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EXECUTIVE SUMMARY 
 
The main objectives of this research were to study the feasibility of using the Micro-Deval apparatus 
along with the second-generation Aggregate Imaging System (AIMS) to develop a procedure for 
measuring aggregate polishing resistance, and to measure aggregate shape properties using AIMS. 
Additionally, the new Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA) was also 
used as a second imaging system to capture the rate and magnitude of angularity as well as texture 
loss under the effect of Micro-Deval. 

The research team, in coordination with IDOT’s Bureau of Materials and Physical Research (BMPR), 
selected 11 aggregate sources from the state of Illinois and neighboring states to develop an aggregate 
polishing experimental procedure using AIMS and Micro-Deval. AIMS was used to measure aggregate 
shape properties with a special focus on aggregate angularity and surface texture, while Micro-Deval 
provided the needed polishing/degradation. The Micro-Deval polishing time required for the aggregate 
to reach terminal polishing was determined. Therefore, eight samples of each source were polished at: 
15, 30, 45, 60, 75, 90, 105, and 180 minutes. A modified one-aggregate size Micro-Deval procedure 
was implemented. Mathematical and statistical analyses showed that not all 11 aggregates reached 
terminal polishing and that 210 minutes of polishing were sufficient. An extra sample was then polished 
from each source at 210 minutes in the Micro-Deval for verification purposes. Mathematical, statistical, 
and rate of texture loss analyses indicated that all aggregate sources reached terminal texture at 210 
minutes or less. Aggregate angularity followed the same trend, and terminal angularity was achieved at 
210 minutes or less in the modified Micro-Deval procedure. 

As the polishing procedure was finalized, aggregate shape properties were tested for 77 aggregate 
sources. Shape properties were measured before and after polishing in Micro-Deval at 105 and 210 
minutes, and a database was developed using Microsoft Excel. The aggregate polishing characteristics 
can be described using the following mathematical expression: 

 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒(𝑡) = 𝑎 + 𝑏 ∗ 𝑒−𝑐∗𝑡 

The research team also studied the number of aggregate particles that must be scanned in AIMS. 
Random sub-sampling and asymptotic analyses were conducted and it was concluded that 120 
particles were required. This finding was further evaluated by manual sampling of 120 aggregate 
particles. The manual sampling proved that 120 particles were enough for AIMS angularity and texture 
measurements. 

Finally, the research team recommended the collection of additional aggregate polishing characteristics 
of more aggregate sources with the current VST procedure to allow for future comparisons and 
prospective policy changes. 
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CHAPTER 1 INTRODUCTION 
 

1.1 BACKGROUND AND RELEVANT LITERATURE 
Aggregate properties impact several aspects of asphalt pavement performance. The performance 
parameters affected by aggregate properties are permanent deformation, fatigue cracking, frictional 
resistance, thermal cracking, and raveling (Kandhal and Parker 1998). The main aggregate properties 
that are linked to asphalt pavement performance are gradation and size, particle shape and surface 
texture, porosity, cleanliness, toughness and abrasion resistance, durability and soundness, expansive 
characteristics, polish and frictional characteristics, and mineralogy and petrography (Kandhal and 
Parker 1998). Additionally, the shape properties of aggregate particles significantly affect the 
performance of the unbound/bound layers of highway/airfield pavements as well as railroad ballast 
under dynamic traffic loading in terms of shear strength, modulus and permanent deformation 
characteristics (Kandhal and Parker 1998; Masad et al. 2007; Tutumluer and Pan 2008; Indraratna and 
Salim 2005). The influence of aggregate shape characteristics on asphalt pavement performance was 
highlighted in a research study conducted under National Cooperative Highway Research Program 
NCHRP 4-30A (Masad et al. 2005). The study revealed that shape, angularity, and texture are all 
significant characteristics for predicting pavement performance. In another research study (McGahan 
2005), comprehensive statistical analyses were conducted to investigate relationships between 
aggregate shape characteristics and asphalt mix mechanical properties. The study showed that 
aggregate shape characteristics impact the mechanical properties of asphalt mixes. 

Frictional resistance, also known as skid resistance, is considered one of the most important 
performance parameters of asphalt pavement. The importance of pavement frictional resistance stems 
from its impact on travel safety, and thus a minimum acceptable safe limit must be maintained (Bloem 
1971). Skid resistance of asphalt pavements depends primarily on the microtexture and macrotexture 
of the surface (Dahir 1979). Microtexture depends primarily on aggregate shape characteristics, while 
macrotexture is a function of the mix properties, compaction method, and aggregate gradation (Kandhal 
and Parker 1998; Crouch et al. 1995; Luce et al. 2007; Forster 1989). Skid resistance of asphalt 
pavement surfaces is presumably adequate right after pavement construction and after the pavement is 
opened to traffic; aggregates that resist polishing and wear are therefore desired (Bloem 1971). 
Aggregate polishing resistance is often tested to evaluate aggregate materials before they are used in 
hot mix asphalt (HMA) surface courses. 

Aggregate resistance to abrasion and breakage, also known as degradation, is another important 
aggregate property that influences several HMA performance parameters. Abrasion is defined as the 
loss of aggregate angularity, while breakage refers to particles fracturing. Aggregates are exposed to 
degradation during production, transportation, and construction (mixing and compaction), before the 
pavement is put into service. Several types of forces such as attrition, impact, and grinding are imposed 
on the aggregate particles at different stages, including production at the quarry/plant (Page et al. 
1997), transportation to job site, and compaction during construction. These factors, along with in-
service dynamic traffic loading and environmental effects, cause “aggregate degradation.” Aggregate 
degradation affects gradation; thus, the mix produced in the field differs from the mix designed in the 
laboratory (Wu et al. 1998). Initially, contact forces provide the energy required for the 
relocation/rearrangement of particles and therefore aggregate particles are subjected to contact forces 
when adjusting to their new locations, which may eventually cause breakage and wear at the points of 
contact (Moavenzadeh and Goetz 1963). Mineralogical and petrographic properties as well as initial 
gradations are crucial factors that control the magnitude and trend of aggregate degradation. Several 
studies investigated the characterization of aggregate degradation and its effect on the bearing capacity 
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of unbound/bound layers in terms of the change in size distribution or decrease in coarse to fine 
fraction ratio (Pintner et al. 1987; Gatchalian et al. 2006; Lynn et al. 2007). However, only a few 
research studies examine the effect of aggregate degradation on altering shape characteristics of the 
aggregates. Aggregate degradation can cause particles to lose their angularity and surface texture or 
become more rounded and spherical, which results in changing the void ratio or packing properties and, 
ultimately, influencing the performance. The lack of research in this area may be possibly attributed to 
the absence of a unified standard procedure for rapid and quantitative measurement of the shape 
proprieties of aggregate particles. New generations of asphalt mixes, such as Stone Matrix Asphalt 
(SMA), transfer stresses within the aggregate structure, thus producing high stresses at the stone-to-
stone contact points which might cause aggregate fracture and, consequently, affect the performance 
of the mix (Gatchalian 2005). 

The methods used for measuring aggregate shape characteristics are classified into two categories: 
direct and indirect (Kandhal et al. 1991; Janoo 1998; Chowdhury et al. 2001). In a direct method, 
particle shape characteristics are measured, described, or quantified through direct measurement of 
individual aggregate particles, whereas the indirect methods measure particle shape characteristics as 
a bulk property of aggregate particles. Direct methods range from simple, visual methods to mechanical 
devices and sophisticated advanced imaging systems. Several imaging systems are currently available 
for measuring aggregate shape characteristics (Barksdale et al. 1991; Kuo et al. 1996; Masad et al. 
1999a, 1999b; Brzezicki and Kasperkiewicz 1999; Weingart and Prowell 1999; Maertz and Zhou 2001; 
Tutumluer et al. 2000, Li et al. 1993; Wilson and Klotz 1996; Yeggoni et al. 1994; Masad et al. 2000, 
2001; Kuo and Freeman 2000; Rao et al. 2002; Hryciw and Raschke 1996; Wang and Lai 1998; Masad 
and Button 2000; Masad et al. 2001). With the introduction of the software and hardware components 
of advanced machine vision technology, it has become possible to measure the shape properties of 
aggregates in a quantitative and objective manner. A variety of imaging-based aggregate morphological 
indices have been developed and linked to material strength and deformation properties (Al-Rousan et 
al. 2007; Wang et al. 2012). Although none of these methods has yet been recommended as a 
standard testing procedure, extensive research has been performed to evaluate the performance and 
reliability of these techniques for characterizing the shape properties of aggregate productions 
(Mahmoud et al. 2010; Pan and Tutumluer 2010). According to NCHRP 4-30 study (Masad et al. 2007), 
flat and elongated ratio (FER), angularity index (AI), and surface texture index (STI) measured with the 
Aggregate Imaging System (AIMS) and the University of Illinois Aggregate Image Analyzer (UIAIA) are 
recognized as the most validated indices to represent the aggregate shape properties and their linkage 
to field performance. 

