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ABSTRACT 

More than 20% of the bridges in the U.S. were built more than 50 years ago, at a time in which 

intense precipitation events were much less common.  However, very little work has been done 

on the use of scour risk-assessment models to assess how climate change increases bridge failure 

probabilities.  This paper develops a risk-assessment framework based on HYRISK, a model 

developed to assess the probability of a bridge failure due to scour, and illustrates one way in 

which current engineering risk-assessment models can be used to quantify the additional risks 

and expected economic losses associated with a changing climate. Application of this framework 

to all bridges in the U.S. that carry vehicular traffic over water finds that economic losses due to 

climate change factors will increase by at least 15% over current losses and that the expected 

number of annual bridge failures in the U.S. will increase by at least 10% over current failures. 

Climate-based risk measures, such as those developed as part of this study, could be included in 

asset management systems to help State DOT’s prioritize maintenance, operation, and 

replacement schedules. 

 

Subject headings: bridge scour, risk assessment, climate change 
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1. Introduction and Motivation 

Federal, state, and local governments in the U.S. have invested $1.75 trillion in the construction, 

maintenance, and operation of the U.S. transportation system (FHWA 2008). The approximately 

600,000 bridges in the U.S. represent a significant part of this investment (FHWA 2009). 

However, investments in bridge maintenance and repairs have not kept pace with this aging 

infrastructure.  For example, the 2009 ASCE Report Card for America’s Infrastructure notes that 

“a $17 billion annual investment is needed to substantially improve current bridge conditions.  

Currently, only $10.5 billion is spent annually on the construction and maintenance of bridges” 

(ASCE 2009).  Faced with an aging infrastructure and shrinking revenue sources, many states are 

looking at risk-based asset management systems as a tool to help them prioritize infrastructure 

investments and, in some cases, justify the need for higher spending allocations.  For example, 

Pennsylvania justified the need for additional funding through the Accelerated Bridge Program 

by using a “risk assessment methodology that addressed the most immediate needs … these 

needs were determined by evaluating issues such as traffic volumes, condition, safety, and 

remaining life span” (PennDOT 2010).   

Many risk-based methodologies designed to help prioritize transportation infrastructure 

investments have used criteria similar to those used by Pennsylvania.  However, one factor that 

has often been overlooked is how climate change, and specifically increases in rainfall intensity, 

may increase future bridge failure risk due to scour.  Currently, the majority of bridge failures in 

the U.S. are the result of scour (AASHTO 2004a).  The threat to bridges, specifically failures due 

to scour, is particularly strong during floods and can weaken and ultimately undermine the 

integrity of bridges (Warren 1993 as reported in TRB 2008).  

There is growing evidence that the incidence of major floods has not only increased since 

many bridges were built, but will continue to increase in the future.  For example, a report by the 

U.S. Global Change Research Program found that over the past 50 years, average precipitation 

has increased 5% and the intensity of events also increased (USGCRP 2009). This is particularly 

relevant given more than 20% of the bridges in the U.S. were built more than 50 years ago 

(FHWA 2008).  Fifty years ago, bridge and foundation designs were based on different climatic 

assumptions – that is, bridges were designed for less intense precipitation and it was generally 

assumed that precipitation rates would be stationary over time.  However, designs based on 
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historical climate averages (e.g., flood probabilities, stream flow, runoff) may not be a good 

predictor of the future (Milley, et al. 2008 as reported in NRC 2009). Consequently, numerous 

reports and researchers have noted the need for stronger design standards that can handle more 

intense and frequent weather extremes (e.g., see IPCC 2007; Zimmerman 2002; and, US DOT 

2006 as referenced in Schmidt 2008).  

 Although several studies have focused on modifying design standards (that will influence 

future bridge construction), few studies have examined how more intense and frequent weather 

extremes will impact existing infrastructure.  Consequently, there is a need to extend current 

risk-based asset management systems to incorporate the effects of climate change.  In the context 

of bridges, there is a need to incorporate the effects of more intense rainfall, and associated risk 

of bridge failures, due to scour action. 

The objective of this paper is to illustrate how risk-based models can be adapted to produce 

risk measure sensitive to climate change impacts.  In turn, measures of risk could be incorporated 

into asset management systems to help prioritize bridge maintenance, repair, and replacement 

schedules (or justify the need for additional funding to support these activities).  

 

2. Background Data 

The analysis is based on the 2009 National Bridge Inventory (NBI) database (Federal Highway 

Administration 2009), specifically the fields shown in Table 1.  As shown in the data screen 

column, only those bridges that carry vehicular traffic over a waterway were examined (e.g., 

pedestrian bridges and culverts were excluded).  A total of approximately 374,000 bridges in the 

U.S., Puerto Rico, and Washington, D.C. met this criterion.  However, almost 20% of these 

bridges were missing information or contained values of zero for the detour length and/or the 

average daily truck traffic (ADTT). Given these two fields are used to calculate expected losses 

due to a bridge failure, default values were calculated for each functional road class and state.  

For example, an Interstate in Alaska (that has a sparse road network with little redundancy) has 

an average detour length of 176 km whereas an Interstate in Georgia (that has a dense road 

network) has an average detour length of 2 km.  After (1) replacing missing and zero values with 

averages customized to each state and functional road class, and (2) discarding bridges that had 

already failed, the probability of a bridge failure and its expected economic losses could be 
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calculated for approximately 360,000 bridges, representing 98.9% of those bridges that carry 

vehicular traffic over a waterway.  This sample formed the basis of the analysis. 

[ Insert Table 1 about here ] 

3. Methodology 

The methodology used to assess the economic losses associated with bridge failures due to scour 

is based on HYRISK, a model developed by the FHWA in the late 1990’s and modified in 2006.  

The 2006 HYRISK model formed the basis for our analysis; however additional assumptions and 

model refinements were made in order to: (1) apply the HYRISK model to all bridges in this 

study; (2) update economic loss functions to represent 2009 real dollars and, in some cases, 

current DOT standards; and, (3) compare the sensitivity of cost estimates due to using national-

level versus state-specific economic loss functions.  This section provides an overview of the 

different HYRISK components.  The design tables that were used for the analysis are provided in 

a supplemental online data appendix.  

HYRISK is a risk-based model that is similar in concept to models used in other 

engineering applications, most notably earthquake engineering (e.g., see Adachi and Ellingwood 

(2010); Ellingwood (2000); Padgett and DesRoches (2006); Ivey, et al. (2010)).  Figure 1 portrays 

the components of the HYRISK model using the risk-based framework developed by the Pacific 

Earthquake Engineering Research (PEER) Center (Moehle and Deierlein 2004).  There are four 

main sub-models in the PEER framework.  The first is a response model that predicts how an 

intensity measure (e.g., rainfall intensity or an N-year storm) causes a response on a bridge 

system (e.g., the probability of overtopping). Given a particular response, a damage model is 

then used to estimate the probability of one or more bridge failure levels (in HYRISK, this is the 

probability of bridge failure).  Finally, given the probability of one or more failure levels, 

economic losses are estimated.  HYRISK can be viewed as a sequence of conditional 

probabilities, i.e., each model is conditioned on the outputs of the upstream models. 

[ Insert Figure 1 about here ] 

The PEER framework is general in the sense that sub-modules can be customized to different 

applications and/or refined based on data availability and/or the desired modeling sophistication.  

