝛼𝛼𝛽𝛽𝑡𝑡𝑜𝑜
 (5.3) 

 

Note that the average platoon travel time to (in units of time step) can be estimated by the 

field observation of the vehicles, which travel as a platoon after the start of the green signal at the 

upstream intersection. It has been found that different link travel times result in the selection of 

different α and β values, even when road conditions are similar (18). A successful application of 

Robertson’s platoon dispersion model relies on the appropriate calibration of several model 

parameters. In TRANSYT, the default value of β is 0.8 for all α, while 0.35 is recommended for 

α in the United Kingdom (19), and 0.25-0.5 is recommended for α in North America (20). In 

general, as roadway friction increases (e.g., parking on road, high pedestrian volumes, narrow 

lane widths), α increases.  

Some researchers (21 and 22) have also recommended that α and β values should be 

calibrated at each site in order to capture various geometric and traffic conditions. Based on an 

assumption that the travel time follows a shifted geometric distribution, Yu and Van Aerde (18) 

proposed a simplified calibration method based on the average platoon travel time 𝑡𝑡𝑜𝑜 and it’s 

variance 𝜎𝜎𝑡𝑡𝑜𝑜
2, as shown in eqs. (5.4) and (5.5). 

 

𝛼𝛼 =
�1 + 4𝜎𝜎𝑡𝑡𝑜𝑜

2 − 1

2𝑡𝑡𝑜𝑜 + 1 − �1 + 4𝜎𝜎𝑡𝑡𝑜𝑜
2
 (5.4) 



 

53 

 

𝛽𝛽 =
2𝑡𝑡𝑜𝑜 + 1 − �1 + 4𝜎𝜎𝑡𝑡𝑜𝑜

2

2𝑡𝑡𝑜𝑜
 (5.１) 

 

In essence, the dispersion factors α and β are related to the average travel time required to 

travel from the upstream location to the downstream location (to) and the variance of the travel 

time (𝜎𝜎𝑡𝑡𝑜𝑜
2). It can be seen that as 𝜎𝜎𝑡𝑡𝑜𝑜

2 increases, the dispersion factor α becomes larger and β 

becomes smaller, which indicates that the platoon will be more dispersed at the downstream 

intersection. 

When an AWS flasher is located between the upstream and downstream intersection, a 

natural question is whether the flashing signal impacts platoon dispersion, as illustrated in figure 

5.2. Based on prior research, it is easy to hypothesize that the signal might cause some drivers to 

slow down, and others to speed up. If so, the platoon dispersion factors would be different, which 

would impact the signal coordination. These factors would also provide evidence for whether the 

AWS was having a positive effect on safety. 
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Figure 5.2 The AWS involved platoon dispersion model 

 

A comprehensive literature review found that none of the existing research has 

considered the effect of AWS on PD or signal coordination. It is hypothesized that ignoring this 

effect will lead to sub-optimal signal coordination. 

5.2 Data Preparation 

Three test sites were used in the operational platoon performance study. They are site 1: 

SB link from Capital St to State St; site 2: NB link from 13th St to State St; and site 3: SB link 

from Faidley St to Old Potash St.  

A generic representation of the data collection setup is shown in figure 5.3. Trailer 1 is 

the one that is used for data collection, and it was described in chapter 3. Its location was 

selected so that it could measure the effect of the AWS on vehicle speed. Note that the 
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measurements would not be impacted by any queueing on the downstream intersection. For each 

site, an additional trailer, marked as trailer 2 in figure 5.3, is used to collect discharge platoon 

information at the upstream intersection of the link. Trailer 2 is located 100 ft away from the 

nearest edge of the upstream intersection. This location is chosen because the immediate traffic 

outflow from the upstream intersection can be readily identified. On trailer 2, a camera and a 

Wavetronix SmartSensor HD (SSD) sensor were installed perpendicular to the traffic flow. The 

camera was used to videotape the traffic passing the trailer in case the SSD data need to be 

checked visually. It should be noted that the video range of the upstream camera (i.e., camera on 

trailer 2) covers the upstream intersection signal so that the time of signal change can be 

recorded. Thus, the average travel speed for each vehicle can be estimated by dividing the 

running time by the distance between the two data collection points. The SSD was used to 

automatically record the time that each vehicle passes the trailer location. A Mikrotik SXT 5HnD 

router was used to wirelessly connect the two trailers so that all the data were synchronized in 

time and saved in the local server which was located in the trailer 1 cabinet. 

 

 

Figure 5.3 Layout of the generic data collection system 
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The time step of the vehicle count for both the SSD and video data collection was set to a 

one second interval. The signal timing from the upstream intersection was obtained from the 

traffic signal control cabinets.  

Data was collected using both trailers on May 17 and 18, May 27 and 28, and Jun 4 and 

5, 2016 at sites 1, 2, and 3, respectively. The data from the first day at 8 pm to the second day at 

6 am was removed because of low traffic volume and corresponding small platoon sizes. A 

statistical summary of the data from the three sites are listed in table 5.1.  

 

Table 5.1 Summary of study site characteristics 

Site Upstream 
(from) 

Downstream 
(to) 

Peak hour 
volume 
(veh/h/ln) 

Signal 
cycles 

Speed at Trailer 1 
(mph) 

Speed at Trailer 2 
(mph) 

Mean 85% Mean 85% 

1 Capital St State St 283 638 30.8 41.4 36.3 45.1 

2 13th St State St 385 637 33.7 42.2 36.6 45.9 

3 Faidley Old Potash 596 637 32.9 42.2 36.6 45.8 

 
 

The platoon for each signal cycle is determined using the following three steps.  

1) Identify the “on” of the green phase (ton) and the “off” of the green phase (toff) at the 

upstream signal intersection. Match the SSD data at the upstream trailer 2 to the 

downstream trailer 1.  
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2) Use the count data from the upstream trailer to identify the discharge platoon as a 

function of time for each cycle. The discharge platoon in each cycle starts when the 

green time is on and ends when the green time is off, as shown in eqs. (5.6) and (5.7).  

 

𝑡𝑡1,𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑡𝑡𝑔𝑔_𝑜𝑜𝑜𝑜 (5.6) 

𝑡𝑡1,𝑒𝑒𝑜𝑜𝑒𝑒 = 𝑡𝑡𝑔𝑔_𝑜𝑜𝑜𝑜𝑜𝑜 (5.7) 

 

3) Use the count data from the downstream trailer to identify the arrival platoon as a 

function of time for each cycle. Based on an average running speed, the time offset 

between the two trailers is approximately 35 seconds. The start and end of the arrival 

platoon can be estimated using eqs. (5.8) and (5.9). 

 

𝑡𝑡2,𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑡𝑡𝑜𝑜𝑜𝑜 +
𝐷𝐷𝑖𝑖

𝑉𝑉𝑖𝑖
 (5.8) 

𝑡𝑡2,𝑒𝑒𝑜𝑜𝑒𝑒 = 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 +
𝐷𝐷𝑖𝑖

𝑉𝑉𝑖𝑖
 (5.9) 

 

Where, Di represents the distance from the upstream to the downstream trailer at site i  

  (feet); 

       V is the average platoon running speed at site i (ft/s). 

 

The focus in this chapter is on through vehicles in the platoon traveling from the 

downstream intersection to the upstream intersection. Note that for any green signal there may be 
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two distinct platoons. The first platoon is made up of through vehicles and the second consists of  

right turning vehicles from the minor street. There is a natural time gap between these two 

platoons. It was unclear which time gap/platoon headway was best to use in order to decide 

where one platoon ends and the other begins. Consequently, a sensitivity analysis was conducted 

to identify the best value. Platoon headways from 2 seconds to 10 seconds were tested. The 

objective was to optimally match the identified arrival platoons to the discharge platoons in 

terms of the platoon numbers and platoon sizes. It was found that a 5-second headway gave the 

best results with respect to matching the total number of platoons and the size of each platoon at 

the upstream and downstream trailers. 

5.3 Calibration of Travel Time  

In this section, two methods were used to extract data for identifying the platoon and the 

platoon travel time. Firstly, 25 continuous signal cycles (about half an hour) were extracted from 

the SSD data to manually verify the quality of the data. There were 25 cycles during this period, 

and each cycle resulted in one platoon. The travel time was recorded from SSD 2 (upstream) to 

SSD 1 (downstream) for all vehicles in each of the 25 platoons.  

