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EXECUTIVE SUMMARY  

OVERVIEW  

Existing traffic analysis and management tools do not model driversô ability to recognize their 

environment and respond to it differently depending on the situation. The literature on 

characterizing driver behavior is very limited. What research exists is typically limited to specific 

locations (i.e., by collecting data on specific intersections or freeway sections) and is very 

limited in scope. The majority of traffic modeling and parameter calibration research has 

assumed somewhat similar driving conditions and behavioral sets for the entire driver 

population. This approach does not capture or predict the effects of situational factors on 

individual driversô actions. 

RESEARCH OBJECTIVES 

This report documents the research findings of the Federal Highway Administration Exploratory 

Advanced Research Programôs ñDriver Behavior in Trafficò study. The goal of this research was 

to characterize driver behavior under naturalistic driving experiences with respect to critical 

parameters related to freeway driving. More specifically, the research aimed to determine critical 

parameters related to freeway driving during critical events, including target speed selection, 

accelerations, lane changing behavior, car-following distance, response times, and emergency 

stopping behavior for representative conditions. Of special interest to this research was the 

integrated modeling of both normal and safety-critical driving beyond existing modelsô 

capabilities. Naturalistic driving data was analyzed and used as the basis for training 20 

simulation agents, each of which encapsulated an individual driversô decisions in response to 

varying traffic situations. The developed agents were designed and trained to learn individual 

driversô actions for any given traffic state. State and action combinations for each individual 

driver were retrieved from the Virginia Tech Transportation Instituteôs (VTTI) database of 

naturalistic driving data. These characteristic driving rules of the agents were coded in a 

microscopic simulation environment (VISSIM) to test and study their effects on agentsô behavior 

in different conditions and scenarios. This research is expected to provide the simulation and 

modeling industry with methods for developing more accurate and more sensitive traffic models. 

It could also enable future research to develop new traffic simulation models that accurately 

model driver behavior during incidents and other complex traffic situations. 

NATURALISTIC DRIVING  DATA  

The research conducted in this project uses naturalistic data as a source for training agents to 

mimic the behavior of selected drivers during normal and safety-critical events. Naturalistic data 

collection is the collection of driver behavior and performance data in a real-world environment. 

Naturalistic data analysis provides an opportunity to examine what happens in the final seconds 

before crash, near-crash, and safety-critical events for which an analyst would otherwise depend 

on eye witness accounts and police reports. Data regarding vehicle speed, acceleration, range, 

range rate, headway, time to collision (TTC), brake pedal input, and qualitative data, such as pre-

incident maneuvers, can be used to describe driver behavior. Other data such as roadway type, 

number of lanes, traffic density, time of day, and weather can be used to describe the driving 
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environment. Tying these data together allows researchers to understand the exact conditions that 

exist during crash events. Naturalistic driving data collection is a powerful approach used by 

researchers to understand crash and near-crash causation. As opposed to traditional 

epidemiological and experimental/empirical approaches, this in situ process uses drivers who 

operate vehicles that have been equipped with specialized sensors as well as processing and 

recording equipment. 

Naturalistic data collection methods require a sophisticated network of sensors, processors, and 

recording systems. The Data Acquisition System (DAS) provides a diverse collection of both on-

road driving and driver (participant, non-driving) data, including measures such as driver input 

and performance (e.g., lane position, headway, etc.), four camera video views, and driver activity 

data (Figure 1). This information may be supplemented by subjective data, such as questionnaire 

data. A tremendous amount of data is acquired when carrying out these naturalistic studies.  

 

Figure 1. Screen shot. Naturalistic driving data collection. 

Due to the tremendous amount of information collected during these procedures, naturalistic data 

collection methods require significant post-collection processing. Typically, the first step in the 
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data reduction process is to identify events of interest, including crashes, near-crashes, and crash-

relevant conflicts. To find events of interest, VTTI developed a Data Analysis and Reduction 

Tool (DART) that scans the dataset using user-defined threshold algorithms to identify notable 

actions (e.g., hard braking, quick steering maneuvers, short times-to-collision (TTC), and lane 

deviations (including median encroachments). All detected events are analyzed based on ñinstant 

replaysò of video data and associated dynamic data recordings of the events. This analysis 

captures both the observable causal sequences leading to events as well as the conditions and 

correlates of event occurrence. 

Three datasets were used in this study: 

¶ 8-truck study database using 100 commercial motor vehicle (CMV) drivers from 4 fleet 

companies, yielding 735,000 miles (14,500 hours) of driving data. 

¶ 34-truck study database using 103 CMV drivers from 3 fleet companies, yielding 

approximately 2,300,000 miles of driving data. 

¶ 100-car study database, with approximately 2,000,000 vehicle miles recorded. This data 

collected included 15 police-reported crashes, 67 non-police-reported crashes, and 761 near-

crashes. 

Nine truck drivers and eleven car drivers were selected for analysis and agent implementation 

based on the type of crashes and near-crashes they experienced. The drivers with the most 

crashes and near-crashes that were forward conflicts were selected. 

EVALUATION AND EXTEN SION OF EXISTING MOD ELS 

The research compared the performance of existing car-following models to establish a baseline 

for comparison with the developed agents. In addition, it was envisioned that the developed 

agents might be used in conjunction with existing models in a hybrid simulation approach, where 

the agents might be invoked to simulate only safety-critical events. Special attention was devoted 

to the Wiedemann model because the prototype development was implemented in the VISSIM 

simulation package with an underlying Wiedemann model, making the Wiedemann model a 

good illustrative example for this effort. 

Analysis of naturalistic data offered new insights into driver behavior by analyzing an exorbitant 

amount of car-following data for each driver. The research team discovered and proposed new 

thresholds for the Wiedemann model: a passing threshold and a hook following threshold. The 

addition of the passing threshold provides the model with the ability to easily transition from car-

following to lane-changing behavior. This threshold also provides a way to force car-following 

behavior when a lane change is not possible. The addition of these new thresholds and the driver-

specific equations improves upon the Wiedemann modelôs ability to represent real-world driving 

behavior.  

The Wiedemann model was further improved by replacing its acceleration equations in the 

approaching, closely approaching, acceleration following, and deceleration following regimes. 

The Gazis-Herman-Rothery (GHR) model was given a different set of calibration parameters for 

each of those regimes. The reaction time, T, was used as a calibration parameter to obtain a 

measure of the attentiveness of the different drivers. The combination of the Wiedemann model 

and the GHR model presents advantages when calibrating to the car-following behaviors of 

individual drivers. The hybrid Wiedemann-GHR model calibrated to four individual driversô 

results with 5 percent to 43 percent less error than the Wiedemann model alone (Figure 2). 
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Figure 2. Graph. Comparison of car-following models. 

The developed model was compared with selected, commonly used car-following models, 

including the GHR, Wiedemann, Fritzsche, Gipps, Intelligent Driver Model (IDM), and the 

velocity difference model (VDIFF). Each model was calibrated by the use of a genetic algorithm. 

A genetic algorithm was used because of its ability to adequately and accurately find the optimal 

solution when multiple parameters are present, as in some of the models. Comparison results 

found that different models have the least error for different drivers, but the VDIFF and the 

Wiedemann model both performed adequately across all the drivers tested.  

The hybrid model developed in this research allows better modeling of normal car-following 

behavior than the comparison models. It also provides better and more seamless integration 

between car-following models of normal events as well as agent-based modeling of safety-

critical events. The behavior of drivers during safety-critical events differs from their normal 

behavior and is better handled with the techniques developed in this project because, unlike the 

current models, the hybrid model has the capacity to address the complex dynamics that occur 

during a safety-critical event.  

AGENT DEVELOPMENT  

The research conducted in this project can be considered a foundation for agent-based modeling 

and simulation of driver behavior based on naturalistic data. One of the major contributions of 

this research is the developed integrated framework for safety and operation analysis. Agent-

based modeling (ABM) is a new paradigm that consists of describing a system from the 

perspective of its constituent units. Compared to ñtop-downò modeling, agent-based modeling is 

bottom-up, with systems that are characterized by many agents or decision makers with 

dispersed control, many organizational levels, the ability of agents to adapt, and the use of 

internal models to anticipate the future. Agent-based modeling uses rules or equations to describe 

individual behaviors, so an agent-based model actually starts with a set of rules and uses those 

rules to generate data that can be analyzed.  

The team developed agents that encapsulated individual driving behaviors of 11 car drivers and 9 

truck drivers. They also developed two ñmegaò agents that encapsulated the behaviors of all car 

and truck drivers, respectively. Figure 3 illustrates the learning process for the agents.  
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Figure 3. Illustration.  Agent learning process. 

The basic training for car-following behavior was handled via a back-propagation artificial 

neural network (BP-ANN). BP-ANN is applied to associate the nonlinear relationship between 

input states/actions and output states/actions. In this case, a BP-ANN network was used to 

determine driver longitudinal actions in normal car-following driving conditions and to estimate 

state transition based on current traffic state and an agentôs longitudinal action. Basic training 

was done by extracting car-following epochs from the naturalistic driving database. The research 

team used both 10-Hz and 1-Hz data from one car-following episode, the same dataset that was 

used for the GHR car-following model calibration. The training performance for both the 10-Hz 

and 1-Hz datasets demonstrated stronger performance by the agent than by the GHR model, as 

did the model validation using a different dataset. 

The research team also trained agents using neuro-fuzzy actor-critic reinforcement learning 

(NFACRL). The proposed and revised NFACRL approach alleviates most of the computation 

burden that was associated with the previously developed approaches. Traffic state variables 

(e.g., speed) and driver actions (e.g., acceleration) are continuous, and conventional reinforced-

learning methods cannot solve high-dimensional, continuous state problems when agent actions 

are not drawn from a discrete set. NFACRL is able to translate high-traffic state input variables 

into discrete fuzzy sets and generate continuous action using a weighted average of discrete 

actions.  
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NFACRL consist of an actor-critic reinforcement learning mechanism that performs a 

reinforcement learning training through two parts: (1) an actor that is responsible for producing 

an action corresponding to each state and (2) a critic that is responsible for calculating the long-

term reward for the produced action and use the reward to reinforce good actions. The neuro part 

of the NFACRL mechanism uses a neural network approach to update all the weights responsible 

for mapping states to actions based on the actorôs calculated reward. The fuzzy part of the 

NFACRL is responsible for transforming the continuous state space into single values 

representing degrees of membership in predefined discrete fuzzy sets, allowing the algorithm to 

handle high-dimensional state space. All the safety-critical events available from the naturalistic 

database were used to train 20 agents. The safety-critical events selected in this study are rear-

end crash and near-crash conflict, especially when a following vehicle reacts to sudden braking 

or a sudden merge of the leading vehicle from the adjacent lane. When an event happens, the 

driver of the following vehicle brakes or swerves to avoid the incoming conflict. Using 

naturalistic traffic states and driving actions during crash and near-crash events, this approach 

was able to reproduce actual driver behavior during safety-critical events with R-squared values 

as high as 0.98. Cross-validation was performed by applying the training for one agent (driver) to 

another driverôs situation (Figure 4 and Figure 5). The performance of the 20 agents along with 

the mega agents is shown in Table 27 and Table 28. 

