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EXECUTIVE SUMMARY 

Recent research tends to suggest that smart growth may be one strategy which can help reduce 

Vehicle Miles Traveled (VMT) and improve the overall sustainability of the transportation 

system.  Several other studies have concluded that mixed and diverse land use development can 

be effective in reducing urban sprawl, shortening the length of vehicle trips, encouraging the use 

of transit, and making walking and bicycling possible.   As a result, there has been an increased 

interest among planning organizations, the federal and state government in developing and 

implementing smart growth strategies.  The development and implementing of smart growth 

strategies, however, requires modeling tools that are sensitive enough to reflect their likely 

benefits.  This is unfortunately not the case with current travel demand modeling practice 

centered on the ubiquitous four-step planning process(Ben-Akiva and Lerman 1985). 

 This project was designed to first help planning and transportation organizations across 

New York State identify the most appropriate methods that would allow for better reflecting the 

benefits of smart growth in travel demand forecasting practice.   Two approaches for increasing 

the sensitivity of transportation models to smart growth impact were then investigated in greater 

detail, using the Greater Buffalo/Niagara metropolitan area as a case study.  The first approach 

involved a GIS-based methodology by which spatial characteristics of the built environment 

were quantified and used to predict travel behavior at an aggregate level.  A wide scope of travel 

behavior was examined, and over 50 variables, many of which are based on high-detail data 

sources, were investigated for potentially quantifying the built environment. Linear modeling 

was then used to relate travel behavior and the built environment, yielding models that may be 

applied in a post-processor fashion to travel models to provide some measure of sensitivity to 

built environment modifications.  
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 With respect to the first approach, the modeling exercise revealed that zonal mode choice 

is highly correlated to built environment factors, while household home-based VHT and VMT 

are less so. Statistical concepts such as regression Cp minimization, principal component analysis, 

and power transformations were explored and found to be methodologically beneficial. To 

conclude the study, the method was applied to a hypothetical land use scenario to estimate the 

reduction in zonal vehicle dependency caused by high-density development in suburban areas. 

 The second approach, on the other hand, developed an enhanced travel demand 

forecasting method to evaluate the impact of smart growth strategies on travel patterns. Though 

the modelling framework shares a similar structure as the traditional four-step planning method, 

behavior choice models were developed in order to capture the impact of land use on individual 

travellers’ various travel decisions such as intrazonal trip making, destination choices and mode 

choices. The enhanced travel demand forecasting method was tested by using the Greater 

Buffalo-Niagara Area as the study case. As found, population density and employment density 

exert some influence on mode choice by increasing the utilities of walk and bike. Diversified 

land uses either encourage walk or discourage automobile in intrazonal trips. Interzonal trips are 

less influenced by land use variables than intrazonal trips. Destination TAZ’s population density 

and employment density are positively associated with usage of walk. Another finding is about 

how people’s destination choices are correlated with land use patterns. The diversity of land uses 

and transit-oriented designs play an important role in reducing the average trip length and 

Vehicle-Miles-Travelled (VMT). Overall, the elasticity of VMT and land use entropy of all the 

TAZs is -0.027, which means a 10% increase of land use entropy in this area will cause a 0.27% 

reduction of daily VMT.  
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The study’s findings support the claims that compact, mixed-use, pedestrian-friendly and 

transit-friendly designs can reduce vehicle trips, encourage non-motorized modes, decrease 

average trip length, and reduce daily VMT. Moreover, the research has resulted in development 

of two useful methodologies which can be applied to increase the sensitivity of current modeling 

tools toward assessing the likely impacts of proposed smart growth strategies. 
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1. INTRODUCTION  

1.1 Background 

In 1903, Henry Ford’s revolutionary production line techniques made automobiles available to 

most people in the US.  For the first in the history, workers in a factory could afford the product 

they manufactured. The vast production of automobiles and following large scale construction of 

freeway systems changed the shape of the country. The unprecedented mobility provided by 

cheap automobiles and the Interstate Highway System made it possible for workers to live tens 

of miles away from their work place. The isolation of land-use functions (i.e. residential, 

commercial, employment), leads to a development pattern dominated by housing-only enclaves, 

distanced trip origins and destinations, and low population densities. They result in continued 

increase in Vehicle-Miles-Travelled (VMT), more congested roads, increased energy use, 

deteriorating air quality, and increased emissions of greenhouse gases. In one word, such a 

development pattern is very unsustainable and naturally unfavourable. 

 Recently, there has been a renewed interest in better understanding and designing the 

land use and transportation system (LUTS). This interest is not only motivated by the need to 

relieve congestion, but, more importantly, by the increased national interest in environmental 

protection and sustainability, and in light of current woes about future energy shortage.  Among 

land-use strategies that are being currently investigated for their potential in reducing VMT and 

improving transportation system sustainability are strategies such as smart growth and neo-

traditional neighborhood designs; here “traditional” means the low density and land use function 

isolation pattern predominant in the US after WWII. The fundamental idea behind such concepts 

is to revitalize LUTS to replace “sprawl” with more compact and mixed-use communities, such 
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as discouraging dispersed, automobile-dependent development at the urban fringe. One of their 

ultimate goals is to reduce VMT while maintaining mobility and accessibility of human societies.  

 This current interest in developing and implementing smart growth strategies points out 

to the genuine need for methods and modeling tools sensitive enough to reflect the benefits of 

these strategies in travel demand forecasting and transportation infrastructure planning practice. 

The reality of the situation, however, is that there are currently very few, if any, of such methods 

that have gained wide acceptance and adoption by MPOs in the country. The current research 

was motivated by the need to address that gap.  

1.2 Scope of the Research 

Naturally, there is a wide spectrum of tools and methodologies that could be used to increase the 

sensitivity of transportation modeling software so as to allow for accurately evaluating the 

impact of smart growth strategies.  These tools will likely vary in terms of their capabilities and 

sensitivity to smart growth impact, ease of implementation and use, and the resources required to 

develop and run them.  In general, one can categorize the available methodologies or tools for 

increasing the sensitivity of transportation models to smart growth impact into the following 

three categories: (1) post-processing approaches that work with a basic four-step transportation 

planning model; (2) modified implementations of the four-step process that can reflect various 

aspects of smart growth impact; and (3) disaggregate, activity-based approach.  The sensitivity, 

along with the cost of implementation of such tools varies, as shown in Figure 1.1.  A brief 

description of these three different approaches is given below. 
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Figure 1.1  Approaches for Increasing Smart Growth Sensitivity of Transportation Models 

 

 

1.2.1 Post Processing Approaches:   

These approaches are based on assessing the impact of the following four D’s on reducing 

vehicle trips and vehicle miles traveled: (1) Density, which refers to population and employment 

per square mile; (2) diversity, which refers to the ratio of jobs to population; (3) design which 

pertains to aspects of the pedestrian environment design such as street grid density, sidewalk 

completeness, and route directness; and (4) Destinations, which refers to accessibility compared 

to other activity concentrations.  Calculating the likely reduction in vehicle trips and VMT is 

based on elasticity factors such as those documented in (Loudon and Parker 2008).  Among the 

more well-known of the post-processing approaches are two GIS-based programs, INDEX and I-

PLACE3S, which have been used in land-use planning exercises to assess or demonstrate the 

transportation benefits of alternative smart-growth strategies, particularly in California, as well 

as elsewhere.   

 Using the Greater Buffalo/Niagara metropolitan area as a case study, this study 

developed a GIS-based methodology by which spatial characteristics of the built environment 

were quantified and used to predict travel behavior at an aggregate level.  A wide scope of travel 

behavior was examined, and over 50 variables, many of which are based on high-detail data 
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sources, were investigated for potentially quantifying the built environment. Linear modeling 

was then used to relate travel behavior and the built environment, yielding models that may be 

applied in a post-processor fashion to travel models to provide some measure of sensitivity to 

built environment modifications.  

1.2.2  Modified Four Step Models:  

The four-step travel forecasting method is by far the most popular planning method currently in 

use by metropolitan planning organizations to evaluate alternative land use and transportation 

developments. However, as identified by many researchers, a variety of issues associated with 

the process limit its applicability to smart growth practices. Specifically, (Loudon and Parker 

2008) identified more than ten limitations of the four-step process in relation to smart growth 

strategy evaluation.  These include: (1) no explicit modeling of trip chaining; (2) a focus 

primarily on vehicle trips only; (3) limited or no modeling capability for transit, walking and 

bicycling; (4) fixed vehicle trip rates by land-use type regardless of the design of the 

development; (5) zonal aggregation of traveler characteristics; (6) large traffic analysis zones; 

and (7) a focus on primarily modeling peak periods.   Moreover, (Greenwald 2006) argued that 

the traditional four-step model processes do not capture the increase in shorter intra-zonal 

automobile trips, bicycle trips and walking trips that are encouraged by smart-growth strategies, 

due to the limitations of the four-step process in modeling intra-zonal trips and travel made by 

means other than automobiles. 

 To fulfil the needs for methods and models sensitive enough to smart growth strategies, 

an enhanced travel demand forecasting framework was developed in this research, which offers 

an increased sensitivity to the impact of smart growth strategies.  There were two reasons that 

motivated the study to focus on to developing the enhanced travel demand forecasting method, in 
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addition to the post-processor methods mentioned above. First, traditional four-step method can 

be easily adopted by the MPOs due to historical reasons. And secondly, compared with activity-

based models, the enhanced travel demand forecasting approach consumes less data in model 

calibration and validation, thus saves money.  

 The data used to build the model came from the 2002 Buffalo-Niagara Regional 

Household Travel Survey. While smart growth policies were not explicitly implemented in this 

area, some neighbourhoods had higher density and are more mixed-used in natural than others. 

These can thus be considered as smart growth implementations. Comparing the travel behaviours 

between traditional TAZs and smart growth implemented TAZs thus helped reveal some insights 

about the relationship between land use and travel behaviour.  

 Typically, land use factors are quantitatively denoted by variables which can be 

categorized into four Ds: Density, Diversity, Design and Destination. The 4Ds variables were 

incorporated into the enhanced travel demand forecasting model. In this report, land use 

attributes, built environment and smart growth strategies are three expressions we used 

interchangeably with each other.    

