DEVELOPMENT OF A COST-EFFECTIVENESS MODEL FOR GUARDRAIL SELECTION

Vol. I. Technical Documentation

January 1980
Final Report

Document is available to the public through the National Technical Information Service,
Springfield, Virginia 22161

Prepared for

FEDERAL HIGHWAY ADMINISTRATION
Offices of Research \& Development
Washington, D. C. 20590

This report is one of a set of reports documenting the development of a cost-effectiveness model for yuardrail selection which includes cost parameters for various guardrail configurations as woll as criferia for analysis of system effectiveness under various dynamic impact conditions.

Iritially, fwo computer programs were developed for (l) determining the cost-effectiveness of a spec:fic guardrail type and (2) comparative cost-effectiveness and rankings of eleven guardrail ijues, It is important to note that in the development and application of this model the guardrail was assumed to be warranted.

A speed distribution reported by Michigan in 1974 was used in the initial model development. Sibsequently, another speed distribution developed by Calspan Corporation was used in the model.

The Calspan speed distribution was developed through the reconstruction of single vehicle accidents on two lane rural roads. The Michigan data was obtained from police reports on mostly freeway accidents. Because of differences in accident location and possibly also due to differences in data collection procedures, the Calspan speeds are generally lower than the Michigan speeds. For this reason the Calspan speed distribution data may be more appropriate for use on non-freeway sites while the Michigan speed distribution data may be more indicative of irceway conditions. The use of the lower speed distribution did, as expected, affect the guardrail rankings.

In order to provide flexibility, the speed distribution has been changed to a data input allowing the user to choose between the Michigan produced speed distribution, one developed by the Calspan Corporation or data developed directly by the user.

Two sets of site selection tables were also developed from the models for use in the field in making rough approximations of how the various guardrail types will rank. One set is based on the Michigan data; the other set is based on the Calspan data. In both cases, only the direct costs of the accidents were used. This was done to avoid the controversy surrounding the societel cost. of accidents, the major portion of which is the loss of future earnings. This result has little effect on the relative rankings but does effect the site selection tables. The cost variable is also an input variable when using the models. Thus, the user may choose what he considers appropriate values for the costs of accidents.

Sufficient copies of the Executive Sumary and the two volume report are being distributed to provide a minimum of one copy to each FHWA regional office and one copy to each FHWA division offices. Copies of the site selection tables based on the Calspan data will be made available to satisfy individual requests.

Director, Office of Research
Federal Highway Administration

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of Southwest Research Institute which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

16. Abstract

This research was conducted to develop a cost-effectiveness model for guardrail selection that includes cost parameters for eleven (11) guardrail configurations and criteria for analysis of system effectiveness under various dynamic impact conditions. Vehicle classes include $2250-\mathrm{lb}$ ($1021-\mathrm{kg}$) and $4500-\mathrm{lb}(2041-\mathrm{kg})$ vehicles. Accident severities were based on extrapolations of full-scale test data and verified by means of guardrail accident reconstruction data. Two computer programs were developed: (1) the SSCOST program for cost-effectiveness values (state cost, societal cost, total cost, and benefit-to-cost ratio) of a single specified guardrail type with given roadway conditions, and (2) the COCOST program for comparative cost-effectiveness values and ranking of the eleven guardrail types with given roadway conditions. Program inputs are simple to prepare, and computer run times are minimal.

This volume includes the data collection and analysis and technical documentation for quantification of the pertinent parameters and development of the computer algorithm. Volume II is a user's manual for applying the computer programs.

17. Key Words

Highway Safety, Roadside Design, Guardrails, Cost-Effectiveness
18. Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 151	22. Price

PREFACE

This report, prepared under Contract No. DOT-FH-11-8827, describes the results of work conducted by the Transportation Structural Research Section of the Department of Structural Systems and Fire Technology, Southwest Research Institute. The author acknowledges the technical guidance and constructive report review of the FHWA Contract Manager, Mr. Michael J. McDanold.

Along with Dr. Lee R. Calcote, Principal Investigator, several SwRI staff members assisted in conducting the study. Jarvis D. Michie and M. E. Bronstad served as technical and administrative advisors. Van B. Parr formulated the traffic delay portion of the cost-effectiveness model, and Tom H. Swiersinsky was responsible for the accident reconstruction portion. Ray E. Kirksey expanded the BARRIER VII program and conducted A/D analyses of the pendulum test data. BARRIER VII accident reconstruction simulations were conducted and analyzed by Edwin O. Wiles. Glenn W. Deel assessed full-scale test and extrapolated vehicle damage, and C. E. Kimball, Jr., was responsible for the pendulum testing. Jane E. Baker prepared report manuscripts throughout the program.

Since the completion of this report, a draft final report has been submitted for Contract No. DOT-FH-11-8501, "Methodology for Reducing the Hazardous Effects of Highway Features and Roadside Objects," by Calspan Field Services, Incorporated. This contract involved the collection and analysis of data for 7,972 accidents on both freeway and non-freeway types of roads.

The impact speed distribution obtained from this Calspan study differed significantly from that used in this report (see Figure 6, page 36). Also, a question was raised by FHWA concerning the occupant severity index (see Figure 9, page 51). Consequently, sensitivity analyses were conducted of the speed distribution and severity indices used in the cost-effectiveness model of this study. The conclusions of the analyses were that the model is sensitive (order of preference of guardrail types as well as corresponding values) to both changes in severity and the change in speed distribution.

Details of these sensitivity analyses are shown in the Addendum of Volume II, User's Manual. Because of the sensitivity of these parameters, the computer programs discussed herein have been changed to include user specified input for speed distribution percentages and severity index factors. Further, sensitivity analyses and site selection tables presented herein have been rerun with the Calspan speed distribution.

If the Michigan speed distribution shown in Figure 6 is representative, the user can apply the results of this report directly. If the Calspan distribution is more representative (see Addendum of Volume II), the regenerated results can be obtained from FHWA for use. Finally, if other distributions or modifications of the severity indices (Figure 9) are desired, the user can specify the input values and conduct computer runs to prepare his own set of guardrail selection aids.

TABLE OF CONTENTS

Page
VOLUME I - TECHNICAL DOCUMENTATION
LIST OF FIGURES iv
LIST OF TABLES v
I. INTRODUCTION 1
II. DISCUSSIONS OF RESEARCH EFFORTS 3
Chapter 1. Collection and Synthesis of Guardrail Dynamic Crash Data. 3
Chapter 2. Collection and Synthesis of Cost Data 27
Injury and Fatality Costs 27
Vehicle Prices 28
Guardrail Installation and Repair Costs 30
Vehicle Delay Cost 30
Chapter 3. Development of Cost-Effectiveness Model 31
Vehicle Distributions 34
Impact Probabilities 34
Traffic Delay Time 37
Exposure Lengths 37
Computer Programs 38
Chapter 4. Collection of Reconstructed Accident Data and Verification of Model Validity 48
Chapter 5. Analysis of Effects of Soil Condition on Post Parameters 51
Chapter 6. Preparation of User's Manual 57
III. CONCLUSIONS 58
REFERENCES 59
APPENDICES
A. Determination of Post, Railing, and Vehicle Properties A-1
B. Correlation Run Results and Guardrail and Vehicle Configurations for Extrapolation Runs B-1
C. Basis for Estimating Vehicle Damage C-1
D. Determination of Probabilities D-1
E. Traffic Delay Time E-1
F. Instructions to Accident Investigation Teams F-1
G. Determination of Exposure Length G-1
H. Post Properties for Various Soil Types H-1

LIST OF FIGURES

Figure Page
1 Guardrail Design Process 2
2 Vehicle Deformation (Front Half) 15
3 Vehicle Deformation (Rear Half). 16
4 Cost-Effectiveness Process in Guardrail Design. 32
5 Distribution of Lateral Displacements 35
6 Distributions of Vehicle Speeds and Impact Angles 36
$7 \quad$ SSCOST Input Worksheet 39
8 COCOST Input Worksheet 40
9 Guardrail Severity Level Indicator 51

LIST OF TABLES

Table Page
1 Guardrail Types 4-9
2 Data Base of Full-Scale Tests 10-12
3 Summary of Test Correlations 13
4 Impact Conditions 14
5 Extrapolation Data 17-26
6 RVA Program Results 27
7 Vehicle Roll Angle Cycles 27
8 Societal Cost Components for Fatalities, 1972 NHTSA Study. 28
9 Injury Severity Classes in the 1972 Societal Cost Study 28
10 1975 Automobile Prices 29
11 Typical Guardrail Installation Costs (\$/L.F.) 31
12 Typical Guardrail Repair Costs (\$/L.F.) 32
13 Traffic Mix Distribution by Weight 34
14 Encroachment Rate Table 35
15 Distribution of Speeds and Angles 37
16 Effect of Fatality/Injury Costs on Societal Costs 41
17
Effect of Fatality/Injury Costs on Total Costs. 42
18 Effect of Fatality/Injury Costs on Benefit/Cost Ratios 43
19 Optimum Guardrail-to-Obstacle Distance - 2-Lane Rural Road with 4-ft Shoulder 44
20 Optimum Guardrail-to-Obstacle Distance-4-Lane Rural Road with $8-\mathrm{ft}$ Shoulder 45
21 Optimum Guardrail-to-Obstacle Distance-Divided Highway with $10-\mathrm{ft}$ Shoulder 46

LIST OF TABLES (Cont'd)

Table Page
22 Effect of Reducing Installation Cost on Benefit/Cost Ratios 47
23 Effect of Traffic Mix on Benefit/Cost Ratios 48
24 Effect of Encroachment Rate on Benefit/Cost Ratios 49
25 Comparison of Simulated and Reported Accidents 52-53
26
Comparison of Soil Supports for $6-\mathrm{in} . \times 8$-in. Douglas Fir Posts 55
27
Comparison of Soil Supports for W6 \times 8.5 Steel Posts 56
28 Post and Soil Effects on Vehicle Performance 57

I. INTRODUCTION

Since the late 1960's, extensive investigative efforts have been undertaken to improve highway safety by either eliminating hazardous roadside conditions or by improving traffic barrier systems to protect the motorist from those hazards that cannot be eliminated economically. Numerous reports have been prepared to present updated state-of-the-practice in traffic barrier technology, including warrants, impact performance, and economics. Notable among these have been National Cooperative Highway Research Program (NCHRP) Reports 36 (1967), 54 (1968), and 118 (1971). Current state of knowledge and design guidelines for longitudinal barriers (guardrails and median barriers) and crash cushions are contained in the AASHTO "Guide for Selecting, Locating, and Designing Traffic Barriers," 1977.

This report is concerned with highway guardrails. Figure 1 illustrates the design process graphically. The upper portion of the figure involves the determination of whether or not the guardrail installation is warranted. In the conventional procedures, details of embankments or roadside objects (nontraversable hazards or fixed objects) are compared with available warranting criteria, such as those in the AASHTO guide. Guardrails generally produce a larger target for the motorist than the shielded obstacles and, hence, increase the frequency of impacts. Thus, the warrants are based on the premise that the guardrail should be installed only if it reduces the severity of potential accidents. Note that the probability and associated costs of accidents are not included in this warranting procedure.

Based upon engineering judgment, the probability of run-off-the-road accidents, economic factors, or other decision policies, guardrails are generally constructed in as many warranted sites as funds permit. The AASHTO guide lists deflection, strength and safety, maintenance, compatability, costs, field experience, aesthetics, and promising new designs as selection criteria.

With the problems of ever-increasing highway construction costs and the limited funding available, it has become of critical importance that a cost-effectiveness formulation be included as an aid in the decision-making policy. This is particularly true for the rural, low-volume highway. With such roads, strict adherence to the conventional guardrail warranting and selection procedures could lead to the installation of guardrails of maximum effectiveness at some sites and no installations at other sites because of the lack of available funds. Thus, as shown by the dashed lines in Figure 1, this contract supplies a need for effective criteria for the selection of guardrail types based on a cost-effectiveness analysis. A typical cost-effective procedure of the design process can be used to evaluate the options of (1) removing or reducing the hazard so that the guardrail is no longer warranted, (2) installing the most cost-effective guardrail systems as funds permit, or (3) leaving hazards unshielded at sites where guardrail installation is not cost-effective. This contract focuses principally on the second of these options in that the guardrail is assumed to be warranted. However, option (3) can also be exercised for the included hazard types of fixed objects or embankments. Of course, the value of such a cost-effectiveness decision-making policy need not be limited to low-volume roads and could result in more efficient utilization of available funds for all types of highway systems.

The objective of this program was to develop a cost-effectiveness model for guardrail selection that would include cost parameters for various guardrail configurations as well as criteria for analysis of system effectiveness under various dynamic impact conditions. Two computer programs were developed: (1) the SSCOST program for cost-effectiveness values (state cost, societal cost, total cost, and benefit-to-cost ratio) of a single specified guardrail type with given roadway conditions, and (2) the COCOST program for comparative cost-effectiveness values and ranking of the eleven included guardrail types with given roadway conditions. The following definitions were used with regard to the cost-effectiveness values:

FIGURE 1. GUARDRAIL DESIGN PROCESS
(1) state cost - money spent by the state in installing and maintaining the guardrail.
(2) societal cost - costs associated with accidents, including costs of injuries and fatalities, costs of guardrail and vehicle damage, and cost of traffic delay.
(3) total cost - the sum of state and societal costs.
(4) benefit - the difference between societal cost with no guardrail installation and societal cost with the guardrail installed. Hazard types include fixed objects or embankments.
(5) benefit-to-cost ratio - the ratio of the benefit to the state cost. Thus, to effect a savings in societal costs greater than the state cost of the guardrail installation, a benefit-to-cost ratio greater than unity must be realized.
Specifically, the study involved the following functions:

- Collect and synthesize (a) available guardrail dynamic crash data and (b) cost data for the various guardrail types and impact severities.
- Develop cost-effectiveness model that includes éstimates of guardrail performance for various construction combinations and vehicle impact characteristics.
- Collect accident reconstruction data and verify model validity by application of the data.
- Analyze effects of soil condition on guardrail post parameters.
- Prepare final report including (a) technical documentation of the cost-effectiveness model and (b) a user manual for state and local highway engineers.

This volume contains technical documentation and describes the research efforts undertaken to collect and analyze the available data, quantify the pertinent parameters of the cost-effectiveness model, and develop the computer algorithm. Volume II contains the computer program listings and instructions and examples for applying the programs.

II. DISCUSSIONS OF RESEARCH EFFORTS

Chapter 1. Collection and Synthesis of Guardrail Dynamic Crash Data

It was necessary in the cost-effectiveness model development of this study that accident severities (i. e., vehicle accelerations and damage and guardrail damage) be established. For this purpose, the available full-scale vehicle crash test data were selected. Thus, a first effort was to determine the extent of available test data and establish gap areas that would have to be filled by extrapolations.

NCHRP Report $115^{(1)}$ contains summaries of full-scale guardrail and median barrier crash tests that were performed prior to its publication in 1971. This information was updated to include details of those tests that were either unavailable for inclusion in the report or were conducted subsequent to the publication of the report. The final updated list, containing summaries of several hundred tests, formed the basis for full-scale crash test results.

The eleven guardrail types selected for this program are shown in Table 1. Five of the designs (G1, G2, G3, G4S, G4W) were included in NCHRP Report 118. The remaining six systems were arbitrarily selected from commonly used designs and some of the newer designs coming into use. Most of the systems have now been included in the 1977 AASHTO guide. The corresponding system notations follow:

System in This Report	Notation in AASHTO Guide
A	
B	GR2, except for post size G4(1W), except for round rather than square posts
C	Not included
D	G4(2W)
E	G4(2S)
G1	G1
G2	G2
G3	G3
G4S	G4(1S)
G4W	G4(1W)
Thrie	G9

To prepare a full-scale data base, the barrier systems reported in the NCHRP 115 update were compared with the eleven selected guardrail types. Acceptable criteria included (1) identical post material and spacing, (2) identical railing shapes and materials, and (3) railing heights within ± 3 inches (76.2 mm). The problems with these hundreds of seemingly applicable full-scale tests soon became apparent. While many of the tests were non-applicable median barrier tests, practically all of them were developmental in nature with very few test results for the final adopted configurations. Thus, the available data were not as directly applicable to this study as anticipated. A major problem was the lack of data for the light $2250-\mathrm{lb}(1021-\mathrm{kg})$ vehicle. Further, most of the tests were directed toward the accepted containment test of a $4500-1 \mathrm{~b}$ ($2041-\mathrm{kg}$) vehicle $/ 60-\mathrm{mph}$ ($96.5-\mathrm{km} / \mathrm{hr}$) $/ 25$-degree impact. If satisfactory containment was achieved, tests at other impact conditions were usually not conducted because of the expense involved. From the review of the updated summary, the final matrix of full-scale test results that constitute the data base for this program is shown in Table 2.

With the limited applicable full-scale data base shown in Table 2, it was necessary to carefully verify the computer simulations before extrapolating the results to other impact conditions. For this purpose, the BARRIER VII computer program ${ }^{(10)}$ was selected because of its capability to

TABLE 1. GUARDRAIL TYPES

Metric conversion: Multiply ft by 0.305 to obtain m
Multiply in. by 0.0254 to obtain m

TABLE 1. GUARDRAIL TYPES (Cont'd)

Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain m

TABLE 1. GUARDRAIL TYPES (Cont'd)

$\begin{array}{ll}\text { Metric conversion: } & \text { Multiply } \mathrm{ft} \text { by } 0.305 \text { to obtain } \mathrm{m} \\ & \text { Multiply in. by } 0.0254 \text { to obtain } \mathrm{m}\end{array}$

TABLE 1. GUARDRAIL TYPES (Cont'd)

[^0]

Metric conversion: Multiply ft by 0.305 to obtain m
Multiply in. by 0.0254 to obtain m

TABLE 1. GUARDRAIL TYPES (Cont'd)

Metric conversion: Multiply ft by 0.305 to obtain m
Multiply in. by 0.0254 to obtain m
model the geometric variables of the guardrail systems. However, it was necessary for inputs to the program that post, railing, and vehicle inertial properties be specified. Details concerning the determination of these properties are discussed in Appendix A. The geometric configurations of the various guardrail test installations were individually modeled by specification of node locations and member types. Vehicle speeds and impact angles were input as reported.

Details and results of all of the various BARRIER VII correlation runs are discussed in Appendix B. Table 3 is a summary of the test versus simulation comparisons to indicate the degree of correlation that was obtained with the BARRIER VII program. Though not excellent with respect to all of the variables involved, the correlations were considered to be satisfactory. Vehicle impacts with guardrails involve complex mechanisms of crushing metal, high loading rates, and large deformations that defy repeatability. Full-scale tests have demonstrated that seemingly inconsequential changes in construction details can significantly affect the performance of the impacting vehicle. In all likelihood, a duplication of any of the full-scale tests in Table 2, repeated as closely as possible in the field, would not yield results any closer than the indicated BARRIER VII simulations. Consequently, sufficient confidence was established in the simulations to proceed with the extrapolation runs.

The impact conditions selected for this study are shown in Table 4. Vehicle sizes are selected for the specified vehicle classes. Vehicle speeds and angles of impact are selected to cover the ranges of possible values. Category values for use in the extrapolation runs are generally the averages of the corresponding ranges. Since the post shape does not significantly affect the soil response, ${ }^{(17)}$ the guardrail responses of Type B with an 8 -inch round post and Type G4W with an 8 -inch $\times 8$-inch square post (see Table 1) would be identical. Thus, with 10 distinct guardrail types and the 2 vehicle
TABLE 2. DATA BASE OF FULL-SCALE TESTS

Test No.	Ref.	Design Type	Beam	Post	Block-out	Post Spacing (ft-in.)	Beam Height (in.)	Vehicle Test Conditions			Vehicle Accelerations (g's)*		Maximum Barrier Deflections (ft)		Barrier Damage		VehicleDamage(\% of Total)	Remarks
								Type/Weight (lb)	Speed (mph)	$\begin{array}{\|l\|} \hline \text { Impact } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{array}$			Beam (ft)	No. of Posts Damaged				
											Long.	Lat.			Dynamic	Permanent		
ODH-2	2	A	12 ga . W-beam	$4^{\prime \prime} \times 6^{\prime \prime} \mathrm{SYP}$	None	12-6	27	1963 Ford Sedan 4404	62.0	25.3	1.2 (200 ms)	2.6 (200 ms)	6.9	5.7	100	10	25	Exit angle 8°
ODH-3	2	A	12 ga W-beam	7" dia SYP	None	12-6	27	1961 Chevrolet Sedan 4445	62.5	28.7	$5.1(200 \mathrm{~ms})$	$3.5(200 \mathrm{~ms})$	4.3	2.2	50	2	100	Vehicle rolled over away from barrier
ODH-4	2	A	12 ga W-beam	6" dia SYP	None	12-6	27	$\begin{aligned} & 1960 \text { Chevrolet } \\ & 4 \geqslant 4 ? \end{aligned}$	63.1	28.3	2.6 (200 ms)	$3.4(200 \mathrm{~ms})$	6.5	5.2	75	6	35	Exit angle 18°
ODH-5	2	A	12 ga . W-beam	$\begin{aligned} & 6^{\prime \prime} \times 6^{\prime \prime} \text { SYP } \\ & \text { notched } \end{aligned}$	None	12-6	27	1959 Pontiac Sedan 4407	70.8	26.7	$2.2(200 \mathrm{~ms})$	$3.9(200 \mathrm{~ms})$	7.2	2.9	112	7	31	Exit angle 7°
105	3	C	$12 \mathrm{ga}$. W-beam	$8^{\prime \prime} \times 8^{\prime \prime} \mathrm{DF}$	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1^{\prime}-2^{\prime \prime} \mathrm{DF} \end{aligned}$	12-6	24	1962 Chrysler Sedan 4570	58	25	-	-	-	0.42	25	1	10	Vehicle vaulted over barrier
273	4	D	12 ga . W-beam	$6^{\prime \prime} \times 8^{\prime \prime} \mathrm{DF}$	$\begin{aligned} & 6^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1^{\prime}-2^{\prime \prime} \mathrm{DF} \end{aligned}$	6.3	27	1970 Mercury Sedan 4960	68	24	6.75	6.95	-	2.33	31	3	30	Exit angle 14°
AS-7	5	E	12 ga . W-beam	Charley (web facing) traffic)	Charley	6.3	27	1969 Plymouth 4323	62.0	25.0	3.4	5.9	3.5	2.7	37	5	28	Vehicle redirected
AS. 8	5	E	12 ga. W-beam	Charley (web opposite traffic)	Charley	6-3	27	1969 Plymouth 4323	59.0	25.0	3.7	6.8	2.9	1.8	25	5	28	Vehicle redirected
20	6	G1	3-3/4" cables	S3 $\times 5.7$	None	8-0	30	1961 Plymouth 3500	55	25	3.9	-	11.0	n/a	56	9	100	Exit angle 23°; vehicle rolled
28	6	G1	3-3/4" cables	S3 $\times 5.7$	None	8-0	30	1961 Plymouth 3500	53	25	3.5	-	8.5	n/a	56	7	-	8° curve, large exit angle
33	6	G1	3-3/4" cables	S3 $\times 5.7$	None	12-0	30	1961 Plymouth 3500	54	25	2.4	-	8.7	n/a	60	6	-	Exit angle 12°; vehicle rolled
36	6.	G1	3-3/4" cables	S3 $\times 5.7$	None	12-0	27	1961 Plymouth 3500	43	35	5.2	-	9.3	n/a	72	6	20	Vehicle snagged: no redirection
37	6	G1	3-3/4" cables	S3 $\times 5.7$	None	12-0	30	1961 Plymouth 3500	53	5	0.8	-	1.0	n/a	200	20	15	Vehicle remained in contact with rail
46	6	G1	3-3/4" cables	S3 $\times 5.7$	None	16.0	30	1961 Plymouth 3500	44	25	6.1	-	11.0	n/a	96	6	-	Exit angle 15°
1	7	G1	3-3/4" cables	S3 $\times 5.7$	None	16-0	27	1961 Plymouth 3105	28	90	3.7	-	7.7	n/a		6	-	Exit angle 90°
${ }^{9 \dagger}$	7	G1	3-3/4" cables	S3 $\times 5.7$	None	16-0	27	1961 Plymouth 3300	53	25	6.1	-	8.0	n/a	96	6	-	Exit angle 15°
21	7	G1	3-3/4" cables	S3 $\times 5.7$	None	16-0	27	$\begin{aligned} & 1957 \text { Anglias } \\ & 1623 \end{aligned}$	57	25	2.2	-	5.8	n/a	-	-	-	Exit angle 0°
105	8	G2	12 ga W-beam	S3 $\times 5.7$	None	12-6	30	1963 Plymouth 4051	60.1	27.8	2.9	3.8	7.30	5.33	25	3	23	Exit angle 9°
38	6	G2	12 ga . W-beam	S3 $\times 5.7$	None	12-6	30	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3500 \end{aligned}$	51	25	8.1	-	10.7	8.0	75	6	30	Vehicle pocketed
39	6	G2	12 ga . W-beam	S3 $\times 5.7$	None	12-6	30	1961 Plymouth 3500	54	25	2.7	-	6.8	4.0	60	6	20	Evit angle 14°

[^1]Metric conversion: Multiply lb by 0.45 to obtain kg
TABLE 2. DATA BASE OF FULL-SCALE TESTS (Cont'd)

Test No.	Ref.	$\begin{gathered} \text { Design } \\ \text { Type } \end{gathered}$	Beam	Post	Block-out	Post Spacing (ft-in.)	Beam Height (in.)	Vehicle Test Conditions			Vehicle Accelerations (g s)		Maximum Barrier Deflections (ft)		Barrier Danlage		$\left\|\begin{array}{c} \text { Velicle } \\ \text { Dimage } \\ \text { (\% or Total }) \end{array}\right\|$	Remasks
								Type/Weight (Ib)	Speed (mph)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lmpact } \\ \text { Angle } \\ \text { (deg) } \end{array} \\ \hline \end{array}$			$\begin{array}{\|c} \hline \text { Beam } \\ \text { (ft) } \end{array}$	No. ol Posts Damilged				
											Long.	Lat.			Dynamic	Permanent		
40	6	G2	12 ga . W-beam	S3 $\times 5.7$	None	12-6	30	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3500 \end{aligned}$	35	35	2.8	-	9.0	4.0	40	5	25	Velicice snugged on rail
41	6	G2	12 ga . W-beam	S3 $\times 5.7$	None	12-6	30	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3500 \end{aligned}$	57	6	1.0	-	0.0	0.0	12	2	10	$1 \times$ xit anyle 1°
49*	7	G2	12 ga . W-beam	S3 $\times 5.7$	None	12-6	30	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3300 \end{aligned}$	58	25	2.7	-	6.0	4.0	60	6	20	Exit ample 14°
25	6	G3	TS6 $\times 6 \times 0.1875$	S3 $\times 5.7$	None	6-0	27	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3500 \end{aligned}$	50	25	5.5	-	3.0	1.0	24	4	20	Exit angle 11°
34	6	G3	TS6 $\times 6 \times 0.1875$	S3 $\times 5.7$	None	6-0	27	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3500 \end{aligned}$	49	35	7.2 '	-	5.1	.	30	9	25	Exit angle 12°
114	8	G3	TS6 $\times 6 \times 0.1875$	S3 $\times 5.7$	None	6-0	27	$\begin{aligned} & 1964 \text { Dodge } \\ & 4031 \end{aligned}$	57.7	26	3.0	4.1	4.8	2.86	25	8	20	Vehick remained in contact with rail
2	7	G3	TS6 $\times 6 \times 0.1875$	S3 $\times 5.7$	None	6-0	27	$\begin{aligned} & 1961 \text { Plymouth } \\ & 3105 \end{aligned}$	29	90	5.4	-	5.9	5.0	48	9	-	Exit angle 90°
19	6	G4S	12 ga. W-beam	W6 $\times 8.5$	W8 $\times 10$	6.3	27	$\begin{aligned} & 1960 \text { Plymouth } \\ & 3900 \end{aligned}$	59	25	11.2	-	$\begin{gathered} \text { rail tore } \\ \text { and } \\ \text { separated } \end{gathered}$		25	5	100	Vehicle pucketed and rolled over away from barrier
120	8	G4S	12 ga . W-beam	W6 $\times 8.5$	W6 $\times 8.5$	6-3	27	$\begin{aligned} & 1960 \text { Ford } \\ & 3813 \end{aligned}$	56.8	28.4	4.0	6.7	4.05	2.92	25	5	35	Exit angle 8°
121	8	G4S	12 ga . W-beam	W6 $\times 8.5$	$\text { 2.W6 } \times 8.5$ members	6-3	27	1963 Ford Station Wagon 4478	56.2	27.4	3.6	6.7	3.10	2.07	37	5	20	Exit angle $9.3{ }^{\circ}$
122	8	G4S	12 ga . W-beam	W6 $\times 8.5$	$\begin{aligned} & 2 . \mathrm{W} 6 \times 8.5 \\ & \text { members } \end{aligned}$	6-3	27	$\begin{aligned} & 1960 \text { Pontiac } \\ & 4570 \end{aligned}$	62.9	25.3	3.9	7.6	4.9	2.9	37	6	35	Exit angle 9°
274	4	G4S	12 ga . W-beam	W6 $\times 8.5$	W6 $\times 8.5$	6-3	27	1970 Mercury Sedan 4960	63	24	5.80	4.75	-	failed	25	13	100	Anchor failure
276	4	G4S	12 ga W-beam	W6 $\times 8.5$	W6 $\times 8.5$	6-3	27	$\begin{aligned} & 1970 \text { Mercury } \\ & \text { Sedan } \\ & 4960 \end{aligned}$	66	25	3.78	6.85		1.76	25	3	30	Exit angle 16°
19	9	G4S	12 ga W-beam	W6 $\times 8.5$	W8 $\times 10$	6-3	27	$\begin{aligned} & 1960 \text { Plymouth } \\ & 3900 \end{aligned}$	58.6	25	-	-	\sim	failed	50	4	35	Vehicle pocketed and rolled over away from barrier
101	8	G4W	12 ga . W-beam	$8^{\prime \prime} \times 8^{\prime \prime}$ SYP	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1^{\prime}-22^{\prime \prime} \\ & \text { SYP } \end{aligned}$	6-3	27	1961 Ford Country Sedan 4042	55.2	30.5	4.6	4.6	4.25	2.6	37	3	35	Exit angle 11.7 ${ }^{\circ}$
102	8	G4W	12 ga . W-beam	$8^{\prime \prime} \times 8{ }^{\prime \prime}$ SYP	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1^{\prime}-2^{\prime \prime} \\ & \text { SYP } \end{aligned}$	6-3	27	1957 Chevrolet Sedan 3856	54.7	25.2	-	-	2.40	1.50	25	2	30	Exit angle 12.5°
103	8	G4W	12 ga . W-beam	$8^{\prime \prime} \times 8^{\prime \prime}$ S YP	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1 \cdot-2^{\prime \prime} \\ & \text { SYP } \end{aligned}$	6-3	27	1963 Ford Country Sedan 4123	60.1	22.2	3.1	6.1	2.84	2.40	37	4	25	Exit angle 15°
106	3	G4W	12 ga. W-beam witl C6 $\times 8.2$ rub rail	$8^{\prime \prime} \times 8^{\prime \prime} \mathrm{DF}$	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1-2^{\prime \prime} \\ & \text { DF } \end{aligned}$	6-3	30	1962 Chry sler Sed:m 4570	60	25			-	1.75	37	2	30	Exit angle 13°
107	3	G4W	12 ga . W-beam	$8^{\prime \prime} \times 8^{\prime \prime} \mathrm{DF}$	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & 1^{\prime}-2^{\prime \prime} \\ & \text { DF } \end{aligned}$	6-3	27	$\begin{aligned} & 1962 \text { Chrysler } \\ & \text { Sedan } \\ & 4570 \end{aligned}$	60	25		-		1.50	37	4	40	Exit angle 17°
108	3	G4W	12 ga . W-beam	$8^{\prime \prime} \times 8^{\prime \prime}$ DF	$\begin{aligned} & 8^{\prime \prime} \times 8^{\prime \prime} \times \\ & l^{\prime}-2^{\prime \prime} \\ & \text { DF } \end{aligned}$	6-3	24	$\begin{aligned} & 1962 \text { Chrysler } \\ & \text { Sedan } \\ & 4570 \end{aligned}$	59	25		-	.	1.50	37	5	35	Exit angle 19°

TABLE 2．DATA BASE OF FULL－SCAiL TESTS（Cont＇d）

$\begin{aligned} & \text { 咅 } \\ & \text { 説 } \end{aligned}$	
	\cdots－$\quad \rightarrow \mathrm{m}$
	$\underset{\sim}{\text { ¢ }}$
	＋
	年 \ddagger
	in in ì n \％
	－
旁	
\％	
唇	
\％	\cdots－$\square_{\text {－}} \times \sim$
产安	

