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EXECUTIVE SUMMARY 

OVERVIEW 

Existing traffic analysis and management tools do not model drivers’ ability to recognize their 

environment and respond to it differently depending on the situation. The literature on 

characterizing driver behavior is very limited. What research exists is typically limited to specific 

locations (i.e., by collecting data on specific intersections or freeway sections) and is very 

limited in scope. The majority of traffic modeling and parameter calibration research has 

assumed somewhat similar driving conditions and behavioral sets for the entire driver 

population. This approach does not capture or predict the effects of situational factors on 

individual drivers’ actions. 

RESEARCH OBJECTIVES 

This report documents the research findings of the Federal Highway Administration Exploratory 

Advanced Research Program’s “Driver Behavior in Traffic” study. The goal of this research was 

to characterize driver behavior under naturalistic driving experiences with respect to critical 

parameters related to freeway driving. More specifically, the research aimed to determine critical 

parameters related to freeway driving during critical events, including target speed selection, 

accelerations, lane changing behavior, car-following distance, response times, and emergency 

stopping behavior for representative conditions. Of special interest to this research was the 

integrated modeling of both normal and safety-critical driving beyond existing models’ 

capabilities. Naturalistic driving data was analyzed and used as the basis for training 20 

simulation agents, each of which encapsulated an individual drivers’ decisions in response to 

varying traffic situations. The developed agents were designed and trained to learn individual 

drivers’ actions for any given traffic state. State and action combinations for each individual 

driver were retrieved from the Virginia Tech Transportation Institute’s (VTTI) database of 

naturalistic driving data. These characteristic driving rules of the agents were coded in a 

microscopic simulation environment (VISSIM) to test and study their effects on agents’ behavior 

in different conditions and scenarios. This research is expected to provide the simulation and 

modeling industry with methods for developing more accurate and more sensitive traffic models. 

It could also enable future research to develop new traffic simulation models that accurately 

model driver behavior during incidents and other complex traffic situations. 

NATURALISTIC DRIVING DATA 

The research conducted in this project uses naturalistic data as a source for training agents to 

mimic the behavior of selected drivers during normal and safety-critical events. Naturalistic data 

collection is the collection of driver behavior and performance data in a real-world environment. 

Naturalistic data analysis provides an opportunity to examine what happens in the final seconds 

before crash, near-crash, and safety-critical events for which an analyst would otherwise depend 

on eye witness accounts and police reports. Data regarding vehicle speed, acceleration, range, 

range rate, headway, time to collision (TTC), brake pedal input, and qualitative data, such as pre-

incident maneuvers, can be used to describe driver behavior. Other data such as roadway type, 

number of lanes, traffic density, time of day, and weather can be used to describe the driving 
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environment. Tying these data together allows researchers to understand the exact conditions that 

exist during crash events. Naturalistic driving data collection is a powerful approach used by 

researchers to understand crash and near-crash causation. As opposed to traditional 

epidemiological and experimental/empirical approaches, this in situ process uses drivers who 

operate vehicles that have been equipped with specialized sensors as well as processing and 

recording equipment. 

Naturalistic data collection methods require a sophisticated network of sensors, processors, and 

recording systems. The Data Acquisition System (DAS) provides a diverse collection of both on-

road driving and driver (participant, non-driving) data, including measures such as driver input 

and performance (e.g., lane position, headway, etc.), four camera video views, and driver activity 

data (Figure 1). This information may be supplemented by subjective data, such as questionnaire 

data. A tremendous amount of data is acquired when carrying out these naturalistic studies.  

 

Figure 1. Screen shot. Naturalistic driving data collection. 

Due to the tremendous amount of information collected during these procedures, naturalistic data 

collection methods require significant post-collection processing. Typically, the first step in the 
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data reduction process is to identify events of interest, including crashes, near-crashes, and crash-

relevant conflicts. To find events of interest, VTTI developed a Data Analysis and Reduction 

Tool (DART) that scans the dataset using user-defined threshold algorithms to identify notable 

actions (e.g., hard braking, quick steering maneuvers, short times-to-collision (TTC), and lane 

deviations (including median encroachments). All detected events are analyzed based on “instant 

replays” of video data and associated dynamic data recordings of the events. This analysis 

captures both the observable causal sequences leading to events as well as the conditions and 

correlates of event occurrence. 

Three datasets were used in this study: 

 8-truck study database using 100 commercial motor vehicle (CMV) drivers from 4 fleet 

companies, yielding 735,000 miles (14,500 hours) of driving data. 

 34-truck study database using 103 CMV drivers from 3 fleet companies, yielding 

approximately 2,300,000 miles of driving data. 

 100-car study database, with approximately 2,000,000 vehicle miles recorded. This data 

collected included 15 police-reported crashes, 67 non-police-reported crashes, and 761 near-

crashes. 

Nine truck drivers and eleven car drivers were selected for analysis and agent implementation 

based on the type of crashes and near-crashes they experienced. The drivers with the most 

crashes and near-crashes that were forward conflicts were selected. 

EVALUATION AND EXTENSION OF EXISTING MODELS 

The research compared the performance of existing car-following models to establish a baseline 

for comparison with the developed agents. In addition, it was envisioned that the developed 

agents might be used in conjunction with existing models in a hybrid simulation approach, where 

the agents might be invoked to simulate only safety-critical events. Special attention was devoted 

to the Wiedemann model because the prototype development was implemented in the VISSIM 

simulation package with an underlying Wiedemann model, making the Wiedemann model a 

good illustrative example for this effort. 

Analysis of naturalistic data offered new insights into driver behavior by analyzing an exorbitant 

amount of car-following data for each driver. The research team discovered and proposed new 

thresholds for the Wiedemann model: a passing threshold and a hook following threshold. The 

addition of the passing threshold provides the model with the ability to easily transition from car-

following to lane-changing behavior. This threshold also provides a way to force car-following 

behavior when a lane change is not possible. The addition of these new thresholds and the driver-

specific equations improves upon the Wiedemann model’s ability to represent real-world driving 

behavior.  

The Wiedemann model was further improved by replacing its acceleration equations in the 

approaching, closely approaching, acceleration following, and deceleration following regimes. 

The Gazis-Herman-Rothery (GHR) model was given a different set of calibration parameters for 

each of those regimes. The reaction time, T, was used as a calibration parameter to obtain a 

measure of the attentiveness of the different drivers. The combination of the Wiedemann model 

and the GHR model presents advantages when calibrating to the car-following behaviors of 

individual drivers. The hybrid Wiedemann-GHR model calibrated to four individual drivers’ 

results with 5 percent to 43 percent less error than the Wiedemann model alone (Figure 2). 
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Figure 2. Graph. Comparison of car-following models. 

The developed model was compared with selected, commonly used car-following models, 

including the GHR, Wiedemann, Fritzsche, Gipps, Intelligent Driver Model (IDM), and the 

velocity difference model (VDIFF). Each model was calibrated by the use of a genetic algorithm. 

A genetic algorithm was used because of its ability to adequately and accurately find the optimal 

solution when multiple parameters are present, as in some of the models. Comparison results 

found that different models have the least error for different drivers, but the VDIFF and the 

Wiedemann model both performed adequately across all the drivers tested.  

The hybrid model developed in this research allows better modeling of normal car-following 

behavior than the comparison models. It also provides better and more seamless integration 

between car-following models of normal events as well as agent-based modeling of safety-

critical events. The behavior of drivers during safety-critical events differs from their normal 

behavior and is better handled with the techniques developed in this project because, unlike the 

current models, the hybrid model has the capacity to address the complex dynamics that occur 

during a safety-critical event.  

AGENT DEVELOPMENT 

The research conducted in this project can be considered a foundation for agent-based modeling 

and simulation of driver behavior based on naturalistic data. One of the major contributions of 

this research is the developed integrated framework for safety and operation analysis. Agent-

based modeling (ABM) is a new paradigm that consists of describing a system from the 

perspective of its constituent units. Compared to “top-down” modeling, agent-based modeling is 

bottom-up, with systems that are characterized by many agents or decision makers with 

dispersed control, many organizational levels, the ability of agents to adapt, and the use of 

internal models to anticipate the future. Agent-based modeling uses rules or equations to describe 

individual behaviors, so an agent-based model actually starts with a set of rules and uses those 

rules to generate data that can be analyzed.  

The team developed agents that encapsulated individual driving behaviors of 11 car drivers and 9 

truck drivers. They also developed two “mega” agents that encapsulated the behaviors of all car 

and truck drivers, respectively. Figure 3 illustrates the learning process for the agents.  
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Figure 3. Illustration. Agent learning process. 

The basic training for car-following behavior was handled via a back-propagation artificial 

neural network (BP-ANN). BP-ANN is applied to associate the nonlinear relationship between 

input states/actions and output states/actions. In this case, a BP-ANN network was used to 

determine driver longitudinal actions in normal car-following driving conditions and to estimate 

state transition based on current traffic state and an agent’s longitudinal action. Basic training 

was done by extracting car-following epochs from the naturalistic driving database. The research 

team used both 10-Hz and 1-Hz data from one car-following episode, the same dataset that was 

used for the GHR car-following model calibration. The training performance for both the 10-Hz 

and 1-Hz datasets demonstrated stronger performance by the agent than by the GHR model, as 

did the model validation using a different dataset. 

The research team also trained agents using neuro-fuzzy actor-critic reinforcement learning 

(NFACRL). The proposed and revised NFACRL approach alleviates most of the computation 

burden that was associated with the previously developed approaches. Traffic state variables 

(e.g., speed) and driver actions (e.g., acceleration) are continuous, and conventional reinforced-

learning methods cannot solve high-dimensional, continuous state problems when agent actions 

are not drawn from a discrete set. NFACRL is able to translate high-traffic state input variables 

into discrete fuzzy sets and generate continuous action using a weighted average of discrete 

actions.  
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NFACRL consist of an actor-critic reinforcement learning mechanism that performs a 

reinforcement learning training through two parts: (1) an actor that is responsible for producing 

an action corresponding to each state and (2) a critic that is responsible for calculating the long-

term reward for the produced action and use the reward to reinforce good actions. The neuro part 

of the NFACRL mechanism uses a neural network approach to update all the weights responsible 

for mapping states to actions based on the actor’s calculated reward. The fuzzy part of the 

NFACRL is responsible for transforming the continuous state space into single values 

representing degrees of membership in predefined discrete fuzzy sets, allowing the algorithm to 

handle high-dimensional state space. All the safety-critical events available from the naturalistic 

database were used to train 20 agents. The safety-critical events selected in this study are rear-

end crash and near-crash conflict, especially when a following vehicle reacts to sudden braking 

or a sudden merge of the leading vehicle from the adjacent lane. When an event happens, the 

driver of the following vehicle brakes or swerves to avoid the incoming conflict. Using 

naturalistic traffic states and driving actions during crash and near-crash events, this approach 

was able to reproduce actual driver behavior during safety-critical events with R-squared values 

as high as 0.98. Cross-validation was performed by applying the training for one agent (driver) to 

another driver’s situation (Figure 4 and Figure 5). The performance of the 20 agents along with 

the mega agents is shown in Table 27 and Table 28. 

 

 

 

Figure 4. Graph. Acceleration of mega-agent. 
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Figure 5. Chart. Yaw angle of mega-agent. 

 

Table 1. R-squared values of the truck mega-agent. 

Event Agent 

Longitudinal 

Acceleration 

Agent 

Lateral 

Acceleration 

Mega-Agent 

Longitudinal 

Acceleration 

Mega-Agent 

Lateral 

Acceleration 

Cross Validation  

with Agent A 

Longitudinal 

Acceleration 

Cross Validation 

with Agent A 

Lateral 

Acceleration 

Driver A 0.97 0.97 0.98 0.97 0.98 0.97 

Driver B 0.97 0.94 0.97 0.91 0.82 0.60 

Driver C 0.98 0.96 0.97 0.96 0.93 0.86 

Driver D 0.99 0.92 0.99 0.88 0.86 0.64 

Driver E 0.88 0.96 0.81 0.95 0.47 0.76 

Driver F 0.98 0.96 0.94 0.96 0.83 0.43 

Driver G 0.86 0.98 0.84 0.88 0.86 0.62 

Driver H 0.96 0.99 0.95 0.99 0.63 0.98 

Driver I 0.95 0.98 0.93 0.98 0.48 0.75 

Driver J 0.85 0.98 0.85 0.97 0.66 0.32 

 

Table 2. R-squared values of the car mega-agent. 
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Driver a 0.94 0.94 0.93 0.70 0.90 0.50 
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Driver b 0.97 0.94 0.96 0.79 0.82 0.30 

Driver c 0.93 0.97 0.97 0.83 0.93 0.77 

Driver d 0.97 0.93 0.96 0.93 0.97 0.93 

Driver e 0.95 0.98 0.91 0.98 0.68 0.95 

Driver f 0.97 0.92 0.96 0.89 0.92 0.86 

Driver g 0.98 0.93 0.99 0.88 0.98 0.79 

Driver h 0.98 0.93 0.99 0.89 0.98 0.90 

Driver i 0.97 0.95 0.98 0.91 0.90 0.85 

Driver j 0.95 0.92 0.99 0.89 0.98 0.65 

The research also used a robust agent activation methodology based on the correct recognition of 

an impending safety-critical event using discriminant analysis. A discriminant analysis was used 

to find the specific combination of six variables that result in a significant difference between 

normal and safety-critical driving episodes that were extracted from the naturalistic database. In 

the examples studied, there was a visible transition from safe or normal behavior to safety-

critical behavior. This resulted in the ability to turn the agent behavior on and off. The trained 

agents offer benefits to behaviors in safety-critical events. Furthermore, because simulation 

packages are designed to follow specific car-following models, the ability to turn the agent 

behavior on and off can be beneficial. This also means that the agents could be trained only for 

the safety-critical event behavior, and the car-following models can be used otherwise, which 

makes the application of the agents more flexible, bridging the gap between the current state of 

practice and the new trained agent method. 

Finally, the research developed the agent-based simulation components integrated with the 

VISSIM simulation package through its driver model dll. Parameter files for 20 agents were 

developed and delivered as part of this project. Evaluation of the developed agent prototypes 

showed that the agents would adopt more realistic decelerations than the Wiedemann model.  

SIMULATION AND ANALYSIS 

Developed agents were implemented in VISSIM and compared with the existing VISSIM car-

following model. Evaluation metrics included the following: 

 Minimum following distance (m). 

 Maximum deceleration (m/s
2
). 

 Average acceleration (m/s
2
). 

 Average of absolute acceleration (m/s
2
). 

 Average speed (km/hr). 

The Wiedemann car-following model did not produce any conflicts when the time-to-collision 

threshold was set to 1.5 s. The agent-based models produced conflicts, with most of the agents 

occasionally entering the “emergency” regime, where the agent’s speed is greater than that of the 

lead vehicle, but the following distance is small. The agent’s deceleration rates were realistic and 

have resulted in several collision and run-off-the-road incidents.  

Summary of Operations Analysis 

The qualitative and quantitative analysis on the simple linear VISSIM network revealed the 

following findings: 
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 Most agents were able to enter the emergency regime, where an agent’s speed is greater 

than the lead vehicle’s yet headway is small. Vehicles following the Wiedemann model 

as implemented in VISSIM were unable to enter the emergency regime, and instead 

vehicles were forced to decelerate at unrealistic rates to avoid collisions. 

 Almost all agents were able to eliminate the improbably high deceleration rates used by 

vehicles following the Wiedemann model as implemented in VISSIM. The agents instead 

ran over, swerved, or collided with leading vehicles. The vast majority of the agents' 

deceleration rates to avoid collisions were realistic. 

 Although agents experienced realistic deceleration rates, in many cases they did not 

behave consistently across all simulation runs. The agents’ behavior indicates that 

although each agent is programmed to respond a certain way to a certain scenario, the 

definition of that scenario may be sufficiently narrow that changes in the random seed fail 

to re-create it. The definition of the scenario may need to be broadened or better defined 

so that vehicles can behave in a more consistent way. This issue can be addressed by 

exposing the agents to more data points during the training process. 

 The agents were trained to emphasize safety-critical modeling, and therefore the 

frequency of crashes and near crashes during an agent-based episode was exaggerated. 

This was intentional in this project to showcase the ability of agents to simulate safety-

critical events. However, for the purpose of real analysis, the agents should take into 

account the realistic probability of crashes and produce appropriate statistics. This should 

be a focus for future research.  

Summary of Safety Surrogate Analysis Model 

The safety surrogate measure analysis on the simple linear VISSIM network revealed the 

following findings: 

 As expected, the agents produced many more safety-critical events than when VISSIM 

used the Wiedemann car-following model to control the following vehicle. The 

Wiedemann car-following model never produced any conflicts when the TTC threshold 

for a conflict was set at 1.5 s, regardless of the scenario being evaluated. 

 Several of the agents were not well suited to analysis using Surrogate Safety Assessment 

Model (SSAM). Agents that departed the roadway by a significant margin were not 

properly classified as having caused safety-critical events. 

 When the TTC threshold for conflicts was increased to 2.5 s, the Wiedemann model 

sometimes produced conflicts. However, the number and severity of conflicts with the 

Wiedemann model were not as severe as when the agent was active. 

 Reactions of the agents following the safety-critical event were sometimes not realistic. 

Agents would repeat behaviors that created safety-critical events multiple times, or would 

proceed following a collision as if nothing had happened. Before the agents can be 

implemented in a more complex model, behaviors following safety-critical events will 

need to be re-examined for the agents. In effect, noncollision events would need to reset 
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to the traditional Wiedemann model, and collision events would need to be modeled by 

having both vehicles come to a stop after the event. 

The team suggests that before the agents are ready to be implemented in a production 

environment in VISSIM, several issues need to be resolved: 

1. The areas of application (speeds, geometric conditions) where specific agents should be 

used need to be defined. Before being used in a production environment, the selection of 

appropriate agents for a specific condition should be automated. 

2. As a future research item, there is a need to estimate the frequency with which certain 

agent behaviors occur in the driving population to ensure that they are modeled at 

appropriate levels. 

Once these changes are made, the inclusion of agents in VISSIM would offer a powerful 

opportunity to examine safety implications of different designs, as well as to better assess the 

impacts of incidents and other unpredictable driver behavior on travel time reliability.  

CONCLUSIONS AND RECOMMENDATIONS 

There are several suggestions for future research that can be categorized under theoretical, 

applied, and related efforts. On the theoretical aspect, the next step of this research is the 

extension of the developed NFACRL framework to simulate other traffic behavior, such as lane-

changing behavior and merging behavior in the upstream and downstream of ramps.  

On the applied aspect, our initial evaluations on events beyond what the agents were trained for 

revealed that agents can behave erratically in those cases. It is therefore recommended to train 

agents using more detailed naturalistic datasets (e.g., Strategic Highway Research Program 2 

naturalistic datasets). More importantly, research should be conducted to evaluate the potential of 

using agent-based simulation to examine different design alternatives based on safety and 

operation factors. The evaluation effort should examine unique or problematic geometry, 

network design characteristics, and traffic conditions that necessitate both operational and safety 

analysis (e.g., different weather conditions) and compare the results to existing and/or known 

outcomes.  

Finally, on the related research aspect, the research conducted in this report has shown the 

importance of two key future research issues: 

1. Adaptability of agents in real time: agents could be programmed to adapt during the 

simulation itself. 

2. Human factor issues related to warning individual drivers about a change in their driving 

behavior that might lead to a safety-critical event. 

Future recommendations include the following: 

 Assess the frequency that certain agent behaviors occur in the actual driving population. 

 Extend the NFACRL framework to simulate other traffic behavior such as lane changing and 

merging. 

 Examine the adaptability of agents in real time, i.e., reprogram them during the simulation. 

 Examine human factor issues related to warning individual human drivers about a change in 

their driving behavior that might lead to a safety-critical event. 



 

1 

 

CHAPTER 1. INTRODUCTION 

BACKGROUND 

Existing traffic analysis and management tools do not model the ability of drivers to recognize 

their environment and respond to it with behaviors that vary according to the encountered driving 

situation. The small body of literature on characterizing drivers’ behavior is typically limited to 

specific locations (i.e., by collecting data on specific intersections or freeway sections) and is 

very narrow in scope. The majority of traffic modeling and parameter calibration research has 

assumed somewhat similar driving conditions and behavioral sets for the entire population of 

drivers. Differences in drivers’ actions are represented merely by drawing samples from 

statistical distributions assigned to each driver type. The number and properties of driver types 

used in this approach becomes a calibration issue, which might or might not improve the 

modeling effort. This approach does not capture or predict the actions of individual drivers 

responding differentially to situational factors. 

A comprehensive representation of driver behavior varying in response to encountered driving 

situations is not available in the literature and, therefore, reproduction of such behaviors using 

statistical parameters is not adequate. At any instant, a driver’s action will be influenced by the 

driver’s perception of the surrounding environment or changes in the driving situation, the 

vehicle’s position along its driving path, and the vehicle’s position relative to other vehicles.  

This report documents the research findings of the Federal Highway Administration Exploratory 

Advanced Research Program’s “Driver Behavior in Traffic” study. The objective of this research 

was to characterize driver behavior under naturalistic driving conditions. More specifically, the 

research aimed to determine critical parameters related to freeway driving during critical events, 

including target speed selection, accelerations, lane changing behavior, car-following distance, 

response times, and emergency stopping behavior for representative conditions. Of special 

interest to this research was the integrated modeling of both normal and safety-critical driving. 

The techniques used in this research, namely agent-based simulation techniques, allow modeling 

of individual driver behavior beyond existing models’ capabilities. 

OVERALL SCOPE OF THE EFFORT 

The scope of the work was to develop and implement intelligent agents that can encapsulate 

individual drivers’ decisions in response to varying traffic situations. The developed agents were 

designed to learn individual drivers’ actions for any given traffic state retrieved from the Virginia 

Tech Transportation Institute’s (VTTI) database of naturalistic driving data. These characteristic 

driving rules of the agents were coded in a VISSIM simulation environment to test and study 

their effects on agents’ behavior in different conditions and scenarios (as illustrated in Figure 6). 

The goal of this effort is to provide the industry with methods for developing more accurate and 

more sensitive traffic simulation models. This could also enable future research to develop new 

generations of traffic simulation models that accurately model driver behavior during incidents 

and other complex traffic situations. 
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Figure 6. Illustration. System representation of driver’s response to encountered traffic 

situation. 

REPORT ORGANIZATION 

This report is organized as follows: Chapter 2 provides a synthesis of the literature on key 

domestic and international past and continuing studies on car-following and lane-changing 

microscopic models, naturalistic data collection efforts, driver behavior and characteristics, 

artificial intelligence learning techniques, and agent-based simulation. Chapter 3 describes the 

VTTI naturalistic driving data processing and provides a summary of the car and truck drivers 

that were selected for further analysis. Chapter 4 provides a detailed description of the 

Wiedemann car-following model and outlines the procedure used to calibrate the model. The 

chapter also describes how an improved Wiedemann model was developed based on the 

information found in the naturalistic driving data. Chapter 5 describes the development of 

intelligent agents that emulate drivers’ actions for any given traffic state. Artificial intelligent 

techniques, such as reinforcement learning (RL), artificial neural networks, and fuzzy logic 

implementations are also described. Chapter 6 discusses robust statistical techniques to activate 

the developed agents for simulating safety-critical events. The chapter describes the use of 

discriminant analysis to find the difference between normal driving behavior and safety-critical 

event behavior. Chapter 7 describes the agent implementation in the VISSIM platform to validate 

the research methodology and identify potential implementation issues for future research. 

Chapter 8 describes the evaluation of the developed prototypes and compares the results of agent-

based simulation with Wiedemann (normal) simulation. Finally, Chapter 9 provides a summary 

of the findings of the research and recommendations for future work. 
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CHAPTER 2. LITERATURE REVIEW 

INTRODUCTION 

Existing traffic analysis and management tools do not model drivers’ ability to recognize their 

environment and respond to it differently depending on the situation. There is very limited 

literature on characterizing driver behavior. What research exists is typically limited to specific 

locations (i.e., by collecting data on specific intersections or freeway sections) and is very limited 

in scope. The majority of traffic modeling and parameter calibration research has assumed 

somewhat similar driving conditions and behavioral sets for the entire driver population. 

Differences in drivers’ actions are represented merely by drawing samples from statistical 

distributions assigned to each driver type. The number and properties of driver types used 

influences calibration, and this influence might or might not improve the modeling effort. This 

approach does not capture or predict the effects of situational factors on individual drivers’ 

actions. A comprehensive theoretical representation of drivers’ varying behavior in response to 

encountered driving situations is very limited and, therefore, reproduction of such behaviors (or 

actions) using statistical parameters is not adequate. 

This chapter synthesizes a literature review conducted by the research team on key domestic and 

international studies on car-following and lane-changing microscopic models, naturalistic data 

collection efforts, driver behavior and characteristics, and artificial intelligence learning 

techniques, especially reinforcement learning. 

CAR-FOLLOWING MODELS 

In the last 50 years, a considerable amount of research has focused on modeling longitudinal 

driver behavior, producing a large number of car-following models
(1)

, including Gazis-Herman-

Rothery (GHR) models, safety distance models, linear models, and psychophysical or action 

point models. Most microscopic models assume that human drivers react to the stimuli from 

neighboring vehicles with the dominant influence originating from the directly leading vehicle. 

This is known as the “follow-the-leader” or “car-following” approximation. Other models 

introduced “safe time headway” and a desired velocity. Calibrating these car-following models 

required different levels of effort, and the results depend on data availability, calibration method, 

and model structure. The GHR model, for instance, requires the calibration of two parameters, 

limiting the application of the model. The Gipps model
(2)

 (a safe-distance model) uses two 

different transfer functions for reproducing free-flow and car-following conditions. 

Psychophysical models, on the other hand, assume that the driver will perform an action when a 

threshold (a function of speed difference and distance) is reached. Estimating distances and speed 

differences among drivers makes it difficult to calibrate the individual threshold associated with 

this model. Linear regression and heuristic algorithms (e.g., genetic algorithms) are two widely 

used methods for model calibration. Despite different mechanisms and software interfaces, when 

multiple simulation software applications were compared, the resulting behaviors of the models 

showed similarities.
(3)

 In addition, it seems that error cannot be eliminated even if more 

parameters are introduced.  
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The importance of not only developing calibration procedures but also interpreting obtained 

calibration results is discussed in Ossen.
(4)

 The three main findings were “(1) measurement errors 

can yield a considerable bias in the estimation results; (2) parameters minimizing the objective 

function do not necessarily capture following dynamics best; (3) measurement errors 

substantially reduce the sensitivity of the objective function and consequently reduce the 

reliability of the results.” 

A significant part of the deviations between measured and simulated trajectories can be attributed 

to the interdriver variability and the intradriver variability (human drivers do not drive constantly 

over time, and their behavioral driving parameters change). The latter accounts for a large part of 

the deviations between simulations and empirical observations.
(5)

 

The first car-following model describing car following in terms of vehicle trajectory rather than 

just velocities and spacing was proposed by Herrey and Herrey in 1945.
(6; 7)

 Without extensive 

experimental basis, they proposed that a driver must maintain a “safe driving distance” (including 

the stopping distance), which results in a quadratic relationship between spacing and speed. The 

safety distance models, or collision avoidance model, represents a model in which the driver of 

the following vehicle always keep a safe distance to the vehicle in front.  

Pipes Model 

In 1953, Pipes
(8)

 developed one of the first car-following models using the California Motor 

Vehicle Code rules: “allow at least the length of a vehicle between the subject and leading 

vehicle for every ten miles per hour speed at which the subject vehicle is traveling” assuming a 

vehicle length of 20 feet. The model is divided into two equations. The first equation applies 

when the lead vehicle has a constant acceleration while trying to reach a cruising speed. The 

second equation applies after the lead vehicle reaches and maintains the cruising speed. Both 

equations estimate the acceleration of the following vehicle at time t based on the cruising speed 

and acceleration time of the lead vehicle. This model is presented in a fashion that is applicable to 

a line of traffic with each vehicle accelerating according to the action of the vehicle in front of it.  

 

Equation 1. 

 

Equation 2. 

where 

t = time, 

T = a time constant ≈ 1, 

a k+1 = acceleration of the kth+1 (following) vehicle, 

vm= constant velocity of lead vehicle (cruising speed), 

T0 = time for lead vehicle to reach cruising speed at a constant acceleration from rest at t=0, and 
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Equation 3. 

where 

Gk (t) is the ratio of an incomplete to a complete gamma transform function. 

Most of the early work in car following assumed that the driver is able to consider the space 

headway and the relative speed between his car and the lead vehicle. To model this stimulus-

response model, several approaches have been developed, including linear, proportional 

approaches and rule-based approaches based on fuzzy logic. In general, these car-following 

models compute the reaction of a following vehicle to the actions or stimulus of the leading 

vehicle as Response (t) = Sensitivity X Stimulus (t-T). The response of the following vehicle is 

translated into an acceleration or deceleration in proportion to the stimulus after a time lag T 

(reaction time of the driver of the following vehicle). 

The GM models  

In 1958, a series of models were developed at the GM Research Laboratory by Chandler, 

Herman, and Montroll
(9)

; Herman and Potts
(10)

; Gazis, Herman, and Potts
(11; 12)

; and Gazis, 

Herman, and Rothery
12

 The most important of these is the generalized linear model, usually 

know as the GM model. In fact, most of the other models, for example Pipes
(8)

 and Forbes
(13)

 are 

special cases of the GM model. 

Chandler, Herman, and Montroll
(9)

 proposed a linear model that assumes that the acceleration of 

the following car depends exclusively on the speed difference between the cars. 

  

Equation 4. 

where 

ak (t) = acceleration applied by the driver   at time  , 

α = constant, 

  

Equation 5. 

 

  

Equation 6. 

t = time of observation, and 
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τn = reaction time for driver  . 

 

Gazis, Herman, and Potts
((14))

 developed the GM 2 parameter model (GM2P), in which the linear 

model constant sensitivity term was further developed to consider the macroscopic speed density 

relationship and the space headway. The incorporation of the space headway implies that the 

driver is more sensitive to the action of the leading vehicle in the case of smaller headways.  

 

Equation 7. 

where 

Δxn (t-τn) is the space headway at time (t-τn) and 

a = constant, estimated for each dataset using correlation analysis. 

  

The model of Edie, or the GM 3 parameter model (GM3P), addresses the shortcoming of the 

linear model of free-flow speed at zero density and assumes that the reaction of the following car 

depends also on the speed of the following car and not only on the speed difference and the 

relative distance between the two cars. The sensitivity is proportional to the speed and inversely 

proportional to the square of the relative distance. 

  

Equation 8. 

The Gazis, Herman and Rothery model, usually referred to as the GHR model or as the general 

car-following model, was introduced in 1961 and is represented by the following equation. 

  

Equation 9. 

where 

Tr = time between the observation of a certain stimulus and the reaction to that stimulus, 

af (t + Tr) = acceleration of the following vehicle at time (t + Tr), 

vf (t + Tr) = speed of following vehicle at time (t + Tr), 

Δvn (t) = relative speed between the following car and the car immediately in front  

(vleader – vfollower), 

Δx (t) = relative distance between following car and car immediately in front (xleader – xfollower), 

and 

m, l, c = parameters describing the car-following behavior. 
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The GHR model is therefore a general form of the early models. When l=m=0, the GHR model 

represents that of Chandler, Herman and Montroll; when m =0 and l=1, the model represents 

Gazis, German, and Potts’ model; and when m=1 and l=1, the model represents Edie’s model. 

