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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in® square inches 645.2 square millimeters mm’
ft? square feet 0.093 square meters m?
yd? square yard 0.836 square meters m?
ac acres 0.405 hectares ha
mi® square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft® cubic feet 0.028 cubic meters m®
yd® cubic yards 0.765 cubic meters m®
NOTE: volumes greater than 1000 L shall be shown in m*
MASS
oz ounces 28.35 grams o]
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius ©
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m® cd/m?
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 newtons N
Ibffin? poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm? square millimeters 0.0016 square inches in’
m? square meters 10.764 square feet ft?
m? square meters 1.195 square yards yd?
ha hectares 2.47 acres ac
km? square kilometers 0.386 square miles mi
VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m® cubic meters 35.314 cubic feet ft®
m® cubic meters 1.307 cubic yards yd®
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds b
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
“© Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m? candela/m? 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in?

*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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EXECUTIVE SUMMARY

OVERVIEW

Existing traffic analysis and management tool
environment and respond to it differently depending on the situation. The literature on
characterizing driver behavior is very limited. What research exists is typically limited to specific
locations (i.e., by collecting data on specific intersectionsre@eway sections) and is very

limited in scope. The majority of traffic modeling and parameter calibration research has
assumed somewhat similar driving conditions and behavioral sets for the entire driver
population. This approach does not capture or preitie effects of situational factors on

i ndividual driverso6 actions.

RESEARCH OBJECTIVES

This report documents the research findingthefFederal Highway Administration Exploratory
Advanced ResefabDrcihv éPrr oR e haastidyoThe goatof thisresdarth wasd

to characterize driver behavior under naturalistic driving experiences with respect to critical
parameters related to freeway drivihpre specifically, the research auafito determine critical
parameters related to freeway drivingridg critical events, including target speed selegtion
accelerationslane changing behavipcarfollowing distance response timesand emergency
stopping behavioffor representative condition®©f special interest to this research was the

integrated mdeling of both normal and safetyr i t i c al driving beyond
capabilities. Naturalistic driving data was analyzed and used as the basis for training 20
simulation agentseach of which encapsulatedn i ndi vi dual dri veor sO0 de

varying traffic situations. The developed agents were designed and trained to learn individual
drivers6 actions for any given traffic state
driver were retrieved from the Virginia Tech Transportationsit i t ut eés (VTTI)
naturalistic driving data. These characteristic driving rules of the agents were coded in a
microscopicsimulation environmen/ISSIM)t o t est and study their ef
in different conditions and scenariokhis research is expected to provide the simulation and
modeling industry with methods for developing more accurate and more sensitive traffic models.

It could also enable future research to develop new traffic simulation models that accurately
model driver behavior during incidents and other complex traffic situations.

NATURALISTIC DRIVING DATA

The research conducted in this project usasiralistic data as a source for training agents to
mimic the behavior of selected drivers during normal and safiétyal events Naturalistic data
collection is the collection of driver behavior and performance data in-avoelal environment.
Naturalistic data analysis provides an opportutotgxaminewhat happens in the final seconds
before crash, nearrash, andafetycritical evens for which an analyst would otherwise depend

on eye witness accounts and police reports. Data regarding vehicle speed, acceleration, range,
range rate, headway, time to collision (TTC), brake pedal input, and qualitatiyswtdtas pre

incident maneuversan be used to describe driver behavior. Other data such as roadway type,
number of lanes, traffic density, time of day, and weather can be used to describe the driving
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environment. Tying these data together allows researchamgleystand the exact conditions that

exist during crash events. Naturalistic driving data collection is a powerful approach used by
researchers to understand crash and -oeeh causation. As opposed to traditional
epidemiological and experimental/empaiicapproaches, thim situ process uses drivers who
operate vehicles that have been equipped with specialized sensors as well as processing and
recording equipment.

Naturalistic data collection methods require a sophisticated network of sgmemessorsand
recording systems. The Data Acquisition System (DAS) provides a diverse collection of both on
road driving and driver (participant, nainiving) data, including measures such as driver input
and performance (e.g., lane position, headway),dbur camera video views, and driver activity
data Figurel). This information may be supplemented by subjective data, such as questionnaire
data. A tremendous amount of data is acquired when carrying out these naturaligtsc studi

Figure 1. Screen shotNaturalistic driving data collection.

Due to the tremendous amount of information collected during these procedures, naturalistic data
collection methods require significant pastlection processing. Typically, the first step in the
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data reduction process is to identify events of intenesltiiding crashes, nearashes, and crash

relevant conflicts. To find events of interest, VTTI developed a Data Analysis and Reduction
Tool (DART) that scans the dataset using «tkfmed threshold algorithms to identify notable

actions (e.g., hard bralgn quick steering maneuvers, short tirbeollision (TTC), and lane
deviations (including median encroachments).
replayso of video data and associated dynami
captures both the observable causal sequences leading to events as well as the conditions and
correlates of event occurrence.

Three datasets were used in this study:

1 8-truck study database using 100 commercial motor vehicle (CMV) driversAfftmat
compmanies, yielding 735,000 miles (14,500 hours) of driving.data
1 34-truck study database using 103 CMV drivers fidfteet companies, yielding
approximately 2,300,000 miles of driving data
1 100-car study database, with approximately 2,000,000 vehicle reibesdedThis data
collected included 15 polieeeported crashes, 67 npolicereported crashes, and 761 near
crashes.
Nine truck drivers and eleven car drivers were selected for analysis and agent implementation
based on the type of crashes and toeashes they experienced. The drivers with the most
crashes and nearashes that were forward conflicts were selected.

EVALUATION AND EXTEN SION OF EXISTING MOD ELS

The research compared the performance of existinfpttawing models to establish a baseline

for comparisorwith the developed agents. In addition, it was envisioned that the developed
agents might be used in conjunction with existing models in a hybrid simulation approach, where
the agents might be invoked to simulate only safeitycal eventsSpecial attention was devoted

to the Wiedemann modélecauseahe prototype development was implemented in the VISSIM
simulation package with an underlying Wiedemann model, making the Wiedemann model a
good illustrative example for this effort.

Analysis ofnaturalistic data offered new insights into driver behavior by analyaingxorbitant

amount of caffollowing data for each driveiThe research team discovered and proposed new
thresholds for the Wiedemann model: a passing threshold and a hook foltbwésgold.The

addition of the passing threshold provides the model with the ability to easily transition from car
following to lanechanging behaviorThis threshold also provides a way to force-fcdiowing

behavior when a lane change is not possithe. addition of these new thresholds and the driver
specific equations i mproves upon twork drifkiinge d e man
behavior.

The Wiedemann model was further improved by replacing its acceleration equations in the
approaching closely approaching, acceleration following, and deceleration following regimes.

The GazisHermanRothery (GHR) model was given a different set of calibration parameters for

each of those regime3he reaction time,7, was used as a calibration parameteobtain a

measure of the attentiveness of the different drivers. The combination of the Wiedemann model

and the GHR model presents advantages when calibrating to tfhel@aing behaviors of

individual drivers.The hybrid Wiedeman®GHR model calibra®@ t o f our i ndi vi dt
results with Soercent to 4®ercent less error than the Wiedemann model aléigere?2).
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Figure 2. Graph. Comparison of carfollowing models

The developed model was compared wsiected,commonly used cafiollowing models,
including the GHR, Wiedeann, Fritzsche, Gippdntelligent Driver Model [DM), and the
velocity difference model (VDIFFEach model was calibrated by the use of a genetic algorithm.

A genetic algorithm was used because of its ability to adequately and accurately find the optimal
solution when multiple parameters are present, as in some of the models. Comparison results
found that different models have the least error for different drivers, but the VDIFF and the
Wiedemann model both performed adequately across all the drivexs. test

The hybrid model developed in this research allows better modeling of norrrallcaing
behaviorthan the comparison models. It alpoovides better andnore seamless integration
between cafollowing models of normal eventas well asagentbasedmodeling of safety
critical events. The behavior of drivers during safgitical events diffes from their normal
behavior and is better handled with the technigieseloped in this projediecause, unlike the
current models, thaybrid model hashe caacity to address the complex dynamics that occur
during a safetyritical event.

AGENT DEVELOPMENT

The research conducted in this project lbarconsidered a foundation for ageased modeling

and simulation of driver behavior basedraturalistic dataOne of the major contributions of

this research is the developed integrated framework for safety and operation afgbysis.

based modeling (ABM) is a new paradigm that consists of describing a system from the
perspective of its constituent units. Canp e d -d o wi © o pmo d ebasedmgodelimy e n t
bottomup, with systems that are characterized by many agents or decision makers with
dispersed control, many organizational levels, the ability of agents tq addghe use of

internal models to anticipate the future. Agbased modeling uses rules or equations to describe
individual behaviors, so an agdmised model actually starts with a set of rules and uses those
rules to generate data that can be analyzed.

The team developed agents that encapsulated individual driving behaviors of 11 car drivers and 9
truck driversThey al so devel oped two fimegad agents t
and truck drivers, respectivellyigure3 illustrates the learning process for the agents.
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The basic training for cdollowing behavior was handled avia backpropagation artificial
neural network (BFANN). BP-ANN is applied to associate the nonlinear relationship between
input states/actions and output states/actions. In this aaB:ANN network was used to
determine driver longitudinal actions imnmal caffollowing driving conditions and to estimate
based
was done by extracting céollowing epochs from the naturalistic driving database. The research
teamused both 14Hz and *Hz data from one cdiollowing episode, the sandatasethat was
used for the GHR cépllowing model calibration. The training performance for both thédz0

and 1Hz dataset demonstrated stronger performance by the agent tharelHR model, as

did the model validation using a different dataset.
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The research team also trained agents using +iemzg actorcritic reinforcement learning

