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ABSTRACT 

The paper develops procedures for calibrating the steady-state component of various car-
following models using macroscopic loop detector data. The calibration procedures are developed 
for a number of commercially available microscopic traffic simulation software, including: 
CORSIM, AIMSUN2, VISSIM, Paramics, and INTEGRATION. The procedures are then applied 
to a sample dataset for illustration purposes. The paper then compares the various steady-state 
car-following formulations and concludes that the Gipps and Van Aerde steady-state car-
following models provide the highest level of flexibility in capturing different driver and roadway 
characteristics. However, the Van Aerde model, unlike the Gipps model, is a single-regime model 
and thus is easier to calibrate given that it does not require the segmentation of data into two 
regimes. The paper finally proposes that the car-following parameters within traffic simulation 
software be link-specific as opposed to the current practice of coding network-wide parameters. 
The use of link-specific parameters will offer the opportunity to capture unique roadway 
characteristics and reflect roadway capacity differences across different roadways. 

INTRODUCTION 

The rapid development of personal computers over the last few decades has provided the necessary 
computing power for advanced traffic micro-simulators. Today, microscopic traffic simulation 
software are widely accepted and applied in all branches of transportation engineering as an 
efficient and cost effective analysis tool. One of the main reasons for this popularity is the ability of 
microscopic traffic simulation software to reflect the dynamic nature of the transportation system in 
a stochastic fashion. 

The core of microscopic traffic simulation software is a car-following model that 
characterizes the longitudinal motion of vehicles. The process of car-following consists of two 
levels, namely modeling steady-state and non-steady-state behavior [1]. Ozaki defined steady 
state as conditions in which the vehicle acceleration and deceleration rate is within a range of 
±0.05g [2]. Another definition of steady-state or stationary conditions is provided by Rakha [3] as 
the conditions when traffic states remain practically constant over a short time and distance. 
Steady-state car-following is extremely critical to traffic stream modeling given that it influences 
the overall behavior of the traffic stream. Specifically, it determines the desirable speed of 
vehicles at different levels of congestion, the roadway capacity, and the spatial extent of queues. 
Alternatively, non-steady-state conditions govern the behavior of vehicles while moving from 
one steady state to another through the use of acceleration and deceleration models. The 
acceleration model is typically a function of the vehicle dynamics while the deceleration model 
ensures that vehicles maintain a safe relative distance to the preceding vehicle thus ensuring that 
the traffic stream is asymptotically stable. Both acceleration and deceleration models can affect 
steady-state conditions by reducing queue discharge saturation flow rates. 

Traffic stream models describe the motion of a traffic stream by approximating for the 
flow of a continuous compressible fluid. The traffic stream models relate three traffic stream 
measures, namely: flow rate (q), density (k), and space-mean-speed (u). Gazis et al. [4] were the 
first to derive the bridge between microscopic car-following and macroscopic traffic stream 
models. Specifically, the flow rate can be expressed as the inverse of the average vehicle time 
headway. Similarly, the traffic stream density can be approximated for the inverse of the average 
vehicle spacing for all vehicles within a section of roadway. Therefore every car-following model 
can be represented by its resulting steady-state traffic stream model. Different graphs relating 
each pair of the above parameters can be used to show the steady-state properties of a particular 
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model; including the speed-spacing (u-s) and speed-flow-density (u-q-k) relationships. The latter 
curve is of more interest, since it is more sensitive to the calibration process and the shape and 
nose position of the curve determines the behavior of the resulting traffic stream. 

A reliable use of micro-simulation software requires a rigorous calibration effort. Because 
traffic simulation software are commonly used to estimate macroscopic traffic stream measures, 
such as average travel time, roadway capacity, and average speed, the state-of-the-practice is to 
systematically alter the model input parameters to achieve a reasonable match between desired 
macroscopic model output and field data [5]. Since the macroscopic flow characteristics are 
mostly related to steady-state conditions, this requires the user to calibrate the parameters of the 
steady-state relationship and therefore the knowledge of the steady-state behavior of the car-
following model is necessary in this process. It should be mentioned that under certain 
circumstances, the non-steady-state behavior can also influence steady-state behavior [3]; 
however since this is not the general case, the focus of this paper will be on steady-state 
conditions.   

Over the past decade, several car-following models have been proposed and described in 
the literature. Brackstone and McDonald [6] categorized the car-following models into five 
groups, namely: Gazis-Herman-Rothery (GHR) models, safety distance models, linear models, 
Psycho-physical or action point models, and fuzzy logic based models. However, as it was 
mentioned above the measures that are usually used by transportation engineers are those of 
macroscopic nature, which are mostly affected by car-following models. Consequently, 
calibrating these software using macroscopic data offers a significant appeal to modelers. 

The goals of this paper are two-fold. First, the paper identifies the steady-state car-
following model for a number of state-of-practice commercial microscopic traffic simulation 
software. Second, the paper develops a procedure for calibrating these steady-state models using 
macroscopic loop detector data.   

 
TRAFFIC SIMULATION CAR-FOLLOWING MODELS 
The modeling of car-following and traffic stream behavior requires a mathematical representation 
that captures the most important features of the actual behavior. In this treatment, the relationships 
obtained by observation, experimentation, and reasoning are given: the researcher attempts to 
express their steady-state behavior in a graphical form, and classify them based on their steady-state 
representation.  

Typically, car-following models characterize the behavior of a following vehicle (vehicle 
n) that follows a lead vehicle (vehicle n-1). This can be presented by either characterizing the 
relationship between a vehicles’ desired speed and the vehicle spacing (speed formulation), or 
alternatively by describing the relationship between the vehicle’s acceleration and speed 
differential between the lead and following vehicles (acceleration formulation). 

