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EXECUTIVE SUMMARY

CONCRETE PAVEMENT JOINT
DETERIORATION

Introduction

Concrete pavements are an important part of our national

infrastructure. In recent years the number of reported joints

deteriorating prematurely in concrete pavements around Indiana

has increased. Changes over the past 45 years in INDOT

specifications, pavement materials and design, construction

practices, and deicing materials were examined and related to

the durability of concrete at the joints of existing pavements.

Cores were retrieved and examined from the joints and mid-

panel of 11 pavement sections that represented different materials,

ages, construction, deicer exposure, and levels of deterioration,

from non-deteriorated concrete to concrete with severe deteriora-

tion at the joints.

Findings

Several variables were identified that influence the durability of

concrete at the joints: use of fly ash, joint sealer type, saw cut

configurations, water-to-cementitious ratio (w/cm), 7-day flexural

strength acceptance criteria, minimum cement content, tie bar

spacing and size, target percentage air, and minimum percentage

air before failure.

The physical properties and chemistry of cements have changed

over the years. The fineness has increased for INDOT cements as

well as cements used across the country.

N The amount of C3S has increased, while the amount of C2S

has decreased.

N Since 1954, the 1-day through 28-day strengths have all

increased; the 1-day and 3-day strengths have increased the

most dramatically, resulting in increased early-age rate of

strength gains.

N The 7-day strength values have been the most consistent

across all cements examined since 1990.

N The increase in both fineness and C3S have contributed to

the dramatic increase in 1-day and 3-day strengths but also

can contribute to higher amounts of CH in the concrete.

N The sulfates also have increased to counteract set problems

that can occur with finer cements and more readily available

aluminates.

A survey of concrete pavements across Indiana revealed that no

pavements less than 40 years old from the two southern districts

showed this distress, except in more recently placed patches. These

districts not only experience a less harsh freeze-thaw (FT)

environment but also use lower amounts of deicers. Other

evidence from field and laboratory analysis of existing concrete

pavements includes the following:

N The pavement base drained well at the mid-panel of most

pavements but was reduced at the joints for over half the

pavements, with the most severe joint deterioration asso-

ciated with the slowest drainage.

N None of the concrete had a measured air void system that

met all the criteria recommended for FT durable concrete,

but the air void systems were better at the mid-panel than at

the joints. Infilling and lining of the entrained air voids with

ettringite and some Friedel’s salt was more common near the

joints and could account for the reduced air void system. The

FT testing did not correlate directly with the air void

parameters, but generally mid-panel samples did test as more

durable than joints.

N The presence of unhydrated cement grains suggested that the

concrete at the joint face was not always fully cured.

N One pavement section that did not have fly ash had worse

deterioration than the panels nearby that had fly ash.

N Calcium hydroxide was more noticeable in the concrete from

joints with severe deterioration.

In summary, this study identified that one or more of the

following variables likely influenced the durability of the con-

crete at the joints examined: the drainability of the base at the

joints, original air void system, reduced air void parameters due

to lining and infilling of the air voids with secondary minerals,

compromised hydration of the concrete at the joint face, increased

moisture at the joint.

Implementation

Steps to consider that could reduce the potential for concrete to

deteriorate at the joint include the following:

N Fly ash or other SCM that provides additional silica as part

of the cementitious mixture can help convert CH into CSH,

which is especially critical if the cement has a higher C3S:C2S

ratio—common in modern cements. Many modern cements

are more susceptible to higher heats of hydration. SCMs that

reduce the heat of hydration are especially valuable when

concrete is placed during high ambient temperatures.

N Sealing of joints without a backer rod may reduce the

amount of moisture held at the joint face that contributes to

the concrete reaching the critical saturation level that renders

it susceptible to FT damage. Treating the joint face with a

silane or other penetrating waterproof sealer soon after

sawing may improve the curing of the concrete at the joint

face, making the concrete more durable, and may reduce the

potential of the concrete to become critically saturated

throughout the life of the joint.

N The air void system is commonly reduced in older pavements.

Adopting practices that give an excellent original air void

system is valuable, encouraging spacing factors and specific

surface that are much better than marginal. These para-

meters are critical to long-term durability of concrete

exposed to a harsh FT environment and deicers. A balance

between optimal air for long-term durability and meeting

early strengths requirements needs to be considered.

N Ensuring the hydraulic conductivity of the base is adequate,

especially at the joints, and remains good throughout the life

of the pavement.

In existing pavements, steps that reduce the amount of mois-

ture at the joint will likely reduce the potential for or rate of

concrete deterioration at the joint. Practices recommended by

other researchers that are applicable include removing the backer

rod and sealing the joint face with a silane, siloxane, or other

penetrating waterproofing sealer.
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1. INTRODUCTION

1.1 Background

Concrete pavements are an important part of our
national transportation system providing long-term
high quality reliable structures. However, in recent
years the number of reported joints deteriorating
prematurely in concrete pavements around Indiana
has increased. The deterioration manifests itself as
spalling, crumbling and erosion of concrete in the joint
area, primarily along the longitudinal saw cut joints.
Previous INDOT sponsored research projects attribu-
ted damage to excessive moisture at the damaged joints,
in-filling of the air void system with secondary hydra-
tion products and higher rates of absorption all of
which lead to critical saturation and low freeze-thaw
durability. These issues have been described in the
previous JTRP report (Arribas-Colón, Radliński, Olek,
& Whiting, 2012). In addition, factors such as poor
drainage of the sub-base, enhanced saturation in the
presence of deicing chemicals, abundance of unhy-
drated cement grains within 5 mm of the sawn joint face
(suggesting poor curing at the joint face), failure to
develop or to sufficiently open the crack under the
saw cut and entrapment of water under partially dama-
ged sealer in the joint also were observed but not
thoroughly evaluated as to if or how they may have
contributed to the accelerated damage (Arribas-Colón
et al., 2012). In summary, the previous study made it
clear that the observed damage of the joints is a result
of several combined factors but it did not yield
information to allow for a comprehensive explanation
of all processes leading to the observed deterioration.

The Portland Cement Association (PCA) promotes
recommendations for satisfactory air void system
parameters needed for adequate freeze-thaw (FT)
durability, citing work by Powers from 1954 and 1965
(Kosmatka, Kerkhoff, & Panarese, 2002). Studies
completed in more recent years by other researchers
and agencies that may relate to concrete deterioration
similar to that examined in this study suggests that
deicers may play a role (Sutter et al., 2008) and the
concrete deterioration at the joints may be related to
freezing and thawing and an inadequate or compro-
mised air void system. The 2006 FHWA Report HRT-
06-117, Freeze-Thaw Resistance of Concrete With
Marginal Air Content (Tanesi & Meineinger, 2006)
suggested that consistent and good freeze-thaw (FT)
resistance may be achieved with the air entraining
admixture (AEA) vinsol resin at 3.5% air content and
higher. However the one synthetic air entraining agent
(AEA) tested did not produce similarly good results at
similar total air contents.

Kanga, Hansena, and Borgnakke (2012) showed
field concrete with less than 6% total air but had
other air void parameters consider acceptable (spacing
factors ,200 microns [,0.008 in.] and specific surface
.24.5 mm-1 [.600 in-1]) did not exhibit concrete
deterioration at the joint. As shown in this study and
previous projects (Arribas-Colón et al., 2012) very few

pavements examined had existing air void systems that
met all the criteria PCA recommends for FT durability.
Perhaps the air void system parameters that are adequate
for FT durability need to be reviewed considering the
changes and advances in mix designs, cementitious mat-
erials, air entraining admixtures and deicers.

1.2 Research Objectives

Several factors may contribute to the increased
occurrence of early joint deterioration. The focus of
this Concrete Pavement Joint Deterioration study was
to examine the changes that have taken place over the
past 45 years in the type and properties of pavement
materials, in the design and construction practices, and
in the type and usage of deicers, and then link these
changes with conditions of existing pavements with a
focus on the presence or absence of deterioration at the
joint. The ultimate goal was to identify the influence of
local materials, practices and specifications on the
durability of joints.

1.3 Scope of Work

This study identified several changes in concrete
pavement materials, designs, construction practices,
deicing practices and INDOT specifications and esta-
blished a timeline for many of these changes. Pavement
sections were identified that reflect the use of different
practices and materials, field observations were made,
cores retrieved from selected pavements, and concrete
examined both megascopically and microscopically.
Samples cut from several cores were subjected to freeze-
thaw cycles, tested for permeability and the air void
systems analyzed. Test results, observations and col-
lected information were analyzed and compared to the
condition of the concrete, both at the joint and mid-
panel.

In addition, a laboratory study was initiated to
examine the influence of changing temperature, satura-
tion level and air content of hardened concrete on the
bulk conductivity of concrete specimens in order to
evaluate the potential utility of the bulk conductivity
test for identifying properties of existing concrete.
Electrical testing is relatively easy to perform and quick
to complete. Therefore, a laboratory study was initia-
ted with a goal to develop a method to differentiate
between deteriorated and well-performing joint cores
using electrical resistivity/conductivity measurements.
The influence of changing temperature, saturation level,
and air content of hardened concrete on bulk con-
ductivity of concrete was studied. However, additional
work is needed to correlate the conductivity of concrete
with the potential for it experiencing deterioration.
SPR-3623 (Variability Analysis of the Bulk Resistivity
Measured Using Concrete Cylinders) and SPR-3509
(Early Detection of Joint Distress in Portland Cement
Concrete Pavements) have additional information on the
electrical testing of concrete which could help develop
standardized testing procedure in the future.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02 1



2. HISTORICAL PERSPECTIVE

To better understand how concrete pavement joint
performance related to differences in materials, design,
environment and construction practices specific con-
struction records and materials information are needed.
Unfortunately these records and information were not
available for INDOT pavements. Since the year built
usually was known some assumptions could be made
based on the prevailing INDOT specifications, and
materials and practices common at the time of cons-
truction. Therefore the changes in INDOT specifica-
tions with time were thoroughly reviewed, as were
changes in cement chemistry and deicers used. Exam-
ining changes in other materials such as fly ash and
admixtures were beyond the scope of this study.

2.1 INDOT Specifications and Construction Practices

Changes in construction practices were not documen-
ted but many changes in practices were reflected in
changes in INDOT’s specifications. The INDOT Stan
dard Specifications books from 1952 through 2012 were
reviewed, and specification changes related to concrete
pavement mixtures and joints were documented by
industry Study Advisory Committee (SAC) members
Mike Byers (American Concrete Pavement Association,
ACPA) and Chris Tull (consultant; president of CRT
Consulting). Table 2.1 summarizes these findings.

Some of the significant changes that may relate to
joint durability include:

N 1985: First mention of the use of fly ash (FA) as supple-
mentary cementitious material

N 1988: First mention of silicone joint sealer being used
N 1995: Double saw cut at the transverse contraction joints

(T-jt) introduced
N 1995: QA option established for PCCP mixtures and

construction which included:

- Reducing the water-to-cementitious ratio (w/cm) to
# 0.45,

- Setting the acceptance criteria of 7-day flexural
strength $ 570 psi

- Reducing the minimum cement content to 440 lbs/yd3

N 1999: Single saw cut for longitudinal joints (L-jt), tie bar
spacing of 39 and the tie bar size adjusted for pavement
thickness were established

N 2006: Target % air increased to 5.7%–8.9% and the depth
of saw cut for both T-jt and L-jt sawn joints became T/3
(1/3 of the pavement thickness). (Note: L-jt depth of saw
cut changed to T/3 in 2005. For a period of time the saw
cut for the L-jt was cut deeper than the saw cut of the T-jt
(T/3 vs. T/4 respectively) encouraging water to drain
from the T-jt into the L-jt.)

N 2012: Minimum % air before failure raised; tie bar size
decreased for thicker slabs

2.2 Changes in Cement

The chemistry, fineness and strength development of
cements have changed over the years in response to

both changes in technology and demands for earlier higher
strengths. Users and contractors could strip forms earlier
and get on slabs sooner with earlier higher strengths
thereby increasing productivity. Three publications pro-
vided average cement properties from over a hundred
plants across the US from years 1953–54 (Clifton &
Mathey, 1971), 1994 (Gebhardt, 1995) and 2004 (Tennis &
Bhatty, 2005). The published data for Type I cements were
compared to data from the Mill Certificates on file at
INDOT for two Type 1 cements commonly used for
concrete pavements in Indiana from 1990–2010. INDOT
Cement A refers to the Lehigh Mitchell plant and cement
B refers to the Lonestar/Buzzi Greencastle plant.

2.2.1 Fineness

Generally, for a given chemistry, the finer the cement
the more quickly it reacts and the higher the rate of
strength gain (Neville, 1997). Both the national studies
and the INDOT data show that the average fineness of
cement, measured as Blaine (cm2/g), has increased over
the years (as shown in Figure 2.1). However, the range
and variability of fineness values has decreased since
1954 (as shown in Table 2.2). Over the years examined,
cement A had a higher Blaine than cement B, and the
fineness of cement A was more similar to the national
averages. Overall both INDOT cements fell within the
range of values measured nationwide.

2.2.2 Strength

Reported strength test data for cements are based on
compressive strength tests of 20 mortar cubes per-
formed in accordance with ASTM C 109. As shown in
Figure 2.2, the average compressive strengths for ages
1-day through 28-day have increased for cements pro-
duced in 1994 and 2004 compared to those produced in
1953–54 (Clifton & Mathey, 1971; Gebhardt, 1995;
Tennis & Bhatty, 2005).

The rate of the strength gain has changed over the
years as shown in the slope of the lines in Figure 2.2 and
more specifically as change in psi per day in Figure 2.3.
The early strength gain between day 1 and day 3 shows
the most dramatic change with a significant increase over
the years. Whereas the rate of strength change between
3 and 7 days, and between 7 and 28 days has actually
decreased over the years. Therefore the higher 28-day
strengths seen in more recent years can be attributed to
the higher rate of strength gained in the first 3 days.

The strengths reported for INDOT cements A and B
from 1990 to 2010 also have increased compared to the
national averages from 1953–54 (as shown in Figure
2.4). Comparing INDOT cement A with B, the strength
results for A are more consistent throughout the years
examined. The slight decrease in the 1-day strength with
time for cement A while 3-day strengths remain steady
suggests that the rate of strength gain from 1 to 3 days
has increased. Similar to the trend in fineness, cement
A strength data also appears more similar to the
national data than cement B data.
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The early-age strengths increased for cement B over
the 20-year time span examined, going from the lowest
1-day and 3-day strengths in the early 1990s to the
highest reported values in 2010. The 7-day strengths
reported for 1990–2010 were all very similar for all data
examined. The 28-day strength data fluctuate slightly
for cement A but are similar to the national data,
whereas the 28-day strengths for cement B appear to
decrease with time.

2.2.3 Chemistry

The cement chemistry can influence concrete proper-
ties such as strength and rate of strength gain.
Generally dicalcium silicate (C2S) hydrates more slowly
than the tricalcium silicate (C3S) therefore increased
C3S can contribute to higher early strengths. The
national trend from 1954 to 2004 showed a decrease for
the amount of C2S, while the amount of C3S increased
(as shown in Figure 2.5). There was a slight decrease in
C3A between 1994 and 2004 with little change measured
in C4AF (Clifton & Mathey, 1971; Gebhardt, 1995;
Tennis & Bhatty, 2005). The same amount of water is
needed to hydrate C2S and C3S but C3S produces twice
as much calcium hydroxide (CH) then that formed
when C2S hydrates (Neville, 1997). (The implications of
this are discussed further in Section 2.4.)

The changes in C2S and C3S in INDOT cements A
and B since 1990 is not as clear of a trend as the average
national data (as shown in Figure 2.6 and Figure 2.7).
There is a distinct trend of decreasing C2S for INDOT
cement A, and the amount of C2S in INDOT Cement B is
lower in 2010 than previous years examined. Although
the values for C3S vary with time both INDOT cements
had lower C3S content in 1990 than in 2010.

Figure 2.1 Blaine fineness of cements over the years.

TABLE 2.2
Average Blaine fineness values published for cements for years
1953–54, 1994 and 2004.

Blaine cm2/g from National Publications

1953–54 1994 2004

Mean 3316 3694 3840

STD 262 256 193

N 97 70 52

Max 4390 4210

Min 2880 3000

Figure 2.2 Average compressive strength development for
cements from years 1953–54, 1994 and 2004.