During the last decade, researchers have started using imaging-based measurement of aggregate 
shape properties along with laboratory degradation resistance testing methods to quantify the 
magnitude and trend of aggregate degradation. UIAIA has been combined with Los Angeles abrasion 
and impact test (ASTM C535) to measure the effect of abrasion and impact forces on shape properties 
during the degradation process (Boler et al. 2012). Recently, several studies evaluated the use of the 
Micro-Deval test along with imaging systems to measure the effect of the test on aggregate shape 
characteristics (Mahmoud 2005; Luce 2006; Lane et al. 2011). Mahmoud and Masad (2007) used AIMS 
along with the Micro-Deval test to measure aggregate polishing, abrasion, and breakage. Aggregate 
polishing was characterized at several Micro-Deval polishing times by measuring the texture index, 
while abrasion and breakage were characterized by angularity and weight loss measurements. The 
study illustrated the capability of Micro-Deval along with AIMS texture measurements to polish 
aggregates, and measure aggregate polishing characteristics: initial texture, rate of polishing, and 
terminal texture were successfully estimated. More recent studies have shown the ability of imaging 
techniques to evaluate the level of degradation on site by measuring the shape properties of the 
aggregate samples collected from asphalt plants or in-service, unbound aggregate layers (Singh et al. 
2013; Moaveni et al. 2013). 
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Two imaging systems will be evaluated in this study: Aggregate Imaging Measurement System (AIMS) 
and the recently Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA); both systems are 
currently used to quantify aggregate shape properties for several pavement and railroad track 
applications. Furthermore, both systems have undergone vast improvements during the past five years 
and a second generation of both systems is currently available. 

1.2 OBJECTIVES OF THE STUDY 
This study has two main objectives: 

· Measure aggregate shape characteristics of aggregate sources from the state of Illinois and 
neighboring states using AIMS and E-UIAIA systems 

· Study the feasibility of implementing AIMS, along with the Micro-Deval equipment, to 
measure aggregate resistance to polishing, abrasion, and breakage 

1.3 RESEARCH APPROACH 
The objectives of this research study were accomplished by performing the following tasks: 

1.3.1 Task 1—Identification of Aggregate Sources 
The research team worked with IDOT personnel to identify aggregate sources of different mineralogy 
throughout the state of Illinois and neighboring states. A total of 77 aggregate sources were identified. 
Two samples from each source were collected for testing. Each sample consisted of 750 g passing the 
12.5 mm sieve and retained on the 9.5 mm sieve. Eleven sources were selected for the terminal 
polishing study, and nine samples were used from each source to establish the aggregate polishing 
curves. 

1.3.2 Task 2—Measurement of the Shape Properties of Aggregate Samples 
The research team purchased the Aggregate Imaging Measurement System (AIMS) and borrowed the 
Micro-Deval equipment from IDOT. The equipment is currently located in the aggregate laboratory at 
IDOT. Each sample was washed, dried, and scanned with AIMS and E-UIAIA to measure its shape 
properties. The scanned samples were then polished in Micro-Deval, and the aggregate particles were 
then washed, sieved, and dried before scanning with AIMS and E-UIAIA. The weight loss caused by 
Micro-Deval polishing was also recorded. 

1.3.3 Task 3—Database Compilation 
A database of aggregate properties was compiled and delivered to IDOT in Microsoft Excel format. The 
database included the aggregate shape properties measured before and after the Micro-Deval test and 
the weight loss caused by Micro-Deval polishing. 

1.3.4 Task 4—Development of Experimental Methods to Measure Aggregate Resistance to 
Polishing, Abrasion, and Breakage 
Eleven sources were selected by the Technical Review Panel (TRP) to be used for developing an 
experimental procedure for measuring aggregate resistance to polishing, abrasion, and breakage. 
AIMS and E-UIAIA were used to measure aggregate texture while the Micro-Deval test was used as the 
polishing mechanism. The effect of polishing time in the Micro-Deval was examined to determine the 
time required to achieve terminal texture value. The selected sources were subjected to Micro-Deval 
polishing for 15, 30, 45, 60, 75, 90, 105, 180, and 210 minutes; a different sample was used for each 
time interval. Statistical analysis was conducted to select the minimum number of time intervals 
required to capture the change in texture behavior. 
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1.3.5 Task 5—Measurement of Aggregate Shape Properties After Micro-Deval (Terminal Texture) 
Based on the results of the analysis conducted in Task 4, samples of the sources selected in Task 1 
were polished in Micro-Deval for a period of time (number of revolutions) sufficient to achieve terminal 
texture. The resulting data was added to the database developed in Task 4. With the conclusion of this 
Task, aggregate shape properties before Micro-Deval (BMD), after Micro-Deval (AMD), and AMD-
terminal were documented for all aggregate sources. 

1.3.6 Task 6—Recommendations and Test Procedures 
Recommendations and test procedures are outlined in this report. 

1.3.7 Task 7—Preparation and Revision of Final Report 
The final report explains the methodology, findings, and conclusions of this study. 
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CHAPTER 2 EXPERIMENTAL PROGRAM 
 

2.1 MATERIALS 
The aggregate materials used in this study were selected from a wide range of mineralogical properties 
and various quarries in different geographical regions in the state of Illinois and neighboring states. All 
aggregate materials were washed, oven dried, and sieved to obtain particle sizes passing the ½ in. 
(12.5 mm) sieve and retained on the 3/8 in. (9.5 mm) sieve. 77 sources were tested for Task 2, while 
eleven sources were tested for Task 4. Table 3.1 lists the types and designations of all aggregate 
materials tested in Task 4. Previous research has shown the effect of using single versus multiple 
aggregate samples (Mahmoud and Masad 2007) and proved that the two procedures would yield 
similar results. However, multiple aggregate samples were used from each source at different 
degradation times to ensure consistency of initial gradation and aggregate weight for each set of Micro-
Deval tests. 

Table 2.1 Aggregate Material Types, Designations, and Geology 

Aggregate 
ID 

Aggregate 
Description Geology 

FP1 Limestone Pennsylvanian/Bond/Millersvillle 
FP2 Limestone Mississippian/Salem 
FP3 Limestone Ordivician/Galena 

FP4 Silurian Dolomite 
(Reef Formation) Silurian/Racine 

FP5 Silurian Dolomite Silurian/Racine/Joliet 

FP6 Crushed Gravel Henry Formation, Wisconsinin Glacial 
Till 

FP7 Chert Gravel Maramec River Gravel, 99% Chert  
FP8 Steel Slag  Steel Slag 
FP9 ACBF Slag  Air-Cooled Blast Furnace Slag 

FP10 Quartzite Lower Proterozoic Quartzite 
(Baraboo Formation) 

FP11 Sandstone Mississippian/Rosiclare Sandstone 
 

2.2. EQUIPMENT 

2.2.1 Second-Generation Aggregate Imaging System (AIMS) 
AIMS determines the shape characteristics of aggregate through image processing and analysis 
techniques. It consists of a computer-automated unit that includes a circular measurement tray. The 
system is also equipped with top lighting, back lighting, and a camera unit (Figure 2.1). Coarse 
aggregates are placed in the trough of the circular tray; the tray is rotated to move the aggregates 
under the camera unit, which is fixed in the x and y directions. As the backlit tray moves, the 
aggregates move under the camera and several images are captured for measuring angularity. The 
positions of aggregates are recorded so the camera can return to the centroid of the particles for 
texture image acquisition. AIMS configuration uses a removable tray for each aggregate size to position 
the particles properly for imaging and to facilitate materials loading. Trays of different colors highlight 
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the contrast between the material particles and the background. The shape characteristics of 
aggregate: shape, angularity, and surface texture are produced by AIMS software, which analyzes the 
aggregate images. The shape is described by a 2-D form and 3-D form (Sphericity). Aggregate 
angularity is represented by measuring the irregularity of a particle surface from a black and white 
image using the gradient method (angularity index). The texture index is obtained by analyzing 
grayscale images captured on the aggregate surface using a wavelet analysis method. The dimensions 
of the aggregates are obtained during angularity and texture scans. The black and white angularity 
images are used to measure the x and y dimensions, while the depth is obtained as the camera unit 
focuses on the particle surface while scanning for surface texture grayscale images (Masad et al. 
2007). AIMS software results for each individual particle are listed along with essential statistical values 
for the scanned sample, such as the mean, standard deviation, and cumulative distribution of 
measurements for each aggregate shape property (Al-Rousan 2004; Gates 2010; Gates et al. 2011). 

 

 
Figure 2.1 Second-generation Aggregate Imaging Measurement System (AIMS). 

 
 

This section provides a short summary about the calculation of individual shape indices using AIMS. 

2.2.1.1 Flat and Elongated Ratio (FER)—Sphericity 
According to ASTM D4791, the FER of an aggregate particle is defined as the ratio of the maximum 
dimension to minimum dimension of the particle. Projections of a particle placed on the lighting table 
are captured by the camera in AIMS and used to generate the binary image. Eigenvector analysis 
(Fletcher et al. 2003) on binary images identifies the major and minor axes of the particle. The third 
dimension or depth of particle is measured by determining the distance between the camera’s lens and 
surface of particle relative to the original location of the camera. The image processing algorithm sorts 
the three dimensions and identifies the maximum, minimum, and intermediate particles sizes. 
Sphericity can be computed using Equation 1 (Al-Rousan et al. 2005). 