Video recordings from the two cameras were also observed at each site to verify the 

platoon data collected by SSD. It should be noted that unlike the video from two cameras, the 

platoon vehicles recorded by the SSD 1 and SSD 2 could not be matched automatically due to 

lane-changing and overtaking behaviors. However, it does not affect the average platoon travel 

time because: 1) the overtaking vehicles were still considered part of the platoon, and 2) the time 

differences for the pair of upstream and downstream recordings were cancelled out when they 

were averaged. Note that the platoons manually observed from the video were used only for 

model calibration while the whole SSD data was used in the data analysis.  
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Figure 5.4 shows the vehicles in the 25 platoons as a function of the green time at the 

upstream signal of site 3. As discussed in chapter 4, the signals for this corridor are actuated, 

which means they can have different offsets and different green times depending on the cross 

street volumes. Therefore the start of each upstream green phase was normalized to zero seconds 

for comparison purposes. For example, Tr
(25) in figure 5.4 is the running time between the first 

recorded discharge vehicle and the first recorded arrival vehicle in the 25th platoon. In the same 

manner, the running times for the other vehicles in the 25th platoon can be obtained. The average 

of the vehicle running time of all the vehicles in the platoon yielded the average travel time for 

this particular platoon. The average of all the platoons’ running time is the average platoon travel 

time (to), which will be used for calibration of platoon dispersion parameters at this site.  
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Figure 5.4 Examples of discharge and arrival platoon vehicles at site 3, June 4, 2016. 
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It may be seen in figure 5.4 that the time headways of the vehicles in the platoon at the 

upstream location are much “tighter” compared to the time headways of the vehicles in the 

downstream platoon. Note that Van Aerde and Yu’s platoon dispersion parameter estimation 

method (18) only requires the platoon travel time to and the variance 𝜎𝜎𝑡𝑡𝑜𝑜
2. Both of these variables 

are collected from all the 25 platoons at each site and are listed in table 5.2. 

 

Table 5.2 Data reduction statistics for study sites 

Site Method No. of 
platoons 

Space mean 
speed (mph) 

Std. dev. of 
speed (mph) 

Mean of travel 
time (s) 

Variance of 
travel time (s) 

1 SSD 25 45.2 3.3 32.71 5.47 

 Video 25 46.3 2.9 30.18 3.06 

2 SSD 25 41.2 2.6 35.43 4.84 

 - - - - - - 

3 SSD 25 41.7 4.1 37.62 14.21 

 Video 25 43.4 4.6 36.24 15.76 

 

 
The mean and standard error of travel time obtained from the video observations 

indicated a difference of less than 10% compared to the SSD data from site 1 and site 3. It was 

concluded that the travel time estimation by the SSD method was appropriate. It was unfortunate 

that the recorded video at site 2 was lost because of a camera malfunction. An effort was made to 

manually observe the running time between the two trailer locations on site by driving through 

site 2 several times. The average of the running time beginning at the upstream trailer to the 
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downstream trailer was 34.27 seconds, with a variance of 2.79 seconds. This provided a 

reference of comparison to the SSD data at site 2, and it may be seen that the values were close.  

5.4 Effect of AWS on Arrival Flow Profiles Calibration  

Assuming that all vehicles in a platoon travel at the same speed (e.g., at speed limit), 

there will be no dispersion, as illustrated by the blue dashed lines in figure 5.5. However, in 

reality, not all vehicles travel at speed limit, and the platoon will disperse such that the first 

portion of the arrival platoon vehicles will pass by the AWS before it is active. Vehicles in this 

part of the platoon will not be affected by the AWS. These vehicles are indicated by the red 

rectangle in figure 5.5. When the AWS flasher is actuated, it is assumed that all the drivers in the 

vehicles upstream of the AWS flasher will recognize and react to the flashing signal. 

 

 

Figure 5.5 An Example of platoon vehicles encounter the actuated AWS at site 3 
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in the calibration parameters. Eqs. (5.3-5.5) were used to estimate the platoon dispersion 

parameters for each site and for each regime (e.g., AWS active and AWS inactive). The results 

are listed in table 5.3. 

 

Table 5.3 Comparing of the platoon dispersion parameters with and without AWS effect 

Site Platoon vehicles 
regime 

Calibrated platoon 
dispersion coefficient α 

Calibrated platoon 
arrival time coefficient β 

Calibrated 
smoothing 
factor F 

1 AWS Inactive 0.085 0.921 0.28 

 AWS Active 0.224 0.817 0.13 

2 AWS Inactive 0.118 0.895 0.21 

 AWS Active 0.222 0.819 0.13 

3 AWS Inactive 0.137 0.879 0.19 

 AWS Active 0.287 0.777 0.11 

 

 
As can be seen from table 5.3, the dispersion coefficient α for the three sites ranges from 

0.085 to 0.137 when the AWF is inactive, and from 0.222 to 0.287 when the AWF is active. Both 

of these ranges are lower than the default value of 0.35 recommended by Roberson (17). Note 

that the higher value of α associated with the AWF effect indicates an increase in roadway 

friction (i.e., longer platoon travel time). The platoon arrival time coefficient β ranges from 0.777 

to 0.819 when the AWF is active. This is approximately the same as the default value of 0.8 



 

64 

 

recommended by Roberson (17). The smoothing factor F ranges from 0.11 to 0.13 when the 

AWF effect is included in the parameter estimation. This is smaller than the smoothing factor for 

platoons without considering the AWF effect.  

Next, the arrival flow profiles were predicted in Robertson’s model using the estimated 

coefficients. Figure 5.6 shows the observed flow rates at the upstream and downstream trailers, 

and the predicted flow rate at the downstream trailer for sites 1, 2, and 3, respectively. For the 

three sites, the black solid-point curves represent the discharge flow profile observed at the 

upstream trailer, and the red sold curves represent the arrival flow profile observed at the 

downstream trailer. The arrival flow rates, at one-second time step from the start of green in each 

cycle, were averaged for all signal cycles during the data analysis period.  

 

 

(a) site 1 
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(b) site 2 

 

(c) site 3 

Figure 5.6 The fitted arrival flow profiles for both AWF inactive and AWF active regimes 
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Given the observed discharge flow and arrival flow profiles, the predicted arrival flow 

profile can be estimated by using the two sets of coefficients from table 5.3. As compared in 

figure 5.6, the blue dotted curves are the fitted arrival profiles assuming an AWF inactive 

regime, while the green dashed curves are the fitted arrival flow profiles assuming an AWF 

active regime. It is worth mentioning that under the AWF active regime, the total platoon 

constitutes vehicles that are both unaffected by the AWF (e.g., front portion of a platoon) and 

affected by the AWF (e.g., tail portion of the platoon). The average number of vehicles in a 

platoon that were affected by the AWF was 3.44 vehicles, with a standard deviation of 1.8 

vehicles. Seventy-five platoons were used in the calibration process. 

In general, the arrival flow dispersion is underestimated when the AWF effect is not 

included in the calibrated model. As can be seen in the AWF inactive regime (i.e., blue dotted 

curves) in figure 5.6, the right-hand tails of the predicted arrival flow profiles “shrink” earlier 

than the observed arrival flow profiles after the actuation of the AWF. This is particularly true 

when the observed discharge flow rates have a lot of fluctuation (e.g., sites 1 and 3). From a 

visual check of the fit of the model, the observed arrival flow profiles are better fit by the AWF 

active regime (i.e., green dashed curves) in figure 5.6. In other words, the effect of AWF is to 

elongate or delay the arrival platoon. This conclusion supports the finding that the calibrated α 

value was higher for the AWF active regime as compared to the AWF inactive regime in table 

5.3. 

In addition, a Kolmogorov-Smirnov test is used to statistically compare the goodness of 

fit of the two models. The null hypothesis is that the observed arrival flow and the predicted 

arrival flow (e.g., in the two regimes) have the same distribution. A small p-value indicates any 

violation of that null hypothesis, such as different medians, different variances, or different 
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distributions. As the p-values shown in figure 5.6 indicate, the arrival profiles incorporating the 

AWF effect are better fitted compared to those that do not incorporate the AWF effect. Also 

shown in figure 5.6 is the Root-Mean-Square-Error (RMSE), which measures the predicted 

arrival flow profiles with the observed arrival flow profiles for both regimes. The smaller RMSE 

associated with the AWF active regime indicates that it reduces the error, as compared to the 

AWF inactive regime, by 20% to 35%. 

5.5 Summary 

This chapter studied the operational performance of the AWS in terms of how platoons 

are affected in the test corridor. The traffic flow dispersion patterns at coordinated signalization 

corridors were examined by calibrating Robertson’s platoon dispersion model. The dispersion 

parameters were calibrated with and without the AWS active in order to test the hypothesis of 

whether there is an effect of AWS on dispersion parameters.  

The three test sites have the same speed limits, similar traffic compositions, and similar 

signal timing. The smoothing factor F ranged from 0.19 to 0.28 when the AWS flashers were not 

active. This confirms that the dispersion parameters are site specific. 