Figure 2.3 Changes of the rate of strength gain over the years
of cements nationwide.

4 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02



The sulfate content of cements also increased by
nearly twice as much in the 50 years, from an average of
1.88% in 1954 to 3.26% in 2004 (as shown in Figure 2.8).
This is not surprising because the cement fineness

(Blaine) also increased over that time period, and as
the fineness increases the C3A becomes more readily
available for early hydration and the amount of sulfate
required to retard this quick hydration process and

Figure 2.4 Strength data for INDOT cements A and B at 1, 3, 7 and 28 days.

Figure 2.5 Average values for potential cement phase
composition (from published data). Figure 2.6 Changes in cement C2S over time.
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avoid flash set increases (Neville, 1997). (The implica-
tions of this are discussed further in Section 2.4.) The
slight decrease in C3A in the more recent data also may
be in response to the increased fineness in an effort to
offset increased availability of C3A (see Appendix A
for more details). The sulfate content in Cements A

and B varied with time but there is a general trend of
increased sulfates from 1990 to 2010 with values in
more recent years similar to each other and to the
national average value. Figure A.1 (Appendix A)
shows a correlation between increased fineness and
increased percent sulfates.

2.3 Deicing Practices

The amount and types of deicers used by INDOT
varies throughout the state. Information on the
amounts and type of deicers used on a given pavement
are not recorded, but usage within each district is
available. A breakdown of usage from 2008–2010 by
the six districts and subdistricts across Indiana are
shown in Figure 2.9. (See figure legend for how the
units of measure differ for different deicers). Additional
deicer details are provided in Appendix A, Table A.5.

The primary deicer, by a very large margin, for all
districts is sodium chloride (NaCl) primarily as a solid
but also as a brine. The other deicers used included
calcium chloride (CaCl) both solid and as a liquid
solution, magnesium chloride (as a liquid solution) and
a commercial product called Ice Ban. The amount that
INDOT used of each of these deicers from 2008 to 2010
is given in Table 2.3.

It’s not surprising that the northern districts of LaPorte
and Fort Wayne, which generally have harsher, longer
winters, had some of the highest deicer usages. Vincennes,
the southern-most district used the least amount of
deicers. Several details about deicer use are not recorded,
such as (1) how much of what is used for anti-icing that
may not become diluted if the storm event does not
develop and (2) how much of which deicer is used on any
particular pavement or pavement section. Information
such as these would provide insight on how the deicers are
affecting the concrete in the field and the pavement
sections chosen to examine more closely.

Figure 2.7 Changes in cement C3S over time.

Figure 2.8 Changes in cement sulfate content over time.

Figure 2.9 Summary of type and amount of deicer use by INDOT districts, 2008–2010. (Note: The unit of measures varies for
different deicers. To compare solid to liquid NaCl, it could be estimated that a STN (ton) of NaCl can make nearly 1000 gals of
brine. To develop this estimate the following assumptions and information from Wikipedia were used: brine can hold as much as
26% by weight NaCl at 0uC, brine has a density of 1.164 that of water if it contains 22% by weight NaCl; a ton of water is
240 gallons.)
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2.4 Summary and Discussion

Published national cement data and the information
from the mill certificates on file at INDOT that were
examined all show that the cement fineness, strength
and chemistry have changed over the years. The
fineness, measured as Blaine has increased for both
the INDOT cements and cements across the country.
The 1-day through 28-day strengths all have increased
since 1954 as have the early-age rate of strength gains.
The 7-day strengths appear to be the most consistent
values across all cements examined since 1990.

The increase in both Blaine and C3S contributes to
the increase in 1-day and 3-day strengths since 1954.
These changes in cement production are likely in
response, at least in part, to demands from the concrete
industry to increase production and reduce construc-
tion costs. The sulfates also have increased since 1954 to
avoid set problems that can occur with finer cements
and more readily available aluminates (Neville, 1997).

Some possible side-effects of these physical and
chemical changes in cements to consider include:

N Increased development of early heat of hydration that
could make it more susceptible to problems if concreting
in high ambient temperatures

N Increased CH in the hardened concrete
N Increased sulfates in the hardened cements

N Reduced aluminates

Although increased CH in hardened concrete has
been associated with long-term durability concerns,
silicates from supplementary cementitious materials
(SCM) such as fly ash and slag can combine with CH
to form additional CSH (calcium silica hydrates) con-
tributing to long-term strength and durability (Neville,
1997). Therefore the use of SCMs are especially val-
uable with modern cements in reducing the CH and
increasing the CSH in the concrete and contributing to
long-term durability.

Increased availability of sulfates can contribute to
the formation of ettringite at inappropriate times dur-
ing the life of the concrete. Although sulfate attack as
ettringite forming in the cement paste matrix is not a
common problem in pavement concrete, infilling of the
concrete air void system with ettringite is common.
Cracks can allow for increased ingress of fluids that can
both change the pH and increase the transport of

chemical constituents that can then be redeposited as
secondary minerals, such ettringite in air voids.

Deicing salts can increase the moisture content
of concrete leading to a higher level of saturation and
susceptibility to freeze-thaw distress (Jones et al.,
2013). Therefore the higher use of deicers combined
with the exposure to more freeze-thaw cycles in the
northern INDOT districts likely contribute to an
increased susceptibility of concrete to freeze-thaw
distress.

3. PAVEMENT SELECTION AND TESTING

3.1 Pavement Selection

Several concrete pavements were identified through-
out Indiana by INDOT districts, the Study Advisory
Committee (SAC) and the project team, and are listed
in Table 3.1. Most of these pavements exhibited
deterioration at the joints but some of them were
reviewed as potential examples of non-deteriorated
pavements. The project team visited all the concrete
pavements that were under consideration. Where traffic
allowed the team stopped to examine each pavement
section more closely (i.e., non-interstate pavements).
Photo-logs of these site visits were created from which
the coring sites were selected by the project team and
the SAC. The criteria considered for selecting the
pavements to core included those representing concrete
placed under various specifications, of different ages,
exposed to different deicing chemicals, with joints
showing various degrees of deterioration, with different
joint sealers, placed on different subbase, with some
construction or mix design information, with and
without fly ash and accessible to the core rig.

Much of the construction and mix design informa-
tion were not available for most of the pavements. The
INDOT districts were surveyed to collect additional
information which yielded a small amount of accurate
data. A copy of the ‘‘State-wide Highway Planning
Survey-Road Life Log’’ provided by the Seymour
District (S) provided year built, location, pavement
type and some configuration information for pavements
being considered from that district (see Figure 3.1 for an
example). The construction date was stamped on many
of the Greenfield District pavements built from 1990.
Between the records available and pavement site visits

TABLE 2.3
Deicers used by INDOT districts for 2008, 2009 and 2010.

NaCl Brine

(gal)

NaCl

(STN)

MgCl

(gal)

IceBan

(gal)

CaCl

(lb)

CaCl

(gal)

LaPorte 2,340,280 307,817 0 66,176 0 9,556

Ft Wayne 173,819 239,619 0 0 5,680 501,715

Crawfordsville 705,154 192,723 92684 0 0 31,180

Greenfield 1,378,046 238,858 0 0 34 132,145

Seymour 2,293,198 151,851 14175 0 0 0

Vincennes 1,002,716 118,640 3500 0 17,835 142,092

Total 7,893,212 1,249,508 110,359 66,176 23,549 816,687

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02 7



TABLE 3.1
List of concrete pavements considered for further examination.

Pavement Year Built Comments Cored

LaPorte District
SR 933 South Bend ,1998?a Cored and examined under SPR-3016 3016
I-94 Michigan City 1998-99a Cored and examined under SPR-3016 3016
I-65 Merrillville, RP 248–256 12/01–11/02b Minor D at T and L-jt (N of US 31)
US 421 & SR 2 (MB) ?? T-jt and L-jt show D
US 421 near I-90 ,45 yrs old District Survey Report

Fort Wayne District
I-469 ??
SR 19 Elkhart ??

Greenfield District
SR 38 New Castle near 25th St 8/15/90 EB no D, WB moderately severe D X
SR 38 New Castle near Reddingdale Dr 6/14/90 Moderate D X
SR 3 New Castle, RP 112–114 Older than1987 D common L-jt, patching every ,5 yrs X
SR 3 New Castle, RP 115–117 1994 No D, good drainage X
US 35, SR 28 & SR 3, N of Muncie 2003 Minor D X
US 35 and Eaton St, near STA 170 ,35 ft panels w/ mid-panel cracks
Memorial Dr Muncie, IN ?? Probably D-cracking (near US 35 / SR 3)

Indianapolis

W 86th St near Payne Rd , 1998?a Cored and examined under SPR-3016 3016
SR 67 ramp to EB lane of I-465 , 1998?a Cored and examined under SPR-3016 3016
I-65 and MLK Dr , 1998?a Cored and examined under SPR-3016 3016
I-65 and I-70 RP 112.4–110-8 SB 1970s Moderately severe L and T-jts
I-70 and Ameriplex Pkwy August 2004b WB, some minor D, other problems
I-465 Beltway (S to E)

I-465 and 56th St 2003–04b NB some D; SB little to no D
I-465 & I-70 2003–04b No D
I-465 & Washington 1998a No D
I-465 & US 52 2000b NB some D, SB no D
I-465 & I-74 2001b NB no D, SB significant D at CL
I-465 & Emerson to I-74 1999b No D
I-465 & I-65 (¡RP 106) 1995–96a No D
I-465 & US 31 1998a WB no D, EB significant D at L-jts

Town of Fishers, IN 1999–2005b INDOT Specifications followed
116th St, Phase 1, Fishers, IN 1999–2000b Faulted, low steel, joints OK
116th St, Phase 2, Fishers, IN 2003b EB some L-jt D, WB good, no D X
116th St, Phase 3, Fishers, IN 2004b WB w/ L and T-jt D, EB good, no D X
116th St, Phase 4, Fishers, IN 2005b EB some D, WB no D, good
Allisonville Rd, Phase 1 2001–02b SB late season pour (D), NB no D X
Allisonville Rd, Phases 2–3 2005+a Good except some hand poured areas
126th St EB 1997a Good but replacing

LaPorte District
SR 933 South Bend ,1998?a Cored and examined under SPR-3016 3016
I-94 Michigan City 1998–99a Cored and examined under SPR-3016 3016
I-65 Merrillville, RP 248–256 12/01–11/02b Minor D at T and L-jt (N of US 31)
US 421 & SR 2 (MB) ?? T-jt and L-jt show D
US 421 near I-90 ,45 yrs old District Survey Report

Seymour District
US 421, Madison, RP 0.73–0.99 1969 Slight to moderate D X
SR 60, Clarksville, RP 60.33–61.3 2002b No D (good)
SR 250, Uniontown, RP 13.6–13.9 1960 Vlittle D, but some patches X
SR 56 (RP 139.96–139.47) ‘‘Older’’ Heavily patched, probably D-cracked,

difficult location to core
US 50, Seymour, RP 104.4–105.6 1960 Patched, some D at some L-jt only X
US 31, Seymour, RP 45.8–46.27 ?? Vlittle D, some sm patches cracked

a1995–1998 Specs.
b1999–2005 Specs.

D 5 joint deterioration.

L-jt 5 longitudinal joint.

T-jt 5 transverse joint.

Vlittle 5 very little.

‘‘3016’’ refers to cores taken under SPR-3016 and results published in Arribas-Colón et al. (2012).
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information such as year built, pavement thickness,
joint spacing, pavement type and joint sealer were
collected. Information available for pavements exam-

ined in the Town of Fishers was provided by CRT (C.
Tull, personal communication, 2011). A summary of
this information is shown in Figure 3.2.

Figure 3.1 Pavement record provided for section of US 250 selected for coring (highlighted).

Figure 3.2 Summary of Town of Fishers pavement information provided by consultant (C. Tull, personal communication, 2011).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02 9



Information not available was inferred based on the
prevailing specification at the time of construction. As
shown in Table 3.2 pavements were identified and
selected to represent all major specification changes
from 1960 to early 2000s. The pavements cored from
Fishers represent concrete from 116th St, Phases 2
and 3. Both phases showed deterioration at the joints in
one direction but not the other. Phase 2 was built with
vinsol resin air entraining admixture (AEA) and Phase 3
was built with a synthetic AEA (MicroAir). The third
section chosen for coring in Fishers was Allisonville Rd,
Phase 1. This pavement showed deterioration only in the
southbound (SB) lanes which was a fly ash mix poured
late in the construction season during a snowfall.

The pavements selected for coring and further
examination are presented in Table 3.2 alongside a
summary of the concrete pavement specifications that
were in place at the time of construction.

3.2 Database Development

A database was developed with the intention of
documenting the pavement locations examined in this
study and related information collected and develo-
ped. The concept was to provide a database with basic
information so that queries and sorts could be performed
such as looking for all concrete pavements that have air
void analysis data, or all pavements constructed with fly
ash before 1990. Links would be provided to any reports
and test results related to cores taken from specific
pavement locations. This was to be an active database so
that all pavements and information collected under this
project could be easily accessed at any future time, as well
as information from previous projects and information
from future projects added. The database would include
mapping capabilities so that all pavement locations
included in the database could be located whenever
needed using precise latitude and longitude information.
Pavement sections included in this database would
appear on a map that had a hot link to the data.

Hotlinks to examples of these pages are as follows:

N Basic pavement locations and field information report
page ‘‘Road Test’’: http://rebar.ecn.purdue.edu/jb/google/
survey_form1.aspx

N Test results and specific core locations: http://rebar.ecn.
purdue.edu/roadtest/coretestresults.aspx?corelocation5

N Maps of pavement locations: http://rebar.ecn.purdue.
edu/roadtest/roadtest.html#

An example of the database Pavement Map is shown
in Figure 3.3. Examples of the Pavement Location
Information pages and the Core Test Results pages are
shown in Appendix B.

These pages are available for populating with data
and use, however the forms and process are somewhat
clumsily and incomplete. It is recommended that a
more complete and easy to use database be developed
and maintained so that the information developed from
this and other projects can be combined in searches and
easily accessed for many years to come.

3.3 Coring and Sampling

A total of 55 cores were retrieved from the pavement
sections identified for sampling as shown in Table 3.3.
Cores were retrieved from locations that showed
deterioration at the joints and whenever possible, from
nearby locations that showed no or noticeably less
deterioration at the joints. A minimum of two 60

diameter cores were taken from each location, one at
the longitudinal joint and one near the mid-span of that
same panel. If there was a visible difference in the
pavement condition at the transverse joint then a core
was taken at the transverse joint as well. After the core
was removed additional in-place pavement conditions
were examined including: pavement condition with
depth; the condition of the saw cut, joint and joint
sealer; and a rate of drainage or lack of drainage of the
drilling water from the core hole. Figure 3.4 and Figure
C.1 (Appendix C) explain how the unique core
identifier describes the location of the core. On rare
occasions, cores were obtained from patched concrete
and/or vibrator trails. These cores were labeled P and V
for patched concrete and vibrator trail respectively.

3.4 Test Specimens and Concrete Tests

Cores were photographed, examined megascopically
and features noted such as aggregate type, base type,
condition of joint face and joint sealer, cracks and
pavement thickness. Several cores were cut and sec-
tioned into specimens for testing and further micro-
scopic examination.

3.4.1 Lab Test

Permeability and FT resistance of select pavement
specimens were measured. Permeability was measured

Figure 3.3 Example of the Database Pavement Locations Map.
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using ASTM C1202 Rapid Chloride Permeability Test,
and FT resistance was measured using cyclical freez-
ing and thawing similar to ASTM C666 Procedure A
(freeze and thaw in water) except test specimens were
40 diameter by 10 thick disks instead of the recom-
mended prisms.

3.4.2 Microscopic Examination

Optical microscopy. The hardened air void system
was characterized using ASTM C457 Modified Point
Count Method using 75x magnifications. Further ana-
lysis included microscopic examination of the polished
slab at magnifications up to 120X. Additional infor-
mation collected included, infilling of air voids, exis-
tence and location of microcracks.