 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = �
𝑑𝑠×𝑑𝐼

𝑑𝐿
2

3  (1) 
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where 

  𝑑𝐿= Longest dimension 
  𝑑𝐼= Intermediate dimension 
  𝑑𝑠= Shortest dimension 
 

2.2.1.2 Angularity Index (AI) 
The gradient method is used as the image processing technique for AI measurements. The gradient 
method calculates the inclination of gradient vectors on particle boundary points from the x-axis 
(horizontal axis in an image). The average change in the inclination of the gradient vectors is 
considered an indicator of angularity and can be calculated using Equation 2 (Al-Rousan et al. 2005). 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 1
𝑁
3 −1

∑ |𝜃𝑖 − 𝜃𝑖+3|𝑁−3
𝑖=1  (2) 

 
where 

θi = inclination of gradient vectors on particle boundary point i 

I = denotes the ith point on the boundary of a particle 

N = total number of points on the boundary 

The average, rather than the summation, is considered in Equation 2 so that angularity calculation is 
not affected by particle size. The step size used for calculating gradients is three because it minimizes 
the effect of noise created during image acquisition on the results (Masad 2003). 

2.2.1.3 Surface Texture Index (STI) 
STI is measured using the wavelet technique. Texture details are identified in the horizontal, vertical, 
and diagonal directions in three separate images. The texture index at the desired decomposition level 
is considered the arithmetic mean of the squared values of the wavelet coefficients for all three 
directions as illustrated in Equation 3 below (Masad 2003; Al-Rousan et al. 2005). 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 = 1
3𝑁

∑ ∑ [𝐷𝑖𝑗(𝑥, 𝑦)]2 𝑁
𝑗=1

3
𝑖=1            (3) 

 
where 

N = Number of coefficients 

i = 1, 2, 3 for the three directions of texture 

j = Wavelet coefficient index 

D = Wavelet coefficient 

2.2.2 Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA) 
The UIAIA (Figure 2.2) system was developed by Dr. Erol Tutumluer, Professor of Civil and 
Environmental Engineering at the University of Illinois at Urbana-Champaign. The system is based on 
capturing three projections of aggregate particles while moving on a conveyer belt; the projections are 
then used to reconstruct a three-dimensional representation of aggregate particles. The system 
provides information on gradation, form, angularity, texture as well as surface area and volume using 
the measured dimensions directly without any assumptions or idealization of the particle shape (Rao et 
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al. 2002). Recently, an enhanced second-generation UIAIA has been designed and manufactured at 
the University of Illinois with many improvements over the original system. Figure 2.2 features an 
aggregate particle with three orthogonal views captured using high resolution progressive scan digital 
color cameras. These views are used to quantify imaging-based morphological indices. Unlike the old 
version of UIAIA, which only was capable of capturing black and white images, the new system is 
equipped with three high resolution (1,292 x 964 pixels) Charge Coupled Device (CCD) progressive 
scan cameras to capture digital color images of aggregate particles. Because black and white images 
are generally used for texture analysis, the majority of texture details are lost when gray scale images 
are converted into black and white. Therefore, the influence of natural color variation of the aggregate 
on grayscale intensities, which directly affects the texture, needs to be addressed by using colored 
rather than black and white images (Al-Rousan et al. 2007). An advanced color thresholding scheme is 
used in the processing software of E-UIAIA. Different types of mineral aggregates with vast 16 colors 
can be scanned with this system. Four LED illumination lights with dimmer controls assist the operator 
to achieve the best contrast and capture the sharpest aggregate images possible by optimizing light 
intensity and minimizing shadows. An enhanced calibration adjustment interface also changes the 
spatial resolution corresponding to the size of aggregate particles scanned by using the zooming 
capability of the camera lenses. E-UIAIA software exports the computed shape indices to a MS Excel 
file for further post-processing and statistical analysis. The system can be calibrated using spherical 
balls to adjust the spatial resolution of aggregate sizes ranging between 3 in. (76.2 mm) to 0.187 in. 
(4.75 mm). A user-friendly shape property analysis software has been developed to measure AI, STI, 
FER as well as the surface area (SA) and volume (V) of individual particles (Moaveni et al. 2013). 

 

 
Figure 2.2 Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA). 

 

This section presents a brief background of the methodology used in E-UIAIA for particle morphology 
analysis. 
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2.2.2.1 Flat and Elongated Ratio (FER) 
The longest and shortest dimensions are determined using the three views of an aggregate particle. 
After a number of particles are tested, the FER values (ratio of longest to shortest dimension) are 
averaged for a certain aggregate sample (Tutumluer et al. 2000). 

2.2.2.2 Angularity Index (AI) 
First, the coordinates of the profile are extracted to estimate the profile of each 2-D image of a particle. 
Second, the particle outline is estimated by an n-sided polygon as shown in Figure 2.3. Previous 
research showed that choosing an optimum value of n = 24 points around the perimeter of particle 
would yield the best performance of the algorithm in terms of detecting the largest AI differences 
between crushed and uncrushed aggregate (Tutumluer et al. 2000; Rao et al. 2002). The angle 
subtended at each vertex of the polygon is then computed. A relative change in slope of the n sides of 
the polygon is subsequently approximated by calculating the change in angle a at each vertex relative 
to the angle in the preceding vertex. The frequency distribution of the changes in the vertex angles is 
established in 10-degree class intervals. Finally, the number of occurrences in a certain interval and the 
magnitude are related to the angularity of the particle profile. 

 
 

Figure 2.3 Estimating an aggregate particle with an n-sided polygon. 
 

Equation 4 represents the formula used for computing the angularity index of each projected image. 

 
𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑒 × 𝑃(𝑒)170

𝑒=0     (4) 
where 

e = the starting angle value for each 10-degree class interval 

P(e) = the probability that change in angle a has a value ranging between e and (e+10) 

The angularity index has the degree unit. The final AI value is the area-weighted average value of the 
individual angularity index values determined from three views (front, top, and side images). 

2.2.2.3 Surface Texture Index (STI) 
Image filtering with “dilation and erosion” operations is a fundamental concept in morphological image 
processing and has been implemented in E-UIAIA to measure the STI of aggregate particles. Dilation is 
an operation that grows or thickens the object in an image while erosion shrinks or makes them thinner 
(Gonzalez et al. 2009). Erosion cycles followed by the same number of dilation cycles tend to smooth 
the surface of a particle by trimming the peaks and corners and patching the sharp dents on the 
boundary. The imaging pixel count-based area difference of the 2-D image before and after the erosion 
and dilation cycles of the same number of cycles is directly related to the surface micro-irregularities 
(Pan 2006). Equation 5 is used to compute the surface texture index of a 2-D aggregate particle image. 
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 = 𝐴1−𝐴2

𝐴1
× 100  (5) 

 
where 

  A1 =Initial area (in pixels) of the 2-D image of particle 
A2 = Area (in pixels) of the particle after performing a sequence of “n” cycles of erosion 
followed by “n” cycles of dilation 

 
The optimal value of n , which is equal to 20, is considered the point where the surface texture index of 
a set of smooth surface coarse aggregates is recognized as significantly separated from the surface 
texture index of a set of rough surface coarse aggregates (Pan 2006). The final STI value is an area-
weighted average value of its individual image surface texture index values determined from three 
views (front, top, side images). 

2.2.3 Micro-Deval 
Several test methods measure aggregate abrasion, polishing, and impact. The Los Angeles abrasion 
and impact test is the most widely used method for measuring aggregate resistance to abrasion and 
aggregate toughness (Kandhal and Parker 1998). Another test that has been used for measuring 
abrasion resistance is the Micro-Deval test. The Micro-Deval test measures aggregate resistance to 
abrasion and aggregate durability. Abrasion is simulated by the interaction of aggregate particles and 
steel balls in presence of water (Cooley and James 2003). Several research studies compared the 
Micro-Deval and L.A. abrasion and impact tests and concluded that the Micro-Deval gives a better 
simulation of field conditions (Rogers 1998) and induces more tumble than impact (Meininger 2004) 
compared with the L.A. test. The LA test is believed to be more of an impact test (Lane et al. 2000) and 
it has poor correlation with field performance (Senior and Rogers 1991). Therefore, several researchers 
and DOT’s are considering the Micro-Deval test as part of aggregate testing and quality 
control/assurance procedures (QC/AC). In the Micro-Deval test, an oven-dried sample of 1500 ±5 g 
with standard gradation is initially soaked in water for a minimum of 1 hour; the sample is then placed in 
Micro-Deval jar with 2000 ml of water and an abrasive charge consisting of 5000g stainless steel balls 
of 9.5 mm diameter. The jar, aggregate, water, and steel balls charge are then revolved at a specific 
speed for a specific time or to a specific number of revolutions based on the gradation used. The 
sample is then washed and oven dried at 110± 5 Cͦ to constant mass. The Micro-Deval weight loss, 
represented as the percentage by mass of the original sample, is the amount of material passing the 
1.18-mm sieve. 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 =  𝐴−𝐵
𝐴

× 100     (6) 

 

where 

A = Mass recorded before test 

B = Mass recorded after test 
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2.3 TESTING PROCEDURES 

2.3.1 Task 2 
Aggregate resistance to degradation was measured based on the following procedure: 

· Two aggregate samples were obtained from the selected source: each sample was 750 g 
passing the 1/2 in. sieve and retained on the 3/8 in. sieve 