(NFACRL). The proposedind revised NFACRL approach alleviates most of the computation

burden that was associated with the previously developed approdcats state variables
(e.g., speed) and driver actions (e.g., acceleration) are continuous, and conventional reinforced

learnng methods cannot solve higimensional, continuous state problems when agent actions
are not drawn from a discrete set. NFACRL is able to translatettafiic state input variables
into discrete fuzzy sets and generate continuous action using a wleaylgmge of discrete

actions.
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NFACRL consist of an actegritic reinforcement learning mechanism that performs a
reinforcement learning training through two parts: (1) an actor that is responsible for producing
an action corresponding to each state &)d(critic that is responsible for calculating the long

term reward for the produced action and use the reward to reinforce good actionsuidpart

of the NFACRL mechanism uses a neural network approach to update all the weights responsible
formapphg st ates to actions
NFACRL is responsible for transforming the continuous state space into single values
representing degrees of membership in predefined discrete fuzzy sets, allowing ftitlenaligor

handle highdimensional state spackll the safetycritical events availabl&om the naturalistic
database were used to train 20 agehte safetycritical events selected in this study are +ear

end crash and nearash conflict, especially wheafollowing vehicle reacts to sudden braking

or a sudden merge of the leading vehicle from the adjacent lane. When an event happens, the
driver of the following vehicle brakes or swerves to avoid the incoming contlising
naturalistic traffic states dndriving actions during crash and neaash events, this approach

was able to reproduce actual driver behavior during saféigal events with Rsquared values

as high as 0.9&rossvalidation was performed by applying the training for one agentgigrio

d r i MoereddasdFigureb)uThd periormangcefdahe 20 agents along with

the mega agents is shownTiable27 andTable28.
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Figure 5. Chart. Yaw angle of megaagent.
Table 1. R-squared values of the truckmegaagent.
Event Agent Agent Mega-Agent |Mega-Agent |Cross Validation |Cross Validation
Longitudinal |Lateral Longitudinal |Lateral with Agent A with Agent A
Acceleration |Acceleration |Acceleration |Acceleration |Longitudinal Lateral
Acceleration Acceleration
Driver A 0.97 0.97 0.98 0.97 0.98 0.97
Driver B 0.97 0.94 0.97 0.91 0.82 0.60
Driver C 0.98 0.96 0.97 0.96 0.93 0.86
Driver D 0.99 0.92 0.99 0.88 0.86 0.64
Driver E 0.88 0.96 0.81 0.95 0.47 0.76
Driver F 0.98 0.96 0.94 0.96 0.83 0.43
Driver G 0.86 0.98 0.84 0.88 0.86 0.62
Driver H 0.96 0.99 0.95 0.99 0.63 0.98
Driver | 0.95 0.98 0.93 0.98 0.48 0.75
Driver J 0.85 0.98 0.85 0.97 0.66 0.32
Table 2. R-squared values of the car megaagent.
Event Agent Agent Mega-Agent | Mega-Agent |Cross Validation | Cross Validation
Longitudinal |Lateral Longitudinal | Lateral with Agent D with Agent D
Acceleration |Acceleration|Acceleration | Acceleration|Longitudinal Lateral
Acceleration Acceleration
Driver a 0.94 0.94 0.93 0.70 0.90 0.50
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Driver b 0.97 0.94 0.96 0.79 0.82 0.30
Driver c 0.93 0.97 0.97 0.83 0.93 0.77
Driver d 0.97 0.93 0.96 0.93 0.97 0.93
Driver e 0.95 0.98 0.91 0.98 0.68 0.95
Driver f 0.97 0.92 0.96 0.89 0.92 0.86
Driver g 0.98 0.93 0.99 0.88 0.98 0.79
Driver h 0.98 0.93 0.99 0.89 0.98 0.90
Driver i 0.97 0.95 0.98 0.91 0.90 0.85
Driver | 0.95 0.92 0.99 0.89 0.98 0.65

Theresearch also usedobust agenactivation methodologpased on the correct recognition of
an impending safetgritical event using discriminam@inalysis A discriminant analysis was used

to find the specific combination of six variables that result sigaificantdifference between
normal and safetgritical driving episodeshat were extracted from the naturalistic datablase
the examples gtlied, there was a visible transition from safe or normal behavior to safety
critical behavior.This resulted in the ability to turn the agent behavior on andlo#. trained
agents offer benefits to behaviors in safetyical events. Furthemore becasge simulation
packages are designed to follow specific-folowing models, the ability to turn the agent
behavior on and off can be beneficighis also means that the agents could be trained only for
the safetycritical event behavior, and the datlowing models can be used otherwiadich
makes the application of the agents more flexible, bridging the gap between the current state of
practice and the new trained agent method.

Finally, the research developethe agentbased simulation components gtated with the
VISSIM simulation package through its driver model dll. Parameter files for 20 agents were
developed and delivered as part of this project. Evaluation of the developed agent prototypes
showed that the agents would adopt more realistic elextins than the Wiedemann model.

SIMULATION AND ANALY SIS

Developed agents were implemented in VISSIM and compared with the existing VISSIM car
following model.Evaluation metrics includetthe following:

1  Minimum following distance (m)

f Maximumdeceleration (m7.

1 Average acceleration (nf)s

f Average of absolute acceleration (Avs

1 Average speed (km/hr)

The Wiedemann céollowing model did not produce any conflicts when the timeollision

threshold was set to 1.5 Bhe agenbased modelproduced conflicts, with most of the agents
occasionally entering the fAemergencyo regi me,
lead vehicle, but the following distanceissméllh e agent 6s decel eration r
have resulteth several collision and ruaff-the-road incidents.

Summary of Operations Analysis

The qualitative and quantitative analysis on the simple linear VISSIM network revealed the
following findings:
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1 Most agents were able to enter the emergency regime, \@heageris speed is greater
than the | ead vehicleds yet headway 1 s sma
as implemented in VISSIMvere unable to enter the emergency regime, and instead
vehicleswereforced to decelerate at unrealistic rates todvoilisions.

1 Almost all agents were able to eliminate the improbably high deceleration rates used by
vehicles following the Wiedemann model as implemented in VISSIM. The agents instead
ran over, swerved, or collided with leading vehicles. The vast majofithe agents'
deceleration rates to avoid collisions were realistic.

1 Although agents experienced realistic deceleration rates, in many cases they did not
behave consiently across all simulation runsThe agents behavior indicates that
although eachgent is programmed to respond a certain way to a certain scenario, the
definition of that scenario may Isafficiently narrow that changes in the random seed fail
to recreate it. The definition of the scenario may need to be broadened or better defined
so that vehicles can behave in a more consistent way. This issue can be addressed by
exposing the agents to matatapoints during the training process.

1 The agents were trained to emphasize safetical modeling, and therefore the
frequency of crashes dmear crashes during an agbased episode was exaggerated.
This was intentional in this project to showcase the ability of agents to simulate safety
critical events. However, for the purpose of real analysis, the agents should take into
account the reatic probability of crashes and produce appropriate statistics. This should
be a focus for future research.

Summary of Safety Surrogate Analysisviodel

The safety surrogate measure analysis on the simple linear VISSIM network revealed the
following findings:

1 As expected, the agents produced many more safiigal events than when VISSIM
used the Wiedemanmrarfollowing model to control the following vehicleThe
Wiedemanrcarfollowing model never produced any conflicts when the TTC threshold
for a conflict was set at 1.5 s, regardless of the scenario being evaluated.

1 Several of the agents were not well suited to analysis @&inggate Safety Assessment
Model (SSAM). Agents that departed the roadway by a significant margin were not
properly classified as having caused safetiical events.

1 When the TTC threshold for conflicts was increased to 2.5 s, the Wiedemann model
sometimes produced conflictslowever, the numberna severity of conflicts with the
Wiedemann model were not as severe as when the agent was active.

1 Reactions of the agents following the safetijical event were sometimes not realistic.
Agents would repeat behaviors that creaaigtycritical evens nultiple times, or would
proceed following a collision as if nothing had happerigefore the agents can be
implemented in a more complex model, behaviors follovgatgetycritical events will
need to be rexamined for the agentl effect, noncollision ¥ents would need to reset
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to the traditional Wiedemann model, and collision events would need to be modeled by
having both vehicles come to a stop after the event.

The team suggestthat before the agents are ready to be implemented in a production
envirorment in VISSIM, several issues need to be resolved:

1. The areas of application (speeds, geometric conditions) where specific agents should be
used need to be defindBefore being used in a production environment, the selection of
appropriate agents for aespfic condition should be automated.

2. As a future research item, there is a need to estimate the frequency with which certain
agent behaviors occur in the driving population to ensure that they are modeled at
appropriate levels.

Once these changes are matlee inclusion of agents in VISSIM would offer a powerful
opportunity to examine safety implications of different designs, as well as to better assess the
impacts of incidents and other unpredictable driver behavior on travel time reliability.

CONCLUSIONS AND RECOMMENDATIONS

There are several suggestions for future research that can be categorized under theoretical,
applied, and related efforts. On the theoretical aspect, the next step of this research is the
extension of the developed NFACRL frameworlsitmulate other traffic behavior, such as lane
changing behavior and merging behavior in the upstream and downstream of ramps.

On the applied aspect, our initial evaluations on events beyond what the agents were trained for
revealed that agents can behave erratically in those cases. It is therefore recommended to train
agents using more detailed naturalisiataset (e.g. Stratgic Highway Research Program 2
naturalistic datasets). More importantly, research should be conducted to evaluate the potential of
using agenbased simulation to examine different design alternatives based on safety and
operation factors. The evaluatiofficet should examine unique or problematic geometry,

network design characteristics, and traffic conditions that necessitate both operational and safety
analysis (e.qg., different weather conditions) and compare the results to existing and/or known
outcomes

Finally, on the related research aspect, the research conducted in this report hakeshow
importance of two key future research issues:

1. Adaptability of agents in real time: agents could be programmed to adapt during the
simulation itself.
2. Human facto issues related to warning individual drivers about a change in their driving
behavior that might lead to a safefjtical event.

Future recommendations include the following:

1 Assess the frequency that certain agent behaviors occur in the actual plopirigtion

1 Extend the NFACRL framework to simulate other traffic behavior such as lane changing and
merging

Examire the adaptability of agents in re@he, i.e., reprogram them during the simulation
Examire human factor issues related to warning indlial human drivers about a change in
their driving behavior that might lead to a safetitical event.
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CHAPTER 1.INTRODUCTION

BACKGROUND

Existing raffic analysis and management tools do maidel the ability of drivers to recognize

their environmenand respond ta with behavios that vary according tthe encountered driving
situation.The s mal | body of | iterature on character
specific locatbns (i.e., by collecting data on specific intersections or freeway sections) and is

very narrow in scope. The majority of traffic modeling and parameter calibration research has
assumedsomewhat similar driving conditiorend behavioral sets for the entpepulation of
drivers. Di fferences I n driversod actions ar e
statistical distributions assigned to each driver type. The number and properties of driver types
used in this approach becomes a calibration issue,hwimight or might not improve the

modeling effort. This approach does not capture or predict the actions of individual drivers
responding differentially tsituational factors.

