

Full Depth Reclamation

Workshop Materials

Study 0-6271-P2

PowerPoint Slides

FULL DEPTH RECLAMATION

Workshop Materials

PowerPoint Slides

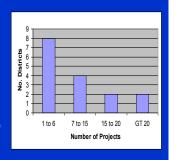
 $\mathbf{B}\mathbf{y}$

Tom Scullion

Stephen Sebesta

Cindy Estakhri

Texas Transportation Institute


(979) 845-9913

t-scullion@tamu.edu

Full Depth Recycling in Texas

- 16 Districts used FDR
- Performance
- 2/16 Excellent
- 10/16 Good
- 4/16 Fair/Poor
- · Problems Exist
- Many Districts have limited experience

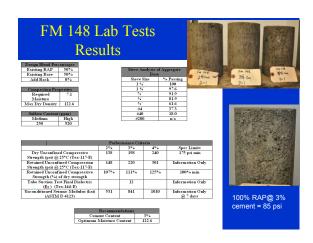
Objectives of Project 6271

- · Develop Guidelines on
 - Project Evaluation and Design
 - Formulating a mix design
 - Controlling the construction process
 - Performing quality assurance
 - Bonding of the surface
 has led to construction delays and poor performance
- Implementation of best practices through
 Workshops
 - Modified specifications or control procedures

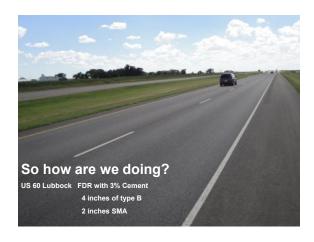
Critical Steps in the FDR Process

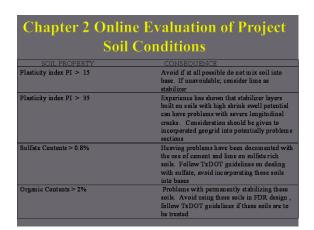
- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Design
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of Geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback addressing Performance problems

Pavement Evaluation Tools

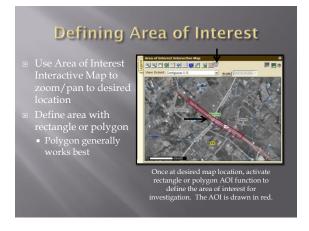

- GPR thickness variability; identify major problem areas; sampling locations
- 2) DCP in-site strengths of lower layers
- 3) FWD Strength variability; subgrade stiffness entire project

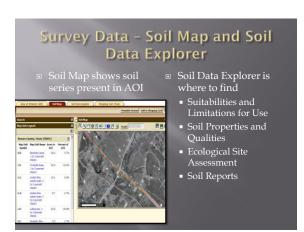
Critical Steps in the FDR Process

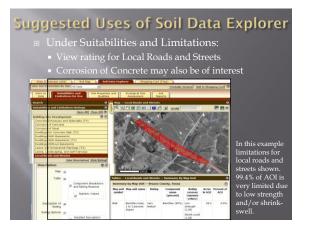

- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Design
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback Addressing Performance Problems

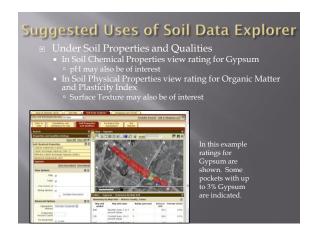

Critical Steps in the FDR Process

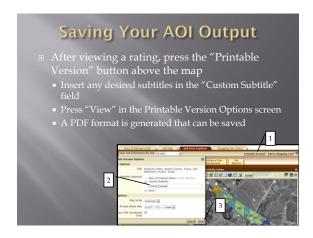
- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Design
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback Addressing Performance Problems

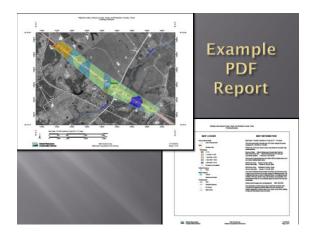


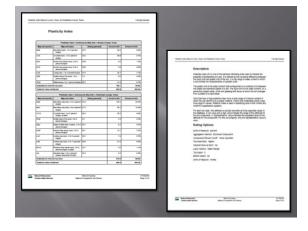










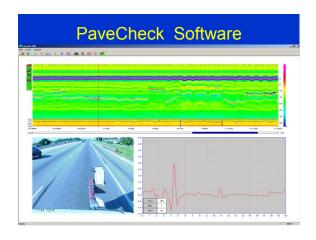


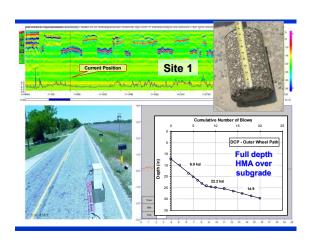
Chapter 3 Conditions Surveys and NDT

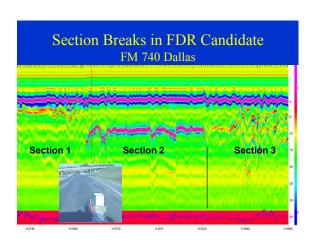
- · What is a good FDR candidate
- Understand how NDT can help in the evaluation and design process
- · Identify other issues
 - Failed culverts
 - Edge stability problems