TABLE 3. SUMMARY OF TEST CORRELATIONS

Test/ Simulation*	Vehicle Accelerations (g's)			Maximum Dynamic Deflection (ft) \dagger	Exit Conditions			Barrier Damage		
				Reported Angle	Velocity Vector	Vehicle Heading Angle				
	Longitudinal	Lateral	Resultant				Beam (ft) \dagger	No. of Posts Damaged	Railing Model	
GUARDRAIL TYPES A AND C										
Test 2-ODH-4 Simulation 7 Test 2-ODH-5 Simulation 1	$\begin{aligned} & 2.6 \\ & 2.81 \\ & 2.2 \\ & 2.62 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.92 \\ & 3.9 \\ & 4.01 \end{aligned}$	- - - -	$\begin{aligned} & 6.5 \\ & 6.31 \\ & 7.2 \\ & 6.99 \end{aligned}$	18 7	18.1 13.5	-3 8.8	$\begin{gathered} 75 \\ 50 \\ 112.5 \\ 62.5 \end{gathered}$	$\begin{aligned} & 6 \\ & 7 \\ & 7 \\ & 9 \end{aligned}$	Beam Beam
GUARDRAIL TYPES B, D, AND G4W										
Test 8-101 Simulation 8 Test 8-102 Simulation 3 Test 4-273 Simulation 2	$\begin{gathered} 4.6 \\ 6.01 \\ - \\ 4.59 \\ 6.75 \\ 3.70 \end{gathered}$	4.6 4.55 - 6.44 6.95 4.52	- - - - -	$\begin{array}{\|c} 4.25 \\ 3.81 \\ 2.40 \\ 3.26 \\ 2.33 \text { (perm.) } \\ 5.33 \end{array}$	$\begin{aligned} & 11.7 \\ & 12.5 \\ & 14 \end{aligned}$	$\begin{array}{r} 18.6 \\ 20.1 \\ 8.3 \end{array}$	$\begin{array}{r} 14.0 \\ 18.3 \\ 4.0 \end{array}$	$\begin{aligned} & 37.5 \\ & 25 \\ & 25 \\ & 25 \\ & 37.5 \\ & 37.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 3 \\ & 3 \\ & 9 \end{aligned}$	Cable Cable Cable
GUARDRAIL TYPES E AND G4S										
Test 5-AS-7 Simulation 4 Test 5-AS-8 Simulation 4 Test 8-120 Simulation 6 Test 8-122 Simulation 1	$\begin{aligned} & 3.4 \\ & 4.61 \\ & 3.7 \\ & 4.59 \\ & 4.0 \\ & 4.60 \\ & 3.9 \\ & 3.55 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.24 \\ & 6.8 \\ & 5.17 \\ & 6.7 \\ & 5.33 \\ & 7.6 \\ & 5.42 \end{aligned}$	- - - - - - -	$\begin{aligned} & 3.5 \\ & 6.88 \\ & 2.9 \\ & 4.51 \\ & 4.05 \\ & 4.01 \\ & 4.9 \\ & 5.15 \end{aligned}$		16.2 13.9 17.3 13.7	27.0 14.8 11.4 9.7	37.5 37.5 25 37.5 25 25 37.5 37.5	$\begin{aligned} & 5 \\ & 7 \\ & 5 \\ & 6 \\ & 5 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$	Cable Cable Cable Cable
GUARDRAIL TYPE G1										
Test 7-9 Simulation 1 Test 7-1 Simulation 1 Test 7-21 Simulation 1	$\begin{gathered} - \\ 2.53 \\ - \\ 3.93 \\ - \\ 4.92 \end{gathered}$	$\begin{gathered} - \\ 3.25 \\ - \\ - \\ - \\ 4.93 \end{gathered}$	$\begin{aligned} & 6.1 \\ & 4.12 \\ & 3.7 \\ & 3.93 \\ & 2.2 \\ & 6.97 \end{aligned}$	$\begin{gathered} 8.0 \\ 8.23 \\ 7.7 \\ 10.85 \\ 5.8 \\ 5.66 \end{gathered}$	$\begin{aligned} & 15 \\ & 90 \\ & 0 \end{aligned}$	$\begin{aligned} & 10.7 \\ & 90.0 \\ & 10.6 \end{aligned}$	$\begin{array}{r} 5.5 \\ 90.0 \\ 9.0 \end{array}$	n.a. - n.a. - n.a. -	$\begin{gathered} 6 \\ 5 \\ 6 \\ 6 \\ \text { not given. } \\ 3 \end{gathered}$	Cable Cable Cable
GUARDRAIL TYPE G2										
Test 7-49 Simulation 2	$2 . \overline{36}$	4.02	$\begin{aligned} & 2.7 \\ & 4.66 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.72 \end{aligned}$	14	10.0	5.7	60 50	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	Beam
GUARDRAIL TYPE G3										
Test 6-25 Simulation 4 Test 6-34 Simulation 4 Test 7-2 Simulation 1	$\begin{gathered} - \\ 4.00 \\ - \\ 5.91 \\ - \\ 8.20 \end{gathered}$	- 4.50 - 4.49 - -	$\begin{aligned} & 5.5 \\ & 6.02 \\ & 7.2 \\ & 7.42 \\ & 5.4 \\ & 8.20 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.17 \\ & 5.1 \\ & 5.80 \\ & 5.9 \\ & 5.92 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \\ & 90 \end{aligned}$	$\begin{array}{r} 8.6 \\ 16.9 \\ 90.0 \end{array}$	$\begin{array}{r} 1.5 \\ 4.7 \\ 90.0 \end{array}$	$\begin{gathered} 24 \\ 24 \\ 30 \\ 36 \\ - \\ - \end{gathered}$	$\begin{array}{r} 4 \\ 6 \\ 9 \\ 10 \\ 9 \\ 9 \end{array}$	Beam Beam Beam
THRIE BEAM										
$32-A S-2$ Simulation 2 32-AS-4 Simulation 2	$\begin{aligned} & 5.9 \\ & 6.17 \\ & 2.9 \\ & 2.49 \end{aligned}$	7.4 6.49 4.1 4.74	- - - -	$\begin{aligned} & 3.4 \\ & 3.65 \\ & 0.6 \\ & 1.45 \end{aligned}$	-	$\begin{array}{r} 15.7 \\ 9.4 \end{array}$	$\begin{array}{r} -3.9 \\ 2.5 \end{array}$	25 37.5 12.5 25	4 8 2 2	Beam Beam

*See Appendi، 13.
\dagger Multiply ft by 0.305 to obtain m .

TABLE 4. IMPACT CONDITIONS

Vehicle Size:	Category Weight (lb)
Intermediate and standard-size vehicles	4500
Subcompacts and compacts	2250
Vehicle Speeds:	Category Speed (mph)
Less than 40 mph	30
40 to 60 mph	50
Over 60 mph	70
Angles of Impact:	Category Angle (deg)
Less than 10°	7
10° to 20°	15
20° to 30°	25
Over 30°	30
Metric conversion: Multiply lb by 0.454 to obtain kg Multiply mph by 1.609 to obtain $\mathrm{km} / \mathrm{hr}$	

classes, 3 speeds, and 4 impact angles shown in Table 4, 240 extrapolation runs of the BARRIER VII program were required. The guardrail configurations and typical vehicle dimensions used in the runs are shown in Appendix B. The guardrail configurations were selected to conform closely to those configurations used in the correlation runs. To eliminate the time-consuming manual plotting of the vehicle deformations, BARRIER VII was modified to yield the two large computer printer plots shown in Figures 2 and 3. With these plots, resolution of the deformations was to the nearest inch, which was considered adequate for estimating the percent of vehicle damage. Details of the estimating procedure are discussed in Appendix C.

The final matrix of extrapolation data is shown in Table 5. In some cases, as shown in this table, vehicle deformation was more extensive for the shallower impacts because of more deformation along the side and rear of the vehicle. Barrier damage estimates include both the length of the railing and the number of posts. However, because of the meager unit repair costs (\$/L.F.) that were obtainable in the study, this refinement was not included in the final model. The linear footage of damaged rail was used for guardrail damage.

The BARRIER VII is a two-dimensional program that includes only the yaw rotational motion and hence will not predict the roll motion of the vehicle. Checking for this motion by conducting HVOSM runs for each of the category combinations would have been too expensive. Thus, to determine which of the impact conditions would likely cause the most severe vehicle roll, ENSCO's simplified rollover vaulting algorithm (RVA) was run for the cases shown in Table 6. To obtain bounds, the 27 -inch top height and 15 -inch bottom height of the average undeformed guardrails were used. From the results shown, it was decided to make HVOSM runs for the $4500-\mathrm{lb}$ vehicle/70 $\mathrm{mph} / 30$-degree impact condition, which gives the highest ratio of roll rate to critical roll rate. Table 7 shows the maximum angles of roll predicted by the program as the vehicles passed through the various roll cycles. For example, with the Type A guardrail, the vehicle rolled to 1.52 degrees away from the guardrail, then rolled to 2.19 degrees toward the barrier, slightly righted to 1.63 degrees, and then rolled to 6.71 degrees toward the guardrail. At the end of one second, the vehicle had righted to 3.16 degrees. The high rolls away from the guardrails on Types G1 and G3 were caused when the vehicles suddenly turned back in toward the guardrails. However, since no complete rollover occurred with any of the guardrails, it was concluded that vehicle roll is not a likely problem with the selected guardrail types.

The BARRIER VII program is also limited in its ability to predict vehicle wheel snagging and vehicle pocketing. Both guardrail types A and C with their $12.5-\mathrm{ft}(3.81-\mathrm{m})$ post spacing and strong posts have demonstrated these tendencies. As asserted in the 1977 AASHTO guide, experience also appears to indicate that the longer post spacings may allow a rail to twist into a ramp and thus cause vaulting. However, this could not be supported by study of the test data. Nevertheless, types A and C have undesirable and unpredictable characteristics that sloould be considered in selecting the final guardrail system.

A final note should be made concerning the BARRIER VII program use for all of the guardrail types. The program will predict barrier failure where an unstable condition arises (e.g., where several of the end posts have failed so that the guard rail end is simply a weak cantilever beam). However.
GUARDRAIL A 2250-LE VHHILLE SHEFH = TU MTH ANGLE $=15$ UEGKELS

guardrail a ceso-lh vehicle speed $=70 \mathrm{mph}$ angle $=15$ degrets

TABLE 5. EXTRAPOLATION DATA

Guardrail Type A								
Speed (mph)	1mpact Angle (deg)	Accelerations (g's)		Barrier Damage		Vehicle Damage \%	Max. Dynamic Deflection (ft)	Exit Angle/ Remarks
		Long.	Lateral	Ft. of Rail	No. of Posts			
Vehicle Weight $=2250 \mathrm{lb}$								
30	7	0.42	1.08	37.5	0	10	0.16	$2.0^{\circ} @ 28.4 \mathrm{mph}$ Secondary contact.
30	15	1.22	2.09	37.5	0	15	0.39	$5.1^{\circ} @ 25.9 \mathrm{mph}$ Secondary contact.
30	25	2.91	3.36	37.5	0	25	0.83	$12.1^{\circ} @ 21.6 \mathrm{mph}$ Secondary contact. Rail yields.
30	30	4.58	4.36	37.5	0	25	1.11	$19.6^{\circ} @ 19.1 \mathrm{mph}$ Secondary contact. Rail yields.
50	7	0.84	2.24	37.5	0	15	0.35	$3.8{ }^{\circ}$ @ 46.9 mph
50	15	2.51	4.29	37.5	0	25	0.82	10.0° @ 42.0 mph
50	25	5.31	5.23	50.0	1	40	1.90	$15.0^{\circ} @ 35.5 \mathrm{mph}$ Rail yields.
50	30	7.04	5.68	50.0	1	40	2.17	$14.9^{\circ} @ 32.6 \mathrm{mph}$ Rail yields.
70	7	1.29	4.14	37.5	0	20	0.45	4.1° @ 65.5 mph
70	15	3.22	7.47	62.5	2	30	2.05	7.5° @ 58.8 mph
70	25	6.41	8.72	62.5	2	40	2.90	$13.8^{\circ} @ 49.9 \mathrm{mph}$ Rail fractures.
70	30	7.85	9.61	62.5	3	40	3.58	17.7° @ 45.6 mph Rail fractures.
Vehicle Weight $=4500 \mathrm{lb}$								
30	7	0.37	0.81	37.5	0	10	0.22	$2.4{ }^{\circ}$ @ 28.3 mph
30	15	1.13	1.76	37.5	0	20	0.63	5.1° @ 25.7 mph Secondary impact.
30	25	2.55	2.37	50.0	1	25	1.57	6.4° @ 21.6 mph
30	30	3.31	2.49	37.5	1	30	1.91	$9.0^{\circ} @ 19.4 \mathrm{mph}$ Rail yields.
50	7	0.68	1.85	37.5	0	20	0.42	3.8° @ 46.8 mph
50	15	1.66	3.84	62.5	2	25	2.03	7.1° @ 42.2 mph
50	25	3.15	3.74	62.5	2	30	2.78	12.9° @ 35.4 mph Rail fractures.
50	30	4.12	4.37	62.5	3	30	3.96	$19.9^{\circ} @ 31.5 \mathrm{mph}$ Rail fractures.
70	7	1.09	3.43	50.0	0	30	0.53	4.2° @ 65.5 mph
70	15	2.12	4.57	75.0	4	35	3.08	$9.5^{\circ} @ 57.7 \mathrm{mph}$ Rail yields.
70	25	3.57	6.71	87.5	6	40	5.60	$14.8^{\circ} @ 49.0 \mathrm{mph}$ Rail fractures.
70	30	4.40	5.57	87.5	10	40	7.47	11.9° @ 44.6 mph Secondary impact. Rail fractures.
Metric conversion: Multiply lb by 0.454 to obtain kg Multiply ft by 0.305 to obtain m Multiply mph by 1.609 to obtain km/h								

TABLE 5. EXTRAPOLATION DATA (Cont'd)

TABLE 5. EXTRAPOLATION DATA (Cont'd)

Guardrail Type C								
Speed (mph)	Impact Angle (deg)	Accelerations (g 's)		Barrier Damage		Vehicle Damage \%	Max. Dynamic Deflection (ft)	Exit Angle/ Remarks
		Long.	Lateral	Ft. of Rail	No. of Posts			
Vehicle Weight $=2250 \mathrm{lb}$								
30	7	0.43	1.10	37.5	0	10	0.15	2.0° @ 28.4 mph Secondary impact.
30	15	1.24	2.12	37.5	0	15	0.38	$5.0^{\circ} @ 25.9 \mathrm{mph}$ Secondary impact.
30	25	2.96	3.42	37.5	0	25	0.81	12.1° @ 21.6 mph Secondary impact. Rail yields.
30	30	4.77	4.60	37.5	0	25	1.07	$20.8^{\circ} @ 19.0 \mathrm{mph}$ Secondary impact.
50	7	0.86	2.22	37.5	0	15	0.34	$3.8^{\circ} @ 46.9 \mathrm{mph}$
50	15	2.60	4.34	37.5	0	30	0.79	10.3° @ 41.9 mph
50	25	5.83	5.73	50.0	1	35	1.83	$14.0^{\circ} @ 35.6 \mathrm{mph}$ Rail yields.
50	30	7.60	6.13	50.0	1	40	2.07	$13.8^{\circ} @ 32.7 \mathrm{mph}$ Rail yields.
70	7	1.33	4.23	37.5	0	20	0.43	4.2° @ 65.5 mph
70	15	3.43	7.49	50.0	2	30	1.92	7.5° @ 58.8 mph Secondary impact.
70	25	7.16	9.86	50.0	2	40	2.73	$12.0^{\circ} @ 50.1 \mathrm{mph}$ Rail yields.
70	30	8.78	9.17	62.5	3	40	3.22	$14.3^{\circ} @ 46.0 \mathrm{mph}$ Rail yields.
Vehicle Weight $=4500 \mathrm{lb}$								
30	7	0.38	0.83	37.5	0	10	0.21	$2.1{ }^{\circ}$ @ 28.3 mph
30	15	1.16	1.79	37.5	0	15	0.61	5.0° @ 25.7 mph Secondary impact.
30	25	2.80	2.61	50.0	1	20	1.55	5.8° @ 21.6 mph
30	30	3.70	2.81	50.0	1	20	1.89	8.2° @ 19.3 mph Rail yields.
50	7	0.71	1.86	37.5	0	15	0.40	$3.9^{\circ} @ 46.8 \mathrm{mph}$
50	15	1.79	4.08	50.0	2	30	1.88	7.9° @ 42.0 mph
50	25	3.54	3.88	62.5	2	35	2.58	11.3° @ 35.6 mph Rail fractures.
50	30	4.54	4.02	62.5	3	35	3.29	$11.8^{\circ} @ 33.1 \mathrm{mph}$ Rail fractures.
70	7	1.07	3.36	50.0	0	25	0.50	4.0° @ 65.5 mph
70	15	2.28	4.74	75.0	3	35	2.93	$8.8{ }^{\circ}$ @ 57.9 mph
70	25	3.93	5.12	75.0	6	40	5.02	$15.8^{\circ} @ 48.9 \mathrm{mph}$ Secondary impact. Rail yields.
70	30	4.97	6.37	87.5	8	45	6.99	$16.2^{\circ} @ 44.1 \mathrm{mph}$ Rail fractures.

TABLE 5. EXTRAPOLATION DATA (Cont'd)

Guardrail Type D								
Speed (mph)	Impact Angle (deg)	Accelerations (g 's)		Barrier Damage		Vehicle Damage \%	Max. Dynamic Deflection (ft)	Exit Angle/ Remarks
		Long.	Lateral	Ft. of Rail	No. of Posts			
Vehicle Weight $=2250 \mathrm{lb}$								
30	7	0.47	0.97	37.5	0	15	0.47	4.0° @ 27.8 mph
30	15	1.23	1.98	37.5	0	20	0.75	8.3° @ 24.7 mph
30	25	2.79	2.90	37.5	0	25	0.89	12.8° @ 20.9 mph Secondary impact.
30	30	4.53	4.32	37.5	1	20	1.32	13.0° @ 17.9 mph
50	7	1.03	2.24	37.5	0	20	0.63	3.3° @ 46.5 mph Secondary impact.
50	15	2.84	5.19	50.0	1	35	1.25	6.8° @ 40.7 mph Secondary impact.
50	25	5.12	5.74	50.0	2	30	1.87	17.7° @ 34.7 mph
50	30	6.25	5.64	50.0	4	35	3.25	23.2° @ 22.9 mph Secondary impact.
70	7	1.95	4.59	50.0	0	20.	0.81	3.9° @ 64.8 mph
70	15	4.73	5.97	62.5	4	35	3.39	4.8° @ 52.5 mph Secondary impact.
70	25	6.04	8.17	62.5	6	35	4.34	14.4° @ 44.0 mph
70	30	8.00	8.21	62.5	8	40	4.02	16.2° @ 44.5 mph
Vehicle Weight $=4500 \mathrm{lb}$								
30	7	0.47	0.90	37.5	0	15	0.56	$3.2{ }^{\circ}$ @ 27.8 mph
30	15	1.28	1.73	37.5	0	20	0.91	6.3° @ 24.9 mph
30	25	2.95	2.93	50.0	1	25	1.37	7.1° @ 21.1 mph Secondary impact.
30	30	3.30	2.58	50.0	2	35	2.17	12.6° @ 18.7 mph
50	7	0.98	2.17	50.0	0	25	0.84	3.6° @ 46.2 mph
50	15	1.87	2.88	50.0	2	35	1.35	6.7° @ 41.3 mph Secondary impact.
50	25	3.11	4.45	62.5	5	35	3.54	$12.2^{\circ} @ 34.5 \mathrm{mph}$ Secondary impact.
50	30	3.70	3.66	62.5	6	40	4.66	16.0° @ 30.4 mph
70	7	1.46	3.48	50.0	0	35	0.76	3.4° @ 65.1 mph
70	15	2.51	4.90	75.0	7	50	2.95	$12.8^{\circ} @ 55.2 \mathrm{mph}$ Secondary impact.
70	25	3.54	4.30	75.0	9	40	6.15	9.9° @ 49.1 mph Secondary impact.
70	30	4.61	4.97	75.0	13	35	8.21	9.8° @ 45.0 mph

TABLE 5. EXTRAPOLATION DATA (Cont'd)

TABLE 5. EXTRAPOLATION DATA (Cont'd)

Guardrail Type G1								
Speed (mph)	Impact Angle (deg)	Accelerations (g's)		Barrier Damage		Vehicle Damage	Max. Dynamic Deflection (ft)	Exit Angle/ Remarks
		Long.	Lateral	Ft. of Rail*	No. of Posts			
Vehicle Weight $=2250 \mathrm{lb}$								
30	7	1.03	1.96	0	0	15	1.85	12.1° @ 26.5 mph
30	15	1.86	2.68	10.0	1	20	2.67	14.0° @ 23.9 mph Contact @ t=1.0 sec.
30	25	2.51	3.06	10.0	1	20	3.33	Multiple impacts. 10.8° @ 20.4 mph Contact @ t $=1.0 \mathrm{sec}$.
30	30	2.81	3.12	10.0	1	25	3.58	9.3° @ 18.4 mph Contact @ $\mathrm{t}=1.0 \mathrm{sec}$. Secondary impact.
50	7	1.09	2.41	20.0	2	20	3.29	13.0° @ 44.1 mph Multiple impacts.
50	15	2.32	3.48	30.0	3	15	4.33	7.0° @ 40.8 mph Multiple impacts.
50	25	2.94	4.15	30.0	3	20	5.71	11.2° @ 33.7 mph
50	30	3.00	4.76	40.0	4	25	9.22	14.4° @ 31.5 mph Contact @ t=1.0 sec.
70	7	1.16	2.96	40.0	4	25	4.62	6.1° @ 63.3 mph Multiple impacts.
70	15	2.92	4.26	40.0	4	20	7.47	$6.0^{\circ} @ 56.6 \mathrm{mph}$ Secondary impact.
70	25	4.51	5.07	70.0	7	20	10.60	9.0° @ 50.3 mph Multiple impacts.
70	30	3.41	3.80	90.0	9	35	15.91	16.2° @ 46.7 mph
Vehicle Weight $=4500 \mathrm{lb}$								
30	7	0.61	0.95	20.0	2	15	2.27	1.5° @ 27.9 mph Multiple impacts.
30	15	1.08	1.23	20.0	2	20	3.58	$2.0^{\circ} @ 24.8 \mathrm{mph}$ Secondary impact.
30	25	1.36	1.42	20.0	2	25	4.76	3.2° @ 21.1 mph Secondary impact.
30	30	1.74	1.73	30.0	3	30	5.81	$8.6^{\circ} @ 19.3 \mathrm{mph}$ Contact @ t=1.0 sec.
50	7	0.77	1.38	40.0	4	30	4.09	$3.9^{\circ} @ 46.0 \mathrm{mph}$ Multiple impacts.
50	15	1.40	1.92	40.0	4	25	7.03	$6.7^{\circ} @ 40.5 \mathrm{mph}$ Secondary impact.
50	25	1.56	2.72	50.0	5	25	10.56	$\begin{aligned} & 8.0^{\circ} @ 36.3 \mathrm{mph} \\ & \text { Contact @ } \mathrm{t}=1.0 \mathrm{sec} . \end{aligned}$
50	30	1.60	2.56	100.0	10	25	14.60	8.1° @ 34.9 mph Contact @ t = 1.0 sec .
70	7	1.02	2.09	50.0	5	20	6.61	2.9° @ 64.2 mph Multiple impacts.
70	15	1.65	2.33	60.0	6	20	9.36	3.4° @ 59.1 mph Contact @ t=1.0 sec. Multiple impacts.
70	25	2.17	2.44	130.0	13	35	19.30	$\begin{aligned} & 0.6^{\circ} @ 55.4 \mathrm{mph} \\ & \text { Contact @ } \mathrm{t}=1.0 \mathrm{sec} . \end{aligned}$
70	30	1.70	2.22	180.0	18	35	24.50	-0.5° @ 51.8 mph Contact @ $\mathrm{t}=1.0 \mathrm{sec}$.

[^2]TABLE 5. EXTRAPOLATION DATA (Cont'd)

TABLE 5. EXTRAPOLATION DATA (Cont'd)

TABLE 5. EXTRAPOLATION DATA (Cont'd)

Guardrail Type G4S								
Speed (mph)	Impact Angle (deg)	Accelerations (g's)		Barrier Damage		Vehicle Damage	Max. Dynamic Deflection (ft)	Exit Angle/ Remarks
		Long.	Lateral	Ft. of Rail	No. of Posts			
Vehicle Weight $=2250 \mathrm{lb}$								
30	7	0.47	1.03	37.5	0	15	0.48	$4.0^{\circ} @ 27.8 \mathrm{mph}$
30	15	1.22	2.20	37.5	0	20	0.78	$8.3^{\circ} @ 24.7 \mathrm{mph}$
30	25	2.68	2.90	37.5	0	25	0.95	14.1° @ 20.8 mph Secondary impact.
30	30	5.17	4.24	37.5	2	25	1.61	8.6° @ 17.2 mph
50	7	1.01	2.15	50.0	0	25	0.63	2.9° @ 46.6 mph Secondary impact.
50	15	2.86	5.35	50.0	1	30	1.32	8.2° @ 40.4 mph Multiple impacts.
50	25	5.41	5.25	50.0	3	35	3.38	20.5° @ 30.0 mph Secondary impact.
50	30	6.72	6.15	50.0	3	40	3.26	16.4° @ 29.1 mph Multiple impacts.
70	7	1.81	4.24	50.0	0	35	0.90	4.0° @ 64.8 mph
70	15	3.40	6.37	50.0	2	80	1.40	$9.9{ }^{\circ}$ @ 56.8 mph
70	25	5.95	8.34	75.0	6	80	4.62	17.3° @ 41.3 mph Multiple impacts.
70	30	7.05	10.05	50.0	5	50	4.59	14.3° @ 44.2 mph
Vehicle Weight $=4500 \mathrm{lb}$								
30	7	0.46	0.87	37.5	0	15	0.60	3.2° @ 27.8 mph
30	15	1.34	1.86	37.5	0	20	0.99	6.8° @ 24.8 mph
30	25	2.83	2.84	50.0	1	25	1.42	7.5° @ 21.0 mph Secondary impact.
30	30	3.27	2.46	50.0	2	35	2.26	$14.1{ }^{\circ}$ @ 18.2 mph
50	7	0.94	2.05	50.0	0	25	0.90	$3.6{ }^{\circ}$ @ 46.2 mph
50	15	2.26	3.03	62.5	5	40	2.49	4.5° @ 38.8 mph Multiple impacts.
50	25	3.13	4.04	62.5	6	45	3.74	15.1° @ 32.8 mph
50	30	3.83	3.58	62.5	6	35	4.54	15.3° @ 30.5 mph
70	7	1.42	2.74	62.5	2	35	1.97	2.9° @ 64.0 mph Secondary impact.
70	15	2.61	4.74	62.5	6	35	3.75	3.3° @ 57.9 mph
70	25	3.81	5.00	87.5	10	50	6.05	$12.0^{\circ} @ 46.4 \mathrm{mph}$ Secondary impact.
70	30	4.92	4.90	87.5	13	40	8.38	13.1° @ 42.9 mph

TABLE 5. EXTRAPOLATION DATA (Cont'd)

failures in which the vehicle breaks through the guardrail cannot be reliably predicted. Such railing fractures shown in Table 5 were noted when sufficient railing hinges were formed to effect a local mechanism. In all of the cases, however, the railing returned to the elastic state on subsequently unloading. In short, BARRIER VII, as all other computer simulations, is inadequate for predicting some of the guardrail failure modes, and the guardrail performance extrapolations are based on essentially successful guardrail tests.

Chapter 2. Collection and Synthesis of Cost Data

In developing the cost-effectiveness model, an important consideration was the ability of the user to input his own local unit costs. However, to illustrate the application of the program and to generate guardrail selection tables, representative mid-1975 costs were developed. The methods used in developing these costs are discussed in this section.

Injury and Fatality Costs

A difficulty with available accident cost data is that only a single value is usually given for fatal, injury, or PDO

TABLE 6. RVA PROGRAM RESULTS
Ratio of Roll Rate to Critical Roll Rate

Vehicle Weight (lb)	Speed (mph)	Angle of Impact (deg)	Rail Height (in.)	Ratio
4500	70	7	27	-0.1
4500	70	15	27	-0.2
4500	70	25	27	-0.5
4500	70	30	27	-0.7
4500	70	7	15	0.2
4500	70	15	15	0.9
4500	70	25	15	2.8
4500	70	30	15	4.8
2250	70	7	27	-0.2
2250	70	15	27	-0.7
2250	70	25	27	-1.5
2250	70	30	27	-2.0
2250	70	7	15	0.1
2250	70	15	15	0.4
2250	70	25	15	1.3
2250	70	30	15	1.9

TABLE 7. VEHICLE ROLL ANGLE CYCLES
($4500-\mathrm{lb}$ vehicle, $70-\mathrm{mph}, 30$-degree impact)

	A	B/G4W	C	D	E	G1	G2	G3	G4S
Max. roll angles	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(degrees) $^{*}:$	-1.52	-1.01	-2.20	-1.56	-1.51	-2.25	-0.83	-3.19	-1.44
	2.19	6.82	6.07	2.14	6.04	5.82	6.49	7.23	6.09
	6.71	-3.03	1.37	1.99	2.50	-12.81	-3.15	-12.71	2.60
	3.16			6.46		-0.86		3.97	

*(Plus/minus) angle $=$ roll (toward/away from) guardrail. Starting angle is at $\mathrm{t}=0 \mathrm{sec}$. Final angle is at $\mathrm{t}=$ 1.0 sec .
accidents, with no breakdown of the various costs. Such fatal and injury costs include the property damage, which was independently determined in this study by estimating vehicle and barrier damage costs. Thus, definitive fatality and injury costs were required that exclude property damage.

A direct cost approach was selected for this program. It is defined as follows:(11)
"The money value of damage to property, ambulance use, hospital and treatment services, doctor and dentist services, loss of use of vehicle, value of work time lost, legal and court fees, damage awards and settlements, and other miscellaneous items. . . . Such items as loss of future earnings of persons killed or permanently injured in accidents were excluded from the direct cost phase of the studies, except to the extent that damage awards or settlements made either in or out of court might have compensated for such losses. Expenditures also excluded from

TABLE 8. SOCIETAL COST COMPONENTS FOR FATALITIES, 1972 NHTSA STUDY

Component	1971 Costs
Future Productivity Losses	
\quad Direct	$\$ 132,000$
Indirect	41,300
Medical Costs	700
Hospital	425
Other	1,500
Property Damage	4,700
Insurance Administration	3,000
Legal and Court	1,000
Employer Losses	10,000
Victim's Pain and Suffering	900
Funeral	5,000
Assets (Lost Consumption)	200
Miscellaneous Accident Cost	
\quad Total Per Fatality	$\$ 200,725$
Cost Excluding Productivity,	
\quad Property Damage, and	
Funeral Costs	$\$ 25,025$

Ref: U.S. Department of Transportation, National Highway Traffic Safety Administration, Societal Costs of Motor Vehicle Accidents, Preliminary Report, May 1972.
the direct cost phase of the studies were those made by public and private agencies in the interest of accident prevention or to mitigate the economic burden of accidents and the overhead cost of automobile and certain other types of insurance. Incidentally, funeral costs are not considered as an element of direct cost as it is reasoned that death is inevitable, and that an accident merely fixes the time of death. The idea of direct costs might be summarized as measuring "out-of-pocket" costs.

The direct cost approach avoids some rather difficult philosophical questions on whether anticipated future earnings are really a loss to society in general. Direct costs provide a reasonable, conservative estimate of the cost to highway users of traffic accidents."