Over the last few decades, several car-following models have been developed and 
incorporated within micro-simulation software packages. This section describes the 
characteristics of six of the state-of-practice and state-of-art car-following models, including the 
Pitt model (CORSIM), Gipps’ model (AIMSUN2), Wiedemann74 and 99 models (VISSIM), 
Fritzsche’s model (PARAMICS), and the Van Aerde model (INTEGRATION). Subsequently, 
each model is characterized based on its steady-state behavior and procedures are developed to 
calibrate the model parameters. 

It should be noted again that this study only describes car-following behavior under 
steady-state conditions, when the lead vehicle is traveling at similar speeds and both the lead and 
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following having similar car-following behavior, i.e. sn sdesired, Δun  0, where sn.is the spacing 
between the lead vehicle (vehicle n-1) and following vehicle (vehicle n) and Δun is the relative 
speed between the lead and following vehicle (un-1 – un). In addition to these two conditions, we 
are capturing the average behavior given that driver behavior is stochastic in nature. The analysis 
of randomness was presented in an earlier publication [7] and thus is not considered further in 
this research effort.  

CORSIM Software 

CORSIM was developed by the Federal Highway Administration (FHWA) and combines two 
traffic simulation models: NETSIM for surface streets and FRESIM for freeway roadways. The 
FRESIM model utilizes the Pitt car-following model that was developed by the University of 
Pittsburgh [8]. The basic model incorporates the vehicle spacing and speed differential between 
the lead and following vehicle as two independent variables as demonstrated in Table 1 and cast 
as 

2

3 3 2

( ) ( )
( )

3.6 3.6
n n

n j

u t t u t t
s t s c bc

+ D D + D
= + + , (1) 

where sn(t) is the vehicle spacing between the front bumper of the lead vehicle and front bumper 
of following vehicle at time t (m), sj is the vehicle spacing when vehicles are completely stopped 
in a queue (m), c3 is the driver sensitivity factor (s), b is a calibration constant that equals 0.1 if 
the speed of the following vehicle exceeds the speed of the lead vehicle, otherwise it is set to zero 
(h/km), u is the difference in speed between lead and following vehicle (km/h) at instant t+∆t, 
and un is the speed of the following vehicle at instant t (km/h). 
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Table 1: Software Car-following Model Formulations 

Software Model Formulation 

CORSIM Pitt Model ( )21
3

( )
( ) min 3.6 ( ) ( ) ,n j
n n n f

s t s
u t t b u t u t u

c -

æ é ù ö- ÷ç ê ú ÷ç+ D = ⋅ - - ÷ç ê ú ÷ç ÷çè øê úë û
 

VISSIM 

Wiedemann74 

2

2

( )
3.6

( ) min ,
( )

3.6

n j

n f

n j

s t s

BX
u t t u

s t s

BX EX

ì üï ïæ ö-ï ï÷çï ï÷ç⋅ï ï÷çï ï÷ç ÷çï ïè øï ï+ D = í ýï ïæ ö-ï ï÷çï ï÷ç⋅ï ï÷çï ï÷ç ÷ç ⋅ï ïè øï ïî þ

 

Wiedemann99 

( )

1
min

8 9
( ) 3.6 8

80
( ) ,

( ) 0
3.6

( )

n

n n

f
n n

n

u

CC CC
u t CC u t t

t t u
s t CC L

u t
-

=

ì æ ö ü-ï ï÷çï ï+ ⋅ + ÷Dçï ï÷ç ÷ï ïè øï ï+ D í ý- -ï ïï ï⋅ï ïï ïï ïî þ

 

Paramics Fritzsche 

0

0

min

3.6

( ) ,

3.6
n

D
f

r

u

AD A

T
t t u

AR A

T

=

ì æ ö ü-ï ï÷çï ï÷⋅ çï ï÷çï ï÷çè øï ïï ï+ D í ýæ öï ï- ÷çï ï÷⋅ çï ï÷çï ï÷çè øï ïï ïî þ

 

AIMSUN2 Gipps 
max

2
2 2 1

1 2

min

( )

( ) ( )
( ) 3.6 2.5 1 0.025 ,

( ) ( )
3.6 - 2 ( )

3.6 3.6

n

n n
n

f f

n n
n n

u t T

u t u t
u t a T

u u

u t u t
bT b T b s t L T

b
-

-

=+
ì é ù üæ öï ï÷çï ïê ú÷çï ï+ - +÷çê úï ï÷ç ÷çï ïè øê úï ïë ûï ïí ýé ùæ öï ï÷ï ïçê ú÷é ùçï ï+ + - - + ÷ê úçï ïë û ÷çï ÷ ï¢´ê úè øï ïï ïî ë û þ

 

INTEGRATION Van Aerde 2

1 3 1 3 3 1 2

3

( )

min

( ) ( )
( ) 3.6 ,

( ) ( ) 4 ( )

2

n

n n
n

f n f n n f f

u t t

F t R t
u t t

m

c c u s t c c u s t c s t u c u c

c

+ D =
ì ü-ï ïï ï+ ⋅ Dï ïï ïï ïï ïí ýé ù é ùï ¢ ¢ ¢ ï- + + - - - - - -ï ïë û ë ûï ïï ïï ïï ïî þ

  
 