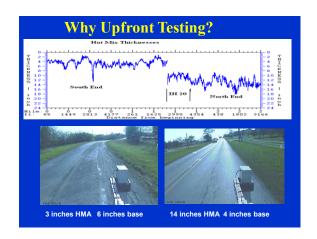
FDR Candidates

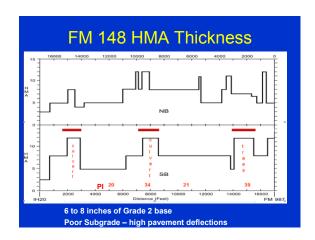
- · Pavements with base problems
 - Inadequate thickness
 - Clay contamination
 - Loss of stabilized layer
- · Pavements not structurally adequate
- Pavements with major edge failures
- Continuing and excessive maintenance

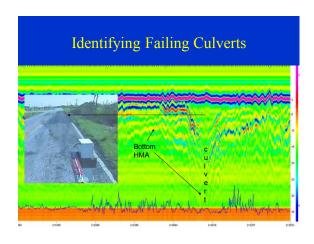


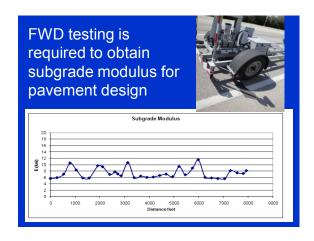

TxDOT's Ground Penetrating Radar Unit


- TTI's data acquisition and processing systems Integrated Video
- Data collected at highway speed (60 mph)
- Effective depth of penetration 20 ins
- TxDOT has 5 available units
- Measure layer thickness and locate subsurface defects









Chapter 4 Verification Coring and Sampling

- Understand what field testing is required for GPR verification
- How to obtain samples for lab testing
- Understand how to use the DCP to investigate pavement edge failures

Verification Coring and Sampling

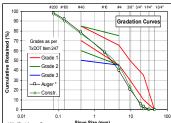
- Sampling locations
 - Assigned based on the GPR data analysis
 - > 2-4 sampling locations per road for thickness validation
 - 1-2 sampling locations per road for lab testing
- Amount of sampled material per site
 - Sufficient for laboratory testing:
 - ▶ On-site pavement structure evaluation: ~ 1 core and one augur (bag samples of all layers)

~ 10 buckets

HMA Coring

Material Sampling - Site 1

- Auguring base
- Shelby Tube sampling soils

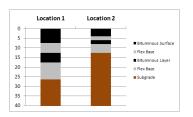


Obtaining Samples for Lab Testing

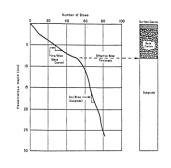
- Milling machine (Best)
- 9 to 12 inch Augur (Good)
- Back Hoe

Material Sampling - Site 1

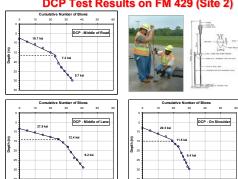
Shelby Tube samples



Thick HMA Sections > 4 ins **Keep HMA and Base Samples Separate**


Mapping Project Variability

DCP Testing



Processing DCP Data

CBR = 292 / (PR) ** 1.12 CBR California Bearing Ratio PR Penetration rate mm/blow E = 2.54 * (CBR)** 0.64 E modulus (ksi)

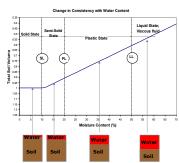
DCP Test Results on FM 429 (Site 2)

DCP on Shoulder where Edge Failures Occurring

Using the DCP to Identify Weak Layers on Shoulder

Chapter 5 Laboratory Mix Design Procedures

- Understand guidelines for determining if stabilization is required
- Be familiar with TxDOT guidelines on selecting stabilizer types
- Understand the steps required to select optimal stabilizer contents
- Be familiar with current TxDOT design criteria
- Understand what test can be run to ensure adequate surface bonding