Enhanced Travel Demand Forecasting Framework 

The overall framework of the enhanced travel demand forecasting approach is shown in Figure 

1.2. Trip generation is set of purpose-specific zone-based linear regression functions. Six trip 

purposes are considered, including Home-Based-Work (HBW), Home-Based-Shop (HBShop), 

Home-Based-Social-Recreation (HBSR), Home-Based-Other (HBO), Non-Home-Based-Work 

(NHBW), and Non-Home-Based-Other (NHBO). Trip generation gives the total number of trips 



6 
 

 

produced by each TAZ, and then trip synthesizer uses some algorithm to generate the socio-

economic variables for each of the produced trips.  

 

Figure 1.2 Framework of the Enhanced Travel Demand Forecasting Method 

 

 In trip distribution, the traditional gravity model is substituted by five trip-based 

disaggregate destination choice models, including models for HBW, HBShop, HBSRO 

(combined by HBSR and HBO), NHBW, and NHBO trips. Mode choice models are two nested 

logit models, one for intrazonal trips and the other for interzonal trips. Both models consider six 

alternatives modes, including non-motorized modes (walk and bike). Mode choice could split the 

overall OD table into six sub OD tables, one for each travel mode. In trip assignment, we used 

All-or-Nothing method for auto OD table, for illustration.  

 Land use variables are incorporated in three steps: trip generation, destination choice and 

mode choice. Intrazonal trips are paid special attention to in the enhanced four steps model. As 

mentioned above, destination choice model takes intrazonal trip as a separate alternative, and 

intrazonal trips’ mode choice is estimated by a separate mode choice model.  

Traffic Assignment 

Mode Split 

Destination Choice 

Trip Synthesizer 

Zonal Data and Land Use 

Trip Generation 
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1.2.3  Disaggregate Activity-Based Models: 

As Figure 1.1shows disaggregate, activity-based models offer the highest level of sensitivity in 

terms of modeling the impact of smart growth strategies.  They are, however, the most complex, 

and most demanding in terms of implementation cost and effort.  In this study, this approach was 

not investigated in great details because: (1) the approach is very demanding in terms of the data 

needed for implementation, calibration and validation; and (2) the enhanced four-step modeling 

framework developed in this study actually captures many of the features and advantages of the 

activity-based modeling approach.  Specifically, many aspects of our modified four-step method 

are disaggregate in nature and captures individual-level behavior. 

1.3  Organization of the Report 

In addition to this introduction, this report is organized into five sections or chapters. Section 2 

reviews past research efforts related to measuring travel behaviour, quantifying smart growth 

strategies, and modelling methods for assessing the likely impact of smart growth on travel 

behaviour.  Section 3 is devoted to discussing the first approach pursued in this study to develop 

smart growth-sensitive modelling tools, namely the one involving developing post-processor 

models   developed in the study to allow for quantifying the likely impacts of smart growth 

strategies on travel behaviour.  Specifically, section 3 describes the modelling methodology, the 

regression models developed, attempts at improving the accuracy of the developed models 

through principal component analysis and variable transformation.  The section also includes an 

example to illustrate how the post-processor models may be applied.  Section 4 then describes 

the enhanced four-step travel demand forecasting method developed, including a description of 

the: (1) the land-use variables used; (2) the trip generation model; (3) the destination choice 

model; and (4) the mode choice models.  Section 4 also includes several scenarios designed to 
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illustrate the effectiveness of the enhanced method in evaluating smart growth strategies. The 

report concludes with chapter 5 which summarizes the main conclusions of the study.   A 

number of appendices are included which provide more detail about the models developed and 

the raw data used for the study.  
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2. LITERATURE REVIEW 

The main lessons learned from the literature reviewed during the course of this study will be 

summarized under the following headings or sections: (1) measures of travel behavior; (2) 

measures and methods used to characterize the built environment and smart growth strategies; (3) 

models and methodologies which have been proposed to evaluate the impact of the built 

environment and smart growth strategies on travel behavior; and (4) the issue of causality in 

travel behavior models. 

2.1Measures of Travel Behavior 

VMT reduction is the final goal of all kinds of smart growth strategies. VMT is an integrated 

product of many factors, such as overall mobility level, vehicle ownership, mode choice, trip 

lengths, etc. The previous studies used one measure or a combination of measures to reflect the 

changes in travel behavior.  

2.1.1 Overall Mobility Level 

The mobility level, or trip generation rates depends primarily on household and personal socio-

economic attributes, i.e. income, gender, age, and number of jobs (Ewing and Cervero 2001). 

Land use attributes could exert very limited influence, if any, on people’s mobility level. In a 

study conducted by Boarnet and Greenwald in 2000 (Boarnet and Greenwald 2000), non-work 

trip frequency was used as the indicator of travel behavior to build two sets of models, including 

a census-tract-level model and a zip code-level model. The census-tract-level model could not 

incorporate any of the land use variables. And the zip code level model includes only one land 

use variable, which was the density of single-family attached dwelling densities. This variable is 

associated negatively with non-work auto trip generation at 10% (two-tailed test) significance 

level.  
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In a more recent study conducted by Cao et al, the trip frequencies of three modes: auto, transit, 

and walking/bicycling, were regressed against socio-demographic, attitudinal, and neighborhood 

characteristics (Cao, Mokhtarian et al. 2009). The results do support the influential power of 

some design characteristics on non-motorized trip generation rates. But this study is more about 

mode choice rather than trip generation, and the relationship between land use factors and the 

overall trip generation rates is not shown in the paper.  

2.1.2 Vehicle Ownership 

Vehicle ownership is an important indicator of travel patterns, and is a longer-term decision for a 

family, similar to residential location. Generally speaking, vehicle ownership and residential 

location are closely related to gas price, and land use variables play a marginal role in the choice 

of vehicle ownership. In a research done by Cervero, the number of vehicles was regressed 

against socio-demographic and land use variables (Cervero 1996). This research reveals that the 

presence of nearby commercial land-uses is associated with relatively low vehicle ownership 

rates. In another model generated by Bento et al, three choices with respect to auto ownership 

were considered: owing zero vehicle, one vehicle, two vehicle, and three vehicles or more (Bento, 

Cropper et al. 2005). This study finds that households in cities with more centralized populations 

are more likely to own zero vehicles.  

Some other papers used vehicle type as a dependent variable. Cao et al modeled north California 

people’s choice among four vehicle types: car, minivan, SUV, and pickup (Cao, Mokhtarian et al. 

2006). This research shows that traditional neighborhood designs are correlated with the choice 

of passenger cars, while suburban designs are associated with the choice of light duty trucks. 

Potoglou conducted a similar research of modeling people’s vehicle type choice (Potoglou 2008). 

He used slightly different choice set, including: car, pickup, SUV and van. The estimates of 
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households’ latest vehicle-type choice suggest that preferences for less fuel-efficient vehicles are 

marginally affected by the diversity of land-uses at the place of residence, after controlling for 

travel to work attitudes and socio-demographic characteristics of individuals and households. 

2.1.3 Mode Choice 

Mode choice is the most commonly used measure of travel behavior. This is because household 

and zone-based mode choice proportions are easy to determine from travel surveys, and the goal 

of many smart growth initiatives is to reduce vehicle travel and encourage transit and non-

motorized travel. In some cases (Cao et. al., 2009; Rajamani et. al., 2003; Zhang, 2006), mode 

choice is the only measure of travel behavior considered. In Cao et. al. (2009), three modes were 

considered: auto, transit, and walking or biking. Only non-work travel was examined, as non-

work trips were expected to be influenced to a relatively greater degree by the built environment. 

Cao et. al. also employed traveler-level behavioral framework to model the relative likelihood of 

a traveler choosing each mode. Travelers were expected to maximize their utility, modeled as a 

function of travel costs, which were assumed to be fully determined by the built environment. 

Cao et. al. mention that this assumption, while necessary given the limited data, is a shortcoming 

of the study. Built environment characteristics, it is noted, may be “good predictors of non-

motorized travel costs, moderate predictors for auto travel costs, but inferior predictors for transit 

travel costs” (Cao et. al., p. 550). Thus, socio-economic control factors may be expected to have 

a greater influence on transit usage than variables related to the layout of the built environment, 

and non-motorized mode choice modeling may yield the greatest degree of built environment 

sensitivity. 
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 Rajamani et. al. (2003) considered only non-work trips in five modes: driving alone, 

shared ride, transit, walking, and biking. As in Cao et. al., the scope of the study is limited to 

non-work trips as non-work trips are flexible in destination choice, whereas only the route of a 

work trip may vary. Rajamani et. al. also notes that peak-period travel, typically thought of as 

dominated by commuters, is composed of an increasing proportion of non-work trips.  

 Zhang (2006) conducted a study focusing on the causes of automobile dependency, for 

which the sole measure of travel behavior was the probability that a traveler’s only available 

mode was a personal vehicle. This measure may be expected to be highly correlated to mode 

choice, as it is presumed that, for a particular trip, a personal vehicle will be used when the only 

travel mode considered feasible by the traveler is a personal vehicle. Whether a personal vehicle 

is considered feasible is primarily a function of social and economic factors, but may also be 

affected by the land uses and urban form of the route of the trip, even when controlling for the 

length of the trip. 

2.1.4 Trip Length 

Trip length is another measure of travel behavior commonly used. Trip length is closely related 

to people’s residential location and each trip’s destination choice. Multiple studies indicate that 

higher density reduces trip length. In the paper generated by Cervero in 1996 (Cervero 1996), 

people’s commute distance, or distance from home to workplace was regressed against socio-

demographic and land use variables. People living in central city commuted around 3 fewer 

miles each way than those living in the suburbs. Adequate transit service also influence commute 

distances by influencing residential location. Vega did a study about the simultaneous choice of 

residential location and travel-to-work mode under central and non-central or suburban 

employment patterns (Vega and Reynolds-Frighan 2009). Boarnet took trip distance as one step 
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of a two steps model in a research (Boarnet and Greenwald 2000), and the models show that 

neighborhoods with higher population density and higher single and multi-family attached 

dwelling densities have shorter trip distances, again an intuitive relationship suggesting that 

density reduces trip lengths.  

Intra-zonal trip (trips within TAZs) proportion was used as an indirect measure of trip length by 

Greenwald (2006), whose goal was to improve the modeling of intrazonal travel in trip 

distribution models. Greenwald concluded that a traveler’s decision to internalize a trip (select a 

destination within the origin TAZ) was significantly influenced by land use parameters of the 

TAZ, an influence often omitted from trip distribution in the traditional four-step model.  