Where: 2

1 1
( ) ( ) ( ) ( ) 0.5 ( )
n n n n n
s t s t u t t u t t a t t t- -

é ù= + +D - D + +D Dê úë û  

 
Given that steady-state conditions are characterized by travel at near equal speeds, the 

third term of the car-following model tends to zero under steady-state driving. Consequently, the 
steady-state car-following model that is incorporated within FRESIM can be written as 

3

( )
( )

3.6
n

n j

u t t
s t s c

+ D
= + . (2) 

Introducing a constraint on the vehicle speed based on the roadway characteristics and 
roadway speed limit, the car-following model can be written as 

3

( )
( ) min ,3.6 n j
n f

s t s
u t t u

c

æ æ öö- ÷÷ç ç ÷÷ç ç+ D = ÷÷ç ç ÷÷ç ç ÷÷ç çè è øø
. (3) 

Rakha and Crowther [9] demonstrated that the steady-state car-following behavior is 
identical to the Pipes or the GM-1 model. Furthermore, if we assume that all vehicles are similar 
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in behavior, the vehicle subscripts can be dropped from the formulation. The model then requires 
the calibration of three parameters, namely: the facility free-flow speed, the facility jam density, 
and a Driver Sensitivity Factor (DSF) c3. In the case of the NETSIM software the parameter is 
fixed and equal to 1/3600, however in the case of the FRESIM model Rakha and Crowther [9] 
showed that the DSF can be related to macroscopic traffic stream parameters as 

3
1 1

3600
c j f

c
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
, (4) 

where qc is the mean saturation flow rate (veh/h), kj is the mean roadway jam density (veh/km), and 
uf is the space-mean traffic stream free-flow speed (km/h). For example, considering a freeway 
facility with an average lane capacity of 2400 veh/h/lane, an average free-flow speed of 100 km/h, 
and an average jam density of 150 veh/km/lane; the DSF can be computed as 1.26 s, as summarized 
in Table 2. In other words, the modeler would need to input an average DSF of 1.26 s, a free-flow 
speed of 100 km/h, and an average vehicle spacing of 6.67 m in order to simulate a saturation flow 
rate of 2400 veh/h/lane. The estimation of the three macroscopic traffic stream parameters qc, uf, 
and kj using loop detector data is described later in the paper. Rakha and Crowther [9] demonstrated 
the calibration of the DSF can be achieved by changing a base network-wide parameter and 
changing link-specific adjustment parameters.  

The calibration procedure was applied to a sample arterial dataset in which the traffic 
stream space-mean speed is sensitive to the flow rate in the uncongested regime, as illustrated in 
Figure 1. Because the Pipes model assumes that the traffic stream speed remains constant 
regardless of the flow rate in the uncongested regime the model is not suitable for such 
applications. Furthermore, the model assumes that the speed-at-capacity is identical to the free-
flow speed, which is not the case in this dataset. It should be noted that the capacity for this 
example is fairly low given that it is measured upstream of a traffic signal. 
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Table 2: Steady-State Model Calibration 

Car-following Model Steady-State Calibration 
Pitt Model 

3
1 1

3600
c j f

c
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
 

Wiedemann 74 

( ) 1 1
1000 3.6 f

c j f

E BX u
q k ua

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
and ( )

1

1

j f

c

j f

c

k u

q
E EX

k u

q

a

a

-

=

-

  

Wiedemann 99 
1000

0
j

CC L
k

= -  and 
1 1

1 3600
c j f

CC
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
 

Gipps 

b=b’: 
1 1

2400
c j f

T
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
 

b>b’: Invalid behavior with a non-concave car-following relationship 

b<b’:  

2

1

1 25920

j c

b

b k u

=
æ ö÷ç ÷ç + ÷ç ÷ç ¢ ÷÷çè ø

 and 
1000 1000

2.4 1
25.92
c

c j c

u b
T

q k u b b

æ öæ ö÷ç ÷ç ÷ç= - - - ÷ç ÷ç ÷÷ç ÷ç ¢ ÷è øçè ø
 

Fritzsche 

0
1000

j

A
k

=  ; 
1 1

3600D
c j f

T
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
; and 

max

1 1
3600r

j fc

T
k uq

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
 

Van Aerde 

( ) ( )21 2 32 2 2

1
2 ; ;f f f

c f f c

cj c j c j c

u u u
c u u c u u c

qk u k u k u

æ ö÷ç ÷ç= - = - = - ÷ç ÷ç ÷÷çè ø
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Figure 1: Example Illustration of Pipes Model Calibration 

AIMSUN2 Software 

The AIMSUN2 car-following behavior is modeled using the Gipps car-following model [10-12] 
and presented in Table 1. According to Gipps, the speed of the following vehicle is controlled by 
three conditions. The first condition ensures that the vehicle does not exceed its desired speed or a 
vehicle-specific free-flow speed (Un). The second condition ensures that the vehicle accelerates to 
its desired speed with an acceleration rate that initially increases with speed and then decreases to 
zero as the vehicle approaches its desired speed. The combination of these conditions results in 
Equation (5) which controls the vehicle acceleration while vehicles are distant from each other 
(free-flow behavior). The equation coefficients were obtained from fitting a curve to field data 
collected on a road of moderate traffic. 

( ) ( )
( ) ( ) 3.6 2.5 (1 ) 0.025n n
n n n

n n

u t u t
u t T u t a T

U U

é ù
ê ú+ = + - +ê ú
ê úë û

 (5) 

where un(t) is the speed of vehicle n at time t (km/h); an is the maximum desired acceleration rate of 
vehicle n (m/s2); T it the driver’s reaction time (s); and Un is the desired speed of vehicle n or the 
vehicle-specific free-flow speed (km/h). 