FDR Option Selections Considerations

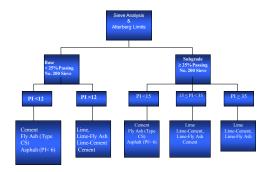
Objective	Base Thickening	Upgrade base to Class 1	Create a Stabilized Base
Used	• Existing base is uniform	Low − moderate traffic	Bridging over poor subgrade
When	 No widespread structural 	• Subgrade > 10 ksi	 Strengthening required
	damage	Moisture not a concern	 Low quality variable base/stripped HMA
	 Low to medium traffic 		Higher Rainfall
	• Medium to Good subgrade		 Early opening to traffic
Selection	No Stabilizer added to the	Full Texas Triaxial	
of	existing material. This is a	test (117-E), add low levels of	Use Prevailing TxDOT spec and Test Methods
Stabilizer	base thickening project,	stabilizer	(120 E, 121 E, 127E, SS3066)
	where new untreated		
	granular material is	Criteria after 10 days capillary rise	 All tests should include a retained strength on
	placed on top of existing.		moisture saturation
		1) 45 psi at 0 psi confining	
		2) 175 psi at 15 psi confining	
FPS 19	70 ksi	100 ksi	150 ksi
Moduli			
	 New base should be of 		1) Avoid cutting into high PI subgrade, if existing
	higher or equal quality		structure is thin then add new base before milling
	than existing, and		where needed
	2) Blending of existing		2) To avoid longitudinal cracking consider grids and
	and new base strongly		flex base overlay where the PI subgrade soils > 35
	recommended to avoid		3) Max RAP 50%
	trapping moisture in		4) If lab strength > 350 psi then consider micro-
	upper layer		cracking
			5) Max Cement 4%, other stabilizer can be used

Basic Soil Moisture States

- Solid State:
 - Soil stable under pressure
- Semi-Solid State:
- Soil crumbles under pressure
- Plastic State:
 - Soil deforms and remains deformed under pressure
- Liquid State:
 - Soil flows under its own weight; Viscous Fluid

PI Calculation

- Plastic Limit PL (Tex-105-E)
 - Lowest moisture content at which the soil can be rolled into threads 1/8th inch in diameter without the soil breaking into pieces
- Liquid Limit LL (Tex-104-E)
 - Lowest moisture content at which a 0.5 inch groove of soil begin to flow together
- Plasticity Index PI (Tex-106-E)
- Range or difference between the LL and PL
- → PI = LL PL


Plastic Limit Test

Liquid Limit Test

TxDOT's Stabilization Selection Guidelines (2006)

Laboratory Assessment of the Material

- Laboratory performance evaluation
- Mix design recommendations
- Design methodologies
 - 1. Cement treatment
 - 2. Emulsion only or Dual emulsion-cement treatment

1

Design Methodology 1

- Cement treatment
 - Ordinary portland cement, Type I
 - > 2, 3, and 4% by weight of total dry solids
 - 7 days of moist cure (25 C and 100% R.H.)
- Tests and criteria
 - ▶ Unconfined Compressive Strength \geq 300 psi (Class L)*
 - \geq 175 psi (Class M)*
 - ightharpoonup Tube Suction dielectric value, arepsilon Report
 - → UCS after Tube Suction \geq 100% 7D UCS_{Dry}
 - ► UCS after Dunk Test ≥ 100% 7D UCS_{Dry}
 - ▶ Seismic Modulus Report

Design Methodology²

- Emulsion-cement treatment
 - ▶ 4% of emulsion, 65% residue
 - Ordinary portland cement, Type I
 - 0, 1, or 2% of cement

▶ Seismic & Resilient Moduli

▶ 2 days of hot cure (60 C) + 1 day cooling

Tests and criteria

 $\begin{tabular}{lll} \bf \cdot & Unconfined Compressive Strength \\ \bf \cdot & Tube Suction dielectric value, ε & Report \\ \bf \cdot & UCS after Tube Suction & $\geq 80\% \ UCS_{Dry}$ \\ \bf \cdot & UCS after Dunk Test & $\geq 80\% \ UCS_{Dry}$ \\ \hline \end{tabular}$

Timeline (1)

- Cement treatment
 - Duration: about 3 weeks

Notation: c3-4 = "c" - cement, "3" - 3% cement by weight, "4" - fourth sample.

Timeline (2)

Report

- Emulsion-cement treatment
 - Duration: about 2 weeks

Notation: e1-6 = "e" - emulsion, "1" - 1% cement by weight, "6" - sixth sample.

Sample Preparation and Characterization

- All material is spread out and air-dried overnight
- Material characterization
 - Atterberg limits analysis
 - Particle size analysis
 - Moisture-density relationship
- Specimen fabrication
 - TxDOT Test Method Tex-113-E
 - ▶ Ø 6" by 8" samples
 - 4 layers, 10 lb hammer, 18 inch drop, 50 blows per layer
- Laboratory protocol...