2.2 Characterizing the Built Environment and Smart Growth Strategies 

Smart growth design principles, as articulated by the U.S. Environmental Protection Agency, 

include: (1) Mix land-uses; (2) Take advantage of compact building design; (3) Create a range of 

housing opportunities and choices; (4) Create walkable neighborhoods; (5) Foster distinctive, 

attractive communities with a strong sense of place; (6) Preserve open space, farmland, natural 

beauty, and critical environmental areas; (7) Strengthen and direct development towards existing 

communities; (8) Provide a variety of transportation choices; (9) Make development decisions 

predictable, fair, and cost effective; and (10) Encourage community and stakeholder 

collaboration in development decisions. (US_EPA). All these strategies can be viewed as falling 

into one of what are commonly referred to as the four Ds: Density, Diversity, Design and 

Destination. Most research trying to find the connection between smart growth strategies and 

travel behavior used one or combination of these “D” variables to quantify smart growth 

strategies. The four Ds are typically measured at the neighborhood level. Also some papers tried 

to use city-level variables to compare the travel behavior difference among cities. One example 
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of such variables is city shape, which measures how much a city deviates from a circular city. 

(Bento, Cropper et al. 2005).  A review of the land use variables used in previous research is 

presented next.  Variables are categorized as follows: (1) Density variables; (2) Diversity 

variables; (3) Design variables; (4) Destination variables; and (5) city-level variables.  

2.2.1 Density 

Zonal measures of development density, typically population and employment density, are 

common (Zhang, 2006; Cervero and Kockelman, 1997; DKS Associates, 2007;Bento et. al., 

2005) as it is expected that trips in high-density areas are shorter than trips in suburban or rural 

areas. Cao et. al. (2009) employed direct measures of commerce density for each neighborhood; 

the number of business within a certain network distance of each neighborhood were computed, 

as well as the distance from each household to the nearest of several types of trip attractors, such 

as post offices, libraries, and theaters. 

 Cervero and Kockleman (1997) used three measures of density: population density, 

employment density, and accessibility to jobs. Population density and employment density are 

formulated simply as the population and employment per unit area for each TAZ. Accessibility 

to jobs acts as a more refined measure of employment density that takes into account jobs in 

many nearby TAZs, rather than only a single TAZ (as is done for employment density). Each 

TAZ is assigned an accessibility index, defined in gravity model form: 

ݔ݁݀݊ܫ ݕݐ݈ܾ݅݅݅ݏݏ݁ܿܿܣ ൌ  ෍ ሺ݆ݏܾ݋ሻ௝ሺexp൫ݐߣ௜௝൯ሻ
௝

 

Above, i and j are the ‘home’ (origin) zone and destination zone, respectively, while t is the 

travel time and λ is the gravity model impedance factor. As interzonal commutes are common, 
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the accessibility index can be expected to more accurately measure the employment density of a 

zone. This measure was later generalized into the fourth D, Destinations, of the 4-D method, and 

no longer used as a measure of density but rather of zonal accessibility to all travelers, rather 

than only commuters. 

 Bento et. al. (2005), in addition to population density, employed several unconventional 

measures of density. Bento et. al. conducted a study of households in 114 urban areas, rather than 

analyzing a single city, necessitating the inclusion of variables to control for characteristics of 

the city itself. Such variables are not present in studies of individual urban areas, but may still 

yield insight into the effect of large-scale urban design on travel behavior. One city-level 

measure of density introduced is population centrality (this will be further discussed in section 

2.2.5).  

 Population or employment density is a common measure of the built environment in 

literature exploring the connection between urban form and travel behavior. Density related 

variables are very easy to calculate, and proven to be significant in a lot of models (Frank and 

Pivo 1994; Cervero and Kockelman 1997; Boarnet and Greenwald 2000; Zhang 2006; 

Kockelman 1997). Density’s statistical significance in many models may be entirely due to its 

strengths as proxy variable for many difficulty-to-measure factors that influence travel behavior. 

For example, higher density is associated with higher access to opportunity sites, higher parking 

costs, higher level of congestion, and maybe higher transit access. Table 2.1 below summarizes 

density related variables which have been used in previous research. 
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Table 2.1 Review of Density Variables Used in Previous Research 

Name Definition Reference 

Gross 

population 

density 

POP/AREA (Frank and Pivo 1994; 

Cervero and Kockelman 

1997; Boarnet and 

Greenwald 2000; Zhang 

2006; Kockelman 1997)  

Gross 

employment 

density 

EMP/AREA (Frank and Pivo 1994; 

Cervero and Kockelman 

1997; Boarnet and 

Greenwald 2000; Zhang 

2006; Kockelman 1997) 

Gross density (POP+EMP/AREA 

 

(Cervero 2002) 

Mixed density 

index 
௜ܫܦܯ ൌ

௜ܦܧ כ ௜ܦܴ

௜ܦܧ ൅ ௜ܦܴ
 

MDIi is the mixed density index of TAZi. EDi and 

RDi are the employment and residential densities 

within a TAZi.  

(Potoglou 2008) 

Retail 

employment 

density 

(Number of retail jobs) /(AREA) (Boarnet and Greenwald 

2000) 

Overall 

neighborhood 

density 

Several binary variables indicating if the buildings 

within 300ft of the surveyed unit are: single-

family detached housing, low-rise multi-family 

buildings, mid-rise multi-family buildings, or 

high-rise multi-family buildings. 

(Cervero 1996) 

Retail or 

service density 

Several binary variables indicating if the buildings 

within 300ft of the surveyed housing unit are: 

commercial or other non-residential buildings; 

grocery or drug store. 

(Cervero 1996) 
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Housing density Proportion of some kinds of dwelling units per 

unit area 

(Boarnet and Greenwald 

2000) 

 

2.2.2 Diversity 

Measures of the diversity of land uses are also useful, as mixing land uses is thought to shorten 

commute times and encourage trip chaining. Such measures range from simple functions of 

population to employment ratios (Rajamani et. al., 2003; DKS Associates, 2007; Bento et. al., 

2005) to more complex methods, such as zonal entropy-based methods (Greenwald, 2006) or 

even raster-based methods for which land uses in each cell in a city-covering grid are compared 

to the land uses of adjacent cells (Cervero and Kockelman, 1997).  These methods are briefly 

reviewed below. 

Jobs-Housing Balance 

Jobs-housing balance expresses the ratio of the number of jobs to population, but instead of 

directly using the ratio, this variable compares this ratio of a single zone with the average level of 

the whole area (Formula 2.1). The closer a TAZ’s ratio is to the regional level, the higher that 

TAZ’s balance index is, or closer to 1. Intuitively, higher value of balance index means a TAZ 

has higher potential to self-fulfill its job demand, or higher proportion of intrazonal trips. Lower 

balance has two possible meanings: 1) the TAZ has much more jobs than population, or 2) the 

TAZ has very few jobs. The first case generally means a TAZ is a major trip attractor. The 

second case means a TAZ is a residential-dominated area.  

௜ܧܥܰܣܮܣܤ ൌ 1 െ ሾ஺஻ௌሺ௃௢௕௦೔ି௔כ௉௢௣೔ሻ

௃௢௕௦೔ା௔כ௉௢௣೔
ሿ   (2.1) 

Where  
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a=the countywide ratio of number of jobs to population. 

 

 Normalized Employment to Population Ratio 

This index measures the amount of employment relative to population (Formula 2.2).  Instead of 

directly using the ratio of employment to population, the ratio is normalized by the formula to be 

between -1 and +1. Higher value of this index in a TAZ is considered to help it attract more 

HBW trips.  

௜݋݅ݐܴܽ ݊݋݅ݐ݈ܽݑ݌݋ܲ ݋ݐ ݐ݊݁݉ݕ݋݈݌݉ܧ ൌ ௃௢௕௦೔ି௉௢௣೔

௃௢௕௦೔ା௉௢௣೔
   (2.2) 

Entropy 

Entropy is a concept from statistics, used to measure the uncertainty of a distribution, and is 

borrowed by transportation engineers to describe the diversity of the land uses. The measure is 

useful in appraising the uniformity in dispersion of a certain trait across many zones. It is defined 

by very simple Formula 2.3 and adopted by a lot of researchers. What’s more, entropy can be 

used to describe anything we want to measure, such as employment type and land use type.  

∑ ൣ∑ ࢐ሻ࢑࢏ࡼሺ࢔࢒࢑࢐ࡼ ൧/࢔࢒ ሺࡶሻሽ/࢑ࡷ     (2.3) 

Where  

Pjk=proportion of some subcategory variable j (such as proportion of a land use type or 
proportion of an employment type) within a subarea k;  

J=the number of subcategories;  

K=the number of subareas in a zone. 

 

There is a weakness in this entropy definition, because maximum entropy requires that each use 

type takes the same proportion (1/J). But that case does not necessarily mean the highest mixed 

land use. In order to address this aspect of the definitional problem, this entropy measure can be 
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made more regionally realistic by incorporating a weighting for each category. Pj*ln(Pj) will be 

replaced by Wj*Pj*ln(Pj) in the definition.  

 Dissimilarity  

Dissimilarity measures the degree to which land uses abutting or diagonal to each hectare are 

different. It was generated by Cervero and Kockelman in a paper published in 1997 (Cervero and 

Kockelman 1997). They found that this dissimilarity index can increase the probability of 

travelling by non-single-occupant vehicle mode.  

 Dissimilarity is taken as a supplement to land use entropy, because land use entropy is 

not a very good indicator of spatial inter-mixing at a finer grain (Cervero and Kockelman 1997). 

A TAZ could have high land use entropy but a low value of dissimilarity. For example, if the 

land uses in a TAZ are isolated and miles away from each other, but each of them takes equal 

proportion of the total area, the dissimilarity of this TAZ will be very low, but land use entropy is 

1, which is the highest possible value. This kind of land use pattern is very common in real life. 

For example, all the commercial land use are in a big shopping mall, residents live in a big single 

family residential neighborhood, and the employments are all in an industrial park. 

 The definition of dissimilarity is shown in Formula 2.4 and Figure 2.1. As is shown in 

Figure 2.1, the central “C” hectare has dissimilarity index as 5/8, for having five of its eight 

neighbors with distinct uses. The central “R” hectare has dissimilarity index as 4/8, for having 

four of its eight neighbors with distinct uses. The dissimilarity index of all the hectares in a TAZ 

is averaged to generate the TAZ level dissimilarity index.  

ݔ݁݀݊݅ ݕݐ݅ݎ݈ܽ݅݉݅ݏݏ݅ܦ                                          ൌ ሾ∑ ∑ ሺ ௟ܺ/8ሻሿ/଼ܭ
௟ୀଵ

௄
௝ୀଵ   (2.4) 

K=number of actively developed hectare grid-cells in tract; 
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Xl=1 if land-use category of neighboring hectare grid-cell differs from hectare grid-cell j (0 
otherwise). 
 