The Wiedemann Model 

In 1974, Wiedemann
(15)

 introduced a car-following model that is based on psychophysical 

behavior. The Wiedemann model addresses two unrealistic assumptions of the GM models: 

(1) the driver follows the leading vehicle whatever the spacing is and (2) the driver has perfect 

reaction and response time. The Wiedemann model has been improved since then by 

Leutzbach
(16)

 by introducing perceptual thresholds as minimum values of the stimulus. The 

concept of thresholds in the Wiedemann model captures the driver’s alertness in conditions of 

small space headway and the lack of explicit car-following behavior in large headway. In 

addition, it allows the model to explain the oscillation phenomena observed in car-following 

behaviors. The following diagram (Figure 7) shows Wiedemann car-following thresholds with 

respect to vehicle speed difference and space headway.  

Δx

Upper limit of reaction

Free driving

Following

Emergency regime

Δv

0

AX

SDX

CLDV

ABX

OPDV

S
D
V

Closing 

in

 

Figure 7. Graph. Wiedemann car-following model’s thresholds (AX, ABX, SDX, CLDV, 

SDV, OPDV).
(17))

 

The following is a definition of the Wiedemann car-following model’s thresholds: 

1. The threshold AX represents the desired distance between stationary vehicles. This distance 

consists of the leading vehicle length and the desired front-to-rear distance.  
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Equation 10. 

where 

L n-1 = the leading vehicle length,  

AXadd and AXmult are calibration parameters, and 

RND1n is a normal distributed random number for vehicle (n). 

2. The threshold ABX represents the desired minimum following distance at low speed 

differences. 

 

Equation 11. 

  

Equation 12. 

  

Equation 13. 

where  

BXadd and BXmult are calibration parameters and 

v = vehicle speed. 

3. The threshold for maximum following distance, SDX, fall between 1.5 and 2.5 times ABX  

 

Equation 14. 

  

Equation 15. 

where 

EXadd and EXmult are calibration parameters, 

NRND is a normal distributed random number, and 

RND2n is normal distributed driver dependent parameter. 
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4. The threshold approaching point, SDV, represents the point where the driver notices that 

he/she is approaching a slower vehicle. 

  

Equation 16. 

  

Equation 17. 

where 

CXconst, CXadd, and CXmulti are calibration parameters. 

5. The decreasing speed differences (CLDV) threshold provides a mechanism for a different 

behavior when the driver approaches the leading vehicle more closely than the approaching 

point. In VISSIM, CLDV is ignored and simply assumed to be equal to SDV.  

6. The increasing speed difference (OPDV) threshold describes the point where the driver 

observes that he/she is traveling at a lower speed than the leader.  

  

Equation 18. 

where 

OPDVadd and OPDVmult are calibration parameters and 

NRDV is a normally distributed random number. 

The Fritzsche Model 

Fritzsche
(18)

 developed a similar psycho-physical model that has been used in Paramics 

microsimulation software. The model has multiple regimes that apply to different traffic 

situations (i.e., normal car-following, free flow, closing in, etc., as shown in Figure 8). Fritzsche’s 

model accounts for human perception in the definitions of the model regimes, as drivers perceive 

only speed differences with certain magnitude. Fritzsche defined the thresholds for perception as: 

perception threshold of positive speed difference (PTP) and perception threshold of negative 

speed difference (PTN). The model also incorporates four thresholds for the follower’s space 

headway. 
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Figure 8. Graph. Different thresholds and regimes in the Fritzsche car-following model.
(3)

 

1. Desired distance threshold, AD, represents the gap, which following driver wants to maintain.  

  

Equation 19. 

where 

TD = a parameter representing the desire time gap, 

Sn-1 = effective length of the leading vehicle, and 

vn = following vehicle speed. 

2. The risk distance threshold, AR, represents the distance at which the driver applies heavy 

deceleration to avoid collisions.  

  

Equation 20. 

where 
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Tr = a parameter representing the risky time gap. 

3. The safe distance threshold, AS, represents the smallest headway where positive acceleration 

is accepted if the distance between the vehicles is increasing.  

  

Equation 21. 

where 

Ts = a parameter representing the safe distance threshold. 

4. The risk braking distance threshold, AB, represents the distance where maximum deceleration 

is limited. Therefore collision is possible if the initial speed difference is large. 

  

Equation 22. 

where  

 

Equation 23. 

bmin, an-1 = a parameter controlling maximum deceleration. 

The CA Model 

The cellular automaton model, usually know as CA model,
(19)

 simulates freeway traffic. Monte 

Carlo simulations of this model show a transition from laminar traffic flow to start-stop waves 

with increasing vehicle density. 

The CA model can be described as following seven steps.
(19; 20)

 

1. Determination of the randomization probability. 

  

Equation 24. 



 

12 

 

where 

  

Equation 25. 

where tst denotes time vehicle stops.  

2. Acceleration. Determine the speed of vehicles in the next time step. Sn(t) is also taken into 

consideration. Sn (t) is determined in Step 5. 

  

Equation 26. 

  

Equation 27. 

where vk,max and ak are the maximum speed and acceleration capacity, respectively, of 

vehicles of type k. 

3. Deceleration. Set speed restriction when the vehicle in front is too close, thus locating the 

vehicle within the effective distance (dn
eff

). 

  

Equation 28. 

4. Randomization. 

  

Equation 29. 

5. Determination of vehicle status identifier Sn(t) in next time step. 

  

Equation 30. 

6. Determination of time stuck inside the jam (tst). 
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Equation 31. 

7. Update position. 

  

Equation 32. 

where  

n = nth vehicle, 

n+1 = vehicle in front, 

k = type of vehicle, 

Pb = accounting for impact of decelerating vehicle in near front, 

P0 = reflect the delay-to-start behaviors of vehicles stuck in traffic jam, 

Pd = other situations, 

Pc = probability of lane change, 

th = dn/vn(t) = time headway of nth vehicle to front, 

hk = preset time threshold of vehicle of type k in reflecting the effect of synchronized 

distance, 

ts = min(vn(t),hk) = final time threshold for initiating the consideration of the front brake light 

effect, taking the vehicular speed into consideration, 

tst = accumulated time of vehicle stuck in traffic jam, 

tk,c = time threshold of vehicle of type k for initiating the stop-to-start behavior, 

τ
(safe)

 = safe time gap for collision prevention, 

   = duration of an individual time step, 

d = space headway, 

dn
eff

 = effective distance of nth vehicle, 

  = distance gap, 

x = position of nth vehicle, 

 = speed (first derivative of vehicular position), 

 = acceleration/deceleration (second derivative of vehicular position), and 

Δx = basic unit of roadway length. 
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The SK Model 

The safety condition in the CA car-following model is imposed by the term sgap (t) s,
(21)

 setting 

the maximum velocity equal to the space gap between two successive vehicles regardless of the 

required deceleration. To address the fact that the CA model fails to reproduce metastable states 

of very high throughput and hysteresis effects existing in traffic flow, the model was generalized 

to provide a one-parametric family of models with a part that reproduces metastable states and 

hysteresis usually known as SK Model 
(22)

 and represented by the following: 

  

Equation 33. 

  

Equation 34. 

  

Equation 35. 

where 

b = maximum deceleration 

dp = braking distance of lead car 

αp, βp = integer and fractional part, respectively, of vp/b, and 

αsafe βsafe = integer and fractional part of  

  

Equation 36. 

The SK model is a development of the CA model
(22)

. In place of the CA model’s Step 7, the SK 

model uses the updating rules below: 

  

Equation 37. 

  

Equation 38. 
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Equation 39. 

  

Equation 40. 

where  

ε = parameter, 

v1 = optimal velocity for next update, 

vmax = maximum velocity of cars, 

vsafe = maximum safe velocity, and 

vran, v0, v2 = a random number between v0 and v1 = maximum decal. 

The IDM Model 

The Intelligent Driver Model (IDM)
(23)

 is defined by the following acceleration function: 

  

Equation 41. 

  

Equation 42. 

where 

Δvn, n-1 (t) = approaching rate of the following vehicle, 

v
*
= desired speed, 

Tsafe= safe time headway, 

a
max

= maximum desired 

b
max abs

 = absolute maximum desired deceleration of following vehicle, 

δ = acceleration component, 

Δxn-1, n (t) = distance headway, and 

d = vehicle length. 

This expression combines the acceleration strategy in Equation 43 toward a desired speed v
*
 on a 

free road, with the parameter a for the maximum acceleration. It is further combined with the 
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braking strategy in Equation 44, which is dominant if the current gap Δxn-1, n (t) becomes smaller 

than the desired minimum gap. 

 

Equation 43. 

 

Equation 44. 

The Gipps Model  

Gipps
(2)

 developed the first general acceleration model that applies to both car-following and 

free-flow conditions. The model determines the maximum acceleration based on: driver’s desired 

speed and minimum safe headway. The Gipps car-following model is implemented in AIMSUN. 

In the Gipps car-following model, the acceleration is calculated for five different situations:  

 Vehicle moves in its desired speed 

 Vehicle in free move with speed less than the desired speed 

 Vehicle is accelerating from stopping position 

 Vehicle in a car-following state with constraint space headway  

 Vehicle in a car-following state with active-non collision constraint 

The following thresholds constrain vehicle acceleration in Gipps’ model: 

  

Equation 45. 

  

Equation 46. 

where  

an
max

 = maximum desired acceleration, vehicle n (m/s
2
),  

dn
max

 = maximum desired deceleration, vehicle n (m/s
2
),  

dn-1 = estimation of maximum deceleration desired by vehicle n-1 (m/s
2
),  

Sn-1 = effective length of vehicle,  
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T = reaction time,  

d
^
n-1 = leader desired deceleration, and  

xn-1 = vehicles spacing. 

The VDIFF Model 

In the velocity difference model (VDIFF),
(24)

 the acceleration function consists of a term 

proportional to a gap-dependent “optimal velocity”     ( ) and a term that accounts for velocity 

differences    as a linear stimulus. The parameter   is the relaxation time, which describes the 

adaptation to a new velocity due to changes in   and  . The sensitivity parameter   considers the 

crucial influence of   . The properties of the VDIFF are defined by the function for the optimal 

velocity vopt(s).  

The parameter v0 defines the desired velocity under free traffic conditions. The “interaction 

length” lint determines the transition regime for the s-shaped function going from vopt(s=0) = 0 to 

vopt  v0 when the distance to the leading vehicles becomes large. The “form factor” β defines 

the shape of the equilibrium flow-density relation. VDIFF exhibits collisions for some regimes of 

the parameter space. 

Table 3 shows the major attributes of the car-following models discussed above. The multiphase 

column refers to whether the model calculates the position of the subject vehicle in multiple 

steps. The multiregime column refers to whether the model calculates the position of the subject 

vehicle with different equations depending on the regime the subject vehicle falls in.  

 Table 3. Major similarities and differences between car-following models. 

Model Multiphase Multiregime Speed Diff Space Diff Reaction 

Time 

Variable 

Acceleration 

Pipes Yes No Yes No Yes Yes 

GM No No Yes Yes Yes Yes 

Wiedemann No Yes Yes Yes No No 

Fritzsche No Yes Yes Yes No No 

CA Yes No No Yes No Yes 

SK Yes No No Yes No Yes 

IDM Yes No Yes Yes Yes Yes 

Gipps Yes No Yes Yes Yes Yes 

VDIFF No No Yes No Yes Yes 

CAR-FOLLOWING MODELS AND SIMULATION SOFTWARE 

Panwai and Dia
(25)

 compared a number of car-following models on simulation software including 

AIMSUN, Paramics, and VISSIM. Using data collected by an instrumented vehicle that records 

differences in speed and headway (leading speed, relative distance, relative speed, follower 

acceleration), the data was simulated using MITSIM, the Wied/Pel model, the Wied/Vis model, 

the Nagel/Schreckenberg model, the optimal velocity model, and the T
3 

model. The follower 

vehicle was programmed for modeling, and speed, time, and distance headways of both leader 

and follower were captured and compared to field measurements. The leading vehicle was 

simulated using the GETRAM module in AIMSUN, an external file in VISSIM, and an API 

interface in Paramics. Performance measures and error indicators were used to assess the fitness. 

Results showed similarities for psychophysical models in VISSIM and Paramics. However, the 
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root mean squared error and qualitative drift and goal-seeking analyses showed a substantially 

different car-following behavior for Paramics.  

Siuhi and Kaseko,
((26))

 Osaki,
(27)

 Subranmanain,
(28)

 and Ahmed
(29)

 modified the GM model by 

separating the acceleration and deceleration responses. Table 4 compares the GM calibration 

parameters for acceleration and deceleration models. 

Table 4. Comparison of parameter values in GM-based model for acceleration and 

deceleration models.
(26)

 

Parameter Acceleration/ 

Deceleration 

Ozaki  

(1993) 

Subra-

main  

(1996) 

Ahmed  

(1999) 

Toledo 

(2003) 

Siuhi  

(2010) 

Driver sensitivity acceleration 1.1 9.21 0.0225 0.0355 1.851 

Driver sensitivity deceleration 1.1 15.24 0.0418 0.860 3.247 

Speed acceleration -0.2 -1.667 0.722 0.291 -0.961 

Speed deceleration 0.9 1.086 N/A N/A 1.298 

Relative speed acceleration 1 1 0.600 0.520 0.667 

Relative speed deceleration 1 1 0.682 0.143 1.243 

Separation acceleration -0.2 0,884 -0.242 -0.16 0.667 

Separation deceleration -0.9 -1.659 -0.151 -0.565 -1.544 

Driver response time lag (s) acceleration N/A 1.97 N/A N/A 0.80 

Driver response time lag (s) deceleration N/A 2.29 N/A N/A 0.70 

Stimulus response threshold (mi/h) acceleration N/A N/A N/A N/A 1.30 

Stimulus response threshold (mi/h) deceleration N/A N/A N/A N/A -1.00 

Siuhi and Kaseko
(26)

 discussed findings in terms of GM calibration parameters. The study 

concluded that there was a need for separate deceleration and acceleration models because the 

responses are impacted differently by the vehicle’s speed, speed difference, and separation 

between the vehicles. 

MODELING DRIVER BEHAVIOR 

Several models aim to capture driver behavior. However, little is known about the differences in 

car-following behavior between driver-vehicle combinations.
(30)

 For example, calibrating the 

Wiedemann model, which captures driver indifference to small changes in the stimuli and allows 

different execution modes including emergency braking, requires estimating 18 parameters found 

in 17 different equations.
(17)

 Microsimulation software packages use a variety of car-following 

models, including Gipps’ (AISUM2, SISTM, and DRACULA), Wiedemann’s (VISSIM), Pipe’s 

(CORSIM), and Fritzsche’s (Paramics). Automated calibration parameters, such as genetic 

algorithms, have been used to calibrate the distribution of car-following sensitivity parameters.
(31)

 

In addition, direct correlation with real driving variables is rare, and parameterization of objective 

behavior is still in its infancy. Ossen et al.
(4)

 studied the car-following behavior of individual 

drivers using vehicle trajectory data extracted from high-resolution digital images collected at a 

high frequency from a helicopter. The analysis was performed by estimating the parameters of 

different specifications of the GHR car-following rule for individual drivers. The results showed 

that measurement error has a larger influence than the component of noise. Their study pointed 

out that optimal parameters differ, and also that the suitability of a car-following model appears 

to be based on the individual driver data.  
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Brackstone et al.
(32)

 used data from a series of instrumented vehicles driven by two groups. The 

independent variables for this study were age, approximate mileage driven per year, 

passivity/aggressiveness (P/A, 1–50), driver externality and internality ratings (DE and DI), and 

Sensation Seeking Scale V (SSSV). Among the results, the study showed that following behavior 

may be split in two phases (between 30 and 50 miles), and there seems to be an inverse 

relationship between following distance and sensation seeking. 

MODEL CALIBRATION WITH LONGITUDINAL TRAJECTORY DATA  

Using two models of similar complexity (number of parameters), the Intelligent Driver Model 

(IDM) and the Velocity Difference Model (VDIFF), Kesting and Treiber
(5)

 researched car-

following behaviors of individual drivers using publicly available trajectory data for a straight, 

one-lane road in Stuttgart, Germany. They used a genetic algorithm to minimize the deviations 

between the observed driving dynamics and the simulated trajectory. One of the major findings of 

the study was that a significant part of the deviations between measured and simulated 

trajectories can be attributed to the interdriver variability and the intradriver variability (human 

drivers do not drive constantly over time, and their behavioral driving parameters change). The 

latter accounts for a large part of the deviations between simulations and empirical observations. 

The results showed that the calibrated parameter values of the VDIFF strongly depend on the 

optimization criterion, while the IDM is more robust. Also, a deterministic car-following model 

allows for only an average description of human driving behavior. The authors suggest using a 

set of time-dependent model parameters reflecting the driver adaptation process. 

Ossen and Hoogendoorn
(30)

 analyzed trajectory data and found considerable differences between 

car-following behaviors of individual drivers. These differences can be expressed as different 

optimal parameter values for reaction time and sensitivity. Special software obtained the data 

from digital images captured at high frequency from a helicopter in the Netherlands. Three 

models from the GHR model family (Chandler, Gazis, and Edie) were analyzed, with the 

sensitivity parameters   and reaction times parameter   derived from accelerations, relative 

speeds, and distances. When individual drivers were analyzed, one model outperformed the 

others. However, after results for all drivers were combined, no model outperformed the others. 

Results show that in 80 percent of cases, a relationship between the relative speed, distance, 

speed of the following car, and acceleration of the following car could be established.  

Menneni et al.
(33)

 presented a calibration methodology based on integrated use of microscopic 

and macroscopic data. Microscopic data from the Next Generation Simulation (NGSIM) data 

collection effort was utilized in range definition of calibration parameters and qualitative 

calibration of the VISSIM Wiedemann car-following model. NGSIM data was used to produce 

relative distance versus relative velocity graphs that contain vehicle following distances and 

speed oscillation. 

Brockfeld et al.
(34)

 tested the validity of different models through data collected from a 

Differential Global Positioning System-equipped vehicle on a test track in Japan. Data of the 

leading vehicle was fed into the model to compute the headway time series of the following 

vehicle. Deviations between measured and simulated headways were then used in model 

calibration and validation. Brockfeld et al. tested and independently calibrated 10 models (CA0.1, 

SK_STAR, OVM, IDM, IDMM, Newell, GIPPSLIKE, Aerde, PRITZSCHE, and MitSim). The 

calibration results showed that no best model exists and that the differences between individual 
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drivers are larger than the differences between different models. The results also showed that 

although FRITZSCHE and MitSim have a large number of parameters, they do not provide better 

results in general. 

Hoogendoorn and Hoogendoorn
(35)

 proposed a generic calibration framework for joint estimation 

of car-following models. The method employed relies on the generic form of most models and 

weights each model based on its complexity. This new approach can cross-compare models of 

varying complexity and even use multiple trajectories when individual trajectory data is scarce. 

Prior information can also be used to realistically estimate parameter values. 

DRAWBACKS OF PARAMETER CALIBRATION METHODS  

Punzo and Tripodi
(36)

 addressed the problem of the calibration of the Gipps model. Traffic stream 

models were developed, and stationary traffic data were used to calibrate the model. By using 

different combinations of microscopic parameters, the study proved that the Gipps model is 

unable to reproduce unstable traffic phenomena. Instead, the study generated a new model to 

represent multiclass traffic scenarios. 

Rakha et al.
(37)

 presented a methodology to calibrate the Gipps model for the steady-state 

condition. Their work assumes that all drivers have similar behaviors and characteristics. 

Researchers converted the car-following model into its associated macroscopic traffic stream 

model and calibrated key macroscopic parameters (free-flow speed, speed at capacity, capacity, 

and jam density) using loop detector data. These calibration methods, however, can only estimate 

the driver’s actions on average and cannot predict the driver’s actions in response to varying 

driving situations.  

ALTERNATE MODELING OF THE DRIVING PROCESS 

Hamdar and Mahmassani
(38)

 challenge the traditional discrete-event approach of most car-

following models. They use hazard-based duration models, which represent the driving process 

as a continuous story divided into multiple episodes. Driver behavior was modeled as “car 

following” and “free flow episodes.” As a result, changing lanes depends on the traffic conditions 

and the duration of time that a driver is following a given leader; the probability of changing 

lanes increases during the first minute and decreases after that. The authors recommended further 

studies because episodes for the same driver are expected to have some interdependence and 

drivers will surely have some influence on one another.  

Hamdar et al.
(39)

 assessed a recently formulated hazard-based duration car-following model on its 

performance during congested periods. To calibrate, they applied a genetic algorithm to car-

following models with complex structures, including a free-flow region and a congested region. 

The model was calibrated against microscopic trajectory data taken from the NGSIM data. The 

utility of this model is derived from prospect theory of decision-making under risk. The model 

also considers a penalty for the risk of accidents, an expectation value, and variance and 

correlation time of acceleration.  

DRIVING BEHAVIOR HETEROGENEITY 

Chiabaut et al.
(40)

 studied driving behavior heterogeneity and proposed a methodology to estimate 

the parameters of Newell’s car-following model (NCF) at a microscopic scale using I-80 NGSIM 
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data. Driving behavior variability among drivers is appraised through the minimal spacing and 

congested wave velocity distributions. This method improves the existing calibration methods 

due to the measurement. 

Using vehicle trajectory data collected from car-following experiments conducted on a Japanese 

test track with RTK GPS receivers, Ranjitkar and Nakatsuji
(41)

 investigated the response time of 

drivers. The data was further analyzed to estimate time-variant response time when considering 

interpersonal and intrapersonal differences in car-following behavior, such as drivers’ perception 

time threshold in different driving conditions. Significant intrapersonal variations were observed 

for different speed patterns, though no definite trends were observed in such variations, 

emphasizing that the influence of driving conditions and intrapersonal variations in the response 

time cannot be ignored. It was also found that the drivers’ response time under accelerating 

conditions is significantly different from response time under decelerating conditions.  

Hamdar and Mahmassani 
(42)

 continued their studies on different driver behaviors in a simulation, 

instead of using the usual homogeneous traffic stream, to identify individual variations versus 

collective traffic patterns. The model used a utility function that assessed the change in risk when 

changing speeds and also the reward for increasing or reducing speed. The model was calibrated 

using individual trajectory data from NGSIM. Simulation was run for both homogeneous and 

heterogeneous traffic. The results were scattered flow-density datapoints that created a triangular 

shape. This is representative of instability and the hysteresis triangle, which are congestion 

dynamics.  

INTRODUCING INCIDENT PARAMETERS WITH TRAJECTORY DATA 

Different attempts have been made to simulate safety-critical events with existing car-following 

models. Most of the car-following models represent an environment free of safety-critical 

events.
(21)

 The main factors of an incident-free environment depend on the model, varying from a 

sensitivity term   (GHR model), the assumption that the following vehicle will decelerate and 

come to a rest before hitting the leader (Gipps), the desired gap setting (IDM, IDMM), or free 

space to the vehicle-ahead constraints (CA). Hamdar et al.
(21)

 list safety constraints imposed in 

several car-following models. 

Xin et al.
(43)

 proposed a model that aims to emulate “less-than perfect” everyday driving, 

capturing both safe and unsafe driver behavior. The datasets used include vehicle trajectories for 

six crashes and four near-crashes in Minnesota as well as vehicle trajectories that were collected 

in a test track in Japan using GPS. The longitudinal driving tasks were described as a negative 

feedback control process between the external world and the driver-vehicle-unit (DVU). The 

authors assumed that the equations for the perceptual threshold of visual expansion rate provide 

“a logical and coherent mechanism for variable reaction time.” The authors determined the 

vehicle acceleration or deceleration action based on checking whether safety conditions are true 

or false. If the conditions are false, the driver is in a “subconscious” driving state, without 

motivation for accelerating or decelerating. The situational factors do not include multilane 

effects and do not incorporate personal factors and environmental factors on driver’s perception-

decision process. While the idea is intriguing, it still suffers from the limitations of statistical 

techniques because it still uses the Gipps model.  

Hamdar and Mahmassani
(21)

 attempted to capture congestion dynamics and model accident-prone 

behaviors by calibrating and modifying (relaxing) seven car-following models: GHR, Gipps, 
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cellular automation (CA), SK, the intelligent driver model (IDM), the intelligent driver model 

with memory (IDMM), and Wiedemann. The purpose of the investigation was to relax the safety 

term that was designed to avoid the creation of a crash-limited following distance from the 

above-mentioned models and restrict the models to realistic decelerations using NGSIM data.  

Chatterjee and Davis
(44)

 used VTTI naturalistic data to better define the critical elements that lead 

to a rear-end crash. The results demonstrate the feasibility of using vehicle trajectory data to 

understand the interaction between individual vehicles. Assuming that the driver’s behavior can 

be modeled as a piecewise constant series of accelerations that are input in the dynamic trajectory 

model, the authors try to overcome the simple brake-to-stop model. Trajectories were duplicated 

using the initial values for the state variables and the time history of the accelerations. Major 

parameters were identified: the piecewise constant acceleration, the points where the driver 

changes between different accelerations, the reaction time of the driver, and the critical headway. 

To estimate the parameters, they used a Bayesian analysis (Markov Chain Monte Carlo), and the 

numerical equations were solved using WINBUGS.  

NATURALISTIC DATA 

Naturalistic data collection is the collection of driver behavior and performance data in a natural 

environment. Naturalistic data collection allowed researchers to examine what happens before 

and during crash, near-crash, and safety-critical events for which researchers would otherwise 

depend on eye witness accounts and police reports. Handled properly, data regarding vehicle 

speed, acceleration, range, range rate, headway, time to collision (TTC), brake pedal input, and 

qualitative data such as pre-incident maneuvers can be used to describe driver behavior. 

Qualitative data such as roadway type, number of lanes, traffic density, time of day, and weather 

can be used to describe the driving environment. Tying these data together allows researchers to 

understand the conditions that exist during an event and attain baseline data. As opposed to 

traditional empirical approaches, naturalistic data collection process involves drivers who operate 

vehicles that have been equipped with specialized sensors and recording equipment (Figure 10). 

The drivers operate and interact with these vehicles during their normal driving routines while the 

data collection equipment continuously records numerous items of interest during the entire 

driving epoch (a prescribed driving period). 

Naturalistic Data: 100-Car Database 

The 100-Car Naturalistic Driving Study,
(45)

 conducted through VTTI, was a light-vehicle 

naturalistic study in which 100 light vehicles were instrumented. The 100-Car study was unique 

in that it was the first study in which vehicles were instrumented with the primary goal of 

collecting large-scale, naturalistic driving data. A large percentage (78%) of instrumented 

vehicles belonged to the participants, and were driven without special instructions. 

Approximately 2 million vehicle miles (43,000 hours of driving data) were included in the 

dataset, providing a rich dataset with extreme cases of driving behavior and performance.  

An in-depth analysis focusing on driver inattention conducted by Klauer et al.
(46)

 used data 

collected in the 100-Car Naturalistic Driving Study to establish a relationship between driving 

behavior and crash or near-crash involvement. The study used baseline epochs reduced from the 

raw 100-Car database alongside the full 100-Car study event database. The baseline database 

consisted of a sample of 20,000 6-s segments during which the vehicle maintained a 5 mi/h or 

higher velocity. Crash and near-crash risks were calculated as ratios to normal, baseline driving 
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data for different sources of inattention. It was found that visually or manually engaging 

secondary tasks result in three times greater crash or near-crash risks than attentive driving. 

Researchers also concluded that glances that are 2 s or longer result in twice the risk of crashes or 

near-crashes compared to normal baseline driving. 

Naturalistic Data: 34-Truck Database 

VTTI also conducted The Drowsy Driver Warning System Field Operational Test (DDWS 

FOT)
(47)

, in which naturalistic data was collected for 18 months from 103 commercial motor 

vehicle (CMV) drivers. Drivers from three different fleet companies participated in the study. 

This database yielded approximately 2.2 million driving miles and, once reduced, yielded 1,217 

valid safety-critical events. The data were processed through software that flags potential events 

of interest based on trigger threshold values. 

Naturalistic Data: 8-Truck Database 

Similarly, VTTI performed another large-scale Naturalistic Truck Driving Study’s (NTDS)
(48)

 

investigating crash risk by identifying safety-critical events related to driver sleep/rest cycles and 

crash countermeasures. Continuous driving performance data was collected for 100 CMV drivers 

from four different fleet companies. Data was collected during 4 months of normal driving 

routine for 4 weeks per driver. Approximately 14,600 hours of driving data and 735,000 driving 

miles were collected. More than 2,800 safety-critical events were identified, including 13 crashes, 

58 near crashes, 1,595 crash-relevant conflicts, and 1,213 unintentional lane deviations. 

Fitch et al.
(49)

 conducted an examination of driver behavior leading to lane-change crashes and 

near-crashes using the database created from the 100-Car study. Several objectives were 

investigated in this analysis: classifying the types of lane change events (e.g., severity and 

direction of lane-change events) and analyzing striking vehicle drivers’ behaviors, as well as the 

struck vehicle drivers’ behavior and the surrounding vehicles behaviors. The study analyzed 135 

lane-change events from the 100-Car study. The lane-changes were classified using three event 

scenarios. It was found that not all drivers used their turn signals when changing lanes to avoid a 

forward crash threat. It was also found that drivers visually attend to one location at a time. The 

study concluded that the use of drivers-assist systems can help drivers, especially in heavy traffic 

conditions.  

Another study examining lane-change behavior conducted by Lee et al.
(50)

 explored the nature 

and severity of lane changes in a naturalistic driving environment. Sixteen commuters were 

recruited to drive one of two instrumented research vehicles for 10 days each. Half of the 

participants’ commutes were by interstate, and half commuted on a U.S. highway. Lane change 

identification was specified by review of the video, which sought the initiation (first lateral move 

by vehicle) and end points (vehicle settled in the destination lane) for each lane change. The lane 

change was then categorized by maneuver type, direction, severity, urgency, and 

success/magnitude. Eleven categories of maneuver type were identified, including slow lead 

vehicle, return, enter, and exit/prep exit. During the first data pass-through, all lane changes were 

identified, graded, and classified, totaling 8,667 lane changes categorized into one of the 11 

maneuver types. The authors reported that the analysis of the full dataset resulted in many 

interesting findings regarding frequency, duration, urgency, and severity of lane changes in 

regard to maneuver type, direction, and other classification variables. The authors further studied 
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a subset of the full dataset, consisting of 500 lane changes using sensor data collected from the 

instrumented vehicles. Investigation of this additional sample included the following variables: 

 Steering. 

 Lateral acceleration. 

 Velocity. 

 Braking. 

 Turn signal use. 

 Eye glance location probability. 

 Eye glance link value probability. 

 Mean single glance time. 

 Distance to forward and rearward POVs. 

 TTC to forward and rearward POVs. 

The sampled lane changes were more severe and were cases where a lane change collision 

avoidance system (CAS) was likely to help the most. The data from this study was used to 

provide recommendations on display location and activation criteria for designers of lane change 

CASs. The research provided valuable insight into the behaviors and parameters associated with 

lane changes, and the archived data has the potential to answer other questions related to driver 

behavior.  