In a constrained traffic situation, when vehicles are traveling close to each other, the third 
condition becomes dominant and controls the behavior of the follower vehicle while decelerating. 
The speed of the follower vehicle (see Equation (6)) is affected by the driver reaction time, the 
spacing between the leader and follower vehicles, the speed of the leader and follower vehicles, 
and the deceleration rates they are willing to employ. Gipps pointed out that a safety margin 
should be added to the driver’s reaction time. The safety margin would assure the vehicle’s 
ability to stop even when there is a delay to initiate its reaction for some reason. The safety 
margin was assumed to be constant in value and equal to T/2 (half the reaction time). This safety 
value is implicit in Equation (6). 
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2
2 2 1

1 2

( ) ( )
( ) 3.6 2 ( )

3.6 3.6
n n

n n n

u t u t
u t T bT b T b s t L T

b
-

-

é ùì üï ïê úï ïé ù+ = - + + - - +í ýê úë ûï ï¢´ê úï ïî þë û
 (6) 

Here b and b´ are deceleration parameters of vehicle n (m/s2); b is the actual most severe 
deceleration rate the vehicle is willing to employ in order to avoid a collision; and b´ is the 
estimated most severe deceleration rate the leader vehicle is willing to employ. It is an estimated 
value because it is impossible for the follower to evaluate the real intention of his/her leader; Ln-1 is 
the effective length of vehicle n-1 (the actual length plus a safety margin); sn(t) is the spacing 
between vehicle n and n-1 at time t (m); and un-1(t) is the speed of the preceding vehicle (km/h). 

The parameters related to deceleration rates (b and b´) are very important for the braking 
process modeling. These parameters influence the spacing between the follower and leader 
vehicles and thus affect the lane capacity. 

Assuming the vehicles will travel as close to their desired speed as possible and 
considering the dynamics limitations, the speed of vehicle n at time t +T can be computed as 

max

2
12 2

1 2

min

( ) ( )
( ) 3.6 2.5 1 0.025 ,

( )
( ) ( )

3.6 - 2 ( )
3.6 3.6

n

n n
n

f f

n n
n n

u

u t u t
u t a T

u u
t T

u t u t
bT b T b s t L T

b

-
-

=

ì é ù üæ öï ï÷çï ïê ú÷çï ï+ - +÷çê úï ï÷çï ï÷çê úè øï ïë ûï ï+ í ýé ùæ öï ï÷ï ïçê ú÷é ùçï ï+ + - - + ÷ê úçï ïë û ÷çï ï÷ç ¢ê ú´è øï ïï ïî ë û þ

 (7) 

According to the above formulation, once the road is unconstrained and the space 
headways between the vehicles are large enough to allow them to travel at their desired speed, the 
first argument of Equation (7) is applied. In this case, the following vehicle is able to accelerate 
according to the empirical equation of vehicle dynamics. Alternatively, in congested conditions, 
where short headways are typical, the second argument of Equation (7) is applied. In such a case, 
the speed is limited by the leader vehicle performance. Each vehicle establishes its speed in order 
to avoid a collision based on the assumption that the leader deceleration rate will not exceed b´.  

A detailed mathematical analysis of Gipps’ car-following model under steady-state 
conditions was presented in two earlier publications [11, 12]. Consequently, the paper will only 
summarize the major findings of these studies and then develop an analytical calibration 
procedure of the model. In his study, Wilson [12] presented a mathematical analysis of simplified 
scenarios and identified parameter regimes that deserve further investigation. The paper also 
showed the derivation of uniform flow solutions (steady-state) and speed-spacing functions under 
simplifying conditions concerning parameters b, b’, and T, and an analysis of the linear stability 
of the uniform flow, identifying stable and non-stable flow regimes. Wilson demonstrated that the 
steady-state car-following model can be cast as 

21 1
1

2.4 25.92j
b

s s Tu u
b b

æ ö÷ç= + + - ÷ç ÷ç ÷¢è ø
. (8) 

Rakha et al. [11] demonstrated that in the case that b and b´ are identical the driver 
reaction time can be computed as 

1 1
2400

c j f
T

q k u

æ ö÷ç= - ÷ç ÷÷çè ø
. (9) 

When b is set greater than b´, Wilson [12] demonstrated that the car-following 
relationship may become unphysical and produce multiple solutions for some sets of parameters. 
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Consequently, b should be set less than or equal to b´. In the case that b is less than b´, Rakha et 
al. [11] demonstrated that the steady-state car-following relationship can be cast as 

2

1 1
8000 1

5.4
min , 1 1

91

j
f

b

k k bbT
u u

b bT
b

æ é ù öæ öæ ö ÷ç ÷çê ú ÷÷çç ÷ç - - ÷÷ç÷ç ê úç ÷÷÷ç ÷ç ¢ ÷ç ÷è øê úç è ø ÷ç ÷= - + +ê ú ÷ç ÷ç æ ö ê ú ÷ç ÷ç ÷ç ê ú- ÷ç ÷ç ÷ ÷ç ÷ ê ú¢ç è ø ÷÷çè øê úë û

. (10) 

Starting with Equation (8) the speed-flow relationship can be derived as 

2

1000

1 1
1

2.4 25.92j

u
q

b
s Tu u

b b

=
æ ö÷ç+ + - ÷ç ÷ç ÷¢è ø

. (11) 

Using the function of Equation (11) Rakha et al. developed lookup tables to estimate the 
facility capacity considering different microscopic car-following parameters. This paper extends 
the research by developing analytical expressions to estimate the microscopic car-following 
model parameters based on macroscopic traffic stream measurements. 