 

Figure 2.1 Illustration of Dissimilarity Index 

The dissimilarity index in this research is based on 10 land use types: residential, retail, dinning, 

offices and banks, other commercial, industrial, health care, education, community and 

recreation.  

 Diversity Variables Used In Previous Research 

Compared to Density, Diversity has much more and verified definitions in the previous studies. 

Intuitively the number of different types of business in an area could be a diversity indicator 

(Cao, Mokhtarian et al. 2009) ([7] in Table 2.2). Some other diversity variables measure the 

intensities of certain land use types, such as residential, commercial, office, industrial, and 

institutional, and also commercial land uses which are more finely defined: convenience stores, 

retail services, supermarkets, auto-oriented services, etc (Cervero and Kockelman 1997) ([4,6] in 

Table 2.2).  

 In the same paper generated by Cervero and Kockelman, vertical mixture and activity 

center mixture variables are included to describe other dimensions of diversity: the multiple land 

uses vertically in a building, and the degree of micro-mixture in an activity center (Cervero and 

Kockelman 1997) ([3,5] in Table 2.2). Entropy was used many times in previous research ([1] in 
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Table 2.2). Rajamani defined a variable very similar to entropy, called “land use mix diversity” 

(Rajamani, Bhat et al. 2003) ([2] in Table 2.2).  

 

Table 2.2 Review of Diversity Variables Used in Previous Research 

Name Definition Reference 

Entropy index Formula 2.3 (Frank and Pivo 1994) 

Entropy[1] 
෍ ቈ෍ ௝ܲ௞݈݊ሺ ௜ܲ௞ሻ

௝
቉ /݈݊ ሺܬሻሽ/ܭ

௞
 

Pjk=proportion of land-use category j within an area 

k; J=the number of land-use categories; and K=the 

number of subareas in a zone.  

(Cervero and Kockelman 

1997; Cervero 2002; 

Zhang 2006; Potoglou 

2008; Kockelman 1997) 

Six land use categories are considered: residential, 

commercial, public, offices and research sites, 

industrial, and parks and recreation (Kockelman 

1997) 

Land use categories are denoted by employment 

proportions, and four of them are considered: 

households, retail employment, office employment, 

and other employment (Cervero 2002) 

Three land use categories are considered: 

residential, industrial, and commercial (Zhang 

2006) 

Four land use categories within the area of walking 

distance (500 meters) are considered: commercial, 

residential, governmental, parks and industrial 

(Potoglou 2008) 

Land use mix 

diversity[2] 

Equation 2.6 

I2 land-use categories were used: residential, 

general commercial, retail and wholesale, office, 

(Rajamani, Bhat et al. 

2003) 
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industrial, mixed commercial-industrial, health, 

institutional (including civic and religious), 

educational, ports and airports, commercial-

recreational, and public parks outdoor recreational 

Dissimilarity It gauge the degree to which uses abutting or 

diagonal to each hectare were different 

(Cervero and 

Kockelman 1997; 

Kockelman 1997) 

Vertical 

mixture[3] 

It is the proportion of commercial/retail parcels 

with more than one land-use category on the site 

(Cervero and 

Kockelman 1997) 

Certain land use 

intensities[4] 

Per developed acre intensities of land uses 

classified as: residential; commercial; office; 

industrial; institutional; parks and recreation 

(Cervero and 

Kockelman 1997) 

Activity center 

mixture[5] 

(1) Entropy of commercial land-use categories 

computed across all activity centers within a zone 

(2) Proportion of activity centers with more than 

one category of commercial-retail uses 

(3) Proportion of activity centers with stores 

classified as: convenience; auto-oriented; 

entertainment/recreational; office; institutional; 

supermarkets; service-oriented 

(Cervero and 

Kockelman 1997) 

Commercial 

intensities[6] 

Per developed acre rates of: convenience stores; 

retail services; supermarkets; eateries; 

entertainment and recreational uses; auto-oriented 

services; mixed parcels 

(Cervero and 

Kockelman 1997) 

Proximities to 

commercial-

retail uses 

(1) Proportion of developed acres within ¼ mile of: 

convenience store; retail-service use 

(2) Proportion of residential acres within ¼ mile of: 

convenience stores; retail-service use 

(Cervero and 

Kockelman 1997) 

Jobs to 

population 

balance 

Retail employment and population relative to 

countywide ratio 

(Ewing, Dumbaugh et 

al. 2001) 
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Land use mix[7] The number of different types of businesses within 

specified distances.  

(Cao, Mokhtarian et al. 

2009) 

 

ሻࢋ࢛࢒ࢇ࢜ ࢟࢖࢕࢚࢘࢔ࢋሺ ࢞࢏࢓ ࢋ࢙࢛ ࢊ࢔ࢇ࢒ ࢌ࢕ ࢒ࢋ࢜ࢋࡸ ൌ
െሾ࢟࢒࢏࢓ࢇࢌ ࢋ࢒ࢍ࢔࢏࢙ · ሻሿ࢟࢒࢏࢓ࢇࢌ ࢋ࢒ࢍ࢔࢏࢙૚૙ሺࢍ࢕࢒ ൅ ሾ࢟࢒࢏࢓ࢇࢌ࢏࢚࢒࢛࢓ · ሻሿ࢟࢒࢏࢓ࢇࢌ࢏࢚࢒࢛࢓૚૙ሺࢍ࢕࢒ ൅

ሾ࢙ࢋࢉ࢏࢜࢘ࢋ࢙ ࢊ࢔ࢇ ࢒࢏ࢇ࢚ࢋ࢘ · ሻ࢙ࢋࢉ࢏࢜࢘ࢋ࢙ ࢊ࢔ࢇ ࢒࢏ࢇ࢚ࢋ࢘૚૙ሺࢍ࢕࢒ ൅ ሾࢋࢉ࢏ࢌࢌ࢕ · ሻሿࢋࢉ࢏ࢌࢌ࢕૚૙ሺࢍ࢕࢒ ൅
ሾ࢚࢔ࢋ࢓࢔࢏ࢇ࢚࢘ࢋ࢚࢔ࢋ · ሻ࢚࢔ࢋ࢓࢔࢏ࢇ࢚࢘ࢋ࢚࢔ࢋ૚૙ሺࢍ࢕࢒ ൅ ሾ࢒ࢇ࢔࢕࢏࢚࢛࢚࢏࢚࢙࢔࢏ · ሻሿ࢒ࢇ࢔࢕࢏࢚࢛࢚࢏࢚࢙࢔࢏૚૙ૢࢍ࢕࢒ ൅

ሾࢍ࢔࢏࢚࢛࢘ࢉࢇࢌ࢛࢔ࢇ࢓/࢒ࢇ࢏࢚࢙࢛࢘ࢊ࢔࢏ ·  ሻሿ  (2.5)ࢍ࢔࢏࢚࢛࢘ࢉࢇࢌ࢛࢔ࢇ࢓/࢒ࢇ࢏࢚࢙࢛࢘ࢊ࢔࢏૚૙ሺࢍ࢕࢒
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Where r = acres in residential use (single and multi-family housing), c = acres in commercial use, 
i = acres in industrial use, o = acres in other land uses, and T = r + c + i + o. A value of 0 for this 
measure means that the land in the neighborhood is exclusively dedicated to a single use, while a 
value of 1 indicates perfect mixing of the four land uses. 

Besides the above, Van Acker et. al. (2007) used a categorical, combined measure of both 

density and diversity. This variable is specifically design for its study area, The Netherlands, and 

its three central cities. Each neighborhood considered in the study is categorized along two 

dimensions: proximity to the triangular district formed by the three central cities, and 

development density (categorized as large city, regional city, small city, suburban, or rural). The 

resulting variable was one of several included in a function used to quantify all aspects of land 

use for each neighborhood. This approach to quantifying the built environment in a categorical 

way tailored to the study area’s geography appears to be unique, and may serve to capture effects 

that more general measures meant to be applicable to any area may not. 

2.2.3 Design 

Variables that characterize street network design or layout are present in many studies. The 

primary focus of Crane and Crepeau (1998) was on the layout of streets – specifically, contrasts 
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between grid and cul-de-sac street designs in urban areas. A one mile in diameter circle was 

drawn around each household for which travel survey data was available. The street network 

type of each circular neighborhood near the household was then subjectively determined. 

Researchers characterized each neighborhood’s street network as grid, cul-de-sac, or mixed in 

design. A statistical hypothesis test found that households in cul-de-sac neighborhoods drive 

slightly further than households in grid neighborhoods (6.10 miles vs. 5.23 miles) with 95% 

confidence. Households in cul-de-sac neighborhoods also take more trips per day (2.57 trips vs. 

2.08 trips), which suggests that the higher mileage may be at least partially attributable to 

behavioral or socio-economic characteristics. Thus, the report concluded that highly connected 

grid networks are not necessarily always better than cul-de-sac networks in terms of encouraging 

pedestrians and shortening vehicle trips. 

 Street density is also used (Cervero and Kockelman, 1997; DKS Associates, 2007; Bento 

et. al., 2005) as dense street networks are thought to encourage pedestrian travel, as well as 

indirectly indicate good network connectivity. Street connectivity is more directly quantified by 

Zhang (2006), who computed the percentage of four-way intersections in both the origin and 

destination TAZs of each trip. This appears to be a more methodological approach to the 

subjective grid/cul-de-sac categorization made by Crane and Cepeau (1998). Grid networks are 

made entirely from four-way intersections, while cul-de-sac networks are dominated by three-

way intersections. The study found that high street network connectivity (high proportion of 

four-way intersections) correlates negatively with vehicle dependence, as expected. 

