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Executive Summary  

Our nation's economy is highly dependent on reliable and cost-effective truck-freight 

transportation. Delays to truck movement are of particular concern to the nation. Building upon 

our previous effort, we developed an Incident Decision Support System (IDSS) that uses GPS-

equipped commercial trucks as probe vehicles on key freight corridors such as inter-regional 

corridors (IRC) and supplemental freight routes in Minnesota. An automatic incident detection 

algorithm was developed: (a) to be used by truck drivers and dispatchers who need to make 

necessary routing and operations decisions when incidents occur, (b) to support incident decision 

making by state DOTs and (c) for traveler information purposes. 

 

The objective of this project was to develop an Incident Decision Support System (IDSS), that 

uses GPS-equipped commercial trucks as probe vehicles on freight corridors, to detect incidents 

and provide incident information in real-time to truck operators on rural corridors where 

infrastructure-based sensing is unavailable.  

 

Archived truck GPS data, MN511 traffic data, Computed Aided Dispatch (CAD) data from the 

Minnesota State Patrol, and weather data in the Twin Cities Metro Area (TCMA) were obtained 

for this study. GPS-based truck probe data was obtained from the American Transportation 

Research Institute (ATRI) who since 2002, has partnered with the FHWA and the trucking 

industry to continuously collect GPS data on key national corridors, using nearly 500,000 

commercial trucks in North America.  

 

The MN511 data provides basic incident information such as time, location, incident description, 

presence of stalled vehicle, presence of debris, etc. The Computer Aided Dispatch (CAD) data 

from the Minnesota State Patrol and incident management team contains additional information 

such as patrol arrival/leaving time, number of vehicles involved, etc. Weather information from 

the Automated Weather Observing System (AWOS) and Automated Surface Observing System 

in Minnesota was also used for modeling incident delays. 

 

A bivariate incident detection methodology was developed by using the travel time computed 

from raw GPS truck data and the travel time difference between the current interval and the 

previous interval for each roadway segment. The methodology was implemented using a Java 

program, which analyzed the probe vehicle data and compared the results to normal conditions. 

The incident detection algorithm was validated by comparing our incident detection results to 

those based on MnDOT’s MN511 incident and loop detector data on freight corridors with 

sufficient GPS samples in the Twin Cities metropolitan area. It is important to note that the 

incident detection algorithm, based on probe vehicle data, was developed for rural roadways 

where loop detector data is not available. 

 



x 

 

A pilot implementation was developed to demonstrate a concept of operations for the IDSS, in 

which incident information is provided to truck operators. The pilot implementation used 

available archived data for demonstration purposes. In the future, a real-time data feed from 

ATRI can be incorporated into the IDSS when real-time data becomes available. 

 

For this pilot implementation and demonstration, an in-vehicle “app” using a smartphone device 

was developed to provide incident information to the truck operator. When an incident is 

detected, the app provides incident information through an auditory text-to-speech (TTS) 

interface as the vehicle approaches the incident. For example, if the distance to an incident is xx 

miles ahead, the app will announce “incident occurred xx miles ahead ‘yy’ minutes ago. The 

TTS speech engine also identifies the route name of the incident assuming that the driver is 

aware of his or her current route so that he or she can identify whether the incident is on the same 

route or on a nearby route. 

 

The app was tested on a passenger vehicle driving on I-94 westbound near the University of 

Minnesota campus in Minneapolis where an incident occurred based on historical data. For 

testing and validation purposes, we set the time on the smartphone app to a timestamp based on 

the archived data when the incident actually occurred. As the test vehicle drove towards the 

location where the incident occurred, the app successfully detected available incident 

information through our web servlet and announced the corresponding information (where and 

when) to the driver during the experiments.  

We are aware of the potential distraction of providing travel information through the smartphone. 

The user interface and human factors issues will need further investigation in order to determine 

the best way to ultimately present the incident information to the driver. Eventually, the incident 

information can be provided through existing in-vehicle devices already in the truck cabin. 

 

An automatic delay estimation process, which determines when traffic conditions return to 

normal, was also developed and tested. Individual incident durations were calculated using the 

time difference between the update time of the “last” message and the start time of the “first” 

message, related to the incident, from MN511 and CAD data. The research team computed the 

incident delay for selected incident sites where loop detector data was available. In order to 

develop this incident delay prediction model, the research team tried several pattern 

classification algorithms, but with limited success.  

 

Predicting incident delay reliably is very difficult. No one has successfully developed such a 

model before. We believe that developing an incident duration prediction model will require 

additional detailed incident information such as class of involved vehicles, number of injuries, 

number of lanes blocked, number of deployed emergency vehicles, etc.  
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Many traveler information systems provide incident alerts to drivers based on reports by 

travelers, or by the incident responders. Most incident detection methodologies have been 

developed based on loop detectors or vision sensors. Our approach, based only on probe 

vehicles, can detect traffic disruption automatically and alert vehicle operators of incidents 

ahead, especially useful for roadways without instrumentation. 
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1. Introduction  

Rapid detection of incidents on the highway can reduce the impact of the resulting traffic 

congestion and the risks associated with secondary incidents. Incident information provides a 

key decision support element for freight dynamic route guidance which gives the truck driver or 

the dispatcher real-time route-specific information allowing them to make the best decision about 

whether to wait out the incident or take an alternate route. We developed an Incident Decision 

Support System (IDSS) using statistical pattern recognition and modeling techniques to detect an 

incident. 

 

Current MN511 system has very good coverage on instrumented roadways in the metropolitan 

area. Incident information is usually broadcast through dynamic message signs on major 

roadways. We validated our incident detection results against incident reports from the 

Minnesota 511 system and developed an in-vehicle system to provide incident information to 

commercial vehicle operators as they are heading toward the incident location. Our approach can 

provide incident information to travelers on roadways with no instrumentation when there are 

sufficient probe GPS data samples. 

 

As part of this research project, we had access to 24 months of American Transportation 

Research Institute’s (ATRI) truck GPS data in the Twin Cities Metro Area (TCMA). The 

archived data allowed us to verify our incident detection results with MN511 data which we have 

been archiving since October 2012. We feel that drivers from the MnDOT Freeway Incident 

Response Safety Team (FIRST) would be great candidates for future testing and evaluating the 

in-vehicle IDSS. 

 

Because of our use of historical data, the validation and testing occurred in a simulated 

environment. In our example, a driver travels on a roadway with the IDSS timestamp set on a 

historical day and hour. The in-vehicle system then announces any upcoming incident 

information (historical) to travelers as they are on the same roadway and heading toward an 

incident. Currently, we are not yet receiving real-time truck GPS data feed, however, the real-

time data feed can be made available for this application according to the data provider. A pilot 

implementation was developed to demonstrate a concept of operations. 

 

1.1 Objectives 

Our nation's economy is highly dependent on reliable and cost-effective truck-freight 

transportation and delays to trucks are of particular concern to the nation. The objectives of this 

project are to (1) develop an Incident Decision Support System (IDSS) that uses GPS-equipped 

commercial trucks as probe vehicles on key freight corridors in Minnesota, and (2) provide 

incident information to truck operators. 
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1.2 Literature Review 

 

1.2.1 Freight Performance Measures 

The trucking industry represents the largest portion of domestic freight movement in the United 

States. According to the ATA U.S. Freight Transportation Forecast for 2021, the trucking 

industry’s share is about 68% of total tonnage; trucks move more than 80% of freight revenue. 

Safe and efficient trucking services are essential, not only to provide door-to-door freight 

transportation, but also to ensure the effective operation of other freight modes and facilities. 

 

Trucks usually occupy more than twice the space of passenger vehicles on the roadway and they 

carry a higher value of goods. Truck delay due to traffic congestion or other environmental 

factors have a more significant impact on our nation’s economy than automobile delay. The 

Federal Highway Administration (FHWA) has developed a national congestion monitoring 

program that uses archived traffic detector data for measuring traffic congestion and travel 

reliability (Turner et al., 2004; Pu, 2011;). NCHRP Synthesis Report 384 (Kuzmyak, 2008) 

identified the challenges that many metropolitan planning organizations (MPOs) are facing in 

forecasting and modeling freight transportation. Many MPOs model heavy trucks as a surrogate 

for modeling freight activity because trucks account for more than 80% of freight movement in 

most metropolitan areas. The FHWA and the American Transportation Research Institute 

(ATRI) recently released findings on the level of truck congestion at 250 freight significant 

highway locations.  Five highway interchange locations in the Twin Cities Metropolitan Area 

(TCMA) were included in this study (ATRI, 2011).   

 

Schofield and Harrison (2007) reported the status of freight performance measures used in DOTs 

nationally and suggested a set of relatively broad performance measures including mobility, 

reliability, economic, safety/environment, and infrastructure for emerging users. Varmar (2008) 

compiled, organized, and analyzed freight data by mode, performance measure and indicator 

categories. The report suggested that there is a need to: (1) determine what performance 

measures or indicators are relevant and most important for freight planning support, and (2) 

identify freight significant strategic corridors and nodes.  

 

The Minnesota Department of Transportation (MnDOT) Office of Freight and Commercial 

Vehicle Operations (OFCVO) has identified and included travel time by mode as one of its four 

performance indicators (MnDOT’s Statewide Freight Plan, 2005). MnDOT has also deployed 

Automatic Traffic Recorders (ATR) and Weigh-In-Motion (WIM) systems statewide for 

measuring truck weight and classifications with varying axle configurations at highway speeds. 

Existing ATR and WIM sensors collect truck volume and speed information at selected locations 

statewide, but they do not provide truck travel time information. On-board GPS systems that 

collect truck location at a constant polling rate, present an excellent data source for monitoring 
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travel time and reliability. In the past, GPS-based truck trip data was not available and was 

difficult to collect due to the proprietary nature of the data. 

 

1.2.2 Probe Vehicle Based Performance Measures 

With the prevalence of GPS receivers on vehicles and portable navigation devices, probe vehicle 

based data collection has been increasingly attractive to the transportation community. The GPS 

based vehicle location data has been used to estimate traffic states and derive travel time 

information for traffic monitoring (Lund and Pack, 2010; Guo et al., 2008; Smith, 2006; 

Nanthawichit et al., 2003). Probe vehicle data, when fused with loop detector data and other data 

sources, can provide more complete and continuous coverage of traffic monitoring. Turner et al. 

(2011) outlined the primary data requirements for congestion-related performance measures and 

introduced core data elements and various metadata to ensure data consistency among data 

providers. They also examined legal and institutional issues related to privacy and Freedom of 

Information (FOIA) with regard to implementation. 

 

Travel time reliability is one of the key measures of freight performance along interstates or 

interregional corridors in the nation (Lomax et al., 2003; TTI, 2006). Pu (2011) examined several 

reliability measures and recommended a median-based buffer index (a measure which compares 

the 95th percentile of travel time to the median travel time) or a percent on-time rate as more 

appropriate to handle heavily skewed travel time distributions.  

 

Since 2002, FHWA has established a partnership with the American Transportation Research 

Institute (ATRI) to measure average truck travel speed on major freight-significant corridors 

(Jones et al., 2005). A spatial data processing methodology was evaluated and refined by Liao 

(2008) to improve the effectiveness of freight performance measures. Analyzing truck speed, 

volume and travel time by location can also help identify network impediments and variations of 

seasonal flow changes (Liao, 2009). Derived vehicle speed and travel time from the GPS and 

terrestrial wireless system used by the trucking industry provides potential opportunities to 

support freight planning and operation on the surface transportation system. 

 

A majority of commercial vehicles are equipped with on-board Automatic Vehicle Location 

(AVL) systems that collect truck locations at a fixed polling rate. The continuous trajectory 

information presents an excellent data source for monitoring travel time and reliability. However, 

GPS-based truck trip data usually are not available and are more difficult to collect due to the 

proprietary nature of the data. Commercially available travel time information (for example, 

from INRIX) provides some coverage using aggregated general traffic speed data from loop 

detectors and other probe vehicle based data sources. However, heavy commercial vehicles are 

considerably underrepresented in this type of data source.  
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McCormack and Hallenbeck (2006) used 25 portable GPS data collection units with 1-second 

polling rate to gather truck positioning data for measuring freight movements along freight 

significant corridors in Washington State.  The study concluded that GPS data can be collected 

cost effectively and can provide an indication of roadway performance. Based on processed truck 

speed data, a route model including analyses of truck travel time, delay and reliability can be 

developed to better understand current freight network performance, freight origin to destination 

flows, and to study possible solutions to future freight demand growth (Short & Jones, 2008).  