 

 

 

Figure 4. Graph. Acceleration of mega-agent. 
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Figure 5. Chart. Yaw angle of mega-agent. 

 

Table 1. R-squared values of the truck mega-agent. 

Event Agent 

Longitudinal 

Acceleration 

Agent 

Lateral 

Acceleration 

Mega-Agent 

Longitudinal 

Acceleration 

Mega-Agent 

Lateral 

Acceleration 

Cross Validation  

with Agent A 

Longitudinal 

Acceleration 

Cross Validation 

with Agent A 

Lateral 

Acceleration 

Driver A 0.97 0.97 0.98 0.97 0.98 0.97 

Driver B 0.97 0.94 0.97 0.91 0.82 0.60 

Driver C 0.98 0.96 0.97 0.96 0.93 0.86 

Driver D 0.99 0.92 0.99 0.88 0.86 0.64 

Driver E 0.88 0.96 0.81 0.95 0.47 0.76 

Driver F 0.98 0.96 0.94 0.96 0.83 0.43 

Driver G 0.86 0.98 0.84 0.88 0.86 0.62 

Driver H 0.96 0.99 0.95 0.99 0.63 0.98 

Driver I 0.95 0.98 0.93 0.98 0.48 0.75 

Driver J 0.85 0.98 0.85 0.97 0.66 0.32 

 

Table 2. R-squared values of the car mega-agent. 
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Driver a 0.94 0.94 0.93 0.70 0.90 0.50 
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Driver b 0.97 0.94 0.96 0.79 0.82 0.30 

Driver c 0.93 0.97 0.97 0.83 0.93 0.77 

Driver d 0.97 0.93 0.96 0.93 0.97 0.93 

Driver e 0.95 0.98 0.91 0.98 0.68 0.95 

Driver f 0.97 0.92 0.96 0.89 0.92 0.86 

Driver g 0.98 0.93 0.99 0.88 0.98 0.79 

Driver h 0.98 0.93 0.99 0.89 0.98 0.90 

Driver i 0.97 0.95 0.98 0.91 0.90 0.85 

Driver j 0.95 0.92 0.99 0.89 0.98 0.65 

The research also used a robust agent activation methodology based on the correct recognition of 

an impending safety-critical event using discriminant analysis. A discriminant analysis was used 

to find the specific combination of six variables that result in a significant difference between 

normal and safety-critical driving episodes that were extracted from the naturalistic database. In 

the examples studied, there was a visible transition from safe or normal behavior to safety-

critical behavior. This resulted in the ability to turn the agent behavior on and off. The trained 

agents offer benefits to behaviors in safety-critical events. Furthermore, because simulation 

packages are designed to follow specific car-following models, the ability to turn the agent 

behavior on and off can be beneficial. This also means that the agents could be trained only for 

the safety-critical event behavior, and the car-following models can be used otherwise, which 

makes the application of the agents more flexible, bridging the gap between the current state of 

practice and the new trained agent method. 

Finally, the research developed the agent-based simulation components integrated with the 

VISSIM simulation package through its driver model dll. Parameter files for 20 agents were 

developed and delivered as part of this project. Evaluation of the developed agent prototypes 

showed that the agents would adopt more realistic decelerations than the Wiedemann model.  

SIMULATION AND ANALY SIS 

Developed agents were implemented in VISSIM and compared with the existing VISSIM car-

following model. Evaluation metrics included the following: 

¶ Minimum following distance (m). 

¶ Maximum deceleration (m/s
2
). 

¶ Average acceleration (m/s
2
). 

¶ Average of absolute acceleration (m/s
2
). 

¶ Average speed (km/hr). 

The Wiedemann car-following model did not produce any conflicts when the time-to-collision 

threshold was set to 1.5 s. The agent-based models produced conflicts, with most of the agents 

occasionally entering the ñemergencyò regime, where the agentôs speed is greater than that of the 

lead vehicle, but the following distance is small. The agentôs deceleration rates were realistic and 

have resulted in several collision and run-off-the-road incidents.  

Summary of Operations Analysis 

The qualitative and quantitative analysis on the simple linear VISSIM network revealed the 

following findings: 
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¶ Most agents were able to enter the emergency regime, where an agentôs speed is greater 

than the lead vehicleôs yet headway is small. Vehicles following the Wiedemann model 

as implemented in VISSIM were unable to enter the emergency regime, and instead 

vehicles were forced to decelerate at unrealistic rates to avoid collisions. 

¶ Almost all agents were able to eliminate the improbably high deceleration rates used by 

vehicles following the Wiedemann model as implemented in VISSIM. The agents instead 

ran over, swerved, or collided with leading vehicles. The vast majority of the agents' 

deceleration rates to avoid collisions were realistic. 

¶ Although agents experienced realistic deceleration rates, in many cases they did not 

behave consistently across all simulation runs. The agentsô behavior indicates that 

although each agent is programmed to respond a certain way to a certain scenario, the 

definition of that scenario may be sufficiently narrow that changes in the random seed fail 

to re-create it. The definition of the scenario may need to be broadened or better defined 

so that vehicles can behave in a more consistent way. This issue can be addressed by 

exposing the agents to more data points during the training process. 

¶ The agents were trained to emphasize safety-critical modeling, and therefore the 

frequency of crashes and near crashes during an agent-based episode was exaggerated. 

This was intentional in this project to showcase the ability of agents to simulate safety-

critical events. However, for the purpose of real analysis, the agents should take into 

account the realistic probability of crashes and produce appropriate statistics. This should 

be a focus for future research.  

Summary of Safety Surrogate Analysis Model 

The safety surrogate measure analysis on the simple linear VISSIM network revealed the 

following findings: 

¶ As expected, the agents produced many more safety-critical events than when VISSIM 

used the Wiedemann car-following model to control the following vehicle. The 

Wiedemann car-following model never produced any conflicts when the TTC threshold 

for a conflict was set at 1.5 s, regardless of the scenario being evaluated. 

¶ Several of the agents were not well suited to analysis using Surrogate Safety Assessment 

Model (SSAM). Agents that departed the roadway by a significant margin were not 

properly classified as having caused safety-critical events. 

¶ When the TTC threshold for conflicts was increased to 2.5 s, the Wiedemann model 

sometimes produced conflicts. However, the number and severity of conflicts with the 

Wiedemann model were not as severe as when the agent was active. 

¶ Reactions of the agents following the safety-critical event were sometimes not realistic. 

Agents would repeat behaviors that created safety-critical events multiple times, or would 

proceed following a collision as if nothing had happened. Before the agents can be 

implemented in a more complex model, behaviors following safety-critical events will 

need to be re-examined for the agents. In effect, noncollision events would need to reset 
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to the traditional Wiedemann model, and collision events would need to be modeled by 

having both vehicles come to a stop after the event. 

The team suggests that before the agents are ready to be implemented in a production 

environment in VISSIM, several issues need to be resolved: 

1. The areas of application (speeds, geometric conditions) where specific agents should be 

used need to be defined. Before being used in a production environment, the selection of 

appropriate agents for a specific condition should be automated. 

2. As a future research item, there is a need to estimate the frequency with which certain 

agent behaviors occur in the driving population to ensure that they are modeled at 

appropriate levels. 

Once these changes are made, the inclusion of agents in VISSIM would offer a powerful 

opportunity to examine safety implications of different designs, as well as to better assess the 

impacts of incidents and other unpredictable driver behavior on travel time reliability.  

CONCLUSIONS AND RECOMMENDATIONS  

There are several suggestions for future research that can be categorized under theoretical, 

applied, and related efforts. On the theoretical aspect, the next step of this research is the 

extension of the developed NFACRL framework to simulate other traffic behavior, such as lane-

changing behavior and merging behavior in the upstream and downstream of ramps.  

On the applied aspect, our initial evaluations on events beyond what the agents were trained for 

revealed that agents can behave erratically in those cases. It is therefore recommended to train 

agents using more detailed naturalistic datasets (e.g., Strategic Highway Research Program 2 

naturalistic datasets). More importantly, research should be conducted to evaluate the potential of 

using agent-based simulation to examine different design alternatives based on safety and 

operation factors. The evaluation effort should examine unique or problematic geometry, 

network design characteristics, and traffic conditions that necessitate both operational and safety 

analysis (e.g., different weather conditions) and compare the results to existing and/or known 

outcomes.  

Finally, on the related research aspect, the research conducted in this report has shown the 

importance of two key future research issues: 

1. Adaptability of agents in real time: agents could be programmed to adapt during the 

simulation itself. 

2. Human factor issues related to warning individual drivers about a change in their driving 

behavior that might lead to a safety-critical event. 

Future recommendations include the following: 

¶ Assess the frequency that certain agent behaviors occur in the actual driving population. 

¶ Extend the NFACRL framework to simulate other traffic behavior such as lane changing and 

merging. 

¶ Examine the adaptability of agents in real time, i.e., reprogram them during the simulation. 

¶ Examine human factor issues related to warning individual human drivers about a change in 

their driving behavior that might lead to a safety-critical event. 
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CHAPTER 1. INTRODUCTION  

BACKGROUND  

Existing traffic analysis and management tools do not model the ability of drivers to recognize 

their environment and respond to it with behaviors that vary according to the encountered driving 

situation. The small body of literature on characterizing driversô behavior is typically limited to 

specific locations (i.e., by collecting data on specific intersections or freeway sections) and is 

very narrow in scope. The majority of traffic modeling and parameter calibration research has 

assumed somewhat similar driving conditions and behavioral sets for the entire population of 

drivers. Differences in driversô actions are represented merely by drawing samples from 

statistical distributions assigned to each driver type. The number and properties of driver types 

used in this approach becomes a calibration issue, which might or might not improve the 

modeling effort. This approach does not capture or predict the actions of individual drivers 

responding differentially to situational factors. 