A comprehensive representation of driver behavior varying in response to emeduditiving
situations is not available in the literature and, therefore, reproduction of such behaviors using

statistical parameters is not adequate. At an
driver 6s percept i ononnmert ortclmegessnuther doiving gituatian, then v i r
vehiclebds position al ong idnelatidetootherveapiclgsat h, an.

This report documents the research findings offde@eral Highway Administration Exploratory
Advanced Researh P r ofgDraimWesr B e h astudyThe objectivd af thi research

was tocharacterize driver behavior under naturalistic driviogditions. More specifically, the
research aiedto determinecritical parameters related to freeway drivihging critical events

including target speed selectjosccelerationslane changing behavipcarfollowing distance

response timesand emergency stopping behavior for representative condit@hspecial

interest to this research was tinéegratedmoceling of both normal and safetyitical driving.

The techniques used in this research, namely dgps®d simulation techniques, allow modeling

of individual driver behavior beyoreix i st i ng model s6 capabilities.

OVERALL SCOPE OF THE EFFORT

The scope of # work wasto develop and implement intelligent agents that can encapsulate
individual din riespanse sodvarydng traific situmtioss. The developed agents were
designed to | earn individual dr edvremtsed/irgmiat i ons
Tech Transportation Instituteds (VTTI) databa
driving rules of the agents were coded in a VISSIM simulation environment to test and study
their effects on atgonditibns and scenbrias/(as dlustratediguak).f f er e
The goal of this effort is tprovide the industry with methods for developing more accurate and

more sensitive traffic simulation model3 his could also enablduture researcho developnew
generations of traffic simulation modelsat accurately model driver behavior during incite

and other complex traffic situations.
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REPORT ORGANIZATION

This report is organized as follows: Chapter 2 providesyrgthesis of the literature on key
domestic and international past and continuing studies oiffollawving and lanechanging
microscopic models, naturalistic data collection efforts, driver behavior and characteristics,
artificial intelligence learning témiques,and agenbased simulation. Chapter 3 describes the
VTTI naturalistic driving data processing and provides a summary of the car and truck drivers
that were selected for further analysis. Chapter 4 provides a detailed description of the
Wiedemann ar-following model andoutlinesthe procedure used to calibrate the model. The
chapter also describes how an improved \Wheashn model was developed based on the
information found in the naturalistic driving data. Chapter 5 describesielielopment of

intl | i gent agents that emul at e dAriifiviad intsligentact i on
techniques, such as reinforcement learning (Rtjficial neural networks, and fuzzy logic
implementations are also described. Chapter 6 discusses rolissitataechniques to activate

the developed agents for simulating safatyical events. The chapter describes the use of
discriminant analysis tarfd the difference between normal driving behavior aafitycritical
eventbehavior.Chapter 7 describes the agent implementation in the VISSIM platform to validate
the research methodology and identify potential implementation issues for future research.
Chapter 8 describes the evaluation of the developed prototypes and comparestthef regeiht

based simulation with Wiedemann (normal) simulation. Fin&llyapter 9 provides a summary

of the findings of the research and recommendafemfuture work.



CHAPTER 2.LITERATURE REVIEW

INTRODUCTION

Existing traffic analysis and management tools domat d e | driverso6 ability
environment and respond to it differently depending on the situation. There is very limited
literature on characterizing driver behavior. What research exists is typically limited to specific
locations (i.e., byallecting data on specific intersections or freeway sections) and is very limited

in scope. The majority of traffic modeling and parameter calibration research has assumed
somewhat similar driving conditions and behavioral sets for the entire driver popula

Di fferences i n driversod actions are represen
distributions assigned to each driver type. The number and properties of driver types used
influences calibration, and this influence might or might not imerthe modeling effort. This
approach does not capture or predict t he eff
actions. A comprehensive theoretical represen
encountered driving situations is ydimmited and, therefore, reproduction of such behaviors (or
actions) using statistal parameters is not adequate.

This chapter synthesizes a literature review conducted by the research team on key domestic and
international studies on céollowing and hnechanging microscopic models, naturalistic data
collection efforts, driver behavior and characteristics, and artificial intelligence learning
techniquesesgecially reinforcement learning.

CAR-FOLLOWING MODELS

In the last 50 years, a considerable amamintesearch has focused on modeling longitudinal

driver behavior, producing a large number of-ftdiowing model$”, including GazisHerman

Rothery (GHR) models, safety distance models, linear modats psychophysical or action

point models. Most microscopic models assume that human drivers react to the stimuli from
neighboring vaicles with the dominant influence originating from the directly leading vehicle

This is known asthe A f o Heb&a d er o-f oolrl ofwe¢ amarg0 approxi mati o
introduced fAsafe time headwayo afoldwingmodetssi r ed
required different levels of effqrand the results depend data availability, calibration method,

and model structure. The GHR model, for instance, requires the calibration of two parameters,
limiting the application of the model. The Gipps retd (a safedistance model) uses two
different transfer functions for reproducing f#ew and caffollowing conditions.
Psychophysical models, on thther hand, assume that the driver will perform an action when a
threshold (a function of speed difference and distance) is reached. Estimating distances and speed
differences among drivers makie difficult to calibrate the individual threshold assocthtgith

this model.Linear regression and heuristic algorithms (eggnetic algorithms) are two widely

used methods for model calibration. Despite different mechanisms and software isterfexe

multiple simulation softwarapplicationswere comparedhe resulting behavisrof the models

showved similarities® In addition, it seems thaérror cannot be eliminated even ifore
parameters are introduced.



The importance of not only developing calibration proceduout also interpreting obtained
calibration results is discussed@sserd® The three main findings wefl) measurement errors
can yield a onsiderable bias in the estimation results;p@pameters minimizing the objective
function do not necessarily capture following dynamics best;méjsurement errors
substantially reduce the sensitivity of the objective function and consequently rddtce t
reliability of the results. o

A significant part of the deviations between measured and simulated trajectories can be attributed
to theinterdrivervariability and thantradrivervariability (human drivers do not drive constantly

over time, and their levioral driving parameters chang&he later accounts for a large part of

the deviations between simulations and empirical observdtions

The first caffollowing model describing car following in terms of vehicle trajectory rather than

just velaities and spacing was proposed by Herrey and Herrey in.§948vithout extensive
experi mental basis, they proposed that a driv
the stopping distance), which results in a quadratationship between spacing and spéédte

safety distance modelsr collision avoidance modelepresents model in which the driver of

the following vehicle always keep a safetdigce to the vehicle in front.

Pipes Model

In 1953, Pipe® developed one of the first collowing modeb using the California Motor

Vehicle Code rulesial | ow at | east t he theesolgetttand debding v e h
vehicle for every ten miles per hour speed at

vehicle length of20 feet. The model is divided into two equatiomie first equation applies
when the lead vehicle has a constardetaration while trying to reach a cruising spe€be
second equation applies after the lead vehicle reaches and maintains the cruisin@apeed.
eguations estimate the acceleration of the following vehicle atttbased on the cruising speed
and accleration time of the lead vehicl&his model is presented in a fashion that is applicable to
a line of traffic with each vehicle accelerating according to the action of the vehicletinffibn

v ty
ak+1(t):T—rsz(F)1fo<t<To
Equation 1.
U t t—1o\].
a (t)z—[G,(—)—G,( )]1ft>T
k+1 TO k T k T 0
Equation 2.
where
t = time,
T= a time constant & 1,

a+1 = acceleration of the kth+1 (following) vehicle,
Vm= constant velocity of lead vehicle (cruising speed),

To=time for lead vehicle to reach cruising speed at a constant adoglérain rest at t=0, and
4



t2 t(k=1)

t t
-1 —pt R T P
Gr() =1—e |1+ +5+ =D

Equation 3.

where
Gk (1) is the ratio of an incomplete to a complete gamma transform function.

Most of the early work in car following assumed that the driver is able to consider the space
headway andhe relative speed between his car and the lead vehicle. To model this stimulus
response model, several approaches have been developed, including linear, proportional
approaches and ruleasel approaches based duozzy logic. In generalthese cafollowing

models compute the reaction of a following vehicle to the actions or stimulus of the leading
vehicle as Response (t) = Sensitivity X Stimulu¥)(tThe response of the following vehicle is
translated into an acceleration or deceleration in proportictme stimulus after a time lag T
(reaction time of the drer of the following vehicle).

The GM models

In 1958, a series of models were developed at the GM Reskatmratory by Chandler

Herman, and Montrdf’: Herman and Potf®: Gazis Herman, and Poft¢ '2: and Gazis,

Herman, and Rothely The most importat of these is theeneralized linear model, usually
know as the GM model. In faahost of the other models, for example Piesd Forbe§? are
special cases of the GModel.

Chandler, Hermarand Montrolf? proposed a linear modtiat assumethat the acceleration of
the following car depends exclusively on the speed difference between the cars

a, (£) = abv] ™™ (t - 7,)
Equation 4.

where
& (t) = acceleration applied by the drivierat timeo,
U= constant,

AV (= 1,) = VT (= 1) — v (E—T,),

Equation 5.

v;fmnt (t — 1,,)=subject speed at time (t — 7,,),

Equation 6.

t = time of observation, and



U, = reaction time for drivet.

Gazis Herman and Pott§' developed the GM 2 parameter model (GM2R)whichthe linear
model constant sensitivity term was further developed to consider the maocogoeed density
relationship and the space headway. The incorporation of the space headley ihgh the
driver is more sensitive to the action of the leading vehicle in the case of smaller headways.

Av{?‘ont ( £ — ‘fn)

a

n(t—Tn)

a’f‘t(t) = Ax

Equation 7.

where
mx (t-0) is the space headway at tirfte}) and
a = constant, estimated for eadhtasetising correlation analysis.

The model of Edigor the GM 3 parameter model (GM3Paddressethe shortcoming of the

linear model of fredlow speed at zero density and assumes that the reaction of the following car
depends also on the speed of the following car and not only on the speed difference and the
relative distance between the two carse Bensitivity is proportiomdo the speed and inversely
proportional to the square of the relative distance

v}l (I—)

— P _2MApM (-1
Axn (I_ _ Tn) n ( J’T)

a,(t) = «a

Equation 8.