A. Preparation of the Base Material for Testing

^{*} TxDOT Item 276 specification; Test method Tex-120-E

^{*} TxDOT Special Specification No. 3066

B. Compaction of the Base Material Specimens

C. Determination of the Optimum Moisture Content of the Base Materia

Day 1	I. Prepare the base material according to (A). Namely, prepare four batches (\$200 g) by adding material. As is (sir drined, no additional water); -2% (\$60 g) may water; -4% (\$30 g) in pwater; -4% (\$30 g) in pwater; -5% (\$60 g) in water. 2. Compact the specimens according to (B).	OMC Curve y ₂ A ₀ -is +2% +4% +6% Water Content	
-	3. Label and weigh the empty drying bowls. 4. Place the compacted specimens into the corresponding labeled drying bowls. Freak them to promote drying, and weigh along with the bowls. 5. Place the bowls holding the wet breaken appearance into the overa adjusted at 85°C (185°P), become the overa adjusted in 185°C (185°P). The label of the overal adjusted in 185°C (185°P) is to respectively. The specimens of 110°C (Tex.115-E) is suggested due to the presence of the RAP in the base material.		
Day 4	6. After approx. three days of drying (weekend), record the stabilized weight of each drying bowl. 7. Use the collected data to construct the OMC curves and determine moisture content. 9. Optimum moisture content. 9. Oxiginal (as-is) moisture content of the base material after at drying.		Determine: OMC (w _{ept}) % Ydsysmax lb/ft ³ Original water %

D. Preparation of the Cement Stabilized Base Specimens

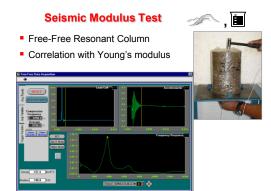
-	Determine the OMC of the base material according to (C). Adjust the OMC value: For the original (as-is) water content; For inclusion of cement. For inclusion of cement. Prepare the heam material hatches according to (A), using the adjusted optimum moisture content.	74 Yd mus = w _{op} + [0.25 * cement %] W _{op} Water Content	
Day I	4. Calculate the desired amount of cement, defined as a percent of the total dry solids. 5. Weigh out cement and thoroughly mix it into the wetted base material. 6. Compact the cement-base mix according to (B).		
Day 8	7. Place the compacted specimen on the porous stone, wrap into a plantic log, and cover with another porous stone. 8. Move the specimens into a climate chamber set at 25°C (77°F) and 100% relative humidity. 9. Cure the specimens in the chamber for 7 days.		2/4 3

E. Preparation of the Rose Specimens Stabilized with the Empleion-Coment Mi

-	Determine the OMC of the base material according to (C). Aligna the OMC value: For the original (ask) water content; For the original (ask) water content; For inclusion of cremat; For water contained in emailson. Prepare the base material bast hes according to (A), using the adjusted optimum mostume content.	OMC Curve
Day 1	Transfer the prepared base material into the backet of an electrical mixer. Calculate and evide in a appropriate amount of cement, defined as a percent by mass of the total day solids. Add the weighed cement to the base material in the mixer and mix thoroughly.	
1	Shake the bottle containing emulsion first. Calculate and weigh an appropriate amount of emulsion, defined as a percent by mass in addition to the total day solder. Pour the weighed condision into the mixer in addition to the blend of the base material and cement.	

E. Preparation of the Base Specimens Stabilized with the Emulsion-Cement Mix-CONTINUED

-	10. Mix for no more than 60 ± 10 seconds. 11. Place the loose mixture into a bowl. 12. Move the Meaded specianen into an orea and care at 60°C (140°F) for 30 minutes. Do not mix during curing.	
-	Compact the cured mixtures according to (B). 14. Place the compacted specimens on the porous stones.	
Day 3 Day 4	15. Move the specimens into a climate chamber set at 60°C (10°F). 16. Cure the specimens in the chamber for 48 hours (2 days). 17. Remove the specimens from the hot chamber and cod of them 21°C (7°FF) for 24 hours (1 day), but not more than 48 hours (2 days).	


Unconfined Strength

Unconfined Compressive Strength

- Test method: AASHTO T 307
 - ▶ Unconfined sample at 23 C
 - > 200 cycles at 35 psi
 - ▶ 0.1 sec load & 0.9 sec unload

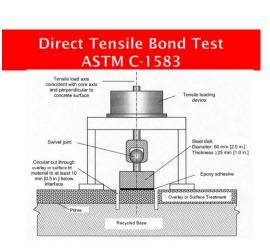
 Correlation with Young's modulus

Dunk Test

- Accelerated moisture susceptibility test
 - ▶ 4-hour period of full submerging @ 25 C
 - Unconfined compressive strength test at the end
 - $\blacktriangleright \ UCS_{Dunk} \geq 80\% \ UCS_{Dry}$
- Conditioning of the cement treated samples
 - After curing, overnight drying is required @ 60 C
 - Followed by at least 2 hours of cooling
- Emulsion-cement samples
 - No additional conditioning

Tube Suction Test

- Extended moisture susceptibility test
 - > 240-hour (10-day) period of capillary soak @ 25 C
 - Unconfined compressive strength test at the end
 - UCS_{TST} ≥ 100% UCS_{Dry}
- Sample conditioning: identical to Dunk Test