· The aggregate particles were scanned with AIMS to obtain initial aggregate shape 
properties – Before Micro-Deval (BMD) 

· The Micro-Deval drum was filled with 750 grams of aggregate materials 

· The drum was charged with 5,000 grams of 9.5 mm diameter steel balls and 2 liters of water 

· The aggregate sample was subjected to a target degradation time: 

§ Sample 1: 105 minutes 

§ Sample 2: 210 minutes 

· The sample was washed on top of the No. 16 sieve size and the steel balls were removed 

· The aggregate shape measurements associated with each degradation time for the portion 
retained on the 3/8 in. sieve – After Micro-Deval (AMD) were recorded 

2.3.2 Task 4 
Aggregate polishing curves were developed using the following procedure: 

· Nine aggregate samples were obtained from the selected source: each sample was 750 g 
passing the 1/2 in. sieve and retained on the 3/8 in. sieve 

· The aggregate particles were scanned with AIMS and E-UIAIA to obtain initial aggregate 
shape properties – Before Micro-Deval (BMD) 

· The Micro-Deval drum was filled with 750 grams of aggregate materials 

· The drum was charged with 5,000 grams of 9.5 mm diameter steel balls and 2 liters of water 

· The aggregate sample was subjected to a target degradation time: 15, 30, 45, 60, 75, 90, 
105, 180, and 210 minutes 

· The sample was washed over a No. 16 sieve size and the steel balls were removed 

· The aggregate shape measurements associated with each degradation time for the portion 
retained on the 3/8 in. sieve – After Micro-Deval (AMD) were recorded 

· The aggregate texture was plotted with time in Micro-Deval to obtain the polishing curve 
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CHAPTER 3 RESULTS AND ANALYSES 
 

3.1 MINIMUM NUMBER OF AGGREGATE PARTICLES 
The aggregate samples tested with AIMS for obtaining their shape properties contained 300 to 400 
particles. This section summarizes the approach used to determine the required number of particles for 
scanning with AIMS. 

3.1.1 Selection of Samples 
Six samples were selected from the results obtained from AIMS scanning in Tasks 2 and 4. The 
selected samples cover a wide range of angularity and texture. Figure 3.1 shows the angularity and 
texture range for the selected aggregates. The index values are listed in Table 3.1. 

 
 

  

  
 

Figure 3.1. Variations of AIMS shape properties for different samples. 
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Table 3.1. AIMS Shape Properties for the Samples Selected 

SELECTED SAMPLES 
AVERAGES 

ANGULARITY TEXTURE 

Sample 001 

Sample 002 

Sample 003 

Sample 005 

Sample FP2 

Sample FP5 

1409.9 

2843.1 

3028.8 

1434.0 

2778.7 

2868.9 

154.4 

207.8 

153.2 

136.4 

321.8 

67.1 

 

3.1.2 Random Sub-Samples Method 

3.1.2.1 Random Sub-Samples Technique 
The random selection was performed by using random numbers to select different values of texture and 
angularity. The random selections were obtained from the files generated by AIMS once a shape 
analysis was completed. Twenty groups of different sub-sample sizes were generated. Each group 
consisted of one thousand sub-samples with the sizes increasing by 10 particles in every consecutive 
group. The size of the starting sub-sample was 10 particles and therefore the maximum size of the sub-
sample was 200 particles as shown in Table 3.2. 

Table 3.2. Arrangement for the Statistical Analyses 

GROUP 
SUB-SAMPLES 

Size # Generated 

1 10 1 2 … 10 

2 20 1 2 … 10 

… … … …  … 

20 200 1 2 … 10 

 
The arrangement described above allows for tracking the convergence of measured properties. The 
averages of the shape properties for the particles (50 - 500) in every sample were compared with the 
averages of the 20 groups of 10 randomly selected sub-samples. Standard errors were also compared 
in a similar fashion. 

3.1.2.2 Random Sub-Sample Results 
The average of every group (with different sub-sample size) was compared with the average of the 
entire sample. Whenever the average of a specific group was equal to the average of the entire 
sample, the group sub-sample size was recorded. This sub-sample size was the minimum required to 
represent the entire sample accurately. The confidence interval (CI) was represented by two standard 
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errors above and under the group average value. Figure 3.2 shows the results for the angularity data 
and Figure 3.3 represents the texture index results. 

 

 

 
 

Figure 3.2. Average distributions of angularity index. 
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Figure 3.3. Average distributions of texture index. 
 
Figure 3.2 clearly indicates that the angularity converges at around sub-sample size of 75. The texture, 
however, converged at around 100 particles as shown in Figure 3.3. Furthermore, Figure 3.4, which 
illustrates the length of the CI, shows that the CI lengths of both angularity and texture remain almost 
constant at around 100 particles. 

 



16 

 

 
 (a)       (b) 

 
Figure 3.4. Trends of CI lengths for different sub-sample sizes: (a) angularity data; (b) texture data. 
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(a)        (b) 
 

Figure 3.4. Trends of CI lengths for different sub-sample sizes: (a) angularity data; (b) texture data. 
 

3.1.3 Asymptotic Analysis 
To further investigate the minimum number of aggregate particles required for scanning with AIMS, an 
asymptotic analysis was conducted. In this analysis, the changes in shape properties (angularity and 
texture) were tracked as functions of the number of particles scanned. Figures 3.5 and 3.6 illustrate 
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angularity and texture analyses, respectively. It is clearly evident that the average of both angularity 
and texture reach a constant value at around 110 particles. Based on the sub-sample and asymptotic 
analyses, the research team decided that 120 particles would have to be scanned with AIMS. 

 

 
Figure 3.5. Asymptotic analysis for angularity. 

 

 
Figure 3.6. Asymptotic analysis for texture. 
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3.1.4 Manual Random Sampling 
The sub-sample and asymptotic analyses were based on computer algorithms and were conducted by 
sampling from already scanned materials. Thus, it was necessary to check whether the 120 particles 
criterion would remain valid if the aggregate particles were manually sampled. Therefore, the same six 
sources selected in the previous analyses were used to study the effect of the manual (operator) 
selection of aggregate particles. Two testing approaches were considered: 

The first approach, known as “combined” [C1-C3], consisted of the following steps: 

1. 120 particles of the aggregate sample were randomly selected and scanned; 

2. The scanned particles were returned to the sample bag and mixed with the rest of the 
material; 

3. Steps 1-2 were repeated two more times. 

The second approach, known as “separated” [S1-S3], consisted of the following steps: 

1. 120 particles of the aggregate sample were randomly selected and scanned; 

2. The scanned particles were kept apart, and another 120 aggregate particles were randomly 
selected and scanned; 

3. Step 2 was repeated one more time. 

The angularity results are summarized in Figure 3.7 and texture results are summarized in Figure 3.8. 
The two figures clearly indicate that both angularity and texture results were very close to the averages 
of the entire sample in all six cases, which further confirmed that the selection of 120 aggregate 
particles for scanning with AIMS was appropriate. 
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Figure 3.7. Manual random sampling (angularity). 
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Figure 3.8. Manual random sampling (texture). 
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3.2 TERMINAL POLISHING 

3.2.1 Stage 1: Preliminary Evaluation 
In order to determine the polishing time required in Micro-Deval to reach terminal polishing, aggregate 
samples from the eleven sources in Table 2.1 were polished in the Micro-Deval at different time 
intervals: 0, 15, 30, 45, 60, 75, 90, 105, and 180 minutes. After each time interval, both AIMS and E-
UIAIA were used to measure aggregate texture for the particles retained in the 3/8 in. sieve. The 
texture average and standard deviation of the tested samples are presented in Table 3.3. 

Table 3.3 Texture Index Average and Standard Deviation by AIMS 

IDOT 
Sample 

Texture 
Index 

Time in the Micro-Deval [min]  
0 15 30 45 60 75 90 105 180 

FP1 Average 266.3 201.0 176.8 164.3 153.0 147.7 133.2 138.0 121.1 
S. Dev.  91.0 62.8 57.9 60.5 60.4 50.9 51.9 53.5 51.4 

FP2 Average 321.8 247.0 222.3 204.5 192.1 183.8 166.3 166.0 144.9 
S. Dev.  87.4 69.2 58.4 57.6 53.2 48.8 47.2 45.2 41.8 

FP3 Average 189.2 144.8 128.8 126.0 104.6 106.8 98.8 95.5 90.8 
S. Dev.  67.0 55.7 42.6 54.4 38.2 39.9 34.1 32.9 30.4 

FP4 Average 159.8 154.7 152.0 144.1 134.3 123.6 125.3 119.3 112.0 
S. Dev. 74.0 75.1 89.0 87.7 82.7 70.3 70.1 64.3 56.9 

FP5 Average 67.1 64.0 60.9 55.0 52.0 52.0 57.1 54.3 55.3 
S. Dev.  38.3 40.0 36.8 27.1 22.0 23.4 31.0 25.7 28.0 

FP6 Average 223.5 215.0 200.8 190.0 171.3 166.6 174.0 157.9 164.3 
S. Dev.  138.4 144.2 131.1 137.8 137.4 114.3 122.0 113.0 137.4 

FP7 Average 154.3 193.6 193.8 200.7 217.3 204.3 201.8 202.7 209.5 
S. Dev.  84.7 104.6 99.7 94.7 107.7 105.1 101.8 98.5 98.2 