McLaughlin et al.
(51)

 explored the use of naturalistic driving study to investigate the potential of 

avoiding rear-end crashes using CASs. For this research effort, real-time data from 13 rear-end 

crashes and 70 rear-end near-crashes were input to evaluate three collision avoidance algorithms. 

The three CAS algorithms selected and modeled for evaluation were: Equations developed by 

Knipling et al.
(52)

, linear regression approach described in early CAMP work
(53)

, and an algorithm 

developed by Brunson et al.
(54)

 

The methodology provided useful guidance both in estimating benefits achieved by the 

algorithms and in estimating the frequency of alerts in normal driving situations. The algorithms 

tested were found to generate higher than acceptable alerts.  

Fitch et al.
(55)

 used naturalistic data collected by VTTI to study the safety benefits that may be 

obtained by deploying a forward collision warning system for heavy vehicles. Researchers used 

kinematic motion equations and Monte Carlo simulation in the study to evaluate the effects of 

forward collision warning (FCW) alarms on driver forward collision avoidance behavior using 

rear-end (RE) conflicts from a previous naturalistic driving study. The naturalistic driving dataset 

used was the DDWS FOT. Methods based on Volvo’s Intelligent Vehicle Initiative Field 

Operation Test were used to identify the RE conflicts. Researchers concluded that a nationwide 

deployment of FCW systems in heavy vehicles could reduce the number of RE crashes by up to 

21 percent. These findings were also found to be statistically significant.  

McLaughlin et al.
(56)

 conducted an investigation to identify factors associated with run-off-road 

(ROR) crashes using the 100-Car Naturalistic Driving Study database. The objective of the study 

was to identify conditions in which ROR crashes or near-crashes occurred and the contributing 

factors associated with them. ROR crashes and near-crashes from the dataset were reviewed and 

included in the analysis if the subject vehicle crossed a roadway boundary or if a rapid severe 

evasive maneuver was undertaken by the driver to avoid a crash. The researchers also conducted 

a random review of the entire dataset to develop a baseline database to quantify the frequency of 
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the studied conditions. The study found a small number of contributing factors to 122 ROR-

related events chosen for the investigation. A single factor was identified as the contributing 

event in 75 percent of the ROR events, while multiple factors were identified as contributing 

factors in only 25 percent of the cases. Contributing factors of the ROR events were found to be: 

distraction/inattention (40 percent), secondary task distraction (36 percent) and driving-related 

inattention to the forward roadway (4 percent). Other factors included changes in roadway 

boundaries, short following distances, and lead vehicle braking.  

The naturalistic data relevant to this project can be divided into two main categories: safety-

critical events and car-following periods. Using naturalistic data in this project addressed several 

needs related to data attributes necessary to modeling and analysis as highlighted in previous 

research. These attributes are mainly the ability to extract individual driving episodes per driver, 

allowing the analysis to recognize behavior that pertains to a particular driver and determine 

whether that behavior changes between different episodes. The naturalistic data also allows the 

analysis to examine the heterogeneity of behavior among different drivers.  

The car-following periods used in this research are representative of safe driving where one 

vehicle follows another without any conflicts arising. The safety-critical events are the cases 

where conflicts arise between two vehicles and evasive or braking maneuvers are taken to avoid a 

collision.  

AGENT-BASED MODELING IN TRANSPORTATION 

Agent-based modeling (ABM) is a new paradigm that describes a system from the perspective of 

its constituent units.
(57)

 Compared to “top-down” modeling, agent-based modeling is bottom-up, 

with systems that are characterized by many agents or decision makers with dispersed control, 

many organizational levels, the ability of agents to adapt, and the use of internal models to 

anticipate the future.
(58)

 ABM uses rules or equations to describe individual behaviors, so an 

agent-based model actually starts with a set of rules and uses those rules to generate data that can 

be analyzed.  

ABM is best applied when interactions between agents are complex, nonlinear, discontinuous, or 

discrete. It is also useful when space is crucial and agents’ positions are not fixed, when each 

individual is different, and when topology of interactions is heterogeneous and complex and 

agents exhibit complex behavior, including learning and adaptation.
(57)

 

ABM has advantages based on the belief that agents are able to interact. Agent behaviors are 

varied, and ABM facilitates experimentation, computing, and implementing changes in the 

system. A circular published by the Transportation Research Board (TRB) Artificial Intelligence 

and Advanced Computing Application committee
(59)

 provides a useful introductory overview of 

the concept, structure, and application of ABM in transportation, as illustrated in Figure 9. 



 

26 

 

 

Figure 9. Illustration. “Bottom-up” modeling of system.
(59)

  

The ABM method is widely used in various areas of transportation, including simulation of 

vehicle or pedestrian flow, route choice modeling, lane-changing and car-following models, and 

traffic simulation. The TRB circular refers to two known simulation models as agent-based 

models: TRANSIMS and MATSIM.
(59)

 

When using ABM, types, attributes, allowable values of attributes, and initial values are defined 

first. Once the agents are defined, the model needs to specify the interaction rules for the agents 

so the agents will interact with one another and with their environment. An agent-based model 

can be programmed in the developer’s programming language or software package of choice. 

REINFORCEMENT LEARNING METHOD 

Reinforcement learning is a sub-area of machine learning in computer science concerned with 

how an agent is supposed to take actions in an environment so as to maximize the notion of long-

term reward. The objective of reinforcement learning algorithms is to find to a policy that maps 

states to the actions the agent ought to take in those states. State in our case can be time from 

trigger, speed, car following distance, yaw angle, and environment. Reinforcement learning 

reinforces agents for actions performed approximately close to naturalistic actions and penalizes 

agents for actions that are far away from naturalistic. The only information available for learning 

is the system feedback, which describes the agent’s required task in terms of reward and 

punishment. At each time step, the agent receives a reinforcement signal according to the last 

action it has performed in the previous state. The problem involves optimizing not only the direct 

reinforcement, but also the total amount of reinforcements the agent can receive in the future. 

Finally, reinforcement learning should extract driving rules from a naturalistic dataset and 

establish similar driver-specific state action mapping rules.  

The reinforcement learning method has been primarily applied to two transportation problems: 

finding optimal traffic control policy for intersection controllers and modeling driver behavior, 
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especially travel time and route choice network simulation or optimization problems. There is 

also a follow-up study to Abbeel et al.
((60))

 in modeling helicopter control through learning from 

an expert pilot to simulate the trajectory and movement of helicopter control.  

REINFORCEMENT LEARNING USED IN TRAFFIC ADAPTIVE CONTROL 

SYSTEMS 

Optimization of traffic signals for efficient movement of traffic on urban streets is a challenging 

part of an urban traffic-control system. Adaptive system control has been used to reduce delay 

and congestion through an array of traffic control and management strategies (such as SCATS). 

The ability to exert real-time, adaptive control over a transportation process is useful for a variety 

of intelligent transportation systems services, including control of a system of traffic signals, 

paratransit vehicle dispatch control, and displaying a dynamic route guidance system.
(61)

  

By mapping states to actions, the objective of reinforcement learning algorithms applied in 

adaptive control is to provide agent controllers with optimal policies, seeking the smallest 

queuing length and least number of stops per vehicle, according to changes in the traffic 

environment.  

Abdulhai
(62)

 designed a test bed and trained controllers by using Q-learning. The isolated traffic 

signal test-bed consisted of a simulated two-phase signal controlling the intersection of two two-

lane roads. Vehicle arrivals were generated using Poisson processes with average arrival rates on 

each of four approaches. Q-learning agents controlled each of the four approaches with two 

phases of control. State information available to the agent included queue lengths and elapsed 

phase time. From simulation results, the performance of networked signal systems and 

integration with dynamic route guidance has improved. One restriction of the method is that their 

adaptive control method used an intersection without any turning vehicles, which is not 

compatible with field data. 

Jacob and Abdulhai
(63)

 used corridor control in a follow-up study to their previous work on traffic 

system control.
(62)

 They proposed an automated adaptive traffic corridor control using 

reinforcement learning to develop a self-learning, adaptive, integrated freeway-arterial corridor 

control for both recurring and nonrecurring congestion. The Q-learning approach is used to 

provide an optimal control for a freeway corridor to determine the appropriate actions, chosen 

from staying on the current metering rate, increasing red time, decreasing red time, and 

decreasing red phase. Simulation software Paramics was used to train and evaluate an agent in an 

offline model within a simulated environment.  

Bingham
(64)

 applied an actor-critic reinforcement learning algorithm in a neuro-fuzzy traffic 

signal control system with the purpose of minimizing vehicular delay caused by the signal control 

policy. The controller received measurements of incoming traffic and chose green signal length 

accordingly. A neural network adjusts the fuzzy controller by fine-turning the form and location 

of membership functions. Two phases were considered for any intersection. Reinforcement 

learning in neural networks gives credit for successful system behavior, which will be chosen 

more often. In simulation experiments, the simulations were run at several different traffic 

volumes and traffic detector locations. The result shows that different membership functions are 

found optimal in different traffic situations. The advantage of fuzzy control systems over 

traditional ones is their ability to use expert knowledge in the form of fuzzy rules and the small 
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number of parameters needed. However, intersections usually have four approaches and eight 

movements, which makes this reinforcement learning approach less persuasive.  

Choy et al.
(65)

 formed a multiagent architecture for real-time coordinated signal control in an 

urban traffic network. Three hierarchical layers of controller agents exist: intersection, zone, and 

regional controller. Fuzzy logic, neural networks, and regional controllers are implemented to 

agents. Each individual controller agent recommends an appropriate signal policy at the end of a 

signal phase. An online reinforcement learning module is used to update the knowledge base and 

rules of agents based on online data, with the objective of minimizing average delay in the zone. 

In all, 25 signalized intersections in a microscopic simulator were implemented in a network. 

Test results showed that the multiagent system improved average delay and total vehicle stop 

time compared with fixed-time traffic signal control. The main contribution of this paper is the 

formulation of a multiagent-based architecture and an online reinforcement learning module. It 

has shown that an agent can coordinate its local goal with zone and regional objectives 

autonomously.  

Adam et al.
(66)

 proposed a Q-learning method applied in reducing the number of vehicles 

traveling in dilemma zone. Algorithms used arbitrary policies to determine green termination 

based on the number of vehicles in the dilemma zone and whether the dilemma zone has not 

cleared after a period of time. A control agent develops an optimal policy by learning from the 

number of vehicles in the dilemma zone. The optimal policy considers the number of vehicles 

trapped in dilemma zone after taking action to either extend the green or not. Unlike arbitrary and 

stationary policies derived from existing approaches, the control policy adapts to changes in 

volume. Reinforcement-learning-based policy reduced the number of vehicles caught in the 

dilemma zone by up to 32 percent in the experimental simulation framework VISSIM. 

REINFORCEMENT LEARNING IN TRANSPORTATION NETWORK PROBLEMS 

Bogers et al.
(67)

 focused on route choices, considering two types of learning: reinforcement-based 

learning and explicit belief-based learning (including memory decay). The researchers developed 

a model that captures learning types from parameters calibrated from a large dataset from 

experimental research. The model used a Markov formulation for daily updating, based on a 

person’s belief about travel time. Reinforcement was modeled by including the latest 10 route 

choices in the model. Results indicate that 20 percent of perceived travel time is from the most 

recent experience. Furthermore, the reinforcement part of the model can make up a significant 

part of the route utility and therefore should be a standard component in route choice models.  

Arentze and Timmermans
(68)

 developed a framework for modeling dynamic choice based on a 

theory of reinforcement learning and adaptation because individuals develop and continuously 

adapt choice rules while interacting with the environment. A reward function, incremental action 

value functions, and action selection methods, were presented in this activity-based analysis, and 

memory and search played a key role in reinforcement learning. The reinforcement learning 

concept assumes that actions produce positive rewards if they are reinforced and have a higher 

probability of being repeated in future choice situations under similar conditions, and actions 

with negative outcomes tend to be avoided. The system assumes multistage decision making in 

potentially very large condition spaces and can deal with stochastic, nonstationary, and 

discontinuous reward functions. Arentze and Timmermans considered a hypothetical case that 

combined route, destination, and mode choice for an activity under time-varying conditions of the 
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activity schedule and road congestion probabilities. The learning and adaption was robust and 

most successful when the system chose a realistic reward reference level and assigned only a 

modest weight to new rewards in updating action values. Arentze and Timmermans’ framework 

took exploration and adaption in choice behavior into account, but it did not take into 

consideration environmental effects.  

Han and Timmermans
(69)

 proposed a general model of interactive learning behavior that evolves 

toward equilibrium in strategic situations under the assumption that travelers may choose 

particular choice options by taking into account their expectations about behavior of other 

travelers. The properties of the model are examined by using numerical computer simulations. 

The results of the simulations support the face validity of the formulated model.  

Wahba and Shalaby
(70)

 proposed an operational prototype of an innovative framework for the 

transit assignment problem by using a learning-based approach. The proposed framework 

represents a passenger’s learning and decision-making activities. In this prototype, a hypothetical 

transit network consisted of 22 routes and 194 stops developed within a microsimulation platform 

(Paramics). They then generated 3,000 passengers synthesized to model the transit assignment 

process in the peak morning periods. Reinforcement learning is used to model passengers’ 

adaptation and account for the differences in passengers’ preference in the dynamics of the transit 

network. Using this technique, the prototype has demonstrated that the proposed approach can 

simultaneously predict how passengers will choose their routes and estimate the total passenger 

travel cost in a congested network as well as loads on different transit routes. 

REINFORCEMENT LEARNING APPLIED IN TRAFFIC KINEMATIC PROBLEM  

Abbeel et al.
(71)

 presented the first successful autonomous completion of four aerobatic 

maneuvers using a real RC helicopter: forward flip, sideways roll at low speed, tail-in funnel, and 

nose-in funnel. First, a pilot controlled the helicopter to define a helicopter dynamics model and a 

reward (cost) function. Then a controller optimized for the result model and reward functions was 

formulated using the reinforcement learning (RL) algorithm. Differential dynamic programming 

(DDP) was used in this optimization process. 

During the flip, the helicopter rotates 360 degrees forward around a lateral axis. In a right axial 

roll, the helicopter rotates 360 degrees around its longitudinal axis. In a tail-in funnel, the 

helicopter repeatedly flies in a circle sideways with tail pointing to center of the circle. The nose-

in funnel is similar to tail-in funnel with the exception of the nose pointing to the center of the 

circle. 

The helicopter dynamics are modeled by the apprenticeship learning algorithm method. First, the 

data is collected from a human pilot flying the desired maneuvers in a helicopter to learn the 

optimal model. Next, a controller is found to simulate a flight based on the current model test 

control on the helicopter. The helicopter state includes position (x, y, z), orientation, velocity (ẋ, 

ẏ, ż), and angular velocity (ωx, ωy, ωz). The helicopter is controlled by four separate actions: 

cyclic pitch (u1, u2), tail rotor (u3) controls, and collective pitch angle (u4). This paper formulates 

the equations for acceleration and then integrates the accelerations together to obtain helicopter 

states. (Superscript b indicates the body coordinate for helicopter, coefficients A, B, C, D, and E 

are estimated from helicopter flight data, and ω on the right-hand side are zero mean Gaussian 

random variables.) 



 

30 

 

 

The reinforcement learning method has a sextuple of components (S, A, T, H, s(0), and R), 

including the set of states, S; the set of actions or inputs, A; and the dynamics model, T,
 
which is 

a set of probability distributions {P
t
su (s`|s,u}. The probability of being in state s’ at time t+1 

given the state and action at time t are s and u. The component s(0) is the initial state, and R is the 

reward function. A policy π=(u0, u1, …uh) is the relation from the actions to the states. The 

expected sum of the rewards when enacting the following policy   is given by the following 

equation: 

 

Equation 47. 

The optimal policy π
*
  is the policy that maximizes the expected sum of the rewards and is given 

as the following: 

 

Equation 48. 

where  

π
*
 = optimal policy, 

s(t) = state in time tt, 

u(t) = action in time  t, and 

R(s(t), u(t)) = reward function according to policy π when taking action u(t) at state s(t). 

The RL method solves this linear quadratic regulator (LQR) control problem as the following: 

s(t+1) = A (t) s(t)+ B(t) u(t) + w(t) 

Equation 49. 

The reward for being in the state s(t) and taking the action/input u(t) is given by the following 

function: 

s (t)
T
 Q(t) s(t) – u (t)

T
 R(t) u(t) 

Equation 50. 

where  

Q(t), R(t) = the positive semi-definite matrices that parameterize the reward function. 

In the differential dynamic programming (DDP) design for solving LQR, the error state is defined 

as the following:  
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Equation 51. 

where 

x, y, z = helicopter position 

ẋ, ẏ, ż = velocity, and 

ωx, ωy, ωz = angular velocity 

DDP is used in the first phase of control design to find the open-loop input sequence that would 

be optimal in a noise-free setting. During the second phase, the DDP is applied to design the 

actual flight controller with a deviation from the nominal open-loop input sequence with defined 

inputs. The reward function contains 24 features, including the squared error state variables, the 

squared inputs, and the squared change in the inputs between the consecutive time steps and the 

squared integral of the error state variables. The reinforcement learning algorithm finds the 

controller using a method of apprenticeship learning through the inverse reinforcement learning 

algorithm. The inverse reinforcement learning system provides reward weights that are closer to 

the expertise of a human pilot by increasing or decreasing the weight of the features that deviate 

from the expert. 

In the flip experiment, the cost matrices Q and R in the reward function are chosen by hand. The 

initial controller is oscillated in reality. The controller performs well with an increase in penalty 

for the changes in the inputs through consecutive time steps. The controller uses the same cost 

matrices for flips as it does when performing a roll. The controller outperforms the expert human 

pilots when it comes to both nose-in funnels and tail-in funnels. The DDP-based controller flies 

the helicopter successfully but only after being penalized for the controller’s rapid change in 

actions over consecutive time steps. In conclusion, this paper uses the apprenticeship learning 

algorithms to determine the reward function and to learn the model. This is a two-phase 

controller design, first for a feasible trajectory and second for design of the actual controller. 

Although this idea looks very similar to our study, the experiment is not applicable in our 

problem. In their approach, the agent controller is under online training by a reinforcement 

learning algorithm. However, in our problem, we do not have the luxury to design an agent 

controller to control a vehicle online in the field and collect the data. Instead, naturalistic 

trajectory is the only information we have access to. In fact, offline training is the only option.  

Jouffe
(72)

 proposed a realistic approach, similar to our study, to deal with various continuous 

traffic state-action mapping problems. In their paper, two reinforcement learning methods, Fuzzy 

Actor-Critic Learning (FACL) and Fuzzy Q-Learning (FQL), were used to tune online the 

conclusion part of Fuzzy Inference Systems. The only information available for learning is the 

system feedback, which describes in terms of reward and punishment the task the fuzzy agent has 

to realize. At each time step, the agent receives a reinforcement signal according to the last action 

it has performed in the previous state. The problem involves optimizing not only the direct 

reinforcement, but also the total amount of reinforcements the agent can receive in the future. To 

illustrate the use of these two learning methods, the authors first applied them to a problem that 
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involves finding a fuzzy controller to drive a boat from one bank to another, across a river with a 

strong nonlinear current. Then, the well-known Cart-Pole Balancing and Mountain-Car problems 

were used to compare the proposed methods to other reinforcement learning methods and focus 

on important characteristic aspects of FACL and FQL. The generality of the methods allowed the 

agent to learn every kind of reinforcement learning problem (continuous states, 

discrete/continuous actions, and various type of reinforcement functions). The experimental 

studies also show the superiority of these methods with respect to the existing methods in the 

literature. 
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CHAPTER 3. NATURALISTIC DATA PROCESSING 

Naturalistic data collection is the collection of driver behavior and performance data in a natural 

environment. Naturalistic data collection has opened the door for tremendous possibilities in 

transportation research. It has allowed researchers to examine what happens in the final seconds 

before crash, near-crash, and safety-critical events for which researchers would otherwise depend 

on eye witness accounts and police reports. Handled properly, data regarding vehicle speed, 

acceleration, range, range rate, headway, time to collision (TTC), brake pedal input, and 

qualitative data such as pre-incident maneuvers can be used to describe driver behavior. 

Qualitative data such as roadway type, number of lanes, traffic density, time of day, and weather 

can be used to describe the driving environment. Tying these data together allows researchers to 

understand the conditions that exist during an event and attain baseline data. Naturalistic driving 

data collection is a powerful approach used by researchers to understand crash and near-crash 

causation. As opposed to traditional epidemiological and experimental/empirical approaches, this 

in situ process uses drivers who operate vehicles that have been equipped with specialized 

sensors as well as processing and recording equipment (Figure 10). In effect, the vehicle becomes 

the data collection device. The drivers operate and interact with these vehicles during their 

normal driving routines while the data collection equipment continuously records numerous items 

of interest during the entire driving epoch (a prescribed driving period). 

 

Figure 10. Diagram. Advantages of the naturalistic data collection methodology data 

collection and reduction.
(45)

 

Naturalistic data collection methods require a sophisticated network of sensors, processing, and 

recording systems (Figure 11). The Data Acquisition System (DAS) provides a diverse collection 

of both on-road driving and driver (participant, nondriving) data, including measures such as 
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driver input and performance (e.g., lane position, headway, etc.), four camera video views, and 

driver activity data. This information may be supplemented by subjective data, such as 

questionnaire data. A tremendous amount of data is acquired when carrying out these naturalistic 

studies.  

 

 

Figure 11. Illustration. Naturalistic data sensors.
(48)

 

Due to the tremendous amount of information collected during these procedures, naturalistic data 

collection methods require significant post-collection processing. VTTI processes this data using 

secure computing systems on isolated networks, which allows for both data processing and 

analysis. A storage area network is employed to store the data and to play multiple driving and 

video files simultaneously at several PC workstations. 

Typically, the first step in the data reduction process is to identify events of interest, including 

crashes, near-crashes, and crash-relevant conflicts. To find events of interest, VTTI has 

developed a software program, Data Analysis and Reduction Tool (DART), that scans the dataset 

using user-defined threshold algorithms to identify notable actions (e.g., hard braking, quick 

steering maneuvers, short times-to-collision [TTC], and lane deviations, including median 

encroachments). All detected events are analyzed based on “instant replays” of video data and 

associated dynamic data recordings of the events. This analysis captures both the observable 

causal sequences leading to events as well as the conditions and correlates of event occurrence. 

Figure 12 presents a screen shot from the DART software interface. 

 

            

 

 
 

 

 

Rearward Camera 

                       



 

35 

 

 

A = Plan view of subject vehicle and road position based on Road Scout lane tracker. 

B = Video feed recording face shot of driver, with frame number, used to synchronize video 

and parametric data. 

C = Video feed recording forward view. 

D = Video feed recording of over-the-shoulder view of driver, which is used for determining 

driver distractions. 

E = Video feed recording both rear-left and rear-right images. 

F = Data feed from X/Y Acceleration sensor indicating longitudinal acceleration as measured 

in gs (the range to primary target as determined by VORAD). 

G = Data feed from front VORAD sensor, indicating range to primary target as determined by 

VORAD, versus time. 

H = Network speed is the vehicle’s speed. 

I = Data feed showing VORAD primary target closing rate (to subject vehicle). 

Figure 12. Screen Shot. Screen shot of DART software interface. 
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Table 5 identifies the DART components, tracking/recording mechanisms, and resulting data 

products. Using threshold values (triggers) developed by VTTI, the DART system was used to 

identify the different events.  

Table 5. Data Analysis and Reduction Tool (DART) components. 
(45)

 

Sensors 
Vehicle 

Network 
Incident Box 

Video 

Cameras 

On-Board 

Components 
Data Products 

 GPS 

 lane tracker 

 x/y acceleration 

 front VORAD 

 RF sensor 

 seat acceleration 

 sound level 

meter 

 in-cab 

temperature 

 speed 

 distance 

 ignition 

signal 

 brake 

activation 

 turn signals 

 

 light level 

 incident 

pushbutton 

 microphone 

 face 

 forward 

 rear-left 

 rear-right 

 data 

reliability 

check 

software 

 

 truck 

performance 

data file (in .dat 

format) 

 digital video 

file (in .mpg 

format) 

 digital audio 

file (in .mp3 

format) 

The Drowsy Driver Warning System Field Operational Test (DDWS FOT) 
(47)

 conducted by 

VTTI was a naturalistic data collection study that collected data for 18 months from 103 

commercial motor vehicle drivers (CMV). This database yielded approximately 2.2 million 

driving miles and, once reduced, found 1,217 valid safety-critical events. The data was processed 

through software that flags potential events of interest based on trigger threshold values.
(48)

 Table 

6 shows the triggers used for the DDWS FOT study.  

Table 6. Trigger values used in the DDWS FOT.
(47)

 

Trigger Type Trigger Values 

Longitudinal acceleration 

(hard braking)  

Deceleration greater than or equal to -0.35 g. Speed greater than or equal to 

15 mi/h. 

Deceleration greater than or equal to -0.5 g. Speed less than or equal to 15 mi/h. 

Time-to-collision A forward time-to-collision (TTC) value of less than or equal to 1.8 s, coupled 

with a range of less than or equal to 150 ft, a target speed of greater than or equal 

to 5 mi/h, a yaw rate of less than or equal to │4/sec│, and an azimuth of less than 

or equal to │0.8°│. 

A forward TTC value of less than or equal to 1.8 s, coupled with an acceleration 

or deceleration greater than or equal to │0.35g│, a forward range of less than or 

equal to 150 ft, a yaw rate of less than or equal to │4°/sec│, and an azimuth of 

less than or equal to │0.8°│. 

Swerve Swerve value of greater than or equal to 3 rad/s². Speed greater than or equal to 15 

mi/h. 

Critical incident button Activated by the driver upon pressing a button, located by the driver’s visor, when 

an incident occurs that he/she deems critical. 

Analyst identified Event that was identified by a data analyst viewing video footage; no other trigger 

listed above identified the event (i.e., longitudinal acceleration, TTC, etc.). 
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When analyzing data, it is critical for the researcher to have a strong dataset of baseline data or 

epochs. Baseline epochs are described as brief time periods (e.g., 6 s) that are randomly selected 

from the recorded dataset. Baseline epochs are described using many of the same variables and 

data elements used to describe and classify crashes, near-crashes, and crash-relevant conflicts. 

Examples of such variables included ambient weather, roadway type, and driver behaviors. In a 

recent study utilizing the dataset from the 100-Car Naturalistic Driving Study 
(45)

, one of the first 

large-scale studies, McLaughlin et al.
(56)

 explain the process researchers used to utilize the 100-

Car dataset in order to develop a baseline database that would quantify the frequency of different 

conditions and behaviors present while driving. During this process, researchers used the dataset 

to create a description of baseline driving. Conditions such as lighting and weather were then 

classified. Analysts used these random epochs to estimate miles traveled in different conditions 

by multiplying a participant’s estimated miles traveled by the classified conditions. The sampling 

was stratified according to the involvement of each driver in crashes, near-crashes, and incidents 

of all types. From this analysis, it was determined that if a driver was involved in 3 percent of 

total events, then 3 percent of baseline epochs would be used from that driver’s data.  

NATURALISTIC TRUCK DATABASE AND TRIGGERS 

The benefit of a naturalistic driving study is the ability to view the driver behavior and 

performance data that has been collected in a naturalistic environment. In the DDWS FOT study, 

a diverse set of measures were collected, including driver input/performance measures, video, 

actigrapy, and questionnaires. Of the 103 drivers, 24 were randomly assigned to the Control 

group (A
9
) and 79 drivers were randomly assigned to the Experimental group (A

2
B

9
). A refers to 

the baseline condition, and B refers to the treatment condition. The superscripts refer to the 

number of weeks each participant drove an instrumented truck. When participants were driving in 

the baseline condition, the DDWS did not provide alerts. However, in the treatment condition the 

drivers were monitored and alerts were provided.  

Three types of data were collected by the DAS: video, dynamic performance, and audio. Each 

driver drove 60 h in a 7-day period. Approximately 48,000 driving-data hours covering 

2.2 million miles traveled were collected. Typically drivers would rotate into one of the 46 

instrumented trucks, and each driver drove, on average, for 12 weeks. The DAS computer 

included five major components: the DDWS, sensors, vehicle network, incident box, and video 

cameras. Four digital video cameras were used to continuously record the driver and the driving 

environment. The four cameras were multiplexed into a single image. The four camera views 

were forward, driver’s face, rear-facing-left, and rear-facing-right. A software program called 

Loki was developed to coordinate the data collection from the different DAS components and to 

integrate the data into a specific DAS output file linked to the video. More than 100 variables 

were collected, such as PERCLOS (percent eye closure); output; and driving performance data 

such as lane position, speed, and longitudinal acceleration.  

Similarly, VTTI performed another large-scale naturalistic data collection study investigating 

crash risk by identifying safety-critical events. The objective of the Naturalistic Truck Driving 

Study (NTDS),
(48)

 as well as Blanco et al. (in press), was to use the naturalistic driving data to 

investigate issues in the trucking industry such as driver sleep/rest cycles and crash 

countermeasures. Continuous driving performance data was collected for 100 commercial motor 

vehicle drivers during 4 months of their normal driving routine. Approximately 14,600 hours of 

driving data were collected. During this period of time, more than 2,800 safety-critical events 
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were identified: 13 crashes, 58 near-crashes, 1,595 crash-relevant conflicts, and 1,213 

unintentional lane deviations. In addition to video and performance data, each participant was 

asked to wear an actigraph watch (i.e., a sleep monitor) and to fill out a daily activity log. This 

data provided information about the drivers’ daily sleep patterns and amount of sleep, as well as 

other measures of interest such as time since last sleep period in reference to a critical incident. 

One or more crash countermeasures were also identified for each critical incident. The study 

recruited 100 participants from 4 participating trucking fleets. Each participant was observed for 

approximately 4 work weeks. Once the 4-week data collection period was over, another 

participant would start driving the instrumented truck.  

Three forms of data were collected by the NTDS DAS: video, dynamic performance, and audio. 

As in the DDWS FOT, the DAS system for the NTDS consisted of five components: dynamic 

sensors, vehicle network, incident box, and video cameras. A lane tracker was included in the 

DAS system and consisted of a single analog black-and-white camera, a personal computer with 

a frame grabber card, and an interface-to-vehicle network for obtaining ground speed. Once 

installed, software automatically calibrated itself to determine the camera position. The following 

variables were reported: 

 Distance from center of truck to left and right lane markings (estimated max error <6 inches, 

average error < 2 inches). 

 Angular offset between truck centerline and road centerline (estimated max error <1°). 

 Approximate road curvature. 

 Confidence in reported values for each marking found. 

 Marking characteristics, such as dashed versus solid and double versus single. 

 Status information, such as in-lane or solid line crossed. 

An additional camera view looking over the driver’s shoulder into the lap was added to the 

NTDS after data analysts reported that in the DDWS FOT the drivers would often reach for an 

unidentifiable object outside the camera view. This additional view provided information on 

many potentially distracting driver behaviors. The data reduction process was similar to that of 

the DDWS FOT. The first step was to process data using modified trigger values (Table 7) to flag 

potential events of interest. The lane deviation trigger in the NTDS was not included in the 

DDWS FOT.  
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Table 7. Trigger values used in the NTDS.
(48)

 

Trigger Type Trigger Values 

Longitudinal acceleration 

(hard braking)  

Deceleration greater than or equal to -0.20 g. Speed greater than or equal to 

1 mi/h. 

