Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Development of risk models for Florida's bridge management system.

Filetype[PDF-9.50 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • NTL Classification:
      NTL-HIGHWAY/ROAD TRANSPORTATION-Bridges and Structures;NTL-PLANNING AND POLICY-Management Systems;NTL-ENERGY AND ENVIRONMENT-ENERGY AND ENVIRONMENT;
    • Abstract:
      Florida Department of Transportation (FDOT) has been actively implementing the American Association of State Highway Transportation Officials (AASHTO) Pontis Bridge Management System (BMS), recently renamed AASHTOWare Bridge Management (BrM), to support network-level and project-level decision making in the headquarters and district offices. This system is an integral part of a Department-wide effort to improve the quality of asset management information provided to decision makers. With the success of FDOT‟s previous research efforts, it was necessary to extend bridge management tools and processes to an area that is receiving increasing attention nationally: risk management. The state of Florida is exposed to risk on its bridges from many natural and man-made hazards, including hurricanes, tornadoes, flooding and scour, and wildfires, as well as advanced deterioration, fatigue, collisions, and overloads.

      This study developed a comprehensive framework and components of a risk model for these listed hazards. For each hazard, historical data were utilized to develop risk assessment models which predicted the likelihood of such events and also quantified the consequences of the hazard event. Sources of data with several years of recorded events included the following: the Department‟s databases on bridge inventory and inspection; District‟s records of damage after hazards; NOAA‟s climatic data; FEMA; and the Florida Department of Forestry.

      The research identified the types of bridges (design type and material type) and specific bridge elements that are most vulnerable to damage under the hazard events. The overall risk model was used to identify the top 20 bridges that are most vulnerable under each of the hazard types. Finally, recommendations are presented as well as modifications to the Project Level Analysis Tool (PLAT).

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26