Current TxDOT Design Strength Requirements

Laboratory Requirements for Lime Treatment.				
Test Spec Limits				
Unconfined Compressive Strength (psi)	50 psi min as subbase;			
(Tex-121-E)* 150 psi for final course of base construction				
*After moisture conditioning per Tex-121-E over 10 days				

Laboratory Requirements for Cement Treatmen

Laudratory Requirements for Cement Treatment.				
Test	Spec Limits			
Unconfined Compressive Strength (psi) @ 77°F (Tex-120-E)	175 min			
Retained UCS (psi) @ 77°F after Tube Suction Test	100% min			
Tube Suction Test Final Dielectric (Er) and moisture content (%) (Tex-144-E)	For Information Only			
Unconditioned Seismic Modulus (ksi)	For Information Only			
(Draft TyDOT Method)	Tested at 7 days			

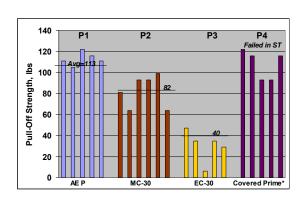
Test^	Spec Limits
Unconfined Compressive Strength (psi) (SS3066)	150 min
Indirect Tensile Strength (Tex-226-F)	> 50 psi
Tube Suction Test Final Dielectric (Er) (Tex-144-E)	< 10
Unconfined Compressive Strength after the Tube Suction Test	≥80% Dry UCS
Seismic Modulus	Report

Possible Failure Modes (a) Falture within base layer pavement interface pavement interface teathwart. (c) Falture within overlay or surface epoxy interface teathwart.

All 4 failure modes found in current studies

Sample Preparation

Oven Cure Primed Sample for 3 days at 110°F


Tests Performed on Grade 5 Surface Treatment

No Prime, Grade 5 ST Mean Tensile Strength = 49 lb, Std Dev = 12 lb

Chapter 6 Pavement Design

- FPS Input values
- When to add new base
- Methods of handling project variability
- Methods of minimizing shrinkage cracking
- Methods of minimizing edge cracking
- Adding lateral support to pavement edge

FPS 19 Recommended Design

Moduli Values for FDR Projects					
Stabilizer	Field	Design	Design		
Type	Moduli	Modulus	Poissons		
	Range	(ksi)	Ratio		
Emulsion	100 - 300	100	0.30		
Lime	60 - 200	75	0.30		
Cement	100 - 600	150	0.25		
Fly Ash	70 - 300	75	0.30		

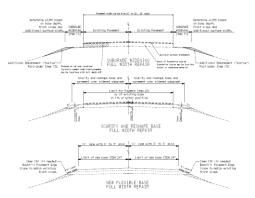
FPS and Triaxial Check Design Values

	Table - Design Me	thod A	
Materials Description	FPS Design Modulus	Poisson Ratio	Cohesiometer Value
	Values		for TR. Check
Existing Material	Backcalculated from	0.40	na
(including subgrade)	FWD		
Existing Pavement	3 Times Subgrade	0.35	na
Sacrified, Reshaped	Modulus		
Stabilized			
Existing/Subgrade			
a) Most Granular Base	a) 100 ksi	0.30	a) 800
(75% more base)			
b) Blend Subgrade &	b) 65 ksi	0.30	b) 650
Base (50 - 75% base)			
c) Mostly Subgrade			
(<50% base)	 c) 35 ksi 	0.35	c) 300
Stabilized RAP/Existing			
Base; Max 50/50 Blend			
a) Cement	a) 150 ksi	a) 0.25	a) 1000
b) Lime	b) 75 ksi	b) 0.30	b) 300
c) Emulsion	c) 100 ksi	c) 0.30	c) 300
d) Fly Ash	d) 75 ksi	d) 0.30	d) 300
New Flexible Base over	70 ksi	0.35	na
Stabilized Layer			

Note: Subject to Change

Extract from a Typical Design Report

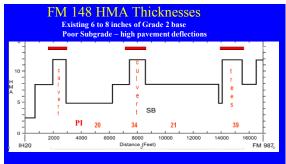
I recommend reworking the existing material and widening the existing pavement to at least 24 feet then adding enough additional material to treat a 10" thick blend of existing and new material with 3% cement by weight.


Cement	Cement	Treat	Cement trt	Hot Mix	2" lift
\$/ton	\$/sy	\$/sy	total \$/sy	\$/ton	\$/sy
\$ 110.00	\$ 1.55	\$ 3.30	\$ 4.84	\$ 61.00	6.71

Note: Cost is based on Houston District 12 month average low bids for Construction.