The GazisHerman and Rothery modelsually refered toas the GHR model or as the general
carfollowing modd, was introduced in 1961 and is represented by the following equation

— q,m Av(t)
ar(t+T,) =cvf (t+T,) yers)

Equation 9.

where

T,=time between the observation of a certain stimulus and the retwtloat stimulus,
& (t + T;) = acceleration offte following vehicle at timé + T)),

Vi (t + T;) = speed of following vehicle at tin{e+ T,),

oV (t) = relative speed between the following car and the car immediately in front
(Vieader! Vfollower),

px X relgtive distance between following car and car immediately in {pQtierT Xtollower),
and

m, |, c= parameters describing the dalowing behavior.
6



The GHRmodelis therefore a general form of the early models. When |I=m=0, the GHR model
represerd that ofChandler,Herman and Mombll; when m =0and |=1, the model represents
Gazis,Germamma nd Pott sd model ;,thamodel repnesenk dni=el6 sa nndo d e=l 1.

The Wiedemann Model

In 1974, Wiedemanft® introduced a cafollowing model thatis based on psychophysical

behavior The Wiedemann model addresses two unrealiaBsumptions othe GM models:

(1) the driver follows the leading vehiclevhatever the spacing and (2) thedriver has perfect

reaction and response tim@he Wiedemannmodel has been improved since then by
Leutzbach® by introducing perceptual threshslds minimum valug of the stimulus.The

concept of thresholds itheWi ede mann mode|l c apt uimaodrglitonshoe dr i v
small space headway and the lack of explicit-folowing behaviorin large headway. In

addition, it allows themodel to explain the oscillation phenomena observed irfobowing

behaviors The following diagram(Figure 7) showsWiedemanncarfollowing thresholds with

respect to vehicle speed difference and space headway.

R |

Upper limit of reaction

Free driving

Closing q
in G\/O
= — SDX

OPD\/

Following

ABX

Emergency regime

AX
Y
0
Figure 7. Graph. Wiedemanncarf ol | owi ng model 6s t hreshol ds (
SDV, OPDV).4)
The following is a definition otheWiedemanncaf ol | owi ng model s t hr esh

1. The threshold AX represents the desired distance between atati@hicles. This distance
consists of the leading vehicle length and the desired-foergar distance.
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AX = L, 1+ AXadd + RND1, x AXmult

Equation 10.

where

L .1 =the leading vehicle length,

AXadd andAXmult are calibration parametend

RND1, is a normal distributed random number for vehicle (n).

2. The threshold ABX represents the desired minimum following distance at low speed
differences.

ABX = AX + BX

Equation 11

BX = (BXadd + BXmult X RND1,) X\v

Equation 12
_ {vn—l }cor Up = Up_q
Un }cor Un =Vp
Equation 13.

where
BXaddandBXmult are calibration parameteasd
v = vehicle speed

3. The threshold for maximum following distance, SDX, fall between 1.5 and 2.5 times ABX
SDX = AX + EX x BX

Equation 14.

EX = (EXadd + EXmult x (NRND — RND2,))

Equation 15.

where

EXaddandEXmult are calibration parameters,

NRND is a normal distributed random number, and
RNDZ2, is normal distributed driver dependent parameter.

8



4. The threshold approaching point, SDV, represents the point whereitee dotices that
he/she is approaching a slower vehicle.

Ax —L, 4 — AX)2

SDV = (
CX

Equation 16.

CX = CXconst X (CXadd + CXmult X (NRND1,, + RND2,))

Equation 17.

where
CXconst CXadd andCXmulti are calibration parameters.
5. The decreasing speed differencéSLDV) threshold provides a mechanism for a different

behavior when the driver approaches the leading vehicle more closely than the approaching
point. In VISSIM, CLDV is ignored and simply assumed to be equal to SDV.

6. The hcreasing speed differend®PDV) thresold describes the point where the driver
observes that he/she is traveling at a lower speed than the leader.

OPDV = CLDV x (— OPDVadd — OPDVmult x NRND)

Equation 18.

where
OPDVaddandOPDVmultare calibration parameteasd
NRDVis a normally distributed random number

The Fritzsche Model

Fritzsch&® developed a similar psychghysical model that has been used in Paramics
microsimulation software The modelhas multiple regimes that apply to different traffic
situatiors (i.e., normal cafollowing, free flow, closing in, etcas shownriFigure8) . Fr i t zs c h
model accounts for man perception in the definitions of the model regirasdrives perceive

only speed differences with certain magnitude. Fritzsche defined the thresholds for perception as:
perception threshold of positive speed difference (PTP) and perception threshwdative

speed difference (PTN). The model also incor |
headway.
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Figure 8. Graph. Different thresholds and regimes in the Fritzsche caifollowing model.®

1. Desired distance threshold, AD, represents thewhjeh following driver wants to maintain
AD = S, , +Tp X,
Equation 19.

where

Tp = a mrameter represang the desire time gap,
S,.1 = effective length of the leadingehicle, and
vy = following vehicle speed.

2. The risk distance threshold, AR, representsdistance at which thdriver apples heavy
deceleration to avoid collisions.

AR = Sp_1 + T, XVy_y

Equation 20.

where

10



T, = a parameter represang the risky time gap.

3. The safe distance threshold, AS, represents the smallest headway where positive acceleration
is accepted if the distance between the vehicles is increasing.

AS =S, , +T. xv,
Equation 21

where

Ts = a pprameter represang the safe distancéhreshold

4. The risk braking distance threshold, AB, represérdistancevhere maximum deceleration
is limited. Therefore collision is possible if the initial speed difference is large.

AB = AR + av”
- Ab,,
Equation 22

where
A‘bm = |bmfrt| + Ap—q
Equation 23.

Pmin, @-1 = aparameter controlling maximum deceleration.
The CA Model
The cellular automaton model, usually know as ®#odel*? simulates freeway traffic. Monte

Carlo simulations of this model show a transition from laminar traffic flow to-stapiwaves
with increasing vehicle density.

The CA model can be described as following seven St&f.
1. Determination of the randomization probability

Dp:if Sppa=landt, <t
p(vn (I—): th: tSJS'}I+1(t)) - po: l"f UJ‘I - 0 and I?.‘SIZ 2 t‘k.c
pq:in all other cases

Equation 24.
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where

d,
th =——,t; = mi t), hy),
N O R GO
Equation 25.
wheretg;denotes time vehicle stops.

. Acceleration. Determine the speed of vehicles in the next time Sigpis also taken into
considerationS, (t) is determined in Step. 5

If (Sps1(t) =0)or(t, = t;)thenv,(t+1) = min(vn (t) + a;\.,vk_mm.)
Equation 26.

Else v, (t + 1) = v, (1)

Equation 27.

where v max and & are the maximum speed and acceleration capacggpectively,of
vehicles of typek.

. Deceleration. Set speed restriction when the vehicle in front is too closdptatiag the
vehiclewithin the effective distano@,’™.

v,(t +1) = min (d.f;ff,v”(t_ + 1))

Equation 28.

. Randomization

If (rand() < p) thenv, (t + 1) = max(v,(t + 1) — 1,0)

Equation 29.
. Determinatiorof vehicle status identifié8,(t) in next timestep

0 if vy (t+1) >, (0)
Sn (t + 1) - S‘n (f) Lf vn(t + 1) =V (f)
1 if vt +1) < 5, (0)

Equation 30.

. Determinatiorof time stuckinside thgam (tsy).

12



. :{tst =ty +1ifv,(t+1)=0
* te =0 ify(t+1)>0

Equation 31
7. Updae position
x}t(t + 1) = x}t (I—) + vﬂ (I— + 1)

Equation 32

where

n = nth vehicle,

n+1=vehicle in front,

k =type of vehicle,

P, = accounting for impact of decelerating vehicle in near front,

Py = reflectthe delayto-start behaviors of vehicles stuck in traffic jam,
Py = other situations,

P, = probability of lane change,

th = dn/wy(t) = time headway ofith vehicle to front,

hy = preset time threshold of vehicle of type k in reflecting the effecsysfchronized
distance,

ts = min(v,(t),h) = final time threshold for initiating the consideration of the front brake light
effect, taking the vehicular speed into consideration,

tst = accumulated time of vehicle stuck in traffic jam,

tx c = time thresholdf vehicle of type k for initiating the stej-start behavior,
(3" = safe time gap for collision prevention,

Yo = duration of an individual time step,

d = space headway,

d.°" = effective distance ofith vehicle,

"= distance gap,

X = position ofnth vehicle,

* = gpeed first derivative of vehicular position),

¥ = acceleration/deceleratiosgcondierivative of vehicular position), and
o X= basic unit of roadway length

13



The SK Model

The safety condition the CA catfollowing modelis imposed by té termsgy,p (t) sY setting

the maximum velocity equal to the space gap between two successive vedgalelesof the
required deceleratiom.o address the fact that the CA model fails to reproduce metastable states
of very high throughput and hysteresis effects existingaffic flow, the model was generalide

to provide a ongarametricfamily of models with a parthat reproduces metastable states and
hysteresis usually knanasSK Model®? and represented e following

v < Vsare = b(@safe + Bsage )

Equation 33.
e =| 25242
Equation 34.
d, = b(a,p, +M)
Equation 35.

where

b = maximum deceleration

d, = braking distance of lead car

U, p=binteger and fractional pamtespectivelypf vy/b, and
ULate Bsate= integer and fractional part of

dytg , 1 1
®safe =l 275 +Z_§l

Equation 36.

The SKmodel is a development tfieCA modef?.1 n pl ace of the $KA mode
modeluses the updating rules below:

v = min[v(t) + b, Vinax :vsafe]
Equation 37.
vo = v, — €{vy — [v(t) — b]}

Equation 38.
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v(t+1) = Vran ,vo,v1

Equation 39.
x(t+1) =x(t) +v(t+1)

Equation 40.

where

U= parameter,

v1 = optimal velocity for next update,

Vmax = Maximum velocity of cars,

Vsafe= Maximum safe velocityand

vran, \p, Vo = arandom number betwee andv; = maximum decal
The IDM Model

The Intelligent Driver Model (IDM¥? is defined by théollowing acceleration functian

U (OV (Bt W (0), AV 1)\
1 (20 - (SO )]

a,(t+71)=a

Equation 41

v (£)Avn n—1 )

2\;'51 ma ¥, pmax abs

Ax;u‘n (vn (t):Avn,n—l(t)) =d+ Tsafe * vn(t) +

Equation 42.

where

P ¥, n1 (t) = approaching rate of the following vehicle,
v = desired speed,

Tsate Safe time headway,

a"®= maximum desired

b™* a@bs= ahsolute maximum desired deceleration of following vehicle,
U = acceleration compamnt,

P %-1, n (t) = distance headway, and

d = vehicle length.