 

In its initial phase, the FHWA FPM initiative measured average travel rates on five freight-

significant corridors (Jones et al., 2005). ATRI analyzed the severity of 30 key freight 

bottlenecks in the U.S. interstate system (Short et al., 2009). Freight bottlenecks occurring at 

highway interchanges were analyzed using a freight congestion index. Possible causes for the 

bottlenecks may include roadway geometry (e.g., grade, curvature, and sight distance), capacity 

(number of lanes), toll booths, speed limit, weather, truck volume vs. general traffic volume, and 

available lanes of travel for trucks. 

 

MnDOT completed a study on truck parking analysis. The goal was to develop the information 

necessary to support decisions regarding future approaches to the truck parking problem in 

Minnesota (Maze et al., 2010). Short and Murray (2008) demonstrated the capability of utilizing 

FPM data for truck parking analysis. Another application is to utilize the FPM data to evaluate 

the travel time and delay at border crossings. FHWA conducted a study to address the need to 

reduce the hours of delay for commercial motor vehicles passing through ports-of-entry (FHWA, 

2002). However, manual truck data collection at border crossing plaza is labor intensive and 

expensive. 

 

Recently, FHWA has led an effort to assess and validate the appropriateness of using GPS data 

from commercial vehicles to derive mobility and reliability performance measures and to support 

congestion monitoring on the highway system. Four key factors, including average daily traffic 

(ADT) per lane, percent of heavy vehicle, grade, and congestion level, were investigated. The 

preliminary findings indicated that (1) estimates of speed from FPM data are sufficiently 

accurate for performance measurement on most roadways in the United States, (2) FPM speed 

estimates show a consistent negative bias due to differences in operating characteristics of trucks 

and autos, and (3) grade and congestion have the greatest effect on FPM data accuracy among 

the four key factors evaluated (FHWA, 2012). 

 

1.2.3 National Corridors Analysis & Speed Tool (N-CAST) 

ATRI in coordination with the FHWA recently announced (10/22/2012) a beta release of a 

Freight Performance Measures (FPM) tool that expands on the scope and functionality of the 

original FHWA-sponsored “FPMWeb” application (www.freightperformance.org/). The 

National Corridors Analysis & Speed Tool (N-CAST, www.atri-online.org/n-cast) provides key 

http://www.freightperformance.org/
http://www.atri-online.org/n-cast
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roadway performance and truck mobility information for the U.S. Interstate Highway System. 

The N-CAST database includes the average speed and a proportion of total GPS data points for 

each one-mile segment during each AM peak (6-10AM), mid-day (10AM-3PM), PM peak 

(3PM-7PM), and off peak (7PM-6AM) periods. The N-CAST tool has the potential to be 

integrated with existing truck data sources to generate critical performance measures (such as 

delay and reliability) to provide technical guidance to stakeholders in the freight industry.  

 

1.2.4 Incident Detection 

Rapid incident detection can reduce the impact of traffic congestion and the risks associated with 

secondary incidents. It is also critical for improving freight mobility, just-in-time deliveries, 

reducing unnecessary idling, and improving safety. An incident delay estimation model was 

developed to estimate the potential delay when an incident is identified. Estimated delay 

information provides a key decision support element for freight dynamic route guidance which 

gives the freight driver or the dispatcher real-time route-specific information allowing them to 

make the best decision about whether to wait out the incident or take an alternative route. 

 

Ozbay & Kachroo (1999) raised three basic issues (surveillance, algorithm, and verification 

issues) concerning incident detection. New sensors using different technologies have been 

adopted by DOTs. Sensor reliability, performance under different environmental condition, 

accuracy, real-time performance, and cost play pivotal roles in the selection of a detection 

system. Two types of algorithms are commonly used for incident detection and delay estimation 

on freeways: point-based and spatial-based algorithms.  

 

A number of incident detection algorithms have been described in the literature.  However, these 

algorithms were based on roadway point data, for example, loop detectors or fixed traffic 

detectors.  The point-based approach uses comparative or pattern recognition, statistics, traffic 

modeling, and artificial intelligence based algorithms for incident detection.  As such, these 

systems do not adequately generate continuous roadway/traffic conditions in the real world since 

they are neither ubiquitous nor free from malfunction and error.   

 

The spatial measurement based approach uses video camera or probe vehicles which are 

becoming more available for traffic engineering applications. In recent years, probe vehicle 

based approaches have been applied in limited instances, with most probe based incident 

detection algorithms having only been tested in a simulation environment (Baykal-Gursoy et al., 

2006; Li et al., 2006; Zeng & Songchitruksa, 2010) and/or limited to metropolitan areas 

(Giuliano 1989; Yu et al, 2007). 

 

Martin et al. (2000) evaluated a range of incident detection technologies for use in the Utah 
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Department of Transportation’s (UDOT) Advanced Traffic Management System (ATMS). Based 

on the research findings, the research recommended that cellular telephone technology be used as 

the primary form of incident detection.  

 

1.2.5 Incident Duration and Delay 

An incident is defined as any occurrence of events that affects roadway capacity (Giuliano, 

1989). Incident duration is the time taken to remove an incident and recover the road capacity. It 

varies significantly depending on numerous factors, including incident type, location, response 

time, and clearance time. It is almost impossible to predict incident duration with acceptable 

accuracy even when a great deal of historical data is available.  

 

Predicting traffic incident delay is a challenging task in Advanced Traffic Incident Management 

(ATIM). The duration of an incident delay consists of the incident time period (detection, 

response, and clearance time periods) and the recovery time. In the recovery period, all obstacles 

are removed from the roadway and the traffic queue begins to resolve until the traffic is restored 

back to the normal condition. Although traffic recovery time is crucial to determining incident 

induced delay, relatively few studies have focused on modeling post-incident traffic recovery 

time (Saka et al., 2008; Zeng & Songchitruksa, 2010). 

 

The most widely used technique to estimate incident delay is the use of deterministic queuing 

based delay estimation technique proposed by Morales (1989) who used a simple deterministic 

queuing model as an analytical procedure for estimating delay under a specific incident scenario. 

Traditionally, incident duration and delay have been typically modeled in the form of lognormal 

distributions (Golob et al., 1987 and Sullivan, 1997), the log-logistic hazard-based model (Jones 

et al., 1991; Nam & Manning, 2000), and the truncated regression model (Khattak et al., 1995). 

Giuliano (1989) included incident type and occurrence time of day in an incident time estimation 

model based on statistical distributions. Khattak et al. (1995) formulated a clearance time 

prediction model using incident type and severity as the most significant impact factors.  

 

Fu (2004) developed a fuzzy queuing model to predict possible delay of a vehicle near an 

incident location based on real-time information, traffic demand, queuing condition and lane 

closure. Fu (2004) demonstrated through simulation that incident delay prediction from a 

deterministic model is highly sensitive to the uncertainty of traffic conditions. Boyles & Waller 

(2007) took incident duration distribution from a Bayesian classification and lognormal 

distribution to account for uncertainty in incident duration prediction. An analytical formula for 

total incident delay was developed and tested in simulation using four different traffic demand 

profiles. They concluded that failing to properly account for uncertainty will possibly result in 

underestimating incident delays by up to a factor of two.  
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Skabardonis et al. (1996 & 1997) developed a methodology for estimating incident delay using 

data collected along a segment of highway I-880 in the San Francisco Bay Area. In addition, 

Skabardonis et al. (1999) studied the incident patterns on I-10 in Los Angeles, identified major 

factors affecting incident frequency, and compared the results with previous analyses on I-880. 

They concluded that the resulting development and analyses could help improve incident 

management and support the development and calibration of incident detection algorithm in 

simulation models. 

 

Ji et al. (2011) developed incident recovery and delay models based on a macroscopic cell 

transmission model (CTM) to reproduce the traffic behavioral phenomena. They found that the 

recovery time increases significantly with the increase of traffic demand, which has a more 

significant influence over incident time than recovery delay. 

 

1.2.6 Incident Detection Performance Measures 

The following parameters have commonly been used to measure the performance of incident 

detection algorithms. The parameters are detection rate (DR), false alarm rate (FAR), and mean 

time to detect (MTTD). 

 

1. Detection Rate (DR): 

 

𝐷𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 × 100% 

 

2. False Alarm Rate (FAR): 

 

 𝐹𝐴𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑁𝑂𝑇 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 × 100% 

 

3. Mean Time to Detect (MTTD): 

 

 𝑀𝑇𝑇𝐷 =  
1

𝑁
∑(𝑡𝑖𝑑 − 𝑡𝑖𝑜)

𝑁

𝑖=1

 

 Where, 

  𝑡𝑖𝑜 is the time incident actually occurred,  

  𝑡𝑖𝑑 is the time incident was detected by the algorithm, and  

  N is the number of incidents. 

 

1.3 Report Organization 

The rest of this report is organized as follows. Chapter 2 describes the truck GPS data, MN511 

data, MN state patrol’s CAD data and the weather data. Data analysis and methodologies are 
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discussed in Chapter 3 and 4 respectively. Pilot implementation of the IDSS system through a 

smartphone app is presented in Chapter 5. Project summary and conclusion is included in 

Chapter 6. 
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2. Summary of Data  

24 months of truck GPS data that covers the Greater Twin Cities metro area were acquired from 

ATRI for this study. In order to study the relationships among variables under both incident and 

non-incident conditions, detected incidents were validated against incident reports from the MN 

511 system. In Minnesota, the incident information is reported and updated in a Computer Aided 

Dispatch (CAD) system by the state patrol or operators in the regional traffic management 

centers.  Reported incident data automatically populate the MN 511 system, which is accessible 

through an Extensible Markup Language (XML) data protocol.   

 

In addition to the CAD system, Minnesota has also developed and implemented the Minnesota 

Condition Acquisition and Reporting System (MnCARS) through a pooled-fund project with 

Iowa, Washington and Missouri. The MnCARS is an Internet-based application used by MnDOT 

Districts and the Minnesota State Patrol to enter data about road conditions, restrictions and 

incidents. The MnCARS data is integrated into a database that is then accessible to travelers 

though the MN 511 system. 

 

Weather information from the Automated Weather Observing System (AWOS) and Automated 

Surface Observing System (ASOS) in MN was also analyzed to evaluate the weather parameters 

that affect the incident duration and delays. 

 

2.1 Truck GPS Data  

Since 2002, the ATRI has partnered with FHWA and the trucking industry to continuously 

collect GPS data on key national corridors, using nearly 500,000 commercial trucks in North 

America.  This massive amount of truck GPS data can provide public agencies at both the federal 

and regional level with tools that can increase understanding of freight activity, identify 

impediments along the freight network, and provide for near-real-time operations decision-

making. 

 

The University of Minnesota (UMN) has established a data sharing agreement with ATRI. The 

data attributes to be reported for each record include a unique vehicle number, latitude, 

longitude, and date/time.  No two trucks use the same identifier. Twenty four months (January 

2012 to December 2013) of truck GPS data in the Twin Cities metro area (TCMA) were 

obtained. A sample of GPS point cloud data is displayed in Figure 2-1. Three different sets of 

truck GPS data as summarized and listed in Table 2-1. Dataset A and C contain probe vehicle 

spot speed and latitude-longitude location information. Dataset B does not include vehicle spot 

speed information. Dataset A has a positioning accuracy less than 3 meters. At 95% probability, 

the GPS positioning accuracy of dataset B and C is about 150 and 58 meters, respectively. 

Corresponding tolerance is used to merge raw GPS point to a nearest roadway. Due to data 

privacy concerns, the vehicle ID is masked or encrypted. In addition, the vehicle ID in dataset B 

rotates every 15 days and the vehicle ID in dataset C changes every 24 hours. The estimated GPS 
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pinging rate for dataset A, B and C are about 8, 18 and 1 minute with standard deviations of 15, 

26, and 5 minutes, respectively. A list of ATRI truck GPS data fields for each dataset is included 

in Table 2-2. 

 

Table 2-1 Summary of ATRI GPS Data 

Data Set DS-A DS-B DS-C 

Time Zone GMT/UTC GMT/UTC GMT/UTC 

Spot Speed Yes No Yes 

Static ID Yes 
Rotates every 15 

days 

Rotates every 24 

hours 

Data Accuracy Within <3 meters 

Within 124-134 

meters at 90% 

probability and 129-

150 meters at 95% 

probability. 

Within 13-56 meters 

at 90% probability 

and 15-58 meters at 

95% probability. 