Considering that the maximum flow rate occurs when the first derivative of flow with 
respect to speed equals to zero, the speed-at-capacity can be computed as 

2000
min 3.6 ,

1
c f

j

b
u u

b
k

b

æ ö÷ç ÷ç ÷ç ÷ç ÷ç= ´ ÷ç ÷æ ö ÷ç ÷÷ç ç - ÷÷ç ç ÷÷ç ç ÷ ÷ç ¢è è ø ø

. (12) 

Consequently, we derive the relationship between the microscopic car-following and 
macroscopic traffic stream parameters as  

2

1

1 25920

j c

b

b k u

=
æ ö÷ç ÷ç + ÷ç ÷ç ¢ ÷÷çè ø

 where b < b´, and  (13) 

1000 1000
2.4 1

25.92
c

c j c

u b
T

q k u b b

æ öæ ö÷ç ÷ç ÷ç= - - - ÷ç ÷ç ÷÷ç ÷ç ¢ ÷è øçè ø
. (14) 

The calibration of the model entails assuming the most severe deceleration rate the driver 
is willing to employ (b´) and then computing b using Equation (13) for a desired facility-specific 
mean speed-at-capacity and jam density. The reaction time (T) can then be computed using 
Equation (14), as demonstrated in Table 2. It should be noted that in the case that b=b´ Equation 
(14) reverts to Equation (9) given that the speed-at-capacity equals the free-flow speed as 
computed using Equation (12). 

The calibration procedure was applied to the same sample dataset gathered along an 
arterial, as illustrated in Figure 2. The figure demonstrates a reasonable fit to the data, however 
given that the data demonstrate that traffic stream speed is sensitive to the traffic stream flow in 
the uncongested regime; the model offers a sub-optimal fit to the field data for the uncongested 
regime with a good fit for the congested regime. The speed-at-capacity is different from the free-
flow speed and thus the model is able to capture this phenomenon. 
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Figure 2: Example Illustration of Gipps Model Calibration 

VISSIM Software 

The car-following model used in VISSIM is a modified version of two models developed by 
Wiedemann (Wiedemann74 and 99 models) and belongs to a family of models known as 
psychophysical or action-point models. This family of models uses thresholds or action-points 
where the driver changes his/her driving behavior. Drivers react to changes in spacing or relative 
speed only when these thresholds are crossed. The thresholds and the regimes they define are 
usually presented in the relative speed/spacing diagram for a pair of lead and follower vehicles.  

First the Wiedemann74 model is described followed by a description of the Wiedemann99 
model. For the purposes of this study only the area identified as steady-state is of interest. This 
area as was mentioned before has the following steady-state criteria (sn  sdesired, Δun 0). In the 
case of the Wiedemann74 model, the desired vehicle spacing is an interval (ABX ≤ s ≤ SDX) 
instead of a single value as was the case with previously mentioned models. Given that Δun  0, 
only the boundaries of desired vehicle spacing interval (ABX & SDX) determine the steady-state 
characteristics of the VISSIM car-following model. The expected value of ABX and SDX 
parameters can be calculated as 

( ) ( )1 0.5j n j jE AX s AXadd AXmult E RND s s= + + ⋅ = + » , (15) 

( ) ( ) ( ) ( ) ,j desiredE ABX E AX E BX u s E BX u u u= + = + £ , and (16) 

( ) ( ) ( ) ,j desiredE SDX s E BX E EX u u u= + ⋅ £ . (17) 

Where the BX and EX random variables are computed as 
1nBX BXadd BXmult RND= + ⋅ , and (18) 

( )2nEX EXadd BXmult NRND RND= + ⋅ - . (19) 
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Here RND1n and RND2n are user specified vehicle-specific (where n is the vehicle index) 
normally distributed random variables with a default mean value of 0.5 and a standard deviation 
of 0.15. NRND is also a normally distributed random variable with a default mean value of 0.5 
and standard deviation of 0.15. The expectation of SDX given as E(SDX) ranges between 1.5 to 
2.5 times the expected value of ABX (E(ABX)), where BXadd, BXmult , EXadd, and EXmult are user-
defined calibration parameters. 

Equations (16) and (17) demonstrate that the parameters ABX and SDX are not internally 
constrained and thus an external maximum speed constraint (u ≤ udesired) must be enforced. Given 
that the desired speed is insensitive to traffic conditions (udesired = uc = uf), the uncongested 
steady-state behavior has a flat top, as illustrated in Figure 3.  

In order to calibrate the steady-state Wiedemann74 model the following calibration 
procedure is developed. The calibration of the Wiedemann74 model can be achieved by deriving 
the speed-flow relationship for the congested regime as 

( ) ( )
1000

1000

3.6j

u
q

E BX E EX
u

k

=

+

. (20) 

Here u is the traffic stream space-mean speed (km/h); q is the traffic stream flow rate 
(veh/h), and kj is the traffic stream density (veh/km). By taking the derivative of flow with respect 
to speed the relationship is demonstrated to be a strict monotonically increasing function as 
shown in Equation (21). 