Time-to-collision A forward time-to-collision (TTC) value of less than or equal to 2 s, coupled with 

a range of less than or equal to 250 ft, a target speed of greater than or equal to 5 

mi/h, a gyro rate of less than or equal to │6/sec│, and an azimuth of less than or 

equal to │0.12°│. 

Swerve Swerve value of greater than or equal to 2 rad/s². Speed greater than or equal to 5 

mi/h. 

Critical incident button Activated by the driver upon pressing a button, located by the driver’s visor, when 

an incident occurs that he/she deems critical. 

Analyst identified Event that was identified by a data analyst viewing video footage; no other trigger 

listed above identified the event (i.e., longitudinal acceleration, TTC, etc.). 

Together, these CMV, heavy-vehicle naturalistic studies yielded approximately 60,000 hours and 

3 million miles of continuous data, which provide an extremely rich dataset. Further analysis on 

databases such as these will continue to answer questions on driver behavior.  

NATURALISTIC CAR DATABASE 

VTTI conducted another notable naturalistic data collection study (mentioned briefly above), the 

100-Car Naturalistic Study,
(45)

 which instrumented 100 light vehicles. The 100-Car study was 

unique in that it was the first study in which vehicles were instrumented with the primary goal of 

collecting large-scale, naturalistic driving data. Also, 78 of the 100 instrumented vehicles were 

those of the participants, and the participants were given no special instructions. Approximately 

2 million vehicle miles were included in the dataset, which is rich with extreme cases of driving 

behavior and performance. Continuous driving performance data was collected for 109 primary 

drivers and a total of 241 drivers during 13 months of their normal driving routine. 

Approximately 42,300 hours of driving data were collected. During this period of time, 15 police 

reported crashes, 67 nonpolice-reported crashes, 761 near-crashes, and 8,295 incidents were 

identified. The trigger values used to flag potential events of interest in the 100-Car study are 

shown in Table 8. 
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Table 8. Trigger values used in the 100-Car Study.
(45)

 

Trigger Type Trigger Values 

Lateral acceleration Lateral motion equal to or greater than 0.7 g. 

Longitudinal acceleration 

(hard braking)  

Acceleration or deceleration equal to or greater than 0.6 g. 

Acceleration or deceleration equal to or greater than 0.5 g coupled with a forward 

TTC of 4 s or less. 

All longitudinal decelerations between 0.4 g and 0.5 g coupled with a forward 

TTC of ≤ 4 s and a corresponding forward range value at the minimum TTC not 

greater than 100 ft. 

Forward time-to-collision Acceleration or deceleration equal to or greater than 0.5 g coupled with a forward 

TTC of 4 s or less. 

All longitudinal decelerations between 0.4 g and 0.5 g coupled with a forward 

TTC of ≤ 4 s and a corresponding forward range value at the minimum TTC not 

greater than 100 ft. 

Rear time-to-collision Any rear TTC trigger value of 2 s or less that also has a corresponding rear range 

distance of ≤ 50 ft AND a rear TTC trigger value in which the absolute 

acceleration of the following vehicle is greater than 0.3 g. 

Critical incident button Activated by the driver upon pressing a button, located by the driver’s visor, when 

an incident occurs that he/she deems critical. 

Yaw rate Any value greater than or equal to a plus AND minus 4 degree change in heading 

(i.e., vehicle must return to the same general direction of travel) within a 3-s 

window of time. 

 

SAFETY-CRITICAL EVENTS 

The safety-critical events for all three naturalistic data databases were identified using the triggers 

discussed earlier. Table 9 presents an enumeration of the types of crashes and near-crashes that 

were identified for each database. The safety-critical events involving animals, pedestrians, or 

only a single vehicle are not relevant to this project because they are more representative of 

special case scenarios that are not recurrent. The crashes and near-crashes involving multiple 

vehicles are representative of conflicts between vehicles that have a recurring nature. The safety-

critical events that are not a forward or rear conflict will not have radar data, so the relative 

location and speed of the vehicles involved will not be known.  
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Table 9. Enumeration of crash and near-crash data. 

 

8-Truck 

Crashes 

34-Truck 

Crashes 

100-Car 

Crashes 

8-Truck Near-

crashes 

34-Truck Near-

crashes 

100-Car Near-

Crashes 

Animal 1 4 2 1 9 10 

Pedestrian 

    

3 6 

1 vehicle no 

objects 1 

 

23 7 9 46 

1 vehicle 

with objects 2 23 12 8 29 15 

Multiple 

vehicles 

      Not directly 

in front or 

behind 1 

 

5 35 46 227 

Directly in 

front or 

behind 

 

2 27 9 22 457 

Ten truck drivers and ten car drivers were selected for analysis and agent implementation based 

on the type of crashes and near-crashes they experienced. The drivers with the most crashes and 

near-crashes that were forward conflicts were selected. Figure 13 shows the demographic data of 

the chosen truck drivers, and Figure 14 shows their demographic data. 
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Figure 13. Illustration. Truck driver demographic data. 
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Figure 14. Illustration. Car driver demographic data. 

CAR-FOLLOWING FILTERING CRITERIA 

Car-following situations were automatically extracted from the enormous volume of driving data 

in the database to analyze car-following behavior. This process made use of the tools SQL and 

MATLAB to query the databases and filter them down to the needed car-following periods. 

SQL is a program that is useful for efficiently accessing data stored in a database. This program 

allows a user to write lines of code called a query, which is then used to find all the data in the 



 

44 

 

database that matches the lines of code or filters in the query. This tool is a requirement for 

searching the huge volume of naturalistic data in the VTTI database. Even the data of a single 

driver is too large to analyze manually. For example, the data is collected at 10 Hz or 10 

datapoints per second, so the 14,600 hours of data in the 8-Truck naturalistic study has 525.6 

million datapoints. 

An iterative process was used to filter for the car-following periods. Initial values and conditions 

were used, and after the events were flagged, they were reviewed in the video data to adjust the 

values accordingly to minimize the noise. Visual inspection of the first subsets created revealed 

some events that were not car-following, so additional filtering was performed to remove these 

events from the database. 

Specifically, car-following periods were extracted automatically according to these conditions 

that arose as a result of the aforementioned process: 

 Radar Target ID > 0. 

This eliminates the points in time without a radar target detected. 

 Radar Range ≤ 120 m. 

This represents 4 s of headway at 70 mi/h. 

 -1.9 meters < Range*Sin (Azimuth) < 1.9 m. 

This restricts the data to only one lane in front of the lead vehicle. 

 Speed ≥ 20 km/h. 

This speed was used to minimize the effect of traffic jams but still leave the influence of 

congestion in the data. 

 Rho-inverse ≤ 1/610 m
-1

. 

This limits the curvature of the roadway such that vehicles are not misidentified as being in the 

same lane as the subject vehicle when roadway curvature is present. 

 Length of car following period ≥ 30 seconds. 

All of the criteria except the length of car-following period criterion were applied in SQL. The 

length criterion posed difficulties in being applied in SQL. SQL evaluates each line or datapoint 

separately, but the criterion for length of car-following depends on the previous lines of data. 

MATLAB was used for this task because it offered simple and computationally efficient methods 

to enforce the length of car-following period criterion. 

The results of these filtering criteria were verified through a video sample of 400 car-following 

periods, of which 396 were valid. Of the criteria listed above, it was found that the length of the 

car-following period criterion had the largest influence on the level of noise extracted. It was also 

found that increasing the length to more than 30 s reduced the number of car-following periods 

extracted to the point that the percentage of valid car-following periods in each sample would 

have little improvement over the 30-s samples. The mentioned criteria resulted in numerous car-

following periods for each driver, with the exact number found being vaguely related to the 

amount of data available for that driver. As a rough example, a driver with around 200 hours of 

data would yield in excess of 1,000 car-following periods, which is more than what is needed for 

a single driver. 
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CHAPTER CONCLUSION 

The naturalistic data is unique in that it captures the behavior of drivers when they are not in a 

test environment. This allows analyses to give results that are more related to normal, natural 

driving behaviors. One of the strengths of the naturalistic dataset is its sheer amount of data, 

which allows for more in-depth analyses. This creates a problem, however, when sorting through 

the data to find the data relevant to the research objectives. For this project, SQL and MATLAB 

were used to find car-following periods in the data, which are representative of normal behaviors 

during which conflicts did not arise. In contrast, the times when conflicts did arise are called 

safety-critical events, and these were identified in previous studies conducted by VTTI. Both 

datasets, safety-critical events and car-following periods, are necessary for training an agent to 

mimic the range of behaviors of drivers. The data from the car-following periods was used to 

evaluate and improve current car-following models (see Chapter 4). The event data was used to 

develop agents that mimic the naturalistic behavior of drivers during safety-critical events (see 

Chapter 5). The event data and car-following period were used in a discriminant analysis to find a 

way to distinguish between safe and unsafe driving behaviors (see Chapter 6). The developed 

agents were implemented in VISSIM (see Chapter 7). The agents implemented in VISSIM were 

tested and compared to the original simulation (see Chapter 8). 
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CHAPTER 4. CALIBRATION AND EXTENSION OF EXISTING CAR-FOLLOWING 

MODELS—THE WIEDEMANN MODEL 

MODEL CALIBRATION 

Wiedemann Car-Following Model 

The Wiedemann car-following model was originally formulated in 1974 by Rainer 

Wiedemann.
(15)

 This model, also called the Wiedemann 74 model, is known for its extensive use 

in VISSIM, the microscopic multimodal traffic flow simulation software.
(73)

 The simulation 

program chosen for the final implementation of trained agents as a result of this project was 

VISSIM. This makes the Wiedemann model a good illustrative example for this project. The 

Wiedemann model was constructed based on conceptual development and limited available data, 

and it must be calibrated to specific traffic-stream data.  

This project used the principal ideas behind the Wiedemann model, but the exact shape or 

formula used in the model were updated using the naturalistic data, which is deemed to be one of 

the best available sources of real-world data. 

Figure 15 shows the graphical form of the Wiedemann 74 model. The different thresholds are 

shown with a certain shape that can be amplified only during the calibration procedure. The 

figure shows the subject vehicle approaching a lead vehicle (∆X decreasing due to the subject 

vehicle’s greater speed, shown by a positive ∆V) and entering a perception area (crossing the 

SDV threshold) where it has to reduce speed. The subject vehicle then crosses another threshold 

(CLDV) where the driver reacts and reduces speed even further, entering an unconscious reaction 

car-following episode. The subject vehicle’s driver then continues the unconscious car-following 

episode as long as it remains bounded by the OPDV, SDX, and SDV thresholds. 

 

Figure 15. Diagram. Wiedemann 74 car-following logic.
(73)
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Reconstruction of the Wiedemann Model 

The reconstruction process employed has two main sections. The first section is the evaluation 

and adaptation of the Wiedemann model according to the naturalistic data. The second section is 

the addition of new thresholds that aim to represent recurrent phenomena that were found in the 

naturalistic data. 

Calibration and Adaptation of Existing Model 

The Wiedemann model uses random numbers to create heterogeneous traffic stream behavior in 

VISSIM. These random numbers are meant to simulate the behavior of different drivers. The 

naturalistic data is a perfect match for this situation because the data is collected for individual 

drivers. Data for four different drivers was selected and processed to reconstruct the Wiedemann 

car-following model. 

The reconstruction began by analyzing the equations for the different thresholds and different 

accelerations. This coincided with the design of a calibration framework tailored specifically to 

the naturalistic data. The analyzed and adjusted equations were implemented into the calibration 

framework, a Microsoft Excel spreadsheet. Microsoft Excel 2010 was chosen for this task due to 

the new evolutionary algorithm included in Excel’s Solver add-in. The framework expressed the 

logic of the Wiedemann model as a series of state transitions. The states are defined by the 

different thresholds, and each state has an equation or parameter for the acceleration. The 

optimization function was simply the minimization of the error between the values calculated in 

the Wiedemann model and the values obtained directly from the data. 

The starting point for the Wiedemann model is the desired distance between stationary vehicles. 

The value calculated by Equation 52 is used in the calculations for the other thresholds. When 

analyzing this equation with an individual driver in mind, the calibration parameters can be 

combined with a driver-dependent random number to create a single calibration parameter as 

shown in Equation 52. 

  

Equation 52. 

where Ln-1 is the length of the lead vehicle, AXadd, AXmult are calibrated parameters, and 

RND1n is a normally distributed driver-dependent parameter. 

   

Equation 53. 

The desired minimum following distance threshold is calculated using Equation 54 and Equation 

55. The calibration parameters and random number can be combined to produce Equation 56. 

  

Equation 54. 
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Equation 55. 

where BXadd and BXmult are calibration parameters and v is the minimum of the speed of the 

subject vehicle and the lead vehicle. 

  

Equation 56. 

The maximum following distance is calculated using Equation 57 and Equation 58. The second 

equation includes calibration parameters and random numbers, but it mainly serves as a 

multiplier to BX. Since it serves as only a multiplier, the first equation can be condensed into 

Equation 59. 

  

Equation 57. 

  

Equation 58. 

where EXadd and EXmult are calibration parameters, NRND is a normally distributed random 

number, and NRND2n is a normally distributed driver-dependent parameter. 

  

Equation 59. 

The perception threshold marks the point at which a driver will begin to react to the lead vehicle. 

This threshold is calculated by Equation 60. Equation 53 and 61 are needed to calculate Equation 

60. 

  

Equation 60. 

  

Equation 61. 

where Ln-1 is the length of the lead vehicle; CXconst, CXadd, and CXmult are calibrated 

parameters; and RND1n and RND2n are normally distributed, driver-dependent parameters. 
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When looking at Equation 61 with a specific driver in mind, the equation can be reduced by 

combining all of the variables that would have a constant value. This collapses the equation into 

Equation 62, with only one input variable. 

  

Equation 62. 

The reaction curve marks the location of a second acceleration change point while the subject 

vehicle is still closing on the lead vehicle. In VISSIM, this threshold is assumed to be equivalent 

to the perception threshold. Due to that similarity, the equation used for the reaction threshold 

(Equation 63) is derived from Equation 60. 

 

Equation 63. 

where CLDVCX is a calibrated parameter specific to one driver. 

The OPDV (opening difference in velocity) curve is primarily a boundary to the unconscious 

reaction region. It represents the point where the driver notices that the distance between his or 

her vehicle and the lead vehicle is increasing over time. When this realization is made, the driver 

will accelerate to maintain desired headway. This threshold is calculated using Equation 64. 

 

Equation 64. 

where OPDVadd and OPDVmult are calibrated parameters and NRND is a normally distributed 

random parameter. 

When considering only one driver, the equation changes to Equation 65. 

 

Equation 65. 

The Wiedemann model reuses the perception threshold as a boundary to the unconscious reaction 

region. This is another point at which the driver notices that the distance between his or her 

vehicle and the lead vehicle is decreasing over time. However, this second use of the threshold is 

used when the subject vehicle is already engaged in following the lead vehicle. In our 

reconstructed model, this reuse of the perception threshold was given its own equation to provide 

hysteresis control and to evaluate the adequacy of reusing the perception threshold. Equation 66 

is the same as Equation 60, but with a different calibrated parameter. 
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Equation 66. 

where CX2 is a calibrated parameter. 

The first state is the free-driving regime, in which the subject vehicle is not reacting to a lead 

vehicle and is traveling at a desired speed or accelerating to a desired speed. The free-driving 

regime is defined as the area above the perception threshold and the maximum following distance 

threshold. If the subject vehicle enters the free-driving regime, the subject vehicle will then 

accelerate until the desired speed is reached. The value for this acceleration is calculated using 

Equation 67 and Equation 68. The first equation relates the maximum speed to the current speed 

times the second equation, and it calculates an acceleration value accordingly to reach the 

maximum speed. Equation 69 is derived when the acceleration ends at the desired speed and not 

the maximum speed. Also, Equation 70 is derived from the fact that Equation 68 will reduce to a 

constant value. 

 

Equation 67. 

where BMAXmult is a calibration parameter and vmax is the maximum speed of the vehicle. 

 

Equation 68. 

where FAKTORVmult is a calibration parameter and vdes is the desired speed. 

 

Equation 69. 

 

 

Equation 70. 

The approaching regime occurs when a vehicle in the free-driving regime passes the perception 

threshold. This vehicle will then decelerate according to Equation 71. 

 

Equation 71. 
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The closely approaching regime occurs only when a vehicle in the approaching regime passes the 

closing difference in velocity threshold. In VISSIM, this regime is ignored, so the deceleration is 

still calculated by Equation 71. 

The deceleration following regime occurs as a result of a vehicle in the approaching or closely 

approaching regime passing the perception threshold, or a vehicle in the acceleration following 

regime passing the second perception threshold. When a vehicle enters the deceleration following 

regime, the acceleration is calculated by the negative of Equation 72. When considering one 

driver, this equation can be reduced to the one in Equation 73. 

 

Equation 72. 

where BNULLmult is a calibration parameter and RND4n is a normally distributed driver-

dependent parameter. 

 

Equation 73. 

The acceleration following regime occurs when a vehicle in the deceleration following regime 

passes the opening difference in velocity threshold, or when a vehicle in the emergency regime 

passes the minimum following distance threshold. The acceleration for a vehicle in the 

acceleration following regime is simply the positive value of Equation 73. If a vehicle in this 

regime accelerates and crosses the maximum following distance threshold, then that vehicle will 

enter the free-driving regime. Also, the inverse is true: a vehicle will enter the acceleration 

following regime from the free-driving regime if the maximum following distance threshold is 

passed. 

The emergency regime occurs any time that the space headway is below the minimum following 

distance threshold. Equation 74 and Equation 75 calculate the acceleration in the emergency 

regime. The second equation can be reduced to Equation 76 when individual drivers are 

considered. 

 

Equation 74. 

 

Equation 75. 

where BMINadd and BMINmult are calibration parameters, RND3n is a normally distributed 

driver-dependent parameter, and vn is the speed of the subject vehicle. 
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Equation 76. 

New Thresholds 

Hook Following Threshold 

The first and most prominent recurrent phenomenon in the naturalistic data is car-following 

periods that begin at low space headways, with the lead vehicle traveling at a higher speed than 

the subject vehicle. The low space headway and higher speed indicate the completion of a pass 

maneuver for the lead vehicle as it merges back into the same lane as the subject vehicle. The 

interesting phenomenon is that the completion of the pass maneuver initiates car-following 

behavior. Table 10 shows that, from a sample of the car-following periods, this phenomenon 

represents 45 percent of the data, which is too large to ignore. 

Table 10. Random sample results for number of hook following periods. 

 Driver J Driver K Driver F Driver L % of Total 

Regular car-following 217 131 102 256 55% 

Hook car-following 166 123 142 149 45% 

Figure 16 shows an example of hook car-following behavior. It is deemed hook car-following 

because it is initiated by the subject vehicle “hooking” onto the faster lead vehicle. The figure 

also shows that the vehicle moves into the unconscious reaction region and oscillates just like the 

regular Wiedemann model in Figure 15. 
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Figure 16. Graph. Example hook car-following period. 

The process used was to plot two different sets of data and find the dividing line between them. 

The two datasets are (1) for vehicles that were not hooked onto for following and (2) for vehicles 

that were hooked onto and followed. The logic employed to differentiate between not hooking 

and hooking onto the lead vehicle operated on the fact that if a car-following period is initiated, 

then the subject vehicle will travel faster than the lead vehicle to catch up and follow it. 

Passing Threshold 

The Wiedemann model uses an external lane-changing logic for passing decisions. Trends in the 

naturalistic data show that this passing decision could be represented by an additional threshold 

to the Wiedemann model. This new threshold would operate much like the perception threshold, 

but the primary reaction would be to find a gap in an adjacent lane in order to pass. It will also 

operate like the perception threshold because the driver will need to react to the lead vehicle until 

an adequate gap is available. 

The method employed here is the same as that employed for the hook threshold, except that in 

this case the subject vehicle will decelerate to follow. 

RESULTS 

Evaluation of the Existing Wiedemann Model 

These new threshold equations were evaluated and calibrated using a genetic algorithm 

framework. The framework operated from state transitions, that is, where the driver would switch 

-4 -3 -2 -1 0 1 2 3
0

10

20

30

40

50

60

70

Range Rate (m/s)

R
a

n
g

e
(m

)

Hook Following

 

 

0

20

40

60

80

100

120

140

160

180

Time (s)



 

54 

 

states when crossing a threshold. The progression of the states was as follows: free driving, 

approaching, closely approaching, following decelerate, following accelerate. The emergency 

regime and free driving were not evaluated in order to focus on car-following behavior. The 

evaluation consisted of 100 car-following periods for 4 different drivers. The results of the 

genetic algorithm were compared to the VISSIM default values obtained from the work of 

Olstam and Tapani
(3)

 shown in Table 11. The length of the lead vehicle was evaluated as a 

calibration parameter to provide verification that the calibration is feasible. The results of the 

optimization function are shown in Table 12. 

Table 11. Calibration parameters by driver. 

 Default Driver J Driver K Driver F Driver L 

Ln-1 4.500 4.494 5.553 4.547 5.680 

AXadd 2.500 2.525 5.044 2.873 5.601 

BXmult 3.000 3.041 3.405 3.421 3.435 

EXmult 2.500 2.514 3.096 3.427 2.676 

CX 40.000 40.066 75.042 62.405 93.131 

CX2 40.000 39.031 28.978 73.258 73.026 

CLDVCX 30.000 31.762 56.798 33.159 51.080 

OPDVmult -2.250 -2.512 -6.580 -1.068 -3.307 

bnull 0.100 0.122 0.075 0.241 0.072 

bmaxmult 0.088 0.099 0.153 0.427 0.387 

FaktorVmult 0.025 0.039 0.167 0.200 0.182 

bminadd -20.000 -20.898 -13.167 -23.408 -41.721 

bminmult 0.025 0.033 0.091 0.320 0.378 

Vdes 40.000 42.674 84.038 88.721 16.067 

FaktorV 1.000 0.940 0.522 0.507 1.959 

Table 12. Root mean square error for optimization function. 

  Default Calibrated % change 

Driver J 0.784762 0.7533074 4% 

Driver K 4.016006 0.9688645 76% 

Driver F 3.263291 1.2555831 62% 

Driver L 17.55786 1.0745801 94% 

The results show that Driver J’s behaviors are very similar to the VISSIM default values. The 

other drivers all show drastic improvement when calibrated. Also, a number of the parameters 

change drastically in value between drivers, which suggests that drivers should be calibrated 
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individually to preserve accuracy. The large variation also suggests that a generic model would 

be inaccurate. 

New Thresholds 

Hook Following Threshold 

Figure 17 shows both the hooked and not-hooked reactions. As can be seen in the figure, there 

appears to be a dividing line between the two datasets. This same process is repeated for the other 

drivers, and the equations are summarized by driver in Table 13. 

 

Figure 17. Graph. Hooked/not-hooked division line.  

Table 13. Hook following threshold equations by driver. 

Driver Threshold Equation 

J 
 

K 
 

F 
 

L 
 

Passing Threshold 

The passing threshold is harder to discern than the hook threshold. Figure 18 shows data for 

Driver J, which is unclear until forced following is considered. In forced following, the driver 

intends to pass the lead vehicle, but there are no sufficient gaps allowing this maneuver. When 
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forced following is considered, the division between passing and not passing is clearly above any 

hard deceleration at low space headways. Table 14 presents the pass threshold equation for the 4 

drivers. 

 

Figure 18. Graph. Pass decision curve. 

Table 14. Pass threshold equations by driver. 

 Pass Threshold Equation 

Driver J 
 

Driver K 
 

Driver F 
 

Driver L 
 

 

Reconstructed Wiedemann Model 

The calibrated parameters and new thresholds were calculated for each driver and are presented 

in Figure 19, Figure 20, Figure 21, and Figure 22. The SDV (perception threshold) and SDV2 

(second perception threshold) are very similar for three of the drivers, but very different for 

Driver K. For Driver K, the CLDV (closing difference in velocity) threshold is greater than the 

SDV2, which means that Driver K prefers to decelerate at a harder rate when approaching a 

vehicle within the following regime. All of the drivers have SDV2s that minimize the effect of 

the acceleration following regime. The ABX (minimum following distance) and SDX (maximum 

following distance) thresholds show similarities between Drivers K and F and between Drivers J 

and L. 
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Figure 19. Graph. Thresholds for Driver J. 

 

 

Figure 20. Graph. Thresholds for Driver K. 
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Figure 21. Graph. Thresholds for Driver F. 

 

 

Figure 22. Graph. Thresholds for Driver L. 
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Conclusions 

Modeling and calibrating drivers individually in this project added a new perspective to the 

Wiedemann model and allowed the authors to reconstruct the model by adding new thresholds. 

The inclusion of a hook following threshold adds value to the model by providing the ability to 

include a significant natural driving behavior. The addition of the passing threshold provides the 

model with the ability to easily transition from car-following to lane-changing behavior. This 

threshold also provides a way to force car-following behavior when a lane change is not possible. 

The addition of these new thresholds and the driver-specific equations give the Wiedemann 

model a better ability to represent real-world driving behavior, which is the goal of all car-

following models. 

HYBRID MODEL DEVELOPMENT 

GHR Model 

The GHR model relates the acceleration to the current speed, relative speed, and space headway 

as shown in Equation 77. 

 

Equation 77. 

where 

an (t) is the acceleration of the subject vehicle at time t. 

vn(t) is the speed of the subject vehicle at time t. 

T is the perception reaction time of the driver. 

Δv (t-T) is the relative speed at time t minus T. 

Δx (t-T) is the space headway at time t minus T. 

C, l, and m are calibration parameters. 

Wiedemann Model Equations 

The first state in the Wiedemann model is the free-driving regime, in which the subject vehicle is 

not reacting to a lead vehicle and is traveling at a desired speed or accelerating to a desired speed. 

The free-driving regime is defined as the area above the perception threshold and the maximum 

following distance threshold. This regime was not included in the calibration because it does not 

adhere to any car-following rules. 

The approaching regime occurs when a vehicle in the free-driving regime passes the perception 

threshold. This vehicle will then decelerate according to Equation 78. In our hybrid model, the 

GHR acceleration in Equation 77 replaces Equation 78. The GHR model, in this case, will have 

its own set of calibrated parameters specifically for approaching a lead vehicle. 
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Equation 78. 

The closely approaching regime occurs only when a vehicle in the approaching regime passes the 

closing difference in velocity threshold. In VISSIM, this regime is ignored, so the deceleration is 

still calculated by Equation 78. The closely approaching regime would typically result in a harder 

deceleration than the approaching regime due to the low space headway. The GHR model 

accounts for this difference by using a specialized set of calibration parameters. 

The deceleration following regime occurs as a result of a vehicle in the approaching or closely 

approaching regime passing the perception threshold, or a vehicle in the acceleration following 

regime passing the second perception threshold. When a vehicle enters the deceleration following 

regime, the acceleration is calculated by the negative of Equation 79.  

 

Equation 79. 

where BNULLmult is a calibration parameter and RND4n is a normally distributed driver-

dependent parameter. 

The acceleration following regime occurs when a vehicle in the deceleration following regime 

passes the opening difference in velocity threshold, or when a vehicle in the emergency regime 

passes the minimum following distance threshold. The acceleration for a vehicle in the 

acceleration following regime is simply the positive value of Equation 79. If a vehicle in this 

regime accelerates and crosses the maximum following distance threshold, then that vehicle will 

enter the free-driving regime. Also, the inverse is true: a vehicle will enter the acceleration 

following regime from the free-driving regime if the maximum following distance threshold is 

passed. 

Equation 79 lacks any form of reaction to the lead vehicle. The only reaction is to switch from 

acceleration to deceleration once a threshold is crossed. This relies solely on the assumption that 

a constant small acceleration or deceleration will be sufficient to account for actions of the lead 

vehicle while in the following regime. The GHR model can be used to provide clarity in both of 

the following regimes. The two regimes were calibrated with a different set of parameters to 

account and test for any difference between the accelerations and decelerations of both following 

regimes. 

The emergency regime occurs any time that the space headway is below the minimum following 

distance threshold. Equation 80 and Equation 81 calculate the acceleration in the emergency 

regime. This regime is not included in the calibration because it resembles crash and near-crash 

reactions more than car following and is left to the agent simulation described in Chapter 5. 

 

Equation 80. 
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Equation 81. 

where BMINadd and BMINmult are calibration parameters, RND3n is a normally distributed 

driver-dependent parameter, And vn is the speed of the subject vehicle. 

Calibration Framework 

The car-following data for four different drivers from the naturalistic data was used to calibrate 

the models by using a genetic algorithm. Ten car-following periods per driver were used in the 

calibration. The framework consisted of calibrating the parameters for the Wiedemann model 

based on the equations shown earlier. This framework was then altered such that the GHR model 

replaced the acceleration equations in the following regimes: approaching, closely approaching, 

acceleration following, and deceleration following. The GHR model was given a different set of 

calibration parameters (c, l, m, and T) for each of those regimes. The reaction time, T, was used 

as a calibration parameter to obtain a measure of the attentiveness of the different drivers. 

Results 

Figure 23 shows how the Wiedemann model in its current state is very reactive to the changes in 

the speed of the lead vehicle. This reactivity can be attributed to the fact that Equation 78 is a 

relative acceleration equation. Also, the recovery from a hard deceleration does not match the 

data in Figure 23. 

 

Figure 23. Graph. Driver F Wiedemann car-following period. 

Figure 24 presents the same car-following episode as Figure 23, but with the GHR model 

integrated into the Wiedemann model. Figure 24 shows that the GHR model has removed the 

inaccurate reactivity to changes in the speed of the lead vehicle. 
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Figure 24. Graph. Driver F Wiedemann with GHR car-following period. 

Figure 25 shows a comparison of the Wiedemann model and the Wiedemann model integrated 

with the GHR model. The GHR model corrects the recovery from a hard deceleration error seen 

in the Wiedemann model. The Wiedemann model appears to accelerate at a lower rate and for a 

longer period of time than is found in the naturalistic data. 

 

 

Figure 25. Graph. Comparison of Wiedemann and Wiedemann with GHR. 

Figure 26 shows how the models compare in a graph showing range versus range rate. The 

Wiedemann model shows improper oscillation toward the end of the car-following period. Also, 

the Wiedemann model continues producing small oscillations at a high range when the data 

shows a larger oscillation moving to a smaller range at the end of the car-following period. 
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Figure 26. Graph. Comparison between models in range versus range rate. 

Table 15 presents the results for the calibrated parameters of the GHR model by driver and 

regime. The values show variance between the drivers. The calibrated perception reaction times 

are low in some cases, which indicates that, in these cases, the thresholds serve as decision points 

and that actions from that point on are based on that decision. 

Low reaction time values in the following regimes (OPDV and SDV2) indicate more active and 

focused following behavior. High reaction times in the same region indicate more relaxed and 

inattentive following behavior. This is indicated by the fact that the stimulus for the reaction is 

either a change in relative speed or a change in the space headway. 