Snap Tolerance Used 

(meter) 
50 150 50 

2013 Number of Truck Trips 74,823 35,179 76,471 

2013 Raw Data Size 50,170,591 3,142,634 38,871,190 

2013 Snapped 18,792,493 957,076 13,270,602 

2013 Snapped Percentage 37.5% 30.5% 34.1% 

Average Sampling Time 

(min) 
8 18 1 

SD Sampling Time (min) 15 26 5 

 

Table 2-2 ATRI Truck GPS Dataset 

Data Field DS-A DS-B DS-C 

1 truckid truckid truckid 

2 readdate readdate readdate 

3 speed - speed 

4 heading - - 

5 latitude latitude latitude 

6 longitude longitude longitude 
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Figure 2-1 Snapshot of Truck GPS Point Cloud (Dec. 2013) 
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2.2 MN511 Data  

A sample of MN511 Extensible Markup Language (XML) incident data is listed in Table 2-3. 

 

Table 2-3 Sample MN511 Data Queried from Database 

send_org_id 

Minnesota 

DOT 

Minnesota 

DOT 

Minnesota 

DOT 

Minnesota 

DOT 

Minnesota 

DOT 

send_ctr_id 

MSP/CAD 

System 

MSP/CAD 

System 

MSP/CAD 

System 

MSP/CAD 

System 

MSP/CAD 

System 

msg_version 1 1 1 1 1 

msg_number 1358543272 1358543197 1358547327 1358542508 1358546314 

msg_timestamp 

2/5/2013 

10:01 

2/5/2013 

9:16 

2/12/2013 

1:46 

2/4/2013 

9:46 

2/10/2013 

20:16 

msg_expire_time 

11/25/2016 

7:06 

11/25/2016 

6:25 

12/1/2016 

23:00 

11/24/2016 

7:00 

11/30/2016 

17:32 

event_id 

MSPCAD-

P130058434 

MSPCAD-

P130058366 

MSPCAD-

P130070244 

MSPCAD-

P130056879 

MSPCAD-

P130068439 

event_update 4 3 3 2 3 

event_status current current current current current 

event_priority 4 4 4 4 6 

headline_text [3818]crash [3818]crash [3818]crash [3818]crash 

[3818]disable

d vehicle 

d_desc _id 1 1 1 1 1 

d_desc_ text [3818]crash [3818]crash [3818]crash [3818]crash 

[3818]disable

d vehicle 

route_designator I-35 I-35 I-35 I-35 I-35 

primary_loc (lat, 

Lon, Ele) 

{44.0297, 

-93.2466, 

37.9583} 

{44.0725, 

-93.2518, 

40.8984} 

{44.0862, 

-93.2456, 

41.8976} 

{44.102, 

-93.2452, 

42.9808} 

{44.102, 

-93.2452, 

42.9808} 

d_loc_link_dir 

negative 

direction 

positive 

direction 

negative 

direction 

positive 

direction 

positive 

direction 

d_loc_link_lref_ver 1 1 1 1 1 

update_time 

2/5/2013 

10:01 

2/5/2013 

9:16 

2/12/2013 

1:46 

2/4/2013 

9:46 

2/10/2013 

20:16 

start_time 

2/5/2013 

8:53 

2/5/2013 

8:31 

2/12/2013 

0:50 

2/4/2013 

9:24 

2/10/2013 

19:39 

duration_min 1:08:28 0:45:01 0:56:01 0:21:58 0:36:39 

 

 

2.3 Computer Aided Dispatch (CAD) Data  

Any privacy sensitive information from the CAD database was excluded from the data query. 

Available data fields are listed as displayed in Table 2-4. Spatial analyses were performed to 

match the CAD data with the MN511 incident records. 
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Table 2-4 CAD Data Description 

Field 

Name Data Descriptions 

num_1 Agency "event" number  

tycod Agency specified event type used to describe the event which has occurred  

typ_eng Verbose description of the event type  

sub_tycod The sub-type of the event type. 

sub_eng The textual description of the sub_type  

ecompl Commonplace name associated with the event's location  

edirpre Direction prefix component of the event's location  

edirsuf Direction suffix component of the event's location  

efeanme Feature name component (street name) of the event's location  

efeatyp Feature type component of the event's location  

estnum Street number (house number) component of the event's location  

earea Area component of the event's location  

emun Municipality component of the event's location  

loc_com Location comments. 

xstreet1 Feature name and type of one street which intersects the event's location  

xstreet2 Feature name and type of one street which intersects the event's location  

x_cord X map coordinate for the event's location  

y_cord Y map coordinate for the event's location  

aeven.ad_ts Time event was actually added into system  

aeven.udts  Update Date/Time Stamp. 

aeven.ar_ts Time that the first unit arrived on the scene  

aeven.xdts Closing Date/Time Stamp. 

 

2.4 Weather Data  

The Automated Weather Observing System (AWOS) and Automated Surface Observing System 

(ASOS) can be found at http://mesonet.agron.iastate.edu/request/download.phtml?network 

=MN_ASOS. A GIS map of ASOS and RWIS Weather Stations in Minnesota is displayed in 

Figure 2-2. 

 

Sample ASOS data  

 

Table 2-5 Sample Weather Data at MNPLS/CRYSTAL (MIC) Weather Station 

station MIC MIC MIC MIC 

valid (local 

timezone) 

6/26/2013 

6:53 

6/26/2013 

7:53 

6/26/2013 

8:53 

6/26/2013 

9:53 

 lon -93.3539 -93.3539 -93.3539 -93.3539 

 lat 45.062 45.062 45.062 45.062 

http://mesonet.agron.iastate.edu/request/download.phtml?network%20=MN_ASOS
http://mesonet.agron.iastate.edu/request/download.phtml?network%20=MN_ASOS
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 tmpf 73.94 77 80.06 80.06 

 dwpf 71.06 71.96 71.96 73.04 

 relh 90.73 84.46 76.36 79.2 

 drct 150 160 0 160 

 sknt 5 4 0 9 

 p01i 0 0 0 0 

 alti 29.67 29.67 29.66 29.68 

 mslp 1004 1004 1003.8 1004.4 

 vsby 4 7 9 8 

 gust M M M M 

 skyc1 CLR CLR FEW CLR 

 skyc2 None None None None 

 skyc3 None None None None 

 skyc4 None None None None 

 skyl1 M M 1400 M 

 skyl2 M M M M 

 skyl3 M M M M 

 skyl4 M M M M 

 metar 

KMIC 

261153Z 

15005KT 

4SM BR 

CLR 23/22 

A2967 RMK 

AO2 SLP040 

T02330217 

10250 20222 

50003 

KMIC 

261253Z 

16004KT 

7SM CLR 

25/22 A2967 

RMK AO2 

SLP040 

T02500222 

KMIC 

261353Z 

00000KT 

9SM 

FEW014 

27/22 A2966 

RMK AO2 

SLP038 

T02670222 

KMIC 

261453Z 

16009KT 

8SM CLR 

27/23 A2968 

RMK AO2 

SLP044 

T02670228 

53004 
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Notes: 

1. lon – longitude 

2. lat – latitude 

3. tmpf - temperature F 

4. dwpf - dew point F 

5. relh - relative humility 

6. drct - wind direction 

7. sknt - speed knots 

8. p01i - precipitation 

9. alti - altimeter (in) 

10. mslp - sea level pressure (mb) 

11. vsby - visibility (miles) 

12. gust - wind gust 

13. 'M' means that either no value was reported for that observation time or the value 

was reported as missing.   

14. 'SCT' is scattered cloud coverage reported by the ASOS and 'BKN' is broken 

coverage. 

15. In general, the ASOS sites do not report snowfall, only the liquid melted 

equivalent. 

16. metar - METAR is a format for reporting weather information. Raw METAR is 

the most popular format in the world for the transmission of weather data. It is 

highly standardized through the International Civil Aviation Organization 

(ICAO), which allows it to be understood throughout most of the world. 

http://en.wikipedia.org/wiki/METAR 

 

http://en.wikipedia.org/wiki/METAR
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Figure 2-2 ASOS and RWIS Weather Stations in Minnesota 
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3. Data Analysis 

Archived truck GPS data, MN511 traffic data, and Computer Aided Dispatch (CAD) data from 

Minnesota state patrol were analyzed.  

 

3.1 Minnesota 511 Data Analysis  

The incident duration was estimated from the incident start time to the last incident update time 

of each XML incident record with the same incident ID. The distributions of estimated crash 

incident period in February and March 2013 from the MN511 system are illustrated as follows. 

Figure 3-1 shows the distribution of estimated crash duration for incidents that were recorded in 

Feb. 2013 with mean duration of 29.5 min and median duration of 23.4 min. And Figure 3-2 

displays the distribution of estimated crash duration for events that occurred in Mar. 2013 with 

mean duration of 28.8 min and median duration of 24.6 min. 

 

 
Figure 3-1 Histogram of Estimated Incident Period in Feb. 2013 

 

 
Figure 3-2 Histogram of Estimated Incident Period in Mar. 2013 
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Figure 3-3 and 3-4 illustrate the average daily number of crashes by hour in February and March, 

respectively. More crashes occur during AM and PM peak hours as compared to off-peak hours. 

According to the MN511 incident data, there were averaging 47 crashes per day in February and 

31 crashes per day in March 2013. 

 

 

Figure 3-3 Average Daily Crash Counts by Hour (Feb. 2013) 

 

 

Figure 3-4 Average Daily Crash Counts by Hour (Mar. 2013) 
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Figure 3-5 displays the crash duration location on a Geographic Information Systems (GIS) map 

in March 2013. In general, incidents occurring near key state or interstate highways during peak 

traffic tend to generate a longer incident period which includes incident detection, response and 

clearance time. 

 

 

Figure 3-5 Spatial Analysis of Estimated Crash Period in TCMA in Mar. 2013 
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3.2 Truck GPS Data Analysis  

Derived performance measures were compared with WIM data for data verification. 

 

3.2.1 Key Freight Corridors in Twin Cities Metro Area (TCMA) 

38 key freight corridors as displayed in Figure 3-6 were studied and analyzed. It consists of 

interstate, state highway, US highway and inter-regional corridors. 

 

 

Figure 3-6 Key Freight Corridors in Twin Cities Metro Area 
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3.2.2 Data Processing Procedures 

The flowchart that describes how raw GPS data is processed is displayed in Figure 3-7.  Raw truck 

GPS data received from ATRI were loaded to a geospatial database (open source packages, 

PostgreSQL & PostGIS). SQL scripts were developed to snap each GPS point to the nearest route 

and to determine space mean speed (defined as the total travel distance divided by the total travel 

time between two GPS samples) when spot speed (instantaneous vehicle speed measured by GPS) is 

not available. Performance measures were aggregated by 1-mile roadway segment. 

 

 

Figure 3-7 Probe Vehicle Data Analysis Flowchart 

 

Steps:  

1. Create highway route network 

2. Prepare raw GPS data 

3. Snap raw GPS points to a nearest route and locate snapped point distance and linear 

referencing value 

4. Assign vehicle point GPS speed (if available) to the nearest highway segment 

5. Compute vehicle speed between two consecutive GPS points and assign the average 

speed to roadway segments between the two consecutive GPS points 

6. Analyze probe vehicle speed and travel time by roadway segment and time 
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3.2.3 Probe Vehicle Point Cloud 

Figure 3-8 is a point cloud snapshot of probe vehicle raw GPS points in December 2012 in the 

Twin Cities eight-county metropolitan area. It contains over 3.5 million GPS pings from one of 

the three GPS datasets received from ATRI. 

 

 

Figure 3-8 Probe Vehicle GPS Point Cloud Snapshot (Dec. 2012) 

 

3.2.4 Processed Vehicle Speed Statistics 

Figure 3-9 illustrates the computed probe vehicle speed statistics in a 1-mile segment nearby 

UMN campus in both directions. 
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Figure 3-9 Probe Vehicle Point Speed on Route I-35W at 59th mile marker 

(Nearby Broadway St. NE in Minneapolis) 

 

3.2.5 Compare Processed Results with WIM Data 

We also compared the processed results with data collected from the Weight-in-Motion (WIM) 

station. There are four WIM stations inside the study area. A summary of the WIM stations in 

the Twin Cities Metro Area (TCMA) is listed in Table 3-1 as follows. 