 DKS Associates (2007) used two measures related to the diversity dimension: a small-

scale measure examining connectivity within TAZs (the third D, diversity, of the 4-D method) 

and a large-scale measure of destinations accessibility (the fourth D, destinations, of the 4-D 
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method). The small-scale measure is meant to account for three factors affecting pedestrian 

travel: 

݊݃݅ݏ݁ܦ ൌ 0.0195ሺݕݐ݅ݏ݊݁݀ ݇ݎ݋ݓݐ݁݊ ݐ݁݁ݎݐݏሻ ൅  1.18ሺݏݏ݁݊݁ݐ݈݁݌݉݋ܿ ݈݇ܽݓ݁݀݅ݏሻ

൅  3.63ሺݏݏ݁݊ݐܿ݁ݎ݅݀ ݁ݐݑ݋ݎሻ 

ݕݐ݅ݏ݊݁݀ ݇ݎ݋ݓݐ݁݊ ݐ݁݁ݎݐݏ ൌ  
ݐ݁݁ݎݐݏ ݂݋ ݄ݐ݈݃݊݁

݀݋݋݄ݎ݋ܾ݄݃݅݁݊ ݂݋ ܽ݁ݎܽ
 

ݏݏ݁݊݁ݐ݈݁݌݉݋ܿ ݈݇ܽݓ݁݀݅ݏ ൌ  
݁ܿ݊ܽݐݏ݅݀ ݈݁݊݅ݎ݁ݐ݊݁ܿ ݈݇ܽݓ݁݀݅ݏ ݈ܽݐ݋ݐ

݁ܿ݊ܽݐݏ݅݀ ݈݁݊݅ݎ݁ݐ݊݁ܿ ݐ݁݁ݎݐݏ ݈ܽݐ݋ݐ
 

ݏݏ݁݊ݐܿ݁ݎ݅݀ ݁ݐݑ݋ݎ ൌ  
ݎ݁ݐ݊݁ܿ ݋ݐ ݁ܿ݊ܽݐݏ݅݀ ݈݁݊݅ݎ݅ܽ ݁݃ܽݎ݁ݒܽ

ݎ݁ݐ݊݁ܿ ݋ݐ ݁ܿ݊ܽݐݏ݅݀ ݀ܽ݋ݎ ݁݃ܽݎ݁ݒܽ
 

 The equation appears to be empirically derived. A great deal of data and computation 

would be required to compute two of the three terms; sidewalk data is unlikely to be available for 

large areas as it is not collected by the Census Bureau as road data is, while airline and network 

distance computations for each road in the study area may be computationally intensive.  The 

design variables used by previous papers are summarized in Table 2.3. 

  



26 
 

 

Table 2.3 Review of Design Variables in Previous Research 

Name Definition Reference 

Streets (1) Predominant pattern (e.g. regular grid, 

curvilinear grid) 

(2) Proportion of intersections that are: four-way 

(proxy of grid pattern) 

(3) Per developed acre rates of: freeway miles within 

or abutting tract; number of freeway under and over-

passes; number of blocks (proxy for the grain of 

road net); number of dead ends and cul-de-sacs 

(4) Averages of: arterial speed limits; street widths 

(Cervero and 

Kockelman 

1997) 

Street connectivity Percentage of four-way intersections in TAZ (Zhang 2006) 

Road density Road length*average road width/ urbanized AREA 

This factor is more about the whole city, but the 

same concept can be applied to TAZs 

(Bento, 

Cropper et al. 

2005) 

Street access Percentage of area in 1/4 mile buffer zone covered 

by grid format 

(Boarnet and 

Greenwald 

2000) 

Pedestrian/Bicycle 

facilities  

(1) whether there are sidewalks in the informant’s 

neighborhood 

(2) whether there are bike paths in the informant’s 

neighborhood 

(Kitamura, 

Mokhtarian et 

al. 1997) 

Pedestrian and cycling 

provisions 

(1) Proportion of blocks with: sidewalks; planting 

strips; street trees; overhead street 

lights; quadrilateral (i.e. rectangular or square) 

shape; bicycle lanes; mid-block crossings 

(2) Proportion of intersections with: signalized 

controls 

(3) Averages of: block length; sidewalk width; 

distance between overhead street lights; slope; 

(Cervero and 

Kockelman 

1997) 
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pedestrian green lights at signalized intersections 

(4) Bicycle lanes per developed acre 

Pedestrian Environment 

Factor (PEF) 

PEF score is a composite generated on four criteria: 

ease of street crossing, sidewalk continuity, street 

connectivity (grid vs. cul-de-sac) and topography. 

Each category is scored on a scale from one to four 

(four being the best ranking), so each zone has a 

maximum possible score of 16 and a minimum of 

four. Higher score means greater accommodation of 

non-motorized travel. 

(Boarnet and 

Greenwald 

2000) 

Sidewalk provision Ratio of sidewalk miles to road miles (Cervero 

2002) 

Housing choice 

indicators (backyard, 

parking spaces available, 

own home) 

(1) Does the informant has a private backyard or not 

(2) The number of parking spaces available 

exclusively for the informant’s household use 

(3) whether the informant owns his/her home 

(Kitamura, 

Mokhtarian et 

al. 1997) 

Perceptions of 

neighborhood quality 

Survey respondents’ selection from the following 

reasons as why they live here:  

(1) No Reason to Move 

(2) Streets Pleasant for Walking 

(3) Cycling Pleasant 

(4) Good Local Transit Service 

(5) Enough Parking 

(6) Problems of Traffic Congestion 

(Kitamura, 

Mokhtarian et 

al. 1997) 

Site design Proportion of commercial-retail and service parcels 

with: off-street parking; off-street parking between 

the store and curb; on-street front or side parking; 

on-site drive-ins or drive-throughs 

(Cervero and 

Kockelman 

1997) 

Transit access Whether home is within 1/2 mile of Multnomah 

Light Rail Corridor 

(Boarnet and 

Greenwald 

2000) 
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Distance to the nearest 

transit station 

 (Zhang 2006) 

Transit service The number of bus stops within walking distance (Potoglou 

2008) 

Transit-oriented multi-

family housing 

Proportion of multi-family households in 

origin TAZ within one-half mile of metro-rail 

station 

(Cervero 

2002) 

 

2.2.4 Destination 

Destination related variables are also called “accessibility”, representing the access of a unit to 

multiple opportunities, such as offices, retail service, health, and schools. The unit could be a 

housing unit, a building, a block, a neighborhood, or a TAZ. Some of the destination variables 

used in recent research are shown in Table 2.4.  

Table 2.4 Review of Destination Variables in Previous Research 

Destination-Related 

Name Definition Reference 

Micro-scale 

accessibility 

indicator [1] 

Distance to Nearest Bus Stop 

Distance to Nearest Rail Station 

Distance to Nearest Grocery Store 

Distance to Nearest Gas Station 

Distance to Nearest Park 

(Kitamura, Mokhtarian et 

al. 1997) 

Accessibility[6] 
௜ݕݐ݈ܾ݅݅݅ݏݏ݁ܿܿܣ ൌ ෍

௝ܣ

݂ሺݐ௜௝ሻ
௝

 

Aj is the attractiveness of TAZj, and f(tij) is 

the travel cost from TAZi to TAZj.  

(Cervero and Kockelman 

1997; Rajamani, Bhat et al. 

2003; Kockelman 1997)  

Job accessibility[2] Number of jobs within 45-min highway 

network travel time (for origin TAZ) 

(Cervero 2002) 
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Labor-force 

accessibility[3] 

Number of households within 45-min 

highway network travel time (For 

destination TAZ) 

(Cervero 2002) 

Proximity[4] Number of opportunities within walking 

distance. Retail and food stores, shopping-

malls, schools, and entertainment facilities.  

(Potoglou 2008) 

Accessibility[5] Number of establishments of each business 

type within specified distances and the 

distance to the nearest establishment of each 

type.  

(Cao, Mokhtarian et al. 

2009) 

 

Kitamura used the distance to nearest bus stops, rail stations, grocery stores, gas stations as 

accessibility indicator (Kitamura, Mokhtarian et al. 1997) ([1] in Table 2.4). Many other studies 

calculated the number of opportunities within a certain distance from a unit as accessibility 

indicator (Cervero 2002; Potoglou 2008; Cao, Mokhtarian et al. 2009) ([2,3,4,5] in Table 2.4).  

One of the short comings of these variables is they need a criteria, for example, the 45-min drive 

distance, or the walking distance. Determining such criteria needs planners’ experience and not 

objective. This shortcoming is conquered by a more general accessibility variable, which sums 

the impedance-weighted number of opportunities in all TAZs (Cervero and Kockelman 1997; 

Rajamani, Bhat et al. 2003; Kockelman 1997) ([6] in Table 2.4). 

2.2.5 City-Level Variables 

Almost all the land use variables mentioned above are based on TAZs, or neighborhoods of 

different scales. Some research is not based local travel demand forecasting models, but 

compares travel patterns based on whole cities. Bento et al conducted a research based on the 
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data from many cities of US (Bento, Cropper et al. 2005). They defined variables describing the 

shape of the whole city, as shown in Table 2.5. 

Table 2.5 Review of City-Level Variables in Previous Research 

Name Definition Reference 

City shape Each city is circumscribed with an ellipse equal in area to the 

urbanized area of the city, and the major and minor axes of the 

ellipse are measured. The ratio of the minor to the major axis is 

used the measure how much an urbanized area deviates from a 

circular city.  

(Bento, 

Cropper et 

al. 2005) 

Population 

centrality 

It measures the distribution of population within a mono-centric 

city, with higher numbers indicating more centralized cities. 

(Equation 3.7) 

(Bento, 

Cropper et 

al. 2005) 

Balance of 

jobs versus 

housing 

ZIP codes in each city is ordered from the one having the 

smallest number of jobs to the one having the largest and plot the 

cumulative 

percentage of jobs ( y-axis) against the cumulative percentage of 

population ( x-axis) to obtain a Lorenz curve. The 45-degree line 

represents an even distribution of jobs versus population. The 

balance measure  is the area between the Lorenz curve and the 

45-degree line, expressed as a proportion of the area under the 

45-degree line. Larger values of this measure imply a less even 

distribution of jobs versus housing. 

(Bento, 

Cropper et 

al. 2005) 
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Where 

i=1,..., N, indexes annuli around the CBD, di is the distance of annulus I from the CBD, and Pi is 
the population of annulus i. 
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 Population centrality is a complex measure of population distribution relative to a city’s 

central business district. Two cities with equal population densities may have different 

population centrality measures if one city has a dense urban core surrounded by low-density 

development and the other is primarily uniform, medium-density sprawl. Population centrality 

was found to have a significant effect on household VMT. The measure scales to the size of the 

city; that is, population distribution is sampled at percent distances relatives to the edge of the 

city, rather than at absolute distances. Where the ‘edge’ of a city is defined would seem to have a 

significant effect on the centrality measure of the city, but no formal definition of a city’s edge is 

given in the paper. If the edge is defined subjectively, this may be a shortcoming of the 

population centrality measure.  