( ) ( )

( ) ( ) 2

1000
1000

2 3.6
0

1000

3.6

j

j

E BX E EX
u

kdq

du E BX E EX
u

k

æ ö⋅ ÷ç ÷ç + ÷ç ÷ç ÷⋅è ø
= >

æ ö⋅ ÷ç ÷ç + ÷ç ÷ç ÷è ø

 (21) 

Consequently, the maximum flow occurs at the boundary of the relationship and thus at 
the maximum desired or free-flow speed. As was the case with the Pipes’ model, the speed-at-
capacity equals the free-flow speed. By inputting the maximum flow (capacity) and free-flow 
speed in Equation (20), removing the E(EX) term to compute the capacity upper bound, and re-
arranging the equation; the expected value of BX can be computed as 

( ) 1 1
1000 3.6 f

c j f

E BX u
q k ua

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
. (22) 

By considering that the expected value of SDX is α times the expected value of ABX (i.e. 
E(SDX) = α × E(ABX)), where the parameter α ranges from 1.5 to 2.5; the expected value of EX 
can be computed as 

( )
1

1

j f

c

j f

c

k u

q
E EX

k u

q

a

a

-

=

-

  (23) 

Given that kjuf/qc is typically very large, the expected value of EX is approximately equal 
to the parameter α.  

The proposed calibration procedure was applied to the same arterial dataset and the fit is 
illustrated in Figure 3. Again, as was the case with the Pipes’ model the fit to the field data is 
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unable to reflect the reduction is traffic stream speed as the arrival rate increases in the 
uncongested regime. Furthermore, the curvature of the car-following model (speed-spacing 
diagram) contradicts typical driver behavior (curvature is convex instead of concave). The model 
does provide a range of behavior for the congested regime as illustrated by the two lines. 
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Figure 3: Sample Calibration of the Wiedemann74 Model 

In an attempt to validate the calibration procedure a simple network was coded and 
simulated using the VISSIM software. The network was composed of two single-lane links in 
order to isolate the car-following behavior (i.e. remove any possible impact that lane-changing 
behavior might have on the traffic stream performance). Initially the capacity of both links was 
set equal using the proposed calibration procedure. The arrival rate was increased gradually until 
it exceeded the capacity of the entrance link. The traffic stream flow and speed were measured 
using a number of loop detectors along the first link. The default model randomness was set 
(AXadd = 2, BXadd = 3, and BXmult = 4). The results demonstrate that the uncongested regime 
is flat as was suggested earlier, as illustrated in Figure 4. Subsequently, the capacity at the 
downstream link was reduced by selecting the input parameters using the calibration procedures 
presented earlier. The demand was fixed at the capacity of the upstream link and thus a bottleneck 
was created at the entrance to link 2. The departure flow rate and speed were directly measured 
upstream of the bottleneck to construct the congested regime of the fundamental diagram. As 
demonstrated in Figure 4 the simulated data appear to initially follow the ABX curve and then 
move towards the SDX curve as the capacity of the downstream bottleneck increases. Given that 
the movement between the two regimes is not documented in the literature it is not clear how this 
is done. The figure clearly demonstrates that the proposed calibration procedures are consistent 
with the VISSIM model output. 
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Figure 4: Wiedemann74 Calibration Procedure Validation 

The VISSIM software also offers a second car-following model, namely the 
Wiedemann99 model. The model is formulated as 

( )

1
min

8 9
( ) 3.6 8

80
( ) ,

( ) 0
3.6

( )

n

n n

f
n n

n

u

CC CC
u t CC u t t

t t u
s t CC L

u t
-

=

ì æ ö ü-ï ï÷çï ï+ ⋅ + ÷Dçï ï÷ç ÷ï ïè øï ï+ D í ý- -ï ïï ï⋅ï ïï ïï ïî þ

. (24) 

This model, as was the case with the Gipps model, computes the vehicle speed as the 
minimum of two speeds: one based on the vehicle acceleration restrictions and the other based on 
a steady-state car-following model. The model considers a vehicle kinematics model with a linear 
speed-acceleration relationship where CC8 is the maximum vehicle acceleration at a speed of 0 
km/h (m/s2) and CC9 is the maximum vehicle acceleration at a speed of 80 km/h (m/s2). The 
VISSIM software also allows the user to input a user-specified vehicle kinematics model that 
appears to over-ride the linear model. This user specified relationship allows the user to modify 
the desired and maximum driver speed-acceleration relationship. The second term of Equation 
(24) computes the vehicle’s desired speed using a linear car-following model and thus is identical 
to the Pipes model. 

Consequently, as was done with the Pipes model the model constants CC0 and CC1 (also 
known as the Driver Sensitivity Factor) can be computed as 

1000
0

j

CC L
k

= - , and  (25) 

1 1
1 3600

c j f

CC
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
. (26) 

Where CC0 is the spacing between the front bumper of the subject vehicle and the rear 
bumper of the lead vehicle. This equals the jam density spacing minus the average vehicle length. 
The Driver Sensitivity Factor (CC1) can be calibrated using three macroscopic traffic stream 
parameters, namely: the expected roadway capacity, jam density, and free-flow speed. 
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Paramics Software 

The car-following model utilized in the Paramics software, as was the case with the VISSIM 
software, is a psychophysical car-following model that was developed by Fritzsche [13]. 
Fritzsche’s model uses the same modeling concept as the Wiedemann74 car-following model. 
The difference between these two models is the way thresholds are defined and calculated. Figure 
5 depicts the Fritzsche model’s thresholds in the Δu – Δx plane.  
 