FP8 Average 387.2 430.7 438.2 449.4 406.2 423.0 416.7 395.0 400.0 
S. Dev.  107.0 87.6 101.4 113.9 97.9 107.4 109.7 119.7 110.9 

FP10 Average 613.1 546.0 512.4 520.0 492.1 496.7 462.8 475.4 437.9 
S. Dev.  194.6 186.7 174.5 151.7 156.3 145.4 169.6 153.8 134.1 

FP11 Average 337.5 367.7 354.2 360.2 351.7 345.6 333.0 352.3 337.6 
S. Dev.  107.2 110.3 109.2 97.7 102.8 94.7 103.9 104.7 98.3 

 
 

In order to evaluate the efficacy of the current procedure to reach terminal texture at 180 minutes, a t-
test statistical analysis was conducted to compare aggregate texture between consecutive Micro-Deval 
polishing time intervals. A 95% Confidence Interval (CI) was calculated for the difference in the texture 
mean between consecutive Micro-Deval time intervals. The CIs are obtained using the following 
equation: 

 

𝑍0 = 𝑋1��� − 𝑋2��� − 𝑍𝛼
2
�𝜎1

2

𝑛1
+ 𝜎2

2

𝑛2
≤ 𝜇1 − 𝜇2 ≤ 𝑍0 = 𝑋1��� − 𝑋2��� + 𝑍𝛼

2
�𝜎1

2

𝑛1
+ 𝜎2

2

𝑛2
  (1) 

where Zα/2 is the upper α/2 percentage point of the standard normal distribution (α = 0.05 for this 
study). 
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Table 3.4 lists the CIs for the eleven samples. The results of this analysis are illustrated in Figure 3.9 by 
the CI lower limit (L-CI) and CI upper limit (U-CI) lines. For example, the L-CI and U-CI points at 180 
minutes are the CI limits for the difference in the texture mean between 105 and 180 minutes samples. 
A CI containing zero indicates that the texture averages are not different, which indicates that 105 
minutes is sufficient polishing time if the CI at 180 contains zero. The CI-lines in Figure 3.9 indicate that 
not all the CIs at 180 minutes contain zero. The presence of significant remaining surface texture is 
shown by the values of confidence intervals that do not contain zero: FP1, FP2, FP9 and FP10. 
Consequently, it was decided to extend the polishing time to achieve terminal texture. However, in 
order to subject the samples to a polishing time that would produce terminal texture, a preliminary 
estimate of such value was required. This was achieved by fitting an analytical model describing the 
behavior of aggregate texture after several polishing times through the Micro-Deval: 

 
𝑇𝑒𝑥𝑡𝑢𝑟𝑒(𝑡) = 𝑎 + 𝑏 ∗ 𝑒−𝑐∗𝑡 (2) 

where texture(t) is the aggregate texture as function of time, t, in minutes; a and b are regression model 
parameters representing initial and final texture; and c is a parameter that represents the rate of texture 
loss. The texture values at 0, 15, 30 … and 180 minutes were fitted to the analytical model (Eq. 2). The 
least squares method was used to obtain parameters a, b, and c that best fit the data points as shown 
in Figure 3.9. The fitting parameters are summarized in Table 3.5. 

Table 3.4 Statistical Inference on the Texture Means 

IDOT 
Sample 

Time 
Micro-Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

FP1 

0 338 266.3 91.0     
15 333 201.0 62.8 53.54 77.16 
30 309 176.8 57.9 14.78 33.46 
45 286 164.3 60.5 3.03 22.10 
60 274 153.1 60.4 1.19 21.22 
75 265 147.7 50.9 -4.01 14.82 
90 243 133.2 51.9 5.53 23.43 

105 225 138.0 48.9 -13.96 4.30 
180 184 121.2 51.4 7.07 26.65 

FP2 

0 353 321.8 87.4     
15 318 247.0 69.2 62.90 86.66 
30 292 222.3 58.4 14.54 34.82 
45 310 204.5 57.6 8.55 27.10 
60 263 192.1 53.2 3.32 21.50 
75 279 183.8 48.8 -0.33 16.90 
90 229 166.3 47.2 9.12 25.88 

105 246 166.0 45.2 -7.98 8.67 
180 195 144.9 41.8 12.87 29.15 

FP3 

0 317 189.2 67.0     
15 323 144.8 55.7 34.86 53.97 
30 285 128.8 42.6 8.16 23.83 
45 253 126.0 54.4 -5.51 11.15 
60 236 104.6 38.2 13.13 29.70 
75 218 106.8 39.9 -9.43 4.97 
90 217 98.8 34.1 1.06 15.00 
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IDOT 
Sample 

Time 
Micro-Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

105 196 95.5 32.9 -3.19 9.72 
180 173 90.8 30.4 -1.74 11.18 

FP4 

0 320 159.8 74.0     
15 351 154.7 75.0 -6.20 16.37 
30 314 152.0 89.0 -9.83 15.36 
45 315 144.1 87.7 -5.92 21.71 
60 288 134.3 82.7 -3.88 23.34 
75 263 123.6 70.3 -2.10 23.48 
90 264 125.3 70.1 -13.64 10.34 

105 262 119.3 64.3 -5.48 17.51 
180 227 112.0 56.9 -3.46 18.03 

FP5 

0 492 67.1 38.3     
15 388 64.0 40.0 -2.17 8.28 
30 304 60.9 36.8 -2.58 8.89 
45 238 55.0 27.1 0.47 11.22 
60 180 52.0 22.0 -1.61 7.79 
75 135 52.0 23.4 -5.11 5.06 
90 135 57.1 31.1 -11.66 1.46 

105 107 54.3 25.7 -4.32 9.98 
180 49 55.3 28.0 -10.23 8.21 

FP6 

0 469 223.5 138.4     
15 363 215.0 144.2 -10.93 27.90 
30 240 200.8 131.1 -8.01 36.50 
45 222 190.0 137.8 -13.82 35.34 
60 189 171.3 137.4 -7.93 45.46 
75 205 166.6 114.3 -20.41 29.73 
90 186 174.0 122.0 -30.94 16.05 

105 161 157.9 113.0 -8.58 40.91 
180 110 164.3 137.4 -37.42 24.66 

FP7 

0 378 154.3 84.7     
15 378 193.6 104.6 -52.89 -25.75 
30 375 193.8 99.7 -14.80 14.39 
45 372 200.7 94.7 -20.82 7.06 
60 378 217.3 107.7 -31.14 -2.12 
75 366 204.3 105.1 -2.26 28.32 
90 360 201.8 101.8 -12.54 17.56 

105 368 202.7 98.5 -15.47 13.65 
180 352 209.5 98.2 -21.16 7.57 

FP8 

0 248 387.2 107.0     
15 249 430.7 87.6 -60.72 -26.32 
30 254 438.2 101.4 -24.05 9.06 
45 241 449.4 113.9 -30.24 7.82 
60 246 406.2 97.9 24.39 62.15 
75 236 423.0 107.4 -35.18 1.57 
90 217 416.7 109.7 -13.71 26.32 

105 234 395.0 119.7 0.46 42.80 
180 211 400.0 110.9 -26.43 16.44 
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IDOT 
Sample 

Time 
Micro-Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

FP9 

0 423 688.3 162.3     
30 304 693.7 176.6 -30.58 19.76 
75 218 689.4 176.8 -26.44 35.04 

105 186 682.8 185.7 -28.96 42.11 
180 131 612.6 198.6 26.97 113.42 

FP10 

0 387 613.1 194.6     
15 366 546.0 186.7 39.80 94.27 
30 341 512.4 174.5 7.01 60.26 
45 341 520.0 151.7 -32.17 16.91 
60 324 492.1 156.3 4.55 51.40 
75 333 496.7 145.4 -27.75 18.44 
90 331 462.8 169.6 9.87 57.94 

105 310 475.4 153.7 -37.62 12.44 
180 296 437.9 134.1 14.60 60.48 

FP11 

0 389 337.5 107.2     
15 315 367.7 110.3 -46.37 -14.01 
30 271 354.2 109.2 -4.28 31.36 
45 248 360.2 97.7 -23.77 11.83 
60 225 351.7 102.8 -9.69 26.54 
75 205 345.5 94.7 -12.39 24.94 
90 176 333.0 103.9 -7.62 32.56 

105 159 352.3 104.7 -41.70 3.05 
180 127 337.6 98.3 -8.86 38.34 
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Figure 3.9 Averages of texture index, fitted curves, and confidence intervals [Stage 1]. 
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Figure 3.9 Averages of texture index, fitted curves, and confidence intervals [Stage 1]. 
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Table 3.5 Function Fitting Results 

IDOT 
Sample Equation Fitting Parameters Goodness of fit 

a b c R2 
FP1 

𝑇𝑒
𝑥𝑡

𝑢𝑟
𝑒 

( 𝑡
)

=
𝑎

+
𝑏

∗
𝑒−

𝑐∗
𝑡  

129.20 131.90 3.21E–02 0.98 
FP2 152.80 161.20 2.65E–02 0.98 
FP3 92.88 92.76 2.97E–02 0.98 
FP4 99.05 64.43 1.00E–02 0.96 
FP5 53.54 14.59 3.51E–02 0.82 
FP6 156.60 71.76 2.00E–02 0.93 
FP7 205.90 –51.00 7.57E–02 0.90 
FP8 419.90 –32.70 2.31E+00 0.27 
FP9 649.90 20.06 5.03E–03 0.10 

FP10 444.80 155.70 1.99E–02 0.93 
FP11 350.30 –12.77 5.99E+02 0.14 

 
 

The next section describes how the polishing data (up to 180 minutes) were used to estimate the 
required final polishing time. 