A comprehensive representation of driver behavior varying in response to encountered driving 

situations is not available in the literature and, therefore, reproduction of such behaviors using 

statistical parameters is not adequate. At any instant, a driverôs action will be influenced by the 

driverôs perception of the surrounding environment or changes in the driving situation, the 

vehicleôs position along its driving path, and the vehicleôs position relative to other vehicles.  

This report documents the research findings of the Federal Highway Administration Exploratory 

Advanced Research Programôs ñDriver Behavior in Trafficò study. The objective of this research 

was to characterize driver behavior under naturalistic driving conditions. More specifically, the 

research aimed to determine critical parameters related to freeway driving during critical events, 

including target speed selection, accelerations, lane changing behavior, car-following distance, 

response times, and emergency stopping behavior for representative conditions. Of special 

interest to this research was the integrated modeling of both normal and safety-critical driving. 

The techniques used in this research, namely agent-based simulation techniques, allow modeling 

of individual driver behavior beyond existing modelsô capabilities. 

OVERALL  SCOPE OF THE EFFORT 

The scope of the work was to develop and implement intelligent agents that can encapsulate 

individual driversô decisions in response to varying traffic situations. The developed agents were 

designed to learn individual driversô actions for any given traffic state retrieved from the Virginia 

Tech Transportation Instituteôs (VTTI) database of naturalistic driving data. These characteristic 

driving rules of the agents were coded in a VISSIM simulation environment to test and study 

their effects on agentsô behavior in different conditions and scenarios (as illustrated in Figure 6). 

The goal of this effort is to provide the industry with methods for developing more accurate and 

more sensitive traffic simulation models. This could also enable future research to develop new 

generations of traffic simulation models that accurately model driver behavior during incidents 

and other complex traffic situations. 
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Figure 6. Illustration. System representation of driverôs response to encountered traffic 

situation. 

REPORT ORGANIZATION  

This report is organized as follows: Chapter 2 provides a synthesis of the literature on key 

domestic and international past and continuing studies on car-following and lane-changing 

microscopic models, naturalistic data collection efforts, driver behavior and characteristics, 

artificial intelligence learning techniques, and agent-based simulation. Chapter 3 describes the 

VTTI naturalistic driving data processing and provides a summary of the car and truck drivers 

that were selected for further analysis. Chapter 4 provides a detailed description of the 

Wiedemann car-following model and outlines the procedure used to calibrate the model. The 

chapter also describes how an improved Wiedemann model was developed based on the 

information found in the naturalistic driving data. Chapter 5 describes the development of 

intelligent agents that emulate driversô actions for any given traffic state. Artificial intelligent 

techniques, such as reinforcement learning (RL), artificial neural networks, and fuzzy logic 

implementations are also described. Chapter 6 discusses robust statistical techniques to activate 

the developed agents for simulating safety-critical events. The chapter describes the use of 

discriminant analysis to find the difference between normal driving behavior and safety-critical 

event behavior. Chapter 7 describes the agent implementation in the VISSIM platform to validate 

the research methodology and identify potential implementation issues for future research. 

Chapter 8 describes the evaluation of the developed prototypes and compares the results of agent-

based simulation with Wiedemann (normal) simulation. Finally, Chapter 9 provides a summary 

of the findings of the research and recommendations for future work. 
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CHAPTER 2. LITERATURE REVIEW  

INTRODUCTION  

Existing traffic analysis and management tools do not model driversô ability to recognize their 

environment and respond to it differently depending on the situation. There is very limited 

literature on characterizing driver behavior. What research exists is typically limited to specific 

locations (i.e., by collecting data on specific intersections or freeway sections) and is very limited 

in scope. The majority of traffic modeling and parameter calibration research has assumed 

somewhat similar driving conditions and behavioral sets for the entire driver population. 

Differences in driversô actions are represented merely by drawing samples from statistical 

distributions assigned to each driver type. The number and properties of driver types used 

influences calibration, and this influence might or might not improve the modeling effort. This 

approach does not capture or predict the effects of situational factors on individual driversô 

actions. A comprehensive theoretical representation of driversô varying behavior in response to 

encountered driving situations is very limited and, therefore, reproduction of such behaviors (or 

actions) using statistical parameters is not adequate. 

This chapter synthesizes a literature review conducted by the research team on key domestic and 

international studies on car-following and lane-changing microscopic models, naturalistic data 

collection efforts, driver behavior and characteristics, and artificial intelligence learning 

techniques, especially reinforcement learning. 

CAR-FOLLOWING MODELS  

In the last 50 years, a considerable amount of research has focused on modeling longitudinal 

driver behavior, producing a large number of car-following models
(1)

, including Gazis-Herman-

Rothery (GHR) models, safety distance models, linear models, and psychophysical or action 

point models. Most microscopic models assume that human drivers react to the stimuli from 

neighboring vehicles with the dominant influence originating from the directly leading vehicle. 

This is known as the ñfollow-the-leaderò or ñcar-followingò approximation. Other models 

introduced ñsafe time headwayò and a desired velocity. Calibrating these car-following models 

required different levels of effort, and the results depend on data availability, calibration method, 

and model structure. The GHR model, for instance, requires the calibration of two parameters, 

limiting the application of the model. The Gipps model
(2)

 (a safe-distance model) uses two 

different transfer functions for reproducing free-flow and car-following conditions. 

Psychophysical models, on the other hand, assume that the driver will perform an action when a 

threshold (a function of speed difference and distance) is reached. Estimating distances and speed 

differences among drivers makes it difficult to calibrate the individual threshold associated with 

this model. Linear regression and heuristic algorithms (e.g., genetic algorithms) are two widely 

used methods for model calibration. Despite different mechanisms and software interfaces, when 

multiple simulation software applications were compared, the resulting behaviors of the models 

showed similarities.
(3)

 In addition, it seems that error cannot be eliminated even if more 

parameters are introduced.  



 

4 

 

The importance of not only developing calibration procedures but also interpreting obtained 

calibration results is discussed in Ossen.
(4)

 The three main findings were ñ(1) measurement errors 

can yield a considerable bias in the estimation results; (2) parameters minimizing the objective 

function do not necessarily capture following dynamics best; (3) measurement errors 

substantially reduce the sensitivity of the objective function and consequently reduce the 

reliability of the results.ò 

A significant part of the deviations between measured and simulated trajectories can be attributed 

to the interdriver variability and the intradriver variability (human drivers do not drive constantly 

over time, and their behavioral driving parameters change). The latter accounts for a large part of 

the deviations between simulations and empirical observations.
(5)

 

The first car-following model describing car following in terms of vehicle trajectory rather than 

just velocities and spacing was proposed by Herrey and Herrey in 1945.
(6; 7)

 Without extensive 

experimental basis, they proposed that a driver must maintain a ñsafe driving distanceò (including 

the stopping distance), which results in a quadratic relationship between spacing and speed. The 

safety distance models, or collision avoidance model, represents a model in which the driver of 

the following vehicle always keep a safe distance to the vehicle in front.  

Pipes Model 

In 1953, Pipes
(8)

 developed one of the first car-following models using the California Motor 

Vehicle Code rules: ñallow at least the length of a vehicle between the subject and leading 

vehicle for every ten miles per hour speed at which the subject vehicle is travelingò assuming a 

vehicle length of 20 feet. The model is divided into two equations. The first equation applies 

when the lead vehicle has a constant acceleration while trying to reach a cruising speed. The 

second equation applies after the lead vehicle reaches and maintains the cruising speed. Both 

equations estimate the acceleration of the following vehicle at time t based on the cruising speed 

and acceleration time of the lead vehicle. This model is presented in a fashion that is applicable to 

a line of traffic with each vehicle accelerating according to the action of the vehicle in front of it.  

 

Equation 1. 

 

Equation 2. 

where 

t = time, 

T = a time constant å 1, 

a k+1 = acceleration of the kth+1 (following) vehicle, 

vm= constant velocity of lead vehicle (cruising speed), 

T0 = time for lead vehicle to reach cruising speed at a constant acceleration from rest at t=0, and 
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Equation 3. 

where 

Gk (t) is the ratio of an incomplete to a complete gamma transform function. 

Most of the early work in car following assumed that the driver is able to consider the space 

headway and the relative speed between his car and the lead vehicle. To model this stimulus-

response model, several approaches have been developed, including linear, proportional 

approaches and rule-based approaches based on fuzzy logic. In general, these car-following 

models compute the reaction of a following vehicle to the actions or stimulus of the leading 

vehicle as Response (t) = Sensitivity X Stimulus (t-T). The response of the following vehicle is 

translated into an acceleration or deceleration in proportion to the stimulus after a time lag T 

(reaction time of the driver of the following vehicle). 

The GM models  

In 1958, a series of models were developed at the GM Research Laboratory by Chandler, 

Herman, and Montroll
(9)

; Herman and Potts
(10)

; Gazis, Herman, and Potts
(11; 12)

; and Gazis, 

Herman, and Rothery
12

 The most important of these is the generalized linear model, usually 

know as the GM model. In fact, most of the other models, for example Pipes
(8)

 and Forbes
(13)

 are 

special cases of the GM model. 

Chandler, Herman, and Montroll
(9)

 proposed a linear model that assumes that the acceleration of 

the following car depends exclusively on the speed difference between the cars. 

  

Equation 4. 

where 

ak (t) = acceleration applied by the driver ὲ at time ὸ, 

Ŭ = constant, 

  

Equation 5. 

 

  

Equation 6. 

t = time of observation, and 
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Űn = reaction time for driver ὲ. 

 

Gazis, Herman, and Potts
((14))

 developed the GM 2 parameter model (GM2P), in which the linear 

model constant sensitivity term was further developed to consider the macroscopic speed density 

relationship and the space headway. The incorporation of the space headway implies that the 

driver is more sensitive to the action of the leading vehicle in the case of smaller headways.  

 

Equation 7. 

where 

ȹxn (t-Űn) is the space headway at time (t-Űn) and 

a = constant, estimated for each dataset using correlation analysis. 

  

The model of Edie, or the GM 3 parameter model (GM3P), addresses the shortcoming of the 

linear model of free-flow speed at zero density and assumes that the reaction of the following car 

depends also on the speed of the following car and not only on the speed difference and the 

relative distance between the two cars. The sensitivity is proportional to the speed and inversely 

proportional to the square of the relative distance. 

  

Equation 8. 