For example, in the context of climate change, predictions of how rainfall intensities may change 
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(or how rainfall intensities have already changed since bridges were built) can be used to change 

the distribution of rainfall intensity measures, one of the key inputs to the HYRISK framework.  

Figure 2 shows an example of how rainfall intensity for 100-year storms have changed over the 

past 50 years; this figure is used in Section 4 to conceptually show one way in which the 

HYRISK model can be extended to include the effects of climate change.  

[ Insert Figure 2 about here ] 

The next sections describe each sub-module of the HYRISK model.  The key inputs for each 

sub-module are shown in italics in Figure 1. 

 

3.1 Response Model: Probability of Overtopping 

The first step in the HYRISK framework is to relate the frequency of a N-year storm to the 

probability the storm floods the bridge opening.  This relationship is expressed as a function of 

waterway adequacy and functional classification of the inventory route (see supplementary data 

table S1). 

 

3.2 Damage Model: Probability of Failure 

The next step in the HYRISK framework is to relate the probability of overtopping to bridge 

failure.  This relationship is expressed as a function of scour vulnerability. However, many 

bridges have unknown foundations or have not yet been evaluated for scour risk.  Some bridges 

are located in tidal areas and do not have an explicit scour vulnerability.  In these cases, Stein 

and Sedmera (2006) note that a scour vulnerability may be estimated as a function of 

substructure condition and channel protection (see supplementary data table S2). Given the scour 

vulnerability index for all bridges, the probability of failure as a function of scour vulnerability 

and overtopping frequency can then be found using Table 2.   

[ Insert Table 2 here ] 

The HYRISK probabilities of failure were calibrated using data from 25 states that found the 

average annual probability of bridge failure due to scour is approximately 0.000205 (Stein and 

Sedmera 2006). That is, the probabilities in the HYRISK model were designed to predict, on 
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average, 80 scour bridge failures per year.  However, the HYRISK probabilities of failure are 

counter-intuitive in that they allow the probability of failure to be greater for bridges that are less 

vulnerable to scour, e.g., for the same rainfall event, a bridge with a minor scour condition has a 

larger probability of failure than a bridge with a more serious scour condition. In this study, the 

probabilities shown in Table 2 were modified from those used in HYRISK to ensure that 

probabilities of failure are monotonically increasing as scour vulnerability increases and as 

overtopping frequency increases.  For example, for a remote precipitation event, the minor scour 

probability of failure would need to range between 0.0004 and 0.00018 to ensure that the 

probability of failure for a bridge with a more serious scour condition had a probability of failure 

that was larger than or equal to a bridge with a less serious scour condition. A probability of 

0.0003 was selected for the analysis, although the results were tested for the upper and lower 

ranges of the failure probabilities (and did not substantially change the model results).   

Given the monotonicity property is critical for properly modeling how increased precipitation 

leads to increases in bridge failure risk, this study uses the probabilities given in Table 2 versus 

those reported in Stein and Sedmera (2006), despite the fact that this leads to more conservative 

estimates on the overall number of bridge failures (108 bridge failure per year).  This is a 

reasonable assumption given the focus of this study is based on a comparative risk assessment.  

However, for studies that focus on evaluating the benefits of retrofits, it is recommended that the 

entire probability matrix shown in Table 2 (that maintains the property of monotonicity) be 

scaled to predict approximately 80 national bridge scour failures per year.   

 

3.3 Downward Risk Adjustment Factors 

The HYRISK methodology permits a downward adjustment of failure probabilities based on 

bridge-type factors or foundation-type factors. The risk adjustment factor, K, is given as: 

1 2K K K  (1) 

where K1 = bridge-type factor (default is 1.0, i.e., no downward risk adjustment) and K2 = 

foundation-type factor from state databases (default is 1.0, i.e., no downward risk adjustment).  

Given the NBI database (and not 50 individual state databases) was available for this study, K1 

was calculated from supplementary data table S3 and K2 was assumed to be 1.0.  Applying the 
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downward risk adjustment factor for bridge-types resulted in a reduction in the number of 

expected failed bridges from 108 to 103.  Similar downward adjustments are expected if 

information to calculate K2 is available. 

 

3.4 Economic Loss Model 

The final step in the HYRISK methodology is to estimate economic losses due to a bridge 

failure.  These losses, shown in Equation 2, include several components: rebuilding costs, 

vehicle running costs, time loss costs, and the cost of a lost life. 

 

The first economic term in Equation 2, rebuilding costs, represent the cost of demolishing an 

existing (damaged structure) and reconstructing a new structure where C0 = demolition cost 

($511/m2); C1 = rebuilding cost ($/m2) as given in online supplemental data table S3; W = bridge 

width (m); L = bridge length (m); and e = a cost multiplier for early replacement estimated from 

a = average daily traffic.  Those bridges with higher traffic volumes are assumed to be replaced 

faster than bridges with lower traffic volumes.  This faster replacement time increases costs:  e = 

1.0 for a < 100; e = 1.1 for 100 ≤  a < 500; e = 1.25 for 500 ≤  a < 1000; e = 1.5 for 1000 ≤  a < 

5000; and e = 2.0 for a ≥ 5000. 

The formulation of rebuilding costs is similar to that reported in Stein and Sedmera (2006), 

with three main differences.  First, rebuilding costs have been updated to reflect 2009 real 

dollars.  Second, additional assumptions have been applied so that rebuilding costs could be 

calculated for all main bridge structure types.  Third, the definition of rebuilding costs have been 

expanded to include both reconstruction costs as well as demolition costs for the existing bridge 

structure; these demolition costs are reflected in the C0 term.  The online appendix contains 

additional details and supplemental data tables S4-S5 that were used to update the economic loss 

model. 

 0 1 2 3 4 5 61 1 (2)
100 100 100 100

T T T T DAd
Cost C C eWL C C DAd C O C C X

S

      
              

      
 

Rebuilding 

costs 

Vehicle running 

costs 

Time loss  

costs 

Cost of  

lost life 



 9 

A new methodology was developed to calculate the final economic term in Equation 2 which 

represents the cost of a life lost when a bridge fails.  In this term, C6 = the cost for each life lost, 

assumed to be $6.0 million (US DOT 2009), and X = the number of deaths resulting from a 

bridge failure estimated from a = average daily traffic and the length of a bridge.  Assuming an 

average travel speed of 45 mph, the time for a vehicle to travel across the bridge is given as: 

length ( )
 = Time to clear bridge (sec) = 3600

0.3048 5280 45

m sec
TC

m ft miles hour

ft mile hour



 

. (3) 

The expected arrival rate of vehicles, expressed as vehicles seconds, is given as: 

ADT 

 Arrival rate (veh/sec) = 

1440 60

vehicles

day
AR

min sec

day min

 
 
 



.     (4) 

Thus, the expected number of deaths is given as: 

 1TC AR O             (5) 

where 1O is the average occupancy rate per vehicle which is assumed to be 1.5 (note, this is 

between the average occupancy rates for passenger cars vs. truck). 

 

3.5 Bringing it All Together… the Final Model 

The expected annual loss due to bridge scour for each bridge is calculated as the product of the 

HYRISK sub-modules, or: 

Expected annual loss KP Cost   (6) 

where K is the risk adjustment factor, P is the probability of bridge failure and Cost is expected 

economic losses as given in Equation 2.  The expected number of annual bridge failures and 

economic losses based on the HYRISK framework are given in Table 3. 