Table 8 shows the 1971 cost components for a fatality. (12) Excluding future productivity, property damage, and funeral costs gives $\$ 25,025$ for the 1971 cost. The consumer price indexes for medical care were 128.4 for 1971 and 169.8 for July 1975. Thus, by simple ratio, the estimated 1975 cost for a fatality is

$$
25025\left(\frac{169.8}{128.4}\right)=\$ 33,100
$$

TABLE 9. INJURY SEVERITY CLASSES IN THE 1972 SOCIETAL COST STUDY

Item	Permanent Total Disability	Permanent Partial Disability \& Permanent Disfigurement	No Permanent Disability
Percent Distribution of Injuries	0.2	6.5	93.3
Costs			
Productivity	\$191,000	\$48,000	\$ 350
Medical	7,800	2,800	315
Property Damage	1,000	900	700
Legal and Court	3,000	1,000	150
Insurance Administration	4,300	4,300	800
Pain and Suffering	50,000	10,000	100
All Other	3,200	100	50
Total Cost per Injury	\$260,300	\$67,100	\$2,465
Cost Excluding Productivity and Property Damage	\$ 68,300	\$18,200	\$1,415

[^3]Table 9 shows the 1971 cost components and severities for injuries. (12) It is considered that the gradations of injury severities shown in the table cannot be satisfactorily predicted from vehicle accelerations. Thus, a weighted average of the severity levels is presented. Again excluding productivity and property damage, the estimated 1975 cost for an injury is

$$
\begin{array}{r}
{[0.002(68300)+0.065(18200)+} \\
0.933(1415)] \frac{169.8}{128.4}=\$ 3,500
\end{array}
$$

Vehicle Prices

Table 10 contains the 1975 sticker prices for the various domestic automobile models. Refinements could be made in establishing typical prices by including in the

TABLE 10. 1975 AUTOMOBILE PRICES

SMALL CARS Subcompacts		INTERMEDIATES (Cont'd) (V-8, 2-dr. models)	
Pinto 2-dr.	\$ 2,769	Cougar	5,218
Vega 2-dr.	2,786	Grand Prix	5,296
Gremlin 2-dr.	2,798		
Astre S 2-dr.	2,841	INTERMEDIATE WAGONS(V-8, 2-Seat)	
Bobcat 2-dr.	3,189		
Vega 2-dr. Wagon	3,016		
Astre S 2-dr. Wagon	3,071	Matador	\$ 3,943
Pinto 2-dr. Wagon	3,153	Fury	4,309
Bobcat 2-dr. Wagon	3,481	Chevelle	4,318
		Torino	4,336
COMPACTS (6-cyl., 2-dr. Sedan)		Coronet	4,358
		LeMans	4,555
		Century	4,636
Maverick	\$ 3,025	Cutlass	4,665
Hornet	3,074	Montego	4,674
Nova S	3,099		
Comet	3,113	STANDARD-SIZE	
Ventura S	3,162	(V-8; 4-dr. models unless	
Omega F-85	3,203	otherwise noted)	
Nova	3,205	Low Standard	
Apollo/Skylark S	3,234		
Valiant Duster	3,243	Chevrolet Impala	\$ 4,548
Ventura	3,293	Ford LTD	4,712
Dart Sport	3,297	Plym. Gran Fury Cus.	4,761
Omega	3,422	High Standard	
Apollo/Skylark	3,463		
Camaro	3,540	Pontiac Catalina	\$ 4,612
Firebird	3,713	Buick LeSabre	4,771
LUXURY SMALL (Lowest-priced 2-dr.)		Oldsmobile Delta 88	4,774
		Dodge Royal Monaco	4,848
		Chrysler Newport	4,854
Pacer 6 Mustang 114	\$ 3,299	Mercury Marquis	5,115
	+3,29	Riviera (2-dr.)	6,420
Monza S 4	3,648	Toronado (2-dr.)	6,523
Granada 6	3,698	Thunderbird (2-dr.)	7,701
Monarch 6	3,764	Luxury Standard	
Skyhawk S V-6	3,860		
Starfire S V-6	3,873	Cadillac deVille	\$ 8,801
INTERMEDIATES (V-8, 2-dr. models)		1 mperial LeBaron	8,844
		Lincoln Continental	9,656
		Eldorado (2-dr.)	9,935
Matador \$ 3,545		Mark IV (2-dr.)	11,082
Chevelle	3,657	STANDARD SIZE WAGONS	
Fury	3,672	(V-8, 2-Seat)	
Coronet	3,719		
LeMans	3,720	Chevrolet Impala	\$ 5,001
Cutlass	3,821	Pontiac Safari	5,149
Torino	3,954	Ford LTD	5,158
Century	3,972	Plym. Gran Fury Cus.	5,176
Montego	4,092	Dodge Royal Monaco	5,292
Monte Carlo	4,249	Mercury Marquis	5,411
Elite	4,767	Olds. Cus. Cruiser	5,413
Charger SE	4,903	Buick Estate Wagon	5,447
Cordoba	5,072	Chrys. Twn. \& Ctry	6,099

averaging process the number of units produced for each of the models. However, the various prices are not considered to differ sufficiently enough to warrant this. Further, less than 10 percent of the automobiles on the road are less than one year old and the average age is about 6 years. (13) While this average vehicle is obviously not worth the new vehicle price, it could be argued that, excluding total losses, the cost of repair of the older car will probably be as much as the new car. The principal factor of labor costs would be essentially the same for both cases, and if new replacement parts are used, material costs would not be significantly different. Thus, a simple average of the 1975 sticker prices was used for vehicle prices. Using the subcompact and compact categories in Table 10 results in an average of

$$
\frac{76190}{24}=\$ 3,200
$$

for the $2250-\mathrm{lb}$ vehicle class of the study. The standard-size categories, excluding the luxury standards, give

$$
\frac{111785}{21}=\$ 5,300
$$

for the $4500-\mathrm{lb}$ class.

Guardrail Installation and Repair Costs

Several states were contacted by mail and telephone to determine unit prices for guardrail installation and repair costs. Most of the installation information received was in the form of bid summaries. It was noted that the prices varied considerably and were generally higher than estimates made by the guardrail material suppliers (e.g., Syro Steel Company and Anderson "Safeway" Guard Rail Corporation). Feeling that the varying state prices might not be representative for comparison purposes, it was decided to contact the guardrail erectors for installation estimates. Letters were sent to 44 erectors. Unfortunately, nearly all of them quoted labor costs only, and it was necessary to estimate and add material costs. The results that have been obtained from both the states and the erectors are shown by FHWA region in Table 11.

As shown in Table 12, the guardrail repair costs also vary considerably, ranging from 30 to 130 percent of the corresponding installation costs. Some of these responses were estimates for installing new materials. Others were actual costs of cases where damaged material was reused or salvaged material was used. Because of the resulting wide variation, it was decided to simply use the installation cost for the repair cost. An interesting point in this portion of the work was that several states bill the responsible party for the guardrail repair. Thus, the flexibility to enter such costs as either societal or government/state costs is included in the final model.

State responses have been that normal maintenance is negligible with galvanized and treated wood materials. Thus, representative maintenance costs are not included. If similar maintenance costs are assumed for each of the guardrail types, the omission should not affect the selection -process. Again, however, the model is of such flexibility that a particular agency can insert its own maintenance costs if it so desires.

Vehicle Delay Costs

Several figures appear in the literature for the cost of vehicle delay. ${ }^{(14,15,16)}$ These figures range from $\$ 3$ per vehicle hour up to $\$ 15$ per vehicle hour, depending on the type of vehicle and other assumptions in arriving at the cost, such as average number of travelers per vehicle, value of time, etc. An average value of $\$ 10$ per hour was used for illustrative purposes.

TABLE 11. TYPICAL GUARDRAIL INSTALLATION COSTS (\$/L.F.)

Chapter 3. Development of Cost-Effectiveness Model

Figure 4 focuses on the cost-effectiveness portion of the total guardrail design process that was shown in Figure 1. The six most common analytical methods used in economic analyses to compare the various alternative treatments are:(16)

- Equivalent uniform annual cost
- Present worth of costs

TABLE 12. TYPICAL GUARDRAIL REPAIR COSTS (\$/L.F.)

Agency	Guardrail Type									
	A	B	C	D	E	G1	G2	G3	G4S	G4W
Texas	$\begin{gathered} 11.10 \\ (129)^{(1)} \end{gathered}$									
California				$\begin{aligned} & 5.36 \\ & (54) \end{aligned}$						$\begin{gathered} 5.36 \\ (54) \end{gathered}$
New York						2.25 (45)	$\begin{aligned} & 4.90 \\ & (78) \end{aligned}$	$\begin{aligned} & 8.80 \\ & (63) \end{aligned}$		
New Mexico		$\begin{aligned} & 3.60 \\ & (30) \end{aligned}$								$\begin{gathered} 3.60 \\ (30) \end{gathered}$
Georgia				$\begin{aligned} & 6.10 \\ & (88) \end{aligned}$						$\begin{gathered} 6.10 \\ (88) \end{gathered}$
Pennsylvania									$\begin{aligned} & 7.00 \\ & (54) \end{aligned}$	
Missouri									$\begin{aligned} & 8.56 \\ & (80) \end{aligned}$	
Minnesota			$\begin{aligned} & 5.72 \\ & (61) \end{aligned}$							
Colorado Oregon										$\begin{gathered} 5.02 \\ (102) \end{gathered}$
Ohio									$\begin{aligned} & 4.41 \\ & (80) \end{aligned}$	$\begin{gathered} 4.41 \\ (80) \end{gathered}$
(1)Percent of installation cost.										

FIGURE 4. COST-EFFECTIVENESS PROCESS IN GUARDRAIL DESIGN

- Equivalent uniform annual net return
- Net present value
- Benefit/cost ratio
- Rate of return

Selected for use in the development of the cost-effectiveness model for this study was the present worth of costs method. This method combines the guardrail installation cost and all annual maintenance and accident costs into a single equivalent sum at zero time. Of the various alternatives
compared, the one with the lowest present worth is the most economical. To give the user a choice in his selection process, the present worths are used to calculate state costs, societal costs, total costs, and benefit/cost ratios, as defined previously in Section I.

With the present-worth formulation, the total government or state present-worth cost is given by

$$
\begin{equation*}
C_{G}=C_{I}+\left(C_{Y M}+C_{Y R}\right) \times k_{A}-C_{F S} \times k_{P} \tag{1}
\end{equation*}
$$

and the total societal present-worth cost by

$$
\begin{equation*}
C_{S}=\left(C_{Y S}+C_{Y D}\right) \times k_{A} \tag{2}
\end{equation*}
$$

where
$C_{I}=$ cost of installation
$C_{Y M}=$ yearly cost of maintenance
$C_{Y R}=$ yearly cost of repair
$C_{F S}=$ future salvage value
$C_{Y S}=$ yearly severity cost (fatalities, injuries, guardrail and vehicle damage)
$C_{Y D}=$ yearly traffic delay cost
$k_{P}=$ economic factor-present value of future dollar
$\mathrm{k}_{\mathrm{A}}=$ economic factor-present value of yearly annuity
For illustrative purposes, the economic factor k_{P} and k_{A} were based on a guardrail service life of 15 years with an 8 -percent interest rate.

The most difficult factors to quantify in equations (1) and (2) were the yearly severity cost C_{YS} and traffic delay cost C_{YD}. For example, consider a point of impact on a guardrail with given roadside and category impact conditions [e.g., a $2250-\mathrm{lb}$ ($1021-\mathrm{kg}$) vehicle impact at $50 \mathrm{mph}(80.5$ $\mathrm{km} / \mathrm{hr}$) and an angle of 25 degrees]. Required quantities include the severities of the hit (expected number of fatalities or injuries and guardrail and vehicle damage) and the probability of the impact. Factors affecting the probability include the number of expected encroachments, the percentage of the traffic for the selected vehicle class, the probability of traveling at the selected speed, the probability of the out-of-control vehicle traversing the distance to the guardrail, and the probability of hitting the guardrail at the selected angle of impact. Traffic delay must be estimated for the periods immediately following the accident and during guardrail repair. The cost of the accident then becomes

$$
\begin{align*}
C_{A C C}= & E N C \times\left(P_{\text {traffic }} \times P_{\text {speed }} \times P_{\text {offset }} \times P_{\text {angle }}\right) \\
& \times\left[C_{G D}(G D)+C_{V D}(V D)+C_{I N J}(I N J)+C_{F A T}(F A T)+C_{T D}(T D)\right] \tag{3}
\end{align*}
$$

where
ENC = number of yearly encroachments
$P_{i} \quad=$ probability for indicated factor i
GD, $\mathrm{C}_{\mathrm{GD}} \quad=$ guardrail damage and unit cost
$\mathrm{VD}, \mathrm{C}_{\mathrm{VD}} \quad=$ vehicle damage and unit cost

INJ, $C_{1 N J}=$ number of injuries and cost of each
$\mathrm{FAT}, \mathrm{C}_{\mathrm{FAT}}=$ number of fatalities and cost of each
$\mathrm{TD}, \mathrm{C}_{\mathrm{TD}}=$ traffic delay and unit cost
Finally, for each of the n impact category combinations, equation (3) is applied and the results are summed to yield

$$
\begin{equation*}
C_{Y S}+C_{Y D}=\sum_{i=1}^{n}\left(C_{A C C}\right)_{i} \tag{4}
\end{equation*}
$$

for the estimated yearly societal cost of the selected guardrail type.
Discussions of the methods used to quantify these various parameters follow.

Vehicle Distributions

Various degrees of refinement could have been attempted in establishing the distribution of traffic for use in this study. If the distribution of the vehicles on the road could have been determined according to model, age, and geographic loca-

TABLE 13. TRAFFIC MIX DISTRIBUTION BY WEIGHT

State	Percent of Compacts/ Subcompacts (<3000 lb)
New Mexico	35
New Hampshire	38
Washington	-46-
South Carolina	28
D.C.	29
New Jersey	22
Florida	16
Arkansas	20
North Dakota	25
South Dakota	19
Michigan	26
Maine	15
Texas	21
Rhode 1sland	-6-
Colorado	38
Mississippi	23
Average	25
Conclusion: Assume traffic mix is 25% for $2250-\mathrm{lb}$ vehicles and 75% for $4500-\mathrm{lb}$ vehicles.	

tion, such factors could have been included in the probability portion of the model. However, on reviewing the available statistics, it was found that even the required coarse distribution of passenger car registrations according to the light $2250-\mathrm{lb}(1021-\mathrm{kg})$ vehicle and the heavy $4500-1 \mathrm{~b}$ ($2041-\mathrm{kg}$) vehicle classes would be impossible to ascertain. Telecons with the Motor Vehicle Manufacturers Association and the R. L. Polk Company were unfruitful. A telecon with the Motor Vehicles Division of the Texas State Highway Department revealed that such distributions might be obtained from the states. Thus, letters were prepared and sent to all of the states in an attempt to get this information. The response from the states was good, but most of them did not have the data available. Table 13 is a summary of the usable results.

Since trucks and buses are not included in this study, the traffic mix was assumed to consist of 25% for $2250-\mathrm{lb}$ ($1021-\mathrm{kg}$) class vehicles and 75% for $4500-\mathrm{lb}$ ($2041-\mathrm{kg}$) class vehicles, as shown in Table 13. Encroachment frequencies were multiplied by these percentages to determine the corresponding estimated number of encroachments by vehicle class.

Impact Probabilities

Up to the start of this investigation, the only available encroachment frequency data was the Hutchinson and Kennedy data on median encroachments. $(18,19,20)$ During the study, a report by Glennon was received.(21) This report contains "order of magnitude" encroachment frequency estimates for several highway types. Glennon's rates were estimated by multiplying accident rates of the various highway types by the ratio of freeway encroachment rate (twice the median rate of Hutchinson and Kennedy) to freeway accident rates (measured in his study). A resulting ratio of 5.23 was used, which may be a bit too high. However, in the absence of better data, the

TABLE 14. FNCROACHMENT RATE TABLE

Type of Highway	Description of Collision Direction	$\begin{gathered} \text { Encroachment } \\ \text { Rate } \\ \text { (events/mile/year) } \end{gathered}$
Narrow Two-lane Rural Highway	1. Both directions	0.00060 ADT
	2. One direction only-right side	0.00030 ADT
	3. One direction only-left side	0.00030 ADT
Wide two-lane or Undivided Four-lane Rural Highway	1. Both directions	0.00037 ADT
	2. One direction only-right side	0.00019 ADT
	3. One direction only - left side	0.00019 ADT
Multilane Divided Rural Highway	One direction for each side, each direction separately for median	0.00015 ADT
1-reeway	One direction for each side, each direction separately for median	0.00023 ADT

Ref: J. C. Glennon and C. J. Wilton, "Roadside Encroachment Parameters for Non-Freeway Facilities," presented at the 55th Annual Meeting of the TRB. January 1976.

Metric conversion: Multiply ft by 0.3048 to obtain m

FIGURE 5. DISTRIBUTION OF LATERAL DISPLACEMENTS ${ }^{(22)}$

Glennon estimates were selected for this study. Table 14 shows the encroachment rates that were used.

The distribution of lateral displacements was estimated from the average curve in Figure 5. The distribution of impacts for the category values of vehicle speeds and impact angles was first

FIGURE 6. DISTRIBUTION OF VEHICLE SPEEDS AND IMPACT ANGLES ${ }^{(23)}$

estimated on the basis of the historical data generated by Lampela and Yang. (23) This study involved approximately 1400 single-vehicle and 200 multiple-vehicle guardrail accidents in Michigan. The distributions of vehicle speeds and impact angles from this reference are shown in Figure 6. The assumption that these two distributions were completely independent resulted in the combined distribution of speeds and angles shown in Table 15. Some of the resulting high-speed, high-angle impacts were simply not considered possible. The values shown in parentheses, calculated by using the point mass approach discussed in Appendix D, represent distributions for a guardrail

TABLE 15. DISTRIBUTION OF SPEEDS AND ANGLES
Impact Angle (degrees)

	$\stackrel{5}{(31.5 \%)}$	$\begin{gathered} 15 \\ (21.8 \%) \end{gathered}$	$\begin{gathered} 25 \\ (17.9 \%) \end{gathered}$	$\begin{gathered} 35 \\ (14.2 \%) \end{gathered}$	$\begin{gathered} 45 \\ (6.8 \%) \end{gathered}$	$\begin{gathered} 55 \\ (7.8 \%) \end{gathered}$
$\begin{gathered} 15 \\ (5.1 \%) \end{gathered}$	$\begin{gathered} 1.61 \\ (0.69) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.79) \end{gathered}$	$\begin{gathered} 0.91 \\ (1.07) \end{gathered}$	$\begin{gathered} 0.72 \\ (1.07) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.79) \end{gathered}$	$\begin{gathered} 0.40 \\ (0.69) \end{gathered}$
$\begin{gathered} 25 \\ (8.8 \%) \end{gathered}$	$\begin{gathered} 2.77 \\ (2.32) \end{gathered}$	$\begin{gathered} 1.92 \\ (3.42) \end{gathered}$	$\begin{gathered} 1.57 \\ (2.37) \end{gathered}$	$\begin{gathered} 1.25 \\ (0.63) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.69 \\ (0.00) \end{gathered}$
$\begin{gathered} 35 \\ (16.4 \%) \end{gathered}$	$\begin{gathered} 5.17 \\ (7.04) \end{gathered}$	$\begin{gathered} 3.57 \\ (7.72) \end{gathered}$	$\begin{gathered} 2.94 \\ (1.59) \end{gathered}$	$\begin{gathered} 2.33 \\ (0.05) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.28 \\ (0.00) \end{gathered}$
$\begin{array}{cc} \text { E. } & 45 \\ \stackrel{Z}{\otimes} & (22.9 \%) \end{array}$	$\begin{gathered} 7.21 \\ (13.81) \end{gathered}$	$\begin{gathered} 4.99 \\ (8.75) \end{gathered}$	$\begin{gathered} 4.10 \\ (0.34) \end{gathered}$	$\begin{gathered} 3.25 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.56 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.79 \\ (0.00) \end{gathered}$
$\begin{gathered} 55 \\ (23.7 \%) \end{gathered}$	$\begin{gathered} 7.47 \\ (17.90) \end{gathered}$	$\begin{gathered} 5.17 \\ (5.78) \end{gathered}$	$\begin{gathered} 4.24 \\ (0.02) \end{gathered}$	$\begin{gathered} 3.36 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.61 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.85 \\ (0.00) \end{gathered}$
$\begin{gathered} 65 \\ (15.3 \%) \end{gathered}$	$\begin{gathered} 4.82 \\ (13.30) \end{gathered}$	$\begin{gathered} 3.34 \\ (2.00) \end{gathered}$	$\begin{gathered} 2.74 \\ (0.00) \end{gathered}$	$\begin{gathered} 2.17 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.19 \\ (0.00) \end{gathered}$
$\begin{gathered} 75 \\ (7.8 \%) \end{gathered}$	$\begin{gathered} 2.46 \\ (7.32) \end{gathered}$	$\begin{gathered} 1.70 \\ (0.48) \end{gathered}$	$\begin{gathered} 1.39 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.53 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.61 \\ (0.00) \end{gathered}$

Metric conversion Multiply mph by 1.609 to obtain $\mathrm{km} / \mathrm{hr}$.
about 3 feet from the edge of the pavement. These values appear much more realistic in that the probability of high impact angles at high speeds is reduced. Thus, it was decided to formulate combined probabilities by using the following:
(1) the average curve for distribution of lateral displacements from Figure 5;
(2) the distribution of impact speeds from Figure 6;
(3) the point mass approach with a coefficient of friction of unity for determination of the 95 percentile impact angle (see Appendix D);
(4) an angle of zero degrees for the 0 percentile impact angle;
(5) a normal distribution of impact angles using the two values determined in steps (3) and (4).

Details of this formulation are discussed in Appendix D.

Traffic Delay Time

A modified version of the shock wave method for queuing in uninterrupted flow was used to formulate traffic delay time estimates for accident blockage and guardrail repair congestion. Traffic queuing and assumed average vehicle speeds for one-half mile site lengths of $20 \mathrm{mph}(32.2 \mathrm{~km} / \mathrm{hr})$ during the accident blockage and $35 \mathrm{mph}(56.3 \mathrm{~km} / \mathrm{hr}$) during repair are included. An average speed of $30 \mathrm{mph}(48.3 \mathrm{~km} / \mathrm{hr}$) is assumed for the "gawkers" traveling in the opposite direction during the accident blockage. Details of the formulation are discussed in Appendix E. For each case of specified geometric and traffic conditions, total travel delay times are computed in program subroutines for input values of the times to remove the damaged vehicle and to repair the damaged guardrail, both in hours. For illustrative purposes, one hour to remove the vehicle and ten hours to repair the guardrail were used.

Exposure Lengths

In order to estimate the probable number of impacts at a site with and without the guardrail
installation, it is necessary to determine the exposure length of the obstacle and the guardrail length of need. Assuming a vehicle speed of $70 \mathrm{mph}(112.6 \mathrm{~km} / \mathrm{hr})$, a coefficient of tire-to-pavement friction of 0.50 , and using the point mass approach yield a radius of vehicle turn that can be used with the site geometry to calculate these exposure lengths. Details of the formulation are discussed in Appendix G. The resulting exposure lengths are shorter than those of previous recommendations and, hence, might warrant some discretion in their use. Since the lengths must be specified as inputs to the program, a table for selecting the values is presented in Volume II, along with a discussion of its use and the previous recommended practice.

Computer Programs

With the formulations discussed above, two computer programs were developed to establish ranking criteria of state cost, societal cost, total cost, and benefit-to-cost ratio. The SSCOST program computes these values for a single specified guardrail type with given roadway conditions. A comparative cost program COCOST requires only the roadway conditions for input and then checks and ranks all of the eleven guardrail types of Table 1 internally. Both CDC and IBM versions of the programs have been developed. Descriptions of the programs are given in Section VII of Volume II, User's Manual.

Required inputs for the SSCOST and COCOST programs are illustrated in Figures 7 and 8. Though the inputs are quite simple to prepare and in a format familiar to engineers, it can be seen that several variables are involved to provide the desired flexibility of the programs. These variables correspond to the cost-effectiveness inputs that were shown in Figure 1. To aid in assessing the relative significance of these variables and, hence, to illustrate the need for care that must be exercised in specifying some of the values, a series of sensitivity analyses were performed. Discussions of these analyses follow.

Input parameters of guardrail installation, repair, and maintenance costs and local vehicle prices will be the most easily defined quantities by a particular state agency. Typical service life and current rate of interest should also be well defined. However, injury and fatality costs will probably be less well defined. Using the representative costs discussed above, an analysis was made to check the effects of varying fatality/injury costs. Tables 16 through 18 show the effects on societal costs, total costs, and benefit/cost ratios, respectively. The low fatality/injury costs are the direct cost estimates of this study. The middle and high values were taken from References 33 and 34. respectively. All of the results are for a straight 2 -lane rural road with 6 -foot shoulder, 500 -foot guardrail length, 400 -foot obstacle length, AADT of 5000 vehicles, and the various guardrail-toobstacle distances shown. It can be seen that the most significant changes in ranking occur for the flexible G2 system in societal and total costs where severities increase when the dynamic deflections exceed the distance specified behind the guardrail. However, the system ranks high from a benefit-to-cost standpoint. Notice also that the Gl system ranks high from a benefit-to-cost standpoint when the guardrail-to-obstacle distance is increased to 8 feet. Changes in ranking for the other systems do not appear significant. The slight increases in ranking of the stiffer systems and corresponding decreases of the more flexible systems with increasing fatality/injury costs are to be expected because of the increased severities explained above. An important point from this analysis is that care should be exercised in selecting the injury and fatality costs. If the higher values are used, the cheaper, flexible systems may be excluded from consideration, particularly with limited space behind the guardrail.

Again using the representative costs discussed previously for program inputs, Tables 19 through 21 were generated. For the conditions shown, these tables show the probable optimum distance behind the guardrail and the probable rank by benefit-to-cost ratio for the eleven selected guardrail types of this study. Note that the optimum distance shown for each type is the distance which yields the highest benefit-to-cost ratio. Notable in these tables are the poor rankings of the more rigid G3 and G4W systems. Of course, if the relative costs of the systems are different from
Column

$\begin{array}{l\|l\|} \text { Column } & 10 \\ \hline \end{array}$	20\|	$\mid 30$	$\|40\|$	150	60\|	70	80
Card 1 Format (10A8): \qquad	Road, $A A D$	$=5,000$,	vardrail Type	A, Low	atality Cos		
Title							
Card 2 Format (8F10.0): $\frac{2.0}{\substack{\text { Highway } \\ \text { type }}} \frac{-}{}$	$\frac{1.0}{\substack{\text { Guardrail } \\ \text { type }}}--$	$\frac{500.0}{\substack{\text { Guardrail } \\ \text { length }}}-$	$\frac{5000}{A A D T}-$	-0.25 Fraction of traffic for $2250-\mathrm{lb}$ vehicles	$-\frac{0.75}{\text { Fraction of }}$traffic for $4500-\mathrm{lb}$ vehicles	$\underset{\begin{array}{l} \text { Highway } \\ \text { division } \end{array}}{0.0}$	$\frac{6.0}{\text { FHWA region }}-$
Card 3 Format (5F10.0): $\underset{\text { Left offset }}{\text { distance }} \text { 24.0 }-$	$\begin{aligned} & 12.0 \\ & \begin{array}{l} \text { Right offset } \\ \text { distance } \end{array} \\ & \hline \end{aligned}$	$-\frac{0.0}{\mathrm{D}_{\text {Degree }}} \begin{aligned} & \text { of } \end{aligned}$	$\frac{4.0}{\begin{array}{l} \text { Guardail-to- } \\ \text { obstacle distance } \end{array}}$	$\underset{\substack{\text { Obstacle } \\ \text { length }}}{400.0}$			
Card 4 Format (2F10.0): $\overline{\begin{array}{l} \text { Time to remove } \\ \text { damaged vehicle } \end{array}}-\frac{1.0}{--}$	$\frac{10.0}{-} \frac{0}{$ Time to repair damaged guard- rail }$-$						
Card 5 Format (8F10.0): $\frac{3500}{\text { Cost of injury }} \cdot 00--$	$\frac{33100.00}{\text { Cost of fatality }}$	\qquad	$\frac{4.50}{\text { Cost of repair }}-$	$\frac{0.00}{\text { Cost of }} \text { maintenance }$	$\frac{3200.00}{\begin{array}{l} 2250-1 b \\ \text { cost vehicle } \end{array}}$	$\frac{5300}{\begin{array}{l} 4500-\mathrm{lb} \text { vehicle } \\ \text { cost } \end{array}}$	\qquad
Card 6 Format (4F10.0): $-\frac{15.0}{\text { Service life }}-1$	$\overline{\text { Interest rate }}$ 8.0	$\frac{500.0}{\begin{array}{l} \text { Total salvage } \\ \text { value } \end{array}}-$	$\frac{0.0}{\text { Print flag }}-$				

FIGURE 7. SSCOST INPUT WORKSHEET

Column $\quad 10$	20	30	40	50	60	70	80
Card 1 Format (10A8):							
Card 2 Format (5I5). Flag card for changes in preset input values. Use blank card for no changes in present input values Enter 1 in Column 5 for changes in traffic mix \qquad Enter 1 in Column 10 for changes in guardrail costs Enter 1 in Column 15 for changes in travel delay - \qquad \qquad \qquad \qquad Enter 1 in Column 20 for changes in injury, fatality, or vehicle costs Enter 1 in Column 25 for changes in service life or interest rate \qquad \qquad							
Card 2a Format (2F10 Fraction of traffic for 2250-1b vehicles	0). Include if 1 is punch Fraction of traffic for 4500-1b vehicles	in Column 5 of Card					
Cards 2b Format (8F10 Unit cost of guardrail A Unit cost of guardrail G4S	0). Include if 1 is punch Unit cost of guardrail B Unit cost of guardrail G4W	in Column 10 of Card Unit cost of guardrail C Unit cost of guardrail Thrie	Unit cost of guardrail D Unit yearly maintenance cost	Unit cost of guardrail E Unit salvage value	Unit cost of guardrail G1	Unit cost of guardrail G2	Unit cost of guardrail G3
Card 2c Format (3F10 Time to remove damaged vehicle	0). Include if 1 is punch Time to repair damaged guardrail	in Column 15 of Card Unit cost of traffic delay					
Card 2d Format (4F10 Cost of injury	0). Include if 1 is punch Cost of fatality	in Column 20 of Card 2250-1b vehicle cost	4500-1b vehicle cost				
Card 2e Format (2F10 Service life	0). Include if 1 is punch Interest rate	in column 25 of Card					
Card 3 Format (7F10. \qquad Highway type	$\overline{\text { Highway }}-\frac{0.0}{0} \frac{0}{-1 \text { ision }}-$	$\begin{aligned} & -\underset{\text { Left offset }}{\text { distance }} \\ & \text { dit } \end{aligned}$	$\begin{aligned} & \overline{\text { Right offset }} \\ & \text { distance } \end{aligned}$	$\underbrace{\text { Degree of }} \begin{aligned} & \text { curve }\end{aligned}$	\qquad	$\begin{aligned} & -6.0 \\ & \text { Pavement-to- }-2- \\ & \text { guardrail distance } \end{aligned}$	
Card 4 Format (4F10. $-500.0-1$ Guardrail length	$\overline{\text { Obstacle length }} 400.0$	$\overline{\mathrm{AADT}} \frac{5000}{-}$	\qquad				