 

Table 3-1 Description of WIM stations 

WIM ID 36 37 40 42 

Route Name MN 36 I-94 US 52 US 61 

County Name Washington Wright Dakota Washington 

City Name Lake Elmo Otsego West St Paul Cottage Grove 

WIM Location 

Description 

.7 MI W OF 

CSAH17 

(LAKE ELMO 

AVE N) IN 

LAKE ELMO 

1.2 MI NW OF 

CSAH19 (LA 

BEAUX AVE) 

IN OTSEGO 

.5 MI N OF 

CSAH14 IN 

WEST ST 

PAUL 

.4 MI S OF 

TH95 

(MANNING 

AVE S), S OF 

COTTAGE 

GROVE 

WIM Type VOLUME/SPEED/CLASS/WEIGHT 

 

Figure 3-10 illustrates the speed comparisons and variation by hour of a day at WIM station 37. The 

traffic volume percentage by hour of a day is displayed in Figure 3-11. The hourly volume percentage (%) 

is defined as the hourly volume counts divided by the total vehicle volume. A snapshot of probe vehicle 

count along the highway network in TCMA between 7 and 8 AM is illustrated in Figure 3-12. 
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Figure 3-10 Probe Vehicle Speed vs. WIM Speed by Hour at WIM#37 

 

 

 

Figure 3-11 Probe Vehicle vs. WIM Volume % by Hour at WIM Station #37 
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Figure 3-12 Snapshot of Probe Vehicle Count in TCMA (7~8AM in 2012) 

 

3.3 Incident Duration Analysis and Classification 

3.3.1 Estimation of Incident Duration from MN511 Data 

The real-time incident data is frequently updated by the incident response team when an incident 

occurs. Table 3-2 listed an abbreviated sample of an incident that occurred on 9/12/2013 on I-

35W. There were 4 message updates regarding this particular incident. Incident duration can be 
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calculated based on the time difference between the update time (9:31 AM) of the “last” message 

and the start time (8:41AM) of the “first” message. In this example, the incident (MSPCAD-

P130465520) has an estimated duration of 50 minutes (9:31 – 8:41 = 50 min). A sample of the 

processed incident duration estimation by incident ID is listed in Table 3-3 as an example. 

 

Table 3-2 Abbreviated Sample of MN511 Data 

msg_number 1377890597 1377890604 1377890614 1377890621 

msg_timestamp 9/12/2013 8:46 9/12/2013 9:01 9/12/2013 9:16 9/12/2013 9:31 

event_id 
MSPCAD-

P130465520 

MSPCAD-

P130465520 

MSPCAD-

P130465520 

MSPCAD-

P130465520 

event_update 1 2 3 4 

event_priority 4 4 4 4 

headline_text [3818]crash [3818]crash [3818]crash [3818]crash 

d_desc_phrase_text [3818]crash [3818]crash [3818]crash [3818]crash 

d_loc_route_designator I-35W I-35W I-35W I-35W 

d_loc_primary_loc 

{44.7822,  

-93.2884, 

3.16854} 

{44.7822,  

-93.2884, 

3.16854} 

{44.7822,  

-93.2884, 

3.16854} 

{44.7822, 

-93.2884, 

3.16854} 

d_loc_link_dir positive direction positive direction positive direction positive direction 

d_times_update_time 9/12/2013 8:46 9/12/2013 9:01 9/12/2013 9:16 9/12/2013 9:31 

d_times_start_time 9/12/2013 8:41 9/12/2013 8:47 9/12/2013 9:04 9/12/2013 9:04 

 

Table 3-3 Sample of Incident Duration Estimates 

Message 

update time 
Event id 

Estimated 

Duration 

(min) 

Description Latitude Longitude 
Estimated 

Start time 
Direction 

9/12/2013 

8:46 

MSPCAD-

P130465520 50 [3818]crash 44.7822 -93.2884 

9/12/2013 

8:41 

positive 

direction 

9/12/2013 

9:01 

MSPCAD-

P130465541 36 [3818]crash 44.9705 -93.3409 

9/12/2013 

8:55 

positive 

direction 

9/12/2013 

9:16 

MSPCAD-

P130465582 33 [3818]incident 45.1266 -93.4852 

9/12/2013 

9:13 

negative 

direction 

9/12/2013 

9:31 

MSPCAD-

P130465603 20 

[3818]stalled 

vehicle 

[3819]blocked 45.0686 -93.2633 

9/12/2013 

9:26 

positive 

direction 

9/12/2013 

9:46 

MSPCAD-

P130465624 23 [3818]crash 44.8956 -93.247 

9/12/2013 

9:38 

positive 

direction 
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3.3.2 Analysis of Incident Duration 

Figure 3-13 illustrates the distribution of incidents related to crashes on major freight corridors in 

the Twin Cities Metro Area from Oct. 2012 to Sep. 2013. The incident duration statistics are 

summarized in Table 3-4. Out of the 606,376 incident records, about 12% of them are incident 

and the other 88% are non-incident events (i.e., driving condition is good or fair). The incident 

data consists of “crash” [3818], “road closed” [3819], and “debris/animals on roadway” [3822]. 

The crash related data is further identified into 6 groups, such as “stalled vehicle” (3,205 unique 

samples), “vehicle spin-out” (5,001), “incident” (975), “disabled vehicle” (3,731), “jack-knifed 

semi-trailer” (206), “crash” (13,460).  

 

 

Figure 3-13 Incidents Related to Crash in Twin Cities Metro Area (Oct. 2012 – Sep. 2013) 
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Table 3-4 Summary of Incident Duration by Incident Type 

Statistics Crash 
Disabled 

vehicle 
Incident 

Jackknifed 

semi-trailer 

Stalled 

vehicle 

Vehicle spun 

out 

Mean (min) 35.0 27.8 22.1 55.3 17.8 28.6 

Standard Deviation 

(min) 
42.1 54.5 44.8 44.3 35.5 38.5 

Size (N) 13,460 3,731 975 206 3,205 5,001 

AM Peak (5-9 AM) 

Mean (min) 
33.7 27.4 35.8 55.5 19.6 28.8 

AM Data Size (N1) 2812 760 100 43 498 1090 

PM Peak (3-7 PM) 

Mean (min) 
33.7 24.5 22.6 65.6 17.1 25.6 

PM Data Size (N2) 4443 725 247 40 950 987 

Total Peak Size 

(N1+N2) 
7255 1485 347 83 1448 2077 

AM & PM Data 

Size Percentage 

(N1+N2)100% /N 

53.9% 39.8% 35.6% 40.3% 45.2% 41.5% 

 

Duration and standard deviation of crash related incidents are plotted in Figure 3-14. Crash 

involved with a semi-truck has the highest duration in average. Stalled vehicle has the shortest 

average duration. 

 

 

Figure 3-14 Incident Durations 
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The incident data are spatially joined with road network, traffic volume (AADT) and number of 

lanes to associate each incident location with roadway geometry information. A sample of the 

spatially joined data is listed in Table 3-5 as follows. 

 

Table 3-5 Sample of Spatially Joined Incident Data 

Duration 

(min) 
Mon Hour 

Crash 

Type 
Route SEG ID 

Highway 

Type 

Route 

ID 
AADT Lane AADT_LN 

40 9 16 1 94 35 1 24 56000 2 28000 

42 9 16 1 494 33 1 6 105000 2 52500 

44 9 16 1 94 37 1 24 39000 3 13000 

50 9 16 1 494 18 1 6 125000 3 41666.67 

54 9 16 1 100 9 3 7 105000 3 35000 

54 9 16 1 35 49 1 34 104000 3 34666.67 

81 9 16 1 94 24 1 24 149000 3 49666.67 

 

Where, 

Crash Type: 

7 – [3818] All other misc. crash (Lane reduced) 

6 – [3818] vehicle spun out 

5 – [3818] stalled vehicle [3819] blocked 

4 – [3818] jackknifed semi-trailer 

3 – [3818] incident 

2 – [3818] disabled vehicle 

1 – [3818] crash 

 

Highway Type 

1 – Interstate 

2 – US Highway 

3 – State Highway 

4 – County Road 

 

Traffic Direction 

1 – Positive Direction 

2 – Negative Direction 

3 – Not Directional 

 

3.3.3 Incident Duration Probability Distribution 

The histogram of all incident durations calculated from MN511 data was analyzed, as displayed 

in Figure 3-15, using the R statistical software package. The distribution was multimodal with at 

least 3 distinctive peaks at around 4, 20, and 34 minutes. Further analysis was performed to 

examine the histogram for each crash type. The results were listed in Table 3-6, 11% of the 
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incidents were related to vehicle “spin-out”. Disabled vehicles and stalled vehicles consist of 9% 

and 14 % of all incidents, respectively. The majority of incidents (63%) were classified as 

crashes. The type 1 incident (Crash) has a similar histogram as compared to the histogram of all 

incident types shown in Figure 3-15. There are at least 3 modes in the duration distribution of the 

crash incidents. Information on additional parameters (such as number of vehicles involved, 

fatality, and others) is needed to separate crash types and to model the duration. 

 

 

Figure 3-15 Histogram of All Incident Durations from MN511 Data 

 

 

Table 3-6 Incident Duration Statistics 

Incident Type   Count Percentage Mean Median SD 

1 – crash   10,329 63.4% 27.3 25.0 18.1 

2 – disabled vehicle   1,423 8.7% 20.4 15.0 18.3 

3 – incident   467 2.9% 16.2 12.0 14.1 

4 – jackknifed semi-trailer 30 0.2% 38.0 33.5 25.0 

5 – stalled vehicle   2,228 13.7% 14.1 11.0 12.0 

6 – vehicle spun out   1,792 11.0% 22.4 17.0 19.0 

7 – All other misc. crash 10 0.1% 32.5 20.0 27.6 
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4. Methodologies  

 

4.1 Incident Detection Algorithm 

The incident decision support system proposed in this study is shown in Figure 4-1. The incident 

detection algorithm using a bivariate analysis model as discussed in this section is illustrated in 

block (A) in Figure 4-1. Methodologies discussed in section 4.1.1 and 4.1.2 were implemented to 

detect incidents using probe truck GPS data. Incident delay estimation illustrated in block (B) in 

Figure 4-1 is included in section 4.2. Incident delay prediction results described at the end of 

section 4.2 using the Random Forest algorithm performed better than the other algorithms. 

However, it is inadequate. 

 

 

Figure 4-1 Schematic Diagram of Incident Decision Support System 
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4.1.1 Bivariate Analysis Model for Incident Detection 

Li & McDonald (2005) discovered that the joint distribution of travel time and travel time 

difference is bivariate normal in non-incident conditions. They developed a probe vehicle based 

algorithm using a bivariate analysis model to analyze travel time data for incident detection 

along four segments of motorways in UK. Travel time (𝑇𝑖) and travel time difference (∆𝑇𝑖 =

𝑇𝑖 − 𝑇𝑖−1) between adjacent time intervals are used, where i is the current time interval. The joint 

density function of a bivariate Gaussian distribution, 𝑓(𝑇𝑖,  ∆𝑇𝑖), can be expressed as follows 

(Wilks, 2006). 

 

𝑓(𝑇𝑖,  ∆𝑇𝑖) = (2𝜋𝜎𝑇𝑖
𝜎∆𝑇𝑖

√(1 − 𝜌𝑖
2))

−1

𝑒−𝑄/2 

 

Eq. (4-1) 

𝑄(𝑇𝑖,  ∆𝑇𝑖) =  
1

1 − 𝜌𝑖
2 [(

𝑇𝑖 − 𝜇𝑇𝑖

𝜎𝑇𝑖

)

2

+ (
∆𝑇𝑖 − 𝜇∆𝑇𝑖

 𝜎∆𝑇𝑖

)

2

− 2𝜌𝑖 (
𝑇𝑖 − 𝜇𝑇𝑖

𝜎𝑇𝑖

) (
∆𝑇𝑖 − 𝜇∆𝑇𝑖

 𝜎∆𝑇𝑖

)] 

Eq. (4-2) 

 

 

Or, in quadratic form, 𝑄(𝑇𝑖 ,  ∆𝑇𝑖)  = 𝑋𝑇 𝑋 

 

Where, 

Error Vector, 𝑋 = [
(𝑇𝑖 − 𝜇𝑇𝑖

)

(∆𝑇𝑖 − 𝜇∆𝑇𝑖
)
] 

Eq. (4-3) 

 

Variance-Covariance Matrix, [
𝜎𝑇𝑖

2 𝜌𝑖𝜎𝑇𝑖
𝜎∆𝑇𝑖

𝜌𝑖𝜎𝑇𝑖
𝜎∆𝑇𝑖

𝜎∆𝑇𝑖

2 ] 

Eq. (4-4) 

 

Correlation Coefficient, 𝜌𝑖 =
𝐶𝑜𝑣(𝑇𝑖,∆𝑇𝑖)

𝜎𝑇𝑖
𝜎∆𝑇𝑖

=
𝑬[(𝑇𝑖−𝜇𝑇𝑖

)(∆𝑇𝑖−𝜇∆𝑇𝑖
)]

𝜎𝑇𝑖
𝜎∆𝑇𝑖

  

Eq. (4-5) 

 

𝜎𝑇𝑖
 and 𝜎∆𝑇𝑖

are the standard deviations of  𝑇𝑖 and  ∆𝑇𝑖, respectively. 