When the AWS effect is included in the calibration, the smoothing factor F was lower 

and ranged from 0.11 to 0.13, the platoon dispersion coefficient α increased from an average of 

0.11 to 0.24, which indicated an increase of friction in the road traffic. As the only change was 

the activation of the AWS, it was concluded that the AWS indeed affects (i.e., increase) the 

dispersion parameter. It was hypothesized that the AWS caused the vehicles to slow down which 

lead to a small platoon dispersion compared to the AWS inactive case. 

A goal of a good design for signal coordination is to reduce the number of stragglers at 

the rear who miss the green phase. As the AWS will affect the rear part of the arrival platoon 
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vehicles, it is recommended to consider the calibration with the AWS effect when applying the 

dispersion parameters in signal coordination.  
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Chapter 6 Safety Performance Analysis 

This chapter analyzes the safety performance of AWS in coordinated systems with 

respect to three aspects: dilemma zone entrapment, red-light running, and the acceleration and 

deceleration behavior of drivers with and without the flasher activated.  

6.1 Dilemma Zone Analysis 

As a traffic signal changes from green to amber, a driver who is approaching the 

intersection has to decide whether to stop or proceed through the intersection. Under certain 

circumstances, either choice may result in a violation of traffic laws. The section of the roadway 

upstream of the intersection where this occurs is known as the dilemma zone. As shown in figure 

6.1, the dilemma zone is defined by two boundaries. The upper boundary, Dbz, is the beginning 

of the dilemma zone where vehicles downstream of the boundary cannot stop comfortably at the 

stop-line. The lower boundary, Dez, is the end of the dilemma zone where vehicles upstream of 

the boundary cannot proceed through the intersection safely before the onset of red. If there is 

overlap between the two boundaries (i.e., Dbz - Dez > 0), then a dilemma zone exists. 

 

 

Figure 6.1 Tradition definition of dilemma zone 
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In other words, a driver upstream of the dilemma zone, who is traveling at the legal speed 

limit at the onset of the amber indication, can decelerate at a comfortable rate and come to a stop 

without entering the intersection. A driver downstream of the dilemma zone, who is traveling at 

the legal speed limit at the onset of the amber indication will be able to maintain their speed and 

enter the intersection before the end of the amber. However, if the driver has neither sufficient 

distance to bring the vehicle to a complete stop nor sufficient time to proceed safely through the 

stop-line before the onset of red, it causes a dilemma zone situation. The beginning of dilemma 

zone Dbz and the ending of dilemma zone Dez can be calculated using eqs. (6.1) and (6.2). 

 

𝐷𝐷𝑏𝑏𝑏𝑏 = 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 +
𝑉𝑉2

2𝑎𝑎
 (6.1) 

𝐷𝐷𝑒𝑒𝑏𝑏 =Vt (6.2) 

Where   

V initial speed at the start of the flashing light (km/s)  

tPRT perception reaction time for stopping vehicles (s)  

t lead flash time duration (s)  

a deceleration rate for stopping vehicles (m/s2) 

 
 

Theoretically, it is possible to eliminate the dilemma zone with proper signal timing. 

However, because of the stochastic nature of driver behavior some drivers may have issues in 

deciding whether to stop or go when the amber becomes active. For example, they may misjudge 

the distances to the stop-line and choose to stop when they should proceed, they may have 

slower perception-reaction times than the designed value, or their vehicles may lack the 

necessary braking power required.  
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Drivers exhibit distinct differences in their desires or abilities to stop at the onset of the 

amber. Some drivers may stop abruptly, therefore increasing the risk of a rear-end collision. 

Other drivers might proceed through the intersection which increases the risk of red-light 

running and the possibility of a right-angle collisions with vehicles entering the intersection from 

the cross road.  

The potentially negative impact of dilemma zones on the operational capacity and safety 

of signalized intersections, particularly at high-speed locations, has prompted a great deal of 

effort focused on the mitigation of the dilemma zone issue. These mitigation efforts include: 1) 

reducing the likelihood of a driver being located in the dilemma zone at the onset of the amber; 

2) increasing the awareness of the driver that the signal phase will be changing from green to 

amber shortly, thus requiring them to take an appropriate action; or 3) both options 1 and 2 (23). 

Typically, dilemma zone protection at high-speed signalized intersections is provided by the use 

of advanced detection, advance warning flashers, or a combination of both advance detection and 

advance warning flashers. 

6.2 NDOR-defined Dilemma Zone Entrapment with AWS  

AWS has been proven as an effective method to provide dilemma zone protection at 

isolated, high-speed signalized intersections (23). The AWS provides information on whether the 

traffic signal will transition from green to amber, via flashing beacons and warning signs, to 

drivers as they approach a signalized intersection. The goal is to alert drivers to the impending 

end of the green to hopefully reduce indecision and variability in driver behaviors during the 

amber interval. The flashing signal heads are activated at a predetermined time (e.g., lead flash 

time t) before the end of the green interval, which is calculated using eq. (6.3). 
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𝑡𝑡 =
𝐷𝐷𝑀𝑀

𝑉𝑉
 (6.3) 

 

Note that at a signalized intersection operated under semi-actuated control, the major 

road does not have a green extension because there is no advance detector. Therefore, the green 

phase will end at the predetermined regardless of the traffic volume. 

According to the NDOR dilemma zone definition, the beginning of a vehicle’s dilemma 

zone is based on the stopping distance, and the end of the dilemma zone is the stop-line of the 

intersection (1). Because the stopping distance (i.e., the beginning of the dilemma zone Dbz) is a 

function of speed, the speed distribution on the approach is an important design component. 

Vehicles traveling at or above the design speed, up to the practical maximum speed Vm, will 

reach the stop line before the onset of amber and are therefore provided dilemma zone 

protection. The local maximum speed Vm0, at which a slower-moving vehicle (e.g., traveling at a 

speed less than design speed) could travel, is used to define the vehicles that will not reach the 

beginning of its dilemma zone. Assuming a 2 s perception-reaction time and a 10 ft/s2 

deceleration rate, the maximum speed value Vm and the local maximum speed Vm0 can be 

calculated by using eq. (6.4) and eq. (6.5) (1). 

 

𝑉𝑉𝑚𝑚 = −2 ∗ 10 + 2 ∗ √100 + 5 ∗ 𝐷𝐷 (6.4) 

𝑉𝑉𝑚𝑚0 = −10 ∗ (2 + 𝑡𝑡) + �100(2 + 𝑡𝑡)2 + 20𝐷𝐷 (6.5) 

Where D = distance between advance detector and the stop-line (ft)  

       t = lead flash time duration (second)  
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Vehicles traveling at speeds lower than the design speed will not reach the stop-line 

before the onset of amber and may be in a dilemma zone. A slower vehicle would be provided 

dilemma zone protection only if it had not reached the beginning of its dilemma zone by the time 

the amber indication started. Therefore, a vehicle approaching an intersection equipped with 

NDOR AWS devices will be provided dilemma zone protection if it travels at speed V (1), as 

determined by equation 6.6.   

 

V ∈ {0 < V ≤ Vm0 ⋃ V85 ≤ V ≤ Vm} (6.6) 

      Where V85 = the design speed, mph  

             V = vehicle travel speed, mph 

 
 

Vehicles traveling at speeds outside these ranges will not be provided dilemma zone 

protection. That is, they will be traveling in their dilemma zones at the onset of amber. If the 

distribution of speeds as vehicles pass the AWS flasher location at the onset of amber is known, 

and it is assumed the driver continues at their speed, then the probability that a vehicle would be 

in its dilemma zone can be calculated. Assuming that the speed data were approximately 

normally distributed, the expected probability of the dilemma zone entrapment rate PDZ can be 

expressed in eq. (6.7). 