Scanning Electron Microscope (SEM). Select speci-
mens were examined under the Scanning Elect-
ron Microscope (SEM). The purpose of this task was
to determine more detailed features of the concrete and
identify any structural or chemical changes to the paste.
Some features observed included the presence of fly ash,
the degree of unhydrated cement, infilling of the air voids
and composition of infilling, deposition of secondary
minerals in the paste, presence of chlorides, microcracks,

dissolution/leaching, carbonation, mineralogy of the coarse
aggregate, and aggregate or paste distress.

4. TEST RESULTS AND ANALYSIS

4.1 Field and Megascopic Observations

Different degrees of deterioration were observed
during the detailed visits to 21 pavement sites. For this
report the different degrees of joint deterioration were
classified into five levels of severity: (a) sound joints with
no deterioration, (b) minor deterioration, (c) moderate
deterioration, (d) moderately severe deterioration and
(e) severe deterioration. Photographs showing examples
of these degrees of deterioration are shown in Figures C.2
through C.6, Appendix C.

The 11 pavement sections cored represent over
40 years of concrete paving in Indiana, from 1960 to
2004. These pavements were selected with the expectation
that they represent the design, materials, construction
practices and INDOT specifications for concrete pave-
ments that were prevalent at the time of construction.

Table 4.1 summarizes some of the pavement char-
acteristics identified during the field site visits and
megascopic examinations of the cores. Although the
coarse aggregates (CA) were primarily quarried carbo-
nate aggregates three pavements had gravel as the

TABLE 3.3
Lists of core locations.

Core Locations Deteriorated Joint

Non/less Deteriorated

Joint Core ID Comments

Greenfield (G)

US 35 near SR 3 A, C, D E, F, Z G-US35

SR 38 and Reddingdale Dr, A, C, D E, F, Z G-SR38-R

SR 38 near 25th St A, C, D E G-SR38-25

SR 3, New Castle, RP 113–115 A, C, D G-US3-113 S of SR 38,

SR 3 New Castle, RP 115–117 E, F, Z G-US3-115 N of SR 38

Seymour (S)

US 421, Madison, RP 0.73–0.99 A, C, D E, F, Z, V S-US421

US 50, Seymour C, D, PC, PD F, Z S-US50

SR 250, near I-65 & Uniontown A, C, D E, F, Z S-SR250

Fishers (F)

116th St, Phase 2 C, D F, Z F-116-P2

116th St, Phase 3 A, C, D E, F, D F-116-P3

Allisonville Rd, Phase 1 C, D F, Z F-AV-P1

Figure 3.4 Core locations reference used in the identifier nomenclature.
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coarse aggregate, all built in the early 1990s. The
surface of the three pavements that were built between
1980 and 1990 were pock-marked with pop-outs, two had
a gravel CA and one had a quarried carbonate CA. Pop-
outs suggest the aggregate had some sensitivity to expan-
sion caused by moisture and/or freezing and thawing.

The oldest pavements examined in this study were
two pavements built in 1960 in the Seymour District.
These oldest pavements were unique in that both were
the only jointed reinforced concrete pavements (JRCP)
examined, and the only pavement that used hot pour as
the joint sealer (no backer-rod) (as shown in Table 4.2).
Although maintenance has been required over the years
it appears to be more related to mid-panel cracks
and the long panel lengths. The original joints in these
50+ year old pavements appear to have only minor to
moderate degrees of deterioration, whereas the joints in
some of the more recent patches are in worse shape
than the original older concrete (as shown in Figure 4.1.)
Additional photographs and descriptions of the Seymour
District pavements can be found in Appendix C.

Drainage of the subbase was estimated by observing
the rate at which the water drained from the core hole
after drilling (as shown in Figure 4.2). Therefore this
qualitative drainage is more a measure of the base
capacity to move water through and does not reflect the
ability of the joint to move water.

All pavements were built on some type of granular
base and therefore expected to have adequate drainage.
However the rate that the drilling water drained varied
greatly from pavement to pavement and often varied
from joint compared to mid-panel in the same panel.
Occasionally the drainage could not be observed
because of limited traffic control and safety reasons.

There appears to be a link between how drainable the
base is and the degree of joint deterioration observed,
although it is not a one-to-one correlation (as shown in
Figure 4.3). Based on the 12 pavement sections in which
drainage information was collected the following was
observed:

N 10 of the pavement sections had good drainage at the
mid-panel.

N Only 5 pavement sections had good drainage at the joints.
N All 6 pavements with no or minor joint deterioration had

moderate to good drainage at joints (as highlighted with
a red circle in Figure 4.3).

N All 3 pavements with moderately slow to slow drainage
at the joints had moderate to severe joint deterioration
(as highlighted by a blue circle in Figure 4.3).

N Some pavements (3) that had moderate joint deteriora-
tion still had good drainage at the joints.

The drainage of the base is slower at the joints than at
the mid-panel for half the pavements examined. It is
uncertain what initially caused the base to drain slower at
some joints, whether the joint deterioration contributed to
slowing the drainage or the slower drainage contributed to
increased joint deterioration. It is apparent that the
pavements with the slowest drainage had the worst joint
deterioration suggesting that the phenomena are related.

It is easy to imagine that as the concrete at a joint
deteriorates it may allow more debris to wash through
the joint and into the base contributing fines that may
reduce the hydraulic conductivity of the base. Whereas,
if the drainability of the base decreases then the amount
of moisture retained in the concrete at the joint may
increase enabling the concrete to more readily reach a
state of supersaturation rendering it more susceptible to
FT distress. Further work is needed to better under-
stand the initiating mechanism(s) and exactly how and
under what conditions the joint deterioration and base
drainage relate in order to devise better strategies for
maintenance, mitigation and building durable joints.

4.2 Optical Microscopy and Air Void Analysis

ASTM C457-2012 (Standard Test Method for
Microscopical Determination of Parameters of the Air-
Void System in Hardened Concrete) were followed using
a reflective light stereo microscope set at 75X magni-
fication to determine the total air content, spacing
factor and specific surface area. Although INDOT

TABLE 4.1
Summary of megascopic pavement characteristics.

Core ID Designator Yr Built Pvmt Thickness (in) CA Type

CA Top

Size (in)

Saw Cut

(in) Joint Sealer Comments

G-SR38-R 1990 10.5 Gravel 1 Si w/br Pop-outs

G-SR38-25 1990 10.5 Gravel 1 Si w/br Pop-outs

G-SR3-113 Pre-1987 9 Qcarb 1.5 2.5 Si w/br Pop-outs

G-SR3-115 1994 10.5 Gravel 1.5 2.5 Si w/br Mid-panel cracks

common

G-US35 2003 12.2 Qcarb Si w/br

S-US421 1969/1996? 12.75 Qcarb 1 3.5 Si w/br

S-US50 1960 Qcarb 2.5 Hot pour

S-SR250 1960 Qcarb Hot pour

F-116-P2 2003 Si w/br

F-116-P3 2004 Si w/br

F-AV-P1 2001-02 Si w/br

Qcarb 5 quarried carbonate.

Si w/br 5 silcone w/backer rod.
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specifications for total air content has changed over the
years, the pavements cored from the Greenfield District
were built under the specification that required 5% to
8% air in the plastic concrete at the time of placement.
The Portland Cement Association (PCA) suggests that
concrete pavements exposed to extreme freeze-thaw
environments should have an entrained air system with
a spacing factor of #0.008 in and a specific surface of
$600 in2/in3 (Kosmatka et al., 2002). However, at this
time there is no easy, accurate method to measure these
parameters in fresh concrete at the time of placement.
Measurements of the hardened air void system after
years of service (aka existing air void system) may show
reduced air void parameters compared to what the ‘‘as
constructed’’ air void system was, due to infilling of
secondary minerals.

As examined, the concrete from the 15 cores tested,
had an existing air systems that did not satisfy all three
criteria recommended for freeze-thaw durability (as
shown in Table 4.3). Comparing the air void para-
meters in the all cores for each pavement the following
observations were made:

N US 35 showed an unexpected trend. Even though the
total percentage of measured air was low in every core

(ranging from 2.5% to 4.3%), all met or nearly met the

specific surface criteria. Oddly the only concrete with an

acceptable spacing factor was from a deteriorated joint

showing minor deterioration.

N SR38-R panels without deteriorated joints had a better

measured air void system than the panels with deterio-

rated joints. All cores had at least one parameter that

passed the criteria. As expected, considering the higher

Figure 4.2 Drainage from the core holes during drilling varied greatly, from good (left) to moderate (center) to slow (right).

Figure 4.1 US 50 pavement in Seymour District showing original 1960 pavement and more recent patches.

Figure 4.3 Comparing drainage of the base at the joint to concrete deterioration at the joint.
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potential for water ingress and subsequent infilling of
voids near the joint, better spacing factors were observed
at mid-panel cores then at joints.

N SR38-25 panel with less deterioration at the joints had a
better measured air void system than the panel with
deteriorated joints but neither were good.

N SR3 panels had measured air void systems parameters that
were similar in panels with and without joint deterioration
and none met the given criteria for durable concrete.

N In any given panel the mid-panel core had a better measured
air void system than that of the core(s) taken at the joint(s).

4.3 Scanning Electron Microscopy

A scanning electron microscope (SEM) equipped
with energy dispersive x-ray (EDX) capabilities was
used to examine the concrete microstructure. Small
concrete samples (1 in3) that represent different depths
from the pavement surface were cut from the cores and
polished. Table 4.4, Table 4.5, Table 4.6, and Table 4.7
summarize different features such as fly ash, and the
occurrence of Friedel’s salt, ettringite, and unhydrated
cement particles that were detected during SEM analysis
of samples taken from these Greenfield District cores.

US35 samples contained fly ash, which was not
surprising since it was built in 2004 when specifications
allowed for the regular use of fly ash in concrete
pavements. Friedel’s salt, a calcium chloroaluminate
was observed in mid-panel cores up to 20 deep and in
joint cores up to 50 deep (as shown in Figure 4.4)
(concrete below 50 was not examined). Many air voids
were filled with ettringite (as shown in Figure 4.5) and
the degree of infilling increased with depth from the
pavement surface. Ettringite was more prevalent in
joint cores compared to mid-panel cores suggesting

increased saturation and movement of moisture in the
concrete at the joints.

SR38-R concrete samples from the relatively less
deteriorated joints contained fly ash, but no fly ash was
detected in cores extracted from the panel exhibiting
more deterioration at the joints. Similar to what was
observed for US35 core samples, the amount of
ettringite lining and filling the air voids in the concrete
from SR 38 also increased with depth, with the infill-
ing more predominant for joint cores than mid panel
cores. Also, a higher degree of infilling was observed
for deteriorated joint core without fly ash (SR38-R-C)
compared to concrete from well performing joints that
contained fly ash (SR38-R-E). Friedel’s salt was detec-
ted up to a depth of 50 for joint cores but only up to 20

for cores obtained from mid-panel locations. The
amount of Friedel’s salt detected in the joint cores
was generally constant from 00 to 30 from the top of the
pavement which related to the saw cut depth. The
amount of Friedel’s salt then decreased gradually with
increasing depth. Figure 4.6 shows a Friedel’s salt
deposit in the sample obtained from SR 38.

SR38-25 concrete exhibited increased ettringite infill-
ing air voids with depth from the pavement surface,
similar to the pattern found in US35 and SR38-R con-
crete cores. Also, a higher degree of infilling was obser-
ved for joint cores compared to mid panel cores. The
chlorides, detected primarily as Friedel’s salt, were
encountered less frequently with depth. Another inter-
esting trend observed in the SR38-25 samples was that
calcium hydroxide (CH) deposits were encountered
more frequently with depth. For example, greater
amounts of CH were seen in sample C–4 compared to
C–3 and E–3 had more CH deposits than E–1 (again
samples ranged from depths of 0 to 40).

Figure 4.4 Friedel’s salt. The arrow on the left image points
to the area that is shown on the right at higher magnification.
The arrow on the right points to the area scanned for the
elemental analysis.

Figure 4.5 Ettringite infilling the air voids.
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SR3 cores were analyzed using SEM, and similar to
what was observed in samples from US 35 and SR 38,
the amount of ettringite observed lining and filling
the air voids increased with depth and was more pro-
minent in concrete near the joint (SR3-E) compared
to mid panel core (SR3-Z). Friedel’s salt was detected
in samples obtained from the top 20 of the cores only

and more abundant near the joint. Fly ash was
detected in the newer concrete placed in 1994 (SR3-
115) as well as the older concrete placed prior to 1987
(SR3-113). Of the parameters examined, the older age
of the concrete, and therefore exposure to more
freezing and thawing cycles at SR3-113 compared to
SR3-115 may be a key reason for the more severe joint

TABLE 4.4
SEM analysis results for US35 cores.

Core Distancea Joint Unhydrated Cementb Fly Ash Ettringite Infilling Air Voids Chloridesc

C 0–1 Yes H Yes * H

1–2 M * L

3–4 VL ** L

4–5 VL **** VL

D 0–1 No VL Yes * NA

1–2 VL * VL

3–4 VL *** NA

E 0–1 Yes M Yes * H

1–2 M * H

3–4 VL *** L

4–5 VL **** L

F 0–1 Yes M Yes * H

1–2 M * H

3–4 VL **** L

4–5 VL **** VL

Z 0–1 No VL Yes * VL

1–2 VL * VL

3–4 VL *** NA

aDistance of the sample from the top of the pavement surface (in inches).
bFrequency at which the feature is encountered; VL: very low; L: low; M: moderate; H: high; VH: very high.
cChlorides detected as Friedel’s salt and chlorides bound to CSH.

Ettringite infilling air voids: *Vlow-none; **low: ***moderate; ****high.

TABLE 4.5
SEM analysis results for SR38-R cores.

Core Distancea Joint Unhydrated Cementb Fly Ash Ettringite Infilling Air Voids Chloridesc

R-C 0–1 Yes H N ** H

1–2 H *** H

3–4 VL **** M

4–5 VL **** L

R-D 0–1 No L N * L

1–2 VL ** M

3–4 VL **** NA

R-E 0–1 Yes H Y * H

1–2 M ** VH

3–4 VL **** M

4–5 VL **** L

R-Z 0–1 No VL Y * L

1–2 VL ** M

3–4 VL *** NA

aDistance of the sample from the top of the pavement surface (in inches).
bFrequency at which the feature is encountered; VL: very low; L: low; M: moderate; H: high; VH: very high.
cChlorides detected as Friedel’s salt and chlorides bound to CSH.

Ettringite infilling air voids: *Vlow-none; **low: ***moderate; ****high.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02 19



deterioration since air void parameters and SEM
results were comparable.

Summarizing the SEM analysis for all cores exam-
ined, the degree of ettringite lining and filling the air
voids increased with depth from the top of the pave-
ment surface to approximately 50 below the surface.
A higher degree of infilling of air voids was observed in
the joint cores compared to mid panel cores. The
unhydrated cement grains were more common near
the joint face within the top 20 of the pavement sur-
face. Unhydrated cement grains in hardened concrete
relate to poor curing. The low occurrence of unhy-
drated cement grains near the pavement surface in
mid-panel cores suggests that the curing of the bulk
of the concrete was adequate. Yet less than opti-
mum curing of the concrete in the top 20 of the joint
face appears to be a common problem (as shown in
Tables 4.4 and 4.5).

4.4 Freeze-Thaw Durability

Freeze-thaw (FT) testing was performed on 40

diameter by 10 thick disks using a FT cycling method
similar to ASTM C 666-2003 procedure A (freeze and
thaw in water). One disk was extracted from the
mid panel core, and two disks were obtained from the
joint core whenever possible; one sample as close to
the joint face as practical (FT1) and one approxima-
tely an inch away from the joint face (FT 2) (as shown
in Figure 4.7). The procedure described in ASTM
C597-2009 was followed to measure the dynamic
modulus of elasticity using ultrasonic pulse velocity.
The percentage reduction in elastic modulus (after 328
freeze-thaw cycles) or the number of freeze-thaw cycles
to failure (if the sample broke before completion of 328
cycles) are reported in Table 4.3.

Of the cores tested from US 35 only the sample from
the mid-panel of the panel with more deteriorated joints

TABLE 4.6
SEM analysis results for SR38-25 cores.