2.3 Relating Travel Behavior to Smart Growth Strategies 

As previously mentioned in Chapter 1, methodologies for relating travel behavior to 

smart growth strategies can be broadly classified into the following three categories: (1) post-

processing approaches that work with a basic four-step transportation planning model; (2) 

modified implementations of the four-step process that can reflect various aspects of smart 

growth impact; and (3) disaggregate, activity-based approach.  In addition, some general 

methods, such as correlation and regression analysis, have been used to study the impact of land-

use variables on travel behavior.  The aforementioned methodologies are briefly surveyed next. 

2.3.1 General methods 

Comparison, correlation, linear regression, and discrete choice models are among the most 

commonly adopted methods by researchers to find the link between travel behavior and smart 

growth strategies. These methods are so widely used that it would be cumbersome to list all the 

papers that used them.  A few examples of each method are presented here.  
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Some early papers chose neighborhoods with different land use patterns and compared 

their travel behavior, and/or tested the correlation factor between land use variables and travel 

behavior measures. For example, Cervero compared modal splits between two distinctly 

different  neighborhoods in the San Francisco Bay Area, and found that the neo-traditional 

neighborhood residents had 10% higher share of non-motorized modes than did residents of the 

traditional neighborhoods, for non-work trips (Cervero and Radisch 1996). For work trips, he 

found that compact, mixed-use and pedestrian-oriented development have strong effect on the 

mode of access trips to rail stations, inducing higher shares of access trips by walking and 

bicycle.  

Correlation analysis and linear regression are both widely used methods. Kitamura et al  

examined the effects of land use and attitudinal characteristics on trips’ mode share by building a 

two-step linear regression model (Kitamura, Mokhtarian et al. 1997). The first step model has 

socio-demographic and neighborhood characteristics as independent variables, and shows that 

residential density, public transit accessibility, mixed land use and the presence of sidewalk add 

significant explanatory power when socio-economic difference are controlled for. Then in the 

second model 39 attitudinal variables relating to urban life are factor-analyzed into eight factors 

and the eight factors are added to the models discussed above. Modeling results show that the 

attitudes are more strongly associated with travel behavior than land use characteristics.  

Handy tested the correlations between answers to the attitudinal questions and the 

frequency of walking to a store (Handy 1996). The correlation factors were between 0.01 and 

0.32. In another paper by Bento et al (Bento, Cropper et al. 2005), VMTs of households are used 

as dependent variables in some linear regression models.  The study’s results show that 
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population centrality, jobs-housing balance, city shape and road density have a significant effect 

on annual household VMTs.  

Discrete choice models are good methods in dealing with disaggregate problems. Cervero 

employed a binary choice to model motorized trips and non-motorized trips (Cervero 1996). 

Boarnet and Greenwald built ordered probit models for the trip frequency of non-work car trips 

(Boarnet and Greenwald 2000). Bento et al applied multinomial logit models to find the effects 

of urban spatial structure on mode choice among the car, bus, rail and non-motorized modes 

(Bento, Cropper et al. 2005). They found that probability of driving to work is lower the higher 

are population centrality and rail miles supplied and the lower is road density.  

Cao et al employed a nested logit model for vehicle type choice among the car, minivan, 

SUV and pickup (Cao, Mokhtarian et al. 2006). They found that an outdoor spaciousness 

measure (based on perceptions of yard sizes and off-street parking availability) and commute 

distance impact vehicle type choice after the socio-demographic and attitudinal factors are 

controlled for, thus land use policies have some potential to reduce the choice of light duty trucks, 

thereby reduce emission.  

2.3.2 Post-Processing Methods 

The post processor method gets its name from the fact that it works directly on the final outputs 

of the four-step method planning methods, such as VMT. This is sometimes done for expediency, 

given the considerable time and cost of compiling local data and recalibrating large-scale models. 

One successful example of using the post-processing method involved examining the travel 

impacts of redeveloping the Atlantic Steel site in central Atlanta (Cervero 2006). The consultants 

used results of studies from the San Francisco Bay Area (Cervero and Kockelman 1997), 
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metropolitan Portland, and other areas (Ewing and Cervero 2001), and found density, land use 

diversity, and pedestrian-friendly designs reduce vehicle trip rates and VMT.  

In post-processing methods, relationships between rates of travel (VT or VMT) and 

descriptors of the built environment, as defined by the 4Ds previously mentioned, are 

investigated and the elasticities of VT or VMTs are derived. The elasticities express the 

percentage changes in VT and VMT as a function of percentage changes in each of the 4Ds. Two 

GIS-based software, INDEX and I-PLACE3S, have incorporated the 4D elasticities and have 

been used in evaluating the transportation benefits of alternative smart growth strategies. INDEX 

4D method gives definitions for each of the 4Ds (Table 2.6), and the elasticity table (Table 2.7). 

The 4D elasticities are applied in a “post-processor” fashion, to a travel demand model to reflect 

the potential vehicle trip reduction that may result from smart-growth strategies. This has been 

done by application of the elasticities to aggregate measures by sub-area such as the area 

containing a new development, but has also been done by applying the elasticities to vehicle trip 

ends in a model trip table to adjust the number of trips. The revised trip table can then be used in 

the travel model for assignment of traffic to a roadway network to see how the trip reduction 

affects travel on specific links.  
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Table 2.6 4D Formulations of INDEX 4Ds Method 

Density (Population + Employment)/Area 

Diversity 1-[ABS(b*Population - Employment) / (b*Population + Employment)] 

Where: b=regional employment / regional population 

Design Design index=0.0195*street network density+1.18*sidewalk 

completeness+3.63*route directness 

Street network density=length of street in miles/area of neighborhood in square 

miles 

Sidewalk completeness=total sidewalk centerline distance / total street centerline 

distance 

Route directness=average airline distance to center / average road distance to 

center 

Destination Sum[Attractions(j)*Travel Impedance(i,j)]     for all regional TAZ j 

Source: INDEX 4D METHOD A Quick-Response Method of Estimating Travel Impacts from Land-Use 
Changes Technical Memorandum 
 

Table 2.7 4D Elasticities of INDEX 4Ds Method 

 Daily VT Daily VMT 

Density -0.04 -0.05 

Diversity -0.06 -0.05 

Design -0.02 -0.04 

Destination -0.03 -0.20 

Source: INDEX 4D METHOD A Quick-Response Method of Estimating Travel Impacts from Land-Use 
Changes Technical Memorandum 
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2.3.3 Enhanced Travel Demand Forecasting Method 

The Urban Transportation Modeling System, commonly known as the four-step method, is the 

primary tool used by the MPOs in U.S. for forecasting future travel demand and the performance 

of a transportation system. While the four-step process enjoys widespread support from decades 

of use, the most basic level of four-step method is developed primarily for evaluating large-scale 

infrastructure projects, and not for more subtle and complex smart growth strategies involving 

mixed land use and pedestrian friendly designs (Cervero 2006).  For example, the primary unit of 

analysis in the four-step process, TAZs, range in size from block groups to census tracts, are too 

gross to gauge the fine-grained design and land-use-mix features of neighborhood-scale 

initiatives. To be sensitive to smart growth, measures of land uses that change under smart 

growth policies needed to be included in for four-step method and the comparisons of alternative 

programs, policies, and projects should be allowed.  

A report generated by DKS Associates in 2007 provides a detailed analysis of the 

sensitivity of many local travel demand forecast models to smart growth strategies 

(DKS_Associates 2007). The limitations of the traditional four-step process, and the 

corresponding suggested improvements offered by DKS Associates, are shown in Table 2.8Table 

2.8.  
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Table 2.8 Limitations of Traditional Four-step Method and Suggested Improvements 

Limitation of traditional four-step method Improvement in this research 

Aggregation of zonal characteristics leads to bias in 

representation of trip-maker characteristics. 

We use disaggregate method in trip distribution and 

mode split models. 

Mixed-use developments are not explicitly 

recognized 

Variables that represent mixed-use are generated 

and included in the models. 

Land-uses are often represented by employment 

rather than floor area. 

The land use variables are represented by both 

employment and parcel land use data 

Transit options are inadequately represented. A transit coverage rate  is included in the method. 

Non-motorized modes are not represented. Walk and Bike are considered as two separate 

modes in mode choice model. 

Automobile travel time is used to represent the 

travel cost between the OD pairs.  

We include multiple measures of travel cost, 

including both distance and travel time of each 

mode. 

Mode choice is only affected by time and cost 

characteristics. 

Disaggregate mode choice model includes many 

socio-demographic, land use, and travel cost 

characteristics. 

 

2.3.4  Activity-based Models 

Activity-based models represent a significant restructuring of travel demand models. Instead of 

being based on trips, activity-based models structure the modeling around the activities that a 

household wishes to pursue during a day and how travel can be chained to satisfy the activity 

desires (DKS_Associates 2007).   Moreover, activity-based models are disaggregate in nature, 

and behaviorally-based, as opposed to the statistically-based four-step process.  

In an activity-based model, travel is modeled in “tours” rather than trips and the decision-

making unit is the household rather than a TAZ. Activity-based modeling is an emerging method 

that holds promise for improving smart-growth sensitivity because it recognizes that trips made 

by a household are not independent of each other but are often connected for efficiency or 



38 
 

 

convenience. Many smart-growth strategies are designed to reduce vehicular travel by making it 

easier for individuals or households to chain trips together, thus activity-based method is 

supposed to performs well in evaluating smart growth strategies.  

Current implementations of activity-based travel demand model systems in USA include 

Portland, San Francisco (Jonnalagadda, Freedman et al. 2001), New Hampshire 

(Cambridge_Systematics_Inc 1998), Ohio, New York City, Columbus, and Atlanta(Bradley and 

Vovsha 2005). As is shown in Figure 2.2Figure 2.2, the activity-based model also includes four 

steps (DKS_Associates 2007). It uses synthetic populations based upon micro-data to do 

disaggregate simulations. And then the households generate complete tours or chains of trips, 

rather than individual trips. The trip chain generation is related to each household’s socio-

demographic attributes and also land use factors. The time of day of the tours is also included in 

the trip chain generations. After that, a joint mode/destination choice model applies.  

 

Figure 2.2 Steps of Activity-Based Model 

1
• Auto Ownership Model

2

• Activity day‐pattern 
choice

3

• Tour generation and time 
of day

4

• Joint mode/destination 
choice
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Although activity-based model is generally considered to be more advanced method than 

traditional four-step method, it is not commonly applied. It is probably because building a 

successful activity based model needs very detailed survey data, which are often too costly to 

collect.  While activity-based models are not investigated in great detail in this study, the study’s 

proposed enhanced four-step planning method captures many aspects of the activity-based 

paradigm. 