Table 15. GHR calibrated parameters by driver and regime. 

 Driver J Driver K Driver F Driver L 

c SDV 0.064 0.935 0.446 0.434 

m SDV 0.704 0.843 1.158 0.954 

l SDV 2.135 1.997 2.046 1.933 

T SDV 0.511 0.170 1.042 0.143 

c SDV2 0.688 1.522 0.617 0.496 

m SDV2 0.655 -0.592 0.734 0.337 

l SDV2 2.613 2.565 1.821 2.002 

T SDV2 0.227 0.511 0.498 0.505 

c CLDV 0.130 0.532 0.602 0.706 

m CLDV 0.880 -0.007 0.900 0.708 
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l CLDV 2.854 2.033 2.960 1.685 

T CLDV 0.418 0.235 0.602 0.148 

c OPDV 1.381 1.231 1.218 1.126 

m OPDV -0.521 -0.375 -0.064 -0.193 

l OPDV 1.823 2.617 3.200 2.001 

T OPDV 0.191 0.247 0.835 0.472 

Table 16 presents the root mean square error values for both the Wiedemann model and the 

Wiedemann model integrated with the GHR model. The results show large improvement for two 

of the drivers but little improvement for the other two drivers. This indicates that the Wiedemann 

model calibrates to two of the drivers better than to the other two drivers. This means that the 

equations of the Wiedemann model reflect the behaviors of two of the drivers, but they do not 

accurately reflect the behaviors of the other two drivers. 

Table 16. Root mean square error by driver and model. 

 Wiedemann Wiedemann 

with GHR 

% improvement 

Driver J 0.6684 0.6269 6% 

Driver K 0.6042 0.4628 23% 

Driver F 0.5980 0.3423 43% 

Driver L 0.8106 0.7715 5% 

 

Conclusions 

The car-following data for four different drivers from the naturalistic data was used to calibrate 

the models using a genetic algorithm. Ten car-following periods per driver were used in the 

calibration. The framework consisted of calibrating the parameters for the Wiedemann model 

based on the equations for the thresholds and accelerations in the Wiedemann model. This 

framework was then altered such that the GHR model replaced the acceleration equations in the 

following regimes: approaching, closely approaching, acceleration following, and deceleration 

following. The GHR model was given a different set of calibration parameters for each of those 

regimes. The reaction time, T, was used as a calibration parameter to obtain a measure of the 

attentiveness of the different drivers. The combination of the Wiedemann model and the GHR 

model presents advantages when calibrating to the car-following behaviors of individual drivers. 

The hybrid Wiedemann-GHR model calibrated to four individual drivers’ results with 5 percent 

to 43 percent less error than the Wiedemann model alone. Future research should look into the 

transition between following and free-driving regimes and the driver actions in the emergency 

regime.  

MODEL COMPARISON 

The method employed by this research effort selected, calibrated, and compared various car-

following models. The models chosen for comparison are GHR, Wiedemann, Fritzsche, Gipps, 
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IDM, and VDIFF. These models were chosen because they represent a variety of the types of 

commonly used car-following models. Each model was calibrated by the use of a genetic 

algorithm. A genetic algorithm was used because of its ability to adequately and accurately find 

the optimal solution when multiple parameters are present, as in some of the models. 

These models were calibrated using more than 100 car-following periods for each of the 4 truck 

drivers. These four truck drivers were chosen because they represent a wide spectrum of the 

population. When classifying by the number of driving conflicts each driver experienced, Driver 

49 represents a driver with a low number of conflicts, Drivers 48 and 97 represent drivers with an 

average number of conflicts, and Driver 64 represents a driver with a high number of conflicts. 

Table 17 shows the root mean squared error that resulted from calibrating these car-following 

models to the four chosen drivers. 

Table 17. Root mean squared error for each model by driver. 

 

Driver J Driver K Driver F Driver L 

GHR 0.9294 0.9533 1.1892 4.3815 

Gipps 1.3894 1.2036 2.3112 3.8024 

IDM 1.2260 1.2215 1.9211 1.0985 

VDIFF 1.1082 1.0848 1.1990 1.2454 

Wiedemann 0.7541 1.0916 1.4735 1.0764 

Fritzsche 2.2094 1.3413 1.4332 1.1242 

Table 18 shows the sum of squared error for each model by driver. The rightmost column 

presents the root mean squared error if the sum of squared error is summed for all the drivers and 

then converted to a root mean squared error. This provides a means of comparing the different 

models, if a single model were to be used for all of the drivers. The results show that the 

Wiedemann model results in the least root mean squared error, with the velocity difference model 

(VDIFF) not far behind. 

Table 18. Sum of squared error for the models by driver with a root mean squared error of 

the total. 

 

Driver J Driver K Driver F Driver L Total RMSE 

GHR 78774 104980 177220 1752741 2113714 2.2345 

Gipps 176030 167333 669436 1320099 2332898 2.3475 

IDM 137063 172342 462506 110167 882078 1.4435 

VDIFF 111990 135938 180169 141616 569713 1.1601 

Wiedemann 51749 108426 197567 105430 463172 1.0460 

Fritzsche 445138 207813 257427 115386 1025765 1.5566 

Table 19 shows the parameter values of the GHR model for each driver. The GHR model showed 

the least root mean squared error for two of the drivers, but with the inclusion of the other 

drivers, this model shows a greater root mean squared error than some of the other models. This 
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means only that the GHR model can accurately mimic some drivers, but it is not sufficient to 

model all the drivers presented here. The structure of the model causes this to occur because 

some of the drivers exhibit behavior that is more complex than the GHR model can handle. 

Table 19. GHR parameter values by driver. 

 

Driver J Driver K Driver F Driver L 

c -3.553 -0.959 -0.542 0.300 

m -0.253 0.264 1.068 0.000 

l 0.644 0.576 1.000 1.000 

T 1.791 0.272 1.087 1.000 

RMSE 0.929 0.953 1.189 4.381 

Table 20 presents the calibrated parameters of the Gipps model for each of the drivers. The Gipps 

model does not calibrate as well as the other models, as shown by the root mean squared error. 

The Gipps model shows a large increase in error for Drivers F and L as compared to Drivers J 

and K. Table 20 suggests that the Gipps model is not as adequate as the other models when 

representing multiple drivers. The Gipps model is originally a two-regime macroscopic traffic 

flow model. That characteristic is obvious when the Gipps model is compared to other 

microscopic models, as this model tends to represent steady-state behavior. 

Table 20. Gipps parameter values by driver. 

 

Driver J Driver K Driver F Driver L 

b 0.2105 0.2740 -0.0164 -0.4231 

b' 6.3986 9.7948 0.5938 0.0916 

Ln-1 90.1440 19.3718 10.5249 3.0981 

Un 92.1683 135.6518 26.4435 25.0118 

an 7.3557 7.9477 -0.0004 0.5487 

T 1.9306 0.9083 0.9974 0.2282 

RMSE 1.3894 1.2036 2.3112 3.8024 

 

Table 21 presents the calibrated parameters of the intelligent driver model for the four drivers. 

The intelligent driver model shows a root mean squared error very similar to that of the 

Wiedemann model for Driver L, but greater root mean squared error values for the other drivers. 

In Table 21, the intelligent driver model shows a root mean squared error that suggests it is better 

at representing multiple drivers than some other models, but it is not as adequate as they are. This 

means that the intelligent driver model is not as accurate as other models when representing one 

driver, but when multiple drivers are considered, it can outperform some other models. 

Table 21. IDM parameter values by driver. 

 

Driver J Driver K Driver F Driver L 

a 2.6519 3.3372 5.8950 0.8724 
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vdes 106.5559 97.3445 144.7275 96.0030 

s0 27.5776 8.8639 2.5513 15.6821 

T 0.0831 2.2913 2.3686 2.1768 

b 1.0143 1.0593 67.6662 0.3113 

RMSE 1.2260 1.2215 1.9211 1.0985 

 

Table 22 presents the calibrated parameters for the velocity difference model of the four drivers. 

The values of the free-flow speed and desired velocity suggest that their use in this model will 

only cause error, and that a replacement with a calibration parameter would yield a more accurate 

representation of the actual behavior of drivers. The velocity difference model shows a root mean 

squared error that is similar and not too distant from that of the Wiedemann model. The velocity 

difference model also shows very stable behavior across the different drivers in Table 22. This 

shows that the velocity difference model can adequately represent the behavior of different 

drivers in a manner that exceeds or is on par with the other models. 

Table 22. VDIFF parameter values by driver. 

 

Driver J Driver K Driver F Driver L 

FFS 48.5177 79.9246 123.4765 155.2547 

Ln 5.0480 50.4894 36.6056 17.3944 

Lag time 0.9870 3.5970 0.2989 2.4494 

Sensitivity 12.7509 13.6386 1.0580 8.2774 

Vdes 93.1806 106.0174 33.6502 76.6298 

Form factor 4.6059 6.9404 0.9134 7.1708 

l 8.2814 6.0162 6.6070 5.2652 

tau 4.4006 3.4847 1.3662 2.9527 

RMSE 1.1082 1.0848 1.1990 1.2454 

 

Table 23 shows the calibrated parameters of the Wiedemann model for the four drivers. The 

drivers show different null acceleration values and different threshold parameters, which 

highlights that the drivers have different preferences for accelerating and decelerating while 

following. This also shows that the drivers make the decision to change accelerations at different 

points. The flexibility available in the Wiedemann model undoubtedly contributes to its 

performance in mimicking the behavior of real drivers. The Wiedemann model shows stable 

behavior across the different drivers, just like the velocity difference model, but with a small 

hiccup for Driver F. The intelligent driver model and the Gipps model showed this same hiccup 

for Driver F. Nevertheless, the Wiedemann model represents different drivers well, as shown in 

Table 23. 
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Table 23. Wiedemann parameter values by driver. 

 

Driver J Driver K Driver F Driver L 

Ln-1 4.4938 5.5533 4.5469 5.6797 

AX 2.5254 5.0441 2.8730 5.6009 

BX 3.0408 3.4054 3.4211 3.4349 

EX 2.5139 3.0961 3.4273 2.6760 

CX 40.0659 75.0421 62.4053 93.1305 

CX2 39.0314 28.9785 73.2578 73.0260 

CLDVCX 31.7622 56.7976 33.1589 51.0795 

OPDV -2.5116 -6.5796 -1.0677 -3.3071 

bnull 0.1224 0.0747 0.2408 0.0716 

bmaxmult 0.0991 0.1533 0.4271 0.3871 

FaktorVmult 0.0389 0.1670 0.2002 0.1820 

bminadd -20.8984 -13.1674 -23.4076 -41.7209 

bminmult 0.0334 0.0913 0.3202 0.3784 

Vdes 42.6738 84.0379 88.7207 16.0671 

FaktorV 0.9396 0.5216 0.5065 1.9585 

RMSE 0.7541 1.0916 1.4735 1.0764 

 

Table 24 presents the calibrated parameters of the Fritzsche model for the four drivers. The 

model shows similar null acceleration values for three of the drivers. Three of the drivers also 

show similar an-1 and an+ values. The Fritzsche model is very similar to the Wiedemann model 

in the way it operates, but the root mean squared error shows that the Fritzsche model does not 

perform similarly to the Wiedemann model. The Fritzsche model shows a competitive root mean 

squared error for Driver L, but it is lacking with the other drivers. This inconsistency shows in the 

Fritzsche model having mediocre performance compared to the other models for this particular 

set of data, which highlights its inadequacy for mimicking multiple drivers. 
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Table 24. Fritzsche parameter value by driver. 

 

Driver J Driver K Driver F Driver L 

Sn-1 22.6295 2.0673 2.0673 1.8332 

kPTN 5.4213 4.8326 4.8326 4.0063 

kPTP 1.1493 3.0874 3.0874 1.9313 

fx 19.3430 -62.8779 -62.8779 -62.5547 

Td 4.4129 4.8104 4.8104 3.9579 

Tr 1.8111 0.8955 0.8955 1.0082 

Ts 2.9147 3.6792 3.6792 3.8147 

bmin -2.4743 -0.0955 -0.0955 -0.8210 

an-1 -4.5296 6.8066 6.8066 6.0010 

bnull -6.0129 6.7731 6.7731 6.4286 

an+ -5.3233 -5.3827 -5.3827 -3.5638 

RMSE 2.2094 1.3413 1.4332 1.1242 

 

Figure 27 presents an example fitted car-following period for Driver L that is representative of 

the observations seen in other car-following periods for all four drivers. Most of the models show 

a behavior that is heavily influenced by the lead vehicle, as shown by the lines for the models 

overlapping the line for the lead vehicle in the figure. The actual behavior of the driver shows 

less dependence on the behavior of the lead vehicle, as shown by the black line in Figure 27. The 

GHR and Gipps models show large error in this car-following period. The error of the Gipps 

model is the constant velocity, while the error of the GHR model appears to be that this car-

following period represents behavior that the calibrated GHR model does not adequately capture. 

The rest of the models show similar behavior that, as mentioned before, is heavily influenced by 

the actions of the lead vehicle.  
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Figure 27. Graph. Plot of models as compared to the data for Driver L. 

Conclusions 

The results show that some of the microscopic traffic flow models calibrate to match real drivers 

better than others. The results also show that some of the models are more adequate at mimicking 

different truck drivers. Most of the models show a behavior that is heavily influenced by the 

actions of the lead vehicle. The results of this research effort suggest that the velocity difference 

model and the Wiedemann model can adequately represent the behavior of different drivers. This 

means that if a single car-following model is used with data from different drivers individually, 

these two models show the most promise in being up to the task. It is important to note that these 

findings are based solely upon data for truck drivers, so the applicability of these findings to car 

drivers’ behavior would be questionable and thus is recommended as an area of future research.  

CHAPTER CONCLUSION 

The naturalistic data offers new insights into driver behavior due to the sheer amount of car-

following data that is available for each driver. The amount of data allows for the discovery of 

new thresholds for the Wiedemann model: a passing threshold and a hook following threshold. 

These two new thresholds increase the usability and accuracy of the Wiedemann model when 

natural or naturalistic driver behaviors are concerned because these thresholds were developed 

based on observations made in the naturalistic data. Combining the strengths of both the GHR 

model and the Wiedemann model into a hybrid yields a more accurate and highly flexible model. 

The only downside to this combination is the introduction of additional calibration parameters, 
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which makes the model more difficult to calibrate. The comparison of different car-following 

models showed that different models have the least error for different drivers, but the velocity 

difference model and the Wiedemann model both perform adequately across all the drivers 

tested.  

The hybrid model developed in this chapter allows better modeling of normal car-following 

behavior, and provides a better and seamless integration between car-following models of normal 

events and agent-based modeling of safety-critical events. The behavior of drivers during safety-

critical events differ from their normal behavior and is better handled with the techniques 

presented in the following chapter because current models do not have the capacity to address the 

complex dynamics that occur during a safety-critical event.  
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CHAPTER 5. AGENT DEVELOPMENT AND TRAINING WITH REINFORCEMENT 

LEARNING 

BACKGROUND INFORMATION 

The goal of this research task is to model naturalistic vehicle actions during safety-critical events. 

This was to be achieved by simulating driving policy to associate observed traffic state to vehicle 

actions. Driving policy should be driver independent and consist of multiple driving rules that are 

associated with different states. Safety-critical events in this study are located in the emergency 

regime. Most car-following models, such as the Wiedemann model, assume that drivers will 

always keep a safe distance so that vehicles should always be able to stop before hitting lead 

vehicles in an emerging conflict. However, in real-world cases, driver actions are not always just 

longitudinal deceleration. For example, a driver may make a maneuver and execute a lane 

change. Also, as traffic stimuli and causalities sometimes vary case by case, it is very hard to 

establish predefined longitudinal and lateral action models. So far, no lateral action models have 

been used to simulate actions for safety-critical events. 

TRAFFIC STATES AND ACTIONS DURING SAFETY-CRITICAL EVENTS 

Drivers behave according to the traffic state they experience. Traffic state is defined by a set of 

variables that can represent a vehicle’s kinematic conditions and its environment. In fact, in most 

safety-critical events, a vehicle’s action is closely related to its interaction with a leading vehicle. 

As most car-following models suggest, vehicle speed, distance from the leading vehicle, and 

relative speeds are considered traffic state variables. Additionally, we assume driving during 

safety-critical events is a sequential task in which driver actions are continuous, so that earlier 

actions may contribute to current action decisions. For example, when a driver decides to 

decelerate in the previous state, he or she is more likely to continue decelerating in the current 

state instead of executing a maneuver. Therefore, actions of the previous state are considered to 

be variables of the current state. 

AGENT-BASED MODELING OF DRIVER BEHAVIOR 

Behavior rules of individual drivers should be used to teach an agent simulator (of an individual 

driver). Behavior rules associate actions with traffic state and provide a driver-dependent driving 

policy for its agent to follow. So when an agent experiences a certain traffic state, the policy will 

map the traffic state to associated actions. By using naturalistic driving data in training, agents 

will learn to adopt driving rules during the training procedure and should be capable of 

replicating driver and vehicle actions when training is completed. Accordingly, if data on safety-

critical events is used in training, agents will perform driver-specific naturalistic actions, which 

could probably result in a crash or near-crash. Reinforcement learning can be used to determine 

the actions an intelligent agent should take in an environment to maximize some notion of long-

term goals. 
(74)

 The objective of using reinforcement learning algorithms is to find a policy that 

maps traffic states to their optimal actions. In our research scope, the agent driving policy should 

be close enough to the “guiding” driver. One of the remarkable research papers by 
(72)

 illustrates 

the basic mechanism of reinforcement learning. Reinforcement learning reinforces agent actions 

when they perform approximately close to naturalistic actions and penalizes actions that are far 
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away from them. The only information available for learning is the system feedback, which 

describes the agent’s task in terms of reward and punishment. At each time step, the agent 

receives a reinforcement signal regarding the last action it performed in the previous state. The 

challenge is optimizing not only the direct reinforcement, but also the total amount of 

reinforcements the agent can receive in the future. Finally, reinforcement learning should extract 

driving rules from a naturalistic dataset and establish similar driver-specific state action mapping 

rules.  

POTENTIAL SHORTCOMINGS OF USING EXISTING REINFORCEMENT 

LEARNING ALGORITHMS FOR AGENT TRAINING 

Although past research efforts have yielded great accomplishments, many limitations still exist. 

The dimension problem is a great difficulty of most agent controllers and simulators. If the 

number of traffic state variables is large, computation time would become a burden in training. 

Because the reinforcement learning mechanism has to associate state with action and update 

mapping rules, more dimensions in traffic state will cause an exponentially increasing number of 

mapping rules.  

Moreover, the existing reinforcement learning efforts mainly deal with discrete state-action 

mapping problems so that mapping rules could refer to a look-up table to relate a discrete traffic 

state to a discrete action. However, traffic state variables (vehicle speed, for example), especially 

in our study, have continuous distributions, which makes it impossible to build a look-up table to 

relate states to actions. 

Another significant drawback of the established reinforcement learning algorithm in 

transportation is the inability to generate continuous actions. Instead, most studies use discrete 

action sets consisting of a limited number of actions for the agent to select. Abdulhai’s Q-

learning mechanism has a binary action option phase: extension or end.
((61))

 Zhang improved this 

action selection methodology and enabled controller agents to select one of the six actions. This 

problem limits established reinforcement learning algorithms in continuous action simulation.
(75)

 

THE PROPOSED REINFORCEMENT LEARNING METHODOLOGY 

In this research task, we proposed a revised reinforcement learning methodology to solve the 

traffic state dimensional problem and continuous action generation problem. The proposed 

revised neuro-fuzzy actor-critic reinforcement learning (NFACRL) approach can alleviate most 

of the computation burden that was associated with the previously developed approaches. 

NFACRL consist of an actor-critic reinforcement learning mechanism that performs a 

reinforcement learning training through two parts: (1) an actor that is responsible for producing 

an action corresponding to each state and (2) a critic that is responsible for calculating the long-

term reward for the produced action and use the reward to reinforce good actions. The neuro part 

of the NFACRL mechanism uses a neural network approach to update all the weights responsible 

for mapping states to actions based on the actor’s calculated reward. The fuzzy part of the 

NFACRL is responsible for transforming the continuous state space into single values 

representing degrees of membership in predefined discrete fuzzy sets, allowing the algorithm to 

handle high-dimensional state space. Using naturalistic traffic states and driving actions during 

crash and near-crash events, this approach can reproduce actual driver behavior during safety-

critical events. 
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This chapter first describes the proposed revised NFACRL structure, including its framework as 

well as input and output components. Second, the naturalistic driving database and safety-critical 

events extraction process are described. Third, the agent training results are presented with a 

performance evaluation. Finally, cross validation between different agents is performed, driver 

heterogeneity is illustrated, and the idea of a mega-agent is proposed. 

AGENT TRAINING METHODOLOGY: NFACRL 

NFACRL Structure 

NFACRL is a type of actor-critic reinforcement learning method. In this study, NFACRL uses 

current traffic state as inputs and generates vehicle actions as outputs. NFACRL then loads the 

state data of following states and decides the following actions. As its name indicates, NFACRL 

has a neural network structure and uses fuzzy logic to cluster traffic state variables and transfer 

information between layers. Accordingly, continuous traffic states are converted into a limited 

number of discrete fuzzy sets. Fuzzy rules are considered state-action mapping rules to associate 

fuzzy sets and actions. Reinforcement learning is the training process to obtain fuzzy rules. 

As Figure 28 shows, our proposed NFACRL structure has four layers. The first layer is the input 

layer. Each of its nodes represents a state variable. The second layer is the fuzzy membership 

layer. Continuous state variables are fuzzified into linguistic terms such as “Speed is High” and 

“Speed is Low” in this layer. Each node is a fuzzy set with a membership function as output. 

Notice that one state input variable should have more than one fuzzy set so that continuous input 

variables can be transferred to discrete sets without losing much information. Fuzzy membership 

functions can be triangular, trapezoidal, and Gaussian depending on the distributions of state 

variables. The third layer is the fuzzy rules layer. Each rule is connected with a number of 

antecedents (discrete fuzzy sets) from fuzzy set layer. The firing strength is the output of a fuzzy 

rule and indicates the rule’s strength. The fourth layer is the actor-critic layer, which includes 

actor and critic nodes. Critic nodes are associated with the value of the next state after the agent 

chooses an action. Actor nodes are from one discrete action set. Each fuzzy rule selects one 

discrete action. NFACRL output action is the weighted average of all the actions selected by 

fuzzy rules in which fuzzy rule strengths are the weights. The following several paragraphs 

elaborate more on the framework design.  
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Figure 28. Diagram. NFACRL structure. 
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λj is the weight between the j
th

 fuzzy rule and critic.  

wq
j
 is the weight between the j

th
 fuzzy rule and action q. 

V is the critic output. 

Aq is the output of the q
th

 discrete action. 

i = 1,…n,a(i) = 1,..NMi,j = 1,…,m and q = 1,..,P. 

Layer Design: 

State Layer 

Most safety-distance-based car-following models assume speed, relative speed, and distance as 

important stimuli when leading and following vehicles are interacting with each other. In 

addition, during safety-critical events, these three variables are also incorporated into state 

variables because the lateral lane offset (lateral position relative to the center of the lane), 

acceleration, and vehicle yaw angle (angle of vehicle longitudinal relative axis to lane markings) 

of the previous state are also important to the driver action decision process. Traffic state 

variables in the NFACRL structure are defined as in Equation 82 through Equation 87. 

 

Equation 82. 

 

 

Equation 83. 

 

 

Equation 84. 

 

 

Equation 85. 

 

 

Equation 86. 
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Equation 87. 

 

where Si is the i
th state variable, v is the vehicle speed, Δx is the space headway (relative distance 

from the leading vehicle), Δv is the relative speed (speed of the leading vehicle minus the speed 

of the following vehicle), a’ is the previous acceleration, y’ is the previous yaw angle, and o is the 

vehicle lateral position offset. 

Fuzzy Sets Layer 

Each state variable in this study is linked to two fuzzy sets in the second layer. These two fuzzy 

sets are defined in linguistic terms: “Si is high” and “Si is low” for state variable Si. Each fuzzy 

set is associated with a membership function. A triangular fuzzy membership function is used to 

make uniform a state variable and transfer its information to the two fuzzy sets. The triangular 

membership function requires upper and lower bounds of each state variable, which could be 

extracted from safety-critical events that the driver experienced. For each state, the lower bound 

and upper bound are the maximum and minimum state variable values. During the training 

process, upper and lower bounds are considered to be constant. 

Membership functions for fuzzy sets Low and High are defined as: 

 

Equation 88. 

 

 

Equation 89. 

where µLow (Si) is the membership function for fuzzy set “Si is Low,” µHigh (Si) is the membership 

function for fuzzy set “Si is High,” Slb,i is the lower bound of state variable Si, and Sub,i is the 

upper bound of state variable Si. 
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Fuzzy Rules Layer 

Fuzzy rules in the third layer provide a state action mapping policy to determine the actions to 

select from in the fourth layer. Each fuzzy rule is applied to one combination of fuzzy sets from 

the second layer. For example, a fuzzy rule can be represented as 

WHEN “S1 is low” and “S2 is low” and “S3 is high” and “S4 is high” and “S5 is 

high” and “S6 is high,” THEN Action “Deceleration a=-0.05 g.” 

In our designed neural network, each fuzzy rule is associated with six fuzzy sets originated from 

six continuous state variables. Because each state variable has two fuzzy sets, “Low” and “High,” 

the number of fuzzy set combinations should be 2
6 

= 64. Equivalently, there are 16 fuzzy rules in 

this study. 

The product of the membership functions connected with each rule is used to compute its firing 

strength. Firing strength for the j
th

 fuzzy rule is shown in Equation 90. 

 

Equation 90. 

where a(i) is the linguistic term of the fuzzy set (either “Low” or “High”) for the i
th

 input state 

variable, and j represents the j
th

 fuzzy rule. 

Actor and Critic Layer 

Critic nodes represent the value of the next state under the current policy. Actor nodes represent 

actions to be selected by the fuzzy rules. Two types of actions, acceleration and yaw angle, are 

used as equivalents to vehicle longitudinal and lateral actions. Notice that acceleration and yaw 

angle are continuous variables. However, due to the constraints of neural network structure, it is 

impossible to enumerate all the possible continuous actions. Instead, discrete actions sets are 

defined here to include a number of representative action values for fuzzy rules to select. In this 

study, five discrete longitudinal acceleration values and five lateral yaw angle values are 

considered action candidates. Two sets are used to store actions, one for acceleration A and one 

for yaw angle Y (Equation 91 and Equation 92). Ten action values are considered as constant 

parameters during training.  

 

Equation 91. 

 

Equation 92. 
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Neuron Weights 

Weights are located between the fuzzy rule layer and the action layer. Critic weight λ
j
 links the j

th
 

fuzzy rule to critic output. Action wk
j
 links the j

th
 fuzzy rule to the k

th
 action output. Weights wk

j
 

show competition between discrete actions in the same action set and are used as references to 

the action selection methodology for fuzzy rule j. Weights λ
j
 are used to compute the value of 

traffic state Vs, which is the sum of the product of firing strength FSRj and weight λ
j
 (λ

j
 (Equation 

93). 

 

Equation 93. 

where FSRj is the firing strength for the j
th

 fuzzy rule Rj and Vs is the value of state S. 

NFACRL Output Actions  

Greedy Selection Algorithm 

Fuzzy rule Rj selects discrete action αdk from set A when weight wak
j
 is the largest among 

accelerations ad1 to ad5. Similarly, Rj selects discrete action ydk from set Y when weight wyk
j
 is the 

largest in set Y. 

Continuous Action Output 

For each fuzzy rule, one discrete acceleration and one discrete yaw angle are selected. Therefore, 

the output actions acceleration   and yaw angle   are the weighted average of all the selected 

discrete actions by all the rules. Firing strengths of fuzzy rules are used as weights, so NFACRL 

agent actions are generated as seen in Equation 94 and Equation 95. 

 

Equation 94. 

 

Equation 95. 

where a is continuous longitudinal acceleration and y is lateral yaw angle. 
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Instead of generating discrete actions, this NFACRL method is able to generate continuous action 

variables.  

Weights Update: Reinforcement Learning Algorithm 

The reinforcement learning algorithm updates the weights between the third layer and the fourth 

layer.  

Weights Update 

Weights λj
 nd wk

j
 are updated according to temporal difference (TD) error.

(74)
 TD error consists 

of the value of the current state, the value of the following state, and a predefined reward 

function. The reward function is an estimation of how close the selected actions are at state St. 

Temporal difference (TD) error is calculated as seen in Equation 96 and Equation 97. 

 

Equation 96. 

  

 

Equation 97. 

where ra,t+1 is the reward function when action a is taken at state St, rq,t+1 is the reward function 

when action y is taken, γ is the discounting factor, Vst is the value of the current state, and Vst+1 is 

the value of the following state. 

Vst+1 is calculated as seen in Equation 98. 

 

Equation 98. 

Notice that as the NFACRL agent generates two actions, two responding reward functions are 

computed and two temporal difference errors are calculated. 

  and   are updated by TD errors (Equation 99 through Equation 102), where 

 

Equation 99. 
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Equation 100. 

  

 

Equation 101. 

  

 

Equation 102. 

where β is the learning rate. 

TD errors update only the weights connected to the selected discrete actions a and y. From the 

equations in Equation 101 and Equation 102, when discrete action adk/ydk is selected by rule Rj, 

only weight wak,t
j
/wyk,t

j
 is updated. 

Reward Function 

The reward function provides guidance for an agent to follow. The reward function encourages 

an agent to take actions that are close to driver actions and penalizes actions that are dissimilar. 

The agent will know the outcome of the actions only when they have been chosen. When the 

performance of an action outcome is good, the reward function should be positive to provide a 

greater probability of the agent choosing those actions in the future. When performance is bad, 

the reward function should be negative to reduce the probability of the agent making those 

choices again. In this project, actions from the naturalistic driving database were used as 

references. 

First, relative error is calculated as in Equation 103 

 

Equation 103. 

for acceleration and as in Equation 104 

 

Equation 104. 

for yaw angle, where ea is the absolute relative error of acceleration, ey is the absolute relative 

error of yaw angle, and an and yn are the naturalistic actions from the database. 

Then, a nonnegative parameter eth is defined as an acceptance threshold. When ea or ey is less 

than eth, the reward function (Equation 105 and Equation 106) is positive and related weights will 

increase, which increases the probability of fuzzy rules selecting a and y in the future. 



 

82 

 

 

Equation 105. 

  

 

Equation 106. 

where ra is the reward function of acceleration, ry is the reward function of yaw angle, and α is the 

scaling factor. 

Initially, when an agent does not know which discrete action to take, it may choose an extremely 

inappropriate action, causing ea and ey to become too large. When that condition occurs, the 

reward function becomes negative enough to interrupt the weights update. Therefore, reward 

functions need to be adjusted to make sure they have a lower bound (Equation 107 and Equation 

108).  

 

Equation 107. 

 

Equation 108. 

NATURALISITIC DATA EXTRACTION AND AGENT TRAINING PROCEDURE 

Database Description 

In agent training, we use safety-critical events from the 8-Truck database of the Naturalistic 

Truck Driving Study (NTDS), the 34-Truck database, and the 100-Car database collected by 

VTTI. See Chapter 3 for further descriptions of these studies. 