Core Distancea Joint Unhydrated Cementb Fly Ash Ettringite Infilling Air Voids Chloridesc

25-A 1–2 Yes VL Yes *** M

2–3 VL **** M

25-C 0–1 Yes L Yes * M

1–2 VL *** H

3–4 VL **** L

4–5 VL **** VL

25-D 0–1 No VL Yes * M

4–5 VL *** VL

25-E 0–1 Yes VL Yes ** H

1–2 VL *** H

3–4 VL **** M

aDistance of the sample from the top of the pavement surface (in inches).
bFrequency at which the feature is encountered; VL: very low; L: low; M: moderate; H: high; VH: very high.
cChlorides detected as Friedel’s salt and chlorides bound to CSH.

Ettringite infilling air voids: *Vlow-none; **low: ***moderate; ****high.

TABLE 4.7
SEM analysis results for SR3 cores.

Core Distancea Joint Unhydrated Cementb Fly Ash Ettringite Infilling Air Voids Chloridesc

113-D 0–1 No VL Yes * L

5–6 VL *** L

115-E 0–1 Yes VL Yes * M

1–2 VL *** H

5–6 VL **** L

115-Z 0–1 No VL Yes * L

1–2 VL ** L

5–6 VL *** VL

aDistance of the sample from the top of the pavement surface (in inches).
bFrequency at which the feature is encountered; VL: very low; L: low; M: moderate; H: high; VH: very high.
cChlorides detected as Friedel’s salt and chlorides bound to CSH.

Ettringite infilling air voids: *Vlow-none; **low: ***moderate; ****high.
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failed (US35-D). All other samples tested from US 35
showed a reduction in modulus of elasticity that
averaged 35% and ranged from 16.7% to 42.6% (as
shown in Table 4.3). Although marginal, the freeze-
thaw test results from all US 35 concrete tested are
relatively similar, as are the air void parameters. The
exception, core D (mid panel core) that failed after
exposure to 189 cycles, had cracks that often ran
through the aggregates, suggesting that some of the
aggregates in the sample tested may have been FT
susceptible (even though the concrete was placed in
2003, after the AP specifications for the highest quality,
FT durable aggregates were in place).

Although the air void parameters in SR38-R were
better than those measured in SR38-25 both sections
performed similarly in the FT test. All samples extrac-
ted from joint cores from both locations along SR 38
failed before reaching 300 FT cycles, whereas the two
samples tested from mid-panel cores did not fail but
showed a reduction in modulus of 28% and 42%. These
test results suggest that the concrete at the joints in this
pavement are more susceptible to FT deterioration.

The freeze-thaw results for both deteriorated and
non-deteriorated locations along SR 3 were similar.
Even though the measured air void system did not meet
any of the criteria for FT durability the mid-panel
samples did not fail, but showed approximately 30%

reduction in modulus of elasticity. All samples tested
from the joint cores failed before completing 100 freeze-
thaw cycles. The samples extracted from cores that
appeared to be non-deteriorated joints also showed
poor FT resistance implying that there is potential for
future FT damage.

It may be argued that the FT testing of 10 thick slices
of concrete is a harsh test that may not replicate the
field conditions of pavements, however results might be

considered indicators of potential response to long-term
exposure to severe freezing and thawing.

In summary, the mid-panel cores generally per-
formed better than joint cores. Of the eight joint cores
that had two samples tested, five of the FT1 samples
closest to the joint face failed sooner, or had a higher
reduction in modulus than the samples slightly further
from the joint face (FT2). The three cores in which FT1
had similar or better performance than FT2 were all
from better performing joints. This observation sup-
ports the microscopic analyses and field observations
that deterioration is worse, or perhaps starting at the
joint face. Examinations and tests also suggest that
many of the joints which seem to be performing well in
the field might be susceptible to freeze-thaw deteriora-
tion in the future based on the air void analysis, SEM
examinations and freeze-thaw test results.

4.5 Recommendations for the Greenfield District

Summarizing all the test results for pavements
examined in the Greenfield District it is apparent that
the newer pavements are showing less deterioration at
the joints. For the newest pavement, US 35 built in
2003, there were only minor differences in both surface
appearance and test results for panels with ‘‘deterio-
rated’’ compared to ‘‘less deteriorated’’ joints. Concrete
from the joints were fairly similar to mid-panel samples
as well. The subbase still had good drainage at all core
holes. The air void system was marginal but considering
only minor distress and infilling of the air voids were
observed rehabilitation may be beneficial. Removing
the backer rod and sealing the joint faces with a silane
or other water resistance sealer could prevent these
joints from deteriorating further and may add several
years to the pavement life.

The next youngest pavement, SR3-115 built in 1994
does not show signs of deterioration yet, but test results
suggest that this pavement may be prone to joint
deterioration. As with US 35, this section of SR3-115
may benefit from removing the backer rod and sealing
the joint faces with a silane or other water resistance
sealer. This minor amount of rehabilitation could
prevent these joints from deteriorating, or greatly
reduce the rate of deterioration, and may extend the
pavement life.

Both sections of SR 38 examined were built in 1990.
However, based on testing, examinations and field
observations the section of pavement near the intersec-
tion of Reddingdale Dr (SR38-R) is performing better
than the section near 25th St (SR38-25). It is likely that
removing the backer rod and sealing the joint faces with

Figure 4.7 Location of freeze-thaw samples for joint cores.

Figure 4.6 Friedel’s salt deposit in crack.
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a silane or other water resistance sealer could prevent
or at least slow the rate of further deterioration at
the joints, especially in the pavement near Reddingdale
Dr (SR38-R) and in the joints near SR38-25 in the EB
lane. Because of the advance state of deterioration in
the WB lanes near SR38-25 and the decreased rate of
drainage of the base, the benefit of rehab may be more
limited.

The oldest pavement examined in the Greenfield
District, SR3-113, built prior to 1987, is showing some
of the worst deterioration. The aggregate is a quarried
carbonate rock and may not be AP quality. Consi-
dering the field observations, test results and the slow
drainage at the joints, any rehab work is expected to
provide only marginal improvements to the overall
pavement life.

4.6 Recommendations for Cores Taken from Seymour
District and Fishers

Existing cores taken from Seymour District and
Town of Fishers are available. Detailed petrographic
examination of these cores may provide additional
valuable information. Some of the questions that could
be investigated include:

1. why are the new concrete patches deteriorating
more quickly than the older original concrete;

2. is the microstructure of the older concrete from the
1960s different than more recent concrete and do these
differences effect its durability (e.g., if the older con-
crete was built with cement with less sulfates is there
less ettringite in the voids, is there less CH even though
fly ash was not use);

3. are there any differences in the microstructure in
concrete only exposed to Iceban (Fishers) or never
exposed to CaCl (Seymour);

4. can any difference in the concrete at joints be
detected where hot pour joint sealer was used compared
to silicone sealer with a backer rod;

5. is there a difference in the air void structure in
pavements built with MicroAir compared to vinsol
resin air entraining agent (AEA);

6. does the microstructure give any clues as to why
the concrete at the joints in lanes in one direction are
performing differently than the opposing lanes; and

7. did paving during a snow storm affect the concrete
microstructure, and perhaps additional questions.

5. CONCRETE CONDUCTIVITY OF
LABORATORY MIXTURE

5.1 Introduction

Joint deterioration manifested itself as cracking and
spalling of concrete in the vicinity of both longitudi-
nal and transverse joints. Under service conditions, the
temperature, pore solution concentration, and degree of
saturation of concrete near the joint vary continuously.
Electrical conductivity, which also depends on the afo-
rementioned parameters, might offer a means of moni-
toring changes in those parameters over time and

improve our understanding of the cause of deteriora-
tion. This work examined how temperature, saturation
level, and air content individually affect the electrical
conductivity of concrete.

In concrete, conduction occurs predominantly through
the pore solution. An increase in the degree of hydra-
tion or in the level of drying will increase the tortuosity
of the conductive path which then reduces electrical
conductivity of the sample. Electrical conductivity of
concrete depends on: temperature, moisture content
(or degree of saturation) and pore solution concentra-
tion (or conductivity).

5.2 General Approach

Concrete cylinders (40 6 80) were cast then were
cured at 23uC and 100% relative humidity (RH) for at
least 28 days. Then 20 thick disks were cut, vacuum
saturated, and exposed to different conditioning as
described in the following sections. After conditioning,
electrical resistance was measured and electrical con-
ductivity calculated. (For additional details see
Appendix D and the TRB 2014 Annual Compendium
of Papers, Paper 14-5694, Concrete Conductivity: Effect
of Temperature, Saturation and Air Content by
Panchmatia, P., J. Olek and N. Whiting).

5.3 Electrical Conductivity and Temperature

In concrete, conduction happens predominantly
through pore solution (Rajabipour, 2006). Previous
work (Crisp, Starrs, McCarter, Rouchotas, & Blewett,
2001; McCarter, 1995; McCarter, Starrs, & Chrisp,
2000) has shown that Arrhenius relationship is applic-
able to concrete (see Equation 5.1).

s~Ae{ Ea
RT½ � ð5:1Þ

Where, s is conductivity of concrete (Siemens/meter),
A is the nominal conductivity at infinite temperature
(Siemens/meter), Ea is activation energy (kJ/mole), R is
the universal gas constant (8.314).

Other researchers have verified this relationship for
concrete at temperatures ranging from 0uC to 50uC.
This research evaluates the applicability of Arrhenius
relationship for temperature ranging from -18uC to
23uC.

As shown in Figure 5.1 the plot between natural
logarithm of conductivity and the inverse of absolute
temperature is a straight line for temperatures ranging
from -18uC to 23uC.

5.4 Electrical Conductivity and Saturation Level

Conductivity has a one-to-one relationship with its
moisture content. For a porous medium (like hardened
cement pastes and concretes) the bulk conductivity (st)
can be modeled using Equation 5.2 (Garboczi, 1980;
Rajabipour, 2006; Rajabipour & Weiss, 2007).
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st~s0jb ð5:2Þ

Where s0 is pore solution conductivity (S/m), is total
liquid filled porosity, and b is the factor representing
moisture connectivity. Upon drying, as the saturation
level decreases, the conduction path becomes more tor-
tuous and therefore the conductivity is expected to
decrease (b decreases).

The concrete mixture and sample preparation are
described in detail in Appendix D. The initial resistance
was measured immediately after vacuum saturation.
Then the samples were allowed to dry to the desired
mass to attain saturation levels of 95%, 90%, 85% and
80%. Resistance was measured when each of those
saturation levels was attained.

Figure 5.2 shows that the conductivity of concrete
decreased with decreasing moisture content. The
conductivity decreased by 30% when saturation level
is reduced from 100% to 80%. Half of this decrease
occurs during the first 5% decrease in saturation level
(from 100% to 95%). There was a 7% to 11% decrease
in conductivity observed between samples extracted
from the top vs. from the bottom of the cylinder at
similar saturation levels. This difference in conductivity
may be attributed to a slight segregation in the mix.

5.5 Electrical Conductivity and Air Content

The formation factor (1/jb) is defined as the inverse
of the product of pore connectivity (b) and total liquid
filled porosity (j). In other words, the formation factor
can be interpreted as a measure of the volume of the
pores and their connectivity. Therefore, we could use
the formation factor to quantify the microstructure of
the concrete and hence use that relationship to describe
the effect of air content on conductivity of concrete.
This study modeled the conductivity of concrete to its
air content using formation factor and pore solution
conductivity (s0).

Concrete mixtures and sample preparation are
described in detail in Appendix D. The formation
factor was calculated using Equation 5 in Appendix D.
A plot of the results of the measured % air compared to
the calculated formation factor for different mixtures
are shown in Figure 5.3.

As expected, as the air content increased, the forma-
tion factor decreased suggesting that conductivity
increased, except for the mixture with the highest air
content of 8.6%. The lower conductivity (higher forma-
tion factor) for the mixture with 8.6% air suggests that
at higher air contents the paste is more difficult to
saturate completely. Perhaps at such higher air contents
there are more smaller air voids which are more isola-
ted. Empty air voids impede conductivity by increasing
the tortuosity of the fluid path in the paste.

Figure 5.2 Changes in conductivity with changing saturation
level of concrete.

Figure 5.3 Formation factor vs. % air content.

Figure 5.1 Plot of ln (conductivity) vs. 1/temperature for nine specimens.
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To explore this hypothesis the estimated amount of
empty or unsaturated air voids in the concrete sample were
calculated. The calculations are detailed in Appendix D.
To summarize, the mixture with 8.6% air was less satu-
rated at only 64% saturation as opposed to the other mix-
tures with 4.5% and 6.1% air which were more than 80%
saturated.

5.6 Conclusions and Recommendations for Future Work

The following conclusions can be drawn based on
this work:

N Concrete conductivity follows Arrhenius relationship for
temperatures below freezing and more specifically that
range between -18uC and 23uC.

N The concrete conductivity decreased by 30% when
saturation level reduced from 100% to 80%.

N Segregation within the concrete mixture can affect the
concrete conductivity.

N Concretes with higher air contents are more difficult to
saturate compared to concretes with lower air content.
Therefore increasing air content might postpone the
deterioration of concrete at the joints by freeze-thaw
damage.

N When saturated, concrete with higher air content
demonstrates higher conductivity.

It is recommended that the results of this preliminary
testing be used to design experiments that attempt to
quantify the microstructural deterioration, using con-
ductivity, that occurs in concrete when exposed to
freezing and thawing in the presence of deicing salt
solutions. Comparing conductivity information from
laboratory testing with conductivity values obtained
while testing samples extracted from deteriorated and
non-deteriorated concrete pavements joints may pro-
vide further understanding of the reason for premature
joint deterioration.

6. PROJECT SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

6.1 Summary and Discussion

6.1.1 Introduction

The objectives of this study were (1) to determine
what changes have occurred over the past 45 years in
pavement materials, designs and construction practices,

and current deicing materials and practices that may
relate to the deterioration of concrete at some pavement
joints and (2) identify the influence of these changes
on the durability of Indiana pavement concrete at the
joints by examining pavements built with various
materials, designs and practices and exposed to various
deicers.

To identify the changes and different conditions and
how they may have influenced joint durability, histor-
ical records specific to each pavement section were
needed. In most cases the records of the actual
pavement materials used for construction, as built
designs, construction records, and deicing materials and
practices for specific roads and segments were not
available. Since the year built was available for most
pavements assumptions were made for each pave-
ment based on the prevailing practices, materials and
specifications at the time of construction. Pavements
sections were selected for further examination based on
field conditions and year built. Additional informa-
tion was determined and properties verified through
field and lab investigation such as joint sealer used,
saw cut configuration, fly ash in the mix, air void
system, aggregate type, pavement thickness, base condi-
tion, etc.

6.1.2 Historical Data

INDOT Specifications: To identify the prevail-
ing specifications and construction practices at the time
a pavement sections was constructed the INDOT
Standard Specification books from 1952 through 2012
were reviewed. Changes to specifications over time that
may relate to joints and concrete durability are
summarized in Table 6.1. A specific practice may have
occurred prior to these dates if used under a special pro-
vision.

Cement: The physical and chemical properties of the
cement used in construction of each pavement may
have influenced the durability of the concrete, however
these records were not available. Published national
data and the information from the cement mill certi-
ficates on file at INDOT were available and showed
that the cement fineness, strength and chemistry have
changed over the years. The fineness, measured as
Blaine has increased for both the INDOT cements and
cements across the country. The amount of C3S has
increased and C2S decreased over the years. The 1-day

TABLE 6.1
Summary of changes in INDOT specifications.

Year Relevant Specification

1985 First mention of the use of fly ash (FA) as supplementary cementitious material

1988 First mention of silicone joint sealer being used

1995 Double saw cut at the transverse contraction joints (T-jt) introduced

1995 QA option established for PCCP mixtures and construction which included:

1999 Single saw cut for longitudinal joints (L-jt), tie bar spacing of 39 and its size adjusted for pavement thickness

2006 Target % air increased to 5.7%–8.9%

2012 Minimum % air before failure raised; tie bar size decreased for thicker slabs
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through 28-day strengths all have increased since 1954.
The 1-day and 3-day strengths increased most drama-
tically resulting in increased early-age rate of strength
gains. Changes in early strengths likely are in response
to the industries’ preference for rapid construction
practices. The 7-day strengths have been the most con-
sistent values across all cements examined since 1990,
which may be in response to the long-standing and
common 7-day strength requirement for acceptance.
Both the increase in fineness and C3S contribute to the
dramatic increase in 1-day and 3-day strengths since
1954.