 

Figure 5: Fritzsche’s Car-following Model: a) Thresholds and Regimes, b) and c) Steady-
state Behavior 

The area corresponding to steady-state conditions is almost identical to Wiedemann’s car-
following model. The vehicle spacing for this regime lies between the desired spacing (AD) and 
the risky spacing (AR). These two boundaries are determined as 

0 3.6
n

r

u
AR A T= + ´ , and (27) 

1
0 3.6

n
D

u
AD A T -= + ´ . (28) 

Where A0 is the vehicle spacing at jam density, Tr is the risky time gap (usually 0.5 s), TD 
is the desired time gap (with a recommended value of 1.8 s). The resulting steady-state car-
following model can be written as 

0

0

min

3.6

( ) ,

3.6
n

D
f

r

u

AD A

T
t t u

AR A

T

=

ì æ ö ü-ï ï÷çï ï÷⋅ çï ï÷çï ï÷çè øï ïï ï+ D í ýæ öï ï- ÷çï ï÷⋅ çï ï÷çï ï÷çè øï ïï ïî þ

 

Similar to the Wiedemann car-following model, the desired speed constraint must be 
enforced externally. Again, as was the case with the Wiedemann74 model the relationship 
provides a range of car-following behavior within the congested regime. Unlike the 
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Wiedemann74 model the car-following model is linear and thus a Pipes model. Using similar 
calibration procedures, the various car-following model parameters are related to macroscopic 
traffic stream parameters as 

0
1000

j

A
k

= ;  (29) 

1 1
3600D

c j f

T
q k u

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
; and  (30) 

max

1 1
3600r

j fc

T
k uq

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
. (31) 

The calibration procedure was applied to the same arterial dataset and the results are 
similar to those of the Wiedemann74 model, as illustrated in Figure 6. It should be noted that the 
car-following model provides a range of data in the congested regime considering a linear car-
following modeling. 
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Figure 6: Sample Calibration of the Fritzsche Model 

INTEGRATION Software 

The steady-state functional form that is utilized in the INTEGRATION software is the Van Aerde 
nonlinear functional form that was proposed by Van Aerde [14] and Van Aerde and Rakha [15], 
which is formulated as 

2
1 3

( ) ( )
( )n n

f n

c
s t c c u t t

u u t t
= + +D +

- +D
, [32] 

where c1, c2, and c3 are model constants. Demarchi [16] demonstrated that by considering 
three boundary conditions the model constants can be computed as 
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( ) ( )21 2 32 2 2

1
2 ; ;f f f

c f f c

cj c j c j c

u u u
c u u c u u c

qk u k u k u

æ ö÷ç ÷ç= - = - = - ÷ç ÷ç ÷÷çè ø
. [33] 

As was demonstrated by Rakha and Crowther [17] this functional form amalgamates the 
Greenshields and Pipes car-following models. 

Ignoring differences in vehicle behavior within a traffic stream and considering the 
relationship between traffic stream density and traffic spacing, the speed-density relationship can 
be derived as 

2
1 3

1000

f

k
c

c c u
u u

=

+ +
-

, [34] 

Of interest is the fact that Equation [34] reverts to Greenshields' linear model, when the 
speed-at-capacity and density-at-capacity are both set equal to half the free-flow speed and jam 
density, respectively (i.e. uc=uf/2 and kc=kj/2). Alternatively, setting uc=uf results in the linear 
Pipes model given that  

1 2 3

1 1 1
; 0;
j

j c j f

c s c c
k q k u

= = = = - . 

Rakha [3] demonstrated that the wave speed at jam density (denoted as wj) can be 
computed by differentiating the speed-density relationship with respect to density at jam density, 
to be  

j j

j j j
k s

du du
w k s

dk ds
= = - . [35] 

By applying Equation [32] to [34] and ignoring differences between vehicles Rakha 
derived 

( )
( )

12

2 2 2
2 3 2

3 20

1 j f j f f c
j j

cj f c f c

u
f

s u k u u u
w s

ds c qk c u c u u u
c

du u

-

=

é ùæ ö -ê ú÷ç ÷çê ú= - = - = - = - - +÷ç ÷ê úç ÷ç+ è øê ú+ ë û

. [36] 

Considering, a typical lane capacity of 2400 veh/h, a free-flow speed of 110 km/h (which is 
typical of US highways), and a jam density of 140 veh/km/lane, the wave velocity at jam density 
ranges between approximately -11.5 to -20.3 km/h, when the speed-at-capacity is varied from 80 
to 100% the free-flow speed (which is typical on North American freeways). 

As was demonstrated earlier, the Van Aerde model reverts to the Pipes linear model when 
the speed-at-capacity is set equal to the free-flow speed. Consequently, it can be demonstrated 
that under this condition the wave speed of [36] reverts to 

c f

j f c

q u
w

k u q
= -

-
, [37] 

which is the speed of the linear model. Furthermore, when uc=uf/2 and kc=kj/2 the wave speed at 
jam density is consistent with the Greenshields model estimates and is computed as 

j fw u= - . [38] 

Field observations demonstrate a concave speed-headway relationship. Consequently, the 
derivative of the speed-density relationship was computed as 
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( )

( )
( )

2

2
2

3 23 2

1 f

f

f

u udu

ds c c u u cc
u u

-
= =

- ++
-

. [39] 

Given that the c2, c3, and uf parameters are always positive, [3] demonstrated the function 
is a strictly increasing monotonic function. Alternatively, the speed-density relationship is a 
strictly decreasing monotonic function as  

( )
( )

2

2 2

3 2

1f

f

u udu du ds

dk ds dk kc u u c

-
= ⋅ = - ⋅

- +
. [40] 

While a strict monotonic function is desired from a theoretical stand point, it is not 
necessarily reflective of real-life driving behavior. For example drivers might abide by a facility 
speed limit if they are the only vehicle on a roadway, however if other vehicles are present on the 
roadway slower drivers might be encouraged to follow faster vehicles recognizing the lower 
likelihood of being ticketed for over-speeding. This behavior may only hold when the traffic 
stream density is very low but contradicts typical traffic flow theory. 