3.2.2 Stage 2: Extended Polishing Time 
The fitted polishing curves in Stage 1 were used to estimate the aggregate texture for extended 
polishing times in the range of 195 to 270 minutes at 15 minute increments. Assuming the variance for 
the extended polishing times is equal to the variance at 180 minutes, the CIs were calculated at the 
extended polishing times for each aggregate source. The t-test results are presented graphically in 
Figure 3.10 and numerically in Table 3.6. Close examination of these results indicated that all 
aggregate materials tested would reach terminal texture within 210 minutes of polishing. Therefore, 
each sample was subjected to a final polishing time of 210 minutes in the next stage of this analysis. 
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Figure 3.10 Averages of texture index, fitted curves, and confidence intervals [Stage 2]. 
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Figure 3.10 Averages of texture index, fitted curves, and confidence intervals [Stage 2]. 
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Table 3.6 Statistical Inference on the Texture Means 

IDOT 
Sample 

Time 
 Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

FP1 

0 338 266.31 90.96     
15 333 200.96 62.84 53.54 77.16 
30 309 176.84 57.91 14.78 33.46 
45 286 164.27 60.52 3.03 22.10 
60 274 153.07 60.38 1.19 21.22 
75 265 147.67 50.92 –4.01 14.82 
90 243 133.19 51.87 5.53 23.43 

105 225 138.02 48.87 –13.96 4.30 
180 184 121.15 51.36 7.07 26.65 
195 338 129.45 51.36 –17.52 0.92 
210 338 129.36 51.36 –7.65 7.84 
225 338 129.30 51.36 –7.68 7.80 
240 338 129.26 51.36 –7.71 7.78 
255 338 129.24 51.36 –7.72 7.77 
270 338 129.22 51.36 –7.73 7.76 

FP2 

0 353 321.77 87.42     
15 318 246.99 69.24 62.90 86.66 
30 292 222.31 58.39 14.54 34.82 
45 310 204.49 57.64 8.55 27.10 
60 263 192.08 53.24 3.32 21.50 
75 279 183.80 48.82 –0.33 16.90 
90 229 166.29 47.21 9.12 25.88 

105 246 165.95 45.24 –7.98 8.67 
180 195 144.94 41.77 12.87 29.15 
195 353 153.73 41.77 –16.09 –1.48 
210 353 153.42 41.77 –5.86 6.47 
225 353 153.22 41.77 –5.96 6.37 
240 353 153.08 41.77 –6.02 6.30 
255 353 152.99 41.77 –6.07 6.25 
270 353 15 2.93 41.77 –6.10 6.22 

FP3 

0 317 189.23 67.01     
15 323 144.81 55.68 34.86 53.97 
30 285 128.82 42.64 8.16 23.83 
45 253 125.99 54.37 –5.51 11.15 
60 236 104.57 38.21 13.13 29.70 
75 218 106.80 39.89 –9.43 4.97 
90 217 98.77 34.07 1.06 15.00 

105 196 95.51 32.86 –3.19 9.72 
180 173 90.79 30.44 –1.74 11.18 
195 323 93.16 30.44 –7.99 3.25 
210 323 93.06 30.44 –4.59 4.80 
225 323 93.00 30.44 –4.63 4.76 
240 323 92.95 30.44 –4.65 4.74 
255 323 92.93 30.44 –4.67 4.72 
270 323 92.91 30.44 –4.68 4.71 

FP4 0 320 159.80 73.96     
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IDOT 
Sample 

Time 
 Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

15 351 154.72 75.05 –6.20 16.37 
30 314 151.95 89.03 –9.83 15.36 
45 315 144.06 87.73 –5.92 21.71 
60 288 134.33 82.75 –3.88 23.34 
75 263 123.64 70.34 –2.10 23.48 
90 264 125.29 70.06 –13.64 10.34 

105 262 119.28 64.34 –5.48 17.51 
180 227 111.99 56.87 –3.46 18.03 
195 352 108.18 56.87 –5.68 13.30 
210 352 106.91 56.87 –7.13 9.68 
225 352 105.81 56.87 –7.30 9.50 
240 352 104.87 56.87 –7.46 9.34 
255 352 104.06 56.87 –7.59 9.21 
270 352 103.36 56.87 –7.70 9.10 

FP5 

0 492 67.10 38.33     
15 388 64.04 40.00 –2.17 8.28 
30 304 60.89 36.75 –2.58 8.89 
45 238 55.04 27.05 0.47 11.22 
60 180 51.96 21.96 –1.61 7.79 
75 135 51.98 23.39 –5.11 5.06 
90 135 57.09 31.07 –11.66 1.46 

105 107 54.26 25.65 –4.32 9.98 
180 49 55.27 28.00 –10.23 8.21 
195 500 53.56 28.00 –6.50 9.93 
210 500 53.55 28.00 –3.46 3.48 
225 500 53.55 28.00 –3.47 3.47 
240 500 53.54 28.00 –3.47 3.47 
255 500 53.54 28.00 –3.47 3.47 
270 500 53.54 28.00 –3.47 3.47 

FP6 

0 469 223.52 138.37     
15 363 215.04 144.22 –10.93 27.90 
30 240 200.79 131.14 –8.01 36.50 
45 222 190.03 137.84 –13.82 35.34 
60 189 171.27 137.39 –7.93 45.46 
75 205 166.60 114.29 –20.41 29.73 
90 186 174.05 122.01 –30.94 16.05 

105 161 157.88 113.00 –8.58 40.91 
180 110 164.26 137.35 –37.42 24.66 
195 474 158.05 137.35 –22.28 34.70 
210 474 157.68 137.35 –17.11 17.86 
225 474 157.40 137.35 –17.21 17.77 
240 474 157.19 137.35 –17.28 17.69 
255 474 157.04 137.35 –17.33 17.64 
270 474 156.92 137.35 –17.37 17.60 

FP7 

0 378 154.31 84.72     
15 378 193.63 104.61 –52.89 –25.75 
30 375 193.83 99.71 –14.80 14.39 
45 372 200.71 94.67 –20.82 7.06 
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IDOT 
Sample 

Time 
 Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

60 378 217.33 107.74 –31.14 –2.12 
75 366 204.30 105.06 –2.26 28.32 
90 360 201.80 101.81 –12.54 17.56 

105 368 202.70 98.51 –15.47 13.65 
180 352 209.50 98.15 –21.16 7.57 
195 388 205.90 98.15 –10.56 17.76 
210 388 205.90 98.15 –13.81 13.81 
225 388 205.90 98.15 –13.81 13.81 
240 388 205.90 98.15 –13.81 13.81 
255 388 205.90 98.15 –13.81 13.81 
270 388 205.90 98.15 –13.81 13.81 

FP8 

0 248 387.21 107.04     
15 249 430.73 87.61 –60.72 –26.32 
30 254 438.23 101.43 –24.05 9.06 
45 241 449.44 113.88 –30.24 7.82 
60 246 406.16 97.93 24.39 62.15 
75 236 422.97 107.42 –35.18 1.57 
90 217 416.66 109.65 –13.71 26.32 

105 234 395.03 119.71 0.46 42.80 
180 211 400.02 110.94 –26.43 16.44 
195 254 419.90 110.94 –40.13 0.38 
210 254 419.90 110.94 –19.29 19.29 
225 254 419.90 110.94 –19.29 19.29 
240 254 419.90 110.94 –19.29 19.29 
255 254 419.90 110.94 –19.29 19.29 
270 254 419.90 110.94 –19.29 19.29 

FP9 

0 423 688.27 162.32     
30 304 693.68 176.62 –30.58 19.76 
75 218 689.38 176.81 –26.44 35.04 

105 186 682.80 185.67 –28.96 42.11 
180 131 612.60 198.61 26.97 113.42 
195 423 657.43 198.61 –83.75 –5.90 
210 423 656.88 198.61 –26.22 27.31 
225 423 656.37 198.61 –26.26 27.27 
240 423 655.90 198.61 –26.30 27.24 
255 423 655.47 198.61 –26.33 27.20 
270 423 655.06 198.61 –26.36 27.17 

FP10 

0 387 613.08 194.62     
15 366 546.04 186.71 39.80 94.27 
30 341 512.41 174.50 7.01 60.26 
45 341 520.04 151.66 –32.17 16.91 
60 324 492.06 156.27 4.55 51.40 
75 333 496.72 145.40 –27.75 18.44 
90 331 462.82 169.56 9.87 57.94 

105 310 475.41 153.75 –37.62 12.44 
180 296 437.87 134.08 14.60 60.48 
195 400 448.05 134.08 –30.32 9.98 
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IDOT 
Sample 

Time 
 Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

210 400 447.21 134.08 –17.75 19.42 
225 400 446.59 134.08 –17.96 19.20 
240 400 446.13 134.08 –18.12 19.04 
255 400 445.79 134.08 –18.24 18.92 
270 400 445.53 134.08 –18.33 18.84 

FP11 

0 389 337.54 107.16     
15 315 367.73 110.28 –46.37 –14.01 
30 271 354.19 109.23 –4.28 31.36 
45 248 360.16 97.67 –23.77 11.83 
60 225 351.73 102.79 –9.69 26.54 
75 205 345.46 94.68 –12.39 24.94 
90 176 332.99 103.91 –7.62 32.56 

105 159 352.32 104.73 –41.70 3.05 
180 127 337.58 98.28 –8.86 38.34 
195 389 350.30 98.28 –32.41 6.96 
210 389 350.30 98.28 –13.81 13.81 
225 389 350.30 98.28 –13.81 13.81 
240 389 350.30 98.28 –13.81 13.81 
255 389 350.30 98.28 –13.81 13.81 
270 389 350.30 98.28 –13.81 13.81 

 

3.2.3 Stage 3: Terminal Polishing 
In this stage, an additional sample from each source was subjected to a Micro-Deval polishing time of 
210 minutes. Table 3.7 presents the fitting parameters for the 210 minutes polishing curves. Figure 
3.11 shows the fitting curves and CI analyses, which indicate that nine sources reached terminal 
texture and that only FP1 and FP11 CIs did not include zero at 210 minutes. Table 3.8 summarizes the 
CIs numerically. 