This expression combines the acceleration strategguation43 towarda desiredspeedv’ on a
free road with the parametea for the maximum acceleratiort is further combinedvith the

15



brakingstrategyin Equation44, which is dominant if the current gapx.1, n (t) becomes smaller
than the desired minimum gap.
L (vn (_t)ﬂ
o

Equation 43.

Afree = A

* 2
a _ Axpin (Un (T), Avy g (t})
break — Axn—l,n (F)

Equation 44.
The Gipps Model

Gipps? developed the first general acceleration model that applies to bofblloaing and

free-flow conditions. The model determines the maximum acceterati based on: dr i ve
speed and minimum safe headwalie Gipps caffollowing model is implemented in AIMSUN.

In the Gipps caifollowing model, the acceleration is calculated for five different situations:

1 Vehicle moves in its desired speed
1 Vehicle in free move with speed less than the desired speed
1 Vehicle is accelerating from stopping position
1 Vehicle in a caffollowing state with constraint space headway
1 Vehicle in a caffollowing state with activaon collision constraint
The following threshllsc onst rai n vehicl enodelccel eration in G
max Vn (1) va (1)
vi(t+T) = v(t) +2.5a0% T (1 - vdesfred) .\jo.ozs + —Jesired
Equation 45.
b v (£)?
ve(t+T)=dr*.T. [(dP**.T)2 —di*™ . |2{x,_1(t) — s, 1 ()} — v, (¢).T — 7
n—1
Equation 46.
where

a,"® = maximum desired acceleration, vehicle n @y/s
d,"®= maximum desired deceleration, vehicle n /s
dn1 = estimation of maximum deceleration desired by vehiele(m/$),

Sn1 = effective length of vehicle

16



T =reaction time

d .1 = leader desired deceleratjand
Xn-1 = Vehicles spacing

The VDIFF Model

In the velocity difference mode(VDIFF),* the acceleration function consists of a term
proportionaltoagapd e pendent @A o Pt ii raad a ten ¢hhtaccounts yowelocity
differencesYV as a linear stimulusThe parametet is the relaxation timewhich describes the
adaptation to a new velocity due to changeis amd0. The sensitivity parameterconsiders the
crucial influence o®0. The properties of the VDIFF are defined by the function for the optimal
velocity VopdS).

The parameteo def i nes the desired velocity wunder fr
| e n dit detérmines the transition regime for thetmped functiomgoing fromv,e(s=0) = Oto

Vow- Vowhen the distance to the | eadi ngdefineshi cl es
the shape of the equilibrium fledensity relation. VDIFF exhibits collisions for some regimes of

the parameter space.

Table3 shows the major attributes of the -¢allowing models discussed above. The multiphase
column refers to whether the model calculates the position of thjecswehicle in multiple

steps. The multiregime column refers to whether the model calculates the position of the subject
vehicle with different equations depending on the regime the subject vehicle falls in.

Table 3. Major similarities and differences between cafollowing models

Model Multiphase Multi regime | SpeedDiff SpaceDiff Reaction Variable
Time Acceleration

Pipes Yes No Yes No Yes Yes

GM No No Yes Yes Yes Yes
Wiedemann No Yes Yes Yes No No
Fritzsche No Yes Yes Yes No No

CA Yes No No Yes No Yes

SK Yes No No Yes No Yes
IDM Yes No Yes Yes Yes Yes
Gipps Yes No Yes Yes Yes Yes
VDIFF No No Yes No Yes Yes

CAR-FOLLOWING MODELS AND SIMULATIO N SOFTWARE

Panwai and Df&® compareda number otarfollowing modelson simulation software including
AIMSUN, Paramics,and VISSIM. Usingdata collected bwn instrumented vehicldat records
differences in speed and headwdagafling speed, relative distance, relative speed, follower
acceleration)the data was simulated ugiMITSIM, the Wied/Pel modelthe Wied/Vis model,
the Nagel/Schreckenberg modehe optimal velocity model and the T3 model. The follower
vehicle was programmed for modeljrand speed, time, and distance headnayboth leader
and follower were captureél and compared to field measurements. Theidgadehicle was
simulated usinghe GETRAM module in AIMSUN an external file in VISSIM and an API
interface inParamics Performance measures and error indicat@seused to assess the fitness
Results showd similarities for psychophysical models in VISSIM dnaramics However, he
17



root mean squared error and qualitative drift and-geaking analyses showed a substantially
different casfollowing behavior folParamics

Siuhi and Kasekd?® Osakj®” Subranmanaiff® and Ahme&® modified he GM model by
separating the acceleration and deceleration responabke 4 compares the GM calibration
parameters for acceleration and decelenatnodels

Table 4. Comparison of parameter values in GMbased modefor acceleration and
deceleration modeld?®

Parameter Acceleration/ | Ozaki Subra- Ahmed | Toledo | Siuhi
Deceleration | (1993) main (1999) (2003) (2010)
(1996)
Driver sensitivity acceleration | 1.1 9.21 0.0225 0.0355 1.851
Driver sensitivity deceleration | 1.1 15.24 0.0418 0.860 3.247
Speed acceleration | -0.2 -1.667 0.722 0.291 -0.961
Speed deceleration | 0.9 1.086 N/A N/A 1.298
Relative speed acceleration | 1 1 0.600 0.520 0.667
Relative speed deceleration | 1 1 0.682 0.143 1.243
Separation acceleration | -0.2 0,884 -0.242 -0.16 0.667
Separation deceleration | -0.9 -1.659 -0.151 -0.565 -1.544
Driver response time lag (s) acceleration | N/A 1.97 N/A N/A 0.80
Driver response time lag (s) deceleration | N/A 2.29 N/A N/A 0.70
Stimulus response thresholdi(l) | acceleration | N/A N/A N/A N/A 1.30
Stimulus response thresholdi(l) | deceleration | N/A N/A N/A N/A -1.00

Siuhi and Kasek&® discussed findings in terms of GM calibration parameters. The study
concludedthat there was aeed forseparatedeceleration and acceleration mode¢éausehe
responses are impacted different,layd sdpgrationhe v e
between the vehicles

MODELING DRIVER BEHA VIOR

Several models aim to capture driver behavior. However, little is known about the differences in
carfollowing behavior between driverehicle combinationS® For examps, calibrating the
Wiedeman model, which captures driver indifference to small changes in the stimuli and allows
different execution modes including emergency braking, requires estimating 18 parameters found

in 17 different equation$” Microsimulation software packages use a variety offacdowing

modelsi ncl uding Gi pg#Md @ADSDRACUEIAS, Wi edemannod:
(CORSIM), and Fritec h e BPaamic¢s Automated calibration parametersuch as genetic
algorithms have been used to calibrate the distribution ofaowing sensitivity parametef&?

In addition, direct correlation with real driving vabies is rareand parameterization of objective
behavior is still in its infancy. Ossen et“Alstudied thecarfollowing behavior of individual
drivers using vehicle trajectory data extracted from ‘&golution digital images collected at a

high frequency from a helicopter. The analysis was performed by estimating the parameters of
different specifications aihhe GHR caifollowing rule for individual drivers The results showed

that measurement error has a larger influence than the component ofTheisestudy pointed

out that optimal parametediffer, and alsathat the suitability of aarfollowing modelappeas

to be based on the individual driver data.
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Brackstoneet al®? used data from a series of instrumented vehidtagen bytwo groups. The
independent variables for this study were age, approximate mileage driven per Yyear,
passivity/aggressiveness (R/K 50), driver externality anthternality ratings (DE and Dland
Sensation Seeking Scale V (SSSV). Among the results, the study showed that following behavior
may be split in twophases (between 30 and 50 miles), and there seems to be an inverse
relationship between following distance asensation seeking

MODEL CALIBRATION WI TH LONGITUDINAL TRAJECTORY DATA

Using two models of similar complexity (number of parametetts¢ Intelligent Driver Model

(IDM) and the Velocity Difference Model (VDIFF)Kesting and Treib&' researckd car
following behaviors bindividual drivers using publicly available trajectory d&ba a straight
onelane road in Stuttgart, Germanphey useda genetic algorithm to minimize the deviations
between the obsergiariving dynamics and the simulated trajectory. One of the major findings of
the study was that a significant part of the deviations between measured and simulated
trajectories can be attributed to timerdrivervariability and theintradriver variability (human

drivers do not drive constantly over time, and their behavioral driving parameters chérge)
latter accounts for a large part of the deviations between simulations and empirical observations.
The results showed that the calibrated parameteesaf theVDIFF strongly depend on the
optimization criterionwhile theIDM is more robustAlso, a deterministic cafollowing model

allows for only an average description of human driving behavior. The authors suggest using a
set of timedependent maal parameters reflectintedriver adaptation process.

Ossen and Hoogendodth analyzedrajectory datandfound mnsiderable differences between
carfollowing behaviors of individual driversThese differencesan beexpressed as different
optimal parameter values for reaction time and sensitifpecial software obtained the data
from digital imagescapturedat high frequency from a helicoptér the NetherlandsThree
models from the GHR modelfamily (Chander, Gazis and Edie)were analyzed with the
sensitivity parameterso and reaction times parametérderived from accelerations, relative
speeds and distancesWhen individual drivers were analyzed, one model outpeddrthe
othes. However, #ter resllts for all drivers were combinedp model outperformed the otlser
Resultsshow that in 8Qpercentof cass, a relationshipbetween the relative speed, distgnce
speed ofhefollowing car, andacceleration of théollowing car could bestablished

Menneni et al*® presented a calibration methodology based on integrated use of microscopic
and macroscopic datdMicroscopic data from the Next Generation Simulation (NGSIM) data
collection effort was utilized in range definition of calibration parameters and qualitative
calibration of the VISSIM Wiedemann efnllowing model. NGSIM data was used to produce
relative distanceversusrelative velocity graphs that contain vehicle followingtdnces and
speed oscillation.

Brockfeld et al® tesed the validity of different models through data collected from a
Differential Global Positioning Systeequippedvehicle on a test track in Japabata of the
leading vehicle was fed into the modela compute the headway time series of the following
vehicle Deviations between measured and simulated headways then usedin model
calibraton and validaibn. Brockfeld et al. tested and independently calibrateth@@els (CAO.1,
SK_STAR, OVM, IDM, IDMM, Newell, GIPPSLIKE, Aerde, PRITZSCHEBNd MitSim). The
cdibration resultsshowed thanho bestmodel exists andhatthe differences between individual
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drivers are larger than the differences between different modelsteShiésalso showed that
althoudh FRITZSCHE and MitSim hae a large number of parameters, they do not provide better
results in general.