 



 10 

4. Results  

From a methodological perspective, it is important to note that although it is desirable to examine 

how particular State DOTs could use HYRISK to produce climate change risk factors and then 

determine how these measures change the prioritization for bridge maintenance, repair, and 

replacement schedules, to date there have been very few state-level applications of HYRISK 

reported in the literature (e.g., see IDOT 2004). Further, HYRISK was originally calibrated to 

reproduce national-level measures (such as the expected number of annual bridge failures), so 

any proposed extensions to HYRISK need to first be validated against similar national-level data.  

For these reasons, a high-level sensitivity analysis across multiple states was conducted to assess 

what the underlying factors were driving economic losses and the probabilities of bridge failure.   

In terms of economic losses, results were most sensitive to formulations used to value a 

statistical life. When a value of life of $500,000 was used (which is the 2006 HYRISK default) a 

balance among components was observed: rebuilding 16%; vehicle running 49%; time loss 25%; 

lost life 10%.  When the 2009 US DOT recommended value of $6.0 million was used in 

conjunction with the expected number of lost lives that accounted for both average daily traffic 

and the length of the bridge, the balance among cost components was: rebuilding 14%; vehicle 

running 43%; time loss 22%; lost life 20%.   

The high percentage of economic losses due to vehicle running costs (and to a lesser extent, 

cost of lost time) represent an underlying trade-off between higher volume facilities (typically 

located in urban areas) and lower volume facilities (typically located in rural areas). That is, 

economic losses are sensitive to detour lengths and underlying assumptions related to how long a 

bridge is out of service.  For higher-volume facilities such as interstates, freeways, and 

expressways, the percentage of economic losses driven by rebuilding costs is much higher: 39% 

for rebuilding, 40% for vehicle running, and 21% for time loss.  For lower-volume facilities, 

vehicle running costs dominate due to longer detour routes and longer repair times: 17% for 

rebuilding, 53% for vehicle running, and 30% for time loss.  Overall, the probability of 

overtopping (and corresponding bridge failures) is assumed to be lowest for interstates (which 

incorporate higher design standards than other facility types).  This assumption is incorporated 

by relating the intensity of storm frequency to facility type.  Thus, overall, one would expect a 

higher percentage of lower-volume facilities to fail. 



 11 

As part of the process of updating economic losses, state-level and national-level data were 

used (the methodology is described in the online appendix). The time loss estimates were not 

sensitive to whether national or state values of times were used. On average, estimates based on 

national averages were 0.6% higher than those that controlled for state-specific averages.  At a 

state level, the differences ranged from -4.5% to 5.7% (where a negative value implies the 

national level was lower than the state value).  State level values of time were used for the 

balance of the analysis, specifically the expected losses reported in Table 3. 

[ Insert Table 3 about here ] 

Table 3 summarizes the annual expected number of bridge failures and annual expected 

economic losses for each state.  The table is organized by geographic regions of the U.S.  The 

geographic areas match those shown in Figure 2.  The total number of predicted bridge failures, 

percentage of bridge failures, (multiplied by 10,000 for ease of reading), and expected economic 

loss per bridge is shown for each state.  Ranks are also provided and within each geographic 

area, states are sorted according to the percentage of bridges expected to fail annually. 

The expected economic losses are directly related to the expected number of bridge failures. 

Bridge failures can be a function of multiple factors including the frequency of intense 

precipitation events, the number (or percentage) of bridges that are scour vulnerable, etc.  These 

factors are shown as the percentage of bridges subject to “occasional” or “slight” intense 

precipitation events and as the percentages of bridges that have a scour vulnerability rating of 1-5 

There is a large variation in the percentages of bridges expected to fail as well as the 

percentages of scour vulnerable bridges and bridges subject to intense precipitation events.  The 

percentage of bridges expected to fail is correlated with the percentage of bridges that have a 

scour vulnerability of 1-5 (the correlation between these two factors, calculated at the state level, 

is 0.58).  For example, Massachusetts and Pennsylvania have largest percentages of predicted 

bridge failures in the nation, also have one of the largest percentages of scour vulnerable bridges 

rated 1-5. However, this is not the only factor driving the results, as can be seen by examining 

the ranking for South Carolina (25) and Kansas (45) which have scour percentages comparable 

to those of Massachusetts and Pennsylvania.  This underscores the fact that it is the interaction 

between scour vulnerability and intense precipitation frequencies for an individual bridge that 

determine the results; that is, when viewed at the aggregated state level, these interactions 
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become less obvious.  This is the same reason why the relationship between the percentage of 

bridges subject to intense precipitation events and percentage of bridges expected to fail cannot 

be determined from the state-level averages reported in Table 3 (the correlation between these 

two factors, calculated at the state level, is close to zero).   

It is also interesting to note that the expected economic loss per bridge is only loosely 

correlated with the percentage of bridges expected to fail.  This again underscores the fact that 

economic losses are sensitive to detour lengths and the amount of time a bridge is expected to be 

out of service (which in turn relates to average daily traffic).  Note, for example, that Alaska is 

ranked 20th in terms of the % of bridges expected to fail, but 16th in terms of the expected loss 

per bridge (this is due in part to the longer detour routes noted below and lack of network 

redundancy).  Similarly, Louisiana is ranked 6th overall in terms of the % of bridges expected to 

fail, but 5th in terms of expected loss per bridge. Similar to Alaska, the average detour length for 

Louisiana is also high compared to other states (59 km).  However, the underlying types of 

bridges in Louisiana are also distinct, namely very few are continuous span.  Consequently, 

Louisiana has the lowest downward risk adjustment factor for K (0.9926) in the data.  This 

underscores the fact that the trade-offs involved in evaluating economic losses may vary across 

states, and be highly dependent on the density of the existing transportation network, as well as 

characteristics of the existing infrastructure. This is an important observation, as it means that 

states cannot use studies based on aggregate data from other states to draw similar inferences on 

the health of their own infrastructure: here, the disaggregate details are important. 

It is important to note how the information presented in Table 3 should be viewed from the 

perspective of project prioritization.  The values in the “# Predicted Failures” and “% Predicted 

Failures” columns reflect a state’s assessment based on the bridge data available for that state.  

As such Table 3 does not allow one to prioritize specific projects within a state, although it does 

provide a comparative assessment among the states of the degree to which each is facing 

potential bridge damage due to changes in climate.  If one were to use data similar to that in 

Table 3 for within-state prioritization, additional factors would likely be included in the 

prioritization, such as site-specific soil factors, the remaining life of the bridge, and planned 

maintenance/replacement schedules.  
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In summary, a state-level comparison shows large variations in risk (as measured by the 

percentage of bridges expected to fail) across states, with one of the key drivers of this risk being 

the percentage of bridges with high scour vulnerability indices.  Expected economic losses are 

only loosely related to the percentage of bridges expected to fail, reflecting underlying trade-offs 

that need to be made between the time to repair a bridge, traffic volumes, and availability of 

alternative routes. The effect of heavy precipitation events on this risk measure is unclear due to 

the fact that the potential damage associated with intense precipitation is highly correlated to 

initial bridge design factors, i.e., bridges that are subject to intense precipitation events were 

initially designed to account for these factors.  The interesting question in this context, then, is 

how much more risk (and associated economic losses) would be incurred if intense precipitation 

events were more frequent?  This question is explored in the next section. 