In our research focus, the following vehicle was the instrumented vehicle. The measured subject 

vehicle data included speed, yaw angle, lane offset, and accelerations. Range and range-rate were 

collected by instrumented forward viewing radar from the following vehicle. Speed was collected 

from the speedometer. Yaw angle and lane offset were extracted from video recording. 

Acceleration from the accelerometer was used as longitudinal traffic action, and yaw angle was 

used as lateral action.  

Safety-Critical Events Extraction 

The safety-critical events were identified and analyzed in previous work by VTTI. The method 

used to identify the safety-critical events were triggers or thresholds on individual variables that 

were collected.  

The safety-critical events selected in this study are rear-end crash and near-crash conflict, 

especially when a following vehicle reacts to sudden braking or a sudden merge of the leading 
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vehicle from the adjacent lane. When an event happens, the driver of the following vehicle brakes 

or swerves to avoid the incoming conflict.  

State and Action Variables Selection 

Before training, the training parameters (upper and lower bounds of fuzzy sets and discrete action 

set values) were determined from the naturalistic data. In this experiment, we used minimum and 

maximum state variables as lower and upper bounds.  

Because discrete action sets should represent naturalistic driving actions, one basic method of 

selecting state and action variables is to extract representative actions from the naturalistic 

driving data. Statistically, the five representative action values of accelerations and yaws can be 

the minimum, the lower quartile (25
th

 percentile, cuts off the lowest 25 percent of data), the 

median (50
th

 percentile, cuts off 50 percent of data), the upper quartile (75
th

 percentile, cuts off 

the highest 25 percent of data), and the maximum. Notice that the agent output action is the 

weighted average of discrete actions. When using minimum and maximum discrete actions, the 

weighted average will make it impossible for the agent action to reach a naturalistic maximum 

and minimum. Therefore, the maximum value is multiplied by 1.2 when the maximum is positive 

and by 0.9 when the maximum is negative. The minimum value is multiplied by 0.9 when the 

minimum is positive and by 1.2 when the minimum is negative. This change extends the range of 

agent action. 

Training Process 

In our designed training process, at one time step of one event, fuzzy rules scan their associated 

weights, select the optimal actions, and update the weights. NFACRL continues updating the 

weights from the beginning of the events until the end. Then, NFACRL loads initial state 

variables from the same events. Theoretically, when the differences between critic and actor 

weights for two consecutive iterations become very small, the training process is considered to be 

finished. However, the proposed NFACRL is a heuristic methodology, so no global optimal agent 

behavior is guaranteed. Therefore, it is possible that the convergence of the weights may be 

premature and that NFACRL results in a local optimal solution. One way to avoid this premature 

convergence is to give the agent sufficient training iterations. In this event example, we tried 400 

iterations in agent training. Because an average safety-critical event has about 1,500 timing steps 

(150 s), driver fuzzy rules have been trained 600,000 times (1,500*400), and the resulting agent 

should produce a near-optimal approximation of naturalistic driver behavior.  

During the learning process, a memory discount factor γ, a learning factor β, and a reward 

function scaling factor α affect the learning speed of NFACRL. γ controls the memory fade 

speed, in which the value of recently occurring states are weighted more. β shows how fast the 

agent adjusts to the new information. α controls the magnitude of the reward function and weight 

change, and eth controls the sign of the reward function. In this test, β=0.6, γ=0.9, α=10, and 

eth=0.2. 

Based on our preliminary efforts, 10 truck drivers and 10 car drivers were selected. We used all 

the safety-critical events available from database. Therefore, training parameters for each driver 

should be global, especially fuzzy thresholds of the state variables and discrete actions in the two 

action sets A and Y. By using all safety-critical events, we attempted to enrich agent experiences 

and teach agents to react as drivers did. In addition, a greater number of events may prevent bias 

effects. Although conditions and causalities of different events can be totally different, NFACRL, 
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theoretically, should still capture rules of individual drivers quite well because different events 

are located in different state spaces dominated by different fuzzy rules.  

AGENT TRAINING RESULTS 

As an example, Figure 29 and Figure 30 show the agent’s longitudinal action (acceleration) and 

lateral action (yaw angle) during one event of Driver Agent A. The blue scatter plot represents 

the naturalistic driving actions, and the green curves show the agent actions. NFACRL captures 

naturalistic driver behavior quite well in this event, with an R squared degrees of accuracy of 

0.981 and 0.967 for acceleration and yaw angle, respectively. We also tested NFACRL 

performance on another event of the same driver (see Figure 31 and Figure 32). 

 

 

Figure 29. Graph. Acceleration of Agent A, event A1. 
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Figure 30. Graph. Yaw angle of Agent A, event A1. 
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Figure 31. Graph. Acceleration of Agent A, event A2. 

 

Figure 32. Graph. Yaw angle of Agent A, event A2. 
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Agent A captures Driver A’s naturalistic behavior during events A1 and A2 quite well. It seems 

that even if events A1 and A2 vary, Driver A behaves similarly. This may prove that NFACRL 

methodology will not result in an average driving behavior, even when using more events as in 

training.  

The four figures above show that during some part of the events, such as t = 28 s to 30 s in Figure 

29, the action of Agent A diverges from naturalistic data by a small amount. Several reasons, 

including data collection errors in traffic state variables and unstable driver behavior within the 

events, may explain these differences. Occasionally, the leading vehicle does not fall into the 

range of the radar detection zone, so the agent assumes there is no vehicle in front of it. 

Consequently, the wrong traffic state leads to the wrong action. Human behavior is another 

phenomenon that is difficult to model. Within one event, a driver may react differently in similar 

traffic states. Also, the training factors may contribute to the error. From the reward functions, 

shown in Equation 107 and Equation 108, we tolerate NFACRL errors within a smaller amount 

of    , which may result in deviations from naturalistic actions.  

CROSS VALIDATION RESULTS 

The purpose of cross validation is to show the different behavior of different drivers when they 

experience the same hypothetical event. Driving behavior of one driver (for example, Driver A) 

must be obtained by using his or her events in training, and then states from another event (for 

example, event B) experienced by another driver (Driver B) should be used to demonstrate Driver 

A’s actions during event B. 

In our test, we trained Agent A and simulated Driver A’s actions but using the event states from 

Driver B. Similarly, we simulated Agent B’s actions using Driver A’s events. Figure 33 and 

Figure 34 show an event example (event B1) from Agent B trained by using all its safety-critical 

events.  
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Figure 33. Graph. Acceleration of Agent B, event B1. 

 

Figure 34. Graph. Yaw angle of Agent B, event B1. 
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Figure 35 and Figure 36 show the longitudinal and lateral actions of Agent B in one event from 

Driver A. Figure 37 and Figure 38 show the longitudinal and lateral actions of Agent A in one 

event from Driver B. It is very clear that Driver A and Driver B perform heterogeneous 

behaviors.  

 

Figure 35. Graph. Acceleration of Agent B, event A1. 

 

Figure 36. Graph. Yaw angle of Agent B, event A1. 
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Figure 37. Graph. Acceleration of Agent A, event B1. 

 

Figure 38. Graph. Acceleration of Agent A, event B1. 
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B and Agent B represent the degree of approximation when using events of the same driver in 

training and validation. The table shows that the degree of approximation when using events of 

the same driver in training and validation is much greater than the degree of approximation in the 

cross validation (upper right and lower left), which also shows clear heterogeneities between the 

two drivers. 

Table 25. R squared values for cross validation. 

Event 

Agent A 

Acceleration Agent A Yaw 

Agent B 

Acceleration Agent B Yaw 

Driver A 0.98 0.97 0.81 0.83 

Driver B 0.82 0.60 0.97 0.92 

 

THE MEGA-AGENT CONCEPT 

We attempted to design an imaginary agent that can capture the behaviors of both Driver A and 

Driver B but would not result in an average behavior between A and B. Our revised NFACRL 

methodology may handle this challenge. According to the nature of traffic state variables, the 

state space in this problem has six dimensions. Differences in one dimension (lower speed and 

high speed, for example) can make two separate states in the state space. From the naturalistic 

data, as we found out, state variables from different events vary greatly, so it is less likely that 

two events would have many overlaps in the state space. Notice that in NFACRL, different fuzzy 

rules dominate different regimes of the state space divided by fuzzy sets of state variables. 

Therefore, the training process of the hypothetical mega-agent involves adjusting the fuzzy rules 

that are taking charge of relevant state-space regimes in which safety-critical events are located. 

Similarly, the fuzzy set thresholds and discrete action sets of training parameters are adjusted. 

We used all the events of Driver A and Driver B to train the mega-agent. Performances of the 

mega-agent (using events A1 and B1) are presented in Figure 39, Figure 40, Figure 41, and 

Figure 42. 
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Figure 39. Graph. Acceleration of mega-agent, event A1. 

 

Figure 40. Graph. Yaw angle of mega-agent, event A1. 
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Figure 41. Graph. Acceleration of mega-agent, event B1. 

 

Figure 42. Graph. Yaw angle of mega-agent, event B1. 
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Compared to Figure 35, Figure 36, Figure 37, and Figure 38, the mega-agent performs better in 

cross-validation and can differentiate between Agent A and Agent B most of the time. 

In reality, a conservative driver might never experience safety-critical events, but an aggressive 

driver may experience many. In that case, the conservative driver has no idea what actions to take 

to get out of a sudden emergency regime. Through this mega-agent training, the conservative 

driver will learn the crash avoidance actions from the aggressive driver and be better equipped to 

evade upcoming crashes. 

Table 26 shows the R squared values of the mega-agent. They are quite high, although they are 

slightly lower than those when training and validation use the same events. In fact, the mega-

agent is capable of mimicking the behaviors of Driver A and B at the same time without losing 

much driver specificity.  

Table 26. R squared values of the test mega-agent. 

Event 

Agent A 

Acceleration Agent A Yaw 

Agent B 

Acceleration Agent B Yaw 

Mega-Agent 

Acceleration 

Mega-Agent 

Yaw 

Driver A 0.98 0.97 0.81 0.83 0.98 0.95 

Driver B 0.82 0.60 0.97 0.92 0.97 0.91 

  

From our preliminary efforts, we designed two mega-agents: one truck mega-agent and one car 

mega-agent. We selected safety-critical events from 10 truck drivers and 10 cars drivers to train 

the two agents separately. Each of them used all the event data from their 10 selected drivers in 

training. In fact, each of the two agents should know all the evasive behaviors of their 10 guiding 

drivers.  

Table 27 shows the performance of the truck mega-agent. Two first two columns (under “Agent”) 

show the optimal performance when training data and validation events come from the same 

driver. As expected, compared to the agent itself, the performance of the mega-agent is 

approximately the same, although it is slightly worse in some of the cases because of the noise. 

Table 27. R squared values of the truck mega-agent. 

Event 

Agent 

longitudinal 

acceleration 

Agent lateral 

acceleration 

Mega-agent 

longitudinal 

acceleration 

Mega-agent 

lateral 

acceleration 

Cross validation  

with Agent A 

longitudinal 

acceleration 

Cross validation 

with Agent A 

lateral 

acceleration 

Driver A 0.97 0.97 0.98 0.97 0.98 0.97 

Driver B 0.97 0.94 0.97 0.91 0.82 0.60 

Driver C 0.98 0.96 0.97 0.96 0.93 0.86 

Driver D 0.99 0.92 0.99 0.88 0.86 0.64 

Driver E 0.88 0.96 0.81 0.95 0.47 0.76 

Driver F 0.98 0.96 0.94 0.96 0.83 0.43 

Driver G 0.86 0.98 0.84 0.88 0.86 0.62 

Driver H 0.96 0.99 0.95 0.99 0.63 0.98 

Driver I 0.95 0.98 0.93 0.98 0.48 0.75 
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Driver J 0.85 0.98 0.85 0.97 0.66 0.32 

 

Similarly, the degree of accuracy of the car mega-agent is presented in Table 28. 

Table 28. R squared valued of the car mega-agent. 

Event 

Agent 

longitudinal 

acceleration 

Agent lateral 

acceleration 

Mega-agent 

longitudinal 

acceleration 

Mega-agent 

lateral 

acceleration 

Cross validation  

with Agent D 

longitudinal 

acceleration 

Cross validation 

with Agent D 

lateral 

acceleration 

Driver a 0.94 0.94 0.93 0.70 0.90 0.50 

Driver b 0.97 0.94 0.96 0.79 0.82 0.30 

Driver c 0.93 0.97 0.97 0.83 0.93 0.77 

Driver d 0.97 0.93 0.96 0.93 0.97 0.93 

Driver e 0.95 0.98 0.91 0.98 0.68 0.95 

Driver f 0.97 0.92 0.96 0.89 0.92 0.86 

Driver g 0.98 0.93 0.99 0.88 0.98 0.79 

Driver h 0.98 0.93 0.99 0.89 0.98 0.90 

Driver i 0.97 0.95 0.98 0.91 0.90 0.85 

Driver j 0.95 0.92 0.99 0.89 0.98 0.65 

CHAPTER CONCLUSION  

This chapter reported a framework that simulates individual driver actions during safety-critical 

events. Neuro-fuzzy actor-critic reinforcement learning (NFACRL), an agent-based artificial 

intelligence machine-learning technique, was used to model driving behavior. The naturalistic 

driving database was used to train and validate driver agents.  

The advantages of NFACRL lie mainly in its ability to simulate heterogeneous vehicle actions in 

complicated traffic environments. It is worth mentioning that this research was an attempt to 

apply reinforcement learning techniques to solving high-dimensional state problems and 

continuous-action simulation problems simultaneously in transportation research, especially in 

traffic flow theory. From the perspective of microscopic traffic behavior modeling, the proposed 

methodology is able to simulate lateral action, which brings new insights to the modeling of 

driver maneuvering behavior during safety-critical events. The proposed methodology also 

simulated events from different drivers and proved behavior heterogeneities. 

This task focused on safety-critical events. For the technical part of this task, the training 

parameters speed, memory, and scaling factor were fixed for all the events, but it would be 

interesting to see how NFACRL performs under different combination of these factor sets. As 

with most artificial intelligence methods, NFACRL is a heuristic approach, so there is no 

guarantee that training results would be optimal. Therefore, training parameters play an important 

role in guiding NFACRL to find a near optimal result. During our test, we found that agent 

performance is very sensitive to the driver-dependent training parameters, discrete action sets, 

and state bounds. Theoretically, it would be better if these parameters were preoptimized before 

training. However, because the only way to test agent performance is through NFACRL training, 

parameter optimization and training form a cycle, and computation time would exponentially 

increase. Our approach set the parameters based on statistical quartiles, and this yielded good 
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results. Agents have the ability to handle lateral movements, which is outside of the abilities of 

most car-following models, but the ability to accurately judge when a safety-critical event occurs 

would be beneficial for knowing when the agent is crucial for an accurate simulation. The next 

chapter covers a discriminant analysis of normal driving behavior and safety-critical event 

behavior in order to find a way to distinguish between the two groups. 
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CHAPTER 6. SAFETY-RELATED AGENT ACTIVATION 

DISCRIMINANT ANALYSIS 

This research task focuses on using a statistical method, discriminant analysis, to find an accurate 

way to distinguish between normal car-following behavior and safety-critical event behavior. 

Discriminant analysis is a statistical method that uses information known a priori about the 

classification of observations from different datasets to distinguish between future observations 

from the same datasets (in this case two datasets: safety-critical and normal). The technique 

works by finding coefficients for the input variables that when multiplied by the variables and 

summed create a value that can be reliably used to classify future variables. In this chapter, we 

use the discriminant analysis technique to distinguish between safe (normal) and unsafe (safety-

critical) driving patterns before a safety-critical event occurs. This is a concept that we present as 

a potential trigger for agent activation. In other words, if agent-based simulation were to be 

activated only to handle the simulation of safety-critical events, then the agents should be 

activated just before a safety-critical event is expected. The trigger-based activation could also be 

set with values that can ensure the activation of agents during the whole simulation period if it 

was so desired. 

For this analysis, 30 datapoints from different car-following periods were used for each driver, 

along with the event data for that driver. This number of car-following or normal-driving points 

was used to produce a fair representation of normal driving behavior, while not overpowering the 

safety-critical event data in the analysis. Six variables were used for the discriminant analysis: 

longitudinal acceleration, vehicle speed, yaw angle, lane offset, range, and range rate. Equation 

109 shows the mathematical form of the resulting discriminant score and how it relates to the 

coefficients for each variable. 

 

Equation 109. 

where βi is the coefficient for variable i and Xi is variable i. 

Car Drivers 

Table 29 presents the coefficient values resulting from a discriminant analysis at different time 

steps before the occurrence of a safety-critical event. The table shows that consistency exists in 

some of the coefficients over time, while the rest of the coefficients appear to be time dependent. 

Figure 43 shows the percentage of misclassification error at each time step. The time step at 6 s is 

chosen because it is the greatest amount of time that still maintains relatively low error. Figure 44 

shows the results of applying the coefficients of the different time steps to the near-crash data as 

well as the normal car-following data. The results show some separation between the datasets at 

each time step, with some overlap occurring. Figure 44 shows that the error weighs on the side of 

misclassifying safety-critical events as normal driving behavior, which is not an acceptable error. 
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Time step 6 shows a clear separation between the two datasets, which means that the coefficients 

belonging to that time step would be the optimal choice for use in further study. 

Table 29. Discriminant coefficients for Driver l. 

Time 

Longitudinal 

Acceleration 

Lateral 

Acceleration Speed 

Lane 

Offset 

Yaw 

Angle Range 

Range 

Rate 

0 5.4 2.7 0.051 0.019 -0.4 0.013 0.12 

1 1.5 -13.1 0.013 0.019 1.6 0.013 0.15 

2 -10.3 -10.6 0.030 0.022 -5.4 0.030 0.18 

3 -4.0 -5.9 0.057 0.017 2.1 0.024 0.19 

4 1.8 -8.7 0.053 0.014 15.3 0.000 0.13 

5 -17.9 14.2 -0.005 -0.003 -16.3 -0.004 -0.15 

6 16.5 -28.1 -0.026 0.014 38.0 0.001 0.15 

7 9.8 -12.2 0.006 0.009 23.2 0.014 0.16 

8 22.0 -17.5 -0.009 0.016 37.5 0.008 0.20 

9 -14.8 15.3 0.006 -0.007 -3.0 -0.004 -0.15 

10 14.3 -12.3 -0.004 0.014 -3.5 0.007 0.14 

 

 

 

Figure 43. Graph. Percentage of misclassified datapoints for Driver l. 
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Figure 44. Graph. Discriminant scores for Driver l. 

Figure 45, Figure 46, and Figure 47 show the graphs of some of the terms that constitute the 

discriminant score for Driver l. These graphs are the result of multiplying the input variables by 

the corresponding discriminant coefficient. The graphs show that the observable results of the 

discriminant analysis are not due to any one variable. Rather, the results are highly reliant on the 

specific combination of all of the variables that the discriminant coefficients create. 

 

Figure 45. Graph. Longitudinal acceleration term for Driver 1. 
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Figure 46. Graph. Range term for Driver 1. 

 

 

Figure 47. Graph. Range rate term for Driver 1. 

Figure 48 shows the resulting discriminant scores when the coefficients from the 6-s time step are 

applied to a full car-following period. The figure shows some erratic behavior, but the 

discriminant scores are still above −3, which is the highest point of the near-crash data in Figure 

48. Figure 49 shows the results of applying the same coefficients to a sample near-crash event. 

The discriminant scores seem similar to a normal car-following period until the score suddenly 
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jumps below −5. This jump corresponds to a vehicle suddenly changing lanes to be in front of the 

subject vehicle. 

 

 

Figure 48. Graph. Discriminant scores of a sample car-following period. 

Figure 50 shows the speed trajectory of the same near-crash event along with a marker of the 6-s 

prediction given by the discriminant coefficients. The 6-s prediction is well before the driver’s 

reaction. Also, the discriminant score plateaus around −5 immediately after the 6-s prediction, 

which means that the driving conditions remain dangerous, but the driver has not adjusted to the 

change in conditions. When the driver decelerates, as seen in the trajectory in Figure 50, the 

discriminant score increases, indicating a change from dangerous conditions to safe conditions. 
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Figure 49. Graph. Discriminant scores of a sample near-crash event. 

 

 

Figure 50. Graph. Trajectory of a sample near-crash event. 

Table 30 shows the discriminant coefficients for Driver m. The acceleration coefficients show 

that the discriminant score for this driver relies on the longitudinal acceleration more than on the 

lateral acceleration. Driver 103-A showed more balance between the two accelerations, which 
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shows that every person has unique behaviors. Figure 51 shows the percentage of 

misclassification associated with each set of discriminant coefficients. 

Table 30. Discriminant coefficients of Driver m. 

Time 

Longitudinal 

Acceleration 

Lateral 

Acceleration Speed 

Lane 

Offset 

Yaw 

Angle Range 

Range 

Rate 

0 -15.1 -2.3 0.64 -0.02 14.9 -0.02 0.21 

1 12.1 2.8 0.39 0.04 -9.0 0.01 -0.10 

2 -26.8 0.0 0.32 0.02 -13.3 -0.01 0.01 

3 -32.3 -0.1 0.66 -0.01 2.6 -0.02 0.05 

4 -28.7 0.9 0.33 0.00 4.2 -0.01 0.02 

5 -30.6 0.2 0.31 0.00 -1.8 -0.02 0.04 

6 -27.4 1.0 0.21 0.00 0.7 -0.01 0.03 

7 -31.2 0.3 0.29 -0.01 5.8 -0.02 0.04 

8 28.2 -0.7 -0.21 0.00 4.2 0.01 -0.01 

9 -11.6 2.4 0.14 0.03 -21.4 0.00 -0.07 

10 12.3 3.3 0.14 0.02 -14.3 0.02 -0.10 

11 3.1 2.8 0.14 0.02 -19.3 0.02 -0.06 

12 -10.3 3.3 0.14 0.01 -1.5 0.00 -0.01 

13 -7.1 0.0 0.14 0.01 -5.7 0.01 0.05 

14 -8.5 -3.4 0.14 0.00 -7.6 0.01 0.08 

15 5.1 -1.7 0.15 0.02 -28.9 0.01 -0.02 
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Figure 51. Graph. Percent misclassification for Driver m. 

Figure 52 shows the discriminant scores for the near-crash data and normal car-following data of 

Driver m. These scores are calculated by multiplying the discriminant coefficients by the 

appropriate data values and then taking the summation. There is a separation between the normal 

car-following periods and the near-crash events in Driver m at most time steps until time step 9. 

There, the analysis begins to show a misclassification of one of the near-crash events as normal 

driving behavior. To avoid this error, the coefficients at time step 7 should be considered optimal. 

 

 

Figure 52. Graph. Discriminant scores for Driver m. 
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Figure 53, Figure 54, and Figure 55 show a further breakdown of the discriminant score for 

Driver m into three of the seven terms: longitudinal acceleration, range, and range rate. Just like 

Driver l, the graphs support the finding that the resulting discriminant score is dependent upon 

the specific combination of the input variables that the discriminant coefficients provide. 

 

 

Figure 53. Graph. Longitudinal acceleration term for Driver m. 

 

Figure 54. Graph. Range term for Driver m. 
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Figure 55. Graph. Range rate term for Driver m. 

Figure 56 shows the resulting discriminant scores when the coefficients of the 7-s time step are 

applied to a full car-following period. Figure 57 shows the results of when the same coefficients 

are applied to the data from a near-crash event. In Figure 58 the scores remain between 

approximately 10 and 12, while in Figure 59 the scores decrease immediately before the event 

occurs. Also, the discriminant scores from 10 to 12 s in Figure 58 appear to be similar to the 

scores seen in the normal car-following period. This means that a deterioration of the 

discriminant score can be seen as the data before the near-crash event transitions from safe to 

unsafe. Figure 58 shows the trajectory during the near-crash event as the driver decelerates 

suddenly to avoid a collision. Figure 58 also shows that the 7-s prediction given by the 

discriminant scores appears well before the reaction of the driver. 
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Figure 56. Graph. Discriminant scores of a sample car-following period. 

 

 

Figure 57. Graph. Discriminant scores of a sample near-crash event. 
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Figure 58. Graph. Trajectory of a sample near-crash event with the 7-s crash prediction 

point highlighted. 

Figure 59 and Figure 60 show the results of attempting to use the coefficients of one driver for 

another driver. Both figures show that using a different set of parameters that was not optimized 

for that driver results in losing the clear distinction between normal car-following behavior and 

safety-critical behavior.  

 

Figure 59. Graph. Discriminant score for using Driver 1’s coefficients for Driver m. 
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Figure 60. Graph. Discriminant scores for using Driver m’s coefficients for Driver l. 

Table 31 presents the results of applying the procedure described for the two example drivers to 8 

more car drivers for a total of 10 drivers. The results show that each driver has a specific 

combination of the six variables and a specific threshold value that can be used to distinguish 

between normal driving behavior and behavior in safety-critical events. Also, the drivers’ times 

vary, which means that the distinction between normal driving and safety-critical behavior can be 

made at different times before the events for each driver. The largest time used in the analysis for 

some drivers was 6 s. 

Table 31. Driver-specific discriminant coefficients and thresholds. 

Driver Time Speed Range Range Rate Acceleration Yaw Offset Threshold 

a 5.5 0.003 0.004 0.117 -13.221 74.676 -0.002 -4.525 

b 6 0.013 -0.032 0.032 12.760 9.265 0.006 -7.458 

c 6 0.153 -0.002 0.141 -8.460 -40.239 -0.051 0.538 

d 1 0.027 0.013 0.190 -0.097 46.726 0.004 -2.728 

e 6 0.087 0.005 0.243 5.184 -7.990 0.003 0.406 

f 6 0.014 0.012 -0.093 -9.140 149.098 0.024 -4.317 

g 6 0.056 0.003 -0.206 9.727 -73.285 0.035 -1.685 

h 4.5 0.033 0.017 0.473 24.979 13.641 -0.008 0.719 

i 6 0.170 -0.006 0.092 -32.342 0.000 0.227 -27.000 

j 1.5 0.126 0.017 0.360 -1.852 75.317 -0.018 2.763 

k 6 0.106 -0.001 -0.016 17.577 108.475 0.020 -0.504 
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Conclusions and Recommendations 

The results support the hypothesis that using the six selected variables along with the 

corresponding coefficients creates a discriminant score that can accurately distinguish between 

safe and unsafe driving conditions. For Driver l, this distinction can be made 6 s before an event 

occurs. 

Also, in the case of Driver m, this distinction can be made 7 s before an event occurs. The results 

of the discriminant analysis for Driver m arise from the specific combination of the six variables 

selected for analysis: longitudinal acceleration, vehicle speed, lane offset, yaw angle, range, and 

range rate. This means that the warning signs of an impending safety-critical event are captured 

and represented by these six selected variables. These warning signs are subtle changes in the 

conditions that go unnoticed when looking at individual variables. But using the specific 

combination of the six variables, as defined by the discriminant analysis, results in a noticeable 

warning sign. 

Truck Drivers 

Table 32 presents the coefficient values resulting from a discriminant analysis at different time 

steps before the occurrence of a safety-critical event for truck drivers. The table shows 

consistency in some of the coefficients over time, while the rest of the coefficients appear to be 

time dependent. Figure 61 shows the percentage of misclassification error at each time step. 

Figure 62 shows the results of applying the coefficients of the different time steps to both the 

near-crash and normal car-following datapoints. The results are clear: the near-crash datapoints 

are high negative values, and the car-following (safe) datapoints are positive values. 

Table 32: Discriminant coefficients for Driver E. 

Time 

Longitudinal 

Acceleration 

Lateral 

Acceleration Speed 

Lane 

Offset Yaw Angle Range Range Rate 

0 -6.8 13.9 0.001 0.10 -11.6 0.0003 0.12 

0.5 -2.4 16.0 0.006 0.10 -13.8 0.0000 0.12 

1 -0.5 15.1 0.010 0.09 -13.1 -0.0009 0.13 

1.5 -3.6 10.8 0.003 0.07 40.3 -0.0016 0.13 

2 0.3 9.7 0.010 0.05 36.4 -0.0028 0.14 

2.5 -4.2 12.2 0.011 0.05 0.0 -0.0030 0.14 

3 0.4 11.4 0.017 0.05 -4.0 -0.0038 0.14 

3.5 1.2 10.6 0.018 0.04 9.3 -0.0043 0.14 

4 9.6 22.0 0.008 0.11 16.1 0.0082 0.00 
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Figure 61. Graph. Percentage of misclassified datapoints for Driver E. 

 

 

Figure 62. Graph. Discriminant scores for Driver E. 

Figure 63, Figure 64, and Figure 65 show the graphs of some of the terms that constitute the 

discriminant score for Driver E. These graphs are the result of multiplying the input variables by 

the corresponding discriminant coefficient. 
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Figure 63. Graph. Longitudinal acceleration term for Driver E. 

 

Figure 64. Graph. Range term for Driver E. 
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Figure 65. Graph. Range rate term for Driver E. 

Table 33 shows the discriminant coefficients for Driver G. Figure 66 shows the percentage of 

misclassification associated with each set of discriminant coefficients. 
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Table 33. Discriminant coefficients of Driver G. 

Time 

Longitudinal 

Acceleration 

Lateral 

Acceleration Speed 

Lane 

Offset 

Yaw 

Angle Range 

Range 

Rate 

 

0 19.7 -1.3 -0.012 0.007 -79.1 0.03 -0.05 

0.5 35.4 14.8 -0.007 0.024 -52.9 0.02 0.05 

1 35.7 11.5 -0.009 0.025 -59.2 0.02 0.04 

1.5 37.2 9.8 -0.009 0.028 -55.2 0.01 0.05 

2 33.9 4.2 -0.014 0.023 -65.9 0.02 0.01 

2.5 1.1 -14.5 -0.027 -0.004 -76.8 0.04 -0.11 

3 0.8 21.5 0.026 0.006 69.4 -0.03 0.13 

3.5 5.2 21.3 0.026 0.011 48.6 -0.03 0.15 

4 12.1 11.6 0.025 0.017 27.5 -0.03 0.14 

4.5 4.1 27.3 0.023 0.010 60.4 -0.03 0.15 

5 -3.2 -3.2 -0.026 -0.007 -74.2 0.04 -0.08 

5.5 5.9 -15.5 -0.026 -0.002 -75.2 0.03 -0.11 

 

 

Figure 66. Graph. Percentage of misclassification for Driver G. 
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Figure 67 shows the discriminant scores for the datapoints from both a near-crash event and 

normal car-following periods. These scores are calculated by multiplying the discriminant 

coefficients by the appropriate data values and then taking the summation.  

 

Figure 67. Graph. Discriminant scores for Driver G. 

Figure 68, Figure 69, and Figure 70 show a further breakdown of the discriminant score for 

Driver G into three of the six terms: longitudinal acceleration, range, and range rate. 
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Figure 68. Graph. Longitudinal acceleration term for Driver G. 

 

Figure 69. Graph. Range term for Driver G. 
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Figure 70. Graph. Range rate term for Driver G. 