Hoogendoorn and Hoogendo6fhproposed a generic calibration framework for joint estimation
of carfollowing models. The method employed relies on the generic form of most models and
weights each model based on its complexityis new approach can cressmpare models of
varying comgexity and even use multiple trajectories when individual trajectory data is scarce.
Prior information can also be used to realistically estimate parameter values.

DRAWBACKS OF PARAMET ER CALIBRATION METHO DS

Punzo and Tripof® addressed the problem of the calibration of the Gipps model. Traffic stream
models weredevelopedand stationary traffic data were usedcalibratethe model. By using
different combinations of microscopic parameters, the study provedhibadtipps model is
unable to reproduce unstable traffic phenoménstead, lhe study generated newmodel to
represenmmulticlass traffic scenarg

Rakha et af” presented a methodology to calibrate the Gipps model for the sttsdy

condition. Their work assumes that all drivers have similar behavand characteristics.
Researchers converted the -falfowing model into its associated maatopic traffic stream

model and calibrated key macroscopic parameters-flfreespeed, speed at capacity, capacity,

and jam density) using loop detector data. These calibration methods, however, can only estimate
the driverods andtanrmpsedinctavtemeagdri veroés actior
driving situations.

ALTERNATE MODELING O F THE DRIVING PROCESS

Hamdar andMahmassafi® challenge the traditional discre¢ent approach of mostar

following models They usehazardbased duration modelshich representhe driving process

as a continuous story divided into multiple
foll owingo and .oi fArseea frleswldpi schdaengi ng Isanes d
and thedurationof time thata driver is following a given leader; the probability of changing

lanes increaseaduringthe first minute and decreasafter that.The authors recommended further
studiesbecauseepisodes for the same driver are expectedatelsome interdependence and

drivers will surely have some influence on one another.

Hamdar et a*® assessed a recently formulated hasmsed duration cdollowing model on its
performance duringongested periodslo calibrate, lhey applied agenetic algorithmto car
following models with complex structurgscluding a freeflow region anda congested region.
The modelwas calibrated against microscopic trajectory diaiken fromthe NGSIM dataThe
utility of this model is derived from prospect theory of decigizaking under riskThe model
also considers genalty forthe risk of accidentsan expectation valyeand variance and
correlation time of acceleration.

DRIVING BEHAVIOR HET EROGENEITY

Chiabaut et d? studied driving behavior heterogeneity and proposeétaadology to estimate
the parameters ddewel | 6 $ollowimgrmodel (NCF) at a microscopic scale usirg0 NGSIM
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data. Driving behavior variability among drivers is appraised through the minimal spacing and
congested wave velocity distributions. Tiethod improves the existing calibration methods
due to the measurement.

Using vehicle trajectory data collected from dallowing experiments conducted onJapanese

test trackwith RTK GPS receiversRanjitkar and Nakats(if’ investigatedthe response time of

drivers. The data was further analyzed to estimate-tianant response tim&hen considering
interpersonal and intrapersonal differences infeowing behaviors uch as dr inver s o
time thresholdn different driving conditions. Significant intrapersonal variations were observed

for different speed patterndhough no definite trends were observed in such variations,
emphasizing that the influence of driving conditions and intsmeal variations in the response

ti me cannot be ignored. lt was also found th
conditions is significantly different fromesponse timender decelerating conditions.

Hamdar and Mahmassdfff continued their studies on different driver behaviors in a simulation
instead ofusing the usual homogeneous traffic stremidentify individual variations versus
collective traffic patterns. The model used a utility function that assesselahge in risk when
changing speeds and also the reward for increasingdorcingspeed The modelwas calibrated
using individual trajectory data from NGSIMsimulation was run for both homogeneous and
heterogeneous traffic. The results were scattemddlensity datapoints that created a triangular
shape. This is representative of instability and the hysteresis triamigieh are congestion
dynamics.

INTRODUCING INCIDENT PARAMETERS WITH TRAJ ECTORY DATA

Different attempts have been made to simusatketycritical evens with existing cafollowing
models. Most of the caffollowing models representnaenvironment free ofafetycritical
evens®Y The main factorsf anincidentfree environment depend on the model, varying from a
sensitivity term_ (GHR model),the assumption thahe following vehicle will decelera and
come to a rest before hitting the leader (Gipps), the desiredegpg(IDM, IDM M), or free
space to the vehiclehead constraints (CAHamdar et af?? list safetyconstraintsmposed in
several cafollowing models

Xineta“ proposed a model th#hanpaf mst d oe\wenuy cd e

capturing both safe and unsafe driver behavior. The datasets used include vehicle trajectories for
six crashes anébur nearcrashes in Minnesota as well as vehicle trajectories that were collected

in a test track in Japan using &P he longitudinal driving tasks were described as a negative
feedback control process between the external world and the-delkmieunit (DVU). The

authors assumed that the equations for the perceptual threshaddiafexpansionrate provide

i a gidaloand coherent mechanism for variable reaction.imeThe aut hdthes det e
vehicle acceleration or deceleration action based on checking whether safety conditions are true

or false.If the conditions are false he dri ver i s iriming atatefiwitboitc o n's c i
motivation for accelerating or decelerating. The situational factors do not include multilane
effects and do not incorporate personal- facto

decision process. While the idea is intrigy it still suffers from the limitations of statistical
techniquedecausdt still uses the Gipps model.

Hamdar and Mahmass&™ attempted to capture congestion dynamics and model acgicteTe
behaviorsby calibrating and modifying (relaxinggeven cafollowing models: GHR, Gipps,
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cellular automation (CA), SKthe intelligent driver model (IDM)the intelligent driver model
with memory (IDMM), and Wiedemanithe purpose of the investigation was to rdlaxsafety
term that was designed to avoid the creation of a dnasted following distance fronthe
abovementioned models and restrict the models to realistic decelerations using NGSIM data.

Chatterjeeand Davi§'® used VTTI naturalistic data to better define the critical elements that lead

to a rearend crashThe results demonsteathe feasibility of using vehicle trajectory data to
understand the interaction between individual
be modeled as a piecewise constant series of accelsrdu@irare input in the dynamic trajectory

mode] the authors try to overcome the simple brkstop modelTrajectories were duplicated

using the initial values for the state variables and the time history of the accelerations. Major
parameters were identifiedhe piecewise constant acceleratiorg toints where the driver
changes between different accelerations, the reaction time of the driver, and the critical headway.
To estimate the parametetisey used a Bayesian analysis (Markov Chain Monte Carlo), and the
numerical equatins were solved usinWINBUGS.

NATURALISTIC DATA

Naturalistic data collection is the collection of driver behavior and performance data in a natural
environment. Naturalistic data collection allowed researchers to examine what hbpfes

and duringcrash, neacrash, andsafetycritical evens for which researchers would otherwise
depend on eye witness accounts and police reports. Handled properly, data regarding vehicle
speed, acceleration, range, range rate, headway, time to collision (TTC), brake pedal input, and
gualitative data such as phecident maneuvers can be used to describe driver behavior.
Qualitative data such as roadway type, number of lanes, traffic density, time of day, and weather
can be used to describe the driving environment. Tying these data tagj&itvsrresearchers to
understand the conditions that exist durengevent and attain baseline data. As opposed to
traditional empirical approacheasaturalistic data collection process involeis/ers who operate
vehicles that have been equipped witka@alized sensorandrecording equipment-gure 10).

The drivers operate and interact with these vehicles during their normal driving routines while the
data collection equipment continuously records numerous items of interest during the enti
driving epoch (a prescribed driving period).

Naturalistic Data: 100-Car Database

The 100Car Naturalistic Driving Study®® conducted through VTTlwas a lightvehicle
naturalistic study in which 100 light vehicles were instrumented. TheCHGtudy was unique
in that it was the first studin which vehicles were instrumented with the primary goal of
collecting largescale, naturalistic driving dataA large percentage78%) of instrumented
vehicles belonged to the participants and were driven withoutspecial instructions.
Approximately 2 million vehicle mile43,000 hours of driving datajere inclded in the
datasetproviding arich dataset witfextreme cases of drng behavior and performance.

An in-depth analysis focusing on driver inattention conducted by Klauer ‘& abed data

collected in the 10@ar Naturalistic Driving Studyo establish a relationship beten driving

behavior and crasbr nearcrash involvementThe study usethaseline epochs reduced from the

raw 100Car database alongside thdl 100-Car study event databas@he baseline database

consisted of a sample of 20,006 &egmentsluring whichthe vehicle maintained &mi/h or

highervelocity. Crashand nearcrashrisks were calculatedasratios to normal, baseline driving
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data for different sources of inattentionlt was foundthat visually or manually engaging
secondary tasksesult inthreetimes greater crash onearcrash risk than attentive driving.
Researcheralsoconcluded thagilances that are 2 s lmngerresult in twice theisk of crastesor
nearcrastescompared taormal baseline driving.

Naturalistic Data: 34-Truck Database

VTTI also conductedrhe Drowsy Driver Warning System Field Operational Test (DDWS
FOT)*?, in which naturalisticdata was collected for 18 months from 103 commercigiomo
vehicle (CMV) drivers Drivers from three different fleet companigarticipated in the study
This database yielded approximately 2.2 million driving méded,once reducedyielded1,217
valid safetycritical eventsThe data were processed throwgtitware that flags potential events
of interest based on trigger threshold values.

Naturalistic Data: 8-Truck Database

Similarly, VTTI performed another larggcaleNat ur al i sti ¢ Truck “Dr i vin
investigating crash risk by identifying safetsitical eventselated todriver sleep/rest cycles and

crash countermeasurd&sontinuous driving performance data was collected forQRI¥ drivers

from four different fleet companiedata was collectediuring 4 monthsof normal driving

routine for4 weeks per driverApproximately 14,600 hours of driving deaad 735,000 driving
mileswere collectedMore than2,800 safetycritical evens were identifiedincluding13 crashes,

58 near crashes, 1,595 craskevant conflicts, and 1,218intentional lane deviations.