 

5. Effects of Climate Change on Bridge Vulnerability 

HYRISK relates the probability of bridge failure to the frequency of intense precipitation 

events (specifically N-year storms).  However, there are numerous reports and studies that have 

shown that intense precipitation events have increased in frequency over the past 50 years and 

are expected to further increase in the future. For example, one study finds that “the magnitude 

of the 100-year storm surge flood (previously established using data for 1900–1956) would now 

recur at an interval of 75 years on the basis of data for 1900–2005” (Levinson 2006 as reported 

in TRB 2008).  Similar, it is expected that “by the end of the 21st century, a conservative 

projection of climate change has the recurrence period (or average expected waiting time) for the 

current 1-in-20-year, heaviest daily precipitation event reducing to every 6 to 8 years over much 

of North America” (Kharin et al. 2007 and Wehner 2005 as reported in TRB 2008).  Similar 

findings are reported in Cubasch, et al. 2001 and Changnon, et al. 2001 (as reported in Peterson, 

et al. 2008).  Looking ahead, one report notes that “the amount of rain falling in the heaviest 

downpours has already increased approximately 20 percent on average in the past century, and 

this trend is very likely to continue, with the largest increases in the wettest places” (USGCRP 

2009).  Similarly, a second report notes that “it is highly likely (greater than 90 percent 

probability of occurrence) that intense precipitation events will continue to become more 

frequent in widespread areas of the United States” (TRB 2008) and engineers can expect 
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“continuing change in climate averages and in the probabilities of extreme events over time 

(NRC 2009). 

To examine the impact that these decreased return periods for frequent storms has on bridges, 

the percentage increase in the 100-year event shown in Figure 2 was used.  Conceptually, one 

can think of using these percentages in two ways.  The first is to assess risk associated with 

“older bridges” that were designed 50 or more years ago, when N-year events were less frequent.  

The second is to develop a risk measure for all bridges that assumes the trends observed during 

the past 50 years will continue.  For this analysis, the percentage in increase precipitation events 

by geographic area was applied to all bridges to determine the sensitivity of model results.  

Formally, the probabilities shown in Table 2 were modified for the remote precipitation events 

(representing a return period > 100 years) as follow: 

 , , ,min ,a

v r v r a v sP P C P   (7) 

where ,

a

v rP  is the probability of failure for scour vulnerability index  1,...9v  for overtopping 

frequencies associated with r remote precipitation for area  1,...9a of the U.S. corresponding 

to those shown in Figure 2; Ca is the percent increase in remote precipitation events shown in 

Figure 3 (e.g., Ca for the Northeast Area would be represented as 1.67 to reflect a 67% increase); 

,v rP  and ,v sP  are the probabilities of failure for scour vulnerability index v and overtopping 

frequencies “remote” and “slight,” respectively.  Conceptually, this formula applies the 

percentage increase in the 100-year events to the probabilities of failure while simultaneously 

maintaining monotonicity in probabilities across both scour vulnerability ratings and storm 

return periods.   

Two cases were examined.  The first case assumed increased return periods only for the 

remote precipitation event.  The second case assumed increased return periods for both the 

remote and slight precipitation events (the latter representing a return period of 11 to 100 years).  

Equation 7 was modified to ensure the calculated value for ,

a

v sP  did not exceed the current 

probability of failure for ,v oP where ,v oP  represents the probability of failure for scour 

vulnerability index v and the “occasional” overtopping frequency. 
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Results indicated that when only the remote precipitation event was changed, the number of 

expected bridge failures rose from 108.0 to 109.4 and resulted in a 2.3% increased in expected 

economic losses.  However, when both the remote and slight precipitation events were changed, 

the number of expected bridge failures rose to 122.2 and resulted in a 17% increase in expected 

economic losses.  The latter results are consistent with findings from Chinowsky, et al. (2010) 

who examined the impact of climate change on Alaska’s infrastructure (broadly defined) and 

found climate change could add 10-20% to infrastructure costs by 2030 and 10-21% by 2080 due 

to reduced life spans and increased maintenance costs.  The overall rankings of state 

vulnerabilities were similar for the 2009 baseline and two climate change scenarios, and thus are 

omitted from the results shown in Table 3. 

 

6. Strengths and Limitations of Analysis 

There are several limitations of the analysis.  Many of the data inputs are uncertain and/or may be 

influenced by the underlying methodology used to update costs to 2009 real dollars.  For example, cost 

estimates are difficult to obtain at a state-level and, in recent years, have fluctuated dramatically due to 

uncertainty in oil prices and other commodities used to produce construction materials.  The economic 

loss function is also sensitive to values used for the statistical value of life, suggesting that decision-

makers may want to weight this value in any overall assessment or view the individual components of the 

economic loss function separately in order to better understand the trade-offs.   

 The primary strength of the study is that it provides a conceptual framework that illustrates how 

existing risk-based assessment tools can be used to evaluate the impacts of climate change. There are 

numerous extensions to this study that are possible.  More complex modeling frameworks, such as those 

based on simulation methods and/ or real options analysis, could be used to incorporate uncertainty.  In 

addition, it would be valuable to examine how retrofit and maintenance activities can be used to reduce 

risk due to climate change.  This would require adding time horizon to the analysis (e.g., expected life of 

a bridge, costs of maintenance/retrofit options, uncertainty associated with costs/lifespans). 

 

7. Policy Implications 

The policy implications of the study results are sensitive to the aggregate nature of the analysis.  

Thus, for example, the state-level analysis indicates that the level of concern with bridges that are 
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potentially vulnerable to climate change-induced stresses varies across the states.  They suggest that from 

a statewide bridge program perspective there are some states where potential bridge damage due to 

climate change could have an important impact on project priorities and budgets.  As noted earlier, the 

study results do not lend themselves to project-specific decisions or prioritization given the aggregate 

nature of the analysis.  If similar analyses were conducted on an individual state basis, however, specific 

bridges that were susceptible to scour-related damage could be identified and conditions monitored to 

provide an early warning of bridge stress requiring pre-emptive action.  In such a case, one could use 

either the bridge condition data to determine need or more-refined expected economic loss estimates due 

to bridge failure or a combination of both.     

The study results show that the level of expected damage and associated economic loss will 

increase with higher levels of frequency and intensity of precipitation.  For example, the estimate that the 

economic losses due to disruption of older bridges would increase by 17 percent with an assumed increase 

in the probability of occurrence (to slight or annual probability of 0.02) is not surprising.  One would 

assume that as more intense events happen more frequently, older bridges would be affected given their 

condition and older design.  Such a finding does present a warning to those states that have a high 

percentage of older bridges in areas that will be particularly vulnerable to climate change-related 

environmental stresses.     

An important policy consideration for such results, and indeed for other similar studies on the 

implications of climate change to transportation assets, is how to use this information in agency 

investment decision making.  In many cases, the uncertainty associated with the occurrence of extreme 

events that might result in damage to bridges is so great that engineers, faced with more immediate needs, 

have little incentive to even think about the consequences of events that could occur decades in the future.  

In many cases, the most direct response to extreme weather-induced damage to transportation assets has 

been to rebuild after the damage has occurred using different standards, such as building bridges at higher 

elevations above the water surface to account for future storm surges or rebuilding washed out coastal 

roads to future sea level rise or coastal flooding.  Such an after-the-fact approach for dealing with climate 

change does not take advantage of the opportunities that might present themselves in the short term to 

minimize future economic loss due to extreme weather events.        