The Gazis, Herman and Rothery model, usually referred to as the GHR model or as the general 

car-following model, was introduced in 1961 and is represented by the following equation. 

  

Equation 9. 

where 

Tr = time between the observation of a certain stimulus and the reaction to that stimulus, 

af (t + Tr) = acceleration of the following vehicle at time (t + Tr), 

vf (t + Tr) = speed of following vehicle at time (t + Tr), 

ȹvn (t) = relative speed between the following car and the car immediately in front  

(vleader ï vfollower), 

ȹx (t) = relative distance between following car and car immediately in front (xleader ï xfollower), 

and 

m, l, c = parameters describing the car-following behavior. 
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The GHR model is therefore a general form of the early models. When l=m=0, the GHR model 

represents that of Chandler, Herman and Montroll; when m =0 and l=1, the model represents 

Gazis, German, and Pottsô model; and when m=1 and l=1, the model represents Edieôs model. 

The Wiedemann Model 

In 1974, Wiedemann
(15)

 introduced a car-following model that is based on psychophysical 

behavior. The Wiedemann model addresses two unrealistic assumptions of the GM models: 

(1) the driver follows the leading vehicle whatever the spacing is and (2) the driver has perfect 

reaction and response time. The Wiedemann model has been improved since then by 

Leutzbach
(16)

 by introducing perceptual thresholds as minimum values of the stimulus. The 

concept of thresholds in the Wiedemann model captures the driverôs alertness in conditions of 

small space headway and the lack of explicit car-following behavior in large headway. In 

addition, it allows the model to explain the oscillation phenomena observed in car-following 

behaviors. The following diagram (Figure 7) shows Wiedemann car-following thresholds with 

respect to vehicle speed difference and space headway.  

ȹx

Upper limit of reaction

Free driving

Following

Emergency regime

ȹv

0

AX

SDX

CLDV

ABX

OPDV

S
D
V

Closing 

in

 

Figure 7. Graph. Wiedemann car-following modelôs thresholds (AX, ABX, SDX, CLDV, 

SDV, OPDV).
(17))

 

The following is a definition of the Wiedemann car-following modelôs thresholds: 

1. The threshold AX represents the desired distance between stationary vehicles. This distance 

consists of the leading vehicle length and the desired front-to-rear distance.  
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Equation 10. 

where 

L n-1 = the leading vehicle length,  

AXadd and AXmult are calibration parameters, and 

RND1n is a normal distributed random number for vehicle (n). 

2. The threshold ABX represents the desired minimum following distance at low speed 

differences. 

 

Equation 11. 

  

Equation 12. 

  

Equation 13. 

where  

BXadd and BXmult are calibration parameters and 

v = vehicle speed. 

3. The threshold for maximum following distance, SDX, fall between 1.5 and 2.5 times ABX  

 

Equation 14. 

  

Equation 15. 

where 

EXadd and EXmult are calibration parameters, 

NRND is a normal distributed random number, and 

RND2n is normal distributed driver dependent parameter. 
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4. The threshold approaching point, SDV, represents the point where the driver notices that 

he/she is approaching a slower vehicle. 

  

Equation 16. 

  

Equation 17. 

where 

CXconst, CXadd, and CXmulti are calibration parameters. 

5. The decreasing speed differences (CLDV) threshold provides a mechanism for a different 

behavior when the driver approaches the leading vehicle more closely than the approaching 

point. In VISSIM, CLDV is ignored and simply assumed to be equal to SDV.  

6. The increasing speed difference (OPDV) threshold describes the point where the driver 

observes that he/she is traveling at a lower speed than the leader.  

  

Equation 18. 

where 

OPDVadd and OPDVmult are calibration parameters and 

NRDV is a normally distributed random number. 

The Fritzsche Model 

Fritzsche
(18)

 developed a similar psycho-physical model that has been used in Paramics 

microsimulation software. The model has multiple regimes that apply to different traffic 

situations (i.e., normal car-following, free flow, closing in, etc., as shown in Figure 8). Fritzscheôs 

model accounts for human perception in the definitions of the model regimes, as drivers perceive 

only speed differences with certain magnitude. Fritzsche defined the thresholds for perception as: 

perception threshold of positive speed difference (PTP) and perception threshold of negative 

speed difference (PTN). The model also incorporates four thresholds for the followerôs space 

headway. 
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Figure 8. Graph. Different thresholds and regimes in the Fritzsche car-following model.
(3)

 

1. Desired distance threshold, AD, represents the gap, which following driver wants to maintain.  

  

Equation 19. 

where 

TD = a parameter representing the desire time gap, 

Sn-1 = effective length of the leading vehicle, and 

vn = following vehicle speed. 

2. The risk distance threshold, AR, represents the distance at which the driver applies heavy 

deceleration to avoid collisions.  

  

Equation 20. 

where 
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Tr = a parameter representing the risky time gap. 

3. The safe distance threshold, AS, represents the smallest headway where positive acceleration 

is accepted if the distance between the vehicles is increasing.  

  

Equation 21. 

where 

Ts = a parameter representing the safe distance threshold. 

4. The risk braking distance threshold, AB, represents the distance where maximum deceleration 

is limited. Therefore collision is possible if the initial speed difference is large. 

  

Equation 22. 

where  

 

Equation 23. 

bmin, an-1 = a parameter controlling maximum deceleration. 

The CA Model 

The cellular automaton model, usually know as CA model,
(19)

 simulates freeway traffic. Monte 

Carlo simulations of this model show a transition from laminar traffic flow to start-stop waves 

with increasing vehicle density. 

The CA model can be described as following seven steps.
(19; 20)

 

1. Determination of the randomization probability. 

  

Equation 24. 
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where 

  

Equation 25. 

where tst denotes time vehicle stops.  

2. Acceleration. Determine the speed of vehicles in the next time step. Sn(t) is also taken into 

consideration. Sn (t) is determined in Step 5. 

  

Equation 26. 

  

Equation 27. 

where vk,max and ak are the maximum speed and acceleration capacity, respectively, of 

vehicles of type k. 

3. Deceleration. Set speed restriction when the vehicle in front is too close, thus locating the 

vehicle within the effective distance (dn
eff

). 

  

Equation 28. 

4. Randomization. 

  

Equation 29. 

5. Determination of vehicle status identifier Sn(t) in next time step. 

  

Equation 30. 

6. Determination of time stuck inside the jam (tst). 
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Equation 31. 

7. Update position. 

  

Equation 32. 

where  

n = nth vehicle, 

n+1 = vehicle in front, 

k = type of vehicle, 

Pb = accounting for impact of decelerating vehicle in near front, 

P0 = reflect the delay-to-start behaviors of vehicles stuck in traffic jam, 

Pd = other situations, 

Pc = probability of lane change, 

th = dn/vn(t) = time headway of nth vehicle to front, 

hk = preset time threshold of vehicle of type k in reflecting the effect of synchronized 

distance, 

ts = min(vn(t),hk) = final time threshold for initiating the consideration of the front brake light 

effect, taking the vehicular speed into consideration, 

tst = accumulated time of vehicle stuck in traffic jam, 

tk,c = time threshold of vehicle of type k for initiating the stop-to-start behavior, 

Ű
(safe)

 = safe time gap for collision prevention, 

Ўὸ = duration of an individual time step, 

d = space headway, 

dn
eff

 = effective distance of nth vehicle, 

Ὣ = distance gap, 

x = position of nth vehicle, 

 = speed (first derivative of vehicular position), 

 = acceleration/deceleration (second derivative of vehicular position), and 

ȹx = basic unit of roadway length. 
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The SK Model 

The safety condition in the CA car-following model is imposed by the term sgap (t) s,
(21)

 setting 

the maximum velocity equal to the space gap between two successive vehicles regardless of the 

required deceleration. To address the fact that the CA model fails to reproduce metastable states 

of very high throughput and hysteresis effects existing in traffic flow, the model was generalized 

to provide a one-parametric family of models with a part that reproduces metastable states and 

hysteresis usually known as SK Model 
(22)

 and represented by the following: 

  

Equation 33. 

  

Equation 34. 

  

Equation 35. 

where 

b = maximum deceleration 

dp = braking distance of lead car 

Ŭp, ɓp = integer and fractional part, respectively, of vp/b, and 

Ŭsafe ɓsafe = integer and fractional part of  

  

Equation 36. 

The SK model is a development of the CA model
(22)

. In place of the CA modelôs Step 7, the SK 

model uses the updating rules below: 

  

Equation 37. 

  

Equation 38. 
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Equation 39. 

  

Equation 40. 

where  

Ů = parameter, 

v1 = optimal velocity for next update, 

vmax = maximum velocity of cars, 

vsafe = maximum safe velocity, and 

vran, v0, v2 = a random number between v0 and v1 = maximum decal. 

The IDM Model  

The Intelligent Driver Model (IDM)
(23)

 is defined by the following acceleration function: 

  

Equation 41. 

  

Equation 42. 

where 

ȹvn, n-1 (t) = approaching rate of the following vehicle, 

v
*
= desired speed, 

Tsafe= safe time headway, 

a
max

= maximum desired 

b
max abs

 = absolute maximum desired deceleration of following vehicle, 

ŭ = acceleration component, 

ȹxn-1, n (t) = distance headway, and 

d = vehicle length. 

This expression combines the acceleration strategy in Equation 43 toward a desired speed v
*
 on a 

free road, with the parameter a for the maximum acceleration. It is further combined with the 
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braking strategy in Equation 44, which is dominant if the current gap ȹxn-1, n (t) becomes smaller 

than the desired minimum gap. 

 

Equation 43. 

 

Equation 44. 

The Gipps Model  

Gipps
(2)

 developed the first general acceleration model that applies to both car-following and 

free-flow conditions. The model determines the maximum acceleration based on: driverôs desired 

speed and minimum safe headway. The Gipps car-following model is implemented in AIMSUN. 

In the Gipps car-following model, the acceleration is calculated for five different situations:  

¶ Vehicle moves in its desired speed 

¶ Vehicle in free move with speed less than the desired speed 

¶ Vehicle is accelerating from stopping position 

¶ Vehicle in a car-following state with constraint space headway  

¶ Vehicle in a car-following state with active-non collision constraint 

The following thresholds constrain vehicle acceleration in Gippsô model: 

  

Equation 45. 