Fitch et al®® conducted an examination of driver behavior leading to-tramge crashes and
nearcrashes using the databasreated from the 160ar study. Several objectives were
investigated in this analysis: classifying the types of lane change events (e.g., severity and
directionoflanec hange events) and analyzing striking
strck vehicle driversodé behavi or Tha studly anahyeeti3s ur r ou r
lanechange events from tHEDO-Car study. The lanehanges were classified usitigeeevent

scenarioslt was found thahot all driversusedtheir turn signals wheohangng lanesto avoid a

forward crash threatt wasalsofound that drivers visually attend to one location at a.tife

study concluded that the use of drivassist systems can help drivers, especiallyeavy traffic

condtions.

Another study examining langhange behavior conducted by Lee ef%lexplored the nature
and severity of lane changes in a ndtstia driving environment.Sixteen commuters were
recruited to drive one of two instrumented research vehicledGodays eachHalf of the
participansd0 c ommut es weané halbopmmuied an a §.6.ahiglevayne change
identification was spafied by review of the vidgavhich soughthe initiation (first lateral move

by vehicle) and end points (vehicle settled in the destination lane) for each lane Gienigee
change was then categorized by maneuver type, direction, severity, urgemgdy, a
success/magnituddzleven categories of maneuver type were identified, including slow lead
vehicle, return, enter, and exit/prep ekituring the first data pagtrough all lane changes were
identified, graded, and classifietbtaling 8,667 lane chges categorized into one of the 11
maneuver typesThe authors reported thabet analysis of the fuldatasetresulted in many
interesting findings regarding frequency, duration, urgemey severity of lane changes in
regard to maneuver type, directi@and other classification variabléghe authors further studied
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a subset of the fulldatasetconsisting of 500 lane changes using sensor data collected from the
instrumented vehiclesnvestigaion of this additional sample includede followingvariables

Steering

Lateral acceleratian

Velocity.

Braking

Turn signal use

Eye glance location probability

Eye glance link value probability

Mean single glance time

Distance to forward and rearward POVs
TTC to forward and rearward POVs

=4 =4 =4 -8 _8_9_9_°_2°_-2

The sampld lane changes were more severe and were cases where a lane change collision
avoidance system (CAS) was likely to help thest The data from this study was used to
provide recommendatioran display location and activation criteriar designers of lanehange

CASs. The research providevaluable insight into the behaviors and parameters associated with
lane changesandthe archived dathasthe potential to answer other questions related teedri
behavior.

McLaughlin et af* explored the use of naturalistic driving study to investigate the potential of
avoiding reatend crashessing CASsFor this research efforteattime data from 13 resend
crashes and 70 reand neaicrashesvereinput to evaluatéhree collision avoidance algorithms.
The three CAS algorithms selected and modeled for evaluatoa Equations developed by
Knipling et al®?, linear regzression approach described in early CAMP &¥yrand a algorithm
developed by Brunson et &f

The methodology provided useful guidance bath estimating benefits achieved by the
algorithms and in estimating the frequency of alerts in normal driving situafitvesalgorithms
testedwere found t@eneratéigher than acceptabéerts.

Fitch et al® used naturalistic data collected by VTTI to study the safety benefits that may be
obtained by deploying a forward collision warning system for heavy vehRkesearcherased
kinematic motion equations and Monte Carlo simulatiothe study to evaluatihe effects of
forward collision warning KCW) alarmson driver forward collision avoidance behaviosing
rearend (RE) conflictdrom a previous naturalistic driving studihe naturalistic driving dataset
used was the DDWS FOMMet hods b as e thteligemt Vedhle niiadive Field
Operation Teswere used to identify thRE conflicts Researchers concluded tleahationwide
deployment of FCW systems in heavy vehicles could reduce the number of RE craspes® by

21 percentThese findings werdso found to be statistically significant.

McLaughlin et af®® conducted an investigatido identify factors associated with raff-road
(ROR) crashesising the 108Car Naturalistic Driving Study databaSée objective of the study
was toidentify conditions in whiclcROR crashes or nearashesccurred and the contributing
factors associated with thre ROR cashes and nearashes from the dataset were reviewed and
included in the analysis if the subjecthide crossed a roadway boundary or if a rapid severe
evasive maneuver wasdertaken by the driver to avoid a crafhe researchers also conducted
arandom review of the entire dataset to develop a baseline datalspsmtify the frequencyf
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the studed conditions The study founda small number of contributing factots 122 ROR
related events chosen for the investigatidnsingle factor was identified as the contributing
eventin 75 percent of the ROR eventshile multiple factorswere identified as contributing
factors in only25 percent of the caseSontributing factos of the ROR eventwere found to be:
distraction/inattention (40 percent), secondary task distra¢@6npercentand drivingrelated
inattention to the forwardomdway (4 percent Other factors included changes in roadway
boundaries, short following distances, and lead vehicle braking.

The naturalistic data relevant to this project can be divided into two main categosefety

critical evens andcar-following periods.Using naturalistic data in this project addredseveral

needs related to data attributes necessary to modeling and analysis as highlighted in previous
research. These attributes are mainly the ability to extract individual driving episodis/eer
allowing the analysis to recognize behavior that pertains to a particular driver and determine
whether that behavior changes between different episodes. The naturalistic datloatsthe

analysis to examine the heterogeneity of behavior amifiegesht drivers.

The carfollowing periodsused in this researcare representative of safe driving where one
vehicle follows another without any conflicts arisinthe safetycritical evens are the cases
where conflicts arise between two vehicles and evasibeakingmaneuversretaken to avoid a
collision.

AGENT-BASED MODELING IN TR ANSPORTATION

Agentbased modeling (ABM) is a new paradigm ttascribes system from the perspective of

its constituent unitS” Co mp ar e dd ot von o t noopd e-based madeliray gs dattonp,

with systems that are characterized by many agents or decision makers with dispersed control,
many organizational levels, the ability of agendsatapt and the use of internal models to
anticipate the futur€® ABM uses rules or equations to describe individual behaviorsnso
agentbased model actually starts with a set of rules and usesrtlles¢o generate data that can

be analyzed.

ABM is best applied when interactions between agents are complex, nonlinear, discontnuous
discrete.lt is also usefuwh en space is cruci al and agentso
individual is different, and when topology of interactions is heterogeneous and complex and
agents exhibit complex behavior, including learning and adapfafion

ABM has advantages based on the belief that agents are able to idgeadtbehaviors are
varied, and ABM facilitatesexperimentation computing and implemenhg changes in the
system. A circular published by the Transportation Research Board (TRB) Artificial Intelligence
and Advanced Computing Application committ@eprovides a useful introductory overvieof

the concept, structurand application oABM in transportatiopas illustrated irFigure9.

25



Complex
Emergent Behavior
of the System

Interaction Environment

Figure 9. lllustration. i Bot-tpm model i Yy of system

The ABM method is widely used in various areas of transportatimiuding simulation 6
vehicle or pedestrian flow, route choice modeling, {ehanging and cdollowing models, and
traffic simulation. The TRB circular refers to two known simulation models as -bgsetd
models TRANSIMS and MATSIM®?

When usingABM, types,attributes, allowable values of attributes, and initial values are defined

first. Once the agents are defined, the model needs to specify the interaction rules for the agents

so the agents will interact with one another and with their environment. A-lzaged model

can be programmed i n t he edbesofivdrooppokageaschgce o gr a mmi

REINFORCEMENT LEARNI NG METHOD

Reinforcement learning is a salbea of machine learning in computer science concerned with
how an agent is supposed todactions in an environment so as to maximize the notion of long
term reward. The objective of reinforcement learning algorithms is to find to a policy that maps
states to the actions the agent ought to take in those states. State in our case carrdra time f
trigger, speed, car following distance, yaw angle, and environnRahforcement learning
reinforces agestfor actions perforrad approximately close to naturalistic actions and perslize
agents folactionsthatare far away fronmaturalistic The ony information available for learning

is the system feedback, which descritehh e agent 6 sin tereng ofireward and a s k
punishment. At each time step, the agent receives a reinforcement signal according to the last
action it has performed in the preus state. The problem involves optimizing not only the direct
reinforcement, but also the total amount of reinforcements the agent can receive in the future.
Finally, reinforcement learning should extract driving rules franmaturalistic dataset and
esablish similar driveispecific state action mapping rules.

The rinforcement learning method has bgeimarily appliedto two transportation problems
finding optimal traffic control policy for intersection controllers and modeling driver behavior
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espedlly travel time and route choiaeetwork simulation or optimizationrgblems. There is
also afollow-up study to Abbeel et 4% in modeling helicopter control through learning from
an expert pilot to simulate the trajectory and movement of helicopter control.

REINFORCEMENT LEARNI NG USED IN TRAFFIC ADAPTIVE CONTROL
SYSTEMS

Optimization of traffic signals for efficient movementtodffic on urban streets is a challenging

part of an urban trafficontrol system. Adaptive system control has been used to reduce delay
and congestion through an array of traffic control and management strategies (such as SCATS).
The ability toexert realtime, adaptive control over a transportation process is useful for a variety
of intelligent transportation systems services, including control of a system of traffic signals,
paratransit vehicle dispatdontrol, and displagpg a dynamic route guidancestgm®?

By mapping states to actionthe objective of reinforcement learning algorithms applied in
adaptive control igo provide agent controllers with optimal policies, seeking the smallest
gueuing length and least numbef stops per vehicleaccording tochanges in thdraffic
environment.

Abdulhaf®? designed a test bed and tedrcontrollers by using Qearning The isolated traffic

signal testbed consisted of a simulated tpbase signal controlling the intersectiontwb two-

lane roads. Vehicle arrivals were generated using Poisson processes with average arrival rates on
each of four approaches.-I€arning agnts contrded each of the four approaches with two
phasesof control. State information available to the agent incllidgieue lengths and elapsed
phase time. From simulation results, the performance of networked signal systems and
integration with dynanai route guidance has improved. One restriction of the method is that their
adaptive control method used an intersection without any turning v&higl@ch is not
compatible with field data.

Jacob and Abdulh&? used corridor control in a followp study to their previous work araffic
system controf? They proposed an automated adaptive traffic corridor control using
reinforcement learning to develop a delirning adaptive integrated freewawrterial corridor
control for both recurring and nonrecurring congestibhe Q-learning approachs used to
provide an optimal control for a freeway corridor to determine the appropriate acthmsen
from staying on the current metering rate, indrepged time, decreasy red time and
decreamg red phase. Simulation softwaParamicsvas usedo train and evaluatanagent in an
offline model within a simulated environment.