 

The k-value, (𝑇𝑖,  ∆𝑇𝑖), describes an ellipse in the (𝑇𝑖, ∆𝑇𝑖) plane with center at(𝜇𝑇𝑖
, 𝜇∆𝑇𝑖

). The 𝑘 

value is equal to Chi-Square value, 2(, 2). The elliptic contour will contain 100(1 − 𝛼)% of 

the sample points on average. When a sample set of (𝑇𝑖, ∆𝑇𝑖) lies inside the contour, the 
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following equation should be fulfilled and considered as non-incident data using 99% coverage 

(i.e., = 0.01). 

k-value: 𝑋𝑇 𝑋 ≤2(, 2) 

Eq. (4-6) 

 

The k-value defined in equation (4-6) represents an index of abnormality where a measurement 

is located with respect to a two dimensional normal distribution function. A measurement sample 

with k-value greater than 9.21is considered abnormal using 99% confidence interval.  

 

Similarly, the above model can be expanded to analyze travel time data for incident detection 

along equally divided roadway segments (e.g., 1 mile). We used the segment travel time (𝑇𝑛) and 

segment travel time difference (∆𝑇𝑛 = 𝑇𝑛 − 𝑇𝑛−1) between adjacent roadway segments for 

incident detection, where n is the nth roadway segment. 

 

Table 4-1 Chi-Square Distribution Table 

Chi-Square Probability 

Degrees of 

Freedom (DOF) 
0.01 0.05 0.1 0.9 0.95 0.99 

1 0.00 0.00 0.02 2.71 3.84 6.63 

2 0.02 0.10 0.21 4.61 5.99 9.21 

3 0.11 0.35 0.58 6.25 7.81 11.34 

4 0.30 0.71 1.06 7.78 9.49 13.28 

5 0.55 1.15 1.61 9.24 11.07 15.09 

6 0.87 1.64 2.20 10.64 12.59 16.81 

7 1.24 2.17 2.83 12.02 14.07 18.48 

8 1.65 2.73 3.49 13.36 15.51 20.09 

9 2.09 3.33 4.17 14.68 16.92 21.67 

10 2.56 3.94 4.87 15.99 18.31 23.21 

 

 

4.1.2 Outlier Detection Using Hampel Identifier 

Hampel (1971) introduced the concept of the breakdown point. The breakdown point is the 

smallest percentage of contaminated data (or outliers) that can cause an estimator to take 

arbitrary large aberrant values. The median and the median absolute deviation (MAD) are often 

recommended for robust estimations. For example, consider a data series, {𝑥𝑖}, where i = 1 to n. 

The MAD scale estimate (S) is defined as, 

 

𝑆 = 1.482602 𝑚𝑒𝑑𝑖𝑎𝑛{ |𝑥𝑖 − 𝑥𝑚| } 

Eq. (4-7) 

Where, 
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  𝑥𝑚 is the median of a data series {𝑥𝑖}, 

 

Factor 1.4826 was chosen so the expected value of MAD is equal to the standard deviation (𝜎) 

for normally distributed data. That is,  

 

𝑬[𝑆(𝑥1. . . 𝑥𝑛)] = 𝜎 

Eq. (4-8) 

For {𝑥𝑖} distributed as N (μ, σ2) and large n. 

 

If |𝑥𝑖 − 𝑥𝑚| > 𝑡 𝑆, 𝑥𝑖  is considered as an outlier, where 𝑡 is the rejection threshold often 

suggested to be around 2 to 5  as proposed by Pearson (2002).  

 

The Hampel identifier is used to remove potential speed outliers from the GPS data processing. 

 

4.1.3 Incident Analysis Examples 

Two incident analyses were performed to evaluate the incident detection methodology. Section 

A describes an incident that occurred on 1/23/2013 on the I-94 eastbound west of Lowry tunnel 

in Minneapolis. Section B presents the analysis results from an incident occurring on 2/5/2013 

along I-494 southbound in Minnetonka. 

   

A. I-94 near Lowry Tunnel 

Figure 4-2 and 4-3 illustrate the hourly average travel speed of trucks on weekdays in January 

2013 from milepost 24 to 36 near the Lowry tunnel in Minneapolis for both westbound and 

eastbound traffic, respectively. Each line in the graph represents an hourly speed average. For 

example, the purple line with the x mark represents the average truck speed at 7AM, the blue line 

with the diamond mark represents the average truck speed at 8AM, the red line with the square 

mark represents the average truck speed at 9AM, and the light green line with the triangle mark 

represents the average truck speed at 10AM. In general, the average truck speed drops as 

vehicles approach the Lowry tunnel during the AM peak hours for both directions. 
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Figure 4-2 Average Weekday Travel Speed (I-94 WB near Lowry Tunnel) 

 

 

Figure 4-3 Average Weekday Travel Speed (I-94 EB near Lowry Tunnel) 

 

Figure 4-4 and 4-5 display the hourly average travel speed of trucks on January 23rd, 2013 in 

both directions at the same roadway segments as described in Figure 4-2 and 4-3. In Figure 4-4, 

the westbound traffic maintained a similar traffic pattern as compared to the weekday hourly 

average shown in Figure 4-2. However, the hourly speed curve in the eastbound direction, shown 

in Figure 4-5, illustrates a significant disturbance over the AM peak hours along the roadway 

segment (milepost 36 to 24) due to a crash that occurred near milepost 29.   
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Figure 4-4 Average Travel Speed (I-94 WB near Lowry Tunnel, Jan. 23, 2013) 

 

 

Figure 4-5 Average Travel Speed (I-94 EB near Lowry Tunnel, Jan. 23, 2013) 

 

Figure 4-6 illustrates the computed k-value (defined in equation 4-6) from the bivariate analysis. 

The graph indicated a significant traffic delay (k-value greater than 9.21) approximately between 

7:00AM and 8:00AM as a result of a crash and the AM peak hour traffic near the I-94 at Lowry 

tunnel. 
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Figure 4-6 Distribution of k-value from bivariate analysis (I-94 EB near I-394, Jan. 23, 2013) 

 

B. I-494 near I-394  

Figure 4-7 and 4-8 illustrate the hourly average travel speed of trucks on weekdays in February 

2013 from milepost 29 to 41 near the I-394 and I-494 interchange in Minnetonka for both 

northbound and southbound traffic, respectively. Each line in the graph represents an hourly 

speed average. For example, the purple line with the x mark represents the average truck speed at 

7AM, the blue line with the diamond mark represents the average truck speed at 8AM, the red 

line with the square mark represents the average truck speed at 9AM, and the light green line 

with the triangle mark represents the average truck speed at 10AM. In general, the average truck 

speed drops as vehicles approach the Lowry tunnel during the AM peak hours for both 

directions. 
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Figure 4-7 Average Weekday Travel Speed (I-494 NB near I-394) 

 

 

Figure 4-8 Average Weekday Travel Speed (I-494 SB near I-394) 

 

Figure 4-9 and 4-10 display the hourly average travel speed of trucks on February 5th, 2013 in 

both directions at the same roadway segments as described in Figure 4-7 and 4-8. In Figure 4-9, 

the northbound traffic during 7 to 8AM period is slightly deviated from the weekday traffic 

pattern as compared to the weekday hourly average shown in Figure 4-7. However, the hourly 

speed curve in the southbound direction, shown in Figure 4-10, illustrates significantly slower 

speed during the 7 to 8AM period along the roadway segment (milepost 41 to 29) due to a crash 

that occurred near milepost 35.   
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Figure 4-9 Average Travel Speed (I-494 NB near I-394, Feb. 5, 2013) 

 

 

Figure 4-10 Average Travel Speed (I-494 SB near I-394, Feb. 5, 2013) 

 

Figure 4-11 illustrates the computed k-value from the bivariate analysis. There were many 

measurements with k-value greater than 9.21 threshold. The graph indicated a significant traffic 

delay approximately between 5:30AM and 7:45AM as a result of a crash and the AM peak hour 

traffic near the I-494 and I-394 interchange. 

 

 

Figure 4-11 Distribution of k-value from bivariate analysis (I-494 SB near I-394, Feb. 5, 2013) 
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4.2 Incident Delay Estimation 

The goal is to develop a model based on incident type, time, weather info, number of vehicles 

involved, roadway type, and other related parameters to predict incident delay.  

 

Estimated incident duration (𝑇1) from MN511 data can be described as equation (4-9). It was 

used to validate the duration estimation derived from GPS data as described in equation (4-10) 

using the bivariate analysis described in section 4.1.1. 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑇1) = 𝑓1(𝑀𝑁511 𝐷𝑎𝑡𝑎)  

Eq. (4-9) 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑇2) = 𝑡𝑖(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦) − 𝑡𝑖(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑑𝑟𝑜𝑝) 

  

Where, 

  𝑡𝑖 is the time of an event occurs at roadway segment i. 

Eq. (4-10) 

 

In addition, vehicle delay estimation from the processed GPS data can be described as, 

 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (𝐿𝑛) = 𝑆𝑖−𝑛(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑑𝑟𝑜𝑝) − 𝑆𝑖(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑑𝑟𝑜𝑝) 

 Eq. (4-11) 

Where, 

  𝑆𝑖 is the roadway segment i when incident occurred, 

  𝑆𝑖−𝑛 is the last segment upstream from segment I where speed drops lower than 

normal, and 

  𝐿𝑛 is the length of congestion. 

 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐷𝑒𝑙𝑎𝑦 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑇3) =  
𝐿𝑛

𝑆𝑝𝑒𝑒𝑑𝑐
⁄   

Eq. (4-12) 

Where, 

  𝑆𝑝𝑒𝑒𝑑𝑐 is the average congestion speed between segment i and i-n, and 

  𝐿𝑛 is the length of congestion. 

 

Predicting traffic incident delay is a challenging task in Advanced Traffic Incident Management 

(ATIM). The duration of an incident delay consists of the incident time period (detection, 

response, and clearance time periods) and the recovery time as illustrated in Figure 4-12.  
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Figure 4-12 Illustration of Incident Period and Incident Delay 

 

The total incident delay time can be described as follows. 

 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑑𝑒𝑙𝑎𝑦 (𝑇4) = 𝑡𝑖−𝑛(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦) − 𝑡𝑖(𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑠𝑝𝑒𝑒𝑑 𝑑𝑟𝑜𝑝) 

  

Where, 

  𝑡𝑖 is the time of the speed drop at roadway segment i when incident occurred, and 

  𝑡𝑖−𝑛 is the time of speed recovery at nth roadway upstream from ith segment. 

Eq. (4-13) 

Incident Delay and Congestion Estimation Using Bivariate Analysis 

The bivariate analyses were performed at roadway segments +/- 5 miles from where the incident 

occurred and 3 hours before and after the incident. Figure 4-13 illustrates the 3-D bivariate 

analysis results of an incident occurred on 11/16/2012 in I-94 Eastbound. Traffic was slower 

than normal condition for about 2 hours and 4 miles upstream from where the incident occurred 

(segment 9) according to the computed k values displayed in Figure 4-13. Figure 4-14 shows the 

hourly speed distribution of each 1-mile roadway segment near where the incident occurred. 

Hour “0” in Figure 13 & 14 means the hour (17:00) when the incident occurred. K-value 

exceeding 9.21 threshold represents the traffic condition is abnormal using 99% confidence 

interval. Figure 4-15 and 4-16 display the corresponding bivariate analysis results and speed 

distribution of another incident which occurred at the same segment on I-94 on 8/2/2013. Hour 

“0” in Figure 15 & 16 means the hour (17:00) when the incident occurred. K-value exceeding 

9.21 threshold represents the traffic condition is abnormal using 99% confidence interval. 

 

Estimated incident delay duration and congestion length for a few incidents on I-94, I-35W, I-

494 and I-694 in the Twin Cities metro area are listed in Table 4-2. The results from the bivariate 

analysis in incident #9 (Friday 1/26/2013 on I-94 WB, in Maple Grove) did not indicate any 

delay or congestion around 6PM toward the end of rush hours. I-94 WB in Maple Grove toward 

Roger has recurring congestion in Friday afternoon. The bivariate analysis found no significant 

delay but 3 miles of congestion for incident #16 at I-696 EB before I-35E.  