The sulfates also have increased since 1954 to avoid
set problems that can occur with finer cements and
more readily available aluminates (Neville, 1997). Some
side effects of these physical and chemical changes in
cements to consider include:

N increased development of early heat of hydration that
could make concrete more susceptible to problems

associated with concreting in high ambient temperatures;

N increased CH in the hardened concrete that has been

linked with durability issues, especially in the presence of

deicers; and

N increased sulfates in the hardened cements which may, in

part, contribute to the formation of ettringite frequently

found lining and filling the concrete air void system and

reducing the effectiveness of the air voids system for FT

protection.

Although additional CH in hardened concrete has
been associated with long-term durability concerns,
silicates from supplementary cementitious materials
(SCM) can combine with CH to form additional CSH
(calcium silica hydrates) contributing to long-term
strength and durability (Neville, 1997; Sutter et al.,
2008). Therefore the use of SCMs are especially valu-
able with modern cements in reducing the CH and
increasing the CSH in the concrete.

Deicing salts can increase the moisture content of
concrete leading to a higher level of saturation and
susceptibility to freeze-thaw distress (Sutter et al., 2008;
Jones et al., 2013). Specific types and quantities of
deicers to which each pavement section was exposed
could not be identified so the influence of specific
deicers and deicing practices on concrete durability at
specific joints could not be ascertained. However, the
lower amounts of deicers used combined with the
exposure to fewer freeze-thaw cycles in the southern
INDOT districts of Seymour and Vincennes may be a
key factor in why this type of joint deterioration
was not identified in the Vincennes District and iden-
tified in only one pavement less than 40 years old in the
Seymour District.

A database was developed for populating with data
and use, however the forms and process are clumsy and
incomplete. It is recommended that a more compre-
hensive and easy to use database be developed and
maintained so that the information developed from this
and other projects can be combined in searches and
easily accessed for many years to come.

6.1.3 Pavement Selection and Field Observations

A total of 45 pavement sections were identified from
around the state of Indiana as potential candidates for
detailed investigation, many with some level of joint
deterioration and some as a non-deteriorated section
for comparison. Through an extensive review process
that included site visits, district surveys and review of
what records were available 11 pavements were selected
to represent materials, practices and specification
changes from 1960 through 2004. A total of 55 cores
were taken at good and deteriorated joints and the
corresponding mid-panels. Field observations included
rate of drainage of the base, pavement depth, and
condition of the joint at and below the surface.
Additional testing in the lab on 19 of the cores from
the Greenfield District (built from the mid-1980s to
2004) included air void analysis, FT testing and detailed
microscopic analysis.

Field observations revealed that the level of joint
deterioration was not always obvious from the surface.
Some of the joints that appeared to have no or very
minor deterioration showed the beginnings of more
significant damage just below the joint sealer.

Drainage: There did appear to be a connection
between the drainage of the base and the level of
deterioration seen at the joint. All pavements were built
on a granular base. Over 80% of the pavements had
good drainage at the mid-panel but only 40% of these
had good drainage at the joints (i.e., the base at the
joints of approximately 1/3 of the pavements tested had
good drainage). Although pavements with moderate
levels of deterioration at the joints had drainage that
ranged from good to slow, the joints with some of the
worst levels of distress also had the slowest drainage,
and joints with no or only minor distress had moderate
to good drainage.

6.1.4 Laboratory Analysis of Cores

Air void system analysis: As shown in Table 4.3 the
air void systems of the cores examined all had a
compromised air void system which led to not meeting
all three criteria recommended for FT durable concrete
(as summarized in Table 6.2). Over 50% of the cores did
not meet even one of the criteria, some from deterio-
rated joints others from non-deteriorated concrete. The
one consistent trend was that for a given panel, the
concrete at the mid-panel had a better air void system
than at the joint.

Freeze-thaw testing results did not correlate directly
with the air void analysis, but generally samples from
the mid-panel performed better when exposed to repea-
ted freezing and thawing cycles than the samples taken
from the joints. These results are not surprising consi-
dering the air void system was compromised by infilling
with secondary minerals in the concrete near the joints.

Microscopic/SEM analysis: Concrete from the mid-
panel cores and at the joints were examined from the
pavement surface (00) to 50 depth at magnifications of
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500x or higher. Secondary minerals such as ettringite
and Friedel’s salt were identified lining and filling voids
in all the samples. Secondary minerals form when
mineral-rich fluids move into or through the voids.
Infilling of voids with ettringite and Friedel’s salt
indicate repeated ingress of fluid into or through the
concrete.

The amount of ettringite increased with depth. Voids
lined or infilled with secondary minerals were more
common at the joint than at the mid-panel, which could
explain, at least in part, the decreased air void para-
meters measured in concrete from the joints verses mid-
panels. The pattern of occurrence for Friedel’s salt, a
chloride-based secondary mineral, suggests that very
little deicers penetrated beyond 20 in the mid-span of
the concrete, however some amount of deicers reached
greater depths at joints.

Fly ash was identified in all but one pavement
section. Two of the four cores taken at SR38-R did not
have fly ash in the concrete and showed more advanced
deterioration at the joints than the nearby concrete that
did have fly ash.

Other significant observations include the pattern of
occurrence of unhydrated cement grains that suggested
the bulk of the pavements concrete is adequately cured
but the joint faces are not. Calcium hydrate (CH) was
observed in the concrete pavement with some of the
most severely deteriorated joints examined (SR38-25),
supporting the theory that more abundant CH in the
paste relates to less durable concrete.

6.1.5 Recommendations for the Greenfield District

Examinations of pavement concrete and subsequent
lab testing focused on cores taken from the Greenfield
District. Based on the observations in this study some
rehabilitation may be cost effective and likely extend
the life of some of these pavements. The deterioration
of the concrete at the joints could be slowed, if not
eliminated, by reducing the concrete’s exposure to
moisture to the point that reaching critical saturation
during freezing events is hindered. A practice that could
reduce the potential for concrete to become critically
saturated at the joint that is becoming more common is
removing the backer rod and sealing the joint faces with
a siloxane, silane or other water resistance sealer.
Resealing without the backer rod would further reduce
the amount of moisture to which the joint is exposed
while reducing the influx of water and incompressibles
at the joint.

The sections examined in this study that may benefit
most from such rehabilitation are:

N US 35 north of Muncie near the intersection with SR 28
and SR 3 (G-US35)

N SR 3 RP 115–117, north of SR 38, New Castle (G-SR3-
115),

N SR 38 in New Castle (aka Broad St); the pavement near
the intersection with Reddingdale Dr may be a good
candidate (G-SR38-R) however the pavement near 25th
St may be not because of the present condition of the
pavement (G-SR38-25).

6.1.6 Concrete Conductivity of Lab Mixes

Laboratory testing examined the influence of chan-
ging temperature, saturation level and air content of
hardened concrete on the bulk electrical conductivity
test as a step to further development of this test as
a tool for determining existing concrete properties.
To advance this technique for use in field concrete addi-
tional work is needed to correlate changes with micro-
structural deterioration and changes in concrete that
may occur when exposed to freezing and thawing in the
presence of deicing salt solutions.

6.2 Conclusions

Several changes in concrete materials and pavement
design and construction practices over the past 50 years
were identified that could influence the durability of the
concrete at the joints. Based on the information collec-
ted and pavements examined, the following are consi-
dered probable contributors to the durability of con-
crete at the joints in Indiana.

The identification of higher CH in the concrete from
the pavement with severe deterioration at the joints
supports the theory that increased amounts of CH in
the hardened concrete can lead to durability issues,
especially in the presence of deicers. Fly ash was
identified in the concrete of the pavement with severe
joint distress that should have helped convert some of
the CH to CSH. Without knowledge of the chemistry of
the cement or the fly ash used in that pavement we
cannot know if the cement contained an unusually high
C3S:C2S ratio that would have contributed to a high CH
content and if the amount and chemistry of the fly ash
would have been adequate to convert the available CH.

Pavements both with and without deterioration at
the joints contained fly ash. One section of one
pavement examined did not have fly ash, and it did

TABLE 6.2
Measured air void parameters.

Air Void Parameter Range of Values Recommended

Total Air 2.5–5.5% 5.7%–8.9% [INDOT Spec]

Spacing Factor 0.008–0.0261 in #0.008 in (Arribas-Colón et al., 2012)

Specific Surface 235–851 in-1 $600 in-1 (Arribas-Colón et al., 2012)
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have more deterioration at the joints than the sections
of this pavement that contained fly ash. No other
differences were detected other than the presence and
absence of fly ash. Although the presence of fly ash did
not prevent the deterioration at the joint it has reduced
the severity of the deterioration.

The increased sulfates in the modern cements likely
contribute, at least in part, to the formation of ettrin-
gite found lining and filling the concrete air void
system. This phenomenon is reducing the effective air
void system, especially at the joints. If the original air
void system just marginally met the criteria for FT
durable concrete than any amount of lining or filling
by secondary minerals could lead to less durable
concrete. The higher occurrence of secondary miner-
als in the concrete near the joints indicate that more
moisture was moving into or through the concrete
at the joints then through the bulk of the concrete
pavement.

An adequate air void system is critical to freeze-thaw
durability of concrete. Recent changes to INDOT’s
specifications for acceptable air content measured at the
construction site is expected to improve the quality of
the air void system in recently placed and future
concrete pavements.

The ability of the base to drain water from the
joints is linked to the durability of the concrete at the
joint. The granular base in place at most of pavement
sites cored was considered good and able to dissipate
the drilling water during or within a minute or two
after coring. However this ability to drain water was
reduced significantly at two-thirds of the joints where
this property was measured. The reason for this
decrease was not determined, but the joints with the
most severe deterioration corresponded to the worst
drainage.

Unhydrated cement grains were often common near
the joint face indicating that the concrete in the top 20

of the joint face is not always fully curing.

The two southern districts of Seymour and Vincennes
exhibit less concrete joint durability problems than
the more northern Districts that historically have been
exposed to higher amounts of deicers, and harsher,
longer winter environments. This supports the theory
that prolonged exposure to deicers and FT cycles, and
the rate and duration of freezing likely influences the
potential durability of the concrete especially at the
pavement joints.

Several variables were identified that influence the
durability of the concrete at the joints and there may be
other variables that were beyond the scope or capacity
of this study (such as original paste quality, pate density,
w/cm ratio). In summary, this study identified that one
or more of the following variables likely influenced the
durability of the concrete at the joints examined: the
drainability of the base at the joints, original air void
system, reduced air void parameters due to lining and
infilling of the air voids with secondary minerals, com-
promised hydration of the concrete at the joint face,
increased moisture at the joint.

6.3 Recommendations

6.3.1 Practices to Consider for Optimal Durability

Fly ash or other SCMs that provide additional silica
are recommended as part of the cementitious mixture in
order to help convert CH into CSH, which is especially
critical if the cement has a higher C3S:C2S ratio, as is
common in modern cements. Optimizing the amount of
fly ash in a particular mixture has been shown to imp-
rove the paste density and is expected to reduce
moisture migration (Rudy & Olek, 2012). Also, many
modern cements are more susceptible to higher heats of
hydration. SCMs that reduce the heat of hydration are
especially valuable when concrete is placed during high
ambient temperatures.

Rehabilitation: If the concrete at the pavement joint is
beginning to deteriorate and the concrete is believed to
contain FT durable aggregate and an adequate air void
system, then rehabilitation that includes removing the
backer rod and sealing the joint face with a silane or
other penetrating waterproofing sealer should be
considered. (See recommendations for the Greenfield
District for more details.)

Sealing of joints without a backer rod may reduce the
amount of moisture held at the joint face that
contributes to the concrete reaching the critical satura-
tion level that renders it susceptible to FT damage.
Treating the joint face with a silane or other penetrating
waterproof sealer soon after sawing may improve the
curing of the concrete at the joint face making the
concrete more durable, and may reduce the potential of
the concrete to become critically saturated throughout
the life of the joint (as suggested by previous research
(Jones et al., 2011)).

Air void system is commonly reduced in older pave-
ments. Adopting practices that give an excellent origi-
nal air void system is valuable, encouraging spacing
factors and specific surface that are much better than
marginal. These parameters are critical to long-term
durability of concrete exposed to a harsh FT environ-
ment and deicers. A balance between optimal air for
long-term durability and meeting early strengths require-
ments needs to be considered.

Drainage: Ensuring the hydraulic conductivity of the
base, especially at the joints is adequate and remains
good throughout the life of the pavement.

6.3.2 Additional Research

This study focused INDOT’s and industry’s atten-
tion on some common issues related to durability of
pavement concrete at the joints. Some of the findings in
this study reinforce and expand on findings from the
previous study (Arribas-Colón et al., 2012) and inclu-
ded: (1) moisture present in the joints plays a criti-
cal role physical deterioration of concrete during
the freezing and thawing cycles, (2) the effect of the
increased moisture levels on the integrity of the air-void
system, (3) the heightened potential for the chemical
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damage of the microstructure in the presence of deicing
chemicals and (4) the beneficial effects of using sup-
plementary cementitious materials (mostly fly ash) in
reducing the prospect of both, the physical and the
chemical damages. These observations led to addi-
tional research efforts focused on more in-depth under-
standing of the effects of some of these variables on
pavement concrete durability and devising ways of
addressing these problems in the future. Some examples
of these continued research efforts include SPR-3864,
Performance of Deicing Salts and Deicing Salt Cock-
tails (Suraneni et al., 2016), with the focus on examining
how the composition of different deicing salts influ-
ences the potential for initiation of deleterious reactions
that can cause damage to the pavements; SPR-3808,
Synthesis: Accelerating the Implementation of Research
Findings to Reduce the Potential Concrete Pavement
Joint Deterioration, the objective of which is to com-
prehensively review and synthesize all suggested causes
and phenomena associated with joint deterioration for
purposes of developing a manageable solution to
prevent and/or to mitigate this problem in the future;
and SPR-3523, Evaluation of Sealers and Waterproofers
for Extending the Life Cycle of Concrete (Wiese et al.,
2015), which focuses on the use of sealers and water-
proofers for concrete paving materials with specific
intention of improving joint behavior.

Further work can increase our understanding of the
dynamic processes that contribute to problems with
concrete durability at pavement joints and may lead
to an understanding of how to avoid future related
problems. To that end the following additional work is
recommended.

Air void system parameters that are considered
adequate for freeze-thaw may need to be reestablished
considering the changes and advances in cementitious
mixture designs, air entraining agents, and other admi-
xtures, as well as anti-icing/deicing products and pra-
ctices now commonly used in Indiana. Both durable
and non-durable concrete did not meet existing recom-
mendations. A better understanding is needed as to
how mixture designs, mixing, placement practices, mat-
erials and other variables influence the in-place total
air, spacing factor and specific surface of the air void
system. This may lead to recognizing variables that can
be measured and controlled even if the air void para-
meters other than total air cannot be directly measured
in the field.

Existing cores taken from the Seymour District and
Town of Fishers are available for additional work.
Detailed petrographic examination of these cores may
provide additional valuable information and relevance
of joint deterioration to concrete age, joint sealer, dei-
cers and more. See section 4.6 for more detailed sugges-
tions on what questions could be investigated because
of the strategic selection of these cores.

Drainage of the base is critical to long-lasting durable
pavements. Understanding why/how the hydraulic con-
ductivity of the base at the joints was reduced may help
to avoid or prevent this in the future. Additional work

may be needed to look at the influence of design,
construction, piping of fines up from the subgrade, fines
moving down through the joints into the base, the
breakdown of base materials or other mechanisms that
could be reducing the hydraulic conductivity of the base
under concrete pavements at the joints.

Database development: Retain as much detailed
information as possible on materials used, construction
practices, mix designs, pavement designs, ambient
conditions during paving, original air void parameters,
the physical and chemical properties of cements used,
type and quantity of deicer exposures and more, for
each specific pavement section in a form such that the
data will be available for decades. An easily accessed
electronic database could provide a good platform for
retaining and tracking information, and allow for
useful queries. INDOT’s Site Manager database has
some of these capabilities. Building a comprehensive
database that included test results and analyses from
studies could enable more detailed and accurate corre-
lations that could be more thoroughly analyzed between
any of these variables and any concern that may arise
related to the durability of specific concrete pavements
or other durability concerns.
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Figure A.1 Comparing cement fineness to percent sulfates in cements.