One of the means of institutionalizing an early warning system into an agency’s decision making 

process is to include a climate-related vulnerability measure or index into existing asset management 

systems.  Such indicators would identify those bridges that are particularly vulnerable to changing 

precipitation events or other environmental phenomena, using an approach similar to that presented in this 
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paper.  The indicator could be asset-specific, that is, a label attached to each bridge in the asset 

management system that identifies those that are particularly vulnerable to changing environmental 

conditions.  Or the indicator could be area-specific, identifying those parts of a state or community where 

because of topography or hydrologic characteristics the potential for larger-than-normal weather events 

will likely occur thus affecting many transportation assets in the impacted area.   In either case, such an 

indication would imply different types of designs for rehabilitation or reconstruction work when such 

work is warranted, or the indicator could be incorporated into the asset management system priority 

setting process itself leading to higher investment priorities for bridges with higher risk to climate change-

induced stresses.  For example, bridges that are more vulnerable to scour effects and which are located in 

river basins that will likely receive greater precipitation could rise in importance for rehabilitation work.  

Or those bridges that have the largest economic impact given a disruption could be given higher 

rehabilitation or reconstruction priority (in this case, the definition of economic impact would likely be 

augmented to include disruption to nearby economic activities and not depend primarily on the travel time 

cost of detours).  The most important consideration is to include in asset management decision making 

some sense of future consequences of decisions made today that will prepare the transportation system for 

environmental conditions that could be very different than what they are today.               

 

 

8. Summary and Future Research Directions 

 

This paper illustrated one way in which current risk-based models such as HYRISK can be used 

to quantify risks and expected economic losses associated with changing climate.  The study used data 

from the 2009 U.S. National Bridge Inventory with specific attention given to potential economic losses 

due to scour.  HYRISK uses a series of steps relating to climate and weather assumptions as well as 

estimating the risk associated with bridges in the database.  For this study, adjustments had to be made to 

use or update the baseline data.  For example, the probabilities of failure for bridges were modified to 

assure a monotonically increasing probability as scour vulnerability increases.  In addition, the costs for 

rebuilding were adjusted to reflect better the actual costs associated with such strategies, and a new 

methodology was used for calculating the cost of life when a bridge fails.  Given that HYRISK was 

developed primarily for use in national-level risk assessments, a sensitivity analysis was conducted across 

a sample of states to assess the model’s results with respect to those input factors driving economic loss 

and probabilities of bridge failure, with the value of life and detour length being two of the more 
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important inputs.  These types of risk-based models can be used to produce ratings that are sensitive to 

those climate change factors that directly impact the structural integrity (and associated probabilities of 

failure) for different types of infrastructure.   

The analysis has some limitations, most of which are characteristic of studies that focus on the 

potential impacts of climate change.  Data inputs are often uncertain, both on the expected levels of future 

climatic conditions and on the impacts if such conditions occur.  As was noted, cost estimates were 

difficult to obtain and their use must be qualified with an understanding that costs could likely fluctuate 

significantly over the timeframe of this study.  The economic loss function is very sensitive to the values 

for the statistical value of life, with the results thus dependent on the values that are assumed.   

The results of the analysis show a range of potential bridge failures and corresponding economic 

loss across the states.  At the programmatic level, such results suggest that there are many states where 

changes in the frequency and intensity of precipitation should be viewed as a potential challenge to 

maintaining the state’s road network.  Given that this study was primarily interested in a state-by-state 

comparison, the results cannot be used directly to prioritize projects within a state; however, the 

methodology could certainly be used to identify bridges that were particularly vulnerable to changing 

weather conditions or those bridges where failure would result in the greatest economic loss.  Such results 

could also be included in asset management systems to help state DOT’s prioritize maintenance, 

operation, and replacement schedules. 

In terms of future research, it would be particularly interesting to apply the risk ratings developed in 

this paper to an asset management system and determine if and how priorities change.  In order to 

accomplish this, though, additional modeling assumptions (or research) will be needed to capture how the 

costs of retrofits change over time, and how much retrofits improve scour vulnerability ratings.  Given 

that ultimately the use of the study results will be to influence agency decisions with respect to 

appropriate maintenance, rehabilitation and reconstruction strategies, it would be important to assess the 

relative effectiveness and appropriateness of different strategies given a range of potential climatic 

conditions.  Also, given the large increases as well as large fluctuations in rebuilding costs, it would be 

valuable to explore simulation-based methods for quantifying risk that explicitly account for this and 

other sources of variability.  In this sense, HYRISK could become a basis for more complex models, 

including those based on real-options analysis.  
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NBI Item and Description 
How NBI Item is Used 

Notes 
Calculations Data Screens 

1  State code    

5A  Inventory route 

 Use code 1 for 

bridges carrying 

vehicular traffic 

 

19 Bypass, detour length (km) Running cost, time loss  Many missing or zero entries 

26 Functional classification of 

inventory route 

Overtopping frequency, probability 

of bridge failure 

 Idaho, Iowa, Montana, North 

Dakota, Vermont and 

Wyoming do not use code 12 

“freeways or expressways” 

29 Average daily traffic (ADT) 

Length of repair for rebuilding costs, 

running cost, time loss 

 Years in which ADT is 

reported vary; assumed to be 

representative of 2009 ADT 

43A  Structure type, main 

K1 Code 19 

(culverts) are 

excluded 

 

49 Structure length (m) Rebuilding costs   

52 Deck width, out-to-out (m) Rebuilding costs   

60 Substructure condition 

Scour vulnerability rating if 

NBI 113 coded 6,U, or T; probability 

of bridge failure 

  

61 Channel and channel 

protection 

Scour vulnerability rating if 

NBI 113 coded 6,U, or T; probability 

of bridge failure 

  

71 Waterway adequacy 
Overtopping frequency; probability 

of bridge failure 

  

109 Average daily truck traffic  Time loss  Many missing or zero entries 

113 Scour critical bridges 

Scour vulnerability ratings. Ratings 

are estimated for 6 (scour calculation 

not made), U (unknown) or T (tidal); 

probability of bridge failure 

Bridges not over 

water (code N) 

are excluded 

 

Source: NBI Items and descriptions obtained from FHWA (1995). 

 

 

Table 1: Description of NBI Items Used in Analysis 
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Scour  Vulnerability  

(Items 60 and 61) 

Overtopping Frequency /  

Annual Overtopping Probability 

(Items 26 and 71) 

Remote 

0.01 

Slight 

0.02 

Occasional 

0.2 

Frequent 

0.3 

0  Failed 1.00 1.00 1.00 1.00 

1  Imminent failure 0.01 0.01 0.01 0.01 

2  Critical scour 0.005 0.006 0.008 0.009 

3  Serious scour 0.0011 0.0013 0.0016 0.002 

4  Advanced scour 0.0004 0.0005 0.0006 0.0007 

5  Minor scour 0.0003* 0.0004* 0.0005* 0.0007* 

6  Minor deterioration 0.00018 0.00025 0.0004 0.0005 

7  Good condition 0.00018 0.00025 0.0004 0.0005 

8  Very good condition 0.000004 0.000005 0.00002 0.00004 

9  Excellent condition 0.0000025 0.000003 0.000004 0.000007 
Source: Table 12 in Stein and Sedmera (2006). *Note: probabilities were changed from the 
original Stein and Sedmera (2006) probabilities for minor scour entries to ensure monotonicity 

in overtopping frequencies across both rows and columns. 