  

Equation 46. 

where  

an
max

 = maximum desired acceleration, vehicle n (m/s
2
),  

dn
max

 = maximum desired deceleration, vehicle n (m/s
2
),  

dn-1 = estimation of maximum deceleration desired by vehicle n-1 (m/s
2
),  

Sn-1 = effective length of vehicle,  
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T = reaction time,  

d
^
n-1 = leader desired deceleration, and  

xn-1 = vehicles spacing. 

The VDIFF Model 

In the velocity difference model (VDIFF),
(24)

 the acceleration function consists of a term 

proportional to a gap-dependent ñoptimal velocityò ὺ ί and a term that accounts for velocity 

differences Ўὺ as a linear stimulus. The parameter † is the relaxation time, which describes the 

adaptation to a new velocity due to changes in ί and ὺ. The sensitivity parameter ‗ considers the 

crucial influence of Ўὺ. The properties of the VDIFF are defined by the function for the optimal 

velocity vopt(s).  

The parameter v0 defines the desired velocity under free traffic conditions. The ñinteraction 

lengthò l int determines the transition regime for the s-shaped function going from vopt(s=0) = 0 to 

vopt ­ v0 when the distance to the leading vehicles becomes large. The ñform factorò ɼ defines 

the shape of the equilibrium flow-density relation. VDIFF exhibits collisions for some regimes of 

the parameter space. 

Table 3 shows the major attributes of the car-following models discussed above. The multiphase 

column refers to whether the model calculates the position of the subject vehicle in multiple 

steps. The multiregime column refers to whether the model calculates the position of the subject 

vehicle with different equations depending on the regime the subject vehicle falls in.  

 Table 3. Major similarities and differences between car-following models. 

Model Multiphase Multi regime Speed Diff  Space Diff  Reaction 

Time 

Variable 

Acceleration 

Pipes Yes No Yes No Yes Yes 

GM No No Yes Yes Yes Yes 

Wiedemann No Yes Yes Yes No No 

Fritzsche No Yes Yes Yes No No 

CA Yes No No Yes No Yes 

SK Yes No No Yes No Yes 

IDM Yes No Yes Yes Yes Yes 

Gipps Yes No Yes Yes Yes Yes 

VDIFF No No Yes No Yes Yes 

CAR-FOLLOWING  MODELS AND SIMULATIO N SOFTWARE 

Panwai and Dia
(25)

 compared a number of car-following models on simulation software including 

AIMSUN, Paramics, and VISSIM. Using data collected by an instrumented vehicle that records 

differences in speed and headway (leading speed, relative distance, relative speed, follower 

acceleration), the data was simulated using MITSIM, the Wied/Pel model, the Wied/Vis model, 

the Nagel/Schreckenberg model, the optimal velocity model, and the T
3 

model. The follower 

vehicle was programmed for modeling, and speed, time, and distance headways of both leader 

and follower were captured and compared to field measurements. The leading vehicle was 

simulated using the GETRAM module in AIMSUN, an external file in VISSIM, and an API 

interface in Paramics. Performance measures and error indicators were used to assess the fitness. 

Results showed similarities for psychophysical models in VISSIM and Paramics. However, the 
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root mean squared error and qualitative drift and goal-seeking analyses showed a substantially 

different car-following behavior for Paramics.  

Siuhi and Kaseko,
((26))

 Osaki,
(27)

 Subranmanain,
(28)

 and Ahmed
(29)

 modified the GM model by 

separating the acceleration and deceleration responses. Table 4 compares the GM calibration 

parameters for acceleration and deceleration models. 

Table 4. Comparison of parameter values in GM-based model for acceleration and 

deceleration models.
(26)

 

Parameter Acceleration/ 

Deceleration 

Ozaki  

(1993) 

Subra-

main  

(1996) 

Ahmed  

(1999) 

Toledo 

(2003) 

Siuhi  

(2010) 

Driver sensitivity acceleration 1.1 9.21 0.0225 0.0355 1.851 

Driver sensitivity deceleration 1.1 15.24 0.0418 0.860 3.247 

Speed acceleration -0.2 -1.667 0.722 0.291 -0.961 

Speed deceleration 0.9 1.086 N/A N/A 1.298 

Relative speed acceleration 1 1 0.600 0.520 0.667 

Relative speed deceleration 1 1 0.682 0.143 1.243 

Separation acceleration -0.2 0,884 -0.242 -0.16 0.667 

Separation deceleration -0.9 -1.659 -0.151 -0.565 -1.544 

Driver response time lag (s) acceleration N/A 1.97 N/A N/A 0.80 

Driver response time lag (s) deceleration N/A 2.29 N/A N/A 0.70 

Stimulus response threshold (mi/h) acceleration N/A N/A N/A N/A 1.30 

Stimulus response threshold (mi/h) deceleration N/A N/A N/A N/A -1.00 

Siuhi and Kaseko
(26)

 discussed findings in terms of GM calibration parameters. The study 

concluded that there was a need for separate deceleration and acceleration models because the 

responses are impacted differently by the vehicleôs speed, speed difference, and separation 

between the vehicles. 

MODELING DRIVER BEHA VIOR  

Several models aim to capture driver behavior. However, little is known about the differences in 

car-following behavior between driver-vehicle combinations.
(30)

 For example, calibrating the 

Wiedemann model, which captures driver indifference to small changes in the stimuli and allows 

different execution modes including emergency braking, requires estimating 18 parameters found 

in 17 different equations.
(17)

 Microsimulation software packages use a variety of car-following 

models, including Gippsô (AISUM2, SISTM, and DRACULA), Wiedemannôs (VISSIM), Pipeôs 

(CORSIM), and Fritzscheôs (Paramics). Automated calibration parameters, such as genetic 

algorithms, have been used to calibrate the distribution of car-following sensitivity parameters.
(31)

 

In addition, direct correlation with real driving variables is rare, and parameterization of objective 

behavior is still in its infancy. Ossen et al.
(4)

 studied the car-following behavior of individual 

drivers using vehicle trajectory data extracted from high-resolution digital images collected at a 

high frequency from a helicopter. The analysis was performed by estimating the parameters of 

different specifications of the GHR car-following rule for individual drivers. The results showed 

that measurement error has a larger influence than the component of noise. Their study pointed 

out that optimal parameters differ, and also that the suitability of a car-following model appears 

to be based on the individual driver data.  



 

19 

 

Brackstone et al.
(32)

 used data from a series of instrumented vehicles driven by two groups. The 

independent variables for this study were age, approximate mileage driven per year, 

passivity/aggressiveness (P/A, 1ï50), driver externality and internality ratings (DE and DI), and 

Sensation Seeking Scale V (SSSV). Among the results, the study showed that following behavior 

may be split in two phases (between 30 and 50 miles), and there seems to be an inverse 

relationship between following distance and sensation seeking. 

MODEL CALIBRATION WI TH LONGITUDINAL TRAJECTORY  DATA  

Using two models of similar complexity (number of parameters), the Intelligent Driver Model 

(IDM) and the Velocity Difference Model (VDIFF), Kesting and Treiber
(5)

 researched car-

following behaviors of individual drivers using publicly available trajectory data for a straight, 

one-lane road in Stuttgart, Germany. They used a genetic algorithm to minimize the deviations 

between the observed driving dynamics and the simulated trajectory. One of the major findings of 

the study was that a significant part of the deviations between measured and simulated 

trajectories can be attributed to the interdriver variability and the intradriver variability (human 

drivers do not drive constantly over time, and their behavioral driving parameters change). The 

latter accounts for a large part of the deviations between simulations and empirical observations. 

The results showed that the calibrated parameter values of the VDIFF strongly depend on the 

optimization criterion, while the IDM is more robust. Also, a deterministic car-following model 

allows for only an average description of human driving behavior. The authors suggest using a 

set of time-dependent model parameters reflecting the driver adaptation process. 

Ossen and Hoogendoorn
(30)

 analyzed trajectory data and found considerable differences between 

car-following behaviors of individual drivers. These differences can be expressed as different 

optimal parameter values for reaction time and sensitivity. Special software obtained the data 

from digital images captured at high frequency from a helicopter in the Netherlands. Three 

models from the GHR model family (Chandler, Gazis, and Edie) were analyzed, with the 

sensitivity parameters ὧ and reaction times parameter Ὕ derived from accelerations, relative 

speeds, and distances. When individual drivers were analyzed, one model outperformed the 

others. However, after results for all drivers were combined, no model outperformed the others. 

Results show that in 80 percent of cases, a relationship between the relative speed, distance, 

speed of the following car, and acceleration of the following car could be established.  

Menneni et al.
(33)

 presented a calibration methodology based on integrated use of microscopic 

and macroscopic data. Microscopic data from the Next Generation Simulation (NGSIM) data 

collection effort was utilized in range definition of calibration parameters and qualitative 

calibration of the VISSIM Wiedemann car-following model. NGSIM data was used to produce 

relative distance versus relative velocity graphs that contain vehicle following distances and 

speed oscillation. 

Brockfeld et al.
(34)

 tested the validity of different models through data collected from a 

Differential Global Positioning System-equipped vehicle on a test track in Japan. Data of the 

leading vehicle was fed into the model to compute the headway time series of the following 

vehicle. Deviations between measured and simulated headways were then used in model 

calibration and validation. Brockfeld et al. tested and independently calibrated 10 models (CA0.1, 

SK_STAR, OVM, IDM, IDMM, Newell, GIPPSLIKE, Aerde, PRITZSCHE, and MitSim). The 

calibration results showed that no best model exists and that the differences between individual 
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drivers are larger than the differences between different models. The results also showed that 

although FRITZSCHE and MitSim have a large number of parameters, they do not provide better 

results in general. 

Hoogendoorn and Hoogendoorn
(35)

 proposed a generic calibration framework for joint estimation 

of car-following models. The method employed relies on the generic form of most models and 

weights each model based on its complexity. This new approach can cross-compare models of 

varying complexity and even use multiple trajectories when individual trajectory data is scarce. 

Prior information can also be used to realistically estimate parameter values. 

DRAWBACKS OF PARAMET ER CALIBRATION METHO DS  

Punzo and Tripodi
(36)

 addressed the problem of the calibration of the Gipps model. Traffic stream 

models were developed, and stationary traffic data were used to calibrate the model. By using 

different combinations of microscopic parameters, the study proved that the Gipps model is 

unable to reproduce unstable traffic phenomena. Instead, the study generated a new model to 

represent multiclass traffic scenarios. 

Rakha et al.
(37)

 presented a methodology to calibrate the Gipps model for the steady-state 

condition. Their work assumes that all drivers have similar behaviors and characteristics. 