 

PDZ = p(Vm0 <V <V85) (6.7) 
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The estimated DZ entrapment is calculated by assuming that all vehicles at the start of the 

flashing signals maintain their speed at the time the signals begin flashing.  The number of 

vehicles that would be in the DZ at the start of amber are then tabulated.  Results of the DZ 

entrapment rate analysis are shown in table 6.1. 
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Table 6.1 Dilemma zone entrapment rates 

Street Name 

Vehicle at Flasher 
at Onset of Yellow Dist. from 

Flasher to 
Stop-line 
(D) (ft) 

Dilemma 
Zone 
Range 
[0,Dbz] (ft) 

Speed Range with DZ Protection DZ Entrapment 
p(Vm0<V<Vm) 

Mean  
Speed  
(mph) 

Std. 
Dev. 
(mph) 

Lower Range 
(0, Vm0] (mph) 

Upper Range 
[V85, Vm] (mph) 

Expected 
% 

Observed 
% 

Capital SB 34.3 6.77 507 (0, 350) (0, 31] [45, 56] 60.7% 8.8% 

Capital NB 36.3 6.40 495 (0, 350) (0, 30] [45, 56] 73.2% 11.1% 

State St. SB 36.5 8.54 550 (0, 350) (0, 31] [45, 59] 58.0% 14.3% 

State St. NB 37.2 7.24 519 (0, 350) (0, 29] [45, 57] 73.1% 39.1% 

13th St. SB 34.9 8.95 554 (0, 350) (0, 33] [45, 59] 45.5% 12.5% 

13th St. NB 39.8 5.85 535 (0, 350) (0, 32] [45, 58] 72.2% 16.4% 

Faidley SB 40.2 7.88 528 (0, 350) (0, 32] [45, 58] 57.6% 31.2% 

Faidley NB 39.0 6.60 528 (0, 350) (0, 32] [45, 58] 66.2% 23.6% 

Old-Po. SB 35.5 8.02 526 (0, 350) (0, 32] [45, 58] 55.1% 13.7% 
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In general, a lower percent of vehicles in their dilemma zones at the onset of amber 

indicates a higher degree of dilemma zone protection. It may be seen from table 6.1 that the 

observed percentage of vehicles caught in the NDOR-defined DZ were much lower than the 

estimated number based on the vehicle speed of the HD detection. In particular, as shown in the 

comparison of the last two columns, the percentage of vehicles in their dilemma zones when the 

signal changed from green to amber ranged from 8.8% to 39.1%. This was, on average, 81% 

smaller than what would have been expected if the NDOR AWS was not installed. The lower 

than expected number of vehicles in the NDOR-defined dilemma zones at the onset of amber 

indicates that the NDOR AWS devices increased the propensity of drivers to begin to slow down 

when the warning device flashers become active. This is consistent with the speed profile results 

shown in chapter 4, which indicated that drivers upstream of the flasher had a tendency to: 1) 

lower their speeds during the lead flash period, and 2) lower their speeds even more when the 

traffic signal transitioned from green to amber. 

6.3 Driver’s Accelerating/Decelerating Behavior 

The number of drivers who accelerate at the onset of amber has been used as a surrogate 

measure for unsafe behavior because it is linked to red-light running and an increased potential 

for right-angle collisions. A previous study at isolated high-speed signalized intersections in 

Nebraska showed that drivers respond positively to the AWS by slowing down as they approach 

the intersection (24). However, the results of studies conducted by other states (8 and 12) and the 

Federal Highway Administration (25) show that the active advance warning signs may 

encourage drivers to accelerate at the onset of yellow in an attempt to enter the intersection 

before the start of red. 
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6.3.1 Driving Behavior following the Onset of Amber 

Vehicle’s acceleration behavior was examined by studying the average acceleration rates 

at two segments of the approach. The first segment is close to the stop-line. It was important to 

choose a location where queuing vehicles would not be identified by the AD sensor. Therefore, a 

location between 100 ft and 200 ft upstream of the stop-line was chosen for analysis. The second 

segment was chosen so that the AWS flasher location was included. The average acceleration 

rate was calculated using the speed at the beginning and end of each segment and the segment 

length. Figure 6.2 shows the calculation of the acceleration rate for the two segments.  

 

 

Figure 6.2 Illustration of calculating the acceleration rate 

 

Figure 6.2 shows an idealized example. The blue dotted curve in figure 6.2 is a 

hypothesized speed profile over time and distance. The instantaneous speeds at a distance of 600 

ft, 500 ft, 200 ft, and 100 ft are used to calculate the average acceleration rates in the 500-600 ft 

and 100-200 ft segments, respectively. It is assumed that the acceleration rate does not change 

within the segment.  
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The first segment is shown as a red rectangle and the second segment is shown as a dark 

blue rectangle. The x axis on each rectangle represents the time to the stop-line and the y axis 

represents instantaneous speed. The acceleration for the first segment (e.g., a200-100) and the 

acceleration for the second segment (a600-500) are calculated using eq. (6.8) and eq. (6.9), 

respectively. 

 

𝑎𝑎200−100 =
𝑉𝑉200 − 𝑉𝑉100

𝑡𝑡200 − 𝑡𝑡100
 (6.8) 

𝑎𝑎600−500 =
𝑉𝑉600 − 𝑉𝑉500

𝑡𝑡600 − 𝑡𝑡500
 (6.9) 

 

The acceleration rate (a200-100) in the first segment is used to reflect the driver’s 

acceleration behavior in response to the amber signal phase. The acceleration rate in the second 

segment (a600-500) is used to reflect the driver’s acceleration behavior in response to the AWS 

flashers.  

Figure 6.3 (a) and figure 6.3 (b) show drivers’ acceleration distributions at the first 

segment and the second segment, respectively. These figures were developed using data from the 

SB State Street site. It was found that 16.4% of vehicles in the second segment accelerate after 

the onset of amber. This also means that the remaining 83.6% of vehicles decelerate after the 

onset of amber. The percentage of acceleration vehicles in the first segment was comparatively 

smaller at 8.8%.  
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Figure 6.3 Example of the acceleration rate distribution at (a) 600 ft -500 ft, (b) 200 ft -100 ft 

8.8% 

16.4% 

(a) 

(b) 
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Note that for most of vehicles (94%) at this site, their acceleration/deceleration rates in 

the first segment are within ±7 ft/s2. This range is considered a “comfortable” acceleration or 

deceleration rate (24). These results indicate that drivers are complying with the amber signal, 

given the hypothesis that the “uncomfortable” acceleration (i.e., acceleration rate higher than 7 

ft/s2) is more likely to be involved in red-light running events.  

In the same manner, the vehicles’ acceleration behavior at the other 8 sites were also 

analyzed. Table 6.2 shows the total number of cycles analyzed and the percent of vehicles 

conducting acceleration behavior after the start of amber for each site. 
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Table 6.2 Vehicle acceleration rate on start of amber 

Site 
No. 
of 

cyc. 

No. 
of 

veh. 

Acceleration rate a200-100 in the first 
segment (200-100 ft) 

Acceleration rate a600-500 in the 
second segment (600-500 ft) 

Comfortable 
(0<a200-100<7 ft/s2) 

Uncomfortable 
(>7 ft/s2) 

Comfortable 
(0<a600-500<7 ft/s2) 

Uncomfortable 
(>7 ft/s2) 

1 382 916 8.6% 0 6.5% 0 

2 1078 3977 12.0% 2.6% 23.3% 0 

3 1094 3045 8.3% 0.5% 16.4% 0 

4 773 2162 10.8% 0 16.7% 0 

5 438 2746 4.1% 0 12.5% 0 

6 519 1255 3.2% 0 10.7% 0 

7 483 2299 4.1% 0 9.5% 0 

8 1236 4771 5.3% 0 18.9% 0.40% 

9 718 2719 13.8% 1.1% 16.3% 0.20% 

Ave   7.86% 0.47% 14.53% 0.07% 

 
 
 
As can be seen in table 6.2, the ratio of the comfortable deceleration rate in the first and 

second segments can be calculated by (1- a200-100)*100% and (1- a600-500)*100%, respectively. On 

average, 8.32% vehicles accelerated in the 200-100 ft segment. This indicated that about 92% 

vehicles decelerated when close to the stop-line (i.e., 200-100 ft segment).On average, 14.53% 

vehicles accelerated in the 600-500 ft segment. This indicated that about 85% vehicles decelerated 

when passed the AWS (i.e., 600-500 ft segment). 
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6.3.2 Driving Behavior Following the Activation of the AWS Flasher 

In comparison, the deceleration rate after the start of the AWS at the two segments (as 

shown in figure 6.2) for each site was calculated to indicate how the drivers react to the AWS. 

The upstream AD sensor data was used to calculate the deceleration rate in the 500-600 ft 

segment (e.g., where the AWS was located).  

As shown in table 6.3, the majority of vehicles chose to decelerate after the warning signal 

started, and most of the drivers decelerated at a “comfortable” rate. The percentage of vehicles that 

decelerated or maintained their speed after the onset of the AWS ranged from 56.2% to 83.9%, 

with an average of 69.7%. The percentage of vehicles that accelerated after the AWS flashers were 

activated ranged from 4.5% to 20.7%, with an average of 12.5%. Note the rest of the percentage 

(i.e., besides the acceleration and deceleration) indicated the vehicles that kept their speed when 

passing through the AWS. These results correlate well to the entrapment results that indicated 

fewer vehicles were found in the NDOR dilemma zone than would be expected. 
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Table 6.3 Vehicle deceleration rate after start of AWS 

Site Number of 
cycles 

Number of 
vehicles 

Acceleration/Deceleration rate in 600-500 ft 

Deceleration 
(-7<a600-500<0 ft/s2) 

Acceleration 
(0<a600-500<7 ft/s2) 

1 382 916 73.3% 20.7% 

2 1078 3977 83.9% 12.6% 

3 1094 3045 67.2% 19.3% 

4 773 2162 75.4% 14.2% 

5 438 2746 56.2% 4.5% 

6 519 1255 82.1% 13.6% 

7 483 2299 57.9% 5.9% 

8 1236 4771 70.8% 14.4% 

9 718 2719 60.9% 7.3% 

Ave   69.7% 12.5% 

 

 
6.4 Red-Light Running Rates 

Vehicles that enter the intersection at or after the onset of the red signal are defined as 

red-light runners. Red-light running behavior is an indication that the dilemma zone protection 

may not be working. In this study, trajectory data was used to identify red-light runners. The 

steps used are described below, and the logic is shown in the flow chart of figure 6.4. 