FIGURE 8. COCOST INPUT WORKSHEET

TABLE 16. EFFECT OF FATALITY/INJURY COSTS ON SOCIETAL COSTS

Guardrail Type	Low Values*		Middle Values \dagger		High Values \ddagger	
	Cost	Rank	Cost	Rank	Cost	Rank
Guardrail-to-Obstacle Distance $=4 \mathrm{ft}(1.22 \mathrm{~m})$						
A	\$ 3,303	4	\$ 6,079	3	\$ 8,526	3
B	4,394	9	8,070	9	11,991	8
C	3,802	7	7,450	8	11,314	7
D	3,214	3	4,972	2	4,853	2
E	3,912	8	7,396	7	10,913	6
G1	12,172	11	32,864	11	72,289	11
G2	2,967	1	6,498	5	12,573	10
G3	3,668	6	6,654	6	9,120	5
G4S	3,050	2	4,607	1	4,530	1
G4W	4,404	10	8,079	10	12,000	9
Thrie	3,310	5	6,268	4	8,677	4
Guardrail-to-Obstacle Distance $=0 \mathrm{ft}$ (Embankment)						
A	\$ 3,303	5	\$ 6,080	4	\$ 8,526	5
B	4,382	9	8,030	9	11,893	8
C	3,802	8	7,450	8	11,314	7
D	3,208	3	4,953	2	4,808	2
E	3,420	6	5,856	3	7,165	3
G1	8,804	11	22,949	11	49,339	11
G2	2,967	1	6,498	6	12,573	10
G3	3,668	7	6,653	7	9,120	6
G4S	3,045	2	4,589	1	4,485	1
G4W	4,391	10	8,040	10	11,903	9
Thrie	3,289	4	6,201	5	8,515	4
Guardrail-to-Obstacle Distance $=8 \mathrm{ft}(2.44 \mathrm{~m})$						
A	\$ 3,323	6	\$ 6,144	5	\$ 8,686	6
B	4,362	10	7,965	10	11,733	9
C	3,781	9	7,385	9	11,153	8
D	3,187	4	4,887	3	4,648	3
E	3,401	7	5,792	4	7,007	4
G1	3,153	3	6,782	8	12,857	11
G2	1,367	,	1,837	1	1,844	1
G3	3,655	8	6,613	7	9,022	7
G4S	3,025	2	4,524	2	4,325	2
G4W	4,371	11	7,974	11	11,743	10
Thrie	3,289	5	6,201	6	8,515	5
```Roadside conditions: 2-lane rural road with 6-ft (1.82-m) shoulder Guardrail length = 500 ft (152.4 m) Obstacle length = 400 ft (121.9 m) AADT = 5000```						
$\begin{aligned} & \text { *Fatality }=\$ 33,100 \text { and Injury }=\$ 3,500 . \\ & \dagger \text { Fatality }=\$ 102,460 \text { and Injury }=\$ 6,500 . \\ & \ddagger \text { Fatality }=\$ 241,600 \text { and } \text { Injury }=\$ 5,880 . \end{aligned}$						

TABLE 17. EFFECT OF FATALITY/INJURY COSTS ON TOTAL cosTS

Guardrail Type	Low Values*		Middle Values $\dagger$		High Values $\ddagger$	
	Cost	Rank	Cost	Rank	Cost	Rank
Guardrail-to-Obstacle Distance $=4 \mathrm{ft}(1.22 \mathrm{~m})$						
A	\$ 5,396	2	\$8,172	3	\$10,619	3
B	7,236	8	10,912	8	14,833	8
C	6,145	4	9,792	5	13,656	5
D	6,182	5	7,939	2	7,820	2
E	6,805	6	10,289	7	13,805	6
G1	13,564	11	34,257	11	73,682	11
G2	4,984	1	8,516	4	14,590	7
G3	10,261	10	13,246	10	15,713	10
G4S	6,143	3	7,699	1	7,622	-1
G4W	7,496	9	11,172	9	15,093	9
Thrie	6,903	7	9,861	6	12,270	4
Guardrail-to-Obstacle Distance $=0$ ft (Embankment)						
A	\$ 5,396	2	\$8,172	3	\$10,619	4
B	7,224	8	10,872	8	14,736	8
C	6,145	4	9,793	6	13,656	6
D	6,175	5	7,921	2	7,776	2
E	6,312	6	8,748	5	10,058	3
G1	10,196	10	24,341	11	50,731	11
G2	4,984	1	8,516	4	14,590	7
G3	10,260	11	13,246	10	15,712	10
G4S	6,137	3	7,681	1	7,578	1
G4W	7,484	9	11,132	9	14,995	9
Thrie	6,881	7	9,794	7	12,108	5
Guardrail-to-Obstacle Distance $=8 \mathrm{ft}(2.44 \mathrm{~m})$						
A	\$ 5,415	3	\$ 8,237	5	\$10,778	5
B	7,204	9	10,807		14,576	9
C	6,124	5	9,727	7	13,495	7
D	6,155	6	7,855	3	7,615	3
E	6,294	7	8,684	6	9,899	4
G1	4,545	2	8,174	4	14,250	8
G2	3,385	1	3,855	1	3,862	1
G3	10,248	11	13,206	11	15,615	11
G4S	6,117	4	7,616	2	7,418	2
G4W	7,464	10	11,067	10	14,835	10
Thrie	6,881	8	9,794	8	12,108	6

[^4]TABLE 18. EFFECT OF FATALITY/INJURY COSTS ON BENEFIT/ COST RATIOS

Guardrail Type	Low Values*		Middle Valuest		High Values $\ddagger$	
	B/C	Rank	B/C	Rank	B/C	Rank
Guardrail-to Obstacle Distance $=4 \mathrm{ft}(1.22 \mathrm{~m})$						
A	3.18	2	9.30	2	22.38	1
B	1.96	7	6.14	7	15.25	7
C	2.63	3	7.72	3	18.80	3
D	2.27	4	6.93	4	17.02	4
E	2.09	6	6.27	6	15.36	6
G1	-1.59	11	-5.27	11	-12.17	11
G2	3.47	1	9.44	1	21.20	2
G3	0.95	10	2.86	10	7.01	10
G4S	2.23	5	6.77	5	16.43	5
G4W	1.80	9	5.64	8	14.02	8
Thrie	1.85	8	5.36	9	12.99	9
Guardrail-to-Obstacle Distance $=0$ ft (Embankment)						
A	0.67	2	0.70	3	1.35	4
B	0.12	9	-0.17	10	-0.19	9
C	0.39	7	0.04	8	0.01	7
D	0.51	4	0.88	2	2.20	2
E	0.45	5	0.59	4	1.45	3
G1	-2.94	11	-11.06	11	-27.28	11
G2	0.86	1	0.52	5	-0.61	10
G3	0.16	8	0.14	7	0.34	6
G4S	0.54	3	0.96	1	2.22	1
G4W	0.10	10	-0.16	9	-0.18	8
Thrie	0.40	6	0.38	6	0.79	5
Guardrail-to-Obstacle Distance $=8 \mathrm{ft}(2.44 \mathrm{~m})$						
A	2.04	3	6.38	3	16.03	3
B	1.14	9	4.05	8	10.73	8
C	1.63	4	5.17	4	13.27	4
D	1.49	5	4.92	5	12.67	5
E	1.45	7	4.73	7	12.18	7
G1	3.19	1	9.12	1	21.10	1
G2	3.09	2	8.75	2	20.02	2
G3	0.60	11	1.95	11	5.04	11
G4S	1.48	6	4.84	6	12.26	6
G4W	1.04	10	3.72	9	9.86	9
Thrie	1.20	8	3.70	10	9.39	10

[^5]TABLE 19. OPTIMUM GUARDRAIL-TO-OBSTACLE DISTANCE - 2-LANE RURAL ROAD WITH 4-FT SHOULDER

Guardrail-toObstacle Distance	2	3	4	5	6	7	8	10	12	14	16	Optimum* Distance	$\begin{gathered} \text { Probable } \\ \text { Rank } \\ \hline \end{gathered}$
$\begin{aligned} & \text { Guardrail } \\ & \text { Type } \end{aligned}$	Benefit/Cost Ratio (Rank)												
A	3.03 (2)	3.97 (1)	3.90 (2)	3.52 (2)	3.17 (2)	2.86 (2)	2.56 (3)	2.05 (3)	1.61 (3)	1.24 (3)	0.92 (3)	3	1
B	1.76 (8)	2.67 (5)	2.48 (7)	2.21 (7)	1.96 (7)	1.72 (8)	1.51 (9)	1.13 (9)	0.80 (9)	0.53 (9)	0.30 (9)	3	5
C	3.59 (1)	3.68 (2)	3.32 (3)	2.98 (3)	2.68 (3)	2.40 (3)	2.14 (4)	1.67 (4)	1.28 (4)	0.95 (4)	0.67 (5)	3	2
D	2.77 (3)	2.82 (3)	2.76 (4)	2.49 (5)	2.25 (4)	2.03 (6)	1.83 (6)	1.46 (6)	1.15 (6)	0.89 (6)	0.67 (6)	3	3
E	1.99 (6)	2.72 (4)	2.62 (6)	2.50 (4)	2.25 (5)	2.02 (7)	1.81 (7)	1.44 (7)	1.12 (7)	0.85 (7)	0.62 (7)	3	4
G1	-2.83 (11)	-2.85 (11)	-1.20 (11)	1.18 (10)	1.13 (10)	2.04 (4)	4.09 (1)	3.95 (1)	3.69 (1)	3.13 (1)	2.66 (1)	8	1
G2	2.68 (4)	2.66 (6)	4.30 (1)	3.92 (1)	4.22 (1)	3.89 (1)	3.59 (2)	3.06 (2)	2.60 (2)	2.22 (2)	1.89 (2)	4	1
G3	1.29 (10)	1.25 (10)	1.19 (10)	1.07 (11)	0.96 (11)	0.86 (11)	0.77 (11)	0.61 (11)	0.47 (11)	0.35 (11)	0.25 (11)	2	10
G4S	1.95 (7)	2.60 (7)	2.73 (5)	2.48 (6)	2.24 (6)	2.03 (5)	1.83 (5)	1.48 (5)	1.19 (5)	0.94 (5)	0.72 (4)	4	5
G4W	1.62 (9)	2.45 (9)	2.28 (9)	2.03 (9)	1.80 (9)	1.58 (10)	1.38 (10)	1.03 (10)	0.74 (10)	0.49 (10)	0.27 (10)	3	9
Thrie	2.65 (5)	2.53 (8)	2.29 (8)	2.08 (8)	1.88 (8)	1.69 (9)	1.52 (8)	1.22 (8)	0.96 (8)	0.75 (8)	0.56 (8)	2	5
	AADT $=5,000$		Guardrail Length $=500 \mathrm{ft}$			Obstacle Length $=400 \mathrm{ft}$							

TABLE 20. OPTIMUM GUARDRAIL-TO-OBSTACLE DISTANCE-4-LANE RURAL ROAD WITH 8-FT SHOULDER

Guardrail-toObstacle Distance	2	3	4	5	6	7	8	10	12	14	16	Optimum* Distance	Probable Rank
Guardrail Type	Benefit/Cost Ratio (Rank)												
A	1.59 (4)	2.46 (1)	2.61 (2)	2.34 (2)	2.03 (2)	1.80 (2)	1.58 (3)	1.19 (3)	0.86 (3)	0.58 (3)	0.34 (4)	4	2
B	0.78 (9)	1.74 (5)	1.55 (7)	1.42 (7)	1.26 (7)	1.09 (7)	0.93 (9)	0.65 (9)	0.40 (9)	0.20 (9)	0.02 (10)	3	5
C	2.26 (1)	2.36 (2)	2.17 (3)	1.93 (3)	1.74 (3)	1.53 (3)	1.33 (4)	0.98 (4)	0.69 (6)	0.44 (7)	0.23 (8)	3	2
D	1.74 (3)	1.87 (3)	1.80 (4)	1.66 (5)	1.48 (5)	1.35 (5)	1.19 (6)	0.92 (6)	0.69 (5)	0.49 (5)	0.32 (5)	3	3
E	0.99 (5)	1.74 (4)	1.74 (6)	1.68 (4)	1.49 (4)	1.36 (4)	1.20 (5)	0.92 (7)	0.68 (7)	0.48 (6)	0.30 (6)	3	4
G1	-2.14 (11)	-2.36 (11)	-1.61 (11)	0.15 (11)	0.13 (11)	0.51 (10)	2.60 (2)	2.76 (1)	2.50 (1)	2.08 (1)	1.91 (1)	10	1
G2	0.93 (7)	1.26 (9)	2.94 (1)	2.65 (1)	3.00 (1)	2.75 (1)	2.63 (1)	2.28 (2)	1.94 (2)	1.65 (2)	1.40 (2)	6	1
G3	0.79 (8)	0.81 (10)	0.74 (10)	0.66 (10)	0.57 (10)	0.50 (11)	0.46 (11)	0.34 (11)	0.25 (11)	0.16 (11)	0.08 (9)	3	10
G4S	0.97 (6)	1.65 (7)	1.77 (5)	1.63 (6)	1.46 (6)	1.33 (6)	1.18 (7)	0.92 (5)	0.70 (4)	0.51 (4)	0.35 (3)	4	5
G4W	0.72 (10)	1.60 (8)	1.42 (9)	1.30 (9)	1.16 (9)	1.00 (9)	0.85 (10)	0.59 (10)	0.37 (10)	0.18 (10)	0.02 (11)	3	8
Thrie	1.75 (2)	1.68 (6)	1.51 (8)	1.37 (8)	1.22 (8)	1.09 (8)	0.96 (8)	0.73 (8)	0.54 (8)	0.38 (8)	0.24 (7)	2	2
	AADT $=1$	,000	Guar	rail Length	500 ft		Obstacle L	ngth $=400$					
*Distance wh	yields high	$t$ value of b	nefit/cost rat	Distance	shown are	feet. Mult	ly by 0.30	to obtain					

TABLE 21. OPTIMUM GUARDRAIL-TO-OBSTACLE DISTANCE-DIVIDED HIGHWAY WITH 10-FT SHOULDER

Guardrail-toObstacle Distance	2	3	4	$j$	6	7	8	10	12	14	16	Optimum* Distance	Probable Rank
Type	Benefit/Cost Ratio (Rank)												
A	1.29 (4)	2.23 (1)	2.39 (2)	2.13 (2) ${ }^{3}$	1.89 (2)	1.67 (2)	1.47 (3)	1.11 (3)	0.81 (3)	0.56 (3)	0.35 (3)	4	2
B	0.58 (8)	1.62 (4)	1.46 (7)	1.27 (7)	1.09 (7)	0.93 (8)	0.78 (9)	0.52 (9)	0.30 (9)	0.11 (10)	-0.04 (11)	3	4
C	2.00 (1)	2.22 (2)	1.96 (3)	1.73 (3)	1.51 (3)	1.32 (3)	1.14 (4)	0.82 (6)	0.55 (7)	0.33 (7)	0.14 (8)	3	2
D	1.58 (3)	1.75 (3)	1.72 (4)	1.54 (5)	1.37 (5)	1.22 (5)	1.07 (6)	0.82 (5)	0.61 (5)	0.43 (5)	0.28 (5)	3	3
E	0.81 (5)	1.58 (5)	1.68 (6)	1.56 (4)	1.39 (4)	1.23 (4)	1.08 (5)	0.83 (4)	0.61 (6)	0.43 (6)	0.27 (6)	4	6
G1	-2.03 (11)	-2.30 (11)	-1.77 (11)	-0.02 (11)	-0.09 (11)	0.14 (11)	2.39 (2)	2.70 (1)	2.45 (1)	2.07 (1)	1.75 (1)	10	1
G2	0.55 (9)	0.99 (9)	2.68 (1)	2.41 (1)	2.85 (1)	2.62 (1)	2.41 (1)	2.04 (2)	1.73 (2)	1.47 (2)	1.25 (2)	6	1
G3	0.71 (7)	0.76 (10)	0.70 (10)	0.62 (10)	0.54 (10)	0.47 (10)	0.41 (11)	0.29 (11)	0.20 (11)	0.12 (9)	0.05 (9)	3	10
G4S	0.79 (6)	1.48 (7)	1.68 (5)	1.51 (6)	1.34 (6)	1.20 (6)	1.06 (7)	0.82 (7)	0.61 (4)	0.44 (4)	0.30 (4)	4	5
G4W	0.53 (10)	1.48 (8)	1.34 (9)	1.16 (9)	1.00 (9)	0.85 (9)	0.72 (10)	0.47 (10)	0.27 (10)	0.10 (11)	-0.04 (10)	3	8
Thrie	1.64 (2)	1.53 (6)	1.36 (8)	1.21 (8)	1.07 (8)	0.94 (7)	0.82 (8)	0.62 (8)	0.44 (8)	0.30 (8)	0.17 (7)	2	2
	AADT $=10,000$		Guardrail Length $=500 \mathrm{ft}$			Obstacle Length $=400 \mathrm{ft}$							

TABLE 22. EFFECT OF REDUCING INSTALLATION COST ON BENEFIT/COST RATIOS

$\begin{aligned} & \text { Guardrail } \\ & \text { Type } \end{aligned}$	Guardrail-to Obstacle Distance ( ft )	Percent of Illustrative Cost					50	Controlling Guardrail Type	B/C   Ratio
		100	90	$\begin{gathered} 80 \\ \text { efit/Cost } \end{gathered}$	$70$   tio (Rank)	60			
B	3	2.67 (5)	2.99 (3)	3.40 (3)	3.93 (2)	4.66 (1)	5.71 (1)	A	3.97
C	3	3.68 (2)	4.12 (1)	4.68 (1)	5.42 (1)	6.44 (1)	7.92 (1)	A	3.97
D	3	2.82 (3)	3.16 (3)	3.58 (3)	4.14 (1)	4.90 (1)	6.01 (1)	A	3.97
E	3	2.72 (4)	3.04 (3)	3.45 (3)	3.99 (1)	4.73 (1)	5.79 (1)	A	3.97
G3	2	1.29 (10)	1.44 (10)	1.63 (9)	1.87 (8)	2.21 (6)	2.68 (5)	C	3.59
G4S	4	2.73 (5)	3.05 (4)	3.47 (3)	4.01 (2)	4.74 (1)	5.80 (1)	G2	4.30
G4W	3	2.45 (9)	2.75 (4)	3.12 (3)	3.60 (3)	4.27 (1)	5.22 (1)	A	3.97
Thrie	2	2.65 (5)	2.96 (3)	3.36 (2)	3.87 (1)	4.57 (1)	5.58 (1)	C	3.59

Roadside conditions:
2-lane rural road with 4 -ft ( $1.22-\mathrm{m}$ ) shoulder
Guardrail length $=500 \mathrm{ft}(152.4 \mathrm{~m})$
Obstacle length $=400 \mathrm{ft}(121.9 \mathrm{~m})$
AADT $=5000$
those used, these trends could change. Some indication of this is shown in Table 22. It was of interest to see what relative reduction in installation costs would increase the ranking of the poorer systems in Table 19 at their optimum distances. The illustrative costs used in these sensitivity analyses were the following average Region 6 values from Table 11:

Type A	$\$ 4.50 /$ L.F.
B	6.00
C	5.00
D	6.25
E	6.10
G1	3.10
G2	4.35
G3	13.50
G4S	6.50
G4W	6.50
Thrie	7.50

Holding all of these values constant except for the guardrail of interest produced the results shown in Table 22. For example, the optimum distance for guardrail B from Table 19 is 3 feet and the controlling guardrail at this distance is Type A with a $\mathrm{B} / \mathrm{C}$ ratio of 3.97 . As shown in Table 22, Type B becomes essentially as cost-effective as Type A if it can be installed for $0.70(6.00)=\$ 4.20 /$ L.F., which is slightly less than the $\$ 4.50 /$ L.F. value for Type A. Note in Table 22 that the G3 system will still rank only 5 th if the installation cost is cut in half. However, the increase in rank of all of the other types indicates the importance of carefully selecting the installation costs.

The effect of traffic mix on $\mathrm{B} / \mathrm{C}$ ratios is shown in Table 23, again for the typical 2-lane rural road indicated. Note in the table that the rankings are not significantly affected. With increasing small car percentages, the $B / C$ ratios of the less flexible systems go down because of the greater severities of the small car impacts.

Table 24 illustrates the effect of encroachment rate on $\mathrm{B} / \mathrm{C}$ ratios. An inspection of this table reveals that all of the $\mathrm{B} / \mathrm{C}$ ratios vary directly with encroachment rate so that no changes occur in the rankings. This was to be expected since the number of impacts, and hence the societal cost, are linear functions of encroachment rate, as well as the ADT. Of course, state costs will not change.

TABLE 23. EFFECT OF TRAFFIC MIX ON BENEFIT/COST RATIOS

$\begin{aligned} & \text { Percent } \\ & 2250-1 \mathrm{~b} \\ & \text { Vehicles } \end{aligned}$	10	20	30	40	50	60	70	80	90
$\begin{aligned} & \text { Percent } \\ & 4500-1 \mathrm{~b} \\ & \text { Vehicles } \end{aligned}$	90	80	70	60	50	40	30	20	10
Guardrail Type	Benefit/Cost Ratio (Rank)								
A	3.39 (2)	3.25 (2)	3.11 (2)	2.97 (2)	2.83 (2)	2.69 (2)	2.55 (2)	2.41 (2)	2.28 (2)
B	2.14 (6)	2.02 (7)	1.90 (7)	1.77 (7)	1.65 (8)	1.53 (8)	1.40 (8)	1.28 (8)	1.16 (8)
C	2.88 (3)	2.71 (3)	2.54 (3)	2.38 (3)	2.21 (4)	2.04 (5)	1.87 (6)	1.70 (6)	1.54 (6)
D	2.29 (4)	2.28 (4)	2.27 (4)	2.26 (4)	2.25 (3)	2.24 (3)	2.23 (3)	2.22 (3)	2.21 (3)
E	2.14 (7)	2.11 (6)	2.08 (6)	2.05 (6)	2.01 (6)	1.98 (6)	1.95 (5)	1.92 (5)	1.89 (5)
G1	-1.90 (11)	-1.69 (11)	-1.48(11)	-1.28(11)	-1.07 (11)	-0.86 (11)	-0.65 (11)	-0.44 (11)	-0.23 (11)
G2	3.45 (1)	3.46 (1)	3.47 (1)	3.48 (1)	3.49 (1)	3.50 (1)	3.51 (1)	3.52 (1)	3.53 (1)
G3	1.01 (10)	0.97 (10)	0.93 (10)	0.90 (10)	0.86 (10)	0.82 (10)	0.78 (10)	0.74 (10)	0.70 (10)
G4S	2.27 (5)	2.25 (5)	2.22 (5)	2.20 (5)	2.18 (5)	2.16 (4)	2.13 (4)	2.11 (4)	2.09 (4)
G4W	1.97 (8)	1.85 (9)	1.74 (9)	1.63 (9)	1.51 (9)	1.40 (9)	1.29 (9)	1.17 (9)	1.06 (9)
Thrie	1.97 (9)	1.89 (8)	1.81 (8)	1.74 (8)	1.66 (7)	1.58 (7)	1.51 (7)	1.43 (7)	1.35 (7)

Roadside conditions:
2-lane rural road with $6-\mathrm{ft}(1.82-\mathrm{m})$ shoulder
Guardrail-to-obstacle distance $=4 \mathrm{ft}(1.22 \mathrm{~m})$
Guardrail length $=500 \mathrm{ft}(152.4 \mathrm{~m})$
Obstacle length $=400 \mathrm{ft}(121.9 \mathrm{~m})$
$\mathrm{AADT}=5000$

Thus, if the cost-effectiveness values are known for a particular encroachment rate and ADT, values for other encroachment rates or ADT's can be determined as follows:

$$
\begin{aligned}
& (\text { State Cost })_{\text {new }}=(\text { State Cost })_{\text {old }} \\
& (\text { Societal Cost })_{\text {new }}=(\text { Societal Cost })_{\text {old }} \times \frac{(\text { ADT })_{\text {new }}}{(\text { ADT })_{\text {old }}} \\
& \times \frac{(\text { Encroachment Rate })_{\text {new }}}{(\text { Encroachment Rate })_{\text {old }}} \\
& (\text { Total Cost })_{n e w}=(\text { State Cost })_{n e w}+(\text { Societal Cost })_{n e w} \\
& (B / C)_{\text {new }}=(B / C)_{\text {old }} \times \frac{(A D T)_{\text {new }}}{(A D T)_{\text {old }}} \times \frac{(\text { Encroachment Rate })_{\text {new }}}{(\text { Encroachment Rate })_{\text {old }}}
\end{aligned}
$$

A difficulty in this study in conducting meaningful sensitivity analyses has been the multipiicity of roadside variables and the wide variations of regional costs. However, the analyses discussed above indicate trends that should be helpful in selecting representative values for specification of input values to be used in the cost-effectiveness program.

## Chapter 4. Collection of Reconstructed Accident Data and Verification of Model Validity

Accident severities for the various category impact conditions, including measures of occupant injury and vehicle and guardrail damage, were required in developing the cost-effectiveness model.
TABLE 24. EFFECT OF ENCROACHMENT RATE ON BENEFIT/COST RATIOS

Guardrail Type	Encroachment Rate (Events/mile/year/ADT)										
	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009	0.0010	0.0011	0.0012
	Benefit/Cost Ratio (Rank)										
A	2.12 (2)	3.18 (2)	4.24 (2)	5.30 (2)	6.36 (2)	7.42 (2)	8.48 (2)	9.54 (2)	10.60 (2)	11.67 (2)	12.73 (2)
B	1.31 (7)	1.96 (7)	2.61 (7)	3.26 (7)	3.92 (7)	4.57 (7)	5.22 (7)	5.87 (7)	6.53 (7)	7.18 (7)	7.83 (7)
C	1.75 (3)	2.63 (3)	3.51 (3)	4.38 (3)	5.26 (3)	6.13 (3)	7.01 (3)	7.89 (3)	8.76 (3)	9.64 (3)	10.52 (3)
D	1.52 (4)	2.27 (4)	3.03 (4)	3.79 (4)	4.55 (4)	5.30 (4)	6.06 (4)	6.82 (4)	7.58 (4)	8.34 (4)	9.09 (4)
E	1.39 (6)	2.09 (6)	2.79 (6)	3.48 (6)	4.18 (6)	4.88 (6)	5.58 (6)	6.27 (6)	6.97 (6)	7.67 (6)	8.36 (6)
G1	-1.06 (11)	-1.59 (11)	-2.12 (11)	-2.65 (11)	-3.18 (11)	-3.71 (11)	-4.24 (11)	-4.77 (11)	-5.29 (11)	-5.82 (11)	-6.35 (11)
G2	2.31 (1)	3.47 (1)	4.62 (1)	5.78 (1)	6.93 (1)	8.09 (1)	9.24 (1)	10.40 (1)	11.55 (1)	12.71 (1)	13.87 (1)
G3	0.64 (10)	0.95 (10)	1.27 (10)	1.59 (10)	1.91 (10)	2.23 (10)	2.54 (10)	2.86 (10)	3.18 (10)	3.50 (10)	3.82 (10)
G4S	1.49 (5)	2.23 (5)	2.98 (5)	3.72 (5)	4.47 (5)	5.21 (5)	5.96 (5)	6.70 (5)	7.45 (5)	8.19 (5)	8.94 (5)
G4W	1.20 (9)	1.80 (9)	2.40 (9)	2.99 (9)	3.59 (9)	4.19 (9)	4.79 (9)	5.39 (9)	5.99 (9)	6.59 (9)	7.19 (9)
Thrie	1.23 (8)	1.85 (8)	2.47 (8)	3.08 (8)	3.70 (8)	4.32 (8)	4.94 (8)	5.55 (8)	6.17 (8)	6.79 (8)	7.40 (8)
Roadside conditions:   2-lane rural road with 6 -ft ( $1.82-\mathrm{m}$ ) shoulder   Guardrail-to-obstacle distance $=4 \mathrm{ft}(1.22 \mathrm{~m})$   Guardrail length $=500 \mathrm{ft}(152.4 \mathrm{~m})$   Obstacle length $=400 \mathrm{ft}(121.9 \mathrm{~m})$   AADT $=5000$											

These quantities were based on the extrapolation results of the BARRIER VII program. In an effort to validate these predictions, a series of accident reconstructions were undertaken in the study. The proposed methodology was to simulate the reported accident data with BARRIER VII in exactly the same manner as that used in simulating the full-scale tests and to compare the results of the simulation with the reported accident results. However, principally because of the problems associated with estimating the accident impact conditions, the validation effort was unsuccessful in that no definitive conclusion could be drawn that the model is valid. Conversely, the conclusion could not be made that the model is not valid. Details of the effort and discussions of these problem areas follow.

The instructions and accident reconstruction forms that were used in the study, along with a list of the six accident investigation teams, are shown in Appendix F. Though 100 accidents were anticipated during the scheduled year for the task, only 32 reports were accepted, and only 24 of these were of usable value for two reasons. First, several of the early reports involved accidents with classic guardrail installation blunders (e.g., penetration hits near the ends of unanchored systems, hits on extremely short and ineffective installations around bridge piers, and guardrail/high curb combinations in which most of the vehicle redirection was caused by the curb rather than the guardrail). Second, the quality of a few of the reports was so poor that computer simulations of the accidents were not possible from the reported data. Remedial measures included telecons requesting corrected data and memoranda increasing the number of investigation criteria that had to be met before reporting the accident.

The list of accident investigation criteria restricted the accident teams and reduced the number of reported accidents because of the predominantly large number of guardrail hits that are freakish in nature. Impacts with terminal sections or near the guardrail ends were excluded, and most of the usable impacts involved skidding vehicles. In such cases, proper computer simulation required specification of vehicle heading angle, resultant velocity angle, and vehicle angular speed at impact. Field teams estimated the first two of these quantities but were not requested to estimate the angular speed. This quantity was assumed to be zero in the computer simulations. Because of these necessary guesses, computer correlation with accident results could certainly not be expected to be as good as that with the controlled full-scale crash test results.

A principal purpose of the reconstructed accident data was to help establish the interfaces between PDO, injury, and fatality accelerations in the guardrail severity indicator shown in Figure 9. With the reduction in accident reports that were received, along with the inevitable scatter in such data, it was considered necessary to judiciously assume the interfaces and check the assumption with the data that was received. The allowable limits shown in Figure 9 are based on a severity index as defined by

$$
\mathrm{SI}=\sqrt{\frac{\mathrm{G}_{\text {long. }}^{2}}{\mathrm{G}_{\mathrm{XL}}^{2}}+\frac{\mathrm{G}_{\mathrm{lat}}^{2}}{\mathrm{G}_{\mathrm{Y} \mathrm{~L}}^{2}}}
$$

where $G_{X L}$ and $G_{Y L}$ are the maximum tolerable accelerations in the longitudinal and lateral directions. Graham's allowables are 5 and 3 g's, respectively, while Weaver's allowables are 7 and 5 g's. Graham's limit would appear to be a reasonable interface between PDO and injury accidents. Weaver's limit probably approximates the division between minor and severe injuries. Thus, the SI = 1.4 line based on Weaver's limit was assumed as a reasonable interface location between injury and fatality accidents. Though tenuous and certainly not completely accurate, Figure 9 qualifies as current state-of-the-art and is considered the best available data.

As mentioned above, the approach used for verification of the model validity was much the same as that used in the correlation portion of the study. The pertinent input data from the reconstructed accident reports was punched, including (1) node locations and member types to correspond to the reported guardrail geometry, (2) post and railing properties, (3) vehicle plus


Ref: R.M. Olson, P.L. Ivey, E.R. Post, R.H. Gunderson, and A. Cetiner, "Bridge Rail Design: Factors, Trends, and Guidelines," NCHRP Report 149, 1974.

FIGURE 9. GUARDRAIL SEVERITY LEVEL INDICATOR
occupant weight and inertial properties, and (4) reported vehicle heading, velocity vector, and speed at impact. Member and vehicle properties were determined by the methods discussed in Appendix A. BARRIER VII simulation runs were then made for the various severity predictions to compare with the reported accident severity data. Table 25 shows the comparisons for the 24 usable accident reports. The most obvious discrepancies are in the barrier deflections. Maximum dynamic deflections are shown in the simulations and should be higher than the permanent deflections reported by the teams. The remaining severity correlations (guardrail and vehicle damage and occupant injury) are not too bad. The notable exception for occupant severity is the PDO accident 04-03, in which a fatality was predicted. However, as noted in the table footnote, the occupant was wearing both lap and torso belts at the time of the accident. Other occupant severity correlations were close enough that changes in the assumed interfaces in Figure 9 were not considered necessary. From the remarks in Table 25 that briefly describe the accidents, it becomes clear why correlations are not better. With a skidding and spinning vehicle that has moved from some distance out and has gone through several gyrations before impact, the estimates of vehicle heading angle, velocity vector, speed, and angular velocity at impact, all required for adequate simulation, are educated guesses at best with low reliability.

## Chapter 5. Analysis of Effects of Soil Condition on Post Parameters

With high loading rates and post/soil interaction problems, it was not considered that the required BARRIER VII post properties could be adequately determined by available analytical
I:MBLI: 25. COMPARISON OI: SIMULATED AND REPORTED ACCIDENTS

$\begin{gathered} \text { ltem } \\ \text { Guardrail Type } \end{gathered}$	Team No.-Case No.											
	$\begin{gathered} 01-01 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 01-03 \\ \mathrm{~A} \end{gathered}$	$02-02$ B	$02-03$ B	$03-11$ $C^{*}$	03-13 ${ }_{\text {c* }}$	$03-19$ $C^{*}$	$\begin{gathered} 04-01 \\ \text { G4S } \end{gathered}$	$\begin{gathered} 04-02 \\ \text { G4S } \end{gathered}$	$\begin{gathered} 04-03 \\ \text { G4S } \end{gathered}$	$\begin{gathered} 04-04 \\ \text { G4S } \end{gathered}$	$\begin{gathered} 04-05 \\ \text { G4S } \end{gathered}$
Barrier Deflections (in.)												
BARRIER V11	6.5	0.7	11.6	0.2	24.7	104.8	35.4	13.8	30.3	9.3	17.5	4.7
Reported ${ }^{-}$	not given	11.0	2.0	31.0	24.0	61.0	21.0	8.0	10.0	15.5	4.0	7.0
No. of Pusts Damaged												
BARIRIER Vll	0	0	0	5	2	14	3	1	2	2	1	0
Reported	0	0	0	6	2	11	3	1	1	2	0	0
Length of Railing Damaged (ft)												
BARRIER Vll	12.5	12.5	37.5	37.5	25	12.5	25	25	12.5	12.5	12.5	25
Reported	0	12.5	12.5	50	25	62.5	25	25	50	50	25	25
Vehicle Damage (percent)												
Estimated from computer print	10	15	80	20	35	20	25	20	20	25	20	10
Estimated from report photographs	$60 \ddagger$	10	$60 \ddagger$	25	20**	20**	30**	25	25	40	10	5
Reported	50	10	not given	not given	major	major	moderate	15	10	60	10	5
Maximum 50-ms Accelerations (g's) $\quad 0.0$												
Longitudinal	0.78	2.53	2.36	4.12	4.25	9.23	7.31	3.53	5.08	8.95	3.92	2.27
Lateral	1.26	1.58	4.54	3.60	3.86	1.81	8.31	3.23	2.10	5.16	1.27	0.50
Predicted Severity	PDO	PDO	I	1	I	I	F	1	I	F	PDO	PDO
Reported Severity	I	PDO	1	1	PDO	PDO	F	PDO	I	PDO $\dagger \dagger$	PDO	PDO
Remarks:												
01-01 Vehicle skidded into and mounted guardrail, rebounded onto roadway, and overturned.												
01-03 Vehicle was sliding to right and spinning at impact, contacted left front, and spun completely around during impact.												
02-02 Vehicle slid to left, contacted left rear, rebounded, yawing clockwise, and overturned												
02-03 Vehicle was spinning, hit right front almost headon, snagged a post with left front, and spun over half a turn after impac												
03-11 Vehicle veered right, passed over swale, contacted right front, and was redirected back onto road												
03-13 Vehicle swerved to right from 3 lanes out, contacted guardrail at 60-degree angle, and was redir												
03-19 Vehicle impacted guardrail at 30-degree angle from 4 lanes out, was redirected, and spun into second vehicle.												
04-01 Vehicle hit at 25-degree angle from 2 lanes out, was redirected back to original lane.												
04-02 Vehicle swerved right onto shoulder, then back across 2 lanes, contacted left front at 48 degrees, and was redirected adjacent to guardrail.												
04-03 Vehicle swerved left onto median, then to right across 5 lanes, contacted left front, and spun almost half a turn.												
04-04 Vehicle skidded to right and was spinning clockwise at impact, contacted right front, and spun almost half a turn.												
04-05 Vehicle spun several times, hit right guardrail with left rear contact, was redirected and stopped in opposite direction of travel.												

[^6]TA BLE 25. COMPARISON OF SIMULATED AND REPORTED ACCIDENTS (Cont'd)

Item   Guardrail Type	Team No.-Case No.											
	$\begin{gathered} 04-06 \\ \text { G4S } \end{gathered}$	$\begin{aligned} & 04-07 \\ & \text { G4S } \end{aligned}$	$\begin{gathered} 05-01 \\ \text { G4S } \end{gathered}$	$\begin{gathered} 05-02 \\ \text { G2 } \end{gathered}$	$\begin{gathered} 05-03 \\ \text { G2* } \end{gathered}$	$\begin{aligned} & \text { 05-04 } \\ & \text { G2 } \end{aligned}$	$\begin{gathered} 06-01 \\ \text { G3 } \end{gathered}$	$\begin{gathered} 06-02 \\ \mathrm{G} 3 \end{gathered}$	$\begin{gathered} 06-03 \\ \text { G3 } \end{gathered}$	$\begin{gathered} \hline 06-04 \\ \text { G1 } \end{gathered}$	$\begin{gathered} 06-05 \\ \text { G3 } \dagger \end{gathered}$	$\begin{gathered} 06-06 \\ \text { G3 } \ddagger \end{gathered}$
Barrier Deflections (in.)												
BARRIER VIl	2.4	3.0	55.6	47.7	4.4	3.8	79.9	1.2	7.8	63.8	41.0	1.9
Reported**	4.0	0.0	2.8	21	7.5	15.3	5.0	0	0	12.0	25.0	2.0
No. of Posts Damaged												
BARRIER VIl	I	0	7	5	0	2	10	3	0	5	9	0
Reported	0	0	3	7	0	2	0	1	0	11	10	0
Length of Railing Damaged (ft)												
BARRIER Vll	12.5	12.5	37.5	62.5	25	12.5	24	12	12	54††	24	6
Reported	25	0	25	75	25	12.5	0	0	0	192	24	0
Vehiclc Damage (percent)												
Estimated from computer print	20	5	40	30	15	20	20	15	30	10	25	5
Estimated from report photographs	$80 \ddagger \ddagger$	10	80	$80^{* * *}$	10	15	20	25	20	20	80	10
Reported	total	10	50	80	15	20	50	55	10	total	55	minor
Maximum 50-ms Accelerations (g's)												
Longitudinal	7.94	0.16	4.57	2.76	0.57	4.24	8.44	3.70	2.59	0.87	6.42	0.44
Lateral	6.52	0.18	5.74	5.81	1.99	4.22	1.76	4.72	3.66	1.81	3.98	0.63
Predicted Sevcrity	F	PDO	I	I	PDO	1	I	I	1	PDO	1	PDO
Reported Severity	1	PDO	1	1	I	PDO	PDO	PDO	PDO	PDO	I	PDO
Remarks:												
04-06 Vehicle drifted left, overcorrected, skidded right and spun, crossed 3 lanes, contacted left front, rolled onto left side, and slid back onto roadway.												
04-07 Vehicle impacted from first lane, contacted right front, was redirected but spun clockwise to opposite direction.												
05-01 Vehicle moved to right on shoulder, back to opposing lane, and then across 2 lanes to right front impact, redirected onto shoulder but spun one complete turn.												
05-02 Vehicle impacted right front from two lanes out, mounted the guardrail, vaulted, and flipped end over end.												
05-03 Vehicle moved right, made a right front contact, was redirected, hit a second time, was redirected, continued to move, struck embankment, and rolled on its side.												
05-04 Vehicle slid to left and rotated across two lanes, grass median, and then 2 lanes to right front impact, was redirected but spun to opposite direction.												
06-01 Vehicle slid left and rotated from first lane into left front impact, was redirected but continued spin to original direction.												
06-02 Vehicle slid left and rotated from two lanes out, hit with right front, and was redirected with continued spin to opposite direction.												
06-03 Vehicle drifted right to right front impact, was redirected along guardrail.												
06-04 Vehicle drifted right, contacted cables with right front, started clockwise spinning, and was redirected to opposite lane in original direction.												
06-05 Vehicle moved right to right front impact, redirected across 4 lanes to contact opposite guardrail and overpass pillar, was redirected back to original lane with no spin.												
06-06 Vehicle moved left to left front contact, was redirected with slight rotation back onto roadway.												
*With W6 $\times 8.5$ posts.												
$\dagger$ With $4^{\prime}-0^{\prime \prime}$ post spacing.												
$\ddagger$ With $6^{\prime}-0^{\prime \prime}$ post spacing.												
${ }^{* *}$ Permanent deflection.												
$\dagger \dagger$ Vehicle/guardrail contact length.												
$\ddagger \ddagger$ Vehicle rolled.												