Researchers converted the car-following model into its associated macroscopic traffic stream 

model and calibrated key macroscopic parameters (free-flow speed, speed at capacity, capacity, 

and jam density) using loop detector data. These calibration methods, however, can only estimate 

the driverôs actions on average and cannot predict the driverôs actions in response to varying 

driving situations.  

ALTERNATE MODELING O F THE DRIVING PROCES S 

Hamdar and Mahmassani
(38)

 challenge the traditional discrete-event approach of most car-

following models. They use hazard-based duration models, which represent the driving process 

as a continuous story divided into multiple episodes. Driver behavior was modeled as ñcar 

followingò and ñfree flow episodes.ò As a result, changing lanes depends on the traffic conditions 

and the duration of time that a driver is following a given leader; the probability of changing 

lanes increases during the first minute and decreases after that. The authors recommended further 

studies because episodes for the same driver are expected to have some interdependence and 

drivers will surely have some influence on one another.  

Hamdar et al.
(39)

 assessed a recently formulated hazard-based duration car-following model on its 

performance during congested periods. To calibrate, they applied a genetic algorithm to car-

following models with complex structures, including a free-flow region and a congested region. 

The model was calibrated against microscopic trajectory data taken from the NGSIM data. The 

utility of this model is derived from prospect theory of decision-making under risk. The model 

also considers a penalty for the risk of accidents, an expectation value, and variance and 

correlation time of acceleration.  

DRIVING BEHAVIOR HET EROGENEITY  

Chiabaut et al.
(40)

 studied driving behavior heterogeneity and proposed a methodology to estimate 

the parameters of Newellôs car-following model (NCF) at a microscopic scale using I-80 NGSIM 
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data. Driving behavior variability among drivers is appraised through the minimal spacing and 

congested wave velocity distributions. This method improves the existing calibration methods 

due to the measurement. 

Using vehicle trajectory data collected from car-following experiments conducted on a Japanese 

test track with RTK GPS receivers, Ranjitkar and Nakatsuji
(41)

 investigated the response time of 

drivers. The data was further analyzed to estimate time-variant response time when considering 

interpersonal and intrapersonal differences in car-following behavior, such as driversô perception 

time threshold in different driving conditions. Significant intrapersonal variations were observed 

for different speed patterns, though no definite trends were observed in such variations, 

emphasizing that the influence of driving conditions and intrapersonal variations in the response 

time cannot be ignored. It was also found that the driversô response time under accelerating 

conditions is significantly different from response time under decelerating conditions.  

Hamdar and Mahmassani 
(42)

 continued their studies on different driver behaviors in a simulation, 

instead of using the usual homogeneous traffic stream, to identify individual variations versus 

collective traffic patterns. The model used a utility function that assessed the change in risk when 

changing speeds and also the reward for increasing or reducing speed. The model was calibrated 

using individual trajectory data from NGSIM. Simulation was run for both homogeneous and 

heterogeneous traffic. The results were scattered flow-density datapoints that created a triangular 

shape. This is representative of instability and the hysteresis triangle, which are congestion 

dynamics.  

INTRODUCING INCIDENT  PARAMETERS WITH TRAJ ECTORY DATA  

Different attempts have been made to simulate safety-critical events with existing car-following 

models. Most of the car-following models represent an environment free of safety-critical 

events.
(21)

 The main factors of an incident-free environment depend on the model, varying from a 

sensitivity term ‗ (GHR model), the assumption that the following vehicle will decelerate and 

come to a rest before hitting the leader (Gipps), the desired gap setting (IDM, IDM M), or free 

space to the vehicle-ahead constraints (CA). Hamdar et al.
(21)

 list safety constraints imposed in 

several car-following models. 

Xin et al.
(43)

 proposed a model that aims to emulate ñless-than perfectò everyday driving, 

capturing both safe and unsafe driver behavior. The datasets used include vehicle trajectories for 

six crashes and four near-crashes in Minnesota as well as vehicle trajectories that were collected 

in a test track in Japan using GPS. The longitudinal driving tasks were described as a negative 

feedback control process between the external world and the driver-vehicle-unit (DVU). The 

authors assumed that the equations for the perceptual threshold of visual expansion rate provide 

ña logical and coherent mechanism for variable reaction time.ò The authors determined the 

vehicle acceleration or deceleration action based on checking whether safety conditions are true 

or false. If the conditions are false, the driver is in a ñsubconsciousò driving state, without 

motivation for accelerating or decelerating. The situational factors do not include multilane 

effects and do not incorporate personal factors and environmental factors on driverôs perception-

decision process. While the idea is intriguing, it still suffers from the limitations of statistical 

techniques because it still uses the Gipps model.  

Hamdar and Mahmassani
(21)

 attempted to capture congestion dynamics and model accident-prone 

behaviors by calibrating and modifying (relaxing) seven car-following models: GHR, Gipps, 
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cellular automation (CA), SK, the intelligent driver model (IDM), the intelligent driver model 

with memory (IDMM), and Wiedemann. The purpose of the investigation was to relax the safety 

term that was designed to avoid the creation of a crash-limited following distance from the 

above-mentioned models and restrict the models to realistic decelerations using NGSIM data.  

Chatterjee and Davis
(44)

 used VTTI naturalistic data to better define the critical elements that lead 

to a rear-end crash. The results demonstrate the feasibility of using vehicle trajectory data to 

understand the interaction between individual vehicles. Assuming that the driverôs behavior can 

be modeled as a piecewise constant series of accelerations that are input in the dynamic trajectory 

model, the authors try to overcome the simple brake-to-stop model. Trajectories were duplicated 

using the initial values for the state variables and the time history of the accelerations. Major 

parameters were identified: the piecewise constant acceleration, the points where the driver 

changes between different accelerations, the reaction time of the driver, and the critical headway. 

To estimate the parameters, they used a Bayesian analysis (Markov Chain Monte Carlo), and the 

numerical equations were solved using WINBUGS.  

NATURALISTIC DATA  

Naturalistic data collection is the collection of driver behavior and performance data in a natural 

environment. Naturalistic data collection allowed researchers to examine what happens before 

and during crash, near-crash, and safety-critical events for which researchers would otherwise 

depend on eye witness accounts and police reports. Handled properly, data regarding vehicle 

speed, acceleration, range, range rate, headway, time to collision (TTC), brake pedal input, and 

qualitative data such as pre-incident maneuvers can be used to describe driver behavior. 

Qualitative data such as roadway type, number of lanes, traffic density, time of day, and weather 

can be used to describe the driving environment. Tying these data together allows researchers to 

understand the conditions that exist during an event and attain baseline data. As opposed to 

traditional empirical approaches, naturalistic data collection process involves drivers who operate 

vehicles that have been equipped with specialized sensors and recording equipment (Figure 10). 

The drivers operate and interact with these vehicles during their normal driving routines while the 

data collection equipment continuously records numerous items of interest during the entire 

driving epoch (a prescribed driving period). 

Naturalistic Data: 100-Car Database 

The 100-Car Naturalistic Driving Study,
(45)

 conducted through VTTI, was a light-vehicle 

naturalistic study in which 100 light vehicles were instrumented. The 100-Car study was unique 

in that it was the first study in which vehicles were instrumented with the primary goal of 

collecting large-scale, naturalistic driving data. A large percentage (78%) of instrumented 

vehicles belonged to the participants, and were driven without special instructions. 

Approximately 2 million vehicle miles (43,000 hours of driving data) were included in the 

dataset, providing a rich dataset with extreme cases of driving behavior and performance.  

An in-depth analysis focusing on driver inattention conducted by Klauer et al.
(46)

 used data 

collected in the 100-Car Naturalistic Driving Study to establish a relationship between driving 

behavior and crash or near-crash involvement. The study used baseline epochs reduced from the 

raw 100-Car database alongside the full 100-Car study event database. The baseline database 

consisted of a sample of 20,000 6-s segments during which the vehicle maintained a 5 mi/h or 

higher velocity. Crash and near-crash risks were calculated as ratios to normal, baseline driving 
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data for different sources of inattention. It was found that visually or manually engaging 

secondary tasks result in three times greater crash or near-crash risks than attentive driving. 

Researchers also concluded that glances that are 2 s or longer result in twice the risk of crashes or 

near-crashes compared to normal baseline driving. 

Naturalistic Data: 34-Truck Database 

VTTI also conducted The Drowsy Driver Warning System Field Operational Test (DDWS 

FOT)
(47)

, in which naturalistic data was collected for 18 months from 103 commercial motor 

vehicle (CMV) drivers. Drivers from three different fleet companies participated in the study. 

This database yielded approximately 2.2 million driving miles and, once reduced, yielded 1,217 

valid safety-critical events. The data were processed through software that flags potential events 

of interest based on trigger threshold values. 

Naturalistic Data: 8-Truck Database 

Similarly, VTTI performed another large-scale Naturalistic Truck Driving Studyôs (NTDS)
(48)

 

investigating crash risk by identifying safety-critical events related to driver sleep/rest cycles and 

crash countermeasures. Continuous driving performance data was collected for 100 CMV drivers 

from four different fleet companies. Data was collected during 4 months of normal driving 

routine for 4 weeks per driver. Approximately 14,600 hours of driving data and 735,000 driving 

miles were collected. More than 2,800 safety-critical events were identified, including 13 crashes, 

58 near crashes, 1,595 crash-relevant conflicts, and 1,213 unintentional lane deviations. 

Fitch et al.
(49)

 conducted an examination of driver behavior leading to lane-change crashes and 

near-crashes using the database created from the 100-Car study. Several objectives were 

investigated in this analysis: classifying the types of lane change events (e.g., severity and 

direction of lane-change events) and analyzing striking vehicle driversô behaviors, as well as the 

struck vehicle driversô behavior and the surrounding vehicles behaviors. The study analyzed 135 

lane-change events from the 100-Car study. The lane-changes were classified using three event 

scenarios. It was found that not all drivers used their turn signals when changing lanes to avoid a 

forward crash threat. It was also found that drivers visually attend to one location at a time. The 

study concluded that the use of drivers-assist systems can help drivers, especially in heavy traffic 

conditions.  