Step 1: When the amber starts, vehicle IDs and the trajectories of all the vehicles detected 

by the downstream AD sensor (coverage 0 - 400 ft) are identified.  
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Step 2: These vehicles are tracked in time and distance to the stop-line. At the same time, 

the start of the red phase is identified from the TSPI data (see section 3.1.2). 

Step 3: If a vehicle proceeds through the stop-line prior to the start of red, it is defined as 

a compliant proceeding vehicle. If a vehicle stops at or before the stop-line, it is defined as a 

compliant stopping vehicle.  

Step 4: If the red has started and the vehicle’s speed at the stop-line is greater than a 

predefined threshold, it is identified as a non-compliant proceeding vehicle or a red-light runner. 

If its instantaneous speed is less than the threshold, it is identified as a non-compliant stopping 

vehicle. In this report, the speed threshold is 10 mph. 

 

                                                                   

 

Figure 6.4 Flow chart of determination of red-light running vehicles 
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The percent of vehicles running the red light at each study site is shown in table 6.4. Note 

that the number of total detected vehicles N and the number of red-light running vehicles nr is 

defined in figure 6.4. There are different metrics for measuring red-light running (RLR) activity. 

Three are used in this report and they are described below. 

 

Table 6.4 Vehicle red-light running rates 

Site 
No. of 
Cycles 
(cyc) 

Total 
Detected 
Vehicles N* 
(veh) 

RLR Vehicles 
nr (veh) 

RLR Metric 
1 (%) 

RLR Metric 
2 (cyc/veh) 

RLR Metric 
3 (veh/h) 

1 789 1427 24 1.7 33 1.4 

2 1078 2216 35 1.6 31 1.5 

3 1093 2436 46 1.9 24 1.9 

4 773 1867 30 1.6 26 1.8 

5 838 1743 15 0.9 56 0.8 

6 519 1205 17 1.4 31 1.5 

7 683 1435 29 2.0 24 1.9 

8 572 1133 11 1.0 52 0.9 

9 1093 1930 30 1.6 36 1.3 

* Vehicles located between AWS signal and stop-line at start of red 

 

RLR metric 1: The first metric is the total red-light running vehicles nr divided by the 

total detected vehicles N. This is shown in column 4, and this metric ranges from 0.9% to 2.0%, 
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with an average of 1.5% and a standard deviation of 0.4%. These results indicate that on average, 

1.5 out of 100 drivers who find themselves located between the stopping distance (determined by 

eq. (6.1)) and the stop-line when the signal transitions to amber will choose to run the red-light. 

It is important to note that the total number of vehicles in the NDOR-defined dilemma zone is 

much less than what would be expected with the AWS, as described in section 6.2.  

RLR metric 2: In this metric, the red-light running vehicles nr are divided by the number 

of cycles. It may be seen in column 5 that the value ranges from 24 to 56 cycles per red-light-

running (RLR) vehicle, with an average of 35 cyc/RLR-veh and a standard deviation of 12 

cyc/RLR-veh. These results indicate that, on average, for every 35 cycles there is one red-light 

running vehicle.  

RLR metric 3: In the third metric, the red-light running vehicles nr are divided by the 

period of study time (units in hour). The period of study is found by the product of the number of 

cycles at the intersection, the time per cycle (e.g., 79 s), and the number of the seconds in an 

hour. It was found that the values of the RLR metric 3 ranges from 0.8 to 1.9 vehicles per hour, 

with an average of 1.4 RLR-veh/h and a standard deviation of 0.4 RLR-veh/h. These results 

indicate that, on average, there are 1.4 red-light runners per hour on each approach in the 

corridor. 

The relatively small amount of red-light running vehicles indicates that drivers, in 

general, follow the traffic rules at each site. Because there are fewer vehicles in the NDOR 

defined DZ at the onset of amber, it is hypothesized that RLR is reduced on these approaches. 

However, the only way to test this hypothesis statistically is to conduct a before-after analysis of 

an AWS implementation. 
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6.5 Summary 

In summary, this chapter studied the safety performance of the AWS from three aspects 

of unsafe behavior: 1) the NDOR dilemma zone entrapment, 2) red-light running, and 3) the 

acceleration rate. The NDOR dilemma zone entrapment rates showed that that the percentage of 

vehicles in their dilemma zones when the signal changed from green to amber ranged from 8.8% 

to 39.1%, which was on average 81% smaller than that would have been expected if the NDOR 

AWS was not installed. The lower than expected number of vehicles in their dilemma zones at 

the onset of amber was an indication that the NDOR AWS devices increased the inclination of 

drivers to stop when they saw the warning devices flashing before the onset of amber. 

The accelerating and decelerating behavior toward the amber signal shows that, for most 

of the vehicles (94%), the acceleration/deceleration rates close to the stop-line were within the 

comfortable range (i.e., ±7 ft/s2). On average, 92.1% of the vehicles (with a standard deviation of 

3.9%) decelerated when close to the stop-line after the start of amber. This is a good indication 

of the driver’s complying with the onset of amber, given the hypothesis that the “uncomfortable” 

acceleration (i.e., acceleration rate higher than 7 ft/s2) was more likely to be involved in red-light 

running events.  

The accelerating and decelerating behavior in relation to the activation of the AWS 

shows that the percentage of vehicles that decelerate or maintain their speed after the onset of the 

AWS ranges from 56.2% to 83.9%, with an average of 69.7%. The percentage of vehicles that 

conduct accelerating behavior after the onset of AWS is from 4.5% to 20.7%, with an average of 

12.5%. The majority (82.2%) of vehicles accelerate or decelerate in a “comfortable” manner 

after the start of AWS. 
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The red-light running study showed that the percentage of a red-light running occurrence 

ranges from 0.9% to 2.0%, with an average of 1.5% and a standard deviation of 0.4%. Most of 

the vehicles analyzed were in compliance and stopped safety. The large amount of compliant 

vehicles indicates that vehicles followed the traffic rules in this corridor.  
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Chapter 7 Microsimulation Analysis 

The Federal Highway Administration (FHWA) has suggested microsimulation as a viable 

approach to safety analysis for: 1) new facilities, and 2) in situations where there is not enough 

crash data to allow for reliable statistical analysis. As noted by the FHWA, the use of 

microsimulation circumvents the need to wait for “abnormally high” crashes to actually occur 

and allows assessments of hypothetical alternatives (26).  

This chapter utilized the Surrogate Safety Assessment Model (SSAM), a tool developed 

by the FHWA that combines microsimulation and automated conflict analysis, to assess the 

AWS in Grand Island. SSAM analyzes vehicle trajectory files, produced by microsimulation 

models such as VISSIM, to identify and classify conflict events on the basis of conflict angle and 

a variety of surrogate safety measures, including post-encroachment time and time-to-collision, 

which are considered "valid and reliable precursors of actual crashes" (26). 

7.1 Traffic Microsimulation: VISSIM 

VISSIM is a discrete, stochastic time step-based microscopic traffic simulation model 

with driver-vehicle-units modeled as single entities. It was developed by Planung Transport 

Verkehr (PTV) in Germany. The model consists of two distinct components that communicate 

through an interface. The first component is a traffic simulator that simulates the movement of 

vehicles and generates output. The second component is a signal state generator that determines 

and updates the signal status using detector information from the traffic simulator on a discrete 

time step basis. The input data required for VISSIM includes network geometry, traffic demands, 

phase assignments, signal control timing plans, vehicle speed distributions, and the acceleration 

and deceleration characteristics of vehicles. VISSIM allows the user to model traffic signals 

using different control types, such as pre-timed, an RBC standard signal control emulator (which 
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can operate in fully actuated, coordinated, or semi-actuated coordinated modes), and vehicle 

actuated programming (VAP). The model is also capable of producing measures of effectiveness 

commonly used in the traffic engineering profession, including average delay, queue lengths, and 

fuel emissions (27).  

7.2 Microsimulation Model Development 

The Grand Island network was modeled with and without the presence of the AWS. 