***Vehicle penetrated guardrail.												

techniques. Consequently, as discussed in Appendix A, a representative soil was selected that had been characterized by a series of pendulum tests. Because of difficulties encountered in correlating some of the full-scale tests (see Appendix B), it was decided to conduct a series of pendulum tests in this study. The purpose of the tests was to determine the ultimate effect of soil conditions on barrier performance, with an interim determination of post performance variations as a function of soil conditions. Two post types (W6 $\times 8.5$ steel and $6-\mathrm{in} . \times 8-\mathrm{in}$. Douglas fir) were tested about the major and minor axes with five different base supports (sandy loam, saturated clay, stiff clay, base material, and fixed supports). Details of the testing program are discussed in Appendix H.

Tests 4-273 from Table B. 2 and $8-120$ from Table B. 7 in Appendix B were selected for conducting BARRIER VII runs to determine the effects of various soil types on the Douglas Fir and steel posts, respectively. With lengths of 75 and 112.5 feet ( 22.9 and 34.3 m ), both of these test guardrail installations were shorter than the usual minimum test length of 150 feet ( 45.7 m ). Further, Test $4-273$ was quite severe [ $4960-\mathrm{lb}(2250-\mathrm{kg}$ ) vehicle $/ 68 \mathrm{mph}(109.4-\mathrm{km} / \mathrm{hr}) / 24$-degree impact], and the Test 8 -120 impact point was so far down the guardrail that only the last two posts show unnoticeable permanent deformation in the test photographs. However, the correlation for Test 4-273 was of some concern in the study, and these tests were selected in spite of their shortcomings.

With the post properties from Table H. 4 as inputs, the BARRIER VII runs shown in Tables 26 and 27 were conducted. In Table 26, it can be seen that vehicle redirection is not predicted with the poorer soil types (negative velocity vectors). Using fixed support properties for the end posts does not improve the situation. The lesser severity with the fixed supports over the fixed properties of simulation 4 was probably caused by the poorer quality wood used in the tests of this program. Four static tests of the full-size posts were conducted, and horizontal shear failures occurred at an average of $530 \mathrm{psi}(3654 \mathrm{kPa})$ shearing stress, as compared to a $1140-\mathrm{psi}(7860-\mathrm{kPa})$ book value. Four static tests were then conducted on $2 \times 2-\mathrm{in} .(5.1 \times 5.1-\mathrm{cm})$ specimens milled from the posts. These tests produced flexural failures with an average modulus of rupture of $8,530 \mathrm{psi}(58,800 \mathrm{kPa})$ as compared to the $11,700-\mathrm{psi}(80,700-\mathrm{kPa})$ book value. Thus, the posts used in the pendulum tests were not of the best quality. Nonetheless, the results of Table 26 clearly indicate that such $75-\mathrm{ft}$ ( $22.9-\mathrm{m}$ ) installations can be expected to fail with the severe impacts unless the posts are of good quality and are sufficiently anchored in the soil to cause the post strength to control the failure mechanism.

The longer length of guardrail installation and less severe impact [3813-lb ( $1730-\mathrm{kg}$ ) vehicle/56.8-mph ( $91.4-\mathrm{km} / \mathrm{hr}$ )/28.4-degree] in Test $8-120$ produced the results in Table 27. Again, with the poor clay and sand support, the vehicle is not predicted to redirect. However, by using the fixed support properties for the end posts, redirection is achieved before the lateral failures of the downstream anchor posts occur. Thus, if an installation of this length were to be constructed in poorer soils, a concrete footing should be used on the end posts so that the post strength will control the lateral failure.

The guardrail configuration of Figure B. 3 in Appendix B with a length of 150 feet ( 45.7 m ) was finally used to show the post and soil effects on vehicle performance. Impact conditions were $4500-\mathrm{lb}$ ( $2041-\mathrm{kg}$ ) vehicle $/ 60 \mathrm{mph}(96.5 \mathrm{~km} / \mathrm{hr}$ ) $/ 25$ degrees to correspond with the accepted containment standard. The results are shown in Table 28. Note that fixed lateral post properties were again used on the three poorer soils. Vehicles were redirected in all cases (positive velocity vectors) but were not turned completely around with the three poor soils (negative heading angles). It can be seen that the post properties used in this program development represent those of a better soil type. However, with the wide bands of severity classification in Figure 9, the differences in predicted severities are not too significant. Unless the guardrail-to-obstacle distances were greater than ten feet, the cost-effectiveness program would override and increase the PDO predictions of the saturated clay runs because of the excessive dynamic deflections. Thus, it is considered that the order of ranking of the guardrail types would not be materially affected if a poorer soil type had
TABLE 26. COMPARISON OF SOIL SUPPORTS FOR 6-IN. $\times$ 8-IN. DOUGLAS FIR POSTS

Test/Simulation	$50-\mathrm{ms}$ Vehicle Accelerations (g's)		Severity Prediction	Maximum Dynamic Deflection (ft)	Exit Conditions			Barrier Damage		Remarks
			Reported Angle (deg)		Velocity Vector (deg)	Vehicle Heading Angle (deg)				
	Longitudinal	Lateral					Beam (ft)	No. of Posts Damaged		
Test 4-273	6.75	6.95	F	$\begin{gathered} 2.33(1.6) \\ =3.7 \end{gathered}$	14			37.5	3	
Simulation 2	3.70	4.52	I	5.33		8.3	4.0	37.5	9	
Simulation 4	4.42	6.39	F	4.07		8.8	10.7	37.5	7	Fixed support properties from Ref. 37.
Fixed Supports	4.27	5.01	1	4.80		8.9	9.9	37.5	7	
Stiff Clay Support	2.31	2.32	F*	$\begin{gathered} 7.80 @ \\ 0.30 \mathrm{sec} \end{gathered}$		-17.0	-8.5	-	10	Lateral failure of upstream anchor post.
Sandy Loam Support	2.32	2.42	F*	$\begin{gathered} 8.00 @ \\ 0.30 \mathrm{sec} \end{gathered}$		-17.1	-8.4	-	10	Lateral failure of upstream anchor post.
Stiff Clay with Fixed End Posts	2.31	3.40	F*	$\begin{aligned} & 18.15 @ \\ & 0.65 \mathrm{sec} \end{aligned}$		-6.8	24.4	-	12	Lateral failure of downstream anchor post.
Sandy Loam with Fixed End Posts	2.32	3.18	F*	$\begin{aligned} & 17.18 @ \\ & 0.62 \mathrm{sec} \end{aligned}$		-7.2	23.5	-	12	Lateral failure of downstream anchor post.
Base Material Support	2.92	4.27	F*	$\begin{aligned} & 10.47 @ \\ & 0.55 \mathrm{sec} \end{aligned}$		-2.0	13.3	-	12	Lateral failure of downstream anchor post.
Saturated Clay with Fixed End Posts	1.96	2.48	F*	$\begin{aligned} & 19.02 @ \\ & 0.59 \mathrm{sec} \end{aligned}$		-10.0	19.2	-	12	Lateral failure of downstream anchor post.
Metric conversion: M   *Assumed fatality wit	ply ft by 0.30	to obtain								

TABLE 27. COMPARISON/OF SOLL SUPPORTS FOR W6 $\times 8.5$ STEEL POSTS

Test/Simulation	$50-\mathrm{ms}$ Vehicle Accelerations (g's)		Severity Prediction	Maximum Dynamic Deflection (ft)	Exit Conditions			Barrier Damage		Remarks
			Reported Angle (deg)		Velocity Vector (deg)	Vehicle Heading Angle (deg)				
	Longitudinal	Lateral					Beam   (ft)	No. of Posts Damaged		
Test 8-120	4.0	6.7	F	4.05	8			25	5	
Simulation 6	4.60	5.33	1	4.01		17.3	11.4	25	5	
Fixed Supports	5.25	6.03	F	4.47		14.2	16.5	37.5	6	
Stiff Clay Support	3.41	2.87	F*	$\begin{aligned} & 22.17 @ \\ & 0.80 \mathrm{sec} \end{aligned}$		-4.5	34.9	-	11	Lateral failure of downstream anchor post.
Sandy Loam Support	3.61	3.02	F*	$\begin{aligned} & 20.85 @ \\ & 0.79 \mathrm{sec} \end{aligned}$		-3.7	31.7	-	11	Lateral failure of downstream anchor post.
Stiff Clay with Fixed End Posts	3.41	6.32	F*	$\begin{gathered} 6.91 @ \\ 0.44 \mathrm{sec} \end{gathered}$		8.3	5.6	-	13	No change-numerical instability at 0.57 sec .
Sandy Loam with Fixed End Posts	3.61	6.32	F*	$\begin{gathered} 7.17 @ \\ 0.45 \mathrm{sec} \end{gathered}$		7.9	5.3	-	13	No change-numerical instability at 0.58 sec .
Base Material Support	4.54	5.12	I	4.42		15.9	7.0	37.5	7	
Saturated Clay with Fixed End Posts	3.04	5.60	F*	$\begin{aligned} & 20.07 @ \\ & 0.80 \mathrm{sec} \end{aligned}$		5.3	46.7	-	18	Lateral failure of downstream anchor post.
Metric conversion: Multiply ft by 0.3048 to obtain m.										

TABLE 28. POST AND SOIL EFFECTS ON VEHICLE PERFORMANCE

Condition	$50-\mathrm{ms}$ Vehicle Accelerations ( $g$ 's)		Severity   Prediction	Maximum Dynamic Deflection (ft)	Exit Conditions		Barrier Damage								
			Velocity Vector (deg)		VehicleHeadingAngle (deg)										
	Longitudinal	Lateral				Beam   (ft)	No. of Posts Damaged								
6-in. $\times 8$-in. Douglas Fir Posts															
Program Support Values	3.38	5.78	I	5.25	13.5	11.9	50.0	8							
Fixed Supports	4.32	5.95	I	4.49	13.8	10.8	37.5	6							
Base Material Support	2.70	3.43	I	7.07	10.1	0.6	62.5	12							
Stiff Clay Support*	1.97	2.82	I	9.54	2.2	-5.8	62.5	20							
Saturated Clay Support*	1.81	2.39	PDO	10.09	8.0	-9.0	62.5	23							
Sandy Loam Support*	2.06	2.95	I	8.72	2.5	-6.4	62.5	20							
W6 $\times 8.5$ Steel Posts															
Program Support Values	3.78	5.44	I	4.89	15.1	9.7	37.5	6							
Fixed Supports	4.84	5.68	I	5.69	14.1	8.8	50.0	8							
Base Material Support	3.29	4.33	I	6.27	11.7	0.5	62.5	9							
Stiff Clay Support*	2.45	3.19	I	8.04	6.5	-1.5	62.5	15							
Saturated Clay Support*	1.91	2.46	PDO	10.13	9.5	-7.5	62.5	23							
Sandy Loam Support*	2.57	3.28	I	7.88	6.1	-1.6	62.5	15							
Metric conversion: Multiply ft by 0.3048 to obtain m.   *Fixed support properties used for end posts.															

been used. Of course, it is obvious from Table 28 that guardrail deflections will increase with the poorer soils. Partial compensation for the effect could be accomplished by decreasing the actual guardrail-to-obstacle distance in the cost-effectiveness program input.

It is indicated in Appendix B that soil conditions were usually exceptionally good for satisfactory tests on guardrails of less than $150-\mathrm{ft}(45.7-\mathrm{m})$ length. The results discussed above also indicate that failure problems can be expected for severe impacts on short installations with the poorer soil types. Thus, it is recommended that guardrail lengths be not less than 150 feet ( 45.7 m ) unless precautions are taken to ensure post integrity, particularly if the available space behind the guardrail is limited. These precautions include the use of concrete footings or greater embedment depths for the posts.

## Chapter 6. Preparation of User's Manual

On formulating the cost-effectiveness model and developing the computer algorithm, a user's manual was prepared. Program listings, instructions and examples for their use, and selection criteria tables generated with the programs are contained in Volume II of this report.

## III. CONCLUSIONS

A cost-effectiveness model for guardrail selection has been developed that includes estimates of performance for eleven guardrail types with various vehicle impact characteristics. A probabilistic present-worth approach for the model development was selected, and it has been shown how the various pertinent parameters have been quantified on the basis of historical data and analytical extrapolations thereof. Hazard types include fixed objects and embankments, and eleven commonly used guardrail designs are included.

Two cost-effectiveness computer programs were developed: (1) the SSCOST program for cost-effectiveness values (state cost, societal cost, total cost, and benefit-to-cost ratio) of a single specified guardrail type with given roadway conditions, and (2) the COCOST program for comparative cost-effectiveness values and ranking of the eleven guardrail types with given roadway conditions.

Program inputs, simple to prepare in a format familiar to engineers, include such items as the following:

- Highway type, horizontal curvature, and guardrail type
- AADT and traffic mix
- Guardrail and obstacle lengths
- Guardrail distance from traffic lanes and guardrail-to-obstacle distance
- Guardrail installation, maintenance, and repair costs
- Estimated times to remove damaged vehicle and to repair damaged guardrail
- Estimates of vehicle, injury, fatality, and travel delay costs
- Service life of guard rail, current interest rate, and future salvage value

The user has the option of either using preselected representative values for most of these inputs or inserting his own local values.

Both CDC and IBM versions of the programs are available so that adaptation to the user's computer will not be difficult. Computer run times for both versions are minimal. Outputs include a repeat of the geometric and traffic inputs and a ranking of the eleven included guardrail types, along with the corresponding values, according to present-worth state costs, societal costs, total costs, and benefit/cost ratios.

Outputs of the computer programs can be applied for (1) selection at a particular site of the most cost-effective guardrail system of the eleven included types, (2) guardrail placement at a site for the optimum location and guardrail type, and (3) priority ranking of several site locations for appropriation of available funds. Thus, in addition to the usual uses of cost-effectiveness analyses, the program provides the user with a design basis for choosing and placing a guardrail system at the most optimum location on the roadway shoulder.

## REFERENCES

1. J. D. Michie, L. R. Calcote, and M. E. Bronstad, "Guardrail Performance and Design," NCHRP Report 115, 1971.
2. M. E. Bronstad, "Evaluation of Timber Weak Post Guardrail Systems," Final Report, SwRI Project 03-2699, Prepared for Ohio Department of Highways, April 1970.
3. E. F. Nordlin et al, "Dynamic Full Scale Impact Tests of Double Blocked-Out Metal Beam Barriers and Metal Beam Guard Railing, Series X," California Division of Highways Report, February 1965.
4. R. L. Stoughton, J. R. Stoker, and E. F. Nordlin, "Dynamic Tests of Metal Beam Guardrail," presented at the 54th Annual Meeting of the Transportation Research Board, January 1975.
5. M. E. Bronstad and C. E. Kimball, "Crash Test Evaluation of Guardrail Systems Utilizing the New Charley Post," Final Report, SwRI Project 03-3658, Prepared for Anderson Safeway Guard Rail Corp., Kentucky Galvanizing Co., Inc., Syro Steel Co., and Trinity Industries, Inc., May 1974.
6. M. D. Graham, W. C. Burnett, J. L. Gibson, and R. H. Freer, "New Highway Barriers: The Practical Application of Theoretical Design," State of New York Physical Research Report 67-1, May 1967.
7. J. L. Whitmore, R. G. Picciocca, and W. A. Synder, "Testing of Highway Barriers and Other Safety Accessories. Volume 2: Summary of Tests and Implementation," Final Report on Research Project 43-2, New York State Department of Transportation, May 1975.
8. J. D. Michie, L. R. Calcote, and M. E. Bronstad, "Guardrail Performance and Design," Final Report, NCHRP Project No. 15-1(2), SwRI Project 03-2176, January 1970.
9. N. W. Shoemaker, "Test Report for Full-Scale Dynamic Tests of Highway Barriers," Cornell Aeronautical Laboratory Report VJ-1472-V-5, December 1963.
10. G. H. Powell, "BARRIER VII: A Computer Program for Evaluation of Automobile Barrier Systems," FHWA Report No. FHWA-RD-73-51, April 1973.
11. R. N. Smith and T. N. Tamburri, "Direct Costs of California State Highway Accidents," Highway Research Record No. 225, 1968, page 9.
12. "Societal Costs of Motor Vehicle Accidents for Benefit-Cost Analysis: A Perspective of the Major Issues and Some Recent Findings," paper by Barbara M. Faigin, Office of Program Planning, NHTSA, Sept. 1975.
13. "1973/74 Automobile Facts and Figures," Motor Vehicle Manufacturers Association.
14. D. A. Curry and D. G. Anderson, "Procedures for Estimating Highway User Costs, Air Pollution, and Noise Effects," NCHRP Report 133, 1972.
15. D. H. Farness, "Benefits and Costs of Tourism: A Regional Point of View," Transportation Research Record 490, 1974, page 1.
16. R. Winfrey, Economic Analysis for Highways, International Textbook Company, Scranton, Pennsylvania, 1969.
17. N. T. Davisson and S. Prakash, "A Review of Soil-Pole Behavior," Highway Research Record No. 39, 1963, page 25.
18. J. W. Hutchinson, "The Significance and Nature of Vehicle Encroachment on Medians of Divided Highways," Final Report, University of Illinois Highway Engineering Series No. 8, December 1962.
19. J. W. Hutchinson and T. W. Kennedy, "Medians of Divided Highways-Frequency and Nature of Vehicle Encroachments," University of Illinois Engineering Experiment Station Bulletin 487, 1966.
20. J. C. Glennon, "Roadside Safety Improvement Programs on Freeways: A Cost-Effectiveness Priority Approach," NCHRP Report 148, 1974.
21. J. C. Glennon and C. J. Wilton, "Roadside Encroachment Parameters for Non-Freeway Facilities," presented at the 55th Annual Meeting of the TRB, January 1976.
22. P. R. Tutt and J. F. Nixon, "Roadside Design Guidelines," Texas Highway Departmental Research Report No. SS 12.2, August 1969.
23. A. A. Lampela and A. H. Yang, "Analyses of Guardrail Accidents in Michigan," Michigan Department of State Highways and Transpórtation Report TSD-243-74, July 1974.
24. H. E. Ross, Jr., "Impact Performance and a Selection Criterion for Texas Median Barriers," Texas Transportation Institute Research Report 140-8, April 1974.
25. J. D. Michie, "Response of Guardrail Posts During Impact," Final Report, SwRI Internal Research Project 03-905 1, October 1970.
26. J. D. Michie and M. E. Bronstad, "Impact Tests of Steel Barrier Posts Embedded in Soil," Final Report for United States Steel Corporation, SwRI Project 03-2949-09, September 1971.
27. M. E. Bronstad and G. K. Wolfe, "Impact Tests of Formed Steel Barrier Posts," Final Report for Syro Steel Company, SwRI Project 03-3777-002, March 1974.
28. R. J. Roark, Formulas for Stress and Strain, 4th Edition, McGraw-Hill Book Company, 1965, page 417.
29. R. E. Rasmussen, F. W. Hill, and P. M. Riede, "Typical Vehicle Parameters for Dynamic Studies," General Motors Proving Ground Report A-2542, April 1970.
30. G. L. Basso, "Functional Derivation of Vehicle Parameters for Dynamic Studies," National Research Council Canada Laboratory Technical Report LTR-ST. 747, September 1974.
31. "Highw'ay Capacity Manual, 1965," Highway Research Board Special Report 87, NAS-NRC Publication 1328.
32. M. E. Bronstad, J. D. Michie, J. G. Viner, W. E. Behm, "Crash Test Evaluation of Thrie Beam Traffic Barriers," prepared for 53rd Annual Meeting of HRB, January 1974.
33. F. M. Council and W. H. Hunter, "Implementation of Proven Technology in Making the Highway Environment Safe," University of North Carolina Highway Safety Research Center Report, August 1975.
34. C. Y. Warner, M. R. Withers, and R. Peterson, "Societal Priorities in Occupant Crash Protection," Proceedings, Fourth International Conference on Automotive Safety, July 14-16, 1975.
35. J. D. Michie and M. E. Bronstad, "Location, Selection, and Maintenance of Highway Traffic Barriers," NCHRP Report 118, 1971.
36. H. E. Ross, Jr., T. L. Kohutek, and J. Pledger, "Guide for Selecting, Locating, and Designing Traffic Barriers. Volume I: Guidelines," Final Report, DOT Contract FH-11-8507, February 1976.
37. J. D. Michie and M. E. Bronstad, "Dynamic Properties of Timber Guardrail Posts," Technical Report, SwRI Project 03-2778, October 1970.

## APPENDIX A

## DETERMINATION OF POST, RAILING, AND VEHICLE PROPERTIES

For inputs to the BARRIER VII program, the post, railing, and vehicle properties must be specified. Such properties, particularly for the posts and vehicles, are difficult to determine. The methods used to estimate the properties are discussed in this appendix.

Since BARRIER VII inputs must be in English units, such units are used in this appendix without the metric equivalents. The following are factors that can be used for metric conversion:

Multiply
in.
ft
lbm
kip $(1000 \mathrm{lbf})$
in.
in.
in.
in.-k
$\mathrm{lb} / \mathrm{ft}$
psi
ksi
in.lb-sec ${ }^{2}$

$\frac{\mathrm{By}}{2.540 \mathrm{E}-02}$
$3.048 \mathrm{E}-01$
$4.536 \mathrm{E}-01$
4.448 E+03
6.451 E-04
$1.639 \mathrm{E}-05$
4.162 E-07
$1.130 \mathrm{E}-04$
1.459 E+01
$6.894 \mathrm{E}+03$
$6.895 \mathrm{E}+06$
$1.152 \mathrm{E}-02$

To Obtain
m
m
kg
N
$\mathrm{m}^{2}$
$\mathrm{m}^{3}$
$\mathrm{m}^{4}$
Nm
$\mathrm{N} / \mathrm{m}$
Pa
Pa
$\mathrm{m}-\mathrm{kg}-\mathrm{sec}^{2}$

## Post Properties

Post properties were estimated by means of pendulum test results of previous SwRI projects. $25,26,27$ ) Two types of soil were used in the tests. The first was a uniformly graded sand commonly used in the production of concrete, and the second was a well-graded gravel specified as a base material by the Texas Highway Department. The second type was considered the more representative. A typical impulse diagram is shown in view (a) of Figure A.1. By approximating the trace with the dashed triangular distribution shown, it was possible to construct the accelera-tion-time and velocity-time diagrams shown in views (b) and (c).

From the first curve,

$$
\begin{equation*}
1 / 2\left(t_{\mathrm{tot}}\right)\left(F_{\text {max }}\right)=\text { Total Impulse } \tag{A.1}
\end{equation*}
$$

The total impulse was reported in the references. Thus the value of $F_{\text {max }}$ at yield of the soil can be computed directly from this equation. From the $v-t$ diagram, which is a second degree parabola, the deflection $\Delta$ at time $t_{1}$ becomes

$$
\begin{align*}
\Delta & =v_{f}(t)+2 / 3\left(v_{i}-v_{f}\right)\left(t_{1}\right) \\
& =1 / 3\left(2 v_{i}+v_{f}\right)\left(t_{1}\right) \text { in feet }  \tag{A.2}\\
& =4\left(2 v_{i}+v_{f}\right)\left(t_{1}\right) \text { in inches }
\end{align*}
$$

The value of $v_{i}$ was given in the reports. To obtain the value of $v_{f}$, the impulse equation

$$
\begin{equation*}
\mathrm{I}=1 / 2\left(t_{1}\right)\left(F_{\text {max }}\right)=m\left(v_{f}-v_{i}\right) \tag{A.3}
\end{equation*}
$$



FIGURE A.1. DETERMINATION OF POST PROPERTIES
was used. With a $4000-\mathrm{lb}$ pendulum, this gave

$$
\begin{equation*}
v_{f}=v_{i}-\frac{t_{1} F_{\mathrm{max}}(32.2)}{8000} \tag{A.4}
\end{equation*}
$$

From the results of several tests, the post stiffnesses $\left(F_{\max } / \Delta\right)$, maximum resisting forces $F_{\text {max }}$, and post deflections $\Delta$ were computed and plotted. The results, used for estimating the post properties based on the soil, are shown in Figures A.2, A.3, and A.4. With an assumed impact allowance of 2.0, the moduli of rupture for the wooden posts were $2.0(11,700)=23,400$ psi for Douglas Fir and $2.0(14,700)=29,400$ psi for Southern Yellow Pine. (28) For an applied load at 24 -inch height, these values all produced resistive loads that were much higher than the soil yield loads. Thus, the soil values shown in Figures A.2, A.3, and A. 4 were assumed to control for all of the wooden posts.

An impact allowance of 1.5 was assumed for the high strain rates on the steel posts to produce a yield stress of $1.5(36)=54 \mathrm{ksi}$. The following are material values that were compared with the soil values to determine the controlling quantities:

Post   Type	Plastic Moduli (in. ${ }^{3}$ )		Plastic Moments (in.-k)	
	Major Axis	Minor Axis	Major Axis	Minor Axis
W6 $\times 8.5$	5.71	1.55	308.3	83.7
S3 $\times 5.7$	1.95	0.653	105.3	35.3
Charley   $(8.56 \mathrm{lb} / \mathrm{ft})$	5.77	3.43	311.6	185.1

These values were used in the absence of test data when the values were less than those at yield of the soil for similar post widths. In those cases where the exact post configurations were tested with the pendulum, the results were used directly. The final selected post properties for the various guardrail types are shown in Appendix B.

## Railing Properties

An impact allowance of 1.5 was again used for the high strain rates to produce a yield stress of $1.5(36)=54 \mathrm{ksi}$. The pertinent values follow:

Cable System (three 3/4 inch cables)
Area $=0.714$ in. 2
Modulus of elasticity $=12,000 \mathrm{ksi}(6)$
Weight $=2.55 \mathrm{lb} / \mathrm{ft}$
Yield force $=100 \mathrm{k}$
12 gauge $W$-beam
Area $=1.99 \mathrm{in}^{2}{ }^{2}$
Moment of inertia $=2.31 \mathrm{in} .^{4}$
Section modulus $=1.37 \mathrm{in} .^{3}$
Estimated form factor $=1.20$
Modulus of elasticity $=30,000 \mathrm{ksi}$


FIGURE A.2. POST STIFFNESSES


FIGURE A.3. POST FORCES AT YIELD OF SOIL


FIGURE A.4. DEFLECTIONS OF POSTS AT YIELD OF SOIL

Weight $=6.77 \mathrm{lb} / \mathrm{ft}$
Yield force $=1.99(54)=107.5 \mathrm{k}$
Plastic moment $=1.20(1.37)(54)=88.8 \mathrm{in} .-\mathrm{k}$
Box Beam System (TS $6 \times 6 \times 6 \times 0.1875$ )
Area $=4.24$ in. ${ }^{2}$
Moment of inertia $=23.5$ in. ${ }^{4}$
Section modulus $=7.83$ in. ${ }^{3}$
Estimated form factor $=1.18$
Modulus of elasticity $=30,000 \mathrm{ksi}$
Weight $=14.41 \mathrm{lb} / \mathrm{ft}$
Yield force $=4.24(54)=229 \mathrm{k}$
Plastic moment $=1.18(7.83)(54)=499$ in. -k
On comparing the above values with those in Reference 6, it was found that they are lower because of the higher reported yield stresses. However, the discrepancies were not considered significant, and the values above were used.

## Vehicle Properties

Vehicle dimensions were obtained principally from "Parking Dimensions" pamphlets published by the Motor Vehicle Manufacturers Association for the years 1958 through 1975. The "Consumer Reports" magazines were also used for some dimensions. The distribution of vehicle weights on the front and rear axles were taken from these magazines to determine the center of gravity locations. Total yaw mass moments of inertia for the vehicles were estimated by formulas in References 29 and 30 . From Reference 29, the equation is

$$
\begin{equation*}
I=[1.26(w t)-1750](12) \tag{A.5}
\end{equation*}
$$

Reference 30 contains the equations

$$
\begin{equation*}
I=\frac{0.225(w t)^{1.572}(12)}{32.2} \tag{A.6}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\frac{0.103(w t)^{1.67}(12)}{32.2} \tag{A.7}
\end{equation*}
$$

A comparison of these predictions with two previous SwRI torsional pendulum tests follows:

Vehicle weight (lb)	2173	4159
Values of I (in.-lb-sec ${ }^{2}$ ):	14,901	
SwRI test	11,860	49,826
Equation (A.5)	14,770	41,880
Equation (A.6)	14,400	40,980
Equation (A.7)		42,450

From this comparison, as well as comparisons with the minimal information that could be obtained from the automobile manufacturers, it was decided to use equation (A.6) for the light $2250-\mathrm{lb}$ vehicle class and equation (A.5) for the heavy $4500-\mathrm{lb}$ vehicle class. The application of these equations for the typical vehicles is shown in Appendix B.

## APPENDIX B

## CORRELATION RUN RESULTS AND GUARDRAIL AND VEHICLE CONFIGURATIONS FOR EXTRAPOLATION RUNS

This appendix discusses the results of the BARRIER VII correlation runs and shows the various guardrail configurations and vehicle models that were used in the extrapolation runs.

Since BARRIER VII inputs must be in English units, such units are used in this appendix without the metric equivalents. The following are factors that can be used for metric conversion:

Multiply	By	To Obtain
in.	$2.540 \mathrm{E}-02$	m
ft	3.048 E-01	m
lbm	$4.536 \mathrm{E}-01$	kg
kip (1000 lbf)	$4.448 \mathrm{E}+03$	N
in. ${ }^{2}$	$6.451 \mathrm{E}-04$	$\mathrm{m}^{2}$
in. ${ }^{3}$	$1.639 \mathrm{E}-05$	$\mathrm{m}^{3}$
in. ${ }^{4}$	$4.162 \mathrm{E}-07$	$\mathrm{m}^{4}$
in.-k	$1.130 \mathrm{E}-04$	Nm
$\mathrm{lb} / \mathrm{ft}$	1.459 E+01	N/M
psi	6.894 E+03	Pa
ksi	6.895 E+06	Pa
in.-lb-sec ${ }^{2}$	$1.152 \mathrm{E}-02$	$\mathrm{m}-\mathrm{kg}$-sec ${ }^{2}$

Tests selected from Table 2 for the correlation runs were modeled as closely as possible for the various fixed parameters of guardrail geometry, post type, size, embedment, vehicle weight and speed, and impact angle. However, there were certain modeling parameters that could be varied in the BARRIER VII program to obtain the best correlation possible. For example, since the W-section railing is weak in flexure and principally a tension member, it could be modeled as a cable as well as a beam. Various values of initial slack in the railings could be used to simulate the take-up of slotted holes used in W-beam installation. Thus, these and other modeling techniques were tried for the various simulations to determine the modeling characteristic that would produce the best correlation.

The results of all of the BARRIER VII correlation runs are shown in Tables B. 1 through B. 9 . Note that the lower sections of these tables show values of the modeling parameters that were used in the various simulations. Changes in these values from simulation to simulation were made either to check the variable parameters mentioned above or to use better post properties as determined from subsequent study of other pendulum test results. Definitions of the indicated parameters follow:

- Railing type - the W-section railing was modeled as a beam in some simulations and as a cable in others.
- Prestress - various values of initial slack in the railings were used to simulate the take-up of slotted holes used in W-beam installation.
- $\quad \mathrm{k}_{\mathrm{A}}, \mathrm{k}_{\mathrm{B}}$-stiffnesses in kips/inch for post elastic horizontal deflections at the railing height in the longitudinal and transverse directions of the guardrail, respectively.
- $M_{P A}, M_{P B}$ - base moments in inch-kips about the longitudinal and transverse axes. respectively, at which the post yields.
- $\quad \mathrm{F}_{\mathrm{PA}}, \mathrm{F}_{\mathrm{PB}}$ - shear forces in kips in the longitudinal and transverse directions, respectively, that cause failure of the posts.
TABLE B.1. GUARDRAIL TYPE A CORRELATIONS

1 1tem	$\begin{gathered} \text { Test } \\ \text { 2-ODH-3* } \end{gathered}$	Run 1	$\begin{gathered} \text { Test } \\ \text { 2-ODH-4 } \end{gathered}$	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	$\begin{gathered} \text { Test } \\ \text { 2-ODH-5 } \end{gathered}$	Run 1
Vehicle Accelerations $\dagger$ Longitudinal ( $200-\mathrm{ms}$ )	5.1	4.60	2.6	4.47	3.33	3.37	2.83	2.89	2.55	2.81	2.2	2.62
Lateral ( $200-\mathrm{ms}$ )	3.5	3.97	3.4	3.29	4.06	3.72	3.46	3.55	3.80	3.92	3.9	4.01
Barrier Deflection (ft)	4.3	4.24	6.5	4.90	4.75	5.17	7.42	7.00	7.80	6.31	7.2	6.99
No. of Posts	2	4	6	6	6	7	7	7	8	7	7	9
Exit Angle	vehicle rolled	17.0	18	16.5	12.6	14.6	18.4	16.8	10.7	18.1	7	$\begin{gathered} 13.5 \\ (8.8) \end{gathered}$
Simulation Conditions Railing: Type												
		Beam		Beam	Beam	Beam	Cable	Cable	Cable	Beam		Beam
Prestress		None		None	None	None	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { slack } \end{aligned}$	$\begin{gathered} 1 / 8^{\prime \prime} \\ \text { slack } \end{gathered}$	None	None		None
Post:												
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.		1.93		1.66	1.66	1.66	1.66	1.66	1.66	1.66		1.66