2.4  Causality in Travel Behavior Models 

One reason for the mixed success of models relating the built environment to travel behavior is 

the phenomenon of residential self-selection; that is, residents choose to live in a place that 

matches their desired travel patterns, rather than adapting their patterns to match their 

neighborhood. For example, many studies conclude that household proximity to transit stations is 

well-correlated to transit usage. This may be due to people who are predisposed to transit usage 

choosing to live near transit stations (self-selection), or it may be that most households are 

willing to use transit, but only those near transit stations may do so. The distinction has 

consequences for planning efforts: if residential self-selection is prominent, newly constructed 

transit stations may see less use than expected. If residential self-selection is not prominent, it 

becomes easier to predict transit station use. In this way, the existence and magnitude of self-

selection can greatly impact the effectiveness of travel behavior models of many types, including 

those that relate the built environment to travel behavior. 

 This phenomenon is discussed in detail by Cao et. al. (2009) who concluded that self-

selection is likely influential in such modeling, and hence can create causal ambiguity. Cao et. al., 

in their own literature review, concluded both self-selection and land use affect pedestrian 

behavior to varying and difficult to quantify degrees. Additionally, Cao et. al. concluded that 



40 
 

 

relatively low-density suburban neighborhoods exhibit self-selection to a greater extent than 

urban neighborhoods. This implies that factors such as education and income, commonly higher 

in suburban neighborhoods, may be correlated to the magnitude of self-selection. This matches 

intuition; higher income households may have more choice in where to live and which modes of 

transportation to use. These conclusions reinforce the earlier work of the same authors 

(Mokhtarian and Cao, 2008).  

 However, according to Naess (2009), studies that account for residential self-selection 

show that urban form, even when accounting for self-selection, still influences travel behavior in 

a significant way, and models relating the two can be statistically valid. Furthermore, Naess 

suggests that, when including social and economic control variables such as car ownership and 

mode preferences, the effects of the built environment may be underestimated. ‘Over-controlling’ 

is not often considered; many studies use as many control variables as may be gathered. Naess 

argues that control variables should be selected with caution, and in some cases, control variables 

such as vehicle ownership and attitudes toward transportation modes should be excluded from 

regression analysis, as this may lead to built environment factors being underestimated. Naess’ 

methodological framework consisted of five models: bivariate models relating each explanatory 

variable to the measure of travel behavior (daily vehicle-kilometers travelled), and four other 

models that controlled for various sets of factors including built environment factors, 

demographics, and modal attitudes. For most explanatory variables, including more controls 

decreased the significance of the explanatory variable, as one would expect. In other cases, the 

inclusion of many controls caused explanatory variables to be rendered statistically insignificant, 

even with a generous p-value of 0.15. In these cases, it may be that the explanatory variable was 

non-causal, in which case the control variables did their job well. However, Naess argues, it may 
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also be that too many control variables were used, causing a causal and important explanatory 

variable to have its effects obfuscated. 

 Another study that specifically addresses causality problems in travel behavior models 

was conducted by Vance and Hedel (2007). Both a discrete choice model (mode selected for 

non-work trips) and a continuous choice model (distance traveled by vehicle per trip) were made, 

with many built environment and control variables included. Instrumental variables correlated 

with the built environment factors were used to aid in identifying causal relationships. An 

instrumental variable is a variable expected to directly affect a causally ambiguous explanatory 

variable. When varying an instrumental variable, a change in the dependent variable would 

provide evidence of a causal link between the explanatory and dependent variables. Such 

methods of identifying causal links are often employed when additional data is costly to obtain, 

such as if a new travel survey is needed. The study concluded that even with split-sample 

instrumental variables used, built environment factors retained their statistical significance in 

both the attempted models. While the study does not dismiss the effects of residential self-

selection, it does state that even in the presence of these effects, built environment factors are 

still influential. 

 Greenwald (2006) applies the concept of endogeneity to travel behavior models. 

Endogeneity is the problem of the error term in a linear regression model being correlated to one 

of the regressors, which is a sign of statistical bias in the regressor’s coefficient. Greenwald 

states that endogeneity may be a sign of residential self-selection. Instrumental variables, as used 

by Vance and Hedel (2007), can be used to address the problem of endogeneity.  
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 Cervero and Kockelman (1997) discuss another source of causal ambiguity. Many of the 

built environment factors thought to influence travel behavior, such as mixed use development, 

shorter blocks, and sidewalk coverage, are correlated with one another. That is, dense urban 

neighborhoods will typically exhibit all, rather than some, of these traits. This multicolinearity 

makes it difficult to pinpoint which factors affect travel behavior, and to what extent. Linear 

regression model coefficients are interpreted as the estimated effect on the dependent variable of 

a unit change in one of the explanatory variables while the others remain constant. However, if 

neighborhood-level data produces two collinear variables, a statistical model cannot truly predict 

what would happen if one collinear variable is held constant as a control, as there is no real-

world example of this. 

2.5  Conclusions 

This chapter has surveyed the different methods and approaches used in previous studies to 

quantify travel behavior and to characterize the built environment.  The chapter has also 

surveyed methods that have recently been proposed for evaluating the impact of smart growth 

strategies on travel behavior, and the issue of causality in travel behavior models. The next 

chapters will describe how two of those proposed methods, specifically the post-processing 

method and the enhanced four-step planning method, were extended in the current study and 

implemented for the Buffalo metropolitan area.  Specifically, Chapter 3 is dedicated to 

describing a post-processing method which was developed using travel behavior and land-use 

data from the Buffalo metropolitan area.  Chapter 4 then describes an enhanced four-step 

planning method which was also developed for Buffalo, and which has the potential to increase 

the sensitivity of four-step panning model to the impacts of proposed smart growth strategies on 

travel behavior.  
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3. A POST-PROCESSING METHOD FOR ASSESSING THE LIKELY 
IMPACT OF SMART GROWTH ON TRAVEL BEHAVIOR 

 

In this chapter, a post-processor method of quantifying and searching for relationships among 

many aspects of travel behavior and the built environment is developed and applied to the 

Buffalo, NY area. A wide scope of travel behavior is examined, and over 50 variables, many of 

which are based on high-detail data sources, are examined for potentially quantifying the built 

environment. Linear modeling is then used to relate travel behavior and the built environment, 

and the resulting models may be applied in a post-processor fashion to travel models to provide 

some measure of sensitivity to built environment modifications. 

The method used to relate quantifiable spatial relationships in the built environment to 

aspects of travel behavior is heavily GIS-based. Spatial variability in aggregated measures of 

travel behavior was mapped and statistically characterized, allowing potential explanatory 

variables to be statistically tested for usefulness in modeling. A number of geospatial analytical 

concepts were used to quantify aspects of the built environment, including raster-based methods 

of computing point density, kernel density, and cross-tabulated polygon area. Many of the built 

environment variables created were parametric, allowing parameter adjustments to improve 

collinearity with travel behavior variables. The primary tool used for the creation and spatial 

analysis of each explanatory variable was ESRI ArcGIS 9; specifically, ArcMap 9.3 using an 

ArcInfo license and ArcEditor (ESRI, 2008). 
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3.1  Methodology 

3.1.1 Study Area Definition 

The study area used is comprised of Buffalo, NY and its neighboring communities and contains 

90% of the population of Erie County, NY. There are 353 TAZs in the study area, shaded in gray 

in FIGURE 3.1. 

FIGURE 3.1: Study area location within New York and study area TAZs 

 

3.1.2  Quantifying Travel Behavior 

For this study, zonal vehicle travel behavior was quantified in two ways: as the mean vehicle 

miles travelled (VMT) per zonal household, and as the mean vehicle hours travelled (VHT) per 
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zonal household. VMT serves as a direct measure of distance travelled, while VHT accounts for 

variations in speed limit and congestion. Because the available data allows for both zonal VMT 

and VHT to be computed, both were examined for relationships to the built environment and 

both act as dependent variables in regression modeling. Only home-based trips were considered. 

Non-home-based trips were omitted from analysis due to technical constraints preventing each 

trip from being matched to both its origin zone built environment characteristics and home zone 

demographics. Thus, the scope was limited to home-based trips. 

Additionally, zonal propensity for non-vehicle travel was quantified by mode choice. For 

this study, all modes were classified as one of three types: vehicle, transit, or non-motorized. 

‘Transit’ includes both bus and subway trips, while ‘non-motorized’ includes both walking and 

bicycling. The zonal mode split proportions for each of these three mode types will then be 

computed, and used as three additional dependent variables.  

The following five variables were used to quantify different aspects of travel behavior: (1) 

Home-based daily VHT per household; (2) Home-based daily VMT per household; (3) 

Percentage of trips by vehicle; (4) Percentage of trips by transit mode; and (5) Percentage of trips 

by non-motorized mode. 

Analysis was conducted before selecting per-household tabulations of VHT and VMT. 

Preliminarily, zonal total VHT and VMT were tabulated as per-resident, per-worker, per-resident 

and worker (the zonal sum of population and employment) and per household ratios. Two 

methods were used to select the best tabulation. First, a linear correlation matrix was used to 

determine the mean correlation between the 10 most correlated independent variables and the 

four sets of dependent variables. It was found that per-household measures of travel behavior 
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correlated the best with the independent variables. Second, linear regression was used to 

determine the maximum possible adjusted R2 for each tabulation method. Again, it was found 

that per-household dependent variables had the highest potential adjusted R2 values, and thus the 

highest potential explanatory power for their linear models. 

  The data required to compute these dependent variables were obtained from the 2002 

Regional Transportation Survey (GBNRTC, 2002). Conducted under contract to the Greater 

Buffalo-Niagara Regional Transportation Council (GBNRTC), the survey collected travel diaries 

from 2,779 homes in the Buffalo-Niagara region. Each diary tabulated trips taken by all modes 

for one Monday through Friday period. In total, 23,518 trips were reported. For each trip, the 

duration was recorded, as well as the start and end addresses. To find the distance travelled for 

each trip, geo-coded addresses for each start and end point were plotted in ArcMap along with a 

road network imported from GBNRTC’s TransCAD model. An ArcMap ModelBuilder script 

was then used to determine the shortest network distance between each trip’s start and end point, 

yielding the length, in miles, for each trip. These trip lengths were then used as trip VMT. 