TABLE A.1
Strength values in psi for mortars prepared using cements produced in 1953–54 (1).

1 days 3 days 7 days 28 days

Mean 915 2148 3331 5043

STD 221 427 550 715

n 97 97 97 97

Max 1720 3310 4900 6790

Min 120 550 2200 3100

TABLE A.2
Strength values in psi for mortars prepared using cements produced in 1994 (2).

1 days 3 days 7 days 28 days

Mean 2149 3612 4663 5959

STD 436 339 342 506

n 46 69 68 56

Max 3130 4480 5450 7450

Min 1430 2900 3720 4507

APPENDIX A: HISTORICAL DATA

A.1 PUBLISHED DATA

Table A.1 and Table A.2 show data published for average cement strengths from 1953–54 and 1994.
Table A.3 shows historical published data of the average oxide analysis of cements.

TABLE A.3
Average cement chemistry from published data.

Year

Cement Chemical Composition, %
Loss on

Ignition

Potential Phase Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 C3S C2S C3A C4AF

1953–54 21.39 5.68 2.73 64.04 2.31 1.88 50.78 23.11 10.41 8.29

1994 20.55 5.41 2.59 63.91 2.09 3.03 1.37 53.7 18.4 10.0 7.9

2004 20.17 5.07 2.66 63.23 2.51 3.26 1.52 56.9 14.8 8.9 8.2
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TABLE A.4
Average cement chemistry for INDOT cements A and B.

INDOT Cement A

Cement Chemical Composition, % Potential Phase Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 C3S C2S C3A C4AF

1990 21.25 5.33 2.99 64.07 1.92 2.94 51.00 22.70 9.04 9.14

1994 21.47 4.70 3.31 64.37 1.97 2.71 54.42 20.39 6.86 10.05

1998 21.37 4.83 3.32 64.58 1.63 2.71 55.42 19.50 7.18 10.09

2002 21.06 4.63 3.45 63.66 1.74 2.85 54.89 18.89 6.44 10.50

2006 20.23 4.93 3.28 62.58 1.93 3.41 53.75 17.38 7.38 10.00

2010 20.29 4.75 3.23 62.79 2.28 3.38 55.33 16.58 7.00 10.00

INDOT Cement B

1990 21.00 5.46 2.13 65.45 1.413 2.50 60.86 14.32 10.71 6.55

1994 21.28 5.35 2.27 65.43 1.219 2.50 58.39 17.04 10.43 6.73

1998 20.97 5.35 2.38 65.29 1.801 2.35 60.53 14.61 10.30 7.18

2002 20.79 5.47 2.48 64.61 1.159 3.21 55.70 17.70 10.10 7.40

2006 20.50 5.47 2.45 64.04 1.350 3.31 55.13 17.13 10.25 7.38

2010 19.01 5.59 2.98 63.25 3.271 3.22 62.06 7.68 9.77 9.07

A.2 INDOT FILES

The following is a summary of cement data collected from Mill Certificates on file at INDOT (Table A.4) and the
deicer use data from INDOT districts (Table A.5).
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Figure B.1 Form for test results and core location information.

APPENDIX B: DATABASE DEVELOPMENT

Figure B.1 and Figure B.2 are examples of the information possible to record and the resulting forms developed
under the database work.
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Figure B.2 Example of form for pavement and deicer information.
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APPENDIX C: FIELD SITE VISITS AND CORING

C.1 OVERVIEW

Core ID

A core labeling system was developed to be able to
quickly distinguish where each core came from and to
avoid confusion during lab testing. Each core was
labeled in the field upon extraction and each sample cut
from that core in the lab was labeled with the unique
label. The labeling system is summarized in Figure C.1.

Benchmark for Severity of Joint Deterioration

While selecting locations for coring different degrees
of deterioration were observed. This section attempts to
standardize the nomenclature used in this document to
describe the different degrees of deterioration observed
in INDOT concrete pavements.

The degree of joint deterioration are classified into
five groups of severity: (a) sound joints with no deterio-
ration, (b) minor deterioration, (c) moderate deteriora-
tion, (d) moderately severe deterioration and (e) severe
deterioration. Photographs showing examples of each
of the above mentioned degree of deterioration are
shown in Figures C.2–C.6.

C.2 GREENFIELD DISTRICT

Based on information provided by the SAC and
Greenfield District five pavements were identified as
potential candidates with premature joint deterioration
and investigated further.

Location A

The first site was SR 38 New Castle, RP 92.5–94, also
known as Broad St between N. 29th St and Reddingdale

Figure C.1 Core identifier.

Figure C.2 Examples of sound joints with no deterioration.

Figure C.3 Examples of minor joint deterioration.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/02 35



Dr, and labeled A on the site map in Figure C.7. The
concrete pavement is primarily in-town curb and gutter
construction with storm drains. The coarse aggregate is
gravel and pop-outs are very common. Deterioration is
evident at both the longitudinal and transverse joints.
Transverse joint spacing varied from 159 to 169 and 229.
Transverse cracks were common in 229 long panels, with
some of these cracks retrofitted with dowel bars.
Drainage at many joints appeared poor as recent rain
water sat in several of the transverse and longitudinal
joints. Deterioration created widening of joints by as
much as 60.

In the SR 38 pavement from 25th St and east the
transverse joints in the eastbound (EB) direction appe-
ared to be less damaged than those in westbound (WB)
direction (as shown in Figure C.8). Although pop-outs
are common throughout, west of 25th St to Redding-
dale Dr the joints show less deterioration (as seen in
Figure C.9).

A total of 12 cores were obtained from SR 38. Six
cores were obtained from panels just east of the
intersection with 25th St (SR 38-25). The latitude and
longitude of this location are 39.929817 and -85.344543
respectively. Six cores were obtained from pavement

Figure C.4 Example of moderate degree joint deterioration.

Figure C.5 Example of moderately severe joint deterioration.
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panels near the intersection with Reddingdale Dr,
latitude 39.931264 and longitude -85.360969. There
was a date stamp on this location suggesting the pave-
ment was constructed on 6/14/90.

The pavement was built on a granular aggregate base
and the drainage characterized by observing how
quickly the water used for coring drained from the
core hole. As shown in Table C.1, drainage at the
pavement near 25th St (SR38-25) that showed more
joint deteriorated ranged from very good to poor, and
in the pavement near Reddingdale Dr (SR38-R) that

had less deterioration at the joints and the drainage
ranged from very good to moderate.

The pavement along SR 38 is nominally 10.50 thick,
and the concrete coarse aggregate is a gravel with a
nominal top size of 10.

Location B

Location B is SR 3 and located on the west end of
New Castle between RP 112 and 117 with RP 112–115
south of the intersection with SR 38, and RP 115–117
north of this intersection. The concrete pavement
between RP 113 and 115 south of SR 38 is 5 lanes
wide, pop-outs are common and most of the long-
itudinal joints in south bound direction show moder-
ately severe deterioration (as shown in Figure C.10). No

Figure C.6 Examples of severe joint deterioration.

Figure C.7 Greenfield District site visit locations with coring locations highlighted (A, B and E).

Figure C.8 SR 38 near 25th St, New Castle, IN (SR38-25).
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significant deterioration at the joints was observed
along the transverse joints. In contrast, the concrete
pavement north of SR 3, between RP 115 and 117 is
4 lanes wide and the joints appeared in good condition
(as shown in Figure C.11).

A total of six cores were obtained from SR 3, three
from pavement south of SR 38 that showed deterio-
rated joints (SR3-113), and three north of SR 38 that
showed little to no deterioration (SR3-115). The three
cores that represented panels with deteriorated joints
were taken from pavement panels between RP 112 and
113 in the south bound (SB) lane (outside driving lane),
next to mail box 3725. Upon close inspection the
transverse joints appeared in good condition because
most of them have been patched. After careful
consideration a deteriorated transverse joint from the
original concrete was located and core. The latitude
and longitude of the coring location are 39.896163
and -85.385457 respectively. Three cores were obtained
from location near mile marker 115 that represented

Figure C.9 SR 38 near Reddingdale Dr (SR38-R).

TABLE C.1
Drainage of base at core holes during coring.

Core Label Drainage of Base (25 5 25th St; R 5 Reddington St)

G-SR38-25-A1

G-SR38-25-C1 Very good, no water in the core hole

G-SR38-25-C2 Good

G-SR38-25-D1 Initially good then slowed to 0.250 drop in 12 minutes

G-SR38-25-E1 Slow

G-SR38-25-E2 Moderate

G-SR38-R-A1 Poor, may not reflect base drainability because core retrieved was not full depth.

G-SR38-R-C1 Good, water drained in less than 5 minutes

G-SR38-R-D1 Good, water drained in 2 minutes

G-SR38-R-E1 Moderate, water level in the core hole changed from 30 to 20 in 5 minutes

G-SR38-R-F1 Very good, no water left in core hole

G-SR38-R-Z1 Moderate, water level in the core hole changed from 1.50 to 0.750 in 5 minutes

Figure C.10 Example of pavement along SR 3 between RP
112 and 115, south of SR 38.

Figure C.11 Example of SR 3 between RP 115 and 117,
north of SR 38.
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good joints. The latitude and longitude of this coring
location are 39.936273 and -85.382966 respectively. As
shown in Table C.2 the drainage was good at all the
mid-panel core holes but slower at the longitudinal
joints in both the deteriorated and non-deteriorated
sections.

In the deteriorated pavement section concrete was
approximately 90 thick, the coarse aggregate was a
quarried carbonate aggregate nominally 1.50 top size
and the base was a coarse sand. Cracks were visible at
the joint face just below the saw cut. In the non-
deteriorated pavement concrete was approximately
10.50 thick, the coarse aggregate was a gravel nominally
1.50 top size and the base was a #8 crushed stone.

Location C

Location C was along West Memorial Dr (aka 12th St)
near US 35 and SR 3 in Muncie, IN. This concrete pave-

ment is in very poor condition with serious deterioration
at the transverse joints (as shown in Figure C.12). This
pavement was not cored because the distress is likely
D-cracking and not relevant to this project.

Location D

Location D was situated on US 35 at the intersection
of Eaton St near STA 170. The panals are long with
approximately 359 between transverse joints. Trans-
verse mid-panel cracks are common. Most of the dete-
rioration appears to be associated with the mid-panal
cracks and along a longitudinal joint associated with a
ramp that appears to be added after the original pave-
ment was placed.

Location E

Location E was north of Muncie, IN at the
intersection of US 35, SR 28 and SR 3. The condition
of the concrete pavement immediately north, east and
west of this intersection appeared very similar. Both
longitudinal and transverse joints show minor dete-
rioration or raveling (as shown in Figure C.13).

A total of seven cores were taken along US 35,
Muncie, Indiana, west of the intersection with SR 3
(US35-A1 through Z1 as shown in Table C.3).
Although most panels showed some minor amount of
deterioration at the joints, three cores were obtained
from a good panel showing very minor deterioration
and four from a panel showing more deterioration. The
latitude and longitude of the ‘‘good’’ panel were

Figure C.12 Location C, with joint distress that is likely
D-cracking.

TABLE C.2
SR 3 drainage and other field information collected during coring.

Core Label Drainage Saw Cut Comments

G-SR3-113-AE1 Slow 2.50 Clean edges and no deterioration at core hole; silicone joint gone

G-SR3-113-C1 Quarried CA aggregate; coarse sand base

G-SR3-113-D1 Good, no water left in core

hole

Quarried CA aggregate; coarse sand base

G-SR3-115-E1 Good, no water left in core

hole

2.50 Gravel CA; #8 crushed stone as drainage layer; Backer rod with silicone

sealer; 3/80 joint opening

G-SR3-115-F1 Slow, water in core hole after

8 min

2.50 Backer rod & sealer in good condition; 3/80 joint opening

G-SR3-115-Z1 Good, no water left in core

hole

Figure C.13 US 35, near the intersection of SR 28 and SR 3,
north of Muncie, IN.
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40.276967 and -85.370156 and that for the deteriorated
panel were 40.276943 and -85.370636.

Table C.3 lists the various cores obtained, informa-
tion on drainage of the drilling water and other
observations made during coring. The concrete in the
‘‘good’’ panel had very small sliver spalls along the
transverse joint, and short intervals along the long-
itudinal joint showed some deterioration. From the
deteriorated transverse joint (cores A1 and A2) only
two half cores were obtained (approximately 50 deep)
because of encountering dowel bars (despite the use of a
dowel-bar locator). Because the full pavement depth
was not cored at this location the poor drainage at these
core holes reflects the drainablity of the joint but may
not accurately reflect the drainability of the base. The
base was a quarried coarse aggregate mixed with a
natural sand and drained quickly in nearly all locations.

The concrete at this location is approximate 12.20

thick, the CA is a quarried carbonate with nominally

1.50 top size, built on a good drainable base made up of
quarried CA and sand. Of the areas cored the
transverse joint saw cut was 2.90 to 3.50 deep (,D/4),
and the longitudinal saw cut was 50 deep (,D/2.5).

Interstate Locations (I-65 and I-70)

Because of the high volume of traffic, safety concerns
and restrictions of setting up traffic control on these
major arteries to collect detailed observations and then
core, this study focused on non-interstate locations
whenever possible. Video logs were reviewed for the
interstate locations identified.

Based on the video log information for I-65 Green-
field District between RP 112.4 and 110.8 collected in
2008, many of the longitudinal joints showed moder-
ately severe deterioration whereas transverse joints
showed minor to moderate deterioration. By 2010
both the longitudinal and transverse joints showed

TABLE C.3
US 35 drainage and other field information collected during coring.

Core ID Drainage Comments

G-US35-A1 Poor Dowel bar interfered with obtaining a full depth core

G-US35-A2 Poor Dowel bar interfered with obtaining a full depth core.

G-US35-C1 Very good Light tapping required to remove core from drill bit

G-US35-D1 Very good No water left in core hole

G-US35-E1 Core stuck in drill bit; hammered hard to remove

G-US35-F1 Very good Did not core full depth of pavement,

G-US35-Z1 Very good Drilling water drained before core removed

Figure C.14 Seymour District site visit locations with coring locations highlighted.
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moderately severe and less localized deterioration.
Overall, between 2008–2010 the rate of deterioration
was fast for this stretch of interstate.

Based on the video logs I-70 in the Greenfield Dis-
trict between RP 145 and 150 both longitudinal and
transverse joints showed minor to moderate dete-
rioration which was more localized compared to 2010
where both the longitudinal and transverse joint showed
more moderate level of deterioration throughout the
section.

C.3 SEYMOUR DISTRICT

Based on information provided by the SAC and
Seymour District six pavements were identified as
potential candidates with premature joint deterioration
and investigated further (locations shown in Figure
C.14).

Location A

Location A was US 421 near Madison, Indiana from
the intersection with SR 56 north to a small asphalt
paved bridge, RP 0.73–0.99, latitude 38.740215 and
longitude -85.377321. This section of US 421 is a 4-lane
divided highway with curbs, a parking lane both direc-
tions and occasional turn lanes. Although INDOT
records suggest this pavement was built in 1969 with the
latest contract (for repairs) issued in 1996 most of the
pavement surface is tined, a practice that began much
later than 1969. The turn lanes were not tined and a
faint map cracking was apparent on the surface. It is
possible that these untined pavement sections are the
original 1969 pavement and current driving lanes that
are tined were added at a later date. The coarse aggre-
gate is a quarried carbonate aggregate.

Both the transverse and longitudinal joints in the
tined concrete on US 421 show minor to moderate
deterioration. Much of the deterioration was in the
form of small, long sliver spalls along the joint (as
shown in Figure C.15). NaCl (solid and brine) was
reportedly the only deicer used from 2008–2010.

Seven cores were taken from this section of US 421,
three from a panel with moderate joint deterioration,
three from a panel that showed very little joint
deterioration and one from a panel that was not tined
(core V). The pavement surface at core V had fine map-
cracking (as shown in Figure C.16) that appeared to be
orientated sub-parallel to the longitudinal joint, possi-
bly suggesting a vibrator trail.