Est. Unit Weight	125	pounds per cubic foot	rate placed	3.125	pounds/sf
Percent cement	3	percent	rate placed	0.0141	tons/sy
Treatment width	12	feet	Length per ton	53	feet

When to Place New Base over Treated Layer


- Thin pavement structure over poor subgrade treated layer to be a foundation/subbase layer
- Concerns about edge drying cracking flex base overlay will reduce cracking
- ADT more than 2000
- Inadequate depth of cover over subgrade from Texas Triaxial design
- Raising the pavement to improve drainage

SEQUENCE OF WORK FOR FULL WIDTH REPAIR

Additional Considerations in the Design Process

- Handling project thickness variability
 - Add new base over existing
 - Milling depth requirements
- Special Considerations
 - Micro-cracking
 - Use of Geogrids
 - Widening to add lateral support

- 1. No more than a 50/50 RAP Base Blend
- 2. Avoid cutting into subgrade
- 3. Recycling depth 8 inches

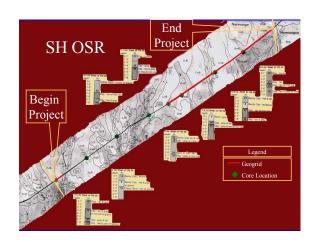
Design Recommendations Incorporated into Plans

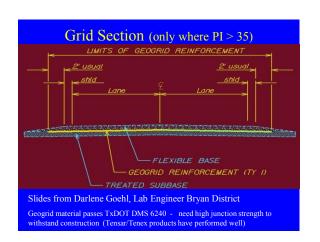
From - To	Treatment
(feet)	
0 - 700	2 inch overlay only (new construction)
700 - 1800	Mill 4 inches of HMA the FDR 8 ins + base overlay
1800 - 3000	Mill 6" HMA add 4" new base; FDR 8" + Geognid + base overlay
3000 - 6000	FDR 8" + base overlay
6300 - 7200	Mill 4 inches of HMA the FDR 8 ins + base overlay
7200 - 8900	Mill 6" HMA add 4" new base; FDR 8" + Geognid + base overlay
8900 - 14000	Mill 4 inches of HMA the FDR 8 ins + base overlay
14000 - 15600	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
15600 - 16700	Mill 4 inches of HMA the FDR 8 ins + base overlay
16700 - end	2 inch HMA over only (intersection new construction)

Use of Micro-Cracking or Early Trafficking to Reduce Shrinkage Cracking Extent and Severity

- · Early traffic or
- Heavy vibratory steel wheel roller after 1 -3 days
- Little long-term loss in strength
- reduction in amount and severity of cracks

Micro-Cracking 12 ton vibratory roller 1 - 2 days after placement Creep speed High amplitude 2 - 4 passes During set up test after 2 passes Wet section after cracking





Causes of Longitudinal Cracking • Subgrade Shrinkage associated with: - P1 > 35 - Trees near edge - Summer droughts - Stiff bases

Current Bryan District Design Approach Darlene Goehl (2002)

- Define the limits of potential problem areas based on:
 - Soil borings at 0.5 mile intervals
 - Cross-reference to USDA maps
 - Analysis of structural strength data (FWD)
 - Drive section/input from Maintenance forces
- Combine all the information to define the limits of Geogrid reinforcement
- Geogrid introduces a slip plane to intercept cracks



SECTION 7

Chapter 7 Construction Specifications Existing TxDOT Specifications

- Item 260 Lime Road Mixed
- Item 275 Cement Road Mixed
- Item 265 Fly Ash Road Mixed
- SS 3066 Asphalt Emulsions
- SS 3158 Foamed Asphalt (1993)

Pulverization (Road Mixed)

- Initial
 - 100% passing 2.5 in.
- After Mixing
 - Base
 - 100% pass 1.75 in.85% pass 0.75 in.
 - Subgrade
 - 60% pass No. 4

Time Limitation

Compaction with 2 hours of adding cement

Grading Requirements All Stabilizers

- After shaping, before mixing
 - Pulverize existing material so that 100% passes a 2.5 inch sieve

 After Mixing 	Base	Subgrade	
- Sieve Size	% Pass	%Pass	
– 1 ¾ in.	100	100	
– ¾ in.	85	85	
- No. 4		60	

Application - Road Mixed

- Dry Placement
 - Bring Soil to OMC
 - Apply Cement or Lime
- Slurry
 - Continuous Agitation
 - Apply < 2 hrs of adding</p>

Calculation of Application Rates

Est. Unit Weight	125	pounds per cubic foot	rate placed	3.125	pounds/sf
Percent cement	3	percent	rate placed	0.0141	tons/sy
Treatment width	12	feet	Length per ton	53	feet

Application of Stabilizers

(new in 2004 spec book)

	Dry	Slurry
Cement	X	X
Lime	X	X
Fly Ash	X	

Childress Fly Ash Base Performance

- · Materials treated either sand/gravel or caliche
- Design use Tex 127 E to select Fly Ash content, spec says UCS at least 100 psi (some Districts prefer 175 psi at 15 psi confining)
 Priming Sand/gravel – straight AC-5 or CRS-1P
 Priming Caliche rework top 1 inch treat with dilute MS 2 emulsion