 

Detection Response Clearance Recovery

Incident Period

Incident Delay
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Figure 4-13 Bivariate K-plot of an Incident Occurred on 11/16/2012 at 5PM on I-94 EB Segment 

9 in Woodbury 

 

 

Figure 4-14 Average Speed of an Incident Occurred on 11/16/2012 at 5PM on I-94 EB Segment 

9 in Woodbury 
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Figure 4-15 Bivariate K-plot of an Incident Occurred on 8/2/2013 at 5PM on I-94 EB Segment 9 

in Woodbury 

 

Figure 4-16 Average Speed of an Incident Occurred on 8/2/2013 at 5PM on I-94 EB Segment 9 

in Woodbury 
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Table 4-2 Incident Delay and Congestion Estimation 

Incident 

# 
Route 

Incident 

Date 
Hour 

Segment 

ID 
Direction 

Incident 

Duration 

MN511 

(min) 

Est. of 

Delay 

(min) 

Queue 

Est. 

(mile) 

1 I-94 11/16/2012 17 9 Negative (EB) 63 180 4 

2 I-94 8/2/2013 17 9 Negative (EB) 57 120 3.5 

3 I-94 7/19/2013 16 9 Negative (EB) 23 90 5 

4 I-94 5/20/2013 16 12 Negative (EB) 19 180 5 

5 I-94 6/25/2013 17 21 Negative (EB) 19 60 7.5 

6 I-94 12/5/2012 10 25 Negative (EB) 5 120 1 

7 I-94 7/16/2013 15 35 Positive (WB) 438 180 5 

8 I-94 6/27/2013 9 35 Positive (WB) 225 240 5 

9 I-94 1/25/2013 18 46 Positive (WB) 179 0 0 

10 I-35W 12/2/2012 17 42 Positive (NB) 274 60 2 

11 I-35W 12/1/2012 9 47 Positive (NB) 47 0 0 

12 I-35W 2/10/2013 13 39 Positive (NB) 83 150 7 

13 I-35W 1/23/2013 7 36 Positive (NB) 77 120 4 

14 I-494 7/1/2013 20 6 Positive (WB) 111 120 3 

15 I-494 8/27/2013 7 6 Positive (WB) 18 120 4 

16 I-694 2/9/2013 9 10 Positive (EB) 11 0 3 

17 I-694 2/14/2013 8 10 Positive (EB) 15 180 4 

 

Model Features 

Models are trained using a subset of the following features: incident duration computed from 

state patrol data (CAD) or MN511 traveler information system, traffic direction, HCADT traffic 

volume, interstate, number of lanes, month, number of vehicles involved in an incident, 

temperature, time of day, type of incident, visibility distance, average wind speed. During 

preprocessing phase, we converted the numerical features into appropriate features observing its 

distribution. Missing values are replaced or excluded based on the classification algorithm. 

 

Preprocessing 

Range Values of Features are as follows:  

 CAD duration: 0-2670 minutes.  

 HCADT 2012 traffic volume: 85-15100.  

 Temperature in degree Celsius: -239-3276.7.  

 Visual Distance in meters: -132767.  

 Wind speed average: 0-255 km/hr. 

 

Features are converted into categories in the following way: 
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 CAD duration or MN511 duration (min): 13 groups of size interval 10. Excluding 

samples with values greater than 2000.  

 Direction: 2 types, positive and negative.  

 HCADT 2012: 8 groups of size 2000.  

 Interstate: 2 types.  

 Number of lanes: 5 unique values.  

 Month: 12 unique months.  

 Number of vehicles involved: 11 unique values.  

 Precipitation type: 9 types.  

 Temperature: 24 groups of size interval 10.  

 Time of day: 3 groups: 5-9AM, 3-6PM, and the other time of day.  

 Type of incidents: 7 types.  

 Type property damage: 13 types.  

 Visual distance: 6 groups of size interval of 5000 value.  

 Wind Speed Average: 2 groups, less or greater than 100 values. 

 

 

Classification 

Based on the data, it is preferable to convert the regression to a classification problem as more 

efficient algorithms are available in this domain. Since our training output consisted of ordinary 

values, it is suitable to perform classification. To remove irrelevant features during classification 

we adopted a process called the feature selection process. In this process, a subset of features are 

considered for creating the model and we add or remove the next feature based on the evaluation 

criteria (in our case training error) using this approach. Thus, the best model will contain some 

subset of features mentioned above. 

 

For classification, we first considered the linear discriminant analysis also known as the Fisher 

Discriminant. In this, each class is described as a linear model. i.e. yc(x) = wT x, where w is the 

model coefficient and x is the input feature vector. The idea proposed by Fisher is to maximize a 

function, or find a hyper-plane in D dimension, that will give a large separation between the 

projected class means on this hyper-plane while also giving a small variance within each class, 

thereby minimizing the class overlap. Linear discriminant yields the following result: Training 

error= 66%, Testing error=66%. Testing error is calculated using 10-fold validation process in 

which 10 percent of data is separated out for testing. For quadratic discriminant, we also 

included the interaction term in our analysis. Results are as follows: Training error= 63%, 

Testing Error=63%. 

 

After discriminant analysis, we considered multi nominal logistic regression. The posterior 

probabilities of classes are given by a softmax transformation of linear functions of the feature 

variables, so that p(Ck|x) = yk(x) = exp(ak) / Sum[exp(ak)], where the `activations' ak is given by 
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ak = wT
k x. Parameters w of model are obtained after training the data and results are as follows: 

training error= 59% and testing error= 60%. 

 

We moved to more sophisticated classification algorithms such as using ensemble of classifiers. 

AdaBoost (adaptive boosting) is an ensemble learning algorithm that can be used for 

classification or regression. Although AdaBoost is more resistant to over fitting than many other 

machine learning algorithms, it is often sensitive to noisy data and outliers. AdaBoost is called 

adaptive because it uses multiple iterations to generate a single composite strong learner. 

AdaBoost creates the strong learner (a classifier that is well-correlated to the true classifier) by 

iteratively adding weak learners (a classifier that is only slightly correlated to the true classifier). 

During each round of training, a new weak learner is added to the ensemble and a weighting 

vector is adjusted to focus on examples that were misclassified in previous rounds. The result is a 

classifier that has a higher accuracy than the weak learners' classifiers. Using this algorithm and 

feature selection process, the best results were as follows: Training Error=37% and Testing 

Error=59%. All except air pressure, average wind speed, visual distance features are used in this 

process. 

 

Lastly, we considered the most widely used Random Forest algorithm for real data model 

prediction. Random Forest is a trademark term for an ensemble of decision trees. Unlike single 

decision trees which are likely to suffer from high variance or high bias (depending on how they 

are tuned) Random Forest algorithms use averaging to find a natural balance between the two 

extremes. Since they have very few parameters to tune and can be used quite efficiently with 

default parameter settings (i.e. they are effectively non-parametric), Random Forests are good to 

use when the underlying model is unknown. Random Forest randomly selects subset of samples 

as well as features following the bootstrap aggregation method and trains the weak classifier 

(binary decision tree) using the above data. This process is repeated to create a forest of trees 

which is our prediction model. In the end, we take the majority vote to label the input.  

 

In our case, we trained the random forest model with 100 binary decision trees along with input 

features from the feature selection process. This yielded the following results: training 

error=10% and Generalization error= 50%. All features expect air pressure were considered for 

the training of the above model. 

 

Table 4-3 lists the results of various classification algorithms we tested using incident records 

from both CAD and MN511 data. The results indicated the Random Forest algorithm has the 

least amount of training and testing errors as compared to the other algorithms. However, the 

Random Forest algorithm is not effective in predicting the incident delay with additional 

information regarding the incident. 
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Table 4-3 List of Classification Algorithms Considered 

Algorithms 
Training Error Testing Error 

CAD Data MN511 Data CAD Data MN511 Data 

Linear Discriminant 
Classification 

66% 68% 66% 68% 

Quadratic Discriminant 
Classification 

63% 66% 63% 66% 

Multi-Nominal Logistic 
Regression 

59% 63% 60% 63% 

Boosting Algorithms: 
Adaboost 

37% 43% 59% 63% 

Ensemble Algorithms: 
Random Forest 

10% 19% 50% 59% 
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5. Pilot Implementation  

The objective of the pilot implementation is to demonstrate a concept of operations for the 

Incident Decision Support System (IDSS) to provide incident information to truck operators. The 

pilot implementation uses available archived data for demonstration purposes. A real-time data 

feed from ATRI can be incorporated into the developed IDSS later when real-time data becomes 

available. 

 

5.1 Incident Detection System  

The incident detection routines continuously processes and analyzes the incoming truck GPS 

data to detect abnormal traffic patterns based on the roadway segment, direction, and time of 

day.  

 

5.1.1 System Architecture for pilot implementation 

Figure 5-1 illustrates the system architecture of the IDSS system. The UMN IDSS geo-spatial 

database takes as input the truck GPS data, weather information, CAD and MN511 traffic data 

for performing the data processing analysis and incident detection. A web service, acting as a 

middleware with additional security protection, handles requests from mobile or in-vehicle 

devices to provide incident related information to the end users. 

 

 
 

Figure 5-1 Overall IDSS System Architecture 

 

  

UMN IDSS
API / Web

Service

Smartphone or 

In-Vehicle 

Device

MN511CAD

RWIS ATRI

Incident Location

and Time 
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5.1.2 Incident detection examples 

 

Example 1 #36, MSPCAD-P130556879 

Figure 5-2 illustrates an incident that occurred on Wed 10/30/2013 at 6:47 AM on US Highway 

52 NB at 70th Street. This incident involved 6 vehicles and the duration between police arrival 

and departure was 33 minutes according to the archived CAD data. The top 2 graphs are the 

analysis results from loop detector data on the previous day (10/29/13) for both lanes. The blue 

lines represent the measured speed from loop detectors and the green lines are the incident 

indices (k-values) from the bivariate analyses determined by our algorithm. The top 2 figures 

show no incident. 

 

The bottom 2 graphs display the loop detector speed (blue), loop detector bivariate index (green), 

the GPS speed (magenta), and bivariate index (k-value) from GPS speed (red) at the roadway 

segment where an incident occurred on 10/30/13 for both lanes. As indicated in both graphs in 

the bottom, the speeds as measured by loops and by the probe data dropped and the k-values 

spiked before 7AM when the incident occurred. A high k-value indicates an incident. A drop of 

k-value to a low value indicates that the incident has cleared. 

 

 

Figure 5-2 Incident Detection Analysis #36, MSPCAD-P130556879: 2 adjacent loops (different 

lanes) on US Hwy. 52 NB at 70th St. 

 



 

IDSS Final Report   50 
January 2015 

Example 2 Incident #60, MSPCAD-P130556946 

Figure 5-3 illustrated an incident that occurred on Wed 10/30/2013 at 7:34 AM on I-94 EB at 

Chicago Ave. This incident involved 2 vehicles and the duration between police arrival and 

departure was 36 minutes according to the archived CAD data. The top 2 graphs are the analysis 

results from the loop detector data on previous day (10/29/13) for both lanes. The blue lines 

represent the measured speed from adjacent loop detectors and the green lines are the indices (k-

values) from the bivariate analyses. 

 

The bottom 2 graphs display the loop detector speed (blue), loop detector bivariate index (green), 

the GPS speed (magenta), and the bivariate index (k-value) from GPS speed (red) at the roadway 

segment where an incident occurred on 10/30/13 for both lanes. As indicated in both graphs in 

the bottom, the speeds dropped and the k-values spiked around 7AM when the incident occurred. 

Again, a high k-value indicates an incident occurred. When the k-value drops, the incident has 

cleared. 

 

 

Figure 5-3 Incident Detection Analysis #60, MSPCAD-P130556946: 2 adjacent loops (different 

lanes) on I-94 EB at Chicago Ave. 
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Note that the 36 minutes associated with the arrival and departure of the state patrol represents a 

portion of the total incident duration. The loop detector data is the best measure of the incident 

duration and is used here to validate our incident detection algorithm. The algorithm would be 

used on rural roads when no loop detector is available. 

 

5.2 Pilot Implementation System Design 

Figure 5-4 illustrates the functionalities and data flow for the proposed pilot implementation. 