Another study examining lane-change behavior conducted by Lee et al.
(50)

 explored the nature 

and severity of lane changes in a naturalistic driving environment. Sixteen commuters were 

recruited to drive one of two instrumented research vehicles for 10 days each. Half of the 

participantsô commutes were by interstate, and half commuted on a U.S. highway. Lane change 

identification was specified by review of the video, which sought the initiation (first lateral move 

by vehicle) and end points (vehicle settled in the destination lane) for each lane change. The lane 

change was then categorized by maneuver type, direction, severity, urgency, and 

success/magnitude. Eleven categories of maneuver type were identified, including slow lead 

vehicle, return, enter, and exit/prep exit. During the first data pass-through, all lane changes were 

identified, graded, and classified, totaling 8,667 lane changes categorized into one of the 11 

maneuver types. The authors reported that the analysis of the full dataset resulted in many 

interesting findings regarding frequency, duration, urgency, and severity of lane changes in 

regard to maneuver type, direction, and other classification variables. The authors further studied 
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a subset of the full dataset, consisting of 500 lane changes using sensor data collected from the 

instrumented vehicles. Investigation of this additional sample included the following variables: 

¶ Steering. 

¶ Lateral acceleration. 

¶ Velocity. 

¶ Braking. 

¶ Turn signal use. 

¶ Eye glance location probability. 

¶ Eye glance link value probability. 

¶ Mean single glance time. 

¶ Distance to forward and rearward POVs. 

¶ TTC to forward and rearward POVs. 

The sampled lane changes were more severe and were cases where a lane change collision 

avoidance system (CAS) was likely to help the most. The data from this study was used to 

provide recommendations on display location and activation criteria for designers of lane change 

CASs. The research provided valuable insight into the behaviors and parameters associated with 

lane changes, and the archived data has the potential to answer other questions related to driver 

behavior.  

McLaughlin et al.
(51)

 explored the use of naturalistic driving study to investigate the potential of 

avoiding rear-end crashes using CASs. For this research effort, real-time data from 13 rear-end 

crashes and 70 rear-end near-crashes were input to evaluate three collision avoidance algorithms. 

The three CAS algorithms selected and modeled for evaluation were: Equations developed by 

Knipling et al.
(52)

, linear regression approach described in early CAMP work
(53)

, and an algorithm 

developed by Brunson et al.
(54)

 

The methodology provided useful guidance both in estimating benefits achieved by the 

algorithms and in estimating the frequency of alerts in normal driving situations. The algorithms 

tested were found to generate higher than acceptable alerts.  

Fitch et al.
(55)

 used naturalistic data collected by VTTI to study the safety benefits that may be 

obtained by deploying a forward collision warning system for heavy vehicles. Researchers used 

kinematic motion equations and Monte Carlo simulation in the study to evaluate the effects of 

forward collision warning (FCW) alarms on driver forward collision avoidance behavior using 

rear-end (RE) conflicts from a previous naturalistic driving study. The naturalistic driving dataset 

used was the DDWS FOT. Methods based on Volvoôs Intelligent Vehicle Initiative Field 

Operation Test were used to identify the RE conflicts. Researchers concluded that a nationwide 

deployment of FCW systems in heavy vehicles could reduce the number of RE crashes by up to 

21 percent. These findings were also found to be statistically significant.  

McLaughlin et al.
(56)

 conducted an investigation to identify factors associated with run-off-road 

(ROR) crashes using the 100-Car Naturalistic Driving Study database. The objective of the study 

was to identify conditions in which ROR crashes or near-crashes occurred and the contributing 

factors associated with them. ROR crashes and near-crashes from the dataset were reviewed and 

included in the analysis if the subject vehicle crossed a roadway boundary or if a rapid severe 

evasive maneuver was undertaken by the driver to avoid a crash. The researchers also conducted 

a random review of the entire dataset to develop a baseline database to quantify the frequency of 
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the studied conditions. The study found a small number of contributing factors to 122 ROR-

related events chosen for the investigation. A single factor was identified as the contributing 

event in 75 percent of the ROR events, while multiple factors were identified as contributing 

factors in only 25 percent of the cases. Contributing factors of the ROR events were found to be: 

distraction/inattention (40 percent), secondary task distraction (36 percent) and driving-related 

inattention to the forward roadway (4 percent). Other factors included changes in roadway 

boundaries, short following distances, and lead vehicle braking.  

The naturalistic data relevant to this project can be divided into two main categories: safety-

critical events and car-following periods. Using naturalistic data in this project addressed several 

needs related to data attributes necessary to modeling and analysis as highlighted in previous 

research. These attributes are mainly the ability to extract individual driving episodes per driver, 

allowing the analysis to recognize behavior that pertains to a particular driver and determine 

whether that behavior changes between different episodes. The naturalistic data also allows the 

analysis to examine the heterogeneity of behavior among different drivers.  

The car-following periods used in this research are representative of safe driving where one 

vehicle follows another without any conflicts arising. The safety-critical events are the cases 

where conflicts arise between two vehicles and evasive or braking maneuvers are taken to avoid a 

collision.  

AGENT-BASED MODELING IN TR ANSPORTATION  

Agent-based modeling (ABM) is a new paradigm that describes a system from the perspective of 

its constituent units.
(57)

 Compared to ñtop-downò modeling, agent-based modeling is bottom-up, 

with systems that are characterized by many agents or decision makers with dispersed control, 

many organizational levels, the ability of agents to adapt, and the use of internal models to 

anticipate the future.
(58)

 ABM uses rules or equations to describe individual behaviors, so an 

agent-based model actually starts with a set of rules and uses those rules to generate data that can 

be analyzed.  

ABM is best applied when interactions between agents are complex, nonlinear, discontinuous, or 

discrete. It is also useful when space is crucial and agentsô positions are not fixed, when each 

individual is different, and when topology of interactions is heterogeneous and complex and 

agents exhibit complex behavior, including learning and adaptation.
(57)

 

ABM has advantages based on the belief that agents are able to interact. Agent behaviors are 

varied, and ABM facilitates experimentation, computing, and implementing changes in the 

system. A circular published by the Transportation Research Board (TRB) Artificial Intelligence 

and Advanced Computing Application committee
(59)

 provides a useful introductory overview of 

the concept, structure, and application of ABM in transportation, as illustrated in Figure 9. 
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Figure 9. Illustration. ñBottom-upò modeling of system.
(59)

  

The ABM method is widely used in various areas of transportation, including simulation of 

vehicle or pedestrian flow, route choice modeling, lane-changing and car-following models, and 

traffic simulation. The TRB circular refers to two known simulation models as agent-based 

models: TRANSIMS and MATSIM.
(59)

 

When using ABM, types, attributes, allowable values of attributes, and initial values are defined 

first. Once the agents are defined, the model needs to specify the interaction rules for the agents 

so the agents will interact with one another and with their environment. An agent-based model 

can be programmed in the developerôs programming language or software package of choice. 

REINFORCEMENT LEARNI NG METHOD  

Reinforcement learning is a sub-area of machine learning in computer science concerned with 

how an agent is supposed to take actions in an environment so as to maximize the notion of long-

term reward. The objective of reinforcement learning algorithms is to find to a policy that maps 

states to the actions the agent ought to take in those states. State in our case can be time from 

trigger, speed, car following distance, yaw angle, and environment. Reinforcement learning 

reinforces agents for actions performed approximately close to naturalistic actions and penalizes 

agents for actions that are far away from naturalistic. The only information available for learning 

is the system feedback, which describes the agentôs required task in terms of reward and 

punishment. At each time step, the agent receives a reinforcement signal according to the last 

action it has performed in the previous state. The problem involves optimizing not only the direct 

reinforcement, but also the total amount of reinforcements the agent can receive in the future. 

Finally, reinforcement learning should extract driving rules from a naturalistic dataset and 

establish similar driver-specific state action mapping rules.  

The reinforcement learning method has been primarily applied to two transportation problems: 

finding optimal traffic control policy for intersection controllers and modeling driver behavior, 
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especially travel time and route choice network simulation or optimization problems. There is 

also a follow-up study to Abbeel et al.
((60))

 in modeling helicopter control through learning from 

an expert pilot to simulate the trajectory and movement of helicopter control.  

REINFORCEMENT LEARNI NG USED IN TRAFFIC A DAPTIVE CONTROL 

SYSTEMS 

Optimization of traffic signals for efficient movement of traffic on urban streets is a challenging 

part of an urban traffic-control system. Adaptive system control has been used to reduce delay 

and congestion through an array of traffic control and management strategies (such as SCATS). 

The ability to exert real-time, adaptive control over a transportation process is useful for a variety 

of intelligent transportation systems services, including control of a system of traffic signals, 

paratransit vehicle dispatch control, and displaying a dynamic route guidance system.
(61)

  

By mapping states to actions, the objective of reinforcement learning algorithms applied in 

adaptive control is to provide agent controllers with optimal policies, seeking the smallest 

queuing length and least number of stops per vehicle, according to changes in the traffic 

environment.  

Abdulhai
(62)

 designed a test bed and trained controllers by using Q-learning. The isolated traffic 

signal test-bed consisted of a simulated two-phase signal controlling the intersection of two two-

lane roads. Vehicle arrivals were generated using Poisson processes with average arrival rates on 

each of four approaches. Q-learning agents controlled each of the four approaches with two 

phases of control. State information available to the agent included queue lengths and elapsed 

phase time. From simulation results, the performance of networked signal systems and 

integration with dynamic route guidance has improved. One restriction of the method is that their 

adaptive control method used an intersection without any turning vehicles, which is not 

compatible with field data. 

Jacob and Abdulhai
(63)

 used corridor control in a follow-up study to their previous work on traffic 

system control.
(62)

 They proposed an automated adaptive traffic corridor control using 

reinforcement learning to develop a self-learning, adaptive, integrated freeway-arterial corridor 

control for both recurring and nonrecurring congestion. The Q-learning approach is used to 

provide an optimal control for a freeway corridor to determine the appropriate actions, chosen 

from staying on the current metering rate, increasing red time, decreasing red time, and 

decreasing red phase. Simulation software Paramics was used to train and evaluate an agent in an 

offline model within a simulated environment.  

Bingham
(64)

 applied an actor-critic reinforcement learning algorithm in a neuro-fuzzy traffic 

signal control system with the purpose of minimizing vehicular delay caused by the signal control 

policy. The controller received measurements of incoming traffic and chose green signal length 

accordingly. A neural network adjusts the fuzzy controller by fine-turning the form and location 

of membership functions. Two phases were considered for any intersection. Reinforcement 

learning in neural networks gives credit for successful system behavior, which will be chosen 

more often. In simulation experiments, the simulations were run at several different traffic 

volumes and traffic detector locations. The result shows that different membership functions are 

found optimal in different traffic situations. The advantage of fuzzy control systems over 

traditional ones is their ability to use expert knowledge in the form of fuzzy rules and the small 
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number of parameters needed. However, intersections usually have four approaches and eight 

movements, which makes this reinforcement learning approach less persuasive.  