Subsequently, the Grand Island network, with the AWS, is modeled. The AWS is simulated by 

using a yellow flashing signal that is either on or off. The activation follows the NDOR AWS 

logic discussed in chapter 2. Figure 7.1 (a) shows the simulation network after the AWS was 

added. Note that the AWS are included on all locations in the corridor. Figure 7.1 (b) shows a 

screen shot of the northbound Highway 281 of 13th Street. It can be seen that the lead flash of the 

AWS is active and the NB through movement signal is green. The AWS begins to flash 7-8 

seconds before the through movement green indication begins, as shown in table 3.2. The AWS 

flasher will stay active during the red phase of the traffic signal, as shown in figure 7.1 (c). Note 

that modelling on AWS it is not simply a matter of putting a flasher into the network. The 

reaction of the driver to the flasher also needs to be modeled. The AWS is modeled using a 

“binary” speed distribution. When the AWS is inactive, the drivers who “see” the flashers will 

follow one speed distribution, and when it is active they will follow a different speed 

distribution. It is assumed that all the drivers will “see” and react to the AWS when it is active. 

This is accomplished by inputting a speed distribution. When the flasher is activated the drivers 

follow this distribution. The input distribution replicates the observation in the field. 
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Figure 7.1 Simulation model development 
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7.2.1 Traffic Demand Input 

The traffic demand input was obtained from field data and the signal timing plans were 

provided by the public works department of Grand Island. This included phase assignments, the 

maximum and minimum green time allocations per phase, detector length and location, passage 

times, and all detector call options for each intersection along the study corridor. The basic 

information of the simulation input is listed in table 7.1.  

These inputs were first used to model the base situation (i.e., without the actuated 

advance warning system). Secondly, an alternative model with the NDOR AWS system logic, as 

described earlier, was modeled. The results were then compared. 
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Table 7.1 Simulation input of traffic conditions for each intersection 

Category Parameter 

Capital St State St 13th St Faidley St Old Potash St 

Main Rd Cross 
Rd Main Rd Cross 

Rd Main Rd Cross 
Rd Main Rd Cross 

Rd Main Rd Cross 
Rd 

Geometry 

Through/right-
turn lanes 3 1 3 1 3 1 3 1 3 1 

Exclusive left-
turn lanes 1 1 1 1 1 1 1 1 1 1 

Lane width (ft) 12 12 12 12 12 12 12 12 12 12 

Grade (%) 0 0 0 0 0 0 0 0 0 0 

Traffic 

Through + right 
volume (veh/h) 440 374 658 639 817 427 824 352 961 293 

Turning volume 
(%) 7 13 20 14 26 16 24 27 12 25 
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Table 7.2 Simulation input of traffic conditions for each intersection (cont.d) 

 
Approach speed 
(trailer loc.) 
(mph) 

39 - 37 - 40 - 36 - 36 - 

 Heavy vehicles 
(%) 7.7% - 9.1% - 10.2% - 11.7% - 9.0% - 

Pedestrians none none none none none none none none none none 

AWS 

Advance flasher 
location (ft) 

507(SB) 
495(NB) - 550(SB) 

519(NB) - 554(SB) 
535(NB) - 528(SB) 

528(NB) - 526(SB) 
 - 

Lead flash (s) 7 - 8 - 7 - 7 - 7 - 

Signal 

Timing 

Min green (s) 10 10 8 10 10 10 18 15 10 10 

Max green (s) 20 30 20 30 20 30 39 24 27 27 

Yellow (s) 4.5 3.5 4.5 4.0 4.5 4.0 4.5 3.5 4.5 3.5 

All-red (s) 1.5 1.0 1.5 1.0 1.5 1.0 2.0 1.5 2.0 1.5 

Passage time (s) 0 2 0 4 0 3 0 2 0 2 
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In VISSIM, the input of the desired speed distribution is the speed at which vehicles will 

travel when there is little or no impedance. The user first identifies the shape of the speed 

distribution as well as the minimum and maximum speed values. The speed limit for Highway 

281 and the minor approaches are 45 mph and 30 mph, respectively. It was observed that the 

operational speed ranges between 5 mph above and 5 mph below the speed limit. Therefore, a 

range of 40 to 50 mph was used to model for vehicles on the main highway (281), and a range of 

25 to 35 mph was used to model vehicles on the minor approaches. At the location of the AWS, 

another desired speed distribution is modeled to allow for unknown drivers’ responses (whether 

increased or decreased speeds) as identified by McCoy and Pesti. Here, a normal distribution is 

used within the range of 35 to 55 mph and 5 to 10 mph, respectively. 

7.2.2 Signal Timing 

The signal timing for the 5 coordinated intersections are shown in figure 7.2. SG22 

represents the signal group for the northbound AWS timing, and SG 62 represents the signal 

group for the southbound AWS timing. As can be seen, the SG 22 phase and the SG 62 phase are 

programmed to be coordinated with phase 2 (i.e., northbound through movement) and phase 6 

(i.e., southbound through movement), respectively. The AWS flashers are programmed to begin 

flashing 7 to 8 seconds prior to the start of the amber of phase 2 (NB) and phase 6 (SB). The 

AWS flashers are programmed to end simultaneously with the end of phase 2 (NB) and phase 6 

(SB). The signal control logic for the AWS flashers and the signal controllers are coded in 

VisVAP. Details can be found in Appendix D. 
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Figure 7.2 Actuated signal timing for the 5 coordinated intersections 

 

Both VISSIM models (e.g., with AWS active and without) were simulated for 1 hour, 

which included a warm-up period of 10 minutes so that the system could reach steady-state. Each 

alternative was modeled with the same arrival flow pattern, and 20 random seeds were selected 

for each model. The model input and output logic is shown in figure 7.3. 
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Figure 7.3 Simulation model input and output logic 

 

7.2.3 Traffic Volume Output 

A key check of any simulation is to ensure the output matches the observed values. In 

this report, an important metric was the number of vehicles that are processed by the simulation 

system during a specified analysis period. For this study, the number of vehicles of through 

traffic in each simulation was output, and it was compared with the through volumes that were 

input. The goal was to have the difference in input and output be as small as possible. The results 

are shown in table 7.3. As can be seen, the output volumes were very close to the input volumes 

as evident by the fact that their absolute differences range from 0.7% to 5.2%, with an average of 

0.8% and standard deviation of 3.7%. It was concluded that simulation network adequately 

modeled vehicle throughput.  
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Table 7.3 Throughput of traffic volume comparison 

Site Input volume of through traffic 
(veh/h) 

Output volume of through traffic 
(veh/h) 

Diff. 
(veh/h) 

Diff. 
(percent) 

1 447 470 -23 -5.2 

2 369 355 14 3.8 

3 588 559 29 4.9 

4 508 523 -15 -2.9 

5 702 717 -15 -2.1 

6 522 529 -7 -1.3 

7 586 557 29 5.0 

8 673 687 -14 -2.1 

9 749 744 5 0.7 

 
 

7.3 Traffic Conflict Analysis 

The number of traffic conflicts is a common non-accident surrogate safety analysis 

measure. This has been used by highway engineers when direct crash analyses are not 

appropriate. In 1977, Hyden (28) defined traffic conflict as “an observable situation in which two 

or more road users approach each other in space and time to such an extent that there is a risk of 

collision if their movements remained unchanged.” The measure most often used for the severity 

of the traffic conflict between vehicles is time-to-collision (TTC). The smaller the TTC, the more 

severe the conflict.  
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TTC is the projected time for two vehicles to collide if they continue at their present 

speed and stay on the same path. The potential benefits of using the AWS in the test bed can be 

shown by comparing the frequency of conflicts (i.e., TTC counts) and the severity of the 

conflicts (i.e., distribution of TTC) under both the base (i.e., without AWS) and AWS situations. 

The TTC was modeled using FHWA’s SSAM software. The vehicle trajectory output from the 

VISSM simulations were input into SSAM and the conflict metric output. In this chapter, a 

maximum threshold TTC value of 3 seconds is used to identify conflicts that might indicate a 

safety hazard (23). Conflict data and surrogate safety measures for vehicle-to-vehicle interactions 

with less than the user-defined threshold were output and analyzed for all of the nine test sites. 

Only through traffic in the N-S direction was analyzed over the 1-hour simulation period. 

The TTC counts are shown in table 7.4. Based on the conflicting angle of the two 

vehicles, three types of conflict in the SSAM results were examined: rear-end conflict, lane-

change conflict, and crossing conflict.  

 

Table 7.4 Conflict frequency by conflict type 

 All Conflict 
Types Rear-End Lane-Change Crossing 

Without AWS 4405 3674 637 94 

With AWS 2251 1643 562 46 

Percentage 
Reduction 49% 55% 12% 51% 
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It can be seen from table 7.4 that there is a reduction in all the three conflict types when 

the NDOR AWS logic was implemented. On average, there are 55%, 12%, and 51% reductions 

in rear-end, lane-change, and crossing conflicts, respectively, for all nine study sites. This is not 

surprising because the AWS reduces the number of vehicles in the NDOR-defined dilemma zone 

and hence reduces the number of conflicts.  