Table 34 shows the results of a discriminant analysis using the data from both drivers. The reason 

for this analysis is that truck drivers have more similarities than car drivers and may thus show 

common behaviors that would not exist between car drivers. The resulting coefficients from the 

analysis are then applied to both drivers in Figure 71 and Figure 72. The figures show that the 

coefficients are very accurate for both drivers until after 2 s. At that point, misclassification 

begins to occur for Driver G. This misclassification error is classifying a safety-critical event as 

normal behavior, which is not acceptable.  

Table 34. Discriminant coefficients from joint analysis. 

Time 

Longitudinal 

Acceleration 

Lateral 

Acceleration Speed 

Lane 

Offset 

Yaw 

Angle Range 

Range 

Rate 

0 19.8 9.6 0.016 0.012 -28.6 0.001 0.11 

0.5 25.8 15.3 0.018 0.018 -17.4 -0.002 0.12 

1 25.4 13.9 0.019 0.018 -20.7 -0.003 0.13 

1.5 21.5 12.9 0.020 0.017 0.6 -0.004 0.14 

2 28.4 11.8 0.019 0.019 -7.5 -0.003 0.12 

2.5 0.4 6.7 -0.002 0.005 -21.0 0.002 0.13 

3 2.1 0.8 0.001 0.006 -15.8 0.001 0.13 

3.5 -1.2 2.8 0.001 0.003 18.8 0.000 0.13 

4 -7.3 6.8 -0.014 -0.012 38.4 0.012 -0.04 
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Figure 71. Graph. Discriminant score for using the joint coefficients for Driver E. 

 

Figure 72. Graph. Discriminant scores for using the joint coefficients for Driver G. 

Table 35 and Table 36 present the results of applying the described procedure for the two 

example drivers to eight more truck drivers from the two naturalistic truck driving studies. The 

results show that each driver has a specific combination of the six variables and a specific 

threshold value that can be used to distinguish between normal driving behavior and safety-

critical event behavior. Also, the drivers’ times vary, which means that the distinction between 
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normal driving and safety-critical behavior can be made at different times before the events for 

each driver. The largest time used in the analysis for some drivers was 6 s. 

Table 35. 34-Truck driver-specific coefficients and thresholds. 

Driver Time Speed Range Range Rate Acceleration Yaw Offset Threshold 

B 6 0.584 -0.006 0.022 22.477 0.000 -0.003 -4.048 

I 6 0.050 0.000 0.291 18.283 -272.421 -0.105 -15.492 

Table 36. 8-Truck driver-specific coefficients and thresholds. 

Driver Time Speed Range Range Rate Acceleration Yaw Offset Threshold 

D 5.5 0.142 -0.005 0.186 8.525 10.129 -0.025 6.176 

E 4 0.012 -0.002 0.203 -3.060 2.745 -0.051 -5.666 

F 5.5 0.001 -0.013 0.123 16.541 -53.312 -0.020 -5.666 

G 5.5 0.022 -0.043 0.149 -5.273 -56.211 0.004 -10.683 

H 1 0.036 0.000 0.045 -11.439 -96.941 -0.050 -1.646 

M 1 0.036 0.000 0.045 -11.439 -96.941 -0.050 -1.646 

N 8.5 0.017 -0.012 -0.010 -21.512 -20.721 0.008 -3.299 

O 1.5 0.735 -0.005 0.011 11.958 14.281 -0.049 33.157 

P 3.5 0.112 -0.009 0.134 8.647 12.024 0.028 -1.956 

 

Conclusions and Recommendations 

The results show that a discriminant analysis of safety-critical event data, as compared to normal 

car-following data, yields a method of distinguishing between the two sets of data. This 

distinction uses six variables: longitudinal acceleration, vehicle speed, lane offset, yaw angle, 

range, and range rate. The results support the hypothesis that using the six selected variables, 

along with the corresponding coefficients, creates a discriminant score that can accurately 

distinguish between safe and unsafe driving conditions. For Driver E, this distinction can be 

made 4 s before an event occurs. 

Also, in the case of Driver G, this distinction can be made 2 s before an event occurs. This means 

that the warning signs of an impending safety-critical event are captured and represented by the 

six variables and a specific combination of these variables as defined in the results of the 

discriminant analysis. 

The joint discriminant analysis results show that a set of coefficients can be created that will 

work accurately for both drivers. This suggests that multiple drivers can be grouped together and 

analyzed, which simplifies situations with numerous drivers. 

CHAPTER CONCLUSION 

Finding the difference between normal driving behavior and safety-critical event behavior can be 

difficult. The statistical process of a discriminant analysis facilitates finding this difference. In 
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this case, a discriminant analysis is used to find the specific combination of six variables that 

result in a visual difference between two datasets. Also, it was found that the difference between 

normal behavior and safety-critical behavior extended beyond the actual event into the behavior 

immediately before the event. In the examples shown, there was a visible transition from safe or 

normal behavior to safety-critical behavior. This resulted in the ability to turn the agent behavior 

on and off. The trained agents offer benefits to behaviors in safety-critical events. Further, 

because simulation packages are designed to follow specific car-following models, the ability to 

turn the agent behavior on and off can be beneficial. This also means that the agents could be 

trained only for the safety-critical event behavior, and the car-following models can be used 

otherwise, which makes the application of the agents more flexible. This also bridges the gap 

between the current state of practice and the new trained agent method, which eases the 

implementation of the new method into a current simulation program, VISSIM. The next chapter 

provides detailed instructions of how to implement the new agent approach into VISSIM. 
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CHAPTER 7. AGENT IMPLEMENTATION IN VISSIM  

INTRODUCTION AND PURPOSE 

This chapter describes the agent implementation in VISSIM. The purpose of the demo prototype 

included in the deliverables of this project is to show the complete simulation chain, from 

generating parameter files to actually selecting the agent in VISSIM and observing its driving 

behavior. The following points are demonstrated: 

 How to produce an agent parameter file with the APC GUI. 

 How to define agent vehicles in VISSIM, including the reference to the DLL file and the 

parameter file. 

 What settings to adjust in VISSIM to have “pure” agent behavior that is not manipulated by 

internal VISSIM plausibility checks. 

 Behavior of the agent model in case of an event that is close to an event observed in reality.  

OVERALL WORKFLOW 

Figure 73 shows the overall flow of the implementation framework. A parameter file is used to 

get the model parameters into VISSIM using the driver model DLL. The parameters used are 

those generated by the techniques described in the previous chapters. The implementation 

framework utilizes one parameter file for each agent; in other words, for 20 agents there will be 

parameter files ParameterFile_Agent_1.APC, ParameterFile_Agent_2.APC, ... 

ParameterFile_Agent_20.APC. 

In VISSIM, vehicle types can be defined that use a specific DriverModel.DLL as an external 

driver model. (See the description in the next section and the VISSIM manual section 5.3.1. Note 

that the parameter file referred to in the manual and in the VISSIM Vehicle Type dialog does not 

conform to the parameter files used in this project.) 

The DriverModel.DLL writes a specific output file with information about the driver state, and so 

on. To allow the files to be written properly, there must be a specific DLL for each agent in the 

model. The name of the DLL is part of the output file name (which will be saved in the current 

working directory). 
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Figure 73. Chart. Overall workflow.
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VISSIM SETTINGS 

Vehicle Types 

Two new vehicle types are defined: agent and leader. The respective driver model DLL and 

parameter files should be selected as shown in Figure 74 (file locations have to be adjusted to the 

local machine). 

 

Figure 74. Screen shot. Specification of vehicle types to use the agent model. 

2D/3D Model Distribution 

For the exact interpretation of the lane angle set by the Agent Model DLL, the geometry of the 

2D model used for the agent vehicle needs to be adjusted. To make sure everything works 

properly, perform the following steps: 

1. Check the Model Distribution that is used for the Agent vehicle type (e.g., 10 PKW) (Figure 

75). 

 

Figure 75. Screen shot. Model distribution for agent vehicle type. 

2. Open the Model Distribution dialog and edit the Model Distribution (Figure 76). 

a. Use only one model in the distribution (i.e., set the share for all models except one to 

zero). 
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b. For that model, move the rear axle to the rear end of the vehicle (i.e., set Rear Axle 

and Rear Joint to the same value as the vehicle length, e.g., 4.110 m). 

 

Figure 76. Screen shot. Model distribution dialog. 

DRIVING BEHAVIOR 

In order for the lane angle to be exchanged between VISSIM and the Agent Model DLL, the 

“Observe vehicles on next lane(s)” option in the Driving Behavior Parameter Sets dialog (Figure 

77) needs to be activated (even if there is only one lane). 

 

Figure 77. Screen shot. Lateral driving behavior. 

ACCELERATION AND DECELERATION FUNCTIONS 

In VISSIM, acceleration and maximum deceleration functions for the vehicles controlled by the 

DLLs have to be introduced. This is because VISSIM checks if the acceleration and deceleration 

proposed by the DLL lies within the limits defined in VISSIM by these functions. Namely, 

VISSIM sets the applied acceleration to the minimum and maximum desired acceleration and the 

applied deceleration to the minimum and maximum desired deceleration. The maximum 

acceleration and deceleration functions are named in the “DLL.” The maximum acceleration 

function is defined as +7 m/s
2
 at any speed, and the maximum deceleration function is defined as 
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−100 m/s
2
 at any speed. These limits are clearly out of the feasible range and should not be used 

for normal simulations. In the demo, they are used to produce accident-like decelerations (leader) 

and to show the pure agent behavior for the follower. 

PARAMETER FILE *.APC 

Each driver is represented by an .apc file. This section briefely explains the GUI and the 

parameter file content and format. 

GUI  

There are two ways to get the data into the parameter file: 

1. The model parameters are entered in an Excel file (with the same structure of the file 

NFACRL structure thresholds and weights_example-March 2011.XLSX). As the model is 

implemented in the spreadsheet, the response of the model (outputs Acceleration and Lane 

Angle) can be checked using different state variables. In this way, the Excel file can act as 

kind of a plausibility check for the model parameters. The parameters can be imported to the 

Agent Parameter GUI. From the GUI, the parameter file can be written. 

2. The second option is to enter the parameters directly into the GUI and export them into the 

parameter file. This is not recommended for tutorial purposes because it is more cumbersome 

and there is no way to check if the model will produce meaningful output (of course, it can 

be checked once the parameter file is loaded to the driver model DLL and the parameters are 

used in VISSIM).  

In addition to the model parameters, there are threshold values to be defined. The thresholds 

define when the driving behavior switches from standard VISSIM (i.e., Wiedemann model) to 

agent-based behavior and vice versa.  

To parameterize the agents, a GUI is provided (as illustrated in Figure 78 and Figure 79). The 

GUI gives access to all user-definable parameters of the agent, as well as to a global threshold 

value that determines in what situations the agent model should be used instead of the standard 

VISSIM driving behavior. 

To parameterize the agent, the GUI provides tabs for the different model weights and thresholds, 

as well as a text field for the global threshold. 

There is a button to read the values directly from an Excel file with the same structure of the file 

NFACRL structure thresholds and weights _example-March 2011.XLSX.  
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Figure 78. Screen shot. Agent parameter GUI—action discrete sets. 

 

Figure 79. Screen shot. Agent parameter GUI—acceleration weights. 

For this project, there is one type of agent model—in other words, the number of neurons, the 

rules, the layers, and the calculation logic are set in the DLL. Any changes in the model structure 

(such as adding a new layer) will require an updated driver Model DLL and a changed GUI to set 

the parameters.  

Parameter Contents and Format 

Table 37 shows a description of the parameter file format. The parameter file is a comma-

separated text file, and all numbers are double precision format. There should be one parameter 

file per agent (i.e., for 20 agents there will be files parameterFile_[ n].APC, with n = 1...20). 
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Table 37. Parameter file description. 

Description Values (in blocks, separated by commas); see APC documentation  

Fuzzy Set Layer 

Thresholds 

Fuzzy Set Layer Thresholds 

thresholdSpeed: lowerthresholdSpeed, upperthresholdSpeed 

thresholdRange: lowerthresholdRange, upperthresholdRange 

thresholdRangeRate: lowerthresholdRangeRate, upperthresholdRangeRate 

thresholdAcceleration: lowerthresholdAcceleration, upperthresholdAcceleration 

thresholdLaneAngle: lower thresholdLaneAngle, upper thresholdLaneAngle 

thresholdOffset: lower thresholdLaneAngle, upper thresholdLaneAngle 

AccelerationDiscreteSet: a1,a2,a3,a4,a5 

LaneAngleDiscreteSet: la2,la2,la3,la4,la5 

Weights W1(i,j): W1(1,1), ..., W1(1,5), W1(2,1), ..., W1(i,j),....,W1(32,5) 

Weights W2(1,j): W2(1,1), ..., W2(1,5), W2(2,1), ..., W2(i,j),....,W2(32,5) 

Switch Conditions There will be one (or more) threshold value that determines if the agent 

model is switched on or off. At the moment, this is Time to Collision. It 

can, of course, be changed to other values. 

SCENARIO DESCRIPTION "EVENT" 

Description 

The example presented here is based on an observed real-world scenario. It should show the 

behavior of the VISSIM implementation of the agent in comparison to the observed data and the 

behavior of the Excel implementation of the agent. The following vehicle is controlled by an 

agent according to the parameters provided in the example Excel file. Because external driver 

model DriverMode.DLL has to be selected, the parameter file is Event_Example.APC. 

It should be noted that directly comparing VISSIM output to naturalistic data output can be 

problematic for two reasons: 

1. All naturalistic data variables are observed variables, whereas the same variables are a mix of 

observed and calculated state variables in VISSIM. In other words, the range and range rate 

are VISSIM observed state variables; the others are calculated state variables. Substituting 

the range and range rate into the VISSIM model will not always produce the corresponding 

calculated variables (in VISSIM, knowing the acceleration of the follower and the speed of 

the leader will result in exact calculation of the range and range rate for the next time step; in 

naturalistic data, the leader might perform any action that will result in a different range and 

range rate). This might lead to discontinuity in the state-space surface. For example, if the 

data showed that the vehicle stopped, and the model predicts that there is acceleration > 0, 

the next modeled acceleration will have to either use the observed data as the previous state 

or accumulate a shift in the modeled state from the observed state. In the provided Excel 

sheet, the model uses a mixture of observation and previous model output as state variables 



 

128 

for the next time step. In the VISSIM model, range and range rate are naturally simulation 

outputs, and they respond to the model output (i.e., if an acceleration > 0 is calculated, the 

vehicle accelerates regardless of any observation that is saved in the spreadsheet). 

2. Another issue that should be noted is that the example results start with an initial state in 

terms of speed, range, range rate, acceleration, lane angle, and offset. It is not possible to 

create exactly that initial condition in VISSIM such that, starting from there, the results of the 

Excel implementation and VISSIM can be compared. That is because of limitations of the 

DLL interface and the discrete time steps. In other words, it is possible to generate a state 

that is very close to the initial state described in the observed data, but it will not be the very 

same initial state. 

These two facts (the former more than the latter) suggest that the Excel model and the VISSIM 

model should be compared by other means: 

1. Generate a test case in VISSIM (close to the observed event) and run the simulation with the 

agent model switched on if the follower is as close to the leader as in the observed event. 

2. Use the state variables from VISSIM (instead of reality) to calculate the model’s output 

in Excel. 

3. If the two outputs are identical (or close to identical, due to numerical reasons), it shows 

that the VISSIM implementation behaves like the Excel implementation.  

How to Run 

Run COM Script 

For the leading vehicle to perform the observed trajectory, the COM interface is used to set the 

speed of the leading vehicle. To run the simulation, the button “Run VISSIM Example” (see 

Figure 80 below) in the sheet “VISSIM-COM” must be clicked.  
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Figure 80. Screen shot. “Run VISSIM example” command. 

The leading vehicle drives at relatively low speed; the following vehicle enters the network 10 s 

later with a higher speed (approximately constant speed is assumed). The DLL and the COM 

script constantly check to see if the (steadily decreasing) range between the vehicles falls below 

a threshold (120.9 ft) that is derived from the observation data provided in the Excel spreadsheet. 

If this condition is fulfilled, the leading vehicle’s speed is set according to the observed values 

(gathered from the Excel sheet by the COM script) and the action of the following vehicle 

calculated based on the Agent Model DLL. 

Copy Output Data from Text File to Excel 

The simulation output is written to a text file “Data_Test_[Name of the used parameter File].txt” 

and saved in the working directory. The content of this file needs to be copied to the Excel file 

(mark the whole content in the text file and paste in the Excel file, sheet “VISSIM-Agent,” at cell 

A1). 

Run the Excel Model 

To run the Excel model to compare the output derived from Excel with the model output in 

VISSIM, click the button “Run Excel Agent based on VISSIM data” in sheet “VISSIM-Agent” 

as shown in Figure 81. 
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Figure 81. Screen shot. “Run Excel Agent based on VISSIM data” command. 

Figure 82 through Figure 86 shown in the next section are generated automatically. 
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Output 

 

Figure 82. Graph. Comparison of speeds and trajectories of leading vehicle and agent over 

time. 
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Figure 83. Graph. Comparison of acceleration over time (acceleration calculated in Excel 

as reference, acceleration calculated in VISSIM and performed in VISSIM to be 

compared). 
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Figure 84. Graph. Comparison of lane angle over time (lane angle calculated in Excel as 

reference, lane angle calculated in VISSIM and performed in VISSIM to be compared). 
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Figure 85. Graph. Acceleration scatter plot with linear regression analysis, Excel agent 

versus VISSIM agent. 
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Figure 86. Graph. Lane angle scatter plot with linear regression analysis, Excel agent 

versus VISSIM agent. 

For testing, there is another text file written to the working directory called “Test_[Name of the 

used parameter File].txt.” It contains all the parameters from the parameter file, several pieces of 

intermediate data, and the results of the model for each time step. This file can be used to 

compare the agent behavior in VISSIM with the agent behavior in the Excel representation of the 

model as well.  

CHAPTER CONCLUSION 

This chapter details the procedure for utilizing the new agent method in VISSIM. The series of 

instructions addresses how to change from the current state of practice to the new agent method. 

Following these instructions will result in a simulation that uses the new approach, and the 

results obtained from that simulation will include the behaviors that cannot be modeled by the 

current model but can be modeled by the new agent approach. The next chapter presents the 

results of the agents implemented in VISSIM versus the original Wiedemann car-following 

model as used by VISSIM. 
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CHAPTER 8. SIMULATION AND ANALYSIS 

INTRODUCTION 

Previous tasks have illustrated the feasibility of developing and training agents to respond to 

safety-critical events in a way that mimics the behavior of actual drivers observed in the 

naturalistic dataset. This chapter documents the results of the task with the intent to insert those 

agents into VISSIM and compare their performance to default drivers using the Wiedemann 

model for driver behavior. 

Simulation Environment 

The agents were tested within VISSIM version 5.30, build 8. Very simple networks were created 

for each of the 20 developed agents based on scenarios derived from the naturalistic data. The 

networks consisted of one-lane roadways with a leader and following vehicle. The leader is 

designed to behave in a way that creates a safety-critical event and causes the follower (the 

agent) to react. The duration of each simulation is 100 s. Simulation runs were conducted with 

and without the agents activated so that the impacts of the agent behavior could be evaluated 

relative to the Wiedemann model. Each of the 20 scenarios (both with and without the agent) 

was replicated 20 times to account for the variability in conditions.  

Evaluation 

The agents were evaluated from both an operational and a safety perspective. The operational 

analysis was conducted by collecting and analyzing the vehicle trajectory files from each run 

with and without the agent active. Safety was analyzed using the Surrogate Safety Assessment 

Model (SSAM) developed by the Federal Highway Administration. SSAM identifies conflicts in 

the traffic stream as modeled by VISSIM and reports a number of measures from which safety 

can be evaluated. The results of the operational and safety analyses are discussed in detail in the 

following sections. The chapter concludes with a discussion of agent scalability. A slightly more 

complex network was developed to evaluate the performance of the agents in situations beyond 

the specific conditions for which they had been trained.  

 OPERATIONS ASSESSMENT 

The impact of the agents on vehicle dynamics and operational measures was assessed first. This 

section first presents a qualitative description of the observed agent behavior in VISSIM. Next it 

presents an analysis of objective vehicle dynamics metrics to illustrate differences in driver 

behavior between the agents and the Wiedemann model using the simple test network. 

Agent Behavior in VISSIM 

The models for the car and truck agents were tested in VISSIM and evaluated for their effects on 

traffic operations and mobility. An overview of the observed agent behavior on this simple one-

lane VISSIM test network appears below. 
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Car Agents 

 Agent a: The agent enters the network at a higher speed than the leader. Upon closing 

with the leader, the agent decelerates, swerves slightly, and passes (overruns) the leader.  

 Agent b: The agent enters the network at a higher speed than the leader. Upon closing 

with the leader, the agent overruns the leader.  

 Agent c: The agent enters the network at a higher speed than the leader. Upon closing 

with the leader, the agent decelerates significantly. Depending on the individual agent’s 

reaction, the agent either comes to a complete stop prior to colliding with the leader or 

overruns the leader.  

 Agent d: The agent enters the network at a higher speed than the leader. Upon closing 

with the leader, the agent decelerates significantly. Depending on the individual agent’s 

reaction, the agent either comes to a complete stop prior to colliding with the leader or 

overruns the leader. 

 Agent e: The agent enters the network at a higher speed than the leader. Upon closing 

with the leader, the agent swerves slightly and decelerates sharply behind the leader. The 

agent usually comes to a complete stop behind the leader but occasionally overruns the 

leader if it cannot brake in time. 

 Agent f: The leader travels faster than the agent, and the gap between vehicles expands 

during simulation. No significant interaction is observed between the vehicles.  

 Agent g: The agent enters the network at a higher speed than the leader. Several 

behaviors were observed when the agent and the leader interact. If the agent cannot stop 

in time, it sometimes overruns the leader. Otherwise, the agent decelerates quickly and 

swerves slightly as it brakes behind the leader. After dwelling for some time, the agent 

accelerates sharply until it catches up with the leader again, at which point it again 

decelerates and swerves off the road, sometimes by a significant margin. 

 Agent h: The agent enters the network at a higher speed than the leader. When it catches 

up to the leader, it consistently overruns the leader. 

 Agent i: Several behaviors were observed for this agent. The agent enters the network at 

a higher speed than the leader. When it catches up to the leader, it usually decelerates and 

swerves, but ultimately it overruns the leader. Sometimes the agent will catch up to the 

leader and maintain a safe following distance, and other times it decelerates quickly and 

leaves the roadway.  

 Agent j: The agent enters the network at a higher speed than the leader. When it catches 

up to the leader, it consistently overruns the leader. 

 Agent k: The agent enters the network at a higher speed than the leader. When it catches 

up to the leader, it consistently overruns the leader. 
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Truck Agents 

 Agent A: The agent enters the network at a higher speed than the leader. When it catches up 

to the leader, it swerves off the right side of the road to avoid the leader, passing it in the 

process. 

 Agent B: The agent enters the network at a higher speed than the leader. The agent swerves 

off the right side of the road and returns back to the road, coming to a complete stop 

perpendicular to the roadway. The distance of the roadway departure changes based on the 

simulation random number seed. 

 Agent C: Several behaviors were observed for this agent. The agent enters the network at a 

higher speed than the leader. When it catches up to the leader, it usually decelerates and 

swerves, passes the agent, and returns to the roadway. However, sometimes the agent 

swerves and does not pass the leader, and instead continues to swerve farther and farther off 

the roadway, maintaining a distance of approximately 50 feet from the roadway. 

 Agent D: The agent enters the network at a higher speed than the leader. The agent swerves 

slightly to the left but ultimately overruns the leader. 

 Agent E: The agent enters the network at a higher speed than the leader. The agent swerves 

slightly to the left but ultimately overruns the leader. 

 Agent F: Several behaviors were observed for this agent. The agent sometimes enters the 

network at a higher speed than the leader, decelerates quickly, and stops for a short period, 

then accelerates, catches the leader, and overruns it. Other times, the agent stops suddenly 

upon entering the network and after a few seconds accelerates. Occasionally it catches and 

overruns the leader, but other times the simulation ends before the agent catches the lead 

vehicle. 

 Agent G: The agent enters the network at a higher speed than the leader. When it catches up 

to the leader, the agent decelerates quickly and consistently overruns the leader, eventually 

accelerating to its original speed. 

 Agent H: The agent enters the network at a higher speed than the leader. The agent swerves 

slightly to the right and ultimately overruns the leader. 

 Agent I: The agent enters the network at a higher speed than the leader. When it catches up 

to the leader, it consistently overruns the leader. 

 A visual inspection of the simulations demonstrates some unexpected behavior in certain agents. 

Some agents appear to overrun the lead vehicle in some scenarios (car agents a, b, c, e, g, h, i, j, 

and k and truck agents D, E, F, G, H, and I), and some agents show multiple behaviors based on 

the simulation seed (car agents c, d, e, g, and i and truck agents C and F).  

To show the agents’ behavior visually, two plots were made for each simulation run of each 

agent. The set of figures shows the time-space diagrams of a lead vehicle, an agent, and a 

following vehicle using the Wiedemann model as implemented in VISSIM. These figures show 
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that most agents enter the network at a higher rate of speed than the nonagent following vehicles. 

With the exception of agents car agents d and f and truck agents D, F, and H, agents reached the 

lead vehicle before the nonagent, often displaying little change in speed when closing in. The 

most significant difference between the agents and the nonagents was the inability of the agents 

to consistently follow a lead vehicle. While some agents noticeably swerved around the lead 

vehicle, no agents were able to stop without appearing to overrun the lead vehicle in simulation 

in at least a few of the 20 simulation runs. In contrast, the nonagents began following the lead 

vehicles and never overtook them in any simulation run. As an example of this characteristic, 

Figure 87 demonstrates the differences in passing and following behavior of Agent g and its 

Wiedemann model counterpart across 20 simulation runs. In the figure, although Agent g can 

occasionally react and decelerate in time to avoid collision, on some simulation runs the lead 

vehicle is overrun. This is a manifestation of how the agents have now been explicitly trained to 

behave in a manner that allows safety-critical events to occur. 

 

Figure 87. Graphs. Time-space graphs of each simulation run of Agent g, both with the 

agent on and the agent off. 

 

Agent 311A Time-Space Diagrams - Time vs. Distance

Lead Vehicle

AgentOn

Agent Off



 

140 

Figure 88 and Figure 89 show plots of headway versus difference in speed between the agent and 

the lead vehicle. The figures show a scenario with the agent driver model and one without. In 

these figures, when an agent’s headway is at the highest point in the chart, it indicates that the 

agent vehicle has passed the lead vehicle. The figures show most of the agents initially in what 

appears to be the “closing in” zone. As the agent approaches the lead vehicle, the agent may 

decelerate at the last minute, as seen in Figure 88 with Agent g, or may continue into the 

emergency regime with little or no reaction, as seen in Figure 89 with Agent I. Other agents 

appear to follow the lead vehicle, creating the circular plot line similar to Wiedemann model 

vehicles. This generally reflects the agent behavior described earlier, where some agents do not 

appear to react to the lead vehicle by slowing, but instead by swerving or driving as before until 

they have passed the lead vehicle, while other agents attempt to decelerate at varying rates.  

 

Figure 88. Chart. Wiedemann diagram of a single simulation run of Agent g. 
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Figure 89. Chart. Wiedemann diagram of a single simulation run of Agent I. 

Quantitative Assessment of Vehicle Behavior 

Because the model was restricted to a single-lane, one-way network by design, and because the 

agents themselves could not transition from the agent-specific driving model to the general 

Wiedemann model, the agent could not be tested in a traditional multilane lane network with 

interchanges and intersections. Therefore more traditional macroscopic metrics such as travel 

time and delay could not be used, simply because the test networks consisted of two vehicles in a 

single interaction. 

Several metrics were used to better understand the behavior of the agent: 

 Minimum following distance (m): The minimum distance between the lead vehicle and the 

agent. A value of 0.0 indicates that the agent collides with the lead vehicle or passes it while 

traveling off of the roadway link. 

 Minimum acceleration (m/s
2
): The minimum acceleration rate experienced by the agent in a 

single run. Several agents had unusually high deceleration rates of greater than 50 m/s
2
 when 

first inserted. These values were considered to be arbitrary simulation error and were ignored 

in the analysis. 
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 Average acceleration (m/s
2
): The average acceleration rate of an agent over an entire 

simulation run.  

 Average of absolute acceleration (m/s
2
): The average of the absolute value of an agent’s 

acceleration over an entire simulation run. High values indicate frequent and/or drastic 

changes in speed. 

 Average speed (km/hr): The average speed of an agent. 

Each metric was evaluated with the agent (i.e., “Agent On”) and in a base case using the 

Wiedemann model as implemented in VISSIM (i.e., “Agent Off”). Table 38 shows the average 

value for each metric over 20 simulation runs of the car agents. Table 39 shows the same 

information for the truck agents.  

In general, most agents eventually passed the lead vehicle, as demonstrated by the minimum 

following distance of 0 m, while the lead vehicle was never passed in the base cases. Because a 

one-lane network was simulated, the agent vehicle either departed the roadway to pass the lead 

vehicle or drove through the lead vehicle (a collision event). Most agents (with the exceptions of 

agents D, E, and F) were able to eliminate the unrealistically high decelerations seen in the base 

cases when collision was imminent. However, because many of the agents appeared to overrun 

the lead vehicles, these more realistic decelerations may not in fact demonstrate more realistic 

behavior overall. Average acceleration was much lower in the base cases than for the agents, 

which is likely due to the very high decelerations used by the following vehicle to avoid 

collisions. Average speed was generally much lower for the base cases, which is likely a result of 

the base case following vehicles reducing their speeds to stay behind the lead vehicles for the 

bulk of the simulation. In comparison, the agents often passed the lead vehicle and continued at 

their desired speeds. 

Table 38. Mobility performance metrics for car agents, average values over 20 simulation 

runs. 

Agent 
Agent 

Status 

Minimum 

Following 

Distance (m) 

Minimum 

Acceleration 

(m/s
2
) 

Average 

Acceleration 

(m/s
2
) 

Average 

Absolute 

Acceleration 

(m/s
2
) 

Average 

Speed 

(km/hr) 

a 

On 0.00 -6.46 0.00 2.62 36.68 

Off 6.27 -100.00 -0.92 1.32 24.38 

Δ -6.27 93.54 0.92 1.30 12.31 

b 

On 0.00 -8.18 0.01 3.29 13.74 

Off 6.26 -100.00 -3.28 3.81 5.99 

Δ -6.26 91.82 3.29 -0.52 7.75 

c 

On 2.08 -7.59 -0.44 2.51 8.56 

Off 6.26 -100.00 -3.28 3.81 5.99 

Δ -4.18 92.41 2.84 -1.29 2.57 

d On 2.29 -9.36 0.01 2.55 5.61 
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Agent 
Agent 

Status 

Minimum 

Following 

Distance (m) 

Minimum 

Acceleration 

(m/s
2
) 

Average 

Acceleration 

(m/s
2
) 

Average 

Absolute 

Acceleration 

(m/s
2
) 

Average 

Speed 

(km/hr) 

Off 6.26 -100.00 -3.28 3.81 5.99 

Δ -3.98 90.64 3.29 -1.26 -0.38 

e 

On 4.10 -6.78 -0.01 0.81 6.67 

Off 6.26 -100.00 -3.31 3.84 5.98 

Δ -2.17 93.22 3.30 -3.02 0.69 

f 

On 14.52 -8.53 0.01 3.59 3.62 

Off 6.26 -100.00 -3.02 3.57 5.93 

Δ 8.26 91.48 3.03 0.02 -2.31 

g 

On 4.02 -6.59 -0.03 1.20 23.06 

Off 6.26 -100.00 -1.15 1.56 19.01 

Δ -2.25 93.41 1.12 -0.36 4.05 

h 

On 0.00 -7.20 0.01 2.74 32.95 

Off 6.26 -100.00 -1.15 1.56 19.01 

Δ -6.26 92.80 1.16 1.18 13.94 

i 

On 2.38 -6.78 0.00 2.58 29.92 

Off 7.50 -91.82 -0.46 0.72 28.07 

Δ -5.12 85.04 0.45 1.85 1.86 

j 

On 0.00 -6.46 0.00 2.62 36.68 

Off 6.27 -100.00 -0.92 1.32 24.38 

Δ -6.27 93.54 0.92 1.30 12.31 

k 

On 0.00 -7.32 -0.09 2.91 19.10 

Off 6.26 -100.00 -1.27 1.64 14.15 

Δ -6.26 92.68 1.17 1.27 4.94 

Values shown in bold are significant at α = 0.05. 