 

Table 2: Probability of Failure Given Overtopping Frequency and Scour Vulnerability
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State 

# (Rank) 

Predicted 

Failures 

# (Rank)  

% 

Predicted 

Failures* 

# (Rank) 

Expected 

Loss Per 

Bridge* 

%  

Scour 

Vul* 

% 

Heavy 

Precip* 

State 

# (Rank) 

Predicted 

Failures 

# (Rank)  

% 

Predicted 

Failures* 

# (Rank) 

Expected 

Loss Per 

Bridge* 

%  

Scour 

Vul* 

%  

Heavy 

Precip* 

Alaska 0.29  (45) 3.06  (20) 96.7 (16) 35% 10% North Central 

Hawaii 0.14  (50) 1.93  (38) 139.4 (7) 13% 15% Indiana 6.49  (2) 4.43  (8) 55.0 (29) 47% 31% 

Puerto Rico 0.31 (44) 2.29  (33) 73.6 (23) 18% 25% Michigan 2.05  (19) 3.25  (16) 87.7 (18) 41% 14% 

Northeast Minnesota 1.24  (29) 2.14  (36) 17.1 (37) 24% 10% 

Massachusetts 1.52  (26) 6.93  (1) 236.9 (1) 51% 12% Iowa 3.13  (8) 1.64  (42) 10.9 (49) 17% 32% 

Pennsylvania 8.48  (1) 5.53  (2) 115.2 (10) 62% 11% Missouri 2.30  (17) 1.38  (43) 11.3 (48) 25% 35% 

Rhode Island 0.16  (49) 5.25  (4) 221.8 (2) 47% 3% Ohio 2.78  (10) 1.32  (44) 25.0 (43) 33% 18% 

Vermont 0.95  (32) 4.44  (7) 48.4 (33) 22% 31% Illinois 2.33  (16) 1.28  (46) 31.1 (40) 37% 21% 

Connecticut 0.62  (38) 3.53  (14) 118.5 (9) 45% 11% Wisconsin 0.47  (41) 0.60  (52) 33.9 (39) 18% 8% 

Maryland 0.78  (35) 3.38  (15) 72.9 (24) 29% 22% Mountain 

Maine 0.42  (43) 2.69  (26) 55.4 (28) 21% 7% Nebraska 4.94  (5) 4.27  (9) 9.4 (50) 41% 35% 

New Jersey 0.80  (34) 2.50  (30) 113.8 (11) 32% 7% N. Dakota 1.29  (27) 4.07  (10) 8.0 (52) 38% 26% 

New York 2.51  (12) 2.46  (31) 49.0 (31) 23% 82% S. Dakota 1.57  (24) 3.81  (12) 9.2 (51) 25% 22% 

Delaware 0.09  (51) 2.44  (32) 90.1 (17) 24% 5% Kansas 5.08  (4) 3.18  (18) 20.2 (45) 54% 45% 

N. Hampshire 0.23  (46) 1.10  (49) 17.6 (46) 5% 9% Texas 6.18  (3) 2.61  (28) 34.5 (38) 17% 15% 

W. Virginia 0.43  (42) 0.91  (50) 14.2 (47) 10% 21% Montana 1.02  (31) 2.54  (29) 64.4 (26) 45% 6% 

DC 0.01  (52) 0.88  (51) 143.4 (6) 51% 8% Oklahoma 1.91  (22) 1.29  (45) 25.3 (42) 14% 32% 

Southeast Wyoming 0.22  (47) 1.27  (47) 14.8 (40) 11% 4% 

Louisiana 3.97  (7) 4.49  (6) 153.4 (5) 29% 15% Northwest 

Mississippi 4.66  (6) 3.97  (11) 56.8 (27) 54% 15% Oregon 2.92  (9) 5.09  (5) 173.2 (3) 44% 6% 

Georgia 2.10  (18) 3.07  (19) 84.4 (19) 29% 8% Washington 1.56  (25) 2.87  (23) 108.7 (13) 39% 10% 

Alabama 2.50  (13) 3.04  (21) 42.6 (36) 32% 23% Idaho 0.91  (33) 2.61  (27) 79.0 (22) 19% 8% 

Tennessee 2.51  (11) 2.87  (24) 82.8 (21) 29% 32% Southwest 

S. Carolina 1.92  (21) 2.80  (25) 67.1 (25) 52% 12% Nevada 0.19  (48) 5.37  (3) 166.6 (4) 46% 3% 

Arkansas 1.97  (20) 2.28  (34) 48.9 (32) 41% 16% Utah 0.51  (39) 3.75  (13) 104.5 (15) 43% 29% 

N. Carolina 2.45  (14) 2.26  (35) 44.9 (34) 23% 11% N. Mexico 0.50  (40) 3.20  (17) 133.6 (8) 51% 8% 

Kentucky 1.85  (23) 2.04  (37) 26.3 (41) 7% 23% Arizona 0.68  (36) 3.01  (22) 107.2 (14) 25% 8% 

Florida 1.10  (30) 1.74  (40) 109.1 (12) 30% 6% California 2.35  (15) 1.86  (39) 84.0 (20) 37% 9% 

Virginia 1.27  (28) 1.72  (41) 44.7 (35) 27% 25% Colorado 0.63  (37) 1.17  (48) 49.9 (30) 32% 4% 

*Note: % scour vulnerable represents the percentage of bridges for each state in the dataset that have a scour vulnerability rating of 1-5.  The % heavy precipitation represents the percentage of bridges for each 

state in the dataset that have an annual probability of overtopping of “occasional” or “slight.”  The probabilities associated with predicted failure have been multiplied by 10000 and do not account for K 

downward adjustment factors.  The expected loss per bridge has been divided by 100. 

 

Table 3: Annual Expected Number of Bridge Failures and Economic Losses by State (2009 Baseline) 
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*Source: Adapted from Figure 1 in Ivey et al. (2010) and drawn from terminology in Kramer (2008) 

 

Figure 1: HYRISK Model Described Using PEER Risk Framework 
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Source: USGCRP (2008). 

 

Figure 2: Increases in Amounts of Very Heavy Precipitation (1958 to 2007) 
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Supplemental Data Appendix 

 

This online appendix contains the design tables used in analysis (many of which are derived 

from the HYRISK model.   See Stein et al. (1999), Stein, Pearson, and Jones (2000), and Stein 

and Sedmera (2006) for additional information on the HYRISK model.  

Table S1 is used in the first HYRISK module, which determines the engineering response 

(probability of overtopping) to a precipitation event.  Table S2 is used as an input to the second 

HYRISK module, which determines the damage (probability of failure) caused by the 

precipitation event.  Tables S3-S5 relate to the third HYRISK model, which determine the 

economic losses associated with the bridge failure.  This online appendix focuses on the 

methodology used to update the economic loss equations to 2009 real dollars. 

[Insert Table S1 here] 

[Insert Table S2 here] 

Methodology to Update Economic Loss Functions 

The HYRISK economic loss function is given as: 

 

Rebuilding costs represent the cost of demolishing an existing (damaged structure) and 

reconstructing a new structure where C0 = demolition cost ($511/m2); C1 = rebuilding cost 

($/m2) as shown in Table S3; W = bridge width (m); L = bridge length (m); and e = a cost 

multiplier for early replacement estimated from a = average daily traffic.   

Stein and Sedmera (2006) estimate costs of bridge construction based on a 2002 bridge 

design manual from the Florida Department of Transportation (FDOT, 2002).  FDOT recently 

updated construction costs to reflect 2009 rates (FDOT, 2011).  The 2002 and 2009 construction 

costs reported by FDOT are shown in Table S3. The most recent FDOT design manual does not 

include a construction cost for bridges classified as “concrete continuous” in the NBI database.  