Bingham® applied an actecritic reinforcement learning algorithm ia neurofuzzy traffic
signal control system with the purpose of minimigvehicular delay caused by the signal control
policy. The controller receivemeasuremestof incoming traffic anadhosegreen signal length
accordingly. A neural network adjusts the fuzzy controller by-furaing the form and location

of membership functions. Two phasere considered for any intersection. Reinforcement
learning in neurahetworks gives credit for successful system behavighich will be chosen
more often. In simulation experiments, the simulations were run at several different traffic
volumes and traffic detector locat®rThe result shows that different membership fiomst are
found optimalin different traffic situations. The advantage of fuzzy control systems over
traditional ones is their ability to use expert knowledge in the form of fuzzy ruleshesdhall
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number of parameters needétbwever, intersections usilyalhave four approaches and eight
movements, which makes this reinforcement learning approach less persuasive.

Choy et al® formed a multiagent architecture for réimhe coordinated signal control in an
urban traffic network. Three hierarchical layers of coligr agents exist: intersection, zoaad
regional controller. Fuzzy logic, neural netwsrland regional controllers are implemented to
agents. Each individual controller agent recommends an appropriate signal policy at tha end of
signal phase. An dime reinforcement learning module is used to update the knowledge base and
rules of agents based on online datih the objective of minimizing average deliaythe zone.

In all, 25 signalized intersections in a microscopic simulator were implementachétwork

Test results shoad that the muiagent system improved average delay and total vehicle stop
time compared with figdtime traffic signal control. The main contribution of this paper is the
formulation ofa multiagentbased architecture arah online reinforcement learning module. It
has shown thatn agent can coordinate its local goal with zone and regional objectives
autonomously.

Adam et al®® proposed a Qearning method applied ineducing the number of vehicles
traveling in dilemma zone. Algorithms used arbitrary policies to detergreen termination
based on the number gthicles inthe dilemma zone and whethéne dilemma zone has not
cleared after a period of time. A control agent develops an optimal policy by learninghigom
number of vehicles ithe dilemma zone. The optimal poligonsiders theaumber of vehicles
trapped in dilemma zone after taking actiorither extend the green or nbinlike arbitrary and
stationary policies deriveftom existing approaches, the control policy adapts to changes in
volume. Reinforcemerearningbased policy reducethe number of vehicles caught ithe
dilemma zone by upt32percentin the experimental simulation framework VISSIM.

REINFORCEMENT LEARNI NG IN TRANSPORTATION NETWORK PROBLEMS

Bogerset al®” focused on route choicesonsidering two types of learning: reinforcembased
learning and explicit beligbased learning (oluding memory decay)he researchers developed

a model that captures learning types from parameters calibrated from adatageetfrom
experimental research. The model dise Markov formulation fordaily updating, based on a
per sonbds b eltime Reinfoilceamentvas modaled dy including the latest 10 route
choices in the modeResults indicate that 20ercentof perceived travel time is from the most
recent experience. Furthermore, the reinforcement part of the model can make up a gignifican
part of the route utility and therefore should be a standard component in route choice models.

Arentze and Timmermafi& developed a framework for modeling dynamic choice based on a
theory of reinforcement learning and attipn becausendividuals develop and continuously
adapt choice rules while interacting with the environment. A reward function, incremental action
value functionsand action selection methodgerepresented in this activitdgased analysjigand

memory and seah played a key role in reinforcement learning. The reinforcement learning
concept assumes that actions produce positive rewards if they are reinforced and have a higher
probability of being repeated in future choice situations under similar condiandsactions

with negative outcomes tend to be avoided. The system assumes multistage decision making in
potentially very large condition spaces and can deal with stochastic, nonstationary, and
discontinuous reward functionérentze and Timmermans consideéra hypothetical case that
combinel route, destination, and mode choice for an activity undertanging conditions of the
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activity schedule and road congestion probabilities. The learning and adapionbust and

most successfulvhenthe systencthosea realistic reward reference level and assibonly a

modest weight to new rewards in updating action valdeas.e nt z e an d frameworke r ma n s
took exploration and adaption in choice behavior into accobot it did not take into
consideration environantal effects.

Han and Timmermaf® propose a general model of interactive learning behavior that evolves
toward equilibrium in strategic situations under the assumption that travelersclmage
particular choice options by taking into account their expectations about behavior of other
travelers.The properties of the model are examined by using numerical computer simulations.
The results of the simulations support the face validity of the formulated model.

Wahba and Shalab§) propose an operational prototype of an innovative framework for the

transit assignment problem hysing a learningbased approach. The proposed frewmk

represents passengés learning and decisiemaking activities. In this prototypea hypothetical

transit network consistlof 22 routes and 194 stops developed within a microsimulation platform
(Paramics).They then generated@®O0 passengers symiized to model the transit assignment
process in the peak morning periods. Reinfor
adapat i on and account for the differences i n pas
network. Usingthis technige, the prototype has demonstrated that the proposed approach can
simultaneously predict how passengers will choose their routes and estimate the total passenger
travel cost in a congested network as well as loads on different transit routes.

REINFORCEMENT LEARNING APPLIED IN TRAFFIC KINEMATIC PR OBLEM

Abbeel et al™® presentd the first successful autonomous completion of four aerobatic
manewersusing a real RC helicoptefiorward flip, sideways roll at low speed, tail funnel, and
nosein funnel. First, a pilot contrtédd the helicopter talefinea helicopter dynamics model and a
reward (cost) function. Then a controller optimized forrgsult model and reward functionss
formulated using the reinforcement learning (RL) algorithm. Differential dynamic programming
(DDP)wasused in this optimization process.

During the flip, the helicopter rotates 360 degrees forward around a lateral axis. In a right axial
roll, the helicopter rotates 360 degrees around its longitudinal axis. In-ia faihnel, the
helicopter repeatedly flies in a circle sideways with taihfing to center of the circle. Th@se

in funnel is similar to taiin funnel with the exception of the nose pointing to the center of the
circle.

The helicopter dynamics are modeled by the apprenticeship learning algorithm method. First, the
data is ctlected from a human pilot flying the desired maneuvers in a helicopteaton the
optimal model. Next, a controller is found to simulate a flight based on the current model test
control on the helicopter. The helicopter state includes pogition z), orientation, velocitya,

é, 0, and angular velocityyy, ¥y, ¥;). The helicopter is controlled by four separate actions:
cyclic pitch (us, uy), tail rotor (uz) controls, and collective pitch angles). This paper formulates

the equations for accelei@ and then integrates the accelerations together to obtain helicopter
states. (Superscrifitindicates the body coordinate for helicopter, coefficieAsB, C, D, and E

are estimated from helicopter flight datmyd¥ on the righthand side are zero ne&aussian
random variabley
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The reinforcement learning method has a sextuple of compof@ents, T, H, s(0),and R),
includingthe set of states; the set of actions or inputd, andthe dynamics modeT,, which is
a set of probability distributionfP's, (s'|s,u} The probability of being in stat at timet+1
given the state and action at titn@res andu. The componeng(0)is the initial stateandR is the
reward function. A policy’ fup, W, g s the relation from the actions to the stw@tThe
expected sum of the rewards whemacting the following policy* is given by thefollowing
equation

H
E[ZtZOR(s(t),u(t))M]

Equation 47.

The optimal policy ~ is the policythatmaximizes the expected sum of the rewards and is given
asthe following

' = argmax, E

Z R(s(t),u(t))|n]

Equation 48.
where
" = optimal policy,
s(t) = state in timeit,
u(t) = action in timed, and
R(s(t), u(t))=reward function according to policywhen taking actioni(t) at states(t).
The RL method solvethis linear quadratic regulator (LQR) control problenthesfollowing:
s(t+1) = A (t) s(t)+ B(t) u(t) + w(t)
Equation 49.

The reward for being in the stasét) and taking the action/input(t) is given by thefollowing
function

s (1) Q) s()i u (B R(t) u(t)
Equation 50.
where

Q(t), R(t)=the positive semdefinite matriceshatparameterize the reward function.

In the differential dynamic programming (DDP) design for solving LQR, the error state is defined
asthe following
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Equation 51

where

X, Y, z = lelicopter position
&, &, U= velocity, and

¥x, vy ¥z X¥angular velocity

DDP isused in the first phase of control design to find the dpep input sequence that would

be optimal in a noiséee setting. During the second phase, the DDP is applied to design the
actual flight controller with a deviation from the nominal op@op input sequence with defined

inputs. The reward function contains 24 features, including the squared error state variables, the
squared inputs, and the squared change in the inputs between the consecutive time steps and the
squared integral of the error statariables. The reinforcement learning algorithm finds the
controller using anethod of apprenticeship learning through the inverse reinforcement learning
algorithm. The inverse reinforcement learning system provides reward weights that are closer to
the expertise of a human pilot by increasing or decreasing the weight of the fethtaireeviate

from the expert.

In the flip experiment, the cost matrices Q and R in the reward function are chosen by hand. The
initial controller is oscillated in reality. Theontroller performs well with an increase in penalty

for the changes in the inputs through consecutive time steps. The controller uses the same cost
matrices for flips as it does when performing a roll. The controller outperforms the expert human
pilots when it comes to both nose funnels and tailn funnels. The DDased controller flies

the helicopter successfully but only after being penalized for the confliapid change in

actions over consecutive time steps. In conclusion, this paper useppi@nticeship learning
algorithms to determine the reward function and to learn the model. This is-phase
controller design, first for a feasible trajectory and second for design of the actual controller.

Although this idea looks very similar to ostudy, the experiment is not applicable in our
problem. In their approach, the agent controller is under online training reynforcement
learning algorithm. However, in our problem, we do not have the luxury to design an agent
controller to control a v&cle online in the field and collect the data. Instead, naturalistic
trajectory is the only information weaveaccess to. In fact, offline training is the only option.

Jouffé’? proposed a realistic approacsimilar to our studyto deal with various continuous

traffic stateaction mapping problem#n their paper, two reinforcement learning methdeszy
Actor-Critic Learning (FACL) and Fuzzy Qearning (FQL) were used to tune online the
conclusion part of Fuzzy Inference Systems. The only information available for learning is the
system feedback, which describes in terms of reward and punishment the fagkyregent has

to realize. At each time step, the agent receives a reinforcement signal according to the last action
it has performed in the previous state. The problem involves optimizing not only the direct
reinforcement, but also the total amounte@hforcements the agent can receive in the future. To
illustrate the use of these two learning methods, the authors first applied them to a problem that
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