$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}$.)		1.93		1.66	1.66	1.66	1.66	1.66	1.66	1.66		1.66
MPA (in. -k)		245.7		218.4	218.4	218.4	218.4	218.4	218.4	218.4		218.4
MPB (in.-k)		245.7		218.4	218.4	218.4	218.4	218.4	218.4	218.4		218.4
$\mathrm{FPA}^{\text {( }}$ (k)		11.7		10.4	10.4	10.4	10.4	10.4	10.4	10.4		10.4
$\mathrm{FPB}^{(k)}$		11.7		10.4	10.4	10.4	10.4	10.4	10.4	10.4		10.4
$\delta^{\text {A }}$ (in.)		7.36		7.36	7.36	7.36	7.36	7.36	7.36	7.36		7.36
$\delta_{B}$ (in.)		7.36		7.36	7.36	7.36	7.36	7.36	7.36	7.36		7.36
Coefficient of Friction		0.50		0.50	0.30	0.30	0.30	0.30	0.30	0.30		0.30
Rotational Damping Multiplier		10.0		10.0	10.0	10.0	10.0	10.0	1.0	1.0		1.0
Anchor Post $\mathrm{k}_{\mathrm{A}}$ (k/in.)		50.0		50.0	50.0	50.0	50.0	50.0	15.0	15.0		15.0

$\begin{array}{cc}15^{\circ} \text { steer } & 0^{\circ} \text { stee } \\ \text { angle } \\ \text { angle }\end{array}$
*Test nos. shown as ref. no.-test no. (e.g., Test ODH-3 from Ref. 2)
$\dagger 50-\mathrm{ms}$ maximum averages unless otherwise noted.
Metric conversion: Multiply ft by 0.305 to obtain m Multiply k by $4,448.2$ to obtain N

TABLE B.2. GUARDRAIL TYPE D COR RELATIONS

1tem	$\begin{gathered} \text { Test } \\ 4-273 \end{gathered}$	Run 1	Run 2	Run 3
Vehicle Accelerations				
Longitudinal	6.75	4.16	3.70	4.20
Lateral	6.95	5.14	4.52	5.07
Barrier Deflection (ft)	$\begin{gathered} 2.33 \\ \text { (permanent)* } \end{gathered}$	3.99	5.33	5.77
No. of Posts	3	7	9	9
Exit Angle	14	12.0	$\begin{gathered} 8.3 \\ (4.0) \end{gathered}$	13.1
Simulation Conditions Railing:				
Type		Beam	Cable	Beam
Prestress		None	None	None
Post:				
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)		2.28	2.28	2.28
$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}$.		1.72	1.72	1.72
MPA (in.-k)		235.2	235.2	235.2
MPB (in.-k)		294.0	294.0	294.0
$\mathrm{FPA}^{\text {(k) }}$		14.0	14.0	14.0
$\mathrm{FPB}_{\text {( }}(\mathrm{k})$		11.2	11.2	11.2
$\delta_{\text {A }}$ (in.)		7.50	7.50	7.50
$\delta_{B}$ (in.)		7.50	7.50	7.50
Rotational Damping				
Anchor Post $\mathrm{k}_{\mathrm{A}}$ (k/in.)		15.0	40.0	40.0
				No good. End ancho post failed

*2.33 (1.6) $=3.7$ assumed maximum dynamic deflection.
Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain $m$ Multiply k by $4,448.2$ to obtain N

- $\quad \delta_{\mathrm{A}}, \delta_{\mathrm{B}}$ - deflections in inches at the railing height that cause failure of the posts in the longitudinal and transverse directions.
- Coefficient of friction - the coefficient of friction between the vehicle and the railing.
- Rotational damping multiplier - stabilizing factor to introduce viscous damping that constrains rigid body rotations of the model members.

Those railing and post properties indicated by the arrows in Tables B. 1 through B. 9 were considered best and were selected for subsequent extrapolation runs. Where two or more arrows are shown in a table, the same properties were used to correlate the corresponding two or more tests shown. The apparent discrepancies in properties of the two selected simulations in Table B. 9 were caused by the fact that post embedments were different for the two tests. Of course, each simulation was tailored to fit the impact conditions of the corresponding test, and the subsequent extrapolation runs were made with the final recommended post embedments.

TABLE B.3. (;UARDRAIL TYPE L CORRIELATIONS

*Numerical instability at $\mathrm{t}=0.29$ see.
Metric conversion: Multiply ft by 0.305 to obtain $m$ Multiply in. by 0.0254 to obtain $m$ Multiply k by $4,448.2$ to obtain N


Some difficulties were encountered with the runs shown in the correlation tables. For example, the use of a rotational damping multiplier of 10.0 to try to prevent numerical instability was thought to be satisfactory from an inspection of the computed damping losses. However, reducing the value to 1.0 significantly affected the results. As shown in Table B.5, further reduction to 0.0 (no damping) was not significant. Therefore, a multiplier of 1.0 was selected for predominant use. However, as shown in Table B.6, it was felt necessary to retain the 10.0 value for the strongbeam G3 system.

From the standpoint of direct use, as opposed to a simple indication of trends, certain of the results shown in Tables B.3, B.4, B.5, and B. 8 were of no value and are crossed out. In Tables B. 3 and B.8, the input data were checked when numerical instability diagnostics were encountered. In Table B.3, the only error that could be found was the specification of $M_{P A}=311.6 \mathrm{in} .-\mathrm{kips}$ for the yield moment of the post rather than the 285.6 in .-kip value for the soil. The change produced successful runs. In Table B.8, the inspection revealed a coding error in the member inputs that called for nodes beyond the specified member. Previously, such errors usually resulted in machine aborts when indefinite or infinite arguments were picked up at these extraneous node addresses.
TABLE B.4. GUAR DRAIL TYPE G1 COR RELATIONS


극 둥
${ }^{25} \Omega$
Metric conversion: Multiply ft by 0.305 to obtain m Multiply k by $4,448.2$ to obtain N
TABLE B.5. GUARDRAIL TYPE G2 CORRELATIONS

Item	$\begin{gathered} \text { Test } \\ 8-105 \end{gathered}$	Run 1	Run 2	$\begin{aligned} & \text { Test } \\ & 6-39 \end{aligned}$	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	$\begin{aligned} & \text { Test } \\ & 7-49 \end{aligned}$	Run 1	Run 2
Vehicle Accelerations Longitudinal	2.9	3.12	2.41	2.7	$1.87$	1.81	2.28	2.43	2.13	2.20	2.06	2.7	2.13	2.36
Lateral	3.8	2.31	3.90		8.26	2.78	3.93	3.40	3.79	3.64	3.66		4.04	4.02
Barrier Deflection (ft)	7.30	6.82*	8.43	6.8		6.56	4.46	5.76	7.08	5.26	5.34	6.0	5.57	5.72
No. of Posts	3	6	7	6	16		7	8	7	6	7	6	8	8
Exit Angle	9	-18.5	7.2	14	3.1		9.6	7.2	10.1	14.5	13.4	14	9.6	10.0
Simulation Conditions Railing:														
TypePrestress		$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { slack } \end{aligned}$	None		None		None	None						
Post:														
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.		0.83	0.22		0.72	0.72	0.72		0.22	0.22	0.22		0.22	0.22
$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}$.)		2.03	0.62		1.80	1.80	1.80		0.62	0.62	0.62		0.62	0.62
$M_{\text {PA }}$ (in.-k)		105.3	141.6		105.3	105.3	105.3	105.3	141.6	141.6	141.6		141.6	141.6
MPB (in.-k)		35.3	76.8		35.3	35.3	10000.0	10000.0	76.8	76.8	76.8		76.8	76.8
$\mathrm{FPA}^{\text {(k) }}$ (		1.50	3.20		10000.0	10000.0	10000.0	10000.0	3.20	3.20	3.20		3.20	3.20
$\mathrm{F}_{\mathrm{PB}}(\mathrm{k})$		4.40	5.90		3.90	3.90	4.40	4.40	5.89	5.90	5.90		5.90	5.90
$\delta_{\text {A }}$ (in.)		12.0	14.32		12.0	12.0	10000.0	10000.0	14.32	14.32	14.32		14.32	14.32
$\delta_{B}$ (in.)		7.20	9.45		6.90	6.90	6.90	6.90	9.45	9.45	9.45		9.45	9.49
Rotational Damping Multiplier		10.0	1.0		10.0	10.0	10.0	10.0	1.0		0.0		0.0	1.0
Anchor Post $\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)		50.0	15.0		50.0	50.0	50.0	50.0	15.0	15.0			15.0	15.0
		Short installation All 6 of the last posts failedno good.	Data still no good. End post deflects excessively.								Change Revised   not   data for    signifi- Test   cant $6-39$			

*At loss of contact
Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain $m$
Multiply k by $4,448.2$ to obtain $N$
TABLE B.6. GUARDRAIL TYPE G3 CORRELATIONS

Item	$\begin{aligned} & \text { Test } \\ & 6-25 \end{aligned}$	Run 1	Run 2	Run 3	Run 4	$\begin{aligned} & \text { Test } \\ & 6-34 \end{aligned}$	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	$\begin{gathered} \text { Test } \\ 7-2 \end{gathered}$	Run 1
Vehicle Accelerations														
Longitudinal	5.5	4.44	4.41	4.29	4.00	7.2	5.99	5.96	5.98	5.91	4.58	4.79	5.4	8.20
Lateral		4.98	4.94	4.73	$\begin{array}{r} 4.50 \\ (6.02) \end{array}$		4.89	4.90	4.71	$\begin{array}{r} 4.49 \\ (7.42) \end{array}$	3.68	4.95		
Barrier Deflection (ft)	3.0	1.64	1.72	1.78	2.17	5.1	3.79	4.17	3.79	5.80	8.85	4.74	5.9	5.92
No. of Posts	4	5	5	4	6	9	11	14	10	10	12	14	9	9
Exit Angle	11	8.0	8.3	8.8	8.6	12	15.9	13.8	16.4	16.9	$\begin{array}{r} 29.8 \\ (8.3) \end{array}$	17.9	90	90.0
Simulation Conditions Railing: Type Prestress														
		Beam	Beam	Beam with 36 ksi yield	Beam with $A=0.01$		Beam	Beam	Beam	Beam with $\mathrm{A}=0.01$	Beam with $A=0.01$	Beam with full area		Beam with $A=0.01$
		None	None	None	None		None	None	None	None	None	None		None
Post:														
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.		1.00	1.00	1.00	0.22		1.00	1.00	0.22	0.22	0.22	0.22		0.22
		2.50	2.50	2.50	0.62		2.50	1.40	0.62	0.62	0.62	0.62		0.62
MPA (in.-k)		105.3	105.3	105.3	141.6		105.3	105.3	141.6	141.6	141.6	141.6		141.6
MPB (in.-k)		35.3	10000.0	10000.0	76.8		10000.0	10000.0	76.8	76.8	76.8	76.8		76.8
$\mathrm{FPA}^{\text {(k) }}$		10000.0	10000.0	10000.0	3.20		10000.0	10000.0	3.20	3.20	3.20	3.20		3.20
$\mathrm{FPB}_{\mathrm{PB}}(\mathrm{k})$		4.40	4.40	4.40	5.90		4.40	4.40	5.90	5.90	5.90	5.90		5.90
$\delta_{\mathrm{A}}(\mathrm{in} .)$		12.0	10000.0	10000.0	14.32		10000.0	10000.0	14.32	14.32	14.32	14.32		14.32
$\delta_{B}$ (in.)		7.70	7.70	7.70	9.45		7.70	6.40	9.45	9.45	9.45	9.45		9.45
Rotational Damping Multiplier		10.0	10.0	10.0	10.0		10.0	10.0	10.0	10.0	1.0	1.0		10.0
Anchor Post $\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)		50.0	15.0	15.0	15.0		15.0	10.0	15.0	15.0	15.0	15.0		15.0

[^7]Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain m
Multiply k by $4,448.2$ to obtain N
TABLE B.7. GUARDRAIL TYPE G4S CORRELATIONS

1tem	$\begin{gathered} \text { Test } \\ 8-120 \end{gathered}$	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	$\begin{gathered} \text { Test } \\ 4-276 \end{gathered}$	Run 1	Run 2	$\begin{gathered} \text { Test } \\ 8-122 \end{gathered}$	Run 1
Vehicle Accelerations														
Longitudinal	4.0	6.22	3.49	6.04	5.41	4.79	4.60	4.84	5.16	3.78	3.67	4.60	3.9	3.55
Lateral	6.7	5.53	4.82	5.39	4.53	5.38	5.33	5.17	5.02	6.85	6.59	5.12	7.6	5.42
Barrier Deflection (ft)	4.05	2.07	8.08	2.33	3.50	4.59	4.01	3.81	2.81	$\begin{gathered} 1.76^{*} \\ \text { (permanent) } \end{gathered}$	5.67	3.43	4.9	5.15
No. of Posts	5	3	15	4	4	5	5	4	5	3	8	6	6	8
Exit Angle	8.0	11.2	16.5	14.1	16.3	21.5	$\begin{gathered} 17.3 \\ (11.4) \end{gathered}$	$\begin{gathered} 17.7 \\ (10.9) \end{gathered}$	$\begin{aligned} & 14.5 \\ & (3.3) \end{aligned}$	16	8.5	15.6	9	$\begin{aligned} & 13.7 \\ & (9.7) \end{aligned}$
Simulation Conditions Railing: Type														
		Beam	Cable	Beam	Cable	Cable	Cable	Cable	Beam		Cable	Beam		Cable
Prestress		None	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { slack } \end{aligned}$	None	None	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { slack } \end{aligned}$	None	None	None		None	None		None
Post:														
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}$.		2.09	2.09			2.03	2.03	2.03	2.03		2.20	2.20		2.03
		1.50	1.50	1.40	1.40	1.40	1.40	1.40	1.40		1.52	1.52		1.40
$M_{P A}$ (in.-k)		252.0	252.0	241.5	241.5	241.5	241.5	241.5	241.5		285.6	285.6		241.5
MPB (in.-k)		84.0	84.0	83.7	83.7	83.7	83.7	83.7	83.7		83.7	83.7		83.7
$\mathrm{FPA}^{\text {( }}$ (k)		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0
$\mathrm{FPB}^{(k)}$		12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5		13.6	13.6		11.5
$\delta_{\text {A }}$ (in.)		2.00	2.00	7.90	7.90	7.90	7.90	7.90	7.90		8.20	8.20		7.90
$\delta_{\mathrm{B}}$ (in.)		8.00	8.00	7.90	7.90	7.90	7.90	7.90	7.90		8.20	8.20		7.90
Rotational Damping Multiplier		10.0	10.0	10.0	10.0	10.0	1.0	1.0	1.0		1.0	1.0		1.0
Anchor Post $\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)		50.0	50.0	50.0	50.0	50.0	15.0	40.0	15.0		40.0	40.0		15.0


Metric conversion: Multiply ft by 0.305 to obtain $m$
Multiply k by $4,448.2$ to obtain N
TABLE B.8. GUARDRAIL TYPE G4W CORRELATIONS

*Numerical instability at $t=0.60$-found coding error-all previous runs voided
Metric conversion: Multiply ft by 0.305 to obtain m Multiply k by $4,448.2$ to obtain N

TABLE B.9. THRIE BEAM CORRELATIONS


Unfortunately, such was not the case with the Table B. 8 runs, and the error was not found until the numerical instability occurred.

The deleted results in Tables B. 4 and B. 5 were caused by a reanalysis of the original 1965 test data reported in Reference 6. For example, on inspecting Reference 7 that was received from the contract manager during the course of the study, it was found for Table B. 4 that the vehicle weight was changed from 3500 lb to 3300 lb , the impact speed from 44 mph to 53 mph , and the reported barrier deflection from 11 ft to 8.0 ft . Similar changes were found for the test of Table B.5. Reasons for the changes could not be found in Reference 7, but the correlations with the new data were much better.

A difficult problem was encountered in the correlation work in using the same modeling for similar guardrail systems. For example, guardrail Types A, C, and G2 are similar except for the posts. Though only one unsatisfactory test was available for Type C , the railing model as a beam rather than a cable was fortunately the more satisfactory for both Types A and G2. Such was not the case, however, for Type E with a Charley post and the similar Type G4S with a W6 $\times 8.5$ post. As shown in Table B.3, a beam model for the railing might be more satisfactory for Type E, but, as shown in Table B.7, it is too stiff for the G4S. Since these two post types are so similar, it did not make sense to use a beam for one system and a cable for the other. Further, the cable model was more satisfactory for Type G4W with stronger posts but with similar 6'-3" post spacing. Thus, while it was not considered objectionable for beam modeling of the $W$-section for $12^{\prime}-6^{\prime \prime}$ post spacing and
cable modeling for the $6^{\prime}-3^{\prime \prime}$ spacing, it was considered desirable to use the cable for all of the systems with the same $6^{\prime}-3^{\prime \prime}$ post spacing.

One explanation for the stiffer test results of the Type E system in Table B. 3 could be the manner in which the posts were installed. This was the only test series at SwRI in which the posts were driven into the ground rather than being placed in holes and then backfilled. Correlation troubles were also experienced with the California series of tests (4-273 in Table B. 2 and 4-276 in Table B.7). The test site soil for these tests was extremely stiff, and the posts were also driven into smaller predrilled pilot holes. Further, the test installation length of 75 ft was quite short. These installation details were not considered to be as representative as those of the other reported tests. Consequently, only a minimal correlation effort was made for the California tests, and the results were not too good.

The state-of-the-art of relating soil properties to the dynamic response characteristics of guardrail posts is considered to be far from adequate. Consequently, a representative soil was selected for this study that had been characterized by means oi a series of pendulum tests so that some rational basis could be established for determining the required post properties. The soil selected was a well-graded gravel specified as a base material by the Texas Highway Department. Details of the post characterizations are discussed in Appendix A. Except for bending about the major axes of the W6 $\times 8.5$ and Charley posts, all of the steel post properties were controlled by the posts themselves rather than by the selected soil. All of the wood post properties were controlled by the soil. As discussed above, wood posts and, to a lesser extent, W6 $\times 8.5$ and Charley posts in very stiff or frozen soils will probably produce greater accident severities than those predicted by this model. Loose or soft soils will probably produce lesser severities. However, the relative severities of the various guardrail types at a particular site should not likely be significantly affected. Thus, in the interest of eliminating this complex variable from the model, along with the lack of available characterizing data, the single soil discussed in Appendix A was selected as a representative.

To avoid the undesirable specification of prestress slack in the cable railing models, softer longitudinal anchor post stiffnesses of $15.0 \mathrm{kips} / \mathrm{in}$. were used for most of the correlation runs. No unreasonable anchor shear forces or post deflections were observed with the installation lengths of 150 ft or longer. In most of the runs, the longitudinal railing forces were transmitted to the interior posts, and insignificant forces remained for the end anchors. Since satisfactory results were obtained without it, no attempt was made to reduce longitudinal post stiffnesses because of the block-outs.

Tests 7-1 of Table B. 4 and 7-2 of Table B. 6 were 90 -degree impacts run by New York to verify deflections in their computer model for the cable and box-beam systems. Note that the simulated deceleration in Test $7-2$ is high but the deflection correlation is excellent. Reference 7 shows a kinetic energy at impact of 87 ft -kips and a measured area of 84.9 ft -kips under the force-deflection curve for this test. In Test 7-1, the decelerations are excellent but the simulated deflection is high. In Reference 7, a significant and unresolved conflict was found for this test between the calculated kinetic energy of 81 ft -kips and measured area under the force-deflection curve of 65.6 ft -kips. A quick force deflection plot from the BARRIER VII results and calculation of the area gave much closer results of 77.2 ft -kips.

Test $7-21$ of Table B. 4 is the single light car test that could be found for the correlation study. As shown, the deflection check is good but the decelerations are high.

For the BARRIER VII extrapolation runs, the various guardrail configurations were selected to conform closely to those configurations finally selected in the test correlation runs. The guardrail models and post properties used for the extrapolations are shown in Figures B. 1 through B. 6 and Table B.10. The post properties were estimated as discussed in Appendix A.

Figure B. 7 shows the vehicle properties that were used in the extrapolation runs for the $4500-\mathrm{lb}$ vehicle class. Figure B. 8 shows the properties used for the $2250-\mathrm{lb}$ vehicle class. In computing the wheel drag forces shown, a coefficient of friction of 0.50 was assumed between the tires and the pavement.

TABLE B.10. POST PROPERTIES (GUARDRAIL TYPES G1, G2, AND G3)

Post Properties	Guardrail		
	Type G1	Type G2	Type G3
Size	S3 $\times 5.7$	S3 $\times 5.7$	S3 $\times 5.7$
Embedment (in.)	32	32	32
Height (in.)	27	24	27
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)	0.001	0.22	0.22
$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}$.)	0.62	0.62	0.62
MPA (in.-k)	141.6	141.6	141.6
MPB (in.-k)	76.8	76.8	76.8
$\mathrm{FPA}_{\text {P }}(\mathrm{k})$	3.20	3.20	3.20
$\mathrm{F}_{\mathrm{PB}}(\mathrm{k})$	5.90	5.90	5.90
$\delta_{\text {A }}$ (in.)	14.32	14.32	14.32
$\delta_{B}$ (in.)	9.45	9.45	9.45
Note: Use anchor post $\mathrm{kA}_{\mathrm{A}}=15.0 \mathrm{k} / \mathrm{in}$. for all guardrail types.			



Post properties:	Guardrail	
	Type A	Type C
Size	$7{ }^{\prime \prime}$ round	$8^{\prime \prime} \times 8^{\prime \prime}$
Embedment (in.)	35	35
Railing height (in.)	21	21
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}$.)	1.92	2.20
$k_{B}(k / \mathrm{in}$.	1.92	2.20
$M_{P A}($ in. $-k)$	243.6	273.0
$M_{P B}$ (in.-k)	243.6	273.0
$\mathrm{FPA}^{\text {( }}$ (k)	11.6	13.0
$\mathrm{F}_{\mathrm{PB}}(\mathrm{k})$	11.6	13.0
$\delta_{A}($ in. $)$	7.40	7.40
$\delta_{B}$ (in.)	7.40	7.40

FIGURE B. 1 GUARDRAIL TYPES A AND C CONFIGURATION


Control Nodes

No.	$X$
11	0
47	1425
52	1800

52 Nodes
51 Cables 25 Posts

76 Members

Post Properties:

## Size

Embedment (in.)
Height (in.)
$k_{A}(k / i n$.
$k_{B}(k / i n$.
$M_{P A}$ (in. $-k$ )
$M_{P B}$ (in.-k)
$F_{P A}(k)$
$F_{P B}(k)$
$\delta_{A}($ in. $)$
$\delta_{B}($ in. $)$

Guardrail		
$\frac{\text { Type B }}{8^{\prime \prime} \times 8^{\prime \prime}}$	$\frac{\text { Type D }}{6^{\prime \prime} \times 8^{\prime \prime}}$	$\frac{\text { Type G4W }}{8^{\prime \prime} \times 8^{\prime \prime}}$
35	35	35
21	21	21
2.20	2.20	2.20
2.20	1.66	2.20
273.0	218.4	273.0
273.0	273.0	273.0
13.0	13.0	13.0
13.0	10.4	13.0
7.40	7.40	7.40
7.40	7.40	7.40

FIGURE B. 2 GUARDRAIL TYPES B, D AND G4W CONFIGURATION


Control Nodes

10

450
$51 \quad 1275$
581800

58 Nodes
57 Cables
25 Posts
82 Members


FIGURE B. 3 GUARDRAIL TYPES E, G4S, AND THRIE CONFIGURATION


Control	Nodes	64 Nodes
No.	$X$	63 Cables
1	0	33 Posts
9	1536	96 Members
13	1920	
49	3648	
53	4032	

Post Properties: (see Table B. 10)

FIGURE B. 4 GUARDRAIL TYPE G1 CONFIGURATION


Post Properties: (see Table B. 10)

FIGURE B. 5 GUARDRAILTYPE G2 CONFIGURATION


Post Properties: (see Table B.10)

FIGURE B. 6 GUARDRAIL TYPE G3 CONFIGURATION


Weight $=4500 \mathrm{lb}$ From equation (A.5),

$$
\begin{aligned}
I & =[1.26(\mathrm{Wt})-1750](12)=[1.26(4500)-1750](12) \\
& =47,000 \mathrm{lb} \cdot \mathrm{in} . \cdot \mathrm{sec}^{2}
\end{aligned}
$$

Drag forces:

$$
\begin{aligned}
& \text { Front wheels }=\frac{W \mathrm{t}\left(L_{R}\right) \mu}{\left(L_{F}+L_{R}\right) 2}=\frac{4500(67)(0.50)}{124(2)}=608 \mathrm{lb} \\
& \text { Rear wheels }=\frac{W \mathrm{l}\left(L_{F}\right) \mu}{\left(L_{F}+L_{R}\right) 2}=\frac{4500(57)(0.50)}{124(2)}=517 \mathrm{lb}
\end{aligned}
$$

FIGURE B. 7 TYPICAL 4500-LB VEHICLE PROPERTIES


Weight $=2250 \mathrm{lb}$ From equation (A.6),

$$
\begin{aligned}
I & =\frac{0.225(\mathrm{Wt})^{1.572}(12)}{g}=\frac{0.225(2250)^{1.572}(12)}{32.2} \\
& =15,600 \mathrm{lb}-\mathrm{in} .-\mathrm{sec}^{2}
\end{aligned}
$$

Drag forces:

$$
\begin{aligned}
& \text { Front wheels }=\frac{W \mathrm{t}\left(L_{R}\right) \mu}{\left(L_{F}+L_{R}\right) 2}=\frac{2250(52)(0.50)}{95(2)}=308 \mathrm{lb} \\
& \text { Rear wheels }=\frac{W \mathrm{bt}\left(L_{F}\right) \mu}{\left(L_{F}+L_{R}\right) 2}=\frac{2250(43)(0.50)}{95(2)}=255 \mathrm{lb}
\end{aligned}
$$

FIGURE B. 8 TYPICAL 2250-LB VEHICLE PROPERTIES

## APPENDIX C

## BASIS FOR ESTIMATING VEHICLE DAMAGE

To estimate the percent of vehicle damage from the computer printer plots of the vehicle deformation as shown in Figures 1 and 2, the following procedure was used:

1. Sheet Metal Damage. For minor deformations that involved only the sheet metal of the vehicle, an estimate was simply made of the cost of repair or replacement, body work, touch-up paint, etc.
2. Wheel Snagging. From past SwRI experience of approximately 150 full-scale vehicle/ guardrail tests, it has been found that A-frame damage is usually caused by vehicle wheel snagging of the posts. Thus, estimates of the dynamic deflection necessary for wheel snagging were made for each of the guardrail types. If the dynamic deflections predicted by the extrapolation runs exceeded these estimates, the loss of the A -frame was assumed and 10 percent additional vehicle damage was estimated.
3. Windshield Damage. The windshield of the vehicle was assumed to require replacement if the deformation in the area reached 6 inches.
4. Body Frame Damage. The A-pillar of the vehicle was assumed to be damaged if the deformation in the area reached 8 inches. An additional damage of 10 percent was estimated if this occurred.
5. Radiator Damage. The vehicle radiator was assumed to be damaged if the deformation of the left front side of the vehicle reached 20 inches. An additional 5 percent damage was used for this case.
6. Total Damage. Total vehicle damage was set at 80 percent. It was assumed that 20 percent of the vehicle price could be recovered in the salvage value.

## APPENDIX D

## DETERMINATION OF PROBABILITIES

To determine the probabilities of the various impact conditions, the average curve for distribution of lateral displacements from Figure 5 and the distribution of impact speeds from Figure 6 were first assumed. It then became necessary to determine the distributions of vehicle speeds and impact angles corresponding to the selected category values.

To determine the angle of impact with the minimum radius of turn of the vehicle (i.e., with saturation of the side force capabilities of the front tires), the point mass approach investigated by Ross ${ }^{(24)}$ was used. Ross found that the point mass model predicted the impact angle quite accurately, at least for the extreme steering maneuvers and for lateral distances up to about 40 feet. For the model, the maximum available side force is $F_{f}=\mu W$, where $\mu$ is the coefficient of friction and $W$ is the weight of the vehicle. As the point mass corners in a circular turn with no pavement superelevation, the centrifugal force $F_{c}=m a=\left[W / g\left(v^{2} / r\right]\right.$, where $v$ is the vehicle velocity and $r$ is the radius of turn. Setting the two forces equal and solving for the minimum radius of turn yields

$$
\begin{equation*}
r_{\min }=\frac{\nu^{2}}{g \mu} \tag{D.1}
\end{equation*}
$$

As done by Ross, a coefficient of friction of 1.0 was selected to represent a limiting value.
In using the point mass model, it was possible to easily extend the considerations to include horizontal curves. Figure D. 1 illustrates the conditions for a straight section of highway. From simple geometric considerations,

$$
\begin{gather*}
r=\sqrt{\left(r_{\min }-\frac{w}{2}\right)^{2}+a^{2}} \\
\sin D=\frac{a}{r} \\
\cos B=\frac{r_{\min }-L_{T}}{r}  \tag{D.2}\\
\theta=C=B-D
\end{gather*}
$$

For the positive degree of curve shown in Figure D.2, values of $r$ and $D$ given in equation (D.2) still apply. From the geometric relationships

$$
\begin{gather*}
R \sin A=r \sin B \\
R \cos A+r \cos B=R-L_{T}+r_{\min } \tag{D.3}
\end{gather*}
$$

the values of angles $A$ and $D$ and the impact angle $\theta$ are computed as

$$
\begin{gather*}
\sin A=\frac{r \sin B}{R} \\
\cos B=\frac{\left(R-L_{T}+r_{\min }\right)^{2}-R^{2}+r^{2}}{2\left(R-L_{T}+r_{\min }\right) r} \tag{D.4}
\end{gather*}
$$



FIGURE D.1. POINT MASS CONDITIONS FOR STRAIGHT ROAD

and

$$
\theta=A+C=A+B-D
$$

Similarly, from Figure D. 3 for a negative degree of curve, the conditions

$$
\begin{gather*}
R \sin A=r \sin B \\
R \cos A-r \cos B=R+L_{T}-r_{\min } \tag{D.5}
\end{gather*}
$$

yield

$$
\begin{gather*}
\sin A=\frac{r \sin B}{R} \\
\cos B=\frac{R^{2}-\left(R+L_{T}-r_{\min }\right)^{2}-r^{2}}{2\left(R+L_{T}-r_{\min }\right) r} \tag{D.6}
\end{gather*}
$$

and

$$
\theta=C-A=B-D-A
$$

Based on 135 field observations, Ross concluded that the distribution of impact angles for median encroachments could be approximated by a normal distribution. (24) It was assumed that a normal distribution would also be applicable for this study. For this distribution,

$$
\begin{equation*}
\theta_{P}=\sigma X_{P}+\beta \tag{D.7}
\end{equation*}
$$

where
$\theta_{P}=$ impact angle for equal to or less than cumulative probability $P$
$\sigma=$ standard deviation
$X_{P}=$ parameter such that area under normal curve from $\rightarrow \infty$ to $X_{P}=P$
and
$\beta=$ mean of distribution.
The angles $\theta$ discussed above, as determined from the offset distance $L_{T}$ to the center of lane 1, were assumed to be the 95 percentile value of the impact angle, and zero degrees was assumed near the zero percentile value. From the normal distribution tables, corresponding values of $X$ are $X_{0}=$ -4.00 and $X_{95}=1.65$. Then, from equation (D.7), $\theta_{0}=0=-4.00 \sigma+\beta$, which yields

$$
\begin{equation*}
\sigma=\frac{\beta}{4.00} \tag{D.8}
\end{equation*}
$$

Also, $\theta_{95}=\theta=1.65 \sigma+\beta$, which, when combined with equation (D.8), gives


$$
\begin{equation*}
\beta=\frac{\theta}{1.4125} \tag{D.9}
\end{equation*}
$$

The various distributions of vehicle speed, offset distance, and impact angle were finally multiplied together to yield the combined probabilities. In the program, vehicle dimensions of $a=7$ feet and $w$ $=6$ feet were used, and values of $X$ were computed by a fifth degree polynomial approximation.

## APPENDIX E

## TRAFFIC DELAY TIME

The estimation of traffic delay time (vehicle hours) due to traffic congestion caused by guardrail accidents and repair involves queuing theory. A modified version of the shock wave method for queuing in uninterrupted flow, as described by Curry, (14) was assumed to provide a reasonable estimate of the delay time for various road types and partial lane blockage durations. In addition to queuing delay, it was assumed that traffic speed would be reduced to 20 mph and that "gawkers" from the opposite direction would slow to 30 mph for an average length of one-half mile while the lane was blocked by the damaged vehicle. A speed of 35 mph for the half-mile section in one direction only was assumed during the guardrail repair. The steps used in the formulation were as follows:
(1) Determine highway capacity of each section. Figure E. 1 is a diagram of the highway situation. The capacity of each section was computed by (31)

$$
\mathrm{C}=2000 \mathrm{NWT}
$$

where
$\mathrm{N}=$ number of lanes
$\mathrm{W}=$ width factor $(1.0$ was used $)$
and

$$
\mathrm{T}=\text { truck factor }\left(0.88 \text { was used corresponding to } 14 \text { percent trucks }{ }^{(14)} .\right.
$$



FIGURE E.1. DIAGRAM OF HIGHWAY UNDER QUEUING CONDITIONS

The resulting one-way capacities were as follows:

Road Type	Capacities (vehicles/hour)			
		Section ab	$\quad$	Section bc
:---				
2-lane rural				

(2) Determine hourly traffic demand $A H T$. On omitting 8 hours of light night traffic, 16 hours were used instead of 24 to average out peak traffic amounts. Thus, the average hourly traffic demand was estimated by

$$
\begin{equation*}
A H T=A A D T / 16 \tag{E.2}
\end{equation*}
$$

(3) Determine demand/capacity $\mathrm{D} / \mathrm{C}$ ratios and check for queuing. The demand/capacity for each section was computed by

$$
\begin{equation*}
D / C=A H T / C \tag{E.3}
\end{equation*}
$$

If $D / C_{b c}$ was greater than 1 , service condition $F$ existed during blockage and queuing occurred in section qb of Figure E. 1.
(4) Determine volume/capacity $V / C$ for each section. The values of $V / C$ were set equal to the corresponding values of $D / C$ if no queuing occurred. For the case of queuing, the values were computed by

$$
\begin{gather*}
V / C_{a q}=D / C_{a q} \\
V / C_{q b}=C_{b c} / C_{a b}  \tag{E.4}\\
V / C_{b c}=1.00
\end{gather*}
$$

(5) Calculate average speed $S$ for each section. These values were computed from the curves shown in Figure E.2. The $60-\mathrm{mph}$ curve was assumed for freeways and the $50-\mathrm{mph}$ curve for rural roads. The Level $F$ curve was used for the speed in section $q b$ if queuing occurred.