Choy et al.
(65)

 formed a multiagent architecture for real-time coordinated signal control in an 

urban traffic network. Three hierarchical layers of controller agents exist: intersection, zone, and 

regional controller. Fuzzy logic, neural networks, and regional controllers are implemented to 

agents. Each individual controller agent recommends an appropriate signal policy at the end of a 

signal phase. An online reinforcement learning module is used to update the knowledge base and 

rules of agents based on online data, with the objective of minimizing average delay in the zone. 

In all, 25 signalized intersections in a microscopic simulator were implemented in a network. 

Test results showed that the multiagent system improved average delay and total vehicle stop 

time compared with fixed-time traffic signal control. The main contribution of this paper is the 

formulation of a multiagent-based architecture and an online reinforcement learning module. It 

has shown that an agent can coordinate its local goal with zone and regional objectives 

autonomously.  

Adam et al.
(66)

 proposed a Q-learning method applied in reducing the number of vehicles 

traveling in dilemma zone. Algorithms used arbitrary policies to determine green termination 

based on the number of vehicles in the dilemma zone and whether the dilemma zone has not 

cleared after a period of time. A control agent develops an optimal policy by learning from the 

number of vehicles in the dilemma zone. The optimal policy considers the number of vehicles 

trapped in dilemma zone after taking action to either extend the green or not. Unlike arbitrary and 

stationary policies derived from existing approaches, the control policy adapts to changes in 

volume. Reinforcement-learning-based policy reduced the number of vehicles caught in the 

dilemma zone by up to 32 percent in the experimental simulation framework VISSIM. 

REINFORCEMENT LEARNI NG IN TRANSPORTATION  NETWORK PROBLEMS  

Bogers et al.
(67)

 focused on route choices, considering two types of learning: reinforcement-based 

learning and explicit belief-based learning (including memory decay). The researchers developed 

a model that captures learning types from parameters calibrated from a large dataset from 

experimental research. The model used a Markov formulation for daily updating, based on a 

personôs belief about travel time. Reinforcement was modeled by including the latest 10 route 

choices in the model. Results indicate that 20 percent of perceived travel time is from the most 

recent experience. Furthermore, the reinforcement part of the model can make up a significant 

part of the route utility and therefore should be a standard component in route choice models.  

Arentze and Timmermans
(68)

 developed a framework for modeling dynamic choice based on a 

theory of reinforcement learning and adaptation because individuals develop and continuously 

adapt choice rules while interacting with the environment. A reward function, incremental action 

value functions, and action selection methods, were presented in this activity-based analysis, and 

memory and search played a key role in reinforcement learning. The reinforcement learning 

concept assumes that actions produce positive rewards if they are reinforced and have a higher 

probability of being repeated in future choice situations under similar conditions, and actions 

with negative outcomes tend to be avoided. The system assumes multistage decision making in 

potentially very large condition spaces and can deal with stochastic, nonstationary, and 

discontinuous reward functions. Arentze and Timmermans considered a hypothetical case that 

combined route, destination, and mode choice for an activity under time-varying conditions of the 
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activity schedule and road congestion probabilities. The learning and adaption was robust and 

most successful when the system chose a realistic reward reference level and assigned only a 

modest weight to new rewards in updating action values. Arentze and Timmermansô framework 

took exploration and adaption in choice behavior into account, but it did not take into 

consideration environmental effects.  

Han and Timmermans
(69)

 proposed a general model of interactive learning behavior that evolves 

toward equilibrium in strategic situations under the assumption that travelers may choose 

particular choice options by taking into account their expectations about behavior of other 

travelers. The properties of the model are examined by using numerical computer simulations. 

The results of the simulations support the face validity of the formulated model.  

Wahba and Shalaby
(70)

 proposed an operational prototype of an innovative framework for the 

transit assignment problem by using a learning-based approach. The proposed framework 

represents a passengerôs learning and decision-making activities. In this prototype, a hypothetical 

transit network consisted of 22 routes and 194 stops developed within a microsimulation platform 

(Paramics). They then generated 3,000 passengers synthesized to model the transit assignment 

process in the peak morning periods. Reinforcement learning is used to model passengersô 

adaptation and account for the differences in passengersô preference in the dynamics of the transit 

network. Using this technique, the prototype has demonstrated that the proposed approach can 

simultaneously predict how passengers will choose their routes and estimate the total passenger 

travel cost in a congested network as well as loads on different transit routes. 

REINFORCEMENT LEARNING APPLIED IN TRAFFIC KINEMATIC PR OBLEM   

Abbeel et al.
(71)

 presented the first successful autonomous completion of four aerobatic 

maneuvers using a real RC helicopter: forward flip, sideways roll at low speed, tail-in funnel, and 

nose-in funnel. First, a pilot controlled the helicopter to define a helicopter dynamics model and a 

reward (cost) function. Then a controller optimized for the result model and reward functions was 

formulated using the reinforcement learning (RL) algorithm. Differential dynamic programming 

(DDP) was used in this optimization process. 

During the flip, the helicopter rotates 360 degrees forward around a lateral axis. In a right axial 

roll, the helicopter rotates 360 degrees around its longitudinal axis. In a tail-in funnel, the 

helicopter repeatedly flies in a circle sideways with tail pointing to center of the circle. The nose-

in funnel is similar to tail-in funnel with the exception of the nose pointing to the center of the 

circle. 

The helicopter dynamics are modeled by the apprenticeship learning algorithm method. First, the 

data is collected from a human pilot flying the desired maneuvers in a helicopter to learn the 

optimal model. Next, a controller is found to simulate a flight based on the current model test 

control on the helicopter. The helicopter state includes position (x, y, z), orientation, velocity (ặ, 

ẻ, Ũ), and angular velocity (ɤx, ɤy, ɤz). The helicopter is controlled by four separate actions: 

cyclic pitch (u1, u2), tail rotor (u3) controls, and collective pitch angle (u4). This paper formulates 

the equations for acceleration and then integrates the accelerations together to obtain helicopter 

states. (Superscript b indicates the body coordinate for helicopter, coefficients A, B, C, D, and E 

are estimated from helicopter flight data, and ɤ on the right-hand side are zero mean Gaussian 

random variables.) 
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The reinforcement learning method has a sextuple of components (S, A, T, H, s(0), and R), 

including the set of states, S; the set of actions or inputs, A; and the dynamics model, T,
 
which is 

a set of probability distributions {P
t
su (s`|s,u}. The probability of being in state sô at time t+1 

given the state and action at time t are s and u. The component s(0) is the initial state, and R is the 

reward function. A policy ˊ=(u0, u1, éuh) is the relation from the actions to the states. The 

expected sum of the rewards when enacting the following policy “ is given by the following 

equation: 

 

Equation 47. 

The optimal policy ˊ
*
  is the policy that maximizes the expected sum of the rewards and is given 

as the following: 

 

Equation 48. 

where  

ˊ
*
 = optimal policy, 

s(t) = state in time tt, 

u(t) = action in time ὸt, and 

R(s(t), u(t)) = reward function according to policy ́ when taking action u(t) at state s(t). 

The RL method solves this linear quadratic regulator (LQR) control problem as the following: 

s(t+1) = A (t) s(t)+ B(t) u(t) + w(t) 

Equation 49. 

The reward for being in the state s(t) and taking the action/input u(t) is given by the following 

function: 

s (t)
T
 Q(t) s(t) ï u (t)

T
 R(t) u(t) 

Equation 50. 

where  

Q(t), R(t) = the positive semi-definite matrices that parameterize the reward function. 

In the differential dynamic programming (DDP) design for solving LQR, the error state is defined 

as the following:  
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Equation 51. 

where 

x, y, z = helicopter position 

ặ, ẻ, Ũ = velocity, and 

ɤx, ɤy, ɤz = angular velocity 

DDP is used in the first phase of control design to find the open-loop input sequence that would 

be optimal in a noise-free setting. During the second phase, the DDP is applied to design the 

actual flight controller with a deviation from the nominal open-loop input sequence with defined 

inputs. The reward function contains 24 features, including the squared error state variables, the 

squared inputs, and the squared change in the inputs between the consecutive time steps and the 

squared integral of the error state variables. The reinforcement learning algorithm finds the 

controller using a method of apprenticeship learning through the inverse reinforcement learning 

algorithm. The inverse reinforcement learning system provides reward weights that are closer to 

the expertise of a human pilot by increasing or decreasing the weight of the features that deviate 

from the expert. 

In the flip experiment, the cost matrices Q and R in the reward function are chosen by hand. The 

initial controller is oscillated in reality. The controller performs well with an increase in penalty 

for the changes in the inputs through consecutive time steps. The controller uses the same cost 

matrices for flips as it does when performing a roll. The controller outperforms the expert human 

pilots when it comes to both nose-in funnels and tail-in funnels. The DDP-based controller flies 

the helicopter successfully but only after being penalized for the controllerôs rapid change in 

actions over consecutive time steps. In conclusion, this paper uses the apprenticeship learning 

algorithms to determine the reward function and to learn the model. This is a two-phase 

controller design, first for a feasible trajectory and second for design of the actual controller. 

Although this idea looks very similar to our study, the experiment is not applicable in our 

problem. In their approach, the agent controller is under online training by a reinforcement 

learning algorithm. However, in our problem, we do not have the luxury to design an agent 

controller to control a vehicle online in the field and collect the data. Instead, naturalistic 

trajectory is the only information we have access to. In fact, offline training is the only option.  

Jouffe
(72)

 proposed a realistic approach, similar to our study, to deal with various continuous 

traffic state-action mapping problems. In their paper, two reinforcement learning methods, Fuzzy 

Actor-Critic Learning (FACL) and Fuzzy Q-Learning (FQL), were used to tune online the 

conclusion part of Fuzzy Inference Systems. The only information available for learning is the 

system feedback, which describes in terms of reward and punishment the task the fuzzy agent has 

to realize. At each time step, the agent receives a reinforcement signal according to the last action 

it has performed in the previous state. The problem involves optimizing not only the direct 

reinforcement, but also the total amount of reinforcements the agent can receive in the future. To 

illustrate the use of these two learning methods, the authors first applied them to a problem that 




































































































































































































































