Block A represents a user’s device (a smartphone or some other in-vehicle device) that has the 

capability to automatically determine the user’s location and heading using GPS. Block B is a 

database and web server that hosts the incident information (timestamp, location, and heading) 

resulting from the truck GPS data processing and analysis as displayed in Block C. Block C will 

continuously process incoming GPS data for incident detection. If an incident is detected, the 

results will be sent to the incident database residing in Block B. The purpose of the middle tier 

web service design in Block B is to protect the truck GPS data in block C and provide web 

services for different applications such as the smartphone, web XML or other 3rd party 

applications. Data flow (1 → 2 → 3 → 4) represents a configurable cycle of information update 

as a truck operator travels down the roadway. 

 

For an initial pilot implementation, block B and C will reside on the same PC at UMN. For a 

real-time application, the algorithm running in Block C will reside on a server receiving a real-

time GPS raw data feed at ATRI (over 1 million data points per day for trucks travelling on all 

roads in MN) The system design architecture for the pilot implementation using archived data 

would work similarly for an application using a real-time data feed when it’s ready.  

 

This pilot implementation focuses on the mechanism for providing the information to the user. A 

simple text display and text-to-speech output was announced to the user in the initial phase. The 

research team is aware of the potential for distraction by providing travel information through the 

smartphone. The user interface and human factors issues will later need further investigation in 

order to determine the best way to ultimately present the incident information to the driver.  

 

5.2.1 Incident Information Flow 

1. The smartphone (equipped with GPS) determines its current latitude-longitude and 

heading information. The information together with the current timestamp is submitted to 

a web interface to determine the roadway and segment where the user is currently 

located.  

2. Roadway ID, segment ID and direction information is used to query incident formation 

from the database (described in Block B). 

3. The IDSS then checks the downstream traffic condition (e.g., 50 miles ahead) if there is 

any incident along the roadway on which the operator is traveling. (This information can 
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be integrated with a navigation application when a route is specified; the IDSS would 

check the incident information downstream along the route.) 

4. A simple text message such as “Incident xxx, yyy miles ahead on zzz road” would be 

displayed on the smartphone or announced to the users. 

 

 

Figure 5-4 Functionality Block Diagram of Proposed Pilot Demonstration 

 

5.2.2 Smartphone App 

An Android application was developed to implement the Incident decision support system. The 

Android app shows the current location on a Google map (Google Maps Android API v2) and 

updates it positions as the current location of the user changes. As the location is updated, the 

application sends its location and date-time data to the server to get information about any 

incidents that might have taken place on the route that the user is travelling. The application 

provides settings to adjust date, time, look-ahead distance, test-to-speech settings etc. 

 

Figure 5.5 illustrates the flowchart of the Android application. All the default values for the 

application settings have been considered. Assuming that the “enable voice” option is checked, 

the application speaks to the driver if there is any valid response from the incident detection web 

server. Detailed information about the smartphone app is discussed in Appendix C. 
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Figure 5-5 Design Flowchart of Smartphone App for IDSS 

 

5.2.3 Web Server 

A HTTP Servlet was developed which acts as a middleware between the Android application and 

the central database server. This HTTP Servlet reads the request from the Android application 

and then establishes a communication connection with the incident detection database server. 

The Java servlet connector object takes all the parameters sent by the Android application and 

then creates the query string in the required format. The query string is sent to the server and 

then the object waits for a response from the database server. As soon as the response arrives, it 

checks for the validity for the response. If the number of responses matches the expected 

number, it then passes the result to the smartphone app. The flowchart for the servlet is 
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illustrated in Figure 5-6. Detailed information about the servlet development is discussed in 

Appendix D. 

 

 

Figure 5-6 Design Flowchart of the Servlet 

 

5.3 System Testing and Simulation 

The smartphone app was tested on a passenger vehicle driving on I-94 WB near the University 

campus in Minneapolis where an incident occurred according to the historical data. A few 

historical incidents (Table 5-1) were identified for testing and validation purposes. We set the 

time on the smartphone app to a timestamp based on the archived data when an incident 

occurred. As the test vehicle drove toward a location where the incident occurred, the app 

successfully detected the available incident information through the web server and announced 

the corresponding information (where and when) to the driver during the experiments. 
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For example, Figure 5-7 illustrates that a test vehicle is driving toward an incident (ID 2 in table 

5-1) which occurred about 5 miles ahead on interstate I-94 on 1/10/2013 around 6PM. When an 

incident is detected, the app will announce “incident occurred 5 miles ahead 19 minutes ago on 

Interstate 94”.  

 

Table 5-1 List of Sample Incidents 

ID 
Incident 

Latitude 

Incident 

Longitude 

Incident 

Date/Time 
Route Name 

1 44.953472 -93.089083 2/1/2013 19:31 Interstate 94 

2 44.967203 -93.222714 1/10/2013 17:41 Interstate 94 

3 44.960120 -93.206196 3/6/2013 16:59 Interstate 94 

4 44.964364 -93.242091 7/15/2013 16:45 Interstate 94 

 

 

 

Figure 5-7 Illustration of a Test Vehicle Approaching an Incident 

(Background Image from Map Data © Google 2015) 
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6. Summary and Conclusion 

Building upon our previous effort, we developed an Incident Decision Support System (IDSS) 

that uses GPS-equipped commercial trucks as probe vehicles on key freight corridors on inter-

regional corridors (IRC) and supplemental freight routes in Minnesota. An automatic incident 

detection algorithm was developed to support incident decision-making for state DOTs for 

traveler information purposes and for truck drivers and dispatchers who need to make necessary 

routing and operations decisions when incidents occur.  

 

The objectives of this project are to (1) develop an Incident Decision Support System (IDSS) that 

uses GPS-equipped commercial trucks as probe vehicles on key freight corridors, and (2) provide 

incident information to truck operators. 

 

Archived truck GPS data, MN511 traffic data, Computer Aided Dispatch (CAD) data from the 

Minnesota State Patrol, and weather data in the Twin Cities Metro Area (TCMA) were obtained 

for this study. The MN511 data provides basic incident information such as time, location, crash, 

incident description, stalled vehicle, presence of debris, etc. Currently, the incident descriptions 

are not standardized and not queryable. The Computer Aided Dispatch (CAD) data from the 

Minnesota State Patrol and incident management team contains more information than the 

MN511 data such as incident type, patrol arrival/leaving time, vehicle class, number of vehicles 

involved, fatality, etc.  

 

A bivariate incident detection methodology was developed by including the travel time 

computed from raw GPS truck data and the travel time difference between roadway segments 

and time intervals as key parameters. The incident detection methodology was implemented 

through a Java program which was developed to process and analyze probe vehicle data for 

incident detection. The incident detection algorithm worked very well but the incident duration 

prediction estimator did not. 

 

The individual incident duration was calculated using the time difference between the update 

time of the “last” message and the start time of the “first” message concerning the event. The 

research team manually computed the incident delay using a small sample dataset using the 

bivariate model to validate the results against the incident duration from MN511 data and CAD 

data. An automatic delay estimation process was developed and tested. In an attempt to develop 

an incident delay prediction model, the research team tried several algorithms (such as, linear 

discriminant classification, quadratic discriminant classification, multi-nominal logistic 

regression, boosting algorithms: Adaboost, and ensemble algorithms: random forest) with limited 

success. The delay estimation model using the Random Forest algorithm with 100 binary 

decision trees along with input features from the feature selection process yielded the best results 

(10% training error and 50% of generalization error) which was inadequate.  
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Validation on the incident detection algorithm was successfully performed by comparing the 

results to loop detector data obtained from MnDOT on freight corridors with sufficient GPS 

samples in the Twin Cities metropolitan area. Our incident detection algorithm was designed to 

focus on rural roadways where loop detector data is not available. 

 

A pilot implementation was developed to demonstrate a concept of operations for the Incident 

Decision Support System (IDSS) and provide incident information to truck operators. The pilot 

implementation used available archived data for demonstration purposes. A real-time data feed 

from ATRI can be incorporated into a future version of IDSS later when real-time data becomes 

available. 

 

To provide incident information to truck operators, an in-vehicle display through a smartphone 

device was developed for pilot implementation to provide auditory advanced alerts. The research 

team is aware of the potential for distraction by providing travel information through the 

smartphone. The user interface and human factors issues will later need further investigation in 

order to determine the best way to ultimately present the incident information to the driver.  

 

When an incident is detected, the app displays incident information to travelers through an 

auditory text-to-speech (TTS) interface as they approach the incident. For example, if the 

distance of an incident is xx miles away, the app will announce “incident occurred xx miles 

ahead ‘yy’ minutes ago. The TTS speech engine also mentions the route name of the incident 

assuming that the driver is aware of the current route so that he or she can determine whether the 

incident is on the same route or nearby route. 

The app was tested on a passenger vehicle driving on I-94 WB near the University campus in 

Minneapolis where an incident occurred according to historical data. For testing and validation 

purposes, we set the time on the smartphone app to a timestamp based on the archived data when 

an incident occurred. As the test vehicle drove toward a location where the incident occurred, the 

app successfully detected the incident information through the web server and announced the 

corresponding information (where and when) to the driver during the experiments. 
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Appendix 

 

Appendix A: Sample Incident Data 

 

1. An example of MN511 incident XML String 

<feu:full-event-update> 

   <message-header> 

   <sender> 

      <organization-id>MNSEG</organization-id> 

      <center-id>MNSEG</center-id> 

   </sender> 

   <message-type-version>1</message-type-version> 

   <message-number>300271</message-number> 

   <message-time-stamp> 

      <date>20130102</date> 

      <time>062928</time> 

      <utc-offset>-0600</utc-offset> 

   </message-time-stamp> 

   <message-expiry-time> 

      <date>20130102</date> 

      <time>102928</time> 

      <utc-offset>-0600</utc-offset> 

   </message-expiry-time> 

   </message-header> 

   <event-reference> 

      <event-id>MNSEG-300271</event-id> 

      <update>1</update> 

   </event-reference> 

   <event-indicators> 

      <event-indicator> 

         <priority>10</priority> 

      </event-indicator> 

   </event-indicators> 

   <headline> 

      <headline> 

         <winter-driving-index>driving conditions good</winter-driving-index> 

      </headline> 

   </headline> 

   <details> 

      <detail> 

         <element-id>1</element-id> 

         <descriptions> 

            <description> 

               <phrase> 

                  <winter-driving-index>driving conditions good</winter-driving-index> 

               </phrase> 

            </description> 

         </descriptions> 
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      <locations> 

         <location> 

            <location-on-link> 

               <link-ownership>Minnesota</link-ownership> 

                  <route-designator>MN 41</route-designator> 

                  <primary-location> 

                     <geo-location> 

                        <latitude>44765709</latitude> 

                        <longitude>-93578467</longitude> 

                     </geo-location> 

                     <linear-reference>0.0</linear-reference> 

                  </primary-location> 

                  <secondary-location> 

                     <geo-location> 

                        <latitude>44891806</latitude> 

                        <longitude>-93580601</longitude> 

                     </geo-location> 

                  <linear-reference>9.382</linear-reference> 

                  </secondary-location> 

               <link-direction>not directional</link-direction> 

               <linear-reference-version>0</linear-reference-version> 

         </location-on-link> 

      </location> 

   </locations> 

   <times> 

      <update-time> 

         <date>20130102</date> 

         <time>062928</time> 

         <utc-offset>-0600</utc-offset> 

      </update-time> 

   <valid-period> 

      <duration>2000000</duration> 

   </valid-period> 

   </times> 

   </detail> 

   </details> 

</feu:full-event-update> 

 

2. SQL Table 

CREATE TABLE events 

( 

  send_org_id text, send_ctr_id text, 

  msg_version integer, 

  msg_number bigint, 

  msg_timestamp timestamp with time zone, 

  msg_expire_time timestamp with time zone, 

  event_id text, 

  event_update integer, 

  event_status text, 
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  event_priority integer, 

  headline_text text, 

  d_desc_element_id text, 

  d_desc_phrase_text text, 

  d_desc_cause_text text, 

  d_desc_advice_text text, 

  d_desc_qualifier_text text, 

  qty_length_affected integer, 

  qty_link_delay integer, 

  qty_link_headway integer, 

  qty_link_TT integer, 

  qty_veh_involved integer, 

  qty_car_involved integer, 

  qty_truck_involved integer, 

  qty_bus_involved integer, 

  qty_wind_dir integer, qty_wind_spd integer, 

  qty_air_temp integer, qty_humidity integer, 

  qty_visibility integer, 

  qty_park_space integer, 

  qty_park_occ integer, 

  qty_water_depth integer, 

  qty_adj_snow_depth integer, 

  qty_road_snow_depth integer, 

  qty_road_snow_pack_depth integer, 

  qty_ice_thickness integer, 

  qty_pavement_temp integer, 

  qty_spd_limit_advisory integer, 

  qty_spd_limit integer, 

  qty_spd_limit_truck integer, 

  qty_restrict_length integer, qty_restrict_height integer, 

  qty_restrict_width integer, qty_restrict_weight_veh integer, 

  qty_restrict_weight_axle integer, 

  qty_restrict_axle_count integer, 

  d_desc_additional_text text, 

  d_loc_area_id integer, 

  d_loc_link_owner text, 

  d_loc_route_designator text, 

  d_loc_primary_loc real[3], 

  d_loc_secondary_loc real[3], 

  d_loc_link_dir text, 

  d_loc_link_align text, 

  d_loc_link_lref_ver text, 

  d_times_update_time timestamp with time zone, 

  d_times_end_time timestamp with time zone, 

  d_times_valid_duration integer, 

  d_times_start_time timestamp with time zone, 

  d_times_recur_days text, 

  d_times_recur_schedules text, 

  d_times_recur_utc_offset text, 
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  source_org_id text, source_ctr_id text, 

  PRIMARY KEY(event_id, event_update) 

) 

WITH ( 

  OIDS=FALSE 

); 

ALTER TABLE events OWNER TO postgres;  
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Appendix B: Java Application for Bivariate Analysis 

 

A Java program was developed to perform hourly bivariate analysis for each roadway segment. 