Table 3.7 Function Fitting Results 

IDOT 
Sample Equation Fitting Parameters Goodness of Fit 

a b c R2 
FP1 

𝑇𝑒
𝑥𝑡

𝑢𝑟
𝑒 

( 𝑡
)

=
𝑎

+
𝑏

∗
𝑒−

𝑐∗
𝑡  

120.80 137.60 0.0266 0.97 
FP2 151.10 162.10 0.0256 0.98 
FP3 93.27 92.70 0.0304 0.98 
FP4 97.16 65.95 0.0095 0.97 
FP5 53.34 14.83 0.0341 0.83 
FP6 164.70 64.50 0.0256 0.88 
FP7 204.10 –49.39 0.0866 0.86 
FP8 437.70 –16.49 –0.0030 0.06 
FP9 659.10 29.18 0.9935 0.10 

FP10 436.80 161.80 0.0176 0.94 
FP11 353.80 –16.31 2.4130 0.12 
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Figure 3.11 Averages of texture index, fitted curves, and confidence intervals [Stage 3]. 
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Figure 3.11 Averages of texture index, fitted curves, and confidence intervals [Stage 3]. 
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Table 3.8 Statistical Inference on the Texture Means 

IDOT 
Sample 

Time 
Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

FP1 

0 338 266.31 90.96     
15 333 200.96 62.84 53.54 77.16 
30 309 176.84 57.91 14.78 33.46 
45 286 164.27 60.52 3.03 22.10 
60 274 153.07 60.38 1.19 21.22 
75 265 147.67 50.92 –4.01 14.82 
90 243 133.19 51.87 5.53 23.43 
105 225 138.02 48.87 –13.96 4.30 
180 184 121.15 51.36 7.07 26.65 
210 194 109.70 47.09 1.50 21.40 

FP2 

0 353 321.77 87.42     
15 318 246.99 69.24 62.90 86.66 
30 292 222.31 58.39 14.54 34.82 
45 310 204.49 57.64 8.55 27.10 
60 263 192.08 53.24 3.32 21.50 
75 279 183.80 48.82 –0.33 16.90 
90 229 166.29 47.21 9.12 25.88 
105 246 165.95 45.24 –7.98 8.67 
180 195 144.94 41.77 12.87 29.15 
210 168 150.24 39.07 –13.63 3.02 

FP3 

0 317 189.23 67.01     
15 323 144.81 55.68 34.86 53.97 
30 285 128.82 42.64 8.16 23.83 
45 253 125.99 54.37 –5.51 11.15 
60 236 104.57 38.21 13.13 29.70 
75 218 106.80 39.89 –9.43 4.97 
90 217 98.77 34.07 1.06 15.00 
105 196 95.51 32.86 –3.19 9.72 
180 173 90.79 30.44 –1.74 11.18 
210 142 94.48 32.52 –10.70 3.32 

FP4 

0 320 159.80 73.96     
15 351 154.72 75.05 –6.20 16.37 
30 314 151.95 89.03 –9.83 15.36 
45 315 144.06 87.73 –5.92 21.71 
60 288 134.33 82.75 –3.88 23.34 
75 263 123.64 70.34 –2.10 23.48 
90 264 125.29 70.06 –13.64 10.34 
105 262 119.28 64.34 –5.48 17.51 
180 227 111.99 56.87 –3.46 18.03 
210 206 105.61 62.69 –4.93 17.69 

FP5 

0 492 67.10 38.33     
15 388 64.04 40.00 –2.17 8.28 
30 304 60.89 36.75 –2.58 8.89 
45 238 55.04 27.05 0.47 11.22 
60 180 51.96 21.96 –1.61 7.79 
75 135 51.98 23.39 –5.11 5.06 
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IDOT 
Sample 

Time 
Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

90 135 57.09 31.07 –11.66 1.46 
105 107 54.26 25.65 –4.32 9.98 
180 49 55.27 28.00 –10.23 8.21 
210 25 52.17 15.99 –6.94 13.13 

FP6 

0 469 223.52 138.37     
15 363 215.04 144.22 –10.93 27.90 
30 240 200.79 131.14 –8.01 36.50 
45 222 190.03 137.84 –13.82 35.34 
60 189 171.27 137.39 –7.93 45.46 
75 205 166.60 114.29 –20.41 29.73 
90 186 174.05 122.01 –30.94 16.05 
105 161 157.88 113.00 –8.58 40.91 
180 110 164.26 137.35 –37.42 24.66 
210 102 177.25 132.58 –49.34 23.35 

FP7 

0 378 154.31 84.72     
15 378 193.63 104.61 –52.89 –25.75 
30 375 193.83 99.71 –14.80 14.39 
45 372 200.71 94.67 –20.82 7.06 
60 378 217.33 107.74 –31.14 –2.12 
75 366 204.30 105.06 –2.26 28.32 
90 360 201.80 101.81 –12.54 17.56 
105 368 202.70 98.51 –15.47 13.65 
180 352 209.50 98.15 –21.16 7.57 
210 349 194.56 87.54 1.17 28.70 

FP8 

0 248 387.21 107.04     
15 249 430.73 87.61 –60.72 –26.32 
30 254 438.23 101.43 –24.05 9.06 
45 241 449.44 113.88 –30.24 7.82 
60 246 406.16 97.93 24.39 62.15 
75 236 422.97 107.42 –35.18 1.57 
90 217 416.66 109.65 –13.71 26.32 
105 234 395.03 119.71 0.46 42.80 
180 211 400.02 110.94 –26.43 16.44 
210 211 415.73 107.15 –36.52 5.11 

FP9 

0 423 688.27 162.32     
30 304 693.68 176.62 –30.58 19.76 
75 218 689.38 176.81 –26.44 35.04 
105 186 682.80 185.67 –28.96 42.11 
180 131 612.60 198.61 26.97 113.42 
210 101 617.07 202.02 –56.51 47.58 

FP10 

0 387 613.08 194.62     
15 366 546.04 186.71 39.80 94.27 
30 341 512.41 174.50 7.01 60.26 
45 341 520.04 151.66 –32.17 16.91 
60 324 492.06 156.27 4.55 51.40 
75 333 496.72 145.40 –27.75 18.44 
90 331 462.82 169.56 9.87 57.94 
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IDOT 
Sample 

Time 
Micro–Deval 

[min] 
No. 

Particles 
Texture 
Average 

Std. 
Dev. 

Lower 
CI 

Upper 
CI 

105 310 475.41 153.75 –37.62 12.44 
180 296 437.87 134.08 14.60 60.48 
210 295 435.73 135.21 –19.57 23.86 

FP11 

0 389 337.54 107.16     
15 315 367.73 110.28 –46.37 –14.01 
30 271 354.19 109.23 –4.28 31.36 
45 248 360.16 97.67 –23.77 11.83 
60 225 351.73 102.79 –9.69 26.54 
75 205 345.46 94.68 –12.39 24.94 
90 176 332.99 103.91 –7.62 32.56 
105 159 352.32 104.73 –41.70 3.05 
180 127 337.58 98.28 –8.86 38.34 
210 108 382.08 99.74 –69.92 –19.09 

 
The rate of texture loss as a function of Micro-Deval polishing time was also investigated. An example 
of the rate of texture loss is shown in Figure 3.12 which depicts aggregate source FP1; the rate is 
presented as the percent change in texture per minute with positive values representing the loss of 
texture. The figure clearly indicates that the rate of texture loss decreases with the increase in Micro-
Deval polishing time and reaches a near-zero constant value around 210 minutes, which proves that 
even though the CI analysis for FP1 did not satisfy the terminal texture hypothesis (CI contain zero at 
210 minutes), the drop of texture loss rate to near-zero value indicates that the aggregate reached its 
terminal texture. A closer look at the polishing curves indicate that the increase in aggregate texture 
and/or aggregate texture fluctuation was observed in sources FP7, FP8, FP9, and FP11, which 
explains the low texture polishing R-squared values for some of these samples. A similar behavior was 
documented in previous studies (Mahmoud and Masad 2007, Rezaei et al. 2009) and can be attributed 
to one of the following reasons: 1) particles break instead of being polished, thus exposing their internal 
surface texture, 2) the aggregate is hard to polish, having strong granular structure (FP8 & FP9), 3) the 
polishing mechanism in Micro-Deval exposes a more textured surface covered with a smoother surface 
(FP7), 4) the mineralogy of some aggregates such as sandstone continuously exposes a new textured 
surface with polishing (FP11), or 5) the aggregate texture is low, and therefore polishing in Micro-Deval 
will not have the expected effect. 