However, the 2002 FDOT design manual did include a cost estimate, which was 82% less than 

the “concrete” simple span bridges.  Thus, it was assumed that construction costs in 2009 for 
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concrete continuous bridges would be 82% less than the costs reported for concrete simple span 

bridges.  

The FDOT design manuals also do not include cost estimates for bridges classified as wood 

and timber, masonry, aluminum or wrought iron, and other in the NBI database. The construction 

costs for wood and timber bridges were estimated using a study from the Creosote Council 

(Smith, 2007).  This study found that the railroad industry saved $615 million (out of a total 

expenditure of $1.5 billion) by using wood crossties (versus crossties made of steel or plastic).  

This implies wood is 71% less than other materials.  Thus, for this study, it was assumed that 

construction costs in 2009 for wood and timber bridges would be 71% less than the average cost 

for simple span steel bridges.  Finally, the construction cost for masonry, aluminum or wrought 

iron, and other bridges were calculated as the average weighted construction cost for the other 

bridge types.  The final construction costs (excluding demolition costs) used in this analysis 

represent the midpoint of the FDOT construction costs.   

Finally, the 2011 FDOT design manual includes an estimate of $35-$60/ft2 (or $377-

$646/m2) for demolition of a “typical” bridge.  An additional $511/m2
 is included in this study as 

part of the rebuilding costs.  No cost escalations for phased (provided in the FDOT design 

manuals) have been included in this study. 

In this study, it is assumed that the FDOT costs are representative of those faced by other 

state DOTs.  

[Insert Table S3 here] 

The second economic term represents commercial and non-commercial vehicle operating 

costs incurred due to traveling a longer distance (i.e., using a detour).  The terms used to 

calculate vehicle running costs include C2 = the cost of running a personal vehicle ($0.33/km); 

C3 = the cost of running a truck ($1.31/km); T = average daily truck traffic % from NBI Item 

109; D  = detour length (km) from NBI Item 19; a = average daily traffic (ADT) from NBI Item 

29; and d = duration of detour (days) estimated from NBI Item 29: d = 36 months (or 1,095 days) 

for a < 100; d = 24 months (or 730 days) for 100 ≤  a < 500; d = 18 months (or 548 days) for 

500 ≤  a < 1000; d = 12 months (or 365 days) for 1000 ≤  a < 5000; d = 6 months (or 183 days) 

for a ≥ 5000.  The calculation of vehicle running costs is identical to that contained in Stein and 

Sedmera (2006). In particular, vehicle running costs are based on a 2003 report by the Minnesota 

Department of Transportation that reports $0.45/mile for automobiles and $1.80/mile for trucks 

(Minnesota DOT 2003: Table 4.6). These 2003 estimates have been updated to $0.53/mile 
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($0.33/kilometer) and $2.11/mile ($1.31/kilometer) for this study based on the Consumer Price 

Index (Bureau of Labor Statistics, 2010a).  The Consumer Price Index was used to update the 

truck values of time as they include both commercial and non-commercial uses.  Other 

assumptions, such as those based on the Produce Price Index, would also be appropriate to use. 

The third economic term in Equation 2, time loss costs, represents the value of time lost by 

individuals and commercial drivers due to travelling a longer distance where C4 = value of time 

per adult as given in Table 6, O  = occupancy rate (1.63 adults as reported in the 2001 National 

Household Travel Survey, Table A-14 (US DOT, 2001)); T = average daily truck traffic % from 

NBI Item 109; C5 = value of time for truck given in Table 6, and S = average detour speed (64 

km per hour). The formulation of time loss costs is similar to that reported in Stein and Sedmera 

(2006) with the exception that the values of time have been updated to reflect 2009 real dollars.    

With respect to calculating the value of time per adult, Stein and Sedmera (2006) suggest 

several methods, one of which uses the mean hourly wage rates reported by the U.S. Department 

of Labor (reported at the national, state, and county levels); the value of time is assumed to be 

41% of the mean wage.  The 41% assumption used by Stein and Sedmera (2006) is reported in 

Small and Winston (1999) and is derived from Lave  (1969).  The values of time per adult are 

reported in Table S4 for all 50 states, Washington, D.C., and Puerto Rico, as of May 2009 

(Bureau of Labor Statistics, 2009).   The national mean wage value as of this date was $20.90 

(implying a national value of time average of $8.57). 

[ Insert Table S4 about here ] 

The methodology for calculating the value of time for trucks is based on the Highway 

Economics Requirements Systems (HERS).  HERS calculates the values of times by truck types 

as given in Table S5 using several components: the value of time per person, the vehicle cost, 

and the inventory cost.  As noted in the HERS documentation “the indexes currently used for the 

three components are, respectively: the U.S. Bureau of Labor Statistics (BLS) Employment Cost 

Index for total compensation of all civilian workers; U.S. Department of Commerce Bureau of 

Economic Analysis (BEA) data on average expenditures per car; and the implicit gross domestic 

product (GDP) price deflator, also obtained from BEA” (US DOT, 2005).  These indices were 

used to update the values of time for each truck type (see Bureau of Labor Statistics, 2010b; US 

Department of Commerce, 2010a and 2010b). 

[ Insert Table S5 about here ] 
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The value of truck time by state was found by using the distribution of truck types (per state) 

reported in the 2002 Vehicle and Use Survey (US Census Bureau, 2002).  Because Puerto Rico 

was not included in the 2002 survey, percentages of truck types based on national averages were 

used to calculate the value of time for Puerto Rico. 

The value of truck time used in this study is similar to that based on the 2006 HYRISK 

model (specifically Table S5 based on the underlying HERS methodology). However, the values 

of time in this study have been updated to 2009 real dollars and incorporate the underlying truck 

mix by state. 

The methodology used to determine the cost of a lost life is reported in the main paper. 
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Waterway Adequacy: Item 71 Functional Class: Item 26 

CODES  CODES 

0 1 2 3 4 5 6 7 8 9 N 

B
ri

d
g

e 
C

lo
se

d
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U
n

u
se

d
 

O O O O S S S R N Principal Arterials – Interstates 01, 11 

F O O O S S S R N 

Freeways or Expressways 12 

Other principal arterials 02, 14 

Minor arterials 06, 16 

Major Collectors 07, 17 

F F* O O O S S R N 
Minor Arterials 08 

Locals 09, 19 

 
Overtopping Annual Probability Return Period (years) 

N    None 0 Never 

R    Remote 0.01 > 100 

S    Slight 0.02 11 to 100 

O   Occasional 0.2 3 to 10 

F    Frequent 0.3* < 3 
Source: Table 13 in Stein and Sedmera (2006).  

 

Table S1: Annual Probability of Flooding Bridge Opening (Overtopping Frequency) 
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  Substructure Condition (Item 60)* 
  0 1 2 3 4 5 6 7 8 9 N 

C
h

a
n

n
el

 P
ro

te
ct

io
n

 (
It

em
 6

1
) 0  Failure 0 0 0 0 0 0 0 0 0 0 0 

1  Failure 0 1 1 1 1 1 1 1 1 1 N 

2  Near collapse 0 1 2 2 2 2 2 2 2 2 N 

3  Channel migration 0 1 2 2 3 4 4 4 4 4 N 

4  Undetermined bank 0 1 2 3 4 4 5 5 6 6 N 

5  Eroded bank 0 1 2 3 4 5 5 6 7 7 N 

6  Bed movement 0 1 2 3 4 5 6 6 7 7 N 

7  Minor drift 0 1 2 3 4 6 6 7 7 8 N 

8  Stable condition 0 1 2 3 4 6 7 7 8 8 N 

9  No deficiencies 0 1 2 3 4 7 7 8 8 9 N 

N  Not over water 0 1 N N N N N N N N N 
*Codes for Substructure Condition are: 0 failed; 1 bridge closed – imminent failure; 2 critical 

scour; 3 serious scour; 4 advanced scour; 5 minor scour; 6 minor deterioration; 7 good condition; 8 

very good condition; 9 excellent condition; N not applicable.   
Source:  Table 14 Stein and Sedmera (2006). 