- One course surface treatment before final surfacing
- Design thickness with FPS 19
- Used on major roads US 287 excellent performance
- Back calculated modulus 200 300 ksi
- Details Ron Hatcher heavy involvement on each project
- Caution good subgrades in District light rainfall

Compaction

- QC/QA system
 - Target 95% proctor
 - No more than 1 in 5

Sheep's Foot for Initial Compaction Steel Wheel for Finishing

Walking out of stabilized base

Mellowing + Compaction Requirements

	Mellowing Time	Compaction Time	Density 115-E
Cement	None	2 hours after application	95%
Lime (Hydrated)	1–4 days	After mellow	95% first 98% next
Lime (Quick)	2–4 days	After mellow	95% first 98% next
Fly Ash	None	6 hours after application	95% first 98% next

Multiple lifts with cement not recommended because of bonding problems

Curing

- 3 days sprinkling
 - Maintain no more than 2% below OMC
- Asphalt Membrane
 0.1 to 0.2 gals sq yd

Curing Requirements (membrane curing as alternative)

	Sprinkling (Item 2040)
Cement*	3 days
Lime PI < 35	2 days
Lime PI > 35	5 days
Fly Ash	1 day
	2 days drying before tack coat

^{*} Spec says no traffic – conflicts with micro-cracking option

Road Mixed Asphalt Treatment

- Coats non-plastic base particles to achieve a level of water proofing
- Typically used with granular and non-plastic material, like base course (PI < 6)

- Can be a one pass operation
- Not used widely in Texas
- Emulsions work very well in Amarillo
- Humidity/rainfall/clay contaminated problems in Fact Tayes
- Few Foamed asphalt since failure in Wichita Falls

Highway 20 Colusa California

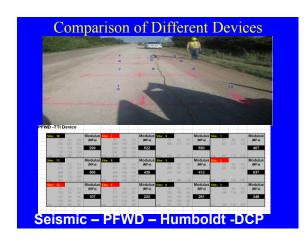
Highway 20, State of California
20 lane miles reconstructed & repaved in 20 days

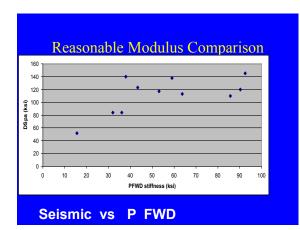
Emulsion Treated Bases Good Performance

- Contractor (Brown and Brown- John Huffman) design based on indirect tensile strength
- US 287 "treat top 8 inches of new base with CSS-1 emulsion, then 4 inches of type D and 2.5 inches of Type D"
- FWD Results
 - 2% 44 ksi (first project- performance problems)
 - 4% 360 ksi (excellent early)
 - 6% 275 ksi (excellent early)
- District contacts Tom Nagel (Construction), several more projects planned

2002 Foamed Asphalt Warranty Project (Wichita Falls, Forensic Investigation after 1 Year)

Recycling project! Did not have the 10 inches of granular material on entire project – in some places mixed high PI clay with base


Strength Testing

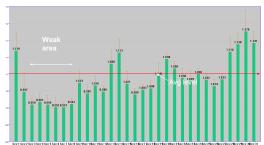

- During Construction /Quality Control
 - Various stiffness devices
 - Stiffness changes rapidly in early days
- Intelligent compaction systems
 Strongly influenced by support
 After Construction/Quality Assurance

 - Feedback to designersDifferent rates of strength gain with time

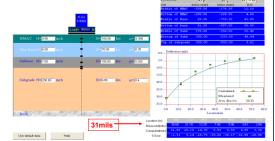
Device	Benefits	Drawbacks
PFWD	Portable Linkable to design values Provides rapid results Already adopted for acceptance testing by some agencies	May not correlate 1:1 with FWD Selection of target value may require calibration strip Requires supplementary moisture content test
DCP	Simple, rugged and portable Already adopted for acceptance testing by some agencies Inexpensive	Requires supplementary moisture content test Selection of target value may require calibration strip
PSPA	Linkable to laboratory test results and design values Portable Provides rapid results	Load impulse very small Susceptible to errors if surface cracks exist Requires supplementary moisture content test
Instrumented Rolling	Tests during compaction – results available immediately upon completion of rolling Provides full coverage results Tests during compaction – results	Link to surface layer properties questionable Not widely available Equipment is costly Requires calibration strip
FWD	TxDOT's standard pavement assessment tool Linkable to design values Provides rapid results	May not be available for every project Equipment is costly Requires supplementary moisture content test Stiffness partially dependent on quality of support

Location	PFWD (ksi)	Seismic	DCP
	(subgrade ksi)	(ksi)	(ksi)
2	92 (11 ksi)	145	65
7	90 (12 ksi)	120	73
9	31 (6 ksi)	84	43
12	15 (4.5 ksi)	52	30