This program was designed to handle real-time truck vehicle data for future deployment. The 

application classes are summarized as follows. 

 

 IDet_Main.java – This is the main class that specifies which year, month, and route to 

perform bivariate analysis. 

 Process_IDet.java – This class performs bivariate analysis based on selected roadway 

segment and time of day. It includes methods to process by hour, by day or by location. 

 process_IDet() 

 exeByHr(int, int, int, String) 

 exe1(int, int, int, String) 

 exeByLoc(int, int, int, String) 

 exeByDay(int, int, int, String) 

 getSegmentSize(int) 

 getRouteSize() 

 queryDailySpeedData(String) 

 querySpeedData(String) 

 init_JDBC() 

 writeStr2File(String) 

 write2CSVFile(String, String) 

 myBivariate.java – This is bivariate model class that performs variances, correlations 

and k-value calculations. 

 myBiVariate(myArray, myArray) 

 calc_K_value(double, double) 

 matrix2by2Inverse() 

 getCorrelation() 

 myArray.java – This is the data array class for travel time and travel time differences. 

 myArray(double[]) 

 getSum() 

 getMean() 

 getVariance() 

 getStdDev() 

 median() 

 max() 

 min() 
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Appendix C: Smartphone App 

 

Introduction 

An Android application was developed to implement the idea of an Incident decision support 

system. The Android application shows the current location on a google map and changes its 

position as the current location of the user is updated. As the location is updated, the application 

sends its location and date-time data to the server to get information about any incidents that 

might have taken place on the route that the user is travelling. The application provides settings 

to adjust date, time, look-ahead distance, speech enabling etc. 

Map Details 

For the purpose of map implementation, Google Maps Android API v2 has been used.  To use 

the map API, the google-play-services_lib had to be included as a library. This project can be 

found in the extras folder under Android-sdk.  In addition, a license key is needed from Google 

API console to get permission to use the application. This key has to be written in the Android 

application manifest file, otherwise the map won’t appear on the screen. User configurable 

options can be set by the user when the app is installed. These settings will be used as default to 

provide incident information to the driver. Drivers are not required and allowed (by law) to input 

any settings while driving. 

Design and User Interface 

o Screen 1 

As soon as we click the application icon, the application starts.  The application 

checks the setting of location services. If the location services are not enabled, it takes 

users to the location settings screen where they can turn on the location settings as 

illustrated in Figure C-1. 

o Screen 2 

If the location setting is enabled the application can now be started. Figure C-2 is the 

screenshot of the first screen which shows the current location of the user. The 

application uses Google Maps and the map type is normal.  The two buttons in the 

action bar are to start the incident decision support system and stop it respectively. If 

the start button is not pressed the application will behave as a normal location 

tracking application where you can just see your current location. When the start 

button is pressed the application queries the database by sending the location. 

o Screen 3 

Figure C-3 is the screen shot of the screen that appears after we press the “action 

overflow” (or more option) button at the upper right of the screen. All the options 

available are listed in the screen. 

 Choose Date – Opens Date-Picker Dialog 

 Choose Time – Opens Time-Picker Dialog 

 Other Settings – Opens Normal Settings dialog 
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 Reset Settings – resets Date, Time and Other Settings. 

o Screen 4  

The screen as displayed in Figure C-4 allows users to choose the date. This 

appearance may vary in different Android versions. 

o Screen 5 

Figure C-5 is the screen shot of the time selection view.  If the user wants to change 

the time of the query he can do so by changing the time or else the application will 

use the system default time. The screen display is from Android 5.0. The appearance 

may vary depending on different Android versions.  

 

 

      
      Figure C-1 Location Service Setting      Figure C-2 Location Map 
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      Figure C-3 Options & Settings       Figure C-4 Select Date 

 

o Screen 6 

Figure C-6 is the screen shot attached for other settings.  When users press the other 

settings option from the main screen menu options, a dialog appears which looks like 

this in Android 5.0 (may look a bit different on other Android version devices). The 

fields present in the dialog fragment are the following: 

  Look ahead miles: This option is set to determine the distance ahead for 

which you need the incident info from. For example if you set the option as 

10, the application will query the database for incidents that might have 

occurred within 10 miles ahead in the driving direction. 

 Enable Voice: This option can be selected or deselected to enable or disable 

voice notifications. If the option is enabled, the application starts “speaking” 

an alert message if there is any incident on the current route. If this option is 

unchecked the “speak frequency” option is disabled. 

 Repeat after: This option will be enabled if the enable voice option is checked. 

This option is to select the time period with which the applications repeats the 

alert message. For example, if the selected option is “15 sec”, the application 
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repeats the warning message every 15 seconds until the incident point is 

crossed. 

 

   
               Figure C-5 Select Time        Figure C-6 Other Settings  

 

Code Structure and Class Files 

The application code is a normal Android project that contains resource files, source files, 

libraries and Android manifest file. The source folder consist of 5 java files. 

 MainActivity.java – This is the main file of the application. This is the entry point of the 

application. The OnCreate() method of the activity initializes all the variables and inflates 

map layout. This class has the file which send the query to the database through 

ServerAsyncTask.java. 

o MainActivity implements OnMapClickListener, OnMapLongClickListener, 

OnMarkerClickListener, OnInfoWindowClickListener, OnInitListener, 

LocationListener,  GooglePlayServicesClient.ConnectionCallbacks, 

GooglePlayServicesClient.OnConnectionFailedListener which ae all imported 

from the Google Map libraries. 

o MainActivity also contains the code for the settings dialog i.e. Date selection 

dialog, Time selection Dialog and the other settings dialog through which we can 
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change the settings manually. The mainActivity creates a ServerAsynctask after 

every minimum number of seconds that is set by the user in the settings 

 ServerAsyncTask.java – This class file extends AsyncTask that runs in the background 

and sends the query to the server and receives response and then acts according to the 

response from the server. The serverAsyncTask collects all the information regarding 

location date, time etc. and sends the query and waits for the response from the server. As 

soon as the response comes. It parses the response and then validates it. If the response is 

worth creating an alarm it creates a marker on the map and then warns the user about the 

incident point ahead on the route. It keeps repeating the warning until the incident point is 

crossed by the user. 

 FixedSizeLinkedQueue.java: This class is a queue implemented by using linked lists. The 

maximum nodes in this queue can be 10. Every time a location update is recorded it is 

sent to this queue and thus entered to this queue and the 10th last node becomes obsolete 

and moves out of the queue. 

 Node.java: This is a node of the LinkedList that is used in the queue. The value field of 

the Node contains the Latitude-Longitude value. 

 Utils.java: This file contains all the utilities functions which are used in the settings. Utils 

class is used to retrieve the date, time, status of the speech option etc. Every time the 

settings are changed the variables in the Utils file is updated. 

 

Speech Engine Response Interpretation 

 If the distance of the incident is less than 1 mile, it says incident occurred ahead ‘xx’ 

minutes ago. If the distance of the incident is more than 1 mile, it says “incident occurred 

‘yy’ miles ahead ‘xx’ minutes ago. 

 If the incident occurred less than 15 minutes ago, then the engine says incident occurs a 

few minutes ago or else it says incident occurred ‘yy’ miles ahead ‘xx’ minutes ago. 

 The speech engine mentions the route id of the incident assuming that the driver is aware 

of the current route so that he can find out whether the incident is on the same route or 

some other route. 
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Appendix D: HTTP Servlet Development 

 

Introduction 

A HTTP Servlet was developed which acts as the middleware between the Android application 

and the central database server. This HTTP Servlet reads the request from the Android 

application and then creates a connector object (a java class which has been developed to make 

the actual communication with the central database). The connector takes all the parameters sent 

by the Android application and then creates the query string in the required format. The query 

string is sent to the server and then the object waits for a response from the database server. As 

soon as the response arrives, it checks for the validity of the response. If the number of responses 

matches the expected number, it then passes the result to the ‘Servlet’ object on the webserver 

and then to the smartphone application. 

 

Library 

postgresql-9.1-903.jdbc3 – The Servlet Project contains the library postgresql-9.1-903.jdbc3.jar 

which provides the APIs for database connection. PostgreSQL is an object relational database 

management system. As a database server its main function is to store data securely and retrieve 

it later as requested by software applications. The Servlet code has this library to access the 

database. 

  

Code Structure and Class Files 

The Servlet code consists of a java Project that contains two java class files and a library. The 

class files are as follows: 

 MTOProject.java – This class file extends HTTPServlet which provides overrides two 

methods. 

o doget() – In our project we are not using this method for exchange of information. 

This method is just used to check the server availability. 

o dopost() – This method is used to receive all the query details from the application 

and then passed on to the connector object. The query details that this method expects 

are: 

String date = request.getParameter("date"); 

String curLon = request.getParameter("curLon"); 

String curLat = request.getParameter("curLat"); 

String prevLon = request.getParameter("prevLon"); 

String prevLat = request.getParameter("prevLat"); 

String look_ahead = request.getParameter("look_ahead"); 

The string parameters are hardcoded keys that are paired with their respective values. 

 DataBaseConnector.java: 

This class is created to execute all the database queries. It uses the APIs from the 

“postgresql-9.1-903.jdbc3.jar” library and gives the expected output response. The 

important methods of the class are as follows. 
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o connect_sql (String db_name) 

This methods connects to the SQL JDBC. In our case the db_name is hardcoded 

as ”TCMA”. If its unable to establish the connection it throws a 

ClassNotFoundException . The object is successful in establishing a connection if 

Connection pconn is assigned a value: 

pConn = 

DriverManager.getConnection("jdbc:postgresql://your_ip_address:port_number/"

+db_name, "username", "password"); 

where the IP address belongs to the central database server and the user name and 

password are used to access Postgres database.  

 

o create_SL_table(String table_name) 

This method is called to create a table in the database and then save data to 

PostgreSQL database. 

 

o get_table_data (String table_name, String date, String curLon, String CurLat, 

String prevLon, String prevLat, String look_ahead) 

This is the most important function for this class. This method is used to query the 

database and get the response. The various parameters that it takes are: 

table_name    - This is the table in the database from which trying to get 

information. In this case it is “get_incident_info_sorted”. 

 

date – This is generally the current date that the application sends, anyhow the 

date can be customized through the settings tab. Whatever the date is sent by the 

application the system queries for it. 

curLon – This is the current longitude of the user. 

CurLat – This is the current latitude of the user. This curLon and curLat 

determine the current location of the user. The aim is to check if an incident has 

occurred beyond this location. 

prev_Lon – This is the 10th last known longitude of the user. If 10 locations are 

not known then the first longitude that was known would be sent by the 

application. 

prevLat – This is the 10th last known latitude of the  user. If 10 locations are not 

known then the first latitude that was known would be sent by the application. 

The previous location is required to interpret the direction of travel of the user. 

Direction is important to detect what incident points to return 

look_ahead – This parameter is used by the database server to determine its 

search distance while querying incident information based on a vehicle’s current 

position.  

 