An alternative way to check the severity of the conflicts in the corridor is to examine the 

distribution of TTC. In general, the smaller the TTC, the more hazardous the conflict. The 

extreme case is that the TTC equals zero when the two subject vehicles collide with each other. 

VISSIM will never simulate a crash, so the TTC will always be greater than zero. Figure 7.4 

shows the TTC distribution for both the AWF inactive regime and the AWF active regime. 

 

 

Figure 7.4 Simulation result of TTC frequency distributions with and without AWS on site 
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The means of the TTC are 2.15 seconds and 2.18 seconds, and the standard deviations of 

the TTC are 0.57 seconds and 0.57 seconds for the AWS inactive and active regimes, 

respectively. As seen in figure 7.4, the frequency of conflict occurrence under the AWS scenario 

is much less than that without the AWS. The frequency distribution (indicated in the histogram) 

shows that there are approximately 50% fewer conflicts when the AWS is implemented in the 

corridor. Moreover, conflict reduction from the AWS inactive regime to the AWS active regime, 

as indicated in the green line in figure 7.4, indicates that the AWS helps to reduce the severity 

conflict (e.g., TTC<1 second). This surrogate measure indicates that, in terms of the number of 

conflicts, AWS helps to reduce the conflict occurrence, which makes the corridor safer.  

7.4 Summary 

This chapter developed a simulation model to study the potential conflicts along the 

Grand Island test bed. The AWS was simulated by using a flash yellow signal. The signal timing 

plan and the actuated signal control logic was coded in VisVAP. The AWS inactive regime was 

compared to the AWS active regime. Traffic conflicts were analyzed using the SSAM software, 

and the TTC was used as the surrogate indicator of safety. 

On average, it was estimated that there were 55%, 12%, and 51% fewer rear-end, lane-

change, and crossing conflicts, respectively, for all nine study sites when the AWS system was 

applied. The frequency distribution also shows an average of an approximate 50% reduction in 

total traffic conflicts when the AWS was implemented in the system. It suggests that having the 

AWS system in place with signal coordination improves safety by removing conflicts. 

  



 

102 

 

Chapter 8 Conclusions and Recommendations 

The objective for this project was to study the cost and benefits of deploying AWS on 

high speed arterials operating in a coordinated mode and to develop guidelines for their 

implementation. The guidelines are used to determine whether to remove the existing AWS at 

corridors or to install AWS at coordinated intersections, and under what conditions they can be 

used.  

Field data was collected by using two Wavetronix ADs and two cameras, for upstream 

and downstream traffic, and one Wavetronix HD. The equipment was mounted on a trailer. The 

advanced sensor detected the speed of the approaching vehicle and tracked it through-out the 

intersection. The camera recorded traffic in case there was a need for verification. The HD 

sensor was used to perform volume and classification of these vehicles. The signal timing was 

recorded by a Raspberry PI sensor system that was located in the traffic cabinet. The intersection 

signal and the AWS flashing time was used to match the time stamp of the data and synchronize 

them. All data was saved on the on-board computer in the trailer cabinet. 

A detailed operational analysis was performed to evaluate the platoon dispersion along 

the coordinated corridor. A detailed safety analysis was conducted using speed profiles. Three 

areas were examined: dilemma zone entrapments, acceleration rates after the AWS system 

becomes active, and red-light running rates. A detailed microsimulation was developed to 

estimate traffic conflicts when: 1) the AWS was active, and 2) the AWS was not active. The data 

included traffic counts and vehicle classification, traffic signals and AWS time stamps, approach 

speed as a function of time and distance, dilemma zone entrapment rates, red light running rates, 

and number of conflicts. 
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The results showed that the safety effect of AWS in a coordinated system is positive. 

These results are specified below.  

1) The dilemma zone entrapment rates show that that the percentage of vehicles in their 

dilemma zones when the signal changed from green to amber was, on average, 81% 

smaller than what would have been expected if the NDOR AWS was not installed. The 

lower than expected number of vehicles in their dilemma zones was an indication that 

the NDOR AWS devices increased the inclination of drivers to stop as they saw the 

AWS flashing before the onset of amber. 

2) The accelerating and decelerating behavior of drivers within 200 feet of the 

intersection during the amber interval showed that 94% of the 

acceleration/deceleration rates were within the comfortable range (i.e., ±7 ft/s2). On 

average, 92.1% of the vehicles (with a standard deviation of 3.9%) decelerated when 

close to the stop-line after the start of amber. This was a good indication of the 

vehicle’s compliance with the onset of amber, given the hypothesis that the 

“uncomfortable” acceleration (i.e., acceleration rate higher than 7 ft/s2) was more 

likely to be involved in red-light running events.  

3) The red-light running study shows that the percentage of red-light running occurrence 

is from 0.9% to 2.0%, with an average of 1.5% and a standard deviation of 0.4%. Most 

of the vehicles chose to stop and did so in a safe and legal manner. The large amount 

of compliant vehicles indicates that drivers follow the traffic rules at each site. It is 

hypothesized that the AWS lead to the low red-light running rates. 

4) The conflict analysis results from the simulation showed that, on average, there are 

55%, 12%, and 51% lower rear-end, lane-change, and crossing conflicts, respectively, 
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for all nine study sites when the AWS system was applied. The frequency distribution 

also showed an average of about a 50% reduction in the total traffic conflict when the 

AWS was included in the system. This surrogate measure indicates that the AWS 

helped to reduce the number of severity conflicts. It is hypothesized that having an 

AWS system in a corridor with signal coordination improves safety. It is unclear how 

these results would translate geographically (e.g., New York or California). 

Based on the analyses of the results, it is determined that AWS has a positive effect on 

safety in the US 281 corridor and should be considered at other high-speed signalized 

intersections or corridors.  

The guidelines regarding installation or removal of the NDOR AWS on the state highway 

system should be in accordance with the NDOR previous report by McCoy and Pesti in 2002 (1). 

However, because the installation of the AWS should be site specific, a simulation study at the 

site would be beneficial.  
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Appendix A: Green Time at Each Site 
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Appendix B: Vehicle Speed at Each Site 
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Appendix C: Vehicle Classification at Each Site 
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Appendix D: AWS Signal Programming (VisVAP) 

PROGRAM W_Faidley_St_and_Hwy_281; /* take Faidley intersection as an example */ 

VAP_FREQUENCY 1; 

CONST  

offset = 0, 

 Leadflash = 7; 

ARRAY  

tamber[ 8 ] = [3.0, 4.5, 3.0, 3.5, 3.0, 4.5, 3.0, 3.5], 

RedClear[ 8 ] = [0, 2.0, 0, 1.5, 0, 2.0, 0, 1.5], 

MinGreen[ 8 ] = [5, 18, 0, 15, 5, 18, 0, 15], 

MaxGreen[ 8 ] = [5, 34, 0, 20, 8, 34, 0, 20], 

forceoff[ 8 ] = [73.5, 34, 0, 60.5, 73.5, 34, 0, 60.5], 

Recall[ 8 ] = [0, 1, 0, 0, 0, 1, 0, 0], 

Passage[ 8 ] = [1.0, 0, 0, 2, 1.0, 0, 1, 2], 

SUBROUTINE master_clock; /* .\master_clock.vv */ 

D01S00Z002: t_actual:=t-offset; 

D01S04Z002: IF t_actual<0 THEN 

D01S05Z002: t_actual:=t_actual+tc 

      END; 

D01S00Z004: IF t_actual=tc THEN 

D01S04Z004: t_actual:=0 

      END  
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D01PROG_ENDE: . 