Seismic from lab design at 3 days 600 to 800 ksi

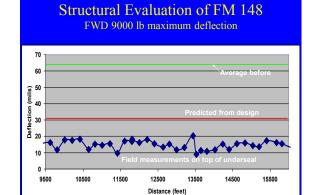

Validation Testing

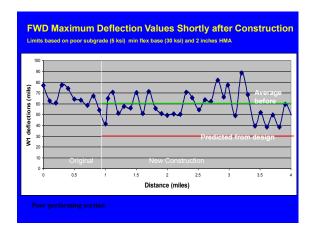
- Can be done, but difficult to set criteria
- FWD can be used to compare to design assumptions
- PSPA compare to lab values
 Field values around 25% lab
- Issues
 - When to test stiffness changing rapidly
 - Moisture conditions curing underway



Instrumented Roller 100% Coverage Average Deflection per 40 ft Interval

Filtename Z:\Tam\Acce\Test-6-14-0\\Track\Track01




Quality Assurance Testing Predicting Acceptable Pavement Deflections | Section | Sect

Construction Underway Sept 2010

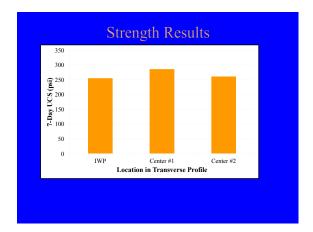
Questions ???

Summary of Project

- ~ 5"existing ACP blended w/5" existing base
- ACP pulverized w/milling machine then blended w/base by rotomill in October 2008
- Cement slurry application (4%) initiated in November 2008

Gradation Investigation

- Auger versus Field construction Investigated
- Auger sampling technique extremely close to field production



Auger and Field Gradations #4 3/8" 3/4" 1-1/4" 1-3/4" #200 #100 #40 100 **Gradation Curves** 90 80 Cumulative Retained (%) 70 Grades as per TxDOT Item 247 60 Grade 1 50 Grade 2 40 Grade 3 30 —□— Auger * 20 → Constr. 10 0.1 10 0.01 Sieve Size (mm) * Modified Auger Curve

Application of Cement Slurry

- Produced by concrete plant and hauled in concrete trucks
- Each truck spread in two batches with a custom spreader box over a length of ~ 211'
- Concerns with uniformity of cement application rate across transverse profile
 - Field-molded samples from wheelpath and center for 7-day UCS
 - PFWD on 2-day old section along both transverse and longitudinal profiles

Slurry Application

PFWD Results Investigating Transverse vs Longitudinal Variability

- 8 measurements taken along centerline at 100' intervals
- 6 measurements taken across lane width at one station
- Variability of longitudinal versus transverse results evaluated

PFWD Analysis of Variability

Measurement Orientation	Average E1 (Mpa)	Standard Deviation (s)	Test Statistic	Coefficient of Variation (%)	Test Statistic
Longitudinal	1633	349	2.25	21.4	2.52
Transverse	989	534	2.35	54.1	2.53

- •Test statistic = (larger variability/smaller variability)
 •F-critical value for # tests = 2.88 for 90% confidence
 •Data suggest no difference in variance or coefficient of variation between longitudinal and transverse E1 modulus values

Setting Micro-cracking Pattern

- Used PFWD before and after 2 passes at 8 different stations to evaluate E1 Modulus
- Target = at least 40% reduction in average value
- 2 passes achieved 41% reduction
 - Recommended 3 passes to ensure target gets consistently met

Conclusions from SH 327

- Auger samples used for lab mix design matched well with field construction
- Cement slurry application, after bugs worked out, seemed to work reasonably
 - No evidence of greater variability across lane width as compared to variability with longitudinal distance
- 3 passes with roller recommended for micro-cracking

Fly Ash Basics

What is fly ash?

- ★ Fine residue from combustion of coal, by-product of a coal-fired electrical generation plant
- ★80% of fly ash produced is disposed, 20% reclaimed
- ★ Cementing characteristics vary widely with source test each source with project base materials

Types of fly ash

★Type F

- ★ Produced from bituminous or anthracite coal (East Texas, Eastern US)
 ★ Pozzolonic in presence of water will combine with available lime to produce cementitious material ★ Light to dark gray color

★Type C

- *Produced from subbituminous or ignite coal (Wyoming)

 *Both pozzolonic and cementitious forms cementitious material by adding water
- ★ Tan or buff color

SH 87 Beaumont Summary

- One 1 core in 6 solid
- Back calculated modulus of base 40 to 70 ksi
- Concerns about delayed compaction in high rainfall areas
- Not appropriate if need to traffic section early

Highway 20 Colusa California CIR with Foamed Asphalt

Typical condition of pavement prior to Foam Recycling 2001 Traffic, > 5000 vpd, 20% Heavy Trucks

Recycling Results

Construction July 2001

April 2004