(6) Check for queuing caused by reduced speeds. For the reduced speeds at the accident site, the capacity was determined by

$$
\begin{equation*}
C_{r}=C_{a q}\left(S_{r}\right) / S_{a q} \tag{E.5}
\end{equation*}
$$

where $S_{r}=20 \mathrm{mph}$ and 30 mph for the accident and $S_{r}=35 \mathrm{mph}$ for the repair. The demand/capacity at the site was computed by

$$
\begin{equation*}
D / C_{b c}=A H T / C_{r} \tag{E.6}
\end{equation*}
$$

which indicated no queuing for $D / C_{b c} \leqslant 1$ and queuing for $D / C_{b c}>1$. For queuing, the $V / C$ ratios were computed by

$$
\begin{equation*}
V / C_{q b}=C_{r} / C_{q b} \tag{E.7}
\end{equation*}
$$

and

$$
V_{b c}=V / C_{r}=1.00
$$

and the speed $S_{q b}$ was computed from the Level F curve of Figure E.2.


Ref: HCM
FIGURE E.2. FREEWAY RUNNING SPEEDS OF PASSENGER CARS
The next four steps apply only for the queuing condition.
(7) Determine the rate of queuing $R_{q}$ in vehicles per hour bv

$$
\begin{equation*}
R_{q}=A H T-C_{b c} \tag{E.8}
\end{equation*}
$$

(8) Determine the density of vehicles $d V$ in vehicles per mile for each section by

$$
\begin{align*}
& d V_{a q}=A H T / S_{a q} \\
& d V_{q b}=C_{b c} / S_{q b}  \tag{E.9}\\
& d V_{b c}=A H T / S_{b c}
\end{align*}
$$

(9) Determine the change in density $d d$ in vehicles per mile from upstream to congested section by

$$
\begin{equation*}
d d=d V_{q b}-d V_{a q} \tag{E.10}
\end{equation*}
$$

(10) Determine the average queue length $L_{q}$ in miles by

$$
\begin{equation*}
L_{q}=T\left(R_{q}\right) / 2(d d) \tag{E.11}
\end{equation*}
$$

where $T$ is the estimated time in hours to remove the damaged vehicle or to repair the guardrail. For no queuing,

$$
L_{q}=0 .
$$

(11) The total delay time (vehicle hours) caused by blockage of the damaged vehicle was computed by

$$
\begin{equation*}
T_{b}=C_{b c} T\left[L_{q}\left(\frac{1}{S_{q b}}-\frac{1}{S_{a q}}\right)+L_{b c}\left(\frac{1}{S_{b c}}-\frac{1}{S_{a q}}\right)\right] \tag{E.12}
\end{equation*}
$$

Similarly, the delay caused by repair of the guardrail was computed by

$$
\begin{equation*}
T_{m}=C_{b c} T_{r}\left[L_{q}\left(\frac{1}{S_{q b}}-\frac{1}{S_{a q}}\right)+L_{b c}\left(\frac{1}{S_{r}}-\frac{1}{S_{a q}}\right)\right] \tag{E.13}
\end{equation*}
$$

Note that $L_{q}=0$ in these equations when no queuing occurred. Further, when the assumed site speed $S_{r}$ became greater than the operating speed $S_{a q}$ at the higher values of $A A D T$, no delay time was assumed.
In order to estimate the societal costs due to these traffic delays, it was necessary to estimate the percentage of vehicles that deflected back on to the roadway after a guardrail hit. The historical data generated by Lampela, ${ }^{(23)}$ who derived a table of these percentages as a function of impact angle, was used for this purpose. Table E. 1 shows the data extracted from this reference, with the ranges of impact angles reduced to the four category values used in this study.

TABLE E.1. PERCENTAGE OF VEHICLES REDIRECTED TO ROADWAY AS A FUNCTION OF THE IMPACT ANGLE

Range   (deg)	Category   Value   (deg)	Percent of   Redirected   Vehicles
0 to 10	7	32
11 to 20	15	22
21 to 30	25	18
30 and over	30	14

## APPENDIX F

# INSTRUCTIONS TO ACCIDENT INVESTIGATION TEAMS 

"The Development of a Cost-Effectiveness Model for Guardrail Selection," Federal Highway Administration Contract No. DOT-FH-11-8827

## 1. Task Objective and Scope

The objective of this contract is to develop a cost-effectiveness model for guardrail selection that will include cost parameters for various guardrail configurations as well as criteria for analysis of system effectiveness under various dynamic impact conditions. The effectiveness of the selected guardrail systems for the various impact conditions will be performed at SwRI and will be based on available full-scale test data and extrapolations thereof. The purpose of your work will be to collect reconstructed data on actual accident situations that can then be used to check the predicted effectiveness and verify the model validity. As such, SwRI is primarily interested in the impact conditions, the guardrail details, and an indication of the accident severity (i.e., property damage only, injuries, or fatalities). Detailed analyses of the injuries are not required, and specific injuries sustained by occupants need not be identified. Rather, your emphasis should be placed on specifying the geometric and environmental factors associated with the accident, assessing the damage to the vehicle and guardrail, and supplying basic occupant data.

Your reconstructions should take the form of on-site investigations of the actual accidents whenever possible, but may be obtained in part through the use of supplemental police reports and contact with your local highway engineers. In any event, of course, police cooperation is an important and critical aspect of this task.

A completed case will consist of the following:
(1) A legible copy of the accident report
(2) A completed copy of the vehicle description field form
(3) A completed copy of the occupant description field form
(4) A completed copy of the environmental description field form
(5) Photographs that adequately describe the environmental and vehicular post crash conditions.

## 2. General Comments

Accident reconstruction is scheduled to begin on October 15, 1975, and extend to October 1, 1976. During this time period a project total of approximately 100 cases are to be completed. The expected distribution of guardrail types between the teams is shown in Table F.1. General details of the various types are shown in Table F.2. At the start, there is no restriction on the type of guardrail on which you may report as long as it is one of the 11 types shown in Table F.2.

Certain critical periods will exist during the data collection. In the early stages, it may be necessary to make certain changes in the report form or instructions in order to maintain a level of report consistency between the various teams. In the latter stages of the data collection, it will be necessary for SwRI to promptly inform all teams that a representative number of reports have been received for a particular guardrail type and that no more reports are to be made for that type. To help alleviate this latter problem, the teams collecting data will be asked to contact SwRI for an assigned case number for each individual case that is to be reported. SwRI will then know the exact number of cases reported or to be reported on each type of guardrail. Send the completed cases to SwRI as quickly as possible, preferably within two weeks after notification.

TABLE F.1. SUMMARY OF GUARDRAIL SYSTEMS BY ACCIDENT INVESTIGATION TEAM

Accident Investigation Team	Guardrail Design	Beam ${ }^{(a)}$	Height to Top of Beam (in.)	Post ${ }^{(b)}$	Post Spacing (ft-in.)
1. Southwest Research Institute San Antonio, Texas	$\begin{gathered} \mathrm{A} \\ \mathrm{G} 4 \mathrm{~S} \end{gathered}$	W-beam W-beam (B.O.)	27	7' dia (W)	12'-6"
			27	W6 $\times 8.5$ (S)	6'-3"
2. University of New Mexico Albuquerque, New Mexico	B	W-beam (B.O.)	27	$8^{\prime \prime}$ dia (W)	6'-3"
3. University of Southern California Los Angeles, California	C	W-beam (B.O.)	27	$8 \times 8$ (W)	12'-6"
	G4W	W-beam (B.O.)	27.	$8 \times 8$ (W)	6'-3"
	D	W-beam (B.O.)	27	$6 \times 8$ (W)	$6^{\prime}-3^{\prime \prime}$
4. University of Miami Miami, Florida	G2	W-beam	30	$\mathrm{S} 3 \times 5.7$ (S)	12'-6"
	G4S	W-beam (B.O.)	27	W6 $\times 8.5$ (S)	6'-3"
5. Pennsylvania Team University Park, Pennsylvania	G3	Box beam	30	S3× 5.7 (S)	6'-0"
	E	W-beam (B.O.)	27	Charley	6'-3"'
6. Calspan Corporation Buffalo, New York	G1	3-3/4" cables	30	S3x 5.7 (S)	16'.0"
	G3	Box beam	30	S3× 5.7 (S)	6'-0"

${ }^{\text {(a) }}$ (B.O.)-beam blocked-out from post.
(b) Post material code-(C)-concrete, (S)-steel, (W)-wood.

Send the completed reports to:
Tom Swiercinsky, Dept. 11
Southwest Research Institute
P.O. Drawer 28510

San Antonio, Texas 78284
If problem areas exist, contact:
$\begin{array}{ll}\text { Tom Swiercinsky } & \text { (512) 684-5111, ext. } 2631 \\ \text { Lee R. Calcote } & \text { (512) 684-5111, ext. } 2408\end{array}$
Send your statement with the completed report. In submitting these statements, please show y our cost breakdown (salary, travel, supplies, overhead, etc.).

Refer to SwRI Project No. 03-4309-003.

## 3. Investigation Criteria

The primary interest in this contract is passenger vehicle impact on the main sections of selected guardrail systems without curbs. Thus, on investigating a particular accident, report ONLY those accidents that meet the following criteria:

## Environment

(1) The guardrail type must be one of those identified in Tables F. 1 and F.2.
(2) There can be no curbs between the guardrail and the edge of the pavement.
(3) The guardrail beam heights must not vary from the nominal heights shown in Table 2 by more than plus or minus 3 inches.

TABLE F.2. GUARDRAIL TYPES


Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain $m$


[^8]

$\begin{array}{ll}\text { Metric conversion: } & \text { Multiply ft by } 0.305 \text { to obtain } \mathrm{m} \\ & \text { Multiply in. by } 0.0254 \text { to obtain } \mathrm{m}\end{array}$


[^9]

Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain m


Metric conversion: Multiply ft by 0.305 to obtain m
Multiply in. by 0.0254 to obtain $m$
(4) Impacts must occur in the main sections of the guardrail. Accidents involving impacts on end or transition sections of the guardrail are not to be reported.

## Vehicle

(5) The vehicle must be a passenger automobile. From the vehicle code contained in this transmittal, the last two digits of the vehicle five digit cade must be 01 through 10,17 , 18 , or 19 .
(6) The vehicle must not be towing a trailer.
(7) The first impact of the case vehicle must be with the appropriate main section of the guardrail. Consequently, multiple-vehicle accidents are not to be reported unless the secondary vehicle was involved as a result of the primary vehicle's trajectory after impact with the guardrail.

## 4. Accident Report Forms

The accident report forms are attached. A portion of the required information pertains to highway, guardrail, and vehicle features that are not provided by law enforcement traffic accident reports. Thus, several field measurements, an interview with a vehicle occupant, and possible contact with the investigating police officer and state highway engineers will be required.

Instructions and comments for completing the accident forms follow.

## INSTRUCTIONS FOR COMPLETION OF THE FIELD FORM - ENVIRONMENTAL DESCRIPTION

- Accident Report No.:

The number of the accident report that was assigned by the investigating officer, if appropriate.

- Date of Accident:

Record month, day, and year of accident as recorded on accident report.

- Time of Accident:

Use the 24 -hour clock to record approximate time of case accident.

- Highway Type and No.:

Identify the highway type (IS = interstate, SH = state highway, FM = farm-to-market road, etc.) and number where the accident occurred.

- Speed Limit:

The speed limit for the section of the roadway where the accident occurred, either posted or unposted.

- Accident Area:

Code (1) - urban
(2) - rural
(3) - unknown

- Locality:

Code (1) - manufacturing or industrial
(2) - shopping or business
(3) - apartments
(4) - school or playground
(5) - residential
(6) - farm
(7) - undeveloped
(0) - unknown

- Roadway Type:

Code (01) - 2-way, expressway, divided
(02) - 2-way, expressway, not divided
(03) - 2-way, multilane, divided
(04) - 2-way, multilane, not divided
(05) - 2-way, single lane (each way)
(06) - 1 -way, multilane
(07) - 1-way, single lane
(08) - entrance or exit ramp
(98) - not applicable
(99) - other
(00) - unknown

- Type of Road Surface:

Code (1) - asphalt, bituminous concrete
(2) - concrete
(3) - gravel
(4) - more than one type
(5) - other
(0) - unknown

- Road Surface Condition:

Code (01) - dry
water:
(02) - damp
(03) - wet
(04) - puddled
(05) - unknown amount
snow:
(06) - loose
(07) - packed
(08) - condition unknown
(09) - ice
(10) - slush
(11) - spilled gravel
(12) - other
(00) - unknown

## General Site Conditions

- Number of traffic lanes: Record the actual number of traffic lanes in the direction of traffic. On a typical two-lane rural highway, enter 1.
- Average lane width: Record in feet-inches the average width of the traffic lanes.
- Lane in which case vehicle was traveling: Record the lane number starting with right outside lane as No. 1.
- Distance from edge of pavement to barrier: Record the distance in feet-inches from the right edge of Lane No. 1 to the face of the guardrail.
- Horizontal curve: Indicate degree of curve and direction at point of impact. If curve bends to right (left) in the direction of traffic, enter the degree of curve and R (L). If you desire, you can determine the degree of curve by measuring the offset $\chi$ thus:

$$
\text { Degree of Curve } D=\frac{2 \chi(5729.58)}{\chi^{2}+10,000}
$$



- Grade: Enter percent of grade at point of impact and $+(-)$ if roadway elevation is increasing (decreasing) in the direction of traffic. If appropriate, indicate "crest" or "dip".
- Roadway cross-section: In the space provided, prepare a detailed sketch of the roadway cross-section at the point of impact. Show horizontal distances and slopes of pavement, shoulders, ditches, etc. Show the vertical distance from the edge of the pavement to the ground at the guardrail.


## Guardrail Design Information

- Guardrail type: Enter the guardrail design shown in Tables 1 and 2.
- Guardrail length: If the guardrail is greater than 200 feet long, enter 200+. If not, indicate the measured length in feet-inches.
- Post spacing: Record the center-to-center spacing of the guardrail posts in feet-inches at an undamaged portion of the guardrail.
- Distance to top of railing: Record in inches the vertical measured distance from the top of the guardrail railing to the ground at an undamaged portion of the guardrail.
- Post and block-out descriptions: Record type of material and shape (square, round, rolled section). Consider width dimension parallel and depth dimension perpendicular to roadway. If possible, record post length by measuring post that has pulled out of the ground.
- Railing description: Enter as W-section, box beam (TS6 $\times 6$ ), or Thrie beam. Record gauge or material thickness.


## Impact Conditions

- Estimated impact speed and angle: These measurements are essential as inputs for the computer simulation of the impact. Do your best through inspection of the site and discussions with the driver and/or inspecting police officer to estimate these quantities as accurately as possible.
- Distance from initial impact point to upstream end of guardrail: Consider "upstream" as opposed to the direction of traffic. If the impact point is greater than 50 feet from the upstream end of the guardrail, enter $50+$. If not, record the actual distance in feet-inches.
- Distance from initial impact point to first upstream post: Record in feet-inches the distance from the initial impact point to the original location of the first upstream post.


## Guardrail Damage

- Maximum permanent guardrail deflection: Measure and record in inches the maximum permanent deflection of the guardrail caused by the impact. If the railing ruptured or the guardrail was pushed over by the impact, so state.
- Location of maximum deflection: Record the distance in feet-inches from the initial impact point to the point of maximum guardrail deflection.
- Length of rail damaged: Measure and record the length of damaged railing that will probably require replacement by the maintenance crews.
- Number of posts damaged: Inspect the damaged guardrail and indicate the condition of the posts. For example, an upstream entry of 4L-2R would indicate 4 leaning posts that might be reusable by pushing them back to the vertical position, followed by 2 posts that are ruptured or completely pulled out of the soil and would require replacement. Describe downstream posts in a similar manner.


## Guardrail Performance Appraisal

These are general yes-no types of questions that will indicate the general effectiveness of the guardrail system.

## Desired Photographic Coverage

Because of their value in supplementing the reported data, plan to include several photographs with your reports. Keep in mind that SwRI is interested in appraising guardrail and vehicle damage, and photographs that clearly depict damage details will greatly enhance the completeness of the reports. Include general shots showing the broad area of the accident site. Take close-up views showing damage to the guardrail railing and posts.

## FIELD FORM

Cost Effectiveness
Guardrail Selection
Environmental Description Team No. Case No.

- Accident Report No.
- Highway Type and No. $\qquad$
- Date of Accident $\qquad$ - Speed Limit $\qquad$
- Time of Accident $\qquad$
- Accident Area $\qquad$
Locality $\qquad$
- Roadway Type $\qquad$
- Type of Road Surface $\qquad$
- Road Surface Condition $\qquad$


## General Site Conditions

- Number of traffic lanes $\qquad$
- Average lane width (ft. -in.)
- Lane in which case vehicle was traveling (counting from edge of pavement) $\qquad$
- Distance from edge of pavement to barrier (ft.-in.) $\qquad$
- Horizontal curve (degrees)
- Grade (percent) $\qquad$
- Sketch of roadway cross-section:


## Cost Effectiveness

 Guardrail Selection
## FIELD FORM <br> Environmental Description

Team No.
Case No.

## Guardrail Design Information

- Guardrail type
- Guardrail length (if less than 200 ft .)
- Post spacing (ft.-in.)
- Distance to top of railing (in.)
- Post Description:

Material
Shape
$\qquad$


## Impact Conditions

* Estimated Heading Angle (deg)
- Estimated impact speed (mph) $\qquad$
- Estimated impact angle (deg) $\qquad$
- Distance from initial impact point to upstream end of guardrail (if less than 50 ft ) $\qquad$
- Distance from initial impact point to first upstream post (ft.-in.) $\qquad$
Guardrail Damage
- Maximum permanent guardrail deflection (in.)
- Location of maximum deflection (ft.-in.)
- Length of rail damaged ( ft ) $\qquad$
- Number of posts damaged:

Upstream $\qquad$
Downstream $\qquad$

Team No.
Case No.

## Guardrail Performance Appraisal

- Did guardrail railing rupture? If yes, describe failure briefly.
- Did vehicle travel on top of the guardrail?
- Was vehicle pocketed or snagged by the guardrail?
- Was vehicle redirected? If so, what was the approximate exit angle?
- Did vehicle roll over? If so, did it roll toward or away from the barrier? $\qquad$
- Did vehicle spin?
- Sketch the accident scene illustrating the precrash, crash, and post crash position of the vehicle and significant objects contacted by the case vehicle. A short narrative describing vehicle dynamics will assist SwRI to reconstruct the accident.

Narrative: $\qquad$
$\qquad$
$\qquad$
$\qquad$

## INSTRUCTIONS FOR COMPLETION OF THE

 FIELD FORM - OCCUPANT DESCRIPTIONOne of the occupants (preferably the driver) of the case vehicle should be contacted for the following information:

- Team No.:

Code (01) - SwRI
(02) - University of New Mexico
(03) - University of Southern California
(04) - University of Miami
(05) - Pennsylvania
(06) - Calspan Corporation

- Case No:

Two digit number assigned by SwRI upon team notification.

- Age:

Record actual/estimated age of occupants in years.

- Weight

Record approximate weight of individual occupants in pounds.

- Height:

Record approximate height in inches.

- Occupant Ejection:

Interviewer's opinion of actual ejection of the occupants after assessment of factors from vehicle inspection, interview, accident report, injuries, restraint usage, etc.

Code (0) - Unknown
(1) - Partial Ejection
(2) - Total Ejection
(3) - Not Ejected

- Occupant Injured:

Code (0) - Unknown if injured
(1) - No Injuries $\quad$ PIC $=0$
(2) - Injured $\quad P I C=A, B, C$
(3) - Fatal $\quad$ PIC $=K$
(4) - Injured, Severity Unknown

- Occupant Treatment:

Code (00) - Unknown
(01) - Not Injured
(02) - Injured but not treated
(03) - Taken to hospital emergency room for treatment and released
(04) - Admitted to hospital
(05) - Other

- Restraints Worn:

This is the interviewer's assessment of restraint system usage. Factors to be considered should include but not be limited to:

1. Restraint condition from vehicle description form
2. Vehicle investigator's opinion of restraint usage
3. Comments from occupant interviewer
4. Reliability of interview
5. Information from accident report
6. Evidence of occupant ejection
7. Injury pattern of the occupants
8. Vehicle dynamics

Code (0) - Unknown
(1) - Lap and upper torso
(2) - Lap belt only
(3) - Diagonal belt only
(4) - Passive system only
(5) - Child restraint
(6) - Held in lap
(7) - None used or not applicable
(8) - Other

Note: When SwRI evaluates the completed case, this coded response will override information on the vehicle form, accident report, etc., if there is a contradiction.

- Traffic Conditions:

Have person being interviewed describe traffic conditions at time of accident and record on space provided. Review of the individual cases might indicate that these accidents occur during periods of light traffic flow, etc.

- Accident Description:

Information supplied by the driver/occupant may assist the accident reconstructionist in determining the vehicle dynamics, etc., vehicle rotation, roll over, evasive maneuvers, brake application, etc.

- Interviewer's Comments:

The interviewer should note any unusual circumstances not covered on the accident report, vehicle form or occupant form that would affect the analysis of the case.

## FIELD FORM

Cost Effectiveness
Guardrail Selection

Occupant Description
Team No.
 Case No.

Seat Location
LF

CF
RF
LR
CR
RR
Other

- Age (yrs.)
- Weight (lb.)
- Height (in.)
- Occupant Ejection
- Occupant Injured
- Occupant Treatment
- Restraints Worn
- Traffic Conditions
- Accident Description (Vehicle Dynamics): $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
- Interviewer's Comments:


## INSTRUCTIONS FOR COMPLETION OF THE FIELD FORM - VEHICLE DESCRIPTION

- Team No.:

Code (01) - SwRI
(02) - University of New Mexico
(03) - University of Southern California
(04) - University of Miami
(05) - Pennsylvania

- Case No.:

Two digit number assigned by SwRI upon team notification.

- Vehicle No.:

The number of the case vehicle as shown on the accident report.

- Vehicle Identification No.:

Unique number for each vehicle. Variations exist in VIN locations and VIN systems used.
The VIN will be used to obtain additional data on the vehicle (e.g., vehicle curb weight, etc.).

- Vehicle Make:

Buick, Chevrolet, Ford, etc.

- Vehicle Model:

Apollo, Impala, Mustang, etc.

- Vehicle 5 Digit Code:

Enter number from attached vehicle code.

- Cargo Carried by Vehicle:

Include only cargo carried in the vehicle. Do not include weight of occupants.
Code (00) - Unknown
(01) - 1-300 lbs
(02) - 300-600 lbs
(03) - 600-900 lbs
(04) -900-1200 lbs
(05) - 1200-1500 lbs
(06) - Over 1500 lbs
(09) - Not applicable; no cargo

- Location of Cargo:

Code (0) - Unknown
(1) - In occupant compartment
(2) - In trunk or rear of occupant compartment
(3) - In front of occupant compartment
(4) - On roof
(9) - Not applicable

Occupant Ejection:
From inspection of the vehicle or from the accident report, is there indication that one of the occupants was ejected from the vehicle, either partially or completely?

Code (0) - Unknown
(1) - Yes
(2) - No

- Occupant Compartment Reduced in Size:

Code (0) - Unknown
(1) - Yes
(2) - No
(3) - Not applicable

- Type Restraints:

Code (0) - Unknown
(1) - Active restraints
(2) - Passive restraints
(3) - Passive and active
(4) - No restraints installed

- Restraints Used:

This column indicates the investigator's opinion of restraints used for each occupant in the vehicle. From the accident report, it is not always possible to determine the number of occupants in the vehicle or the seated position of the occupants. However, from an inspection of the vehicle, factors such as restraint condition or occupant contact points can assist the investigator to determine if an occupant was present and/or if the restraint system was in use. If, after examination, the investigator determines that there was no occupant for the seated position, then Code (7) should be recorded.

Code (0) - Unknown if used
(1) - Not used
(3) - Lap only used
(4) - Shoulder only used
(5) - Child seat used
(6) - Other
(7) - No occupant for seated position
(8) - Lap and shoulder used
(9) - Not applicable; no belts for this position

- Interior Occupant Contact Points:

Mark only those areas which indicate possible occupant contact. Do not show induced damage.

- Damage Sketch:

Indicate damaged area(s) by outlining new perimeter of vehicle. Indicate direct impact damage by a series of $X^{\prime}$ s and induced damage by a wavy line ( $\sim$ ). Indicate the amount of crush in inches. The damaged areas must correspond with the assigned VDI. Also indicate the original dimensions for the wheel base, front overhang, and rear overhang for the case vehicle. The following is an example:


- Vehicle Repair/Replacement Cost:

If this information is available from the repair garage, insurance company, or the driver, record the information. The investigator should not estimate the repair/replacement cost unless he is a qualified estimator.

- Frame Damage:

From inspection of the vehicle, determine if the frame sustained damage from the collision.

Code (0) - Unknown
(1) - Yes
(2) - No

- Objects Contacted:

Code the appropriate objects contacted from the attached list.

- VDI:

Use SAE Standard J224a to assign appropriate VDI.

- Inches Crush:

The amount of crush in inches should correspond to the value shown in the damage sketch.

- Desired Photographic Coverage:

Head-on, side view, perspective, and, if possible, overhead views of vehicle showing vehicle damage.


POQD MOECE CCYEAHY Pord


ECRD DP CAYAEA LETE
Lincoln－rorcury


Zincoln－Mercury

$222 C \hat{4}$ Meteor
2229 Morcury Robcat．（－74）
GEMESAI MCTORS COEEORAEIOH
GENERAL ECTQRS COFEORAEIOH
RUick
11171 special（ $64-$ ），skylark（ -74 ），（6S，Sportuagon，ceneury． Century 35う，Kegal
11102 l，niabre，wildcat，Conturion 111c3 Elrcter 2？5，Setate Hagen
19114 Sryhavk 11114 Sryhavk






YFRIC：E MARE YOEEI（ABCDF）：（4／75）

## 

141才1 Classic，Behol，Matator
14192 Amhassador（ -74 ）
14192 amhassadur $(-74)$
141（ら Marlin，Javelin $(-74)$ ，Javelln Ap४（79－74）
14198 Arerican，Hornet 141 C8 Arericang ho
141 Arx（to 7 ） f4isg Gremlín
＊Sef mlso Kais
（66－）
 Chrysler
13902 rysler
13902 veuport，Chrysier 30 ，Ney Yorker，Joun $\&$ Country
93907 Hindsor $(6 n, 61)$ ．Saratega $(60)$ Dodge－Cbarger（71－74）
 13707 Charger $S E$（Special odition）（75－）

13211 Van，Sportsman Kayon，Tradesaan 13212 rickup， 51 no，r200，
132 is Van Ualk－in，iiary Van
13234 Etraight Truck
132 3 F －ractormactor combination（Sesi） （332（9）こclt．
13？03 Ioperial，Leviron，Crovn，Custon（00－s3）


 liurg valiant，barcicula（ju－66），Sigriet（i，


Lesoto
13502 Desoto（61）．Píaflite（60），Adventurer（60）
Lesoto
13502
Cherrolet
TEMERAL ENTORS OF CAYADA LTD


oldsunbile
evrolet
21301 Chevelle, Chevrolet, Acadian
21302 保
21302 Biscayne. Bel Air
oldsmobile
21401 oldsuobil
Pontiac

15212 Pickup
CHECKER
15102 Checker, Karathon
IHIERHATICHAL HARYESTER
15312 Pickup, Travelette
15315 Travelall
15333 Van Halk-10
15334 Straight Truck
15335 Truck-Tractor
15338 Tractor-Trailer Combination (Semi)
15341 School Bus
STORFBRKEP
15405 Avanti II
15408 Lark
15408 Lark
155.5- Hotorcycle
GPNERAL VEHICLES CCBPORATION
15610 Brick11n
11301 Chevelle, Yaljbu, Noand, Greenbrier, Laguna, Laguna $S-3(74-1)$
11302 Biscayne, Bel Air, Imfala, Caprice, Brookvood, tcuriswan, xingsvood, Chevrolet Hagon


HARLEY-FAYIESCN
GYに Truc\% and Coach $\quad 1611$ Spertvan. Vandura
11612 Pick-up. Crey Cab
11614 Jiary Carryall. Suturtan
N
ck
11638 Tractor-Trailer Comblnation (Sedi)


[^10]

75148	Alfs poeeo 9750 Bnclina，Guila
75110	Alfa foneo yontreal
75110	Alfa Eoveo 1759 \＆ 1600 GTV （ Spyder
48110	Aston Martin［B5，［B6．［5S
68108	Audi 100LS，100：il，Pox，Super 90
58119	ludi 109 Coupe
45219	Austir Healy Sprite
45219	Austin ifealy 3200
45109	dust in maxi，a60，180C
4sinc	Austin Mini，Mini Coopre，America，1300．Yarina
19 4 ？ 5	svanti II
67108	gwh 2509／2800／3000 sadans，Bavaria，3．3L． 525
67109	B．tw 1600，2002，1800，1602，2002tii．Iurbo 2002
67110	
62290	Capri，Ford
81312	Cherrclet－Isuzu LUV Pickup
5 E 101	Citroen 21．ID20，D521
55108	Citroen GS
55129	Citroen 2CV，Dyane．Ami
55110	Citroen SM
832Cs	Cclt，Codge－kitsubishi
¢30C9	Cricket，Plymouth
96108	catsun 200L，Laurel
961C9	Datsun 1700．Sunny，1200（－73）．PL510．PL610． B－219（74），ratsun 100A．120A，Cherry
8ヶ， 112	Eatsun Pl620 Pickup
86119	Datsun 1609，2000，2402． 2602
72210	De：oraso Fangusta，Pantera，Deauville
83209	Dchge－ritsubishi Colt
77115	Ecriari
76.109	？int 500，650．250，124，128，131 sedans
76110	Fiat Dino
76119	Piat E50，124，128，Coups and Spyder， 1500 Spyder
42209	Fcrd Anglia，Cortina，Fscort
62209	Pord Capri
42421	5ord 2cphyr
45109	Hillman Iufo Avenger
317 CE	Hclien
$8815-$	Honda（motorcycle）
88107	Henda，Civic．600， 3800
45503	Jaguar 423，Xil－6，XJ－12，V－12
45512	Jaguar $F$ type（XKE）
49も10	lensen，Hisaley．Intnrceptor
65119	Karmann chia．$v$ g
9845－	Kavasari（motcreycla）
78410	Lamborghini
78208	Larcia kerlina 4 dont
78299	Lancia 2 door
49814	Land Fover
$48 \div 19$	Lctus Flan，Elite，${ }^{\text {cos，Super }}$ ，Europa
81：12	LJY Pickup，Cheviclat－Isuzu



Tol.1en
sngly nd $\frac{1}{4}$ - Yauxhall
Nectcn (Dotorcycle)


Ferrari
zepids



Porsct= $511,914-6$
8
8
0
0
0
0
$m$
$280 \cdot 1 / 200$ ans.
25

9
reyc le
soline fi, fox, supar
conpe
Audi
Nsu 1000,1200
vell pef)
5659
55219
671108
67109
67119
$5715-$
68109
6919
68359
68319


 Tcyota 2 nuori

$$
\begin{aligned}
& \text { Tcyota Land CEuiser } \\
& \text { Hor:da (notorcycle) } \\
& \text { Hcnda, Civic, } 600 \text {, s800 } \\
& \text { Subaru } \\
& \text { Suzuki (motorcycle) } \\
& \text { Suzuki (autonchile) } \\
& \text { Kawasaki (motorcycle) } \\
& \text { Y.maha (motorcycle) }
\end{aligned}
$$Prance

53199
55101
55106
55109
55110
56178
56109
57108
57109
$58=0-$

 65193 yercedes 6CD (Iime)
65119 Mercedes Benz 2itC S
65101 Hercedes Benz 290. 190. 22.). 230, 250, 280(-73)


## VEHICLES/OBJECTS CONTACTED



## Vehicles



Size	Standard Specialty Sports		
Mini	09,13	04	19
Compact	05	06	10
Intermediate	01,17	07	--
Standard	02	05	--
Lu:xurs, Limo	03	--	--
:ultipurpose	Passenger Vehicle		