The Van Aerde model was calibrated to the same arterial data that were presented earlier, 
as illustrated in Figure 7. The figure demonstrates that the model is extremely flexible and thus is 
capable of providing a good fit to the field data for the entire range of data both in the 
uncongested and congested regimes. It should be noted that the fit provides the expected 
relationship. Differences in driver behavior can be captured by introducing differences in the four 
traffic stream parameters, namely: free-flow speed, speed-at-capacity, capacity, and jam density. 
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Figure 7: Sample Calibration of the Van Aerde Model 
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TRAFFIC STREAM MODEL CALIBRATION 

The estimation of the four traffic stream parameters (uf, uc, qc, and kj) requires the 
calibration of a traffic stream model to loop detector data. This effort entails making four 
decisions, namely: (1) define the functional form to be calibrated, (2) identify the dependent and 
the independent variables, (3) define the optimum set of parameters, and (4) develop an 
optimization technique to compute the set of parameter values. Van Aerde and Rakha [15] and 
later Rakha and Arafeh [18] developed a calibration approach that minimizes the orthogonal error 
about the 3-D fundamental diagram to estimate the expected value of the four traffic stream 
parameters. The model is briefly described here, however a more detailed description is provided 
elsewhere [18]. The approach is unique because it does not require the identification of dependent 
and independent variables since it applies a neutral regression approach (minimizes the 
orthogonal error). 

If we consider the Van Aerde functional form given that it provides the highest level of 
flexibility, as was demonstrated in the previous section, the optimization model can be formulated 
as 

222 ˆˆ ˆ
Min i i i i i i

i

u u q q k k
E

u q k

ì üï ïæ öæ öæ ö- - -ï ï÷çï ï÷ç÷ç ÷ç= + ÷ +í ý÷ ç ÷ç ÷ ç÷ç ç ÷ ÷ï ïè ø ÷çè ø è øï ïï ïî þ
å  

. (41) 

( ) ( )

2
1 3

2

1 2 32 2 2

min max min max min max min max
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ˆ

ˆ

ˆˆ ˆ
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i f

j f c
f c f c

f c

f f f
c f f c

j c j c c j c

f f f c c c c c c j j j

k ic
c c u

u u

q k u i

q k u i

u u i

k u u
u u u q

u u

u u u
c u u c u u c

k u k u q k u

u u u u u u q q q k k k

= "
+ +

-

= ´ "

³ "

< "

£ £ £
-

= - = - = -

£ £ £ £ £ £ £ £

 (42) 

Where ui, ki, and qi are the field observed space-mean speed, density, and flow measurements, 
respectively. The speed, density, and flow variables with hats (^) are estimated speeds, densities, 
and flows while the tilde variables (~) are the maximum field observed speed, density, and flow 
measurements. All other variables are defined as was done earlier in describing the Van Aerde 
functional form.  

The objective function ensures that the formulation minimizes the normalized orthogonal 
error between the three-dimensional field observations and the functional relationship – in this 
case the Van Aerde functional form. The three error terms are normalized in order to ensure that 
the objective function is not biased towards reducing the error in one of the three variables at the 
expense of the other two variables. This data normalization ensures that the parameters in each of 
the three axes range from 0.0 to 1.0 and thus a minimization of the orthogonal error provides a 
quality of fit that is equivalent across all three axes.  
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The initial set of constraints, which is non-linear, ensures that the Van Aerde functional 
form is maintained, while the second set of constraints is added to constrain the third dimension, 
namely the flow rate. The third and fourth set of constraints guarantees that the results of the 
minimization formulation are feasible. The fifth set of constraints, ensures that the four 
parameters that are selected do not result in any inflection points in the speed-density relationship 
(i.e. it ensures that the density at any point is less than or equal to the jam density). A detailed 
derivation of the final constraint is provided elsewhere [3]. The sixth set of equations provides 
estimates for the three model constants based on the roadway’s mean free-flow speed (uf), speed-
at-capacity (uc), capacity (qc), and jam density (kj). The final set of constraints provides a valid 
search window for the four traffic stream parameters that are being optimized (uf, uc, qc, and kj).  

The total number of independent decision variables equals twofold the number of field 
observations plus the four traffic stream parameters uf, uc, qc, and kj. For example a problem with 
100 observations results in a total of 204 independent decision variables (2x100 + 4). The 
heuristic approach that was developed earlier was applied to the data to estimate the four traffic 
stream parameters [15, 18]. Once the four traffic stream parameters are estimated the individual 
car-following models can be calibrated using the equations provided in Table 2. 

CONCLUSIONS 

The paper developed procedures for calibrating the steady-state component of various car-
following models using macroscopic loop detector data. The paper then compared the various 
steady-state car-following formulations and demonstrated that the Gipps and Van Aerde steady-
state car-following models provide the highest level of flexibility in capturing different driver and 
roadway characteristics. However, the Van Aerde model, unlike the Gipps model, is a single-
regime model and thus is easier to calibrate given that it does not require the segmentation of data 
into two regimes. An analysis of existing software demonstrated that a number of car-following 
parameters are network- and not link-specific and thus do not offer model users with the 
flexibility of coding different roadway capacities for different facility types. In some software, 
however, arterial and freeway roadway car-following parameters can be coded separately, as in 
the case of CORSIM and VISSIM. However, major roadway capacity differences can be 
observed within the broad range of facility categories. For example the saturation flow rate may 
vary from 1300 to 2000 veh/h on an arterial depending on the roadway and driver characteristics. 
Consequently, the paper recommends that modifications be made to the various software to allow 
more flexibility in setting link-specific car-following parameters. 
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