 

Table S2: Scour Vulnerable Bridge Ratings (Used when NBI Item 113 is Coded 6, U, or T) 
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Source: Construction costs from FDOT (2002) and FDOT (2011) bridge design manuals. 

 

Table S3: Calculation of Construction Costs and K1 Risk Adjustment Factor Based on NBI Item 43A  

NBI 43A 

Classification 

% 

Bridges 

in Study 

FDOT 2011   

Classification 

Construction Costs 

(FDOT 2002) 

($/ft2) 

Construction Costs 

(FDOT 2011) 

($/ft2) 

 

Construction Costs 

Used in Analysis* 

($/ft2) ;  ($/m2) 

 

Stein, et al. 

(1999) 

Classification 

K1 Risk 

Adjustment 

Factor 

2  Concrete 

continuous 
9.4% 

Reinforced concrete flat 

slab continuous span 
$60-$80 N/A $109 ; $1173 

Continuous 

span 

0.8 for lengths 

< 30 m 

 

0.67 for lengths 

≥ 30 m 

4  Steel continuous 6.6% 
Concrete deck/steel girder 

– continuous span 
$70-$90 $135-$170 $153 ; $1647 

6  Prestressed 

concrete 

continuous 

3.4% 

Concrete deck/pre-

stressed girder – 

continuous span 

$65-$110 $83-$211 $147 ; $1582 

1  Concrete 22.8% 

Reinforced concrete flat 

slab simple span 
$50-$65 $92-$160 

$133 ; $1432 

Simple span 1.0 

Pre-cast concrete slab 

simple span 
-- $81-$200 

3  Steel 26.7% 
Concrete deck/steel girder 

– simple span 
$62-$75 $125-$142 $133 ; $1432 

5  Prestressed 

concrete 
24.0% 

Concrete deck/pre-

stressed girder – simple 

span 

$50-$70 $66-$145 $106 ; $1141 

7  Wood or timber 6.6%    $94 ; $1012 

Other 1.0 

8  Masonry 0.3%    $115 ; $1238 

9  Aluminum, 

Wrought iron 
0.1%    $115 ; $1238 

0  Other 0.1%    $115 ; $1238 
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State 

Adult 

Mean 

Wage 

 ($/hour) 

Adult 

VOT 

($/hour) 

Truck 

VOT 

($/hr) 

State 

Adult 

Mean Wage 

($/hour) 

Adult 

VOT 

($/hour) 

Truck 

VOT 

($/hr) 

Alabama 18.03 7.39 23.40 Montana 16.87 6.92 23.59 

Alaska 23.41 9.60 23.39 Nebraska 17.94 7.36 24.28 

Arizona 19.67 8.06 23.30 Nevada 19.42 7.96 23.25 

Arkansas 16.65 6.83 23.44 N. Hampshire 21.02 8.62 23.22 

California 23.82 9.77 23.17 New Jersey 24.04 9.86 23.26 

Colorado 22.11 9.07 23.42 New Mexico 18.71 7.67 23.38 

Connecticut 24.50 10.05 23.18 New York 24.42 10.01 23.21 

Delaware 22.25 9.12 23.20 N. Carolina 18.95 7.77 23.55 

DC 34.01 13.94 22.86 North Dakota 17.31 7.10 24.01 

Florida 18.96 7.77 23.43 Ohio 19.37 7.94 23.35 

Georgia 19.88 8.15 23.15 Oklahoma 17.22 7.06 25.34 

Hawaii 20.56 8.43 23.11 Oregon 20.45 8.38 23.36 

Idaho 18.23 7.47 24.26 Pennsylvania 20.21 8.29 23.06 

Illinois 22.17 9.09 23.88 Rhode Island 21.31 8.74 23.33 

Indiana 18.43 7.56 23.67 S. Carolina 17.81 7.30 23.44 

Iowa 17.77 7.29 23.61 South Dakota 16.02 6.57 24.09 

Kansas 18.52 7.59 23.54 Tennessee 17.96 7.36 23.44 

Kentucky 17.97 7.37 23.25 Texas 19.76 8.10 23.59 

Louisiana 17.60 7.22 23.32 Utah 18.86 7.73 23.65 

Maine 18.53 7.60 23.12 Vermont 19.68 8.07 23.30 

Maryland 23.80 9.76 22.98 Virginia 22.29 9.14 23.14 

Massachusetts 25.34 10.39 23.18 Washington 22.97 9.42 23.24 

Michigan 20.64 8.46 23.29 West Virginia 16.62 6.81 23.46 

Minnesota 21.60 8.86 23.75 Wisconsin 19.32 7.92 23.36 

Mississippi 16.14 6.62 23.57 Wyoming 19.19 7.87 23.81 

Missouri 18.87 7.74 23.53 Puerto Rico 12.35 5.06 23.43 

Source: Consumer value of times updated from Table 8 in Stein and Sedmera (2006) using the Bureau of Labor Statistics Occupational 

Employment and Wage Statistics for May, 2009  (BLS, 2009).   Consistent with Stein and Sedmera (2006), the consumer value of time is 

assumed to be 41% of the mean wage (see Small and Winston (1999) and Lave (1969)).  Truck values of time are based on the Highway 
Economic Requirements Systems (HERS) methodology, specifically the values of time by truck type given in Table S3 and the 

distribution of truck types reported in the 2002 Vehicle Inventory and Use Survey (US Census Bureau, 2002). 

 

Table S4: Values of Time for Adults and Trucks by State in 2009 
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4-Tire 

Truck 

6-Tire 

Truck 

3-4 Axle 

Truck 

4-Axle 

Combination 

5-Axle 

Combination 

Indexing 

Value 

Business Travel       

Value per person $18.80 $16.50 $16.50 $16.50 $16.50 1.59 

Average occupancy 1.43 1.05 1.0 1.12 1.12 -- 

Vehicle $1.90 $2.65 $7.16 $6.41 $6.16 1.31 

Inventory -- -- -- $0.60 $0.60 1.34 

Personal Travel       

Value per person $8.50     1.59 

Average occupancy 1.67     -- 

Percent Personal 89%      

1995 Value of Time $17.84 $19.98 $23.66 $25.49 $25.24  

2009 Value of Time $22.85 $30.96 $35.57 $38.53 $38.20  

Source: HERS Table 5-27 Value of One Hour of Travel Time in 1995 Dollars (US DOT 2005).  As noted in the HERS 

documentation, “The indexes currently used for the three components are… the U.S. Bureau of Labor Statistics (BLS) Employment 

Cost Index for total compensation of all civilian workers; U.S. Department of Commerce Bureau of Economic Analysis (BEA) data 

on average expenditures per car; and the implicit gross domestic product (GDP) price deflator, also obtained from BEA.” 

 

Table S5: Calculation of Value of Time for Truck Type 

 

 