 

Table 39. Mobility performance metrics for truck agents, average values over 20 simulation 

runs. 

Agent 
Agent 

Status 

Minimum 

Following 

Distance  

(m) 

Minimum 

Acceleration  

(m/s
2
) 

Average 

Acceleration  

(m/s
2
) 

Average 

Absolute 

Acceleration  

(m/s
2
) 

Average 

Speed  

(km/hr) 

A 
On 0.00 -6.54 0.02 2.31 71.67 

Off 6.27 -99.49 -0.49 0.85 48.28 
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Agent 
Agent 

Status 

Minimum 

Following 

Distance  

(m) 

Minimum 

Acceleration  

(m/s
2
) 

Average 

Acceleration  

(m/s
2
) 

Average 

Absolute 

Acceleration  

(m/s
2
) 

Average 

Speed  

(km/hr) 

Δ -6.27 92.95 0.51 1.46 23.38 

B 

On 0.00 -7.08 -2.00 2.46 13.11 

Off 13.08 -90.66 -0.33 0.69 56.58 

Δ -13.08 83.58 -1.66 1.78 -43.48 

C 

On 0.82 -4.11 0.01 1.00 91.35 

Off 6.27 -98.26 -0.24 0.88 86.15 

Δ -5.45 94.15 0.25 0.12 5.20 

D 

On 0.00 -21.49 0.02 3.71 18.97 

Off 6.27 -100.00 -0.97 1.24 16.40 

Δ -6.27 78.51 0.99 2.46 2.56 

E 

On 0.00 -81.87 0.00 2.94 53.06 

Off 6.27 -100.00 -0.44 0.79 43.27 

Δ -6.27 18.13 0.44 2.14 9.79 

F 

On 0.00 -100.00 -10.81 12.30 83.36 

Off 6.26 -100.00 -0.34 0.92 79.84 

Δ -6.26 0.00 -10.47 11.38 3.52 

G 

On 0.00 -8.16 0.06 2.62 76.18 

Off 6.27 -100.00 -0.68 1.23 42.65 

Δ -6.27 91.84 0.74 1.39 33.53 

H 

On 0.00 -6.73 0.05 2.44 68.52 

Off 6.26 -100.00 -0.55 1.04 57.87 

Δ -6.26 93.27 0.60 1.40 10.65 

I 

On 0.00 -9.09 0.03 3.50 38.17 

Off 6.27 -96.48 -0.62 0.88 24.50 

Δ -6.27 87.39 0.64 2.63 13.67 

Values shown in bold are significant at α = 0.05. 

Summary of Operations Analysis 

The qualitative and quantitative analysis on the simple linear VISSIM network revealed the 

following findings: 

 Most agents were able to enter the emergency regime, where an agent’s speed is greater than 

the lead vehicle’s, yet headway is small. Vehicles following the Wiedemann model as 
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implemented in VISSIM are unable to enter the emergency regime, and instead vehicles will 

be forced to decelerate at unrealistic rates to avoid collisions. 

 Almost all agents were able to eliminate the improbably high deceleration rates used by 

vehicles following the Wiedemann model as implemented in VISSIM. The agents instead 

swerved or ran over the leading vehicles (collision). The vast majority of the agents’ 

deceleration rates to avoid collisions were realistic. 

 Although agents experienced realistic deceleration rates, in many cases they did not behave 

consistently across all simulation runs. The agents’ behavior indicates that although each 

agent is programmed to respond a certain way to a certain scenario, the definition of that 

scenario may be sufficiently narrow that changes in the random seed fail to re-create it. The 

definition of the scenario may need to be broadened or better defined so that vehicles can 

behave in a more consistent way. This issue can be addressed by exposing the agents to more 

datapoints during the training process. 

 The agents were trained to emphasize safety-critical modeling, and therefore the frequency of 

crashes and near crashes during an agent-based episode was exaggerated. This was 

intentional in this project to showcase the ability of agents to simulate safety-critical events. 

However, for the purpose of real analysis, the agents should take into account the realistic 

probability of crashes and produce appropriate statistics. This should be a focus for future 

research.  

SAFETY ASSESSMENT 

A series of safety surrogate measures were analyzed to compare the behaviors of the agents and 

the VISSIM Wiedemann car-following model. This provided an indication as to whether the 

agents were creating significantly more safety-critical events than the base VISSIM car-

following model. The Surrogate Safety Assessment Model (SSAM), version 2.1.6, was used to 

examine the influence of the agents and the Wiedemann model on safety surrogate measures. 

The SSAM can post-process vehicle trajectory files generated by VISSIM and provides a 

mechanism to compare estimated safety surrogate measures with and without the various agents. 

The SSAM identifies conflict events based on time-to-collision (TTC) thresholds. TTC is 

defined as the elapsed time before two vehicles collide if they maintain their current speed and 

heading. In this analysis, conflicts were identified using two TTC thresholds: 1.5 s and 2.5 s. A 

TTC of 2.5 s is a relatively high threshold for triggering conflicts, but it was set high to ensure 

that some conflict events would be triggered when the Wiedemann car-following model was 

active. The 2.5-s value was based on the assumed perception-reaction time for stopping sight 

distance in the American Association of State Highway and Transportation Officials’ Policy on 

the Geometric Design of Highways and Streets. 

When the conflict TTC threshold is exceeded, the SSAM generates a series of safety surrogate 

measures for each conflict event. Specific measures examined in this research include the 

following: 

 TTC is the minimum time to collision between the agent and leading vehicle during the 

conflict. If a conflict occurs and has a TTC of 0, it means that a collision will occur. 
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 PET is the minimum post encroachment time observed during the conflict. This represents 

the elapsed time between when the leading vehicle occupies a point and when the agent 

arrives at the same position. A PET of zero indicates a collision has occurred. 

 MaxS is the maximum speed of either vehicle throughout the conflict. 

 DeltaS is the difference in speeds observed at the time step when the minimum TTC occurs. 

If the minimum TTC equals zero, this would be the relative difference in speeds at collision. 

 DR is the initial deceleration rate of the following vehicle (agent) during the conflict. If the 

following vehicle brakes, this is the first negative acceleration value observed during the 

conflict. If the follower does not brake, then this is the lowest acceleration value observed 

during the conflict. 

 MaxD is the maximum deceleration of the following vehicle (agent). Negative values 

indicate deceleration, and positive values indicate acceleration. 

 MaxDeltaV is the maximum change in velocity between when a conflict first begins and 

immediately post-crash, assuming a hypothetical inelastic crash between vehicles. This is a 

surrogate for conflict severity. 

All of these measures are tabulated when a conflict has been identified. In other words, if a 

conflict does not occur, then zeros are not included in the averages. 

Each agent scenario was examined with both the agent active and with the agent inactive 

(Wiedemann car-following active). Twenty replications were conducted for each scenario and 

each agent status. This resulted in a total of 800 simulation trajectories (20 agents  20 

replications  2 levels of agent status [agent active or Wiedemann active]) that were evaluated 

using SSAM. These were evaluated using the 1.5-s and 2.5-s TTC values for conflict 

identification. 

General Observations on Agent Behavior and Impact on Safety Surrogates 

The reactions of agents were observed during the course of each simulation to identify responses 

that could impact the safety surrogate measures being evaluated. First, even though the 

simulation duration was only 100 s, several agents would produce multiple safety-critical events 

over the course of the simulation. For example, an agent sometimes approached the leader and 

braked sharply, coming to a complete stop. After dwelling at a stop for a few seconds, the agent 

accelerated sharply until it caught up to the leader again. At that point, it braked sharply a second 

time. This sort of behavior could produce multiple conflict events in one simulation replication, 

but the behavior of the agent was not necessarily realistic because it just repeated the same 

unsafe behavior multiple times. 

A second behavior that was commonly seen in the agent simulations was the agent overrunning 

(traveling completely over) the leading vehicle. In this case, the safety surrogates would show a 

value of 0 s for the TTC and PET because a collision would occur. After passing over the leader, 

however, both the leader and agent proceeded as if no collision had occurred. The behavior after 

the collision was not necessarily realistic in many cases. 
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Finally, some agents would swerve around the lead vehicle, sometimes actually leaving the 

roadway link. While this behavior is certainly a conflict, it may not show up strongly in some of 

the safety surrogate measures. When a vehicle swerves around the leader, it may not have a short 

enough TTC to trigger a conflict identification because it has moved onto a path where it will not 

conflict with the lead vehicle. This would mean that critical safety surrogate measures for these 

agents may be underreported. 

The safety surrogates provided by SSAM provide some general indications of performance of 

the agents, but there are definitely cases where they may not fully represent the agent behavior. 

As a result, many of the safety surrogates should be viewed for relative changes between the 

agent and the Wiedemann model, as opposed to absolute values of each measure. 

Evaluation of Car Agents 

Table 40 summarizes the safety surrogate measures for the car agents, using a 1.5-s TTC to 

define a conflict. In addition to the surrogate measures discussed earlier, the average number of 

conflicts per run is also listed. All conflicts evaluated were rear-end conflicts because the agents 

were developed based on rear-end conflict cases. No other conflict types were produced for any 

agent. The Wiedemann car-following model (noted as Agent Off in Table 40), did not produce 

any conflicts when the TTC threshold was set to 1.5 s. This shows that the Wiedemann model 

does not permit close following behaviors by default, and thus uses the assumption of safe 

driving behavior.  

With the exception of Agent f, all agents produced conflicts at least occasionally. Agent f entered 

the network at a lower speed than the leading vehicle, meaning the agent never caught up to the 

leader to cause a conflict. The remaining agents produced a mean number of conflicts of between 

0.55 and 1.75 (11 and 35 conflicts per 20 runs, respectively). Mean TTCs and PETs were 0 s for 

5 of 11 car agents: a, d, h, i, and j. This means that all of these agents produced collisions 

between the agent and the leading vehicle. 
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Table 40. Safety surrogate measure comparison using 1.5-s TTC – car agents. 

Agent 
Agent 

Status 

Mean # 

of 

Conflicts 

Mean 

TTC 

(s) 

Mean 

PET 

(s) 

Mean 

MaxS 

(m/s) 

Mean 

DeltaS 

(m/s) 

Mean 

DR 

(m/s
2
) 

Mean 

Max D 

(m/s
2
) 

Mean 

MaxDeltaV 

(m/s) 

a 

On 1.0 0 0 10.44 3.95 -0.13 -0.13 1.98 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

b 

On 1.75 0.62 0.43 4.11 2.42 -2.58 -3.01 1.21 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.75 n/a n/a n/a n/a n/a n/a n/a 

c 

On 0.80 0.23 0.12 3.93 2.31 -0.24 -1.24 1.16 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.80 n/a n/a n/a n/a n/a n/a n/a 

d 

On 0.65 0 0 2.36 0.72 -0.05 -0.11 0.36 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.65 n/a n/a n/a n/a n/a n/a n/a 

e 

On 0.55 0.46 0.11 2.55 0.77 0.16 -0.45 0.39 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.55 n/a n/a n/a n/a n/a n/a n/a 

f 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0 n/a n/a n/a n/a n/a n/a n/a 

g 

On 0.60 0.46 0.09 8.11 3.21 -0.72 -1.72 1.61 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.60 n/a n/a n/a n/a n/a n/a n/a 

h 

On 1.0 0 0 9.44 4.13 -0.15 -0.16 2.03 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

i 

On 0.85 0 0 8.67 1.15 -0.38 -2.83 0.57 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.85 n/a n/a n/a n/a n/a n/a n/a 

j 

On 1.0 0 0 10.44 3.95 -0.13 -0.13 1.98 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

k 

On 1.60 0.60 0.24 6.04 2.25 -2.50 -3.55 1.12 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.60 n/a n/a n/a n/a n/a n/a n/a 

n/a: Measure or comparison not generated because no conflicts were detected. 

Table 41 summarizes the safety surrogate measures for the car agents using a TTC threshold of 

2.5 s to define a conflict. When the TTC threshold was raised to 2.5 s, the Wiedemann model 

sometimes produced conflicts for some agent scenarios. The scenarios for Agents b, c, d, e, f, 

and k (6 of 11 scenarios) then had some conflicts detected when the Wiedemann car-following 

model was used. Once again, all agents except for Agent f produced some conflicts, with the 

mean number of conflicts ranging from 0.7 to 1.95 (14 to 39 conflicts per 20 runs). Mean TTC 

and PET values of the agents increased because conflicts at higher TTCs were then included in 

the summary. 

For the five cases where both the agent and the Wiedemann model produced conflicts, it was 

possible to examine differences between the surrogate measures using t-tests. Values shown in 

bold in Table 41 were significant at  = 0.05. As expected, the agents produced more safety-
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critical conflicts, and the surrogate measures generally showed that the conflicts were more 

severe than when the Wiedemann model was used.  

Table 41. Safety surrogate measure comparison using 2.5-s TTC – car agents. 

Agent 
Agent 

Status 

Mean # 

of 

Conflicts 

Mean 

TTC 

(s) 

Mean 

PET 

(s) 

Mean 

MaxS 

(m/s) 

Mean 

DeltaS 

(m/s) 

Mean 

DR 

(m/s
2
) 

Mean 

Max D 

(m/s
2
) 

Mean 

MaxDeltaV 

(m/s) 

a 

On 1.0 0 0 10.45 4.06 -0.08 -0.15 2.03 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

b 

On 1.95 1.21 0.82 4.10 2.41 -2.39 -3.57 1.20 

Off 0.20 2.20 1.47 2.73 1.27 -0.12 -4.49 0.63 

 1.75 -0.995 -0.657 1.373 1.141 -2.277 0.923 0.570 

c 

On 1.45 1.37 0.98 4.10 2.46 -3.20 -4.29 1.23 

Off 0.20 2.20 1.47 2.73 1.27 -0.12 -4.49 0.63 

 1.25 -0.828 -0.499 1.370 1.188 -3.088 0.205 0.594 

d 

On 0.70 0.18 0.04 2.39 0.72 -0.03 -0.11 0.36 

Off 0.20 2.20 1.47 2.73 1.27 -0.12 -4.49 0.63 

 0.50 -2.021 -1.432 -0.335 -0.552 0.091 4.380 -0.276 

e 

On 0.80 1.12 0.31 2.53 1.02 0.13 -0.67 0.51 

Off 0.20 2.20 1.47 2.73 1.27 -0.12 -4.49 0.63 

 0.60 -1.081 -1.169 -0.196 -0.251 0.249 3.819 -0.125 

f 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0.30 2.25 1.62 2.43 1.08 -0.21 -18.70 0.54 

 -0.30 n/a n/a n/a n/a n/a n/a n/a 

g 

On 0.80 0.88 0.21 8.41 3.68 -0.48 -1.70 1.84 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.80 n/a n/a n/a n/a n/a n/a n/a 

h 

On 1.05 0.22 0.13 9.44 4.38 -1.35 -1.80 2.19 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.05 n/a n/a n/a n/a n/a n/a n/a 

i 

On 0.95 0.22 0.03 8.70 1.22 -0.38 -2.51 0.61 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.95 n/a n/a n/a n/a n/a n/a n/a 

j 

On 1.0 0 0 10.45 4.06 -0.08 -0.15 2.03 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

k 

On 1.80 1.11 0.45 6.06 2.30 -4.16 -5.86 1.15 

Off 0.25 2.20 0.66 4.11 1.22 -0.33 -0.80 0.61 

 1.55 -1.092 -0.207 1.943 1.087 -3.828 -5.066 0.543 

n/a: MOE or comparison not generated since no conflicts were detected 

Values shown in bold are significant at  = 0.05. 

Evaluation of Truck Agents 

Table 42 summarizes the evaluation of the truck agent scenarios when the TTC threshold for 

conflicts was set to 1.5 s. Like the car agent scenarios, the Wiedemann car-following model 

never produced any conflicts when the TTC threshold was set to 1.5 s. When the truck agents 

were active, seven of nine agents produced conflicts at least occasionally. For those agents that 

produced conflicts, the mean number of conflicts ranged from 0.8 to 1.60 conflicts per run (16 to 
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32 conflicts per 20 runs). Agents D, E, F, G, H, and I all had a mean TTC and PET of 0, meaning 

that they produced collisions in each conflict generated. 

In the case of Agents A and B, no conflicts were produced. Agent A consistently swerved around 

the lead vehicle by a significant margin, leaving the network and re-entering the link in front of 

the leader. While this was definitely a significant safety-critical event, the agent never triggered 

the 1.5-s TTC threshold to define a conflict, so no safety surrogate measures were generated by 

SSAM. A similar situation happened with Agent B. In this case, the vehicle decelerated and 

swerved off of the roadway link before it could get into a conflict with the lead vehicle. Thus, 

even though a conflict event was not triggered for either agent, the agent behavior was definitely 

safety critical. 

Table 42. Safety surrogate measure comparison using 1.5-s TTC – truck agents. 

Agent 
Agent 

Status 

Mean # 

of 

Conflicts 

Mean 

TTC 

(s) 

Mean 

PET 

(s) 

Mean 

MaxS 

(m/s) 

Mean 

DeltaS 

(m/s) 

Mean 

DR 

(m/s
2
) 

Mean 

Max D 

(m/s
2
) 

Mean 

MaxDeltaV 

(m/s) 

A 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0 n/a n/a n/a n/a n/a n/a n/a 

B 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0 n/a n/a n/a n/a n/a n/a n/a 

C 

On 0.80 0.55 0.06 30.07 6.46 -0.62 -3.18 3.23 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.80 n/a n/a n/a n/a n/a n/a n/a 

D 

On 1.10 0 0 5.95 1.82 0.48 0.48 0.91 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.10 n/a n/a n/a n/a n/a n/a n/a 

E 

On 1.60 0 0 16.31 3.79 1.45 1.45 1.90 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.60 n/a n/a n/a n/a n/a n/a n/a 

F 

On 1.05 0 0 27.91 8.13 -1.16 -2.55 4.07 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.05 n/a n/a n/a n/a n/a n/a n/a 

G 

On 1.0 0 0 21.52 9.41 -2.77 -5.09 4.71 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

H 

On 1.05 0.03 0 19.51 1.93 -0.03 -0.28 0.96 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.05 n/a n/a n/a n/a n/a n/a n/a 

I 

On 1.0 0 0 10.96 4.52 -0.01 -0.01 2.26 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

n/a: MOE or comparison not generated because no conflicts were detected. 

Table 43 summarizes the safety surrogate measures for the truck agents when the TTC threshold 

for a conflict was set to 2.5 s. Once again, Agents A and B did not produce any conflicts because 

they left the roadway and did not interact with the leader. The remaining agents produced an 

average number of rear-end conflicts ranging from 0.95 to 1.60 (19 to 32 conflicts per 20 runs). 

Using the 2.5-s TTC threshold to define a conflict also created conflicts when the Wiedemann 

car-following model was used in scenarios for Agents A, B, D, F, and H (5 of 9 cases). 
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Agents D, F, and H were the only cases where both the agent and the Wiedemann model 

produced conflicts. The t-tests in those cases showed that the agents tended to produce 

significantly more conflicts than when the Wiedemann model was used, and the conflicts 

produced were more severe. This was as expected. 

Table 43. Safety surrogate measure comparison using 2.5-s TTC – truck agents. 

Agent 
Agent 

Status 

Mean # 

of 

Conflicts 

Mean 

TTC 

(s) 

Mean 

PET 

(s) 

Mean 

MaxS 

(m/s) 

Mean 

DeltaS 

(m/s) 

Mean 

DR 

(m/s
2
) 

Mean 

Max D 

(m/s
2
) 

Mean 

MaxDeltaV 

(m/s) 

A 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0.10 2.25 0.20 12.18 1.16 -0.49 -1.05 0.58 

 -0.10 n/a n/a n/a n/a n/a n/a n/a 

B 

On 0 n/a n/a n/a n/a n/a n/a n/a 

Off 0.10 2.50 0.20 14.34 0.90 -0.58 -0.78 0.45 

 -0.10 n/a n/a n/a n/a n/a n/a n/a 

C 

On 0.95 0.78 0.11 30.19 6.27 -1.63 -3.57 3.14 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 0.95 n/a n/a n/a n/a n/a n/a n/a 

D 

On 1.30 0.38 0.18 5.89 1.78 -0.39 -0.54 0.89 

Off 0.10 2.40 0.60 4.29 0.99 -0.12 -2.76 0.49 

 1.20 -2.023 -0.423 1.594 0.793 -0.277 2.220 0.396 

E 

On 1.60 0 0 16.31 3.51 1.44 1.44 1.75 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.60 n/a n/a n/a n/a n/a n/a n/a 

F 

On 1.05 0 0 28.18 8.35 -1.08 -2.64 4.18 

Off 0.15 2.47 0.20 20.45 1.55 -0.53 -0.56 0.77 

 0.90 -2.467 -0.20 7.730 6.808 -0.554 -2.077 3.404 

G 

On 1.0 0 0 21.52 8.62 -2.45 -5.20 4.31 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

H 

On 1.05 0.03 0 19.56 1.97 0.03 -0.30 0.98 

Off 0.10 2.35 0.30 16.34 2.09 -0.64 -0.72 1.05 

 0.95 -2.317 -0.295 3.213 -0.122 0.673 0.418 -0.061 

I 

On 1.0 0 0 10.96 4.53 0 -0.01 2.26 

Off 0 n/a n/a n/a n/a n/a n/a n/a 

 1.0 n/a n/a n/a n/a n/a n/a n/a 

n/a: MOE or comparison not generated because no conflicts were detected. 

Values shown in bold are significant at  = 0.05. 

Summary of Safety Surrogate Analysis 

The safety surrogate measure analysis on the simple linear VISSIM network revealed the 

following findings: 

 As expected, the agents produced many more safety-critical events than when VISSIM used 

the Wiedemann car-following model to control the following vehicle. The Wiedemann car-

following model never produced any conflicts when the TTC threshold for a conflict was set 

at 1.5 s, regardless of the scenario being evaluated. 
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 Several of the agents were not well suited to analysis using SSAM. Agents that departed the 

roadway by a significant margin were not properly classified as having caused safety-critical 

events. 

 When the TTC threshold for conflicts was increased to 2.5 s, the Wiedemann model 

sometimes produced conflicts. However, the number and severity of conflicts with the 

Wiedemann model were not as severe as when the agent was active. 

 Reactions of the agents following the safety-critical event were sometimes not realistic. 

Agents would repeat behaviors that created safety-critical events multiple times, or would 

proceed following a collision as if nothing had happened. Before the agents can be 

implemented in a more complex model, behaviors following critical events will need to be 

re-examined for the agents. In effect, noncollision events would need to reset to the 

traditional Wiedemann model, and collision events would need to be modeled by having both 

vehicles come to a stop after the event. 

EVALUATION OF AGENTS ON MORE COMPLEX NETWORKS 

A simple VISSIM test network was developed to evaluate agent performance on a network more 

complex than the single-lane, unidirectional link evaluated earlier. The intent of this analysis was 

to determine the potential impact of agent behaviors on macroscopic traffic characteristics, for 

example by examining the impact of safety-critical events on traffic flow and travel time 

reliability. The test network consisted of a 4-mi stretch of freeway with two interchanges. One of 

the interchanges in the example network is shown in Figure 90 below. Traffic volumes were set 

so that transient congestion formed at freeway on-ramps and there was turbulence due to lane 

changing at the off-ramps. The intent was to evaluate the impact of different agent types and 

penetrations on operational measures on this network. Since the ramp termini were near capacity 

using the Wiedemann car-following model, the expectation was that the agents would create 

more significant congestion on the network. 
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Figure 90. Screenshot. Example of interchange on test network. 

Initial evaluations on this network revealed several problems with directly implementing the 

agents. First, many of the problems that were manifested on the simple linear network continued 

to occur on this network. Agents would crash with leading vehicles with much higher frequency 

than realistically expected, and the lead vehicles were not affected by the actions of the subject 

vehicles. The net result of these issues was that traffic operations on this network did not appear 

to be realistic because lead vehicle interactions with the agents were not reasonable.  

The effect was that many more safety-critical events were occurring in the simulation than could 

be reasonably expected. As a result, a detailed evaluation of the agents on this network could not 

be conducted. 

CHAPTER CONCLUSION 

This chapter shows the results obtained from implementing the new agent approach into VISSIM 

as compared to the state of practice. The results showed that the agents would adopt more 

realistic decelerations than the Wiedemann model.  

Before the agents are ready to be implemented in a production environment in VISSIM, several 

issues need to be resolved: 



 

154 

 The areas of application (speeds, geometric conditions) where specific agents should be used 

needs to be defined. Before being used in a production environment, the selection of 

appropriate agents for a specific condition should be automated. 

 As a future research item, there is a need to estimate the frequency with which certain agent 

behaviors occur in the driving population to ensure that they are modeled at appropriate 

levels. 

Once these changes are made, the inclusion of agents in VISSIM would offer a powerful 

opportunity to examine safety implications of different designs, as well as to better assess the 

impacts of incidents and other unpredictable driver behavior on travel time reliability. The initial 

testing of the agents in VISSIM shows that the use of agents is viable conceptually, but 

additional refinement is needed before they can be used outside of a research environment 

focused on specific events. 

 

  



 

155 

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

This report has documented the research performed to model driver behavior in traffic under 

naturalistic driving data. VTTI naturalistic driving data was used in this research due to its 

unique capabilities to capture the behavior of drivers when they are not in a test environment. 

Both safety-critical and car-following periods were used for training agents to mimic the range of 

behaviors of drivers. 

The naturalistic data analysis allowed for the discovery of new thresholds for the Wiedemann 

model: a passing threshold and a hook following threshold. These two new thresholds increase 

the usability and accuracy of the Wiedemann model when natural or naturalistic driver behaviors 

are concerned because these thresholds were developed based on observations made in the 

naturalistic data. A hybrid model was developed, combining the strengths of both the GHR 

model and the Wiedemann model to yield a more accurate and highly flexible model. The 

comparison of different car-following models resulted in finding that different models have the 

least error for different drivers, but the velocity difference model and the Wiedemann model both 

perform adequately across all the drivers tested. 

To model safety-critical events in addition to normal events, NFACRL, an agent-based artificial 

intelligence machine-learning technique, was used to model driving behavior. The naturalistic 

driving database was used to train and validate driver agents. The advantages of NFACRL lie 

mainly in its ability to simulate heterogeneous vehicle actions in complicated traffic 

environments. It is worth mentioning that this research was an attempt to apply reinforcement 

learning techniques to solving high-dimensional state problems and continuous-action simulation 

problems simultaneously in transportation research, especially in traffic flow theory. From the 

perspective of microscopic traffic behavior modeling, the proposed methodology was able to 

simulate lateral action, which brings new insights to the modeling of driver maneuvering 

behavior during safety-critical events. The proposed methodology also simulated events from 

different drivers and proved behavior heterogeneities. Robust agent activation techniques were 

also developed using discriminant analysis. 

The developed agents were implemented in the VISSIM simulation platform and were evaluated 

by comparing the behavior of vehicles with and without agent activation. The results showed 

very close resemblance of the behavior of agents and driver data. Prototype agents were 

developed and submitted with this research report. 

RESEARCH CONTRIBUTION 

The research conducted in this project can be considered as a foundation for agent-based 

modeling and simulation based on naturalistic data. One of the major contributions of this 

research is the developed integrated framework for safety and operation analysis. The research 

has contributed the following: 



 

156 

1. Improvement of car-following models during normal driving episodes, namely the 

development of the hybrid Wiedemann-GHR model and the addition of the new pass and 

hook thresholds. 

2. Development of the NFACRL agent-based model for safety-critical events, and training 

of 20 agents to mimic 20 different drivers extracted from the naturalistic database. 

3. Development of agent-based simulation components integrated with the VISSIM 

simulation package through its driver model dll. 

4. Development of a robust activation mechanism for agent-based simulation based on 

discriminant analysis and implementing the activation mechanism in a GUI.  

RECOMMENDATION FOR FUTURE RESEARCH 

There are several suggestions for future research that can be categorized under theoretical, 

applied, and related efforts. On the theoretical aspect, the next step of this research is the 

extension of the NFACRL framework to simulate other traffic behavior, such as lane-changing 

behavior and merging behavior in the upstream and downstream of ramps. It would be 

interesting to model individual driver behavior and the decision-making process under these 

traffic conditions. Training parameters, such as speed, memory, and scaling factor, were fixed for 

all the events in this research, but it would be interesting to see how NFACRL performs under 

different combination of these factor sets. As with most artificial intelligence methods, NFACRL 

is a heuristic approach, so there is no guarantee that training results would be optimal. Therefore, 

training parameters play an important role in guiding NFACRL to find a near-optimal result. We 

also found that agent performance is very sensitive to the driver-dependent training parameters, 

discrete action sets, and state bounds. Theoretically, it would be better if these parameters were 

preoptimized before training. However, because the only way to test agent performance is 

through NFACRL training, parameter optimization and training form a cycle, and computation 

time would exponentially increase. Our approach set the parameters based on statistical quartiles, 

and this yielded good results. Future research should focus on the optimization methodology for 

training parameters and will improve agent performance. 

On the applied aspect, our initial evaluations on events beyond what the agents were trained for 

revealed that agents can behave erratically in those cases. It is therefore recommended to train 

agents using more detailed naturalistic datasets (e.g., SHRP II naturalistic datasets). In addition, 

it would also be interesting to examine the behavior of agents if they were first trained to mimic 

the Wiedemann model behavior, for example, then overlayed with naturalistic data training. 

More importantly, research should be conducted to evaluate the potential of using agent-based 

simulation to examine different design alternatives based on safety and operation factors. The 

evaluation effort should examine unique or problematic geometry, network design 

characteristics, and traffic conditions that necessitate both operational and safety analysis (e.g., 

different weather conditions) and compare the results to existing and/or known outcomes.  

Finally, on the related research aspect, the research conducted in this report has shown the 

importance of two key future research issues: 

1. Adaptability of agents in real time: agents could be programmed to adapt during the 

simulation itself. 

2. Human factor issues related to warning individual drivers about a change in their driving 

behavior that might lead to a safety-critical event. 
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