/* PARAMETERS DEPENDENT ON SCJ-PROGRAM */  

/* EXPRESSIONS */  

      call1 := presence(1) or occupancy(1); 

      call2 := recall[2]; 

      call3 := presence(3) or occupancy(3); 

      call4 := presence(4) or occupancy(4) or callped4; 

      call5 := presence(5) or occupancy(5); 

      call6 := recall[6]; 

      call7 := presence(7) or occupancy(7); 

      call8 := presence(8) or occupancy(8) or callped4; 

      call15 := call1 or call5; 

      call26 := call2 or call6; 

      call37 := call3 or call7; 

      call48 := call4 or call8; 

      gapout1 := headway(1)>Passage[1]; 

      gapout3 := headway(3)>passage[3]; 

      gapout4 := headway(4)>Passage[4]; 

      gapout5 := headway(5)>Passage[5]; 

      gapout7 := headway(7)>Passage[7]; 

      gapout8 := headway(8)>passage[8]; 

      minover1 := t_green(1)>=minGreen[1]; 

      minover3 := t_green(3)>=minGreen[3];  
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      minover4 := t_green(4)>=minGreen[4]; 

      minover5 := t_green(5)>=minGreen[5]; 

      minover7 := t_green(7)>=minGreen[7]; 

      minover8 := t_green(8)>=minGreen[8]; 

      maxout1 := t_green(1)>=maxGreen[1]; 

      maxout2 := t_green(2)>=maxGreen[2]; 

      maxout3 := t_green(3)>=maxGreen[3]; 

      maxout4 := t_green(4)>=maxGreen[4]; 

      maxout5 := t_green(5)>=maxGreen[5]; 

      maxout6 := t_green(6)>=maxGreen[6]; 

      maxout7 := t_green(7)>=maxGreen[7]; 

      maxout8 := t_green(8)>=maxGreen[8]; 

      minover15 := Minover1 and Minover5; 

      minover48 := Minover4 and Minover8; 

      minover37 := Minover3 and Minover7; 

      gapout15 := Gapout1 and Gapout5; 

      gapout48 := Gapout4 and Gapout8; 

      gapout37 := Gapout3 and Gapout7; 

      maxout15 := Maxout1 and Maxout5; 

      maxout26 := Maxout2 and Maxout6; 

      maxout48 := Maxout4 and Maxout8; 

      maxout37 := Maxout3 and Maxout7;  
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          callPed4 := presence(104) or occupancy (104) or presence(108)  

                    or occupancy(108); 

      minoverPed2 := (t_green(102)>=Pedwalk[1]) or (t_green(106)>=Pedwalk[3]); 

      minoverPed4 := (t_green(104)>=Pedwalk[2]) or (t_green(108)>=Pedwalk[4]); 

      MaxtoFlash2 := (t_actual>=forceoff[2]-Leadflash-tamber[2]-RedClear[2]) and  

    (t_actual<=forceoff[2]-Leadflash-tamber[2]-RedClear[2]+1); 

      MaxtoFlash6 := (t_actual>=forceoff[6]-Leadflash-tamber[6]-RedClear[6]) and  

    (t_actual<=forceoff[6]-Leadflash-tamber[6]-RedClear[6]+1); 

      MaxtoFlash26 := MaxtoFlash2 and MaxtoFlash6; 

/*----------------------------------------------------------------------------*/ 

/* MAIN PROGRAM */  

S00Z002:  IF initial=0 THEN 

S03Z002:  set_sg_direct(22, off); set_sg_direct(62, off);initial:=1 

   END; 

S00Z004:  GOSUB master_clock; 

S00Z013:  IF t_green(1) and t_green(5) THEN 

S03Z013:  IF call26 and minover15 and (gapout15 or maxout15) THEN 

S04Z013:  sg_red(1); sg_red(5); start(Phase5ClearTimer); NextRing1Phase:=2; 

          NextRing2Phase:=6 

        END 

   END; 

S00Z015:  IF t_green(2) and t_green(6) THEN 

S01Z015:  IF MaxtoFlash26 THEN  
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S02Z015:  set_sg_direct(22,amber_f);set_sg_direct(62,amber_f); start(Flasher26Timer); 

S03Z015:  IF call37 and maxout26 THEN 

S04Z015:  set_sg_direct(22,amber_f);set_sg_direct(62,amber_f); 

    start(Phase26ClearTimer); NextRing1Phase:=3;NextRing2Phase:=7 

          ELSE 

S03Z017:  IF call48 and maxout26 and (Ped2Active=0) THEN 

S04Z017:  set_sg_direct(22,amber_f);set_sg_direct(62,amber_f); 

    start(Phase26ClearTimer); NextRing1Phase:=4;NextRing2Phase:=8 

          ELSE 

S03Z019:  IF call15 and maxout26 and (Ped2Active=0) THEN 

S04Z019:  set_sg_direct(22,amber_f);set_sg_direct(62,amber_f); 

    start(Phase26ClearTimer); NextRing1Phase:=1;NextRing2Phase:=5 

          END 

        END 

       END 

     END 

   END; 

S00Z021:  IF Flasher26Timer = LeadFlash THEN 

S01Z021:  stop(Flasher26Timer);reset(Flasher26Timer); sg_red(2); sg_red(6) 

   END; 

S00Z023:  IF t_green(3) and t_green(7) THEN 

S03Z023:  IF call48 and minover37 and (gapout37 or maxout37) THEN 

S04Z023:  sg_red(3); sg_red(7); start(Phase7ClearTimer);NextRing1Phase:=4;  
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    NextRing2Phase:=8 

          ELSE 

S03Z025:  IF call15 and minover37 and (gapout37 or maxout37) THEN 

S04Z025:  sg_red(3); sg_red(7); start(Phase7ClearTimer);NextRing1Phase:=1; 

    NextRing2Phase:=5 

          ELSE 

S03Z027:  IF call26 and minover37 and (gapout37 or maxout37) THEN 

S04Z027:  sg_red(3); sg_red(7); start(Phase7ClearTimer);NextRing1Phase:=2; 

    NextRing2Phase:=6 

          END 

        END 

      END 

   END; 

S00Z029:  IF t_green(4) and t_green(8) THEN 

S03Z029:  IF call15 and minover48 and (gapout48 or maxout48) THEN 

S04Z029:  sg_red(4);sg_red(8); start(Phase48ClearTimer);NextRing1Phase:=1; 

    NextRing2Phase:=5 

          ELSE 

S03Z031:  IF call26 and minover48 and (gapout48 or maxout48) THEN 

S04Z031:  sg_red(4);sg_red(8); start(Phase48ClearTimer);NextRing1Phase:=2; 

    NextRing2Phase:=6 

          END 

       END  
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   END; 

S00Z034:  IF Phase5ClearTimer>=tAmber[5]+RedClear[5] THEN 

S03Z034:  IF (NextRing2Phase=6) or (NextRing1Phase=2) THEN 

S04Z034:  sg_green(2); sg_green(6);stop(Phase5ClearTimer);reset(Phase5ClearTimer); 

    set_sg_direct(22, off); set_sg_direct(62, off); 

S05Z034:  sg_green(102);sg_green(106);Ped2Active:=1 

          END 

   END; 

S00Z036:  IF Phase26ClearTimer>=tAmber[2]+RedClear[2] THEN 

S03Z036:  IF (NextRing1Phase=3) and (NextRing2Phase=7) THEN 

S04Z036:  sg_green(3);sg_green(7);stop(Phase26ClearTimer); 

          reset(Phase26ClearTimer) 

          ELSE 

S03Z038:  IF (NextRing1Phase=4) and (NextRing2Phase=8) THEN 

S04Z038:  sg_green(4);sg_green(8);stop(Phase26ClearTimer); 

    reset(Phase26ClearTimer); 

S05Z038:  IF CallPed4 THEN 

S06Z038:  sg_green(104);sg_green(108) 

          END 

          ELSE 

S03Z040:  IF (NextRing1Phase=1) and (NextRing2Phase=5) THEN 

S04Z040:  sg_green(1);sg_green(5);stop(Phase26ClearTimer); 

    reset(Phase26ClearTimer)  
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         END 

        END 

      END 

   END; 

S00Z042:  IF Phase7ClearTimer>=tAmber[7]+RedClear[7] THEN 

S03Z042:  IF (NextRing1Phase=4) and (NextRing2Phase=8) THEN 

S04Z042:  sg_green(4);sg_green(8);stop(Phase7ClearTimer);reset(Phase7ClearTimer); 

S05Z042:  IF CallPed4 THEN 

S06Z042:  sg_green(104);sg_green(108) 

          END 

          ELSE 

S03Z044:   IF (NextRing1Phase=1) and (NextRing2Phase=5) THEN 

S04Z044:   sg_green(1);sg_green(5);stop(Phase7ClearTimer);reset(Phase7ClearTimer) 

           ELSE 

S03Z046:   IF (NextRing1Phase=2) and (NextRing2Phase=6) THEN 

S04Z046:   sg_green(2);sg_green(6);stop(Phase7ClearTimer);reset(Phase7ClearTimer); 

     set_sg_direct(22, off); set_sg_direct(62, off); 

S05Z046:   sg_green(102);sg_green(106);Ped2Active:=1 

           END 

         END 

      END 

   END; 

S00Z048:  IF Phase48ClearTimer>=tAmber[8]+RedClear[8] THEN  
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S03Z048:  IF (NextRing1Phase=1) and (NextRing2Phase=5) THEN 

S04Z048:  sg_green(1);sg_green(5);stop(Phase48ClearTimer); 

    reset(Phase48ClearTimer) 

          ELSE 

S03Z050:   IF (NextRing1Phase=2) and (NextRing2Phase=6) THEN 

S04Z050:   sg_green(2);sg_green(6);stop(Phase48ClearTimer); 

     reset(Phase48ClearTimer); set_sg_direct(22, off); set_sg_direct(62, off); 

S05Z050:   sg_green(102);sg_green(106) 

           END 

         END 

        END 

PROG_ENDE:  . 

/*----------------------------------------------------------------------------*/ 
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