Location B

Location B was in Clark County, Indiana on SR 60
RP 60.33 to 61.305, approximately 1 mile west of I-65
and north of Clarksville, Indiana. Clark County is in
Fall City Subdistrict which, besides NaCl, logged the
use of 10,190 gal of MgCl deicers from 2008–2010.

Figure C.16 Fine map cracking seen on the surface of the
untined pavement.

Figure C.17 Example of sound concrete joints along SR 60 near Clarksville.

Figure C.15 Example of minor (left) and moderate (right)
level of joint deterioration common along US 421.
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This section of SR 60 was built in 2002. The concrete
pavement is a 4-lane undivided highway with concrete
shoulders. The joints are approximately 3/80 wide,
sealed with silicone joint sealer and appear to be sound
and in excellent condition (as seen in Figure C.17).

Location C

Location C was along SR 56 near Madison, IN. This
section of SR 56 is a 2-lane highway (aka Clifty Hollow
Road) that runs in front of Clifty Creek power plant
just north of the Ohio River. The coarse aggregate is
gravel and the Madison Subdistrict records indicate
that NaCl is the only deicer used (2008–2010).

The pavement is heavily patched with original joints
completely replaced in most panels. The existing joints
exhibit minor to moderate deterioration at isolated
locations in both longitudinal and transverse joints
(shown in Figure C.18). The only data available on the
age of the pavement is that it is ‘‘an older pavement.’’
Considering its potential age and the extensive concrete
patching it likely was built prior to INDOT’s AP
specification and possibly D-cracked. This pavement
was not cored.

Location D

Location D was along SR 250 just west of I-65 near
Uniontown, Indiana, RP 13.64 and 13.89. It is a jointed
reinforce concrete pavement (JRCP), 2-lane rural high-
way built in 1960, and most recent repairs completed
in 2008.

Many of the concrete joints along this section of SR
250 appear to be in very good condition (as shown in
Figure C.19, left). Both hot pour and silicone sealant
were used at the joints. The panels are approximately
259 to 289 long and both longitudinal and transverse
mid panel cracks are common.

Full-width concrete patches have replaced a few
of the transverse joints (as shown in Figure C.19,
center). A few longitudinal and transverse joints
show minor to moderate deteriorated, more so in
the patches than in the original concrete (as seen in
Figure C.19, right). The occurrence of deterio-
rated and replaced transverse joints increases towards
I-65.

Figure C.18 Example of original concrete and patches along SR 56.

Figure C.19 Examples of SR 250 near Uniontown east of I-65.

Figure C.20 Example of good (left) and moderately deterio-
rated (right) longitudinal joints in US 50.
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Six cores were taken from this pavement section,
three from a panel showing joint deterioration and
three from a panel showing very little deterioration.

Location E

Location E was along US 50 in the town of Seymour,
Indiana, near East Tipton St (across from Arby’s
restaurant). This is a busy 4-lane divided highway
pavement built in 1960 with additional work completed
in 2007. The primary deicer used from 2008 to 2010 in
this area is NaCl, both solid and as a brine, with
possibly some very small amount of MgCl.

Although the transverse joints appeared sound and
in good condition full panel-width patches are com-
mon. Longitudinal joints showed moderate levels
of deterioration at isolated locations (as shown in
Figure C.20). Joint deterioration is common in both
the original concrete and in some patches. Much of
the pavement surface has been diamond ground.
A quarried carbonate course aggregate was used in
both the original concrete and the patches. Some faint
map cracking is noticeable. The joints are wider
suggesting the joint was made with a double saw cut.

Six cores were taken from this section of pavement:
two from a panel of original concrete that showed some
deterioration at the joint, two from a patch that had
moderately deteriorated joints and two from a panel of
the original concrete that had good sound joints.

Location F

Location F was along US 31, a 2-lane undivided
highway south of US 50 near the town of Seymour,
Indiana, at latitude 38.916470 and longitude -85.832244.
Information on the year built was not available but
because of the tining and good condition it is likely built
in more recent years.

Joints at this location appear in good condition with
only a few small sliver spalls at some transverse joints
(as shown in Figure C.21). Smaller partial depth repairs
are common, many of which are cracked and deterio-
rated. A faint map cracking pattern was apparent over
a panel in which the tining was not very deep. This
pavement was not cored.

C.4 TOWN OF FISHERS

Ten concrete pavement locations in Fishers were
considered along 116th St, Allisonville Rd and 126th
St that were built between 1997 and 2010 (as detailed
in Table C.4). The condition of the joints in these
pavement locations varied from good, sound joints to
moderately severe deterioration at either the long-
itudinal or transverse joints, or both (as shown in
Figure C.22). Reportedly the concrete was designed
and pavements constructed using INDOT specifica-
tions that were current at the the time of construction
(C. Tull, personal communication, 2011). Much of the
materials and construction information was available
so it provided an opportunity to compare performance
with materials used. Reportedly Fishers uses ‘‘Clear
Lane’’ deicers (C. Tull, personal communication, 2011).

After careful consideration and pavement site visits
three pavements were cored as follows:

N Four cores were taken from 116th St that represented

Phase 2 construction. This section was built in 2003 using

vinsol resin as the air entraining admixture (AEA). The

longitudinal joints in the EB lanes showed some

deterioration but no deterioration was evident in the

WB lanes.

N Six cores were taken from 116th St, Phase 3 which was

built the following year in 2004 using the synthetic AEA,

MicroAir. Both the longitudinal and transverse joints in

the WB lanes showed some deterioration but no

deterioration was evident in the EB lanes.

N Four cores were taken from Allisonville Rd, Phase 1,

built in 2001–2002. This mix contained fly ash and the SB

lanes was poured late in the season when it was cold and

snowy. The NB lanes were poured the following year.

Both the longitudinal and transverse joints in the SB

lanes showed some deterioration but no deterioration

was observed in the NB lanes.

It is assumed from the information provided that the
concrete from 116th St Phase 2 contain similar materials
as Phase 3 except for the AEA, that both concrete
pavements were similar in design, constructed in the
same manner and exposed to the same deicers and other
environmental factors, except that Phase 2 has been
exposed for 1 year longer than Phase 3. Some questions
to consider during the examination and analysis of

Figure C.21 Example of good sound joint (left), slight spalling at joint (center) and patched joint (right).
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these cores while comparing the two different phases of
construction include the following:

N Confirm as best as possible that the materials used and

mixture designs are similar

N Determine how the different AEA behaved under similar

conditions in similar mixes

N Compare the original air void system created by vinsol

resin to that created by MicroAir (e.g., spacing factor,

specific surface, etc.)

N Compare the existing air void system in the vinsol resin

concrete to that in the MicroAir concrete to determine if

one is more prone to infilling.

N Determine, if possible, if the concrete material in the lanes

that show deterioration is different from the concrete

material that does not yet show deterioration at the joints.

N Determine, if possible, if the concrete construction or

pavement structure in the lanes that show deterioration

were different from that in the lanes that do not yet show

deterioration at the joints.

Some questions to consider during the examination
and analysis of cores from Allisonville Rd, Phase 1
include:

N What happens to the concrete matrix, microstructure,

hydration products, etc., when a fly ash mixture is placed

during cold weather and snowfall. How do these features

differ from this same mixture placed under more ideal

conditions? How do these features contribute to early

joint deterioration?

N Are any of the unique features found in the mixture

placed in late season paving similar to other concrete

experiencing joint deterioration?

All the cores retrieved from Fishers allows for pos-
sible comparison of the influence of deicers. Reportedly
Clear Lane is used by Fishers as a deicer and none of
the INDOT cores examined under this project are
believed to have been exposed to this deicer.

Figure C.22 Examples of joint conditions in concrete pavements examined in Fishers, IN.
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APPENDIX D: ELECTRICAL CONDUCTIVITY OF CONCRETE: THE EFFECTS OF TEMPERATURE,
SATURATION AND AIR CONTENT

(First published in The Indian Concrete Journal, Sept. 2015, Vol. 89, Issue 9, pp. 17–25. Reproduced here with
permission.)
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Electrical conductivity of concrete : The effects of 
temperature, saturation and air content

Parth Panchmatia, Jan Olek and Nancy Whiting

The Indian Concrete Journal, ---- 20�5, Vol. 89, Issue --, pp. 00-00

This paper summarizes the results of investigations on the influence of changing temperature, saturation level and air 
content of hardened concrete on its bulk electrical conductivity. It was found that the temperature dependence of the 
bulk electrical conductivity of concrete closely follows the Arrhenius relationship. Formation factor, defined as the ratio 
of the pore solution conductivity to the bulk solution conductivity when the sample is saturated, was used to quantify 
the microstructure of concrete. Conductivity measurements were performed on concrete with four different air contents 
and it was found that the formation factor decreased with increase in the air content. This data was then used to derive 
a relationship between bulk conductivity of concrete and its air content. On drying, the tortuosity of the conduction path 
increases resulting in a decrease in the bulk electrical conductivity of concrete. 

Keywords: Electrical conductivity; formation factor; temperature; saturation, air content.

INTrOduCTION
In general, concrete pavements offer good long term 
performance. However, in some cases, especially in the 
cold climate regions, premature joint deterioration has 
been reported as a growing durability problem. The 
symptoms of premature joint deterioration are not very 
obvious during the early inception stages. However, 
once the deterioration starts progressing it shortens the 
service life of the pavement and increases its maintenance 
costs. The problem appears to be strongly linked to the 
prolonged periods of moisture presence in the joints and 
the resulting increase in the saturation level of concrete. 
Once the concrete reaches critical saturation levels, which 
depends on the air void system present, it undergoes 
freeze-thaw deterioration which will further accelerate 
the process of ingress of water and thus facilitate 
accelerated freeze thaw damage [�,2]. For air entrained 

concrete, the saturation process takes significantly longer 
time compared to non-air entrained concrete [�,2].

To determine the cause of this premature joint 
deterioration, cores were obtained from both deteriorated 
as well as non-deteriorated sections of concrete pavements 
with the objective of conducting a series of materials 
and durability tests in the laboratory. The coring 
locations were selected based on the information collected 
from various divisions of the Indiana Department of 
Transportation (INDOT). Depending on the availability of 
data, the collected information included such items as the 
age of pavement, mixture composition, structural design 
parameters and type of deicer used.

Under service conditions, the temperature, pore solution 
concentration and the degree of saturation of concrete 
near the joints varies continuously. Measurement of 
electrical conductivity of concrete, which depends on 
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concrete age (i.e. degree of hydration) [3,4], composition 
of the pore solution [5,6], moisture content [5,7], and 
temperature variations [8,9], may offer a convenient 
means to monitor these changes.

Based on the work done previously by INDOT in 
association with Joint Transportation Research Program 
(JTRP) on joint deterioration of concrete pavements in 
Indiana, USA [�0,��], the research group was interested 
in obtaining construction, design, materials and deicing 
information for concrete pavements which demonstrated 
premature joint deterioration. Since most of this 
information was not easily available, the research team 
decided to prepare its own set of concrete mixtures 
which could be used to simulate the effects of individual 
variables on conductivity.

As mentioned above, the electrical conductivity of 
concrete depends on its age, composition of the pore 
solution, moisture content, and temperature. All of 
these parameters change when the concrete is subjected 
to freezing and thawing in the presence of deicing salt 
solutions thus making it difficult to interpret the test 
results. It is therefore essential to access  how each of 
these parameters affects the conductivity of concrete 
individually before starting testing on samples where all 
the parameters change in tandem. This paper discusses 
the individual effects of temperature, saturation level 
and air content on the bulk electrical conductivity of 
concrete.

The Effects of temperature

In concrete, electrical conduction happens predominantly 
through pore solution [�2]. Previous work has shown 
that Arrhenius relationship is applicable to concrete (see 
Equation �) [8,9,�3].

           ... (�)

where, ‘σ ‘ is conductivity of concrete (Siemens/meter), 
‘A’ is the nominal conductivity at infinite temperature (S/
m), ‘Ea’ is activation energy (kJ/mole), ‘R’ is the universal 
gas constant (8.314 kJ/mol/K) and ‘T’ is the absolute 
temperature (Kelvin). The above relationship has been 
successfully verified for temperature ranging from 0°C to 
50°C [8,9,14]. The objective of this work was to determine 

whether the Arrhenius relationship is still applicable if 
concrete is exposed to temperatures below freezing and 
ranging from -18°C to 23°C (i.e. for cases where the low 
end of the temperature range is below freezing).

The Effects of Degree of Saturation

Air entrained concrete may still experience freeze-thaw 
deterioration if it is critically saturated (i.e. if the degree of 
saturation is greater than 85% [ � ] ). Previous works have 
shown that there is a  one-to-one relationship between 
the conductivity of concrete and its moisture content 
[ 7 , 1 5 ] . The tortuosity of the conduction path (defined as 
the inverse of pore connectivity) decreases with increased 
saturation level of the concrete, facilitating an increase in 
the measured conductivity. The present work examined 
the measured conductivity of concrete with degrees of 
saturation greater than 0.8, which is when the concrete 
is in danger of deteriorating due to freeze-thaw action 
[�,2].

The effects of air content

For a porous medium (like hardened cement pastes and 
concretes) the bulk conductivity (σ �)  can be modeled 
using Equation 2 [7,�2,�6].

           ... (2)

where ‘σ0’ is pore solution conductivity (S/m), ‘φ’ is total 
liquid filled porosity, and ‘β’ is the factor representing 
moisture connectivity. The inverse of the product of 
pore connectivity and total liquid filled porosity (1/
φβ) is called the formation factor [7 ,17] .  Formation 
factor can be interpreted as a  measure of the volume of 
the pores and their connectivity [7]. In other words, we 
could use formation factor to quantify the microstructure 
of concrete and therefore use the above concept to 
define a model connecting the air content of concrete 
to its measured conductivity. This work presents such a 
model which is applicable to concretes which have air 
contents ranging from 4% to 8%.

MATErIALS uSEd
This section provides information regarding materials 
used to produce different concrete mixtures which were 
utilized in this study.
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Table 1. Chemical and physical characteristics of cement
Chemical composition %

Silicon dioxide (SiO2) �8.94

Aluminum oxide (Al2O3) 5.65

Ferric oxide (Fe2O3) 3.29

Calcium oxide (CaO) 63.20

Magnesium oxide (MgO) 3.�3

Sulfur Trioxide (SO3) 3.43

Loss on ignition �.�3

Sodium oxide (Na2O) 0.34

Potassium oxide (K2O) 0.78

Insoluble residue 0.35

Total alkali as Na2O 0.86

Potential compound composition

Tricalcium silicate (C3S) 6�

Dicalcium silicate (C2S) 8

Tricalcium aluminate (C3A) 9

Tricalcium aluminoferrite (C4AF) �0

Physical characteristics

Blaine fineness (cm2/g) 3750

Autoclave expansion (%) 0.082

Air entrained (%) 9.8

Setting time (vicat) – initial/final (minutes) 112/225

Compressive strength (N/mm2)

� day �9.24

3 day 28.00

7 day 32.34

Cement

Type I portland cement was used in all mixtures. Its 
physical and chemical characteristics are shown in 
Table �.

Aggregates

INDOT approved No. 8 (dmax = 25.4 mm) aggregate from 
Delphi, IN and No. 23 natural siliceous sand was used in 
the production of concrete. The absorption and specific 
gravity of the fine aggregate and coarse aggregate were 

measured in accordance with AASHTO T 84 [�8] and 
AASHTO T 85 [�9] and are summarized in Table 2.

Chemical admixtures

An air entraining agent was used. Use of water reducing 
admixtures was avoided because modern day super-
plasticizers contain sulphonates or polycarboxylates 
which might alter the makeup of the pore solution and 
thus may affect the conductivity of concrete. In many of the 
older concretes being examined during this study water 
reducers were not used and the effects of temperature, air 
content and moisture are expected to be primary variables 
influencing the conductivity. The influence of additional 
variables, such as chemical admixtures, will be a logical 
next step for future work once the influence of the basic 
environmental variables are better understood.