 

Figure 3.12 Rate of texture loss for different polishing time – FP1. 
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3.2.4 Stage 4: Procedure Simplification 
The procedure described in the previous section requires testing nine samples in the Micro-Deval and 
scanning ten samples in AIMS (including before-polishing samples), to describe aggregate polishing 
behavior with less intensive lab work. Mahmoud and Masad (2007) suggested that the analytical model 
describing aggregate polishing can be obtained from three data points without sacrificing the accuracy 
of the model. A similar approach was followed in this study by fitting the model to four polishing points: 
0, 60, 105 and 210 minutes; the 0 and 210 were selected to capture the initial and terminal texture. 
Figure 3.11 indicates that, for the majority of aggregate samples, the polishing curves started to plateau 
around the 105-minutes point, while the 60-minutes point was selected to represent the initial part of 
the polishing curve. In addition to the 4-point model, a 3-point model was also investigated (0, 105, and 
210 minutes). Figure 3.13 illustrates the curves for fitting the analytical model for all ten, three, and four 
points. Figure 3.13 shows that both the 3-point and 4-point models give similar fitting functions to the 
10-points model. The 4-point model provides a more accurate curve; however, the 3-point model 
provides an acceptable approximation of the 10-point model and is considered more practical and 
requires less laboratory testing. 
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Figure 3.13 Fitted model based on texture index and considering all, three, and four data points. 
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Figure 3.13 Fitted model based on texture index and considering all, three, and four data points. 
 

3.2.5 Stage 5: Procedure Extension 
The next analysis focused on extending the procedure to aggregate angularity. The same analysis 
procedure was applied to aggregate angularity. Figure 3.14 shows a summary of the loss in angularity 
under different Micro-Deval degradation intervals. It is evident that the analytical model used for 
describing texture changes can also be used to represent the angularity property. The angularity 
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degradation curves and the CI-lines clearly indicate that the aggregate materials tested reached their 
terminal angularity values at or before 210 minutes in the Micro-Deval. 

  

  

  
 

Figure 3.14 Fitted model based on angularity index and considering all, three, and four data points. 
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Figure 3.14 Fitted model based on angularity index and considering all, three, and four data points. 
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3.3 AIMS & E-UIAIA DATABASE 
As recommended in Stage 4, aggregate polishing properties could be measured by measuring shape 
properties for aggregate before polishing and at 105 and 210 minutes of polishing in the Micro-Deval. A 
database was developed to summarize the testing results of this research study. Each aggregate 
source was labeled with a sample # starting with 001 and increasing by 1. Two samples were 
considered from each source, and the before- Micro-Deval properties were then measured on one of 
the samples. Based on the recommendations of this study, only 120 aggregate particles are required. 
The first sample, S1, was polished for 105 minutes while the second sample, S2, was polished for 210 
minutes. The polished samples were scanned with AIMS to obtain the after- Micro-Deval properties. In 
addition to that, Micro-Deval sample weights and weight losses were also recorded. Table 3.9 shows 
the general outline of the database. The database was delivered to IDOT electronically in Microsoft 
Excel format. A similar database was developed for the E-UIAIA results as illustrated in Table 3.10. 
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Table 3.9 AIMS- Micro-Deval Database Format 
SA

M
PL

E 
# 

SU
B

-S
A

M
PL

E 

# 
PA

R
TI

C
LE

S BMD-0MIN 

# 
PA

R
TI

C
LE

S AMD (S1: 105 AND S2: 210) Micro-Deval 
SHAPE PROPERTIES SHAPE PROPERTIES 

ANGULARITY TEXTURE ANGULARITY TEXTURE WEIGHT 
BEFORE 

WEIGHT 
AFTER 

WEIGHT 
LOSS 

Avg. Std. 
Dev. Avg. Std. 

Dev. Avg. Std. 
Dev. Avg. Std. 

Dev. gr gr % 

001 S1 336 1409.9 905.4 154.4 108.5 283 1264.7 850.6 145.2 117.8 750.6 704.4 6.16 
S2 319 1375.0 902.4 157.6 111.1 120 1467.6 600.3 94.33 42.53 750.6 704.4 6.16 

002 S1 306 2843.1 628.7 207.8 63.7 221 1773.6 591.7 111.3 42.40 749.4 638.4 14.81 
S2 306 2791.1 630.2 203.4 69.2 120 1075.0 883.1 127.4 109.2 749.4 638.4 14.81 

 
 

Table 3.10 E-UIAIA- Micro-Deval Database Format 

SA
M

PL
E 

# 

BMD-0MIN AMD-105MIN AMD-210MIN 

# 
PA

R
TI

C
LE

S 

ANGULARITY TEXTURE 

# 
PA

R
TI

C
LE

S 

ANGULARITY TEXTURE 

# 
PA

R
TI

C
LE

S 

ANGULARITY TEXTURE 

001 336 290 1.7 283 306 1.85 120 172 0.96 
002 306 456 2.55 221 303 1.78 120 217 1.33 
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CHAPTER 4 SUMMARY AND IMPLEMENTATION 
RECOMMENDATIONS 

 

4.1 SUMMARY 
Eleven coarse aggregate samples from different sources were subjected to polishing in the Micro-Deval 
apparatus at nine different time intervals. Aggregate surface texture was characterized for different 
Micro-Deval polishing time intervals using AIMS and E-UIAIA image analysis test devices. Confidence 
interval analysis was used to determine Micro-Deval polishing time required to reach aggregate 
terminal texture by comparing surface texture of consecutive polishing intervals in Micro-Deval, based 
on the hypothesis that terminal texture is reached when CI contains zero. It was observed that the 
aggregates tested in this study reached terminal texture after 210 minutes of polishing in Micro-Deval. 
The main findings from this study are as follows: 

· Aggregates were partially polished for different time intervals going from 15 -180 min in the 
Micro-Deval. It was concluded by statistical analysis that some aggregates did not reach 
their terminal texture values at 180 minutes in the Micro-Deval as reported in the literature. 
This was expected because of the modification of the aggregate weight and size in the 
Micro-Deval 

· Analyses of the aggregate polishing curves proved that Micro-Deval-AIMS procedure is 
sufficient to assess the terminal texture of coarse aggregates at 210 minutes. 

· Aggregates with different mineralogy exhibited different textural polishing and retention 
characteristics. 

· The full polishing curve could be accurately estimated using only three texture points: 0, 
105, and 210 minutes. However, a fourth texture point could be used (60 minutes) to obtain 
a more precise approximation. 

· Polishing curves could be mathematically formulated: the model parameters in the 
regression equation described the initial texture, a+b; terminal texture, a; and the rate of 
texture loss, c. 

· 77 aggregate sources were scanned before polishing and after 105 and 210 Micro-Deval 
polishing minutes to develop the aggregate–AIMS database for IDOT. 

4.2 IMPLEMENTATION RECOMMENDATIONS 

4.2.1 Polishing Procedure 
Based on the results and analyses of this research project data, the following procedure is 
recommended to characterize coarse aggregate polishing: 

1. Obtain two 750-g coarse aggregate samples passing the 1/2 in. sieve and retained on the 
3/8 in. sieve 

2. Measure aggregate initial surface texture with AIMS (texture at 0-minute polishing) 

3. Subject one sample to polishing in Micro-Deval: 

a. Soak the aggregate sample in 2 liters of water for at least 60 minutes in Micro-Deval 
drum; 
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b. Add a charge of 5,000 grams of 9.5 mm diameter steel balls; 
c. Subject the aggregate sample to polishing in the Micro-Deval for 105 minutes; 
d. Wash and sieve the aggregate sample retained on the #16 sieve; 
e. Oven dry sample and obtain material retained on the 3/8 in. sieve; and 
f. Measure aggregate surface texture with AIMS (texture at 105 minutes polishing). 

 

4. Repeat step 3 for the second aggregate sample to obtain aggregate surface texture at 210 
minutes by changing the time in 3-c to 210 minutes. 

5. If a 4-point polishing curve is desired, repeat step 3 for a third sample to obtain the surface 
texture at 60 minutes by changing the time in 3-c to 60 minutes. 

4.2.2 Database 
The research team highly recommends that IDOT continue measuring aggregate properties before 
polishing and after 105 and 210 minutes of polishing in the Micro-Deval and update the database 
developed in this study on a regular basis. This database is valuable for identifying aggregates for high 
friction surface courses and for verifying the procedure developed in this study. 

4.2.3 Procedure Validation 
The procedure developed in this study compared very well with historical laboratory friction data 
obtained by IDOT; however, it is recommended that a one-to-one comparison be conducted for several 
aggregate sources to directly compare AIMS-Micro-Deval and VST results. 
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