```
C'tility (Jeep, Bronco)
Carryall/Panel Truck
Pickup Truck w. Canopy/Shell Cover
Pickup Car w. Canopy/Shell cover
.lotor Home
Pickup Truck vith Slide-in Camper
Pjckup-Car r. Slide-in Camper
Chassis-Mounted Camper
```

Truck


## FIELD FORM

Cost Effectiveness Guardrail Selection

Team No.
Case No.

- Vehicle No. $\qquad$
- Vehicle Identification No.
- Vehicle Make $\qquad$
- Vehicle Model $\qquad$
- Vehicle Model Year $\qquad$
- Vehicle 5 Digit Code $\qquad$

Seat Position
LF
CF
RF
LR
CR
RR
Other

- Type Restraints
- Restraints Used
- Interior Occupant Contact Area:

If there is no indication of occupant contact, so indicate.


- Damage Sketch:

Indicate damaged areas by outlining new perimeter of vehicle.
Indicate direct impact damage by a series of $X$ 's and induced damage by a wavy line ( $\sim$ ). Indicate the amount of crush in inches.


Vehicle repair/replacement cost: $\qquad$ Frame damage:

> Objects Contacted - VDI

Object
Contacted
VDI
In. Crush
Event No. 1
Event No. 2
Event No. 3
Event No. 4

## APPENDIX G

## DETERMINATION OF EXPOSURE LENGTH

As input for the COCOST program, it is necessary to specify the obstacle length and the guardrail length of need. Methods for determining the guardrail length of need are shown in NCHRP Report $118(35)$ and its update. ${ }^{(36)}$ However, these references produce lengths that are considered to be somewhat conservative with current economic constraints, particularly on low volume rural roads. A method is presented here that produces shorter lengths, and hence less protection, but should be adequate for most installations. Further, the method can be used to determine the obstacle length of exposure.

As shown in Figure G.1, an automobile turns into an obstacle of width $W$. The problem is to determine the offset distance $X$ that must be added to the obstacle length to determine the total length of exposure. From the figure, the relationships

$$
\begin{gather*}
D=R-R \cos A+a \sin A+b \cos A \\
D+W=R-R \cos B+a \sin B-b \cos B \tag{G.1}
\end{gather*}
$$

and

$$
\begin{aligned}
X & +R \sin A+a \cos A-b \sin A \\
& =R \sin B+a \cos B+b \sin B
\end{aligned}
$$

can be established. For the typical $4500-1 \mathrm{lb}$ vehicle in Figure B.7,

$$
a=\frac{57+36}{12}=7.75 \mathrm{ft}
$$

and

$$
\begin{equation*}
b=\frac{40}{12}=3.33 \mathrm{ft} \tag{G.2}
\end{equation*}
$$

Assuming a vehicle speed of $70 \mathrm{mph}(102.67 \mathrm{fps})$, a coefficient of tire-to-pavement friction of 0.50 , and using the point mass approach yields

$$
\begin{equation*}
R=\frac{v^{2}}{g \mu}=\frac{(102.67)^{2}}{32.2(0.50)}=655 \mathrm{ft} \tag{G.3}
\end{equation*}
$$

for the radius of turn.
The relationships (G.1) were programmed in a small XDIST program to generate tables of $X$ values for various values of $D$ and $D+W$. These tables, along with the explanation of their use, are included in the user's manual, Volume II of this report.

## APPENDIX H

## POST PROPERTIES FOR VARIOUS SOIL TYPES

To determine post performance variations as a function of soil conditions, a series of pendulum tests were conducted. The original test matrix was to consist of 80 tests as follows:

Posts: W6 $\times 8.5$ steel 6'-0' long with $44^{\prime \prime}$ embedment
$6 \times 8$ " Douglas Fir 5'-3" long with 35 " embedment
Axes: Major and minor
Broad Soil Classifications: Sandy loam
Saturated clay
Stiff clay
Base material
Fixed support
Repeatability: 4 tests of each configuration
Since previous tests had been run with a pendulum weight of $4,000 \mathrm{lb}$ and an impact speed of 30 fps , these conditions were first used. However, unlike the previous tests, no pad was used in the impact area. On completion of the data reduction for the first 16 tests with a base material support, it was found that the rise portion of the force-time curve, which was of interest in determining the constants for BARRIER VII inputs, occurred much too fast (as low as 1 or 2 milliseconds). Thus, the pendulum impact speed was reduced from 30 to 20 fps , and a 2 -inch plastic pad of Dow Ethafoam 600 was attached in the impact area of the post. This reduced the post inertia-peak effect and produced a rise time of about 15 to 20 milliseconds, which is considered to be more realistic of actual field conditions where railing deformation and take-up of slack occurs in transmitting the impact loads to the posts. The final matrix of conducted tests, including the repeat tests for the base material, is shown in Table H.l.

Instrumentation for the pendulum tests consisted of a voice track, impact switch, speed trap, and two accelerometer channels recorded on magnetic tape at 60 ips . The tapes were played back on visicorder traces at 32 ips for preliminary checks of the tests. The tapes were then used for A/D reductions at the Institute sled lab facility. Data was passed through a Class 180 filter before digitizing. A sample rate of $16,000 \mathrm{hz}$ for 4 channels was used, and 4 records of 2048 words per record ( 0.5 second) were recorded on 9-track tape during the accelerometer calibration portion of the run. Sixteen records ( 2.0 seconds) were then taken for the speed trap, impact switch, and accelerometer test data. Data on the 9-track tape was then transmitted to a 7 -track tape at the Institute's Hewlett-Packard computer facility, where a small program was used to generate the output sheets and plots shown in Figures H. 1 and H. 2 .

As a back-up program for the data reduction, high-speed photography was attempted. A Locam camera with a film speed of 500 frames per second was first tried without success. In the calibration test of Table H.1, where the pendulum impact speed was reduced to 20 fps , a Hycam camera was used at 1000 frames per second. Though every frame was recorded in the data reduction, the results were still not satisfactory. The difficulty can be seen in sheets 2 and 3 of Figure H.2, where the displacement is almost linear and the velocity changes are so small that they cannot be distinguished in the cine analysis. Thus, the analysis attempt was terminated and the Locam camera was used for documentary purposes only. In cases of accelerometer or instrument malfunction, the tests were simply repeated, as denoted by the letter A following the test numbers in Table H. 1 .

$\stackrel{n}{x}$						
$\stackrel{\text { ® }}{\text { ®n }}$	    				$\bar{n} \frac{\pi}{m}$	
苟安安	《     			$\infty \infty \infty \infty$仏らは仏位		
	     出出 $\%$ 出     					
会						
吢						
\％	  FENFNFNFNFOO OOOOOO     		N尺N尺NANANNN    ききココニニミコここささ ललललललललतललल	NN尺N尺N なた心ぶ MNNNNN		
芯		$\text { 气霛 } \frac{0}{4}$	 	 	FNM 号山以	$\underset{4}{\sim}$



tade file heading	F-19 $0^{\circ} \mathrm{CAL}$	2/8/77
NIJMBER OF RECORDS	4	
WORDS PER RECORD	2048	
NUMEER OF CHANNELS	4	
SAMPLE RATE (SPS)	16000	
TIME DURATION (SEC)	.512	
TEST ID	0	


READING	RECORD	NO
READING	RECOPD	NO.
READING	RECORO	NO.
READING	RECORD	NO

CALIBRATION RASE-LINE $=-.22022 E+01$
AVG OF SINE-WAVE $=.16$ F22E+01
SINE-WAVE AMPLITUDE $=\quad .26111 E+01$

- \& INPUT FOR RIJN DATA $\# \#$

**\& OUTPUT FROM PENDULUM TEST **
TIME RETWEEN FACH SAMPLE
TRAVEL TIME RETWEEN PHOTO-CELLS
(SEC) $=$
PENDULUM SPEED FROM PHOTO-CELLS
(SECS)

TAPE FILE HEARING $=F-19$ TEST $2 / 8 / 77$
NIJMRER OF RECORDS WORDS PER RECORD $\begin{array}{lr}= & 16 \\ = & 2048\end{array}$ NUMHER OF CHANNELS 4 SAMPLE RATE (SPS) = . 16000

FIGURE H. 1 TYPICAL A/D OUTPUT (SHEET 1 OF 4)


FIGURE H. 1 TYPICAL A/D OUTPUT (SHEET 2 OF 4)

SUMMARY OF EXPERIMENTAL DATA FOR PENDULUM TEST-


FIGURE H. 1 TYPICAL A/D OUTPUT (SHEET 3 OF 4)


FIGURE H. 1 TYPICAL A/D OUTPUT (SHEET 4 OF 4)





H-11

The method for determining the BARRIER VII inputs from the pendulum data is illustrated by the dashed line in sheet 4 of Figure H.2. Note that the inertia peak was ignored since post weights are placed at the railing node in BARRIER VII. Corresponding to the peak force in the small circle of the figure, the corresponding time, displacement, and force were read from the associated computer output sheet (see the arrow in sheet 3 of Figure H.1). These values were then used to prepare the pendulum test results shown in Table H. 2 for the wood posts and Table H. 3 for the steel posts. Note that average values of the maximum forces and distances were used to determine stiffnesses, and these values were finally used to prepare the BARRIER VII inputs shown in Table H. 4 .

The results shown in this appendix are determinations of post properties for the BARRIER VII program. Since inputs for this program must be in English units, no metric equivalents are shown. If conversion to metric units should be desired, the following factors can be used:

Multiply	By	
in.	$2.540 \mathrm{E}-02$	To Obtain
lbf	$4.448 \mathrm{E}+00$	m
kip $(1000 \mathrm{lbf})$	$4.448 \mathrm{E}+03$	N
fps	$3.048 \mathrm{E}-01$	N
kip/in.	$1.751 \mathrm{E}-01$	$\mathrm{~m} / \mathrm{s}$
in.-kip	$1.130 \mathrm{E}-04$	$\mathrm{~N} / \mathrm{m}$
		Nm

TABLE H.2. PENDULUM TEST RESULTS FOR $6^{\prime \prime} \times 8^{\prime \prime}$ DOUGLAS FIR POSTS

Test No.	Maximum   Force (kips)	$\begin{gathered} \text { Time } \\ (\mathrm{m} \cdot \mathrm{sec}) \end{gathered}$	Distance (in.)	Remarks	Test   No.	Maximum Force (kips)	$\begin{gathered} \text { Time } \\ (\mathrm{m}-\mathrm{sec}) \end{gathered}$	Distance (in.)	Remarks								
Base Material Support ( $\mathrm{v}_{\mathrm{i}}=30 \mathrm{fps}$ )					Stiff Clay Support												
Weak Axis Tests					Weak Axis Tests												
F-1	6.3	2	0.71	Post fracture	F-49	2.9	11	2.62	Soil y ield								
F-5	8.6	4	1.43	Post fracture	F-53	4.1	12	2.86	Soil yield								
F.9	7.2	5	1.78	Post fracture	F-57	5.5	23	5.45	Soil yield								
F-13	-	-	-	Premature post	F-62	7.0	24	5.72	Soil yield								
Averages	7.4		1.31	fracture$\mathrm{k}=5.65 \mathrm{kips} / \mathrm{in} .$	Averages	4.9		4.16	$\mathrm{k}=1.18 \mathrm{kips} / \mathrm{in}$.								
					Strong Axis Tests												
Strong Axis Tests																	
					F-50   F-54   F-58   F-61   Averages	4.3	12	2.863.33									
F-2	13.8	7	2.47	Post fracture		4.1	14		Soil yield Soil yield								
F-6	-	-	-	Bad test		4.6	15	3.60									
F-10	11.4	6	2.10	Soil yield		$\begin{aligned} & 7.7 \\ & 5.2 \end{aligned}$		$\begin{aligned} & 4.81 \\ & 3.65 \end{aligned}$	Soil yield								
F-10A	9.2	7	2.40	Soil yield					$\mathrm{k}=1.42 \mathrm{kips} / \mathrm{in}$.								
F-14   Averages	10.8	5	$\begin{aligned} & 1.74 \\ & 2.18 \end{aligned}$	Soil yield$\mathrm{k}=5.18 \mathrm{kips} / \mathrm{in} .$													
	11.3				Saturated Clay Support												
Base Material Support ( $\mathrm{v}_{\mathrm{i}}=20 \mathrm{fps}$ )					Weak Axis Tests												
Weak Axis Tests					F-68   F-72   F-76   F-80   Averages		12	$\begin{aligned} & 2.87 \\ & 2.39 \end{aligned}$									
F-83	11.2	22	5.19	Post fracture		$3.3$	10		Soil y ield								
F-87	6.5	19	4.52			3.8	111	2.63	Soil yield   Soil y ield   $\mathrm{k}=1.40 \mathrm{kips} / \mathrm{in}$.								
F-91		22	5.32	Post fracture Soil yield		3.8		2.65									
F-96	11.1	16	3.81	Post fracture$\mathrm{k}=1.95 \mathrm{kips} / \mathrm{in} .$		3.7	2.64										
Averages	9.2	4.71															
					Strong Axis Tests												
Strong Axis Tests					F-67   F. 71   F-75   F-79   Averages		13131111	$\begin{aligned} & \hline 3.09 \\ & 3.11 \\ & 2.63 \\ & 2.62 \\ & 2.86 \end{aligned}$	Soil yield   Soil y ield   Soil yield   Soil yield $\mathrm{k}=1.22 \mathrm{kips} / \mathrm{in} .$								
F-84   F-88A   F-92   F-95   Averages	$\begin{array}{r} 11.7 \\ 6.4 \\ 7.3 \\ 7.2 \\ 8.2 \end{array}$	25241920	$\begin{aligned} & 5.88 \\ & 5.74 \\ & 4.63 \\ & 4.78 \\ & 5.26 \end{aligned}$	Soil y ield   Soil yield   Soil yield   Soil yield $\mathrm{k}=1.56 \mathrm{kips} / \mathrm{in} .$		$\begin{aligned} & 3.3 \\ & 2.9 \end{aligned}$											
						$\begin{aligned} & 2.9 \\ & 4.1 \end{aligned}$											
						3.5											
					Sandy Loam Support												
Fixed Supports																	
					Weak Axis Tests												
Weak Axis Tests					F-34   F-38   F-41   F-46   Averages	$\begin{aligned} & 5.5 \\ & 6.0 \\ & 5.4 \\ & 5.8 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 3.87 \\ & 3.58 \\ & 3.32 \\ & 3.74 \\ & 3.63 \end{aligned}$	Soil yield Soil yield Soil yield Soil yield $\mathrm{k}=1.57 \mathrm{kips} / \mathrm{in}$.								
F-17	14.5	16	3.80	Post fracture Post fracture Post fracture Post fracture $\mathrm{k}=3.56 \mathrm{kips} / \mathrm{in}$.													
F-21	14.4	15	3.59														
F-25	8.2	12	2.87														
F-29	10.2	12	2.99														
Averages	11.8	3.31				Strong Axis Tests											
				Strong Axis Tests													
									F-33	$\begin{aligned} & 4.4 \\ & 7.5 \end{aligned}$	717	$\begin{aligned} & 4.11 \\ & 4.01 \end{aligned}$	Soil yield   Soil yield   Soil yield   Soil yield   Soil yield $\text { k = } 1.28 \mathrm{kips} / \mathrm{in} .$				
F-18	16.1	15	3.59	Post fracture													
F-22	14.9	15	3.57	Post fracture	F-37	5.3	16	3.81									
F-26	17.2	14	3.35	Post fracture	F-42	4.2	15	3.53									
F-30	16.7	15	3.72	Post fracture	F-45	4.2	19	4.49									
Averages	16.2		3.56	$\mathrm{k}=4.55 \mathrm{kips} / \mathrm{in}$.	Averages	5.1		3.99									

TABLE H.3. PENDULUM TEST RESULTS FOR W6 $\times 8.5$ STEEL POSTS

Test No.	Maximum Force (kips)	$\begin{gathered} \text { Time } \\ (\mathrm{m}-\mathrm{sec}) \end{gathered}$	Distance (in.)	Remarks	Test No.	Maximum Force (kips)	$\begin{gathered} \text { Time } \\ (\mathrm{m}-\mathrm{sec}) \end{gathered}$	Distance (in.)	Remarks
Base Material Support ( $\mathrm{v}_{\mathbf{i}}=30 \mathrm{fps}$ )					Stiff Clay Support				
Weak Axis Tests					Weak Axis Tests				
F-4	3.3	7	2.46	Post yield	F-51	2.5	18	4.28	Post and soil yield
F-7	4.6	6	2.14	Post yield	F-56	4.0	24	5.62	Post and soil yield
F-11				Lost instrumentation	F-60	3.6	25	6.07	Post and soil yield
F-16	4.2	7	2.44	Post yield	F-63	3.5	26	6.24	Post and soil yield
Averages	4.0		2.35	$\mathrm{k}=1.70 \mathrm{kips} / \mathrm{in}$.	Averages	3.4		5.55	$\mathrm{k}=0.61 \mathrm{kips} / \mathrm{in}$.
Strong Axis Tests					Strong Axis Tests				
F-3	13.8	5	1.78	Post yield	F-52	3.1	26	6.14	Soil yield
F-8	11.7	10	3.60	Post yield	F-55	4.8	23	5.43	Soil yield
F-12	11.7	13	4.49	Post yield	F-59	8.7	17	4.07	Soil y ield
F-15	12.3	9	3.09	Post yield	F-64	7.5	21	5.02	Soil yield
Averages	12.4		3.24	$\mathrm{k}=3.83 \mathrm{kips} / \mathrm{in}$.	Averages	6.0		5.16	$\mathrm{k}=1.16 \mathrm{kips} / \mathrm{in}$.
Base Material Support ( $\mathrm{v}_{\mathrm{i}}=20 \mathrm{fps}$ )					Saturated Clay Support				
Weak Axis Tests					Weak Axis Tests				
F-82	4.8	15	3.59	Post yield	F-65	2.3	15	3.61	Soil y ield
F-85	4.1	15	3.64	Post yield	F-69	2.8	15	3.59	Soil yield
F-90	5.1	18	4.36	Post yield	F-73	2.8	17	4.07	Soil yield
F-94	4.3	18	4.36	Post yield	F-77	2.8	14	3.35	Soil yield
Averages	4.6		3.99	$\mathrm{k}=1.15 \mathrm{kips} / \mathrm{in}$.	Averages	2.7		3.66	$\mathrm{k}=0.74 \mathrm{kips} / \mathrm{in}$.
Strong Axis Tests					Strong Axis Tests				
F-81	12.7	17	4.06	Soil yield	F-66	2.4	11	2.65	Soil yield
F-86	12.7	21	5.00	Soil yield	F-70A	3.0	13	3.13	Soil yield
F-89	10.2	15	3.65	Soil yield	F-74	4.4	13	3.11	Soil yield
F-93	8.3	22	5.22	Soil yield	F-78	3.9	13	3.11	Soil yield
Averages	11.0		4.48	$\mathrm{k}=2.46 \mathrm{kips} / \mathrm{in}$.	Averages	3.4		3.00	$\mathrm{k}=1.13 \mathrm{kips} / \mathrm{in}$.
Fixed Supports					Sandy Loam Support				
Weak Axis Tests					Weak Axis Tests				
F-20	5.1	20	4.72	Post yield		3.6 3.4		4.85	Soil yield
F-24	5.3	21	5.00	Post yield	F-40	3.4	15	3.53	Soil yield
F-28	5.3	21	5.02	Post yield	F-44A	3.5	21	4.94	Soil yield
F-31	4.7	21	5.18	Post yield	F-48	3.6	20	4.70	Soil yield
Averages	5.1		4.98	$\mathrm{k}=1.02 \mathrm{kips} / \mathrm{in}$.	Averages	3.5		4.50	$\mathrm{k}=0.78 \mathrm{kips} / \mathrm{in}$.
Strong Axis Tests					Strong Axis Tests				
F-19	17.3	21	4.95	Post yield	F-35	5.5	14	3.38	Soil yield
F-23	16.6	15	3.58	Post yield	F-39	6.4	14	3.35	Soil yield
F-27	16.5	20	4.69	Post yield	F-43	6.4	14	3.31	Soil yield
F-32	17.0	15	3.78	Post yield	F-47	8.2	15	3.55	Soil yield
Averages	16.8		4.25	$\mathrm{k}=3.95 \mathrm{kips} / \mathrm{in}$.	Averages	6.6		3.40	$\mathrm{k}=1.94 \mathrm{kips} / \mathrm{in}$.

TABLE H.4. BARRIER VII POST PROPERTIES FOR VARIOUS SOIL TYPES

Soil Type   Post Type*	Fixed Support		Base Material		Stiff Clay		Saturated Clay		Sandy Loam		Properties Used in This Program	
	Steel	Wood										
Input Parameter:												
$\mathrm{k}_{\mathrm{A}}(\mathrm{k} / \mathrm{in}.) \dagger$	1.02	3.56	1.15	1.95	0.61	1.18	0.74	1.40	0.78	1.57	2.03	2.20
$\mathrm{k}_{\mathrm{B}}(\mathrm{k} / \mathrm{in}.) \dagger$	3.95	4.55	2.46	1.56	1.16	1.42	1.13	1.22	1.94	1.28	1.40	1.66
MPA (in.-k) $\ddagger$	352.8	340.2	231.0	172.2	126.0	109.2	71.4	73.5	138.6	107.1	241.5	218.4
MPB (in.-k) $\ddagger$	107.1	247.8	96.6	193.2	71.4	102.9	56.7	77.7	73.5	119.7	83.7	273.0
$\mathrm{FPA}^{(k)}$	5.1	11.8	4.6	9.2	3.4	4.9	2.7	3.7	3.5	5.7	4.0	13.0
FPB (k)	16.8	16.2	11.0	8.2	6.0	5.2	3.4	3.5	6.6	5.1	11.5	10.4
$\delta^{\text {A }}$ (in.)	4.98	3.31	3.99	4.71	5.55	4.16	3.66	2.64	4.50	3.63	7.90	7.40
$\delta_{B}$ (in.)	4.25	3.56	4.48	5.26	5.16	3.65	3.00	2.86	3.40	3.99	8.20	7.40

*W6 $\times 8.5$ steel posts $6^{\prime}-0^{\prime \prime}$ long with 44 -in. embedment.
$6^{\prime \prime} \times 8^{\prime \prime}$ Douglas Fir posts $5^{\prime}-3^{\prime \prime}$ long with 35 -in. embedment.
$\dagger A=$ major axis; $B=$ minor axis.
$\ddagger$ Moments based on height to center of railing $=21 \mathrm{in}$.

$$
\begin{aligned}
& \text { IE 662.A3 no } \\
& 78-74 \\
& \text { Calcote. Lee } \\
& \text { Development o } \\
& \text { effectivenes } \\
& \hline
\end{aligned}
$$

## FEDERALLY COORDINATED PROGRAM OF HIGHWAY RESEARCH AND DEVELOPMENT (FCP)

The Offices of Research and Development of the Federal Highway Administration are responsible for a broad program of research with resources including its own staff, contract programs, and a Federal-Aid program which is conducted by or through the State lighway departments and which also finances the National Cooperative Highway Research Program managed by the Transportation Research Board. The Federally Coordinated Program of Highway Research and Development (FCP) is a carefully selected group of projects aimed at urgent, national problems, which concentrates these resources on these problems to obtain timely solutions. Virtually all of the available funds and staff resourccs are a part of the FCP. together with as much of the Federal-aid research funds of the States and the ICHRP resources as the States agree to devote to these projects."

## FCP Category Descriptions

1. Improved Highway Design and Operation for Safety
Safety R\&D addresses problems connected with the responsibilities of the Federal Highway Administration under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware. signing. and physical and scientific data for the formulation of improved safety regulations.
2. Reduction of Traffic Congestion and
Improved Operational Efficiency Improved Operational Efficiency
Traffic R\&D is concerned with increasing the operational efficiency of existing highways by advancing technology. by improving designs for existing as well as new facilities, and by keeping the demand-capacity relationship in better balance through traffic management techniques such as bus and carpool preferential treatment. motorist information, and rerouting of traffic.

[^11]3. Environmental Considerations in Highway Design, Location, Construction, and Operation
Environmental R\&D is directed toward identify. ing and evaluating highway elements which affect the quality of the human curironment. The ultimate goals are reduction of adverse highway and traffic impacts. and protection and enhancement of the environment.

## 4. Improved Materials Utilization and Durability

Materials R\&D is concerned with expanding the knowledge of materials properties and technology: to fully utilize available naturally occurring materials. to develop extender or substitute materials for materials in short supply. and to devise procedures for converting industrial and other wastes into useful highway products. These activities are all direeted toward the common goals of lowering the enst of highway construction and extending the period of main-tenance-free operation.
5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety
Structural R\&D is concerned witl furthering the latest teehnological advances in structural de. signs, fabrication processes. and eonstruction techniques, to provide safe, cfficient highways: at reasonable cost.

## 6. Prototype Development and Implementation of Research

This category is concerned with developing and transferring research and technology into practice, or, as it has been commonly identified. "technology transfer."

## 7. Improved Technology for Highway Maintenance

Maintenance R\&D objectives include the development and application of new technology to in prove management. to augment the utilization of resources, and to increase operational efficiency and safety in the maintenance of highway facilities.


00056373


[^0]:    Metric conversion:
    Multiply ft by 0.305 to obtain m
    Multiply in. by 0.0254 to obtain $m$

[^1]:    * $50-\mathrm{ms}$ maximum averages unless noted otherwise.
    + Revised data for Test 6.46

[^2]:    *Based on 10 feet of damage per damaged post.

[^3]:    Ref: U.S. Department of Transportation, Automobile Insurance and Compensation Study, "Automobile Personal Injury Claims, Vol. 1," July 1970.

[^4]:    Roadside conditions:
    2-lane rural road with 6 - ft ( $1.82-\mathrm{m}$ ) shoulder
    Guardrail length $=500 \mathrm{ft}(152.4 \mathrm{~m})$
    Obstacle length $=400 \mathrm{ft}(121.9 \mathrm{~m})$
    $\mathrm{AADT}=5000$
    *Fatality $=\$ 33,100$ and Injury $=\$ 3,500$.
    $\dagger$ Fatality $=\$ 102,460$ and Injury $=\$ 6,500$.
    $\ddagger$ Fatality $=\$ 241,600$ and lnjury $=\$ 5,880$.

[^5]:    Roadside conditions:
    2-lane rural road with $6-\mathrm{ft}(1.82-\mathrm{m})$ shoulder
    Guardrail length $=500 \mathrm{ft}(152.4 \mathrm{~m})$
    Obstacle length $=400 \mathrm{ft}(121.9 \mathrm{~m})$
    $\mathrm{AADT}=5000$
    *Fatality $=\$ 33,100$ and Injury $=\$ 3,500$.
    $\dagger$ Fatality $=\$ 102,460$ and Injury $=\$ 6,500$.
    $\ddagger$ Fatality $=\$ 241,600$ and Injury $=\$ 5,880$.

[^6]:    *With 6'-3" post spacing.
    $\dagger$ Permanent deflection
    $\pm$ Vehicle rolled.
    **Vehicle photo not given-estimated from given VDI.
    $\dagger \dagger$ Occupant was wearing lap and upper torso belts.

[^7]:    Post New post
    properties properties reduced to based on those of pendulum
    actual
    ${ }^{\text {2s }}$ ก

[^8]:    Metric conversion: Multiply ft by 0.305 to obtain $m$ Multiply in. by 0.0254 to obtain m

[^9]:    Metric conversion: Multiply ft by 0.305 to obtain m Multiply in. by 0.0254 to obtain $m$

[^10]:    Renault 16
    Penault $8,10,12,15,17$
    Rolls Royce（shadow）．Rolls Boyce（lieo）
    Rover
    Sab $55,96,99$
    

    ## 46i千c Sunbeau Alpine，Iiger，Rafier و8j09 Suzuki（automobile） $8835-\quad$ Suzuki（notorcycle）

[^11]:    *The complete 7 -rolume official statement of the FCP is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161 (Order No. PB 24205 T. price $\$ 45$ postpaid). Single copies of the introductory volume are obtainable without charge from Program Analysis (HRD-2), Offices of Research and Development. Federal Highway Administration, Washington, D.C. 20590.