MIXTurE PrOPOrTION ANd SPECIMEN 
CONdITIONING

Mixture proportions

This section provides information on mixture proportions 
used to prepare test specimens for each of the three 
series of experiments (i.e. the evaluation of individual 
effects of temperature, saturation level and air content on 
the bulk conductivity of concrete). Initially, one particular 
mixture design (shown in Table 3) was adopted and used 
to prepare specimens to study the effects of temperature. 
This mixture design satisfied INDOT’s requirements for 
concrete pavement. The concrete was mixed following 
AASHTO R 39 [20]. The air content of the fresh concrete 
was measured using a pressure meter following 
AASHTO T �52 [2�]and was found to be 5.5% by 
volume. Temperature data loggers were embedded in 
cylindrical specimens (�0�.6 mm diameter and 203.2 mm 
height) during casting to monitor the temperature inside 
the concrete.

Table 2. Specific gravity and absorption of aggregates
Absorption 

(% by weight)
Specific gravity

Coarse aggregate 0.0��% 2.73

Fine aggregate 0.02�% 2.56

Table 3. Mixture proportions for testing the effects of 
temperature

Constituents Amount (kg / m3)

Cement (type I) 347.66

Water �49.50

Sand 8�2.79

Coarse aggregate 990.77

Air entraining agent 34.8 ml/m3
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The mixture with composition shown in Table 3 produced 
concrete with less than optimal workability (slump value 
of 25 mm). Since it was anticipated that the workability 
would be reduced further in the low air mixtures, this 
basic design was slightly altered by increasing the w/c 
ratio from 0.43 to 0.45. This modification increased the 
slump value to 50 mm. This altered mixture (composition 
shown in Table 4) was used for preparing samples for 
studying the effects of the degree of saturation on 
conductivity. The concrete was mixed following the 
procedure described in AASHTO R 39 [20] and cylindrical 
specimens (�0�.6 mm diameter and 203.2 mm height) 
were cast. The air content of the fresh concrete measured 
following the procedure described in AASHTO T �52 
[2�] and it was found to be 6% by volume.

Mixture with composition shown in Table 4 also was 
used as a base mixture to study the effects o f air content 
(see Table 5). Table 5  shows the adjustments made to 
this mix design to obtain three more concretes mixture 
with the desired amount of air contents. These alterations 
were made by keeping the w/c and fine aggregate to 
total aggregate ratios constant. The concrete was mixed 
following AASHTO R 39 [20] and cylindrical specimens 
(�0�.6 mm diameter and 203.6 mm height) were cast. The 
air content of the fresh concrete was measured following 
the procedure described in AASHTO T �52 [2�] and is 
summarized in Table 5.

Conditioning of test specimens

This section describes in detail the sample conditioning 
of concrete specimens used to study the individual effects 
of temperature, degree of saturation, and air content 
on the conductivity of concrete.

Test specimens to study the effects of temperature

The specimens were demoulded 24 hours after casting 
and moist cured (23˚C and 100% RH) for 56 days. At the 
end of the curing period the specimens were removed 
from the moist room and were cut perpendicularly to 
their axis to remove about �-inch thick slice from both 
the top and the bottom of each cylinder. The remaining 
part of each cylinder was then cut into three 2-inch 
thick disks. The curved surface of each disk was then 
sealed with epoxy. Once the epoxy cured the disks 
were then vacuum saturated following the procedure 
described in AASTHO T 277 [ 2 2 ] and ( t o  e n s u r e 
c o m p l e t e  s a t u r a t i o n )  were kept in lime water 
until their mass stabilized. The saturated samples were 
then conditioned to 23˚C, 15˚C, 10˚C, 5˚C, 0˚C, -5˚C, -10˚C, 
-15˚C and -18˚C by placing them in the environmental 
chamber until the temperature inside a companion 50.8 
mm thick concrete disk reached the desired temperature. 
The electrical resistance of each concrete slice was 
measured after each of the aforementioned temperatures 
was attained and stabilized (see description in section 4 
of this paper). To prevent any loss of moisture due to 
temperature conditioning, the samples were sealed in an 
individual plastic bag each which was, in turn enclosed 
in another plastic bag containing some water in order to 
maintain the sample at �00% relative humidity.

Test specimens to study the effects of degree of 
saturation

The specimens were demoulded 24 hours after casting 
and moist cured (23˚C and 100% RH) for 28 days. Each 

Table 5. Mixture proportions for testing the effects of air 
content on conductivity

Mix 4% Mix 5% Mix 7% Mix 9%

Constituents Amount 
(kg/m3)

Amount 
(kg/m3)

Amount 
(kg/m3)

Amount 
(kg/m3)

Cement (type I) 347.66 347.66 347.66 347.66

Water �56.62 �56.62 �56.62 �56.62

Sand 854.32 830.59 806.86 783.�2

Coarse aggregate �044.�7 �008.57 984.84 955.�8

Micro Air® AEA 27.1 ml/m3 30.9 ml/m3 42.5 ml/m3 56.1 ml/m3

Air content 
(AASHTO T �52) 4% 5.3% 6.7% 8.5%

Table 4. Mixture proportions for testing the effects of  
saturation level

Constituents Amount (kg / m3)

Cement (type I) 347.66

Water �56.62

Sand 854.32

Coarse aggregate �044.�7

Air entraining agent 30.9 ml/m3
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cylinder was then cut into three 50.8 mm thick disk (after 
discarding the top and the bottom 25.4 mm thick slices) 
which were oven dried at 105˚C until their mass stabilized. 
The dried sample were then vacuum saturated following 
the procedure described in AASHTO T 277 [22]and were 
kept in lime water until their mass stabilized to ensure 
complete saturation. This condition was assumed to be 
a �00% saturated condition. The mass of the sample was 
recorded at �00% saturation level and the samples were 
dried to the desired mass values (which were theoretically 
obtained using completely saturated mass and dry mass 
of companion samples) to achieve saturation levels of 
95%, 90%, 85%, and 80%. The electrical resistance was 
measured at each of those saturation levels.

The specimens to study the effects of air content

The specimens were demolded 24 hours after casting 
and moist cured (23˚C and 100% RH) for 28 days. Three 
50.8 mm thick disks were cut out of the cylinder (after 
discarding the top and bottom 25.4 mm thick slices). 
The disks were then vacuum saturated following the 
procedure described in AASHTO T 277 [22] and placed 
in lime water until their mass stabilized to ensure 
complete saturation. The electrical resistance of the 
samples was then measured following the procedure 
described in section 4 of the paper. Air void analysis 
was performed on hardened concrete following the 
procedure described in ASTM C457 [23] to confirm 
that the air content was similar to what was measured 
in the fresh concrete.

MEASurEMENT OF ELECTrICAL rESISTANCE
The electrical resistance of concrete was measured 
using a  Proceq® probe. The concrete sample was 
placed between two electrode plates and its resistance 
was measured. The resistivity of concrete was calculated 
by multiplying the resistance by the sample’s geometry 
factor A/L (see Equation 3). The inverse of resistivity 
provided the value conductivity (see Equation 4).

           ... (3)

            ... (4)

where ‘ρ’ is the resistivity (ohm-m), ‘R’ is the resistance 
(ohm), ‘σ’ is the conductivity (S/m), ‘A’ (m2) and ‘L’ (m) 
are the cross sectional area and length of the sample 
respectively.

rESuLTS ANd dISCuSSIONS
This section presents the analysis and discussion of the 
results obtained from the experiments performed in the 
course of this study.

The Effects of temperature on the bulk  
conductivity of concrete

To assess the effect of temperature on the bulk conductivity 
of concrete, electrical resistance measurements were 
performed on a total of nine samples that were 
conditioned to nine different temperatures (as described 
in section 3.2.�). These results are plotted in Figure �, 
and demonstrate that there exists a linear relationship 
between the natural logarithm of conductivity and 
inverse of the absolute temperature for temperatures 
ranging from -18˚C to 23˚C. On taking natural logarithms 
of both sides of Equation �, we observe that the slope of 
the plot between natural logarithm of conductivity and 
the inverse of the absolute temperature is the activation 
energy for the process divided by the universal gas constant  
(R = 8.314 kJ/mol/K). Thus, the average activation energy, 
obtained by multiplying the slope of the straight line in 
Figure � by the universal gas constant, was found to be 
21.64 kJ/mol. This value is close to the activation energy 
values of concrete obtained in other studies [8,24].
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The effects of degree of saturation on the 
bulk conductivity of concrete

Previous works [7,�5]  have suggested that conductivity 
of concrete has a one-to-one relationship with its moisture 
content. Table 6 summarizes the changes in conductivity 
of concrete as it is dried from a state of complete 
saturation to a saturation level of 80%. Data presented 
in table are an average values obtained from four test 
samples. Slight differences in conductivity observed 
between the samples extracted from the top and the 
bottom of the 4”x8” cylinders could be attributed to 
segregation of the fresh concrete mixture. The samples 
from the bottom of the cylinder showed slightly 
lower conductivity (~�0%) because they have higher 
percentage (by volume) of aggregate compared to the 
samples extracted from the top of the cylinder. Analysis 
of data from Table 6 indicates that conductivity decreases 
with drying for all samples. The percentage decrease in 
the conductivity is higher for the sample extracted from 
the top of the cylinder compared to the sample from the 
bottom of the cylinder for saturation levels less than or 

equal to 90%. This observation can be further explained 
by examination of Equation 2. Specifically, at the same 
saturation level, the total liquid filled porosity (φ) and 
the pore solution conductivity (σ0) terms of the equation 
will be the same but the moisture connectivity (β) will 
decrease more rapidly for samples extracted from the top 
than those extracted from the bottom due to higher paste 
content in the top samples (which is a result of a partial 
segregation).

Effect of air content on the bulk conductivity 
of concrete

Column 4 in Table 7 lists the average values of 
conductivity for concrete mixture with different amounts 
of entrained air content. It can be seen that, in general, 

Table 6. The average conductivity values for concrete with
different saturation level

Sample 
location

Average conductivity values (S/cm) of concrete and % 
decrease compared to fully saturated samples.

Saturation 
level 100 %

Saturation 
level 95 %

Saturation 
level 90 %

Saturation 
level 85 %

Saturation 
level 80 %

TOP
3.327 2.770 2.638 2.450 2.289

% decrease �6.75 20.73 26.38 3�.2�

MIDDLE
3.�87 2.653 2.509 2.360 2.�94

% decrease �6.75 2�.27 25.94 3�.�7

BOTTOM
2.939 2.444 2.358 2.22� 2.�22

% decrease �6.83 �9.78 24.43 27.79

Table 7. Measured concrete conductivity values, measured pore solution conductivity value and the calculated 
formation factor

Mixture

(1)

Air content  
(ASTM C231)

(2)

Air content  
(ASTM C457)

(3)

Average concrete 
conductivity, 

σt (S/cm) 
(4)

Pore solution 
conductivity,  

σ0 (S/m)
(5)

Formation factor,
 F

(6)

A.C. 4% 4.00% 3.62% �.26 4.7 0.037

A.C. 5% 5.30% 4.53% �.39 4.7 0.034

A.C. 7% 6.70% 6.06% �.66 4.7 0.028

A.C. 9% 8.50% 8.64% �.30 4.7 0.036
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as the air content increases the conductivity of the 
concrete increases except for the mixture with the highest 
(8.64%) air content. The increase in conductivity with an 
increase in the air content can be explained by the fact 
that in a saturated condition all air voids are filled with 
liquid which significantly decreases the tortuosity of 
the conduction path. Since change in the air content 
implies change in the microstructure of concrete, there 
is a need to quantify the extent of this change. As 
mentioned in section 1 of this paper, the quantification of 
the microstructure can be accomplished by calculating 
the value of formation factor (F) which is linked to 
both, the concrete conductivity (σt) and conductivity of 
the pore solution (σ0) as shown in Equation 5.

          ... (5)

where ‘σt’ is bulk conductivity of concrete; ‘σ0’ is pore 
solution conductivity; ‘ F’ is the formation factor; and 
‘f(S)’ is a function of saturation which is equal to � in 
saturated condition.

Ideally the conductivity of pore solution should be 
determined using liquid squeezed out of concrete samples. 
However it was difficult to obtain a measureable quantity 
of pore solution from the mature concrete specimens. 
To overcome this problem, a series of paste specimen 
was prepared using the same cement and the w/c ratio 
as those used in preparation of concrete specimen. The 
paste specimens were mechanically squeezed to obtain 
pore solution needed to determine σ0. The average pore 

solution conductivity measured at 28 days was 4.7 S/m. 
This value is considerably lower than the conductivity 
value of 14.63 S/m predicted for 100% hydrated concrete 
with w/c ratio of 0.45 by the model developed by the 
National Institute of Standards (NIST) [6]. The reason for 
this discrepancy may be related to the fact that specimens 
used in this experiment were vacuum saturated and 
soaked in lime water. Both of these treatments could 
have diluted the pore solution as a result of water ingress 
into the microstructure and leaching of alkali ions into the 
soak solution.

The formation factors calculated using the obtained values 
of conductivity of the pore solution are also shown in 
Table 7. Figure 3 shows the plot relating the formation 
factor and hardened air content of concrete. The lower 
conductivity (higher formation factor) for mixture with air 
content of 8.6% may be due to the fact that at such high 
air content there might exists smaller air voids which are 
isolated and therefore are difficult to saturate completely. 
When unsaturated, these empty air voids will impede the 
flow of electrons essentially increasing the tortuosity of 
the conductivity path and reducing the bulk conductivity 
of those samples.

To verify the aforementioned assumption (presence of 
greater amounts of unsaturated air voids for mixture with 
high air content), the research team dried out samples at 
105°C until their mass stabilized and tried to compare the 
actual mass loss to the theoretically expected mass loss. 
The theoretically expected mass loss should be equal 
to the sum of the evaporable water and the amount of 
water needed to completely saturate all the air voids. 
The mass of the cement (c) in the sample was estimated 
using the mixture proportions and the volume of the 
samples (which was same for all the samples). As all the 
mixtures had similar cement content and w/c ratios, the 
evaporable water, which was calculated by subtracting 
the non-evaporable water (0.24g/c) from the total water 
(0.45c), will be same for all the mixes. Analyzing the 
results given in the last column of Table 8, it is clear that 
the mix with air content of 8.6% had significantly lower 
amount of water in the air voids than those observed in 
mixes with lower air content. As a result, it should be 
expected that this particular mix will also have lower 
conductivity.
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For concretes with air content ranging from 4% to 
8%, Equation 6 can be developed by combining the 
relationship between formation factor and air content 
(shown in Figure 3) and relationship between formation 
factor and conductivity (shown in Equation 5).

   
 ... (6)

where ‘A.C.’ is the air content of the concrete. This 
equation can be used to model the conductivity of 
saturated concrete with different air content (provided all 
other parameters are the same).

SuMMArY
The results of the present study clearly indicated that 
as the temperature of the specimens increased, their 
conductivity also increased. Arrhenius relationship 
(Equation �) can be successfully used to model expected 
changes in concrete’s conductivity as a function of its 
temperature for temperature range of -18°C to 23°C. The 
activation energy required to begin conduction process of 
a completely saturated concrete sample with w/c ratio of 
0.43 was found to be 21.64 kJ/mol.

The study also revealed that as the degree of saturation of 
concrete increases, its conductivity increases. This increase 
was monitored for saturation levels ranging from 80% 
to �00% which is a typical range of moisture content 
associated with freeze-thaw damage. The influence of the 
degree of saturation on the conductivity of concrete can 
be predicted using previously published models [7].

For air contents ranging from 4% to 8%, the relationship 
between conductivity and air content of completely 
saturated concrete samples can be defined using  Equation 
6.

The results of the experiments reported in this paper also 
suggest that modeling of conductivity of concrete exposed 
to freeze-thaw conditions will require taking into account 
changes in conductivity resulting from temperature, 
degree of saturation and the air content.

The research team is currently working on developing 
a model which will relate the conductivity of concrete 
prepared in the laboratory to its temperature, air content, 
saturation condition, number of freeze-thaw cycles (in 
presence of different deicing solutions) for plain cement 
concrete and fly ash concrete. Based on the model (if 
successfully developed), the conductivity measurements 
performed on the concrete obtained from cores could 
provide an educated guess on the type of deicer used 
or age or any other information about the pavement 
which were not otherwise available. This could provide 
the research team with some of the missing information 
that might help identify causes of joint deterioration in 
concrete pavements.
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