The ModelBuilder script used was taken from ESRI’s Geoprocessing Resource Center, 

and was entitled ‘MultipleRoutes’ (ESRI, 2009). It requires two inputs: a road network shapefile, 

and a text file listing the X and Y coordinates (in the same format as the network shapefile, for 

example, latitude and longitude) of both the start locations and end locations of each trip. The 

script applies the ‘Make Route Layer’ tool to the network shapefile, and the ‘Make XY Event 

Layer’ tool to the start and end coordinates. Network Analyst is then used to route each trip and 

output a route layer. Figure 3.2, below, shows the distribution of trip lengths for all 23,518 trips 

recorded in the travel survey. The mean trip length was 4.7 miles. 
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Figure 3.2: Length of each travel survey trip, in miles 

 

Trip durations, lengths, and modes were aggregated by household, then multiplied by 

expansion factors (the number of households in the zone each surveyed household represents) 

and aggregated by zone to obtain total daily VHT, VMT, and mode split proportions for each 

zone.  Under-sampled zones can be expected to produce less accurate travel behavior estimates; 

therefore, 70 rural TAZs in Erie County with few surveyed households were excluded when 

determining the extent of the study area. Additionally, 39 zones from within the study area with 

improbable travel behavior were removed as outliers. Outlier screening was performed by first 

manually removing several clear outlier zones, then computing the mean per-household VHT 

and VMT for the remaining zones. Any zones that differed from the mean VHT or VMT by 
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greater than three standard deviations were removed. The five travel behavior estimates were 

tabulated for the remaining 314 zones and used as dependent variables for the study. Figures A1 

through A5 (Appendix A) display the spatial variability in zonal travel behavior, as measured by 

the five variables. 

3.1.3  Quantifying the Built Environment 

This section describes the data sources used to quantify the built environment, how the variables 

were defined, and the preliminary analyses performed to identify those variables that are most 

highly correlated to travel behavior. 

 Data Sources 

Many characteristics of the built environment may be expected to affect travel behavior. Among 

those considered for the study are land uses, the street network, transit infrastructure, and the 

spatial distributions of population and employment. To quantify these aspects of the built 

environment, many data sources were used. 

Land use data were gathered from a parcel map of Erie County obtained from GBNRTC. 

Each parcel had a three-digit land use code, the classifications for which were taken from the 

New York State Office of Real Property Services’ Assessor’s Manual (2006). Because 241 

different land uses were present in the study area, categories of land uses expected to have 

similar influences on travel, such as ‘residential’ and ‘commercial’, were defined that included 

ranges of land use codes. Land use classifications, with corresponding codes, that are used in this 

study are listed in Table 3.1, below. 
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Table 3.1: Land use classifications 

Land use code Classification Type 
0 Unknown Unknown 
100-190 Agricultural Agricultural 
200 Other residential 

Residential 

210 Single residential 
220 Double residential 
230 Triple residential 
240-250 Rural residential 
260-283 Other residential 
300-380 Vacant Vacant 
400 Other commercial 

Commercial 

411 Apartments 
414-418 Living accommodations 
420-426 Dining 
430-436 Motor vehicle 
437-449 Other commercial 
450-455 Multi-use commercial 

500-546 
Recreation and 
entertainment Recreational 

550-593 Undeveloped recreational 
600-694 Community Community 
700-744 Industrial Industrial 
800-885 Public Public 
910-972 Forest Forest 

 

In addition, a complete street network shapefile for Erie County from the 2000 U.S. Census was 

obtained, which includes minor roads typically omitted from TransCAD models and other 

simulation models. The inclusion of all roads is important for measurements of street density and 

intersection density, as is described later. The shapefile was converted into a network dataset 

composed of links and nodes using the ‘New Network Dataset’ tool in ArcCatalog.  
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Also obtained from GBNRTC was an employment point shapefile, showing the location and 

number of employees for each place of employment in Erie County. While zonal employment 

statistics exist, large places of employment may influence a larger area than only one zone.  This 

effect may be captured by variables crafted from address-level employment data. 

 The final data source, also obtained from GBNRTC, was a transit stop point shapefile 

including stops for all bus and rail. This data was particularly useful in crafting variables related 

to mode choice. As of the time of the travel survey, 2002, four ‘fare zones’ were used by the 

Niagara Frontier Transit Authority to determine transit pricing. The fare zones were nested 

concentrically: fare zone 1 encompassed urban Buffalo, Fare zone 2 contained urban land 

surrounding fare zone 1, fare zone 3 contained suburban areas, and fare zone 4 was primarily 

rural. 

 Variable Definitions 

From the parcel map, absolute measures of land use (i.e. density measures), such as population 

and employment density and the percentage of each TAZ classified as residential, commercial, 

and employment were calculated. The parcel map was also used to determine the parcel-covered 

area of each TAZ, which was used for density computations (such as population density) rather 

than the total area of the TAZ, which would included non-parcel-covered areas such as water. 

This is of particular importance for this study as many coastal TAZs extend into Lake Erie, 

which would skew measures of density. 
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For diversity, relative measures of land use, such as the balance of residential and commercial 

land for each TAZ compared to the study area residential-commercial ratio were utilized.  The 

balance between two land use types (i.e. b1 and b2) is defined as: 

݈݁ܿ݊ܽܽܤ ൌ 1 െ  ቚ௔כ௕భି௕మ

௔כ௕భା௕మ
ቚ  

   where  ܽ ൌ
∑ ௕మ

∑ ௕భ
, the ratio of b2 to b1 for the entire study area 

  b1 and b2 are measures of land use, the balance of which is thought to be related 

to travel behavior 

In addition, the study experimented with the Dissimilarity index, which was first used by 

Cervero and Kockelman (1997).  To define that index, a 100m square grid was defined, and each 

cell of the grid was assigned a value corresponding to its most common land use. The land uses 

considered were: residential, dining, motor vehicle, offices and banks, commercial storage and 

distribution, other commercial, industrial, health-related, education, other community services, 

and recreational. All other land uses and non-parcel area were ignored. Each cell’s dissimilarity 

value was then computed as the number of dissimilar land uses in the eight adjacent cells. High 

dissimilarity is a sign of land use mixing, typically considered conducive to smart growth. See 

Figure 3.3, below. 
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Figure 3.3: Dissimilarity index computation for a single cell 

 

In the above figure, parcel-level land uses (upper left) are overlaid with a 100m square 

grid. Each cell of the grid is assigned a value corresponding to the land use with the highest 

proportion of the cell’s area (upper right). For each hectare cell (bottom left), the eight adjacent 

cells are considered. The central cell is assigned a value from 0 to 8 corresponding to the number 

of dissimilar land uses in adjacent cells (bottom right). Cells that do not have parcel area (such as 

roads and water) are not considered as dissimilar to any cells. Similarly, cells whose land use 

with the highest area proportion is unknown, or of a type not considered, are also not considered 

as dissimilar to other cells. 
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To capture aspects of network design and layout, variables were defined to measure 

design aspects such as street network density, transit stop density, and junction density.  In 

calculating these densities (as well as other density-related variables), spatial kernel density was 

often used, as opposed to point density.  For calculating the transit stops kernel density, for 

example, each transit stop is assigned a kernel radius and a kernel function whose value is 

highest at the source point, and decreases smoothly as the distance from the point increases until 

it reaches zero at a distance equal to the kernel radius. Next, in order to compute the mean kernel 

density of each zone, the study area was overlaid with a raster grid, and the kernel value for each 

cell was computed as the summation from all overlapping kernel function values.  The mean 

kernel density for each zone was then calculated as the mean kernel value for all cells in that 

zone. Cells that fell on the borders of two zones were proportionally split between the zones. The 

advantage of using kernel density rather than point density is that the influence of built 

environment features that are commonly found on the boundaries of TAZs, such as transit stops 

or employment locations, will count, as they should, toward multiple nearby zones rather than 

only the zone containing the transit stop. Parameters such as kernel radius were adjusted to 

maximize the correlation between the kernel-based variable and travel behavior.  Figure 3.4 

shows an example of how the employment kernel density was calculated based on the exact 

employment locations and the number of employees in each. 
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Figure 3.4: Employment Kernel Density based on Exact Employment Locations and 
Number of Employees 

 

The concept of kernel density was also applied to the layout of the street network. The 

street network can be modeled as a graph of links and nodes. Each link may be assigned a linear 

kernel function, similar to the point kernel functions used previously. The linear kernel function 

has its highest value at the link, and smoothly decreases to zero at the kernel radius, as pictured 

below: 
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Figure 3.5: Street network kernel density 

 

As seen above, in urban Buffalo, where streets are parallel and close together, street 

kernel functions will overlap. Streets that run along the boundaries between TAZs will have a 

kernel function that extends into both TAZs; this may be advantageous over simpler measures of 

street network density for which each street only counts toward a single TAZs. In addition to 

street network kernel density, junction density can be computed by assigned each junction 

(intersection or interchange, a node) a point kernel function. Both street and junction kernel 

densities are aggregated zonally in the same was as employment kernel density. 
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 Preliminary Analysis 

From these data sources, over 50 variables were generated and analyzed for relationships to the 

travel behavior dependent variables. TAZ-level cloropleths of the dependent variables were 

created and examined when determining how best to quantify built environment data so the 

resulting variables would be well correlated to travel behavior. Explanatory variables found to 

have little correlation to travel behavior were discarded, while those that were correlated were 

iteratively improved.  

Pearson (linear) and Spearman (non-linear) correlation matrices were then used as a 

preliminary step in variable selection. The correlation matrices listed correlation coefficients 

between all variables, dependent and independent, and were used to: (1) find which data sources 

were most promising when developing new variables; (2) diagnose the potential usefulness of 

independent variables for inclusion in a linear model; and (3) search for multi-collinearity among 

independent variables. The Spearman correlation matrix was used to search for variables that 

may be improved through variable transformation; however, most attempted transformations 

yielded marginal improvements, and the transformed variables were omitted from regression. 

Distribution histograms were also used; favor was given to variables with close to normal 

distributions. The histograms, along with scatter-plots, were also used to screen for outliers. 

 Candidate Variables List 

Of the many explanatory variables created and tested, only 17 were eventually selected for 

inclusion in one of the linear models. The variables are listed in Table 3.2, and classified based 

upon whether they are related to density, diversity or design measures. 
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Table 3.2: Built Environment Variable List 

 
 
 
 
Density-
related 
Variables 

Variable Brief Description 

Population Density Population divided by total parcel area 

Employment 
Density 

Employment divided by total parcel area 

Residential 
proportion 

% of parcel area classified as residential or apartments 

Commercial 
proportion 

% of parcel area classified as commercial 

Employment 
proportion 

% of parcel area classified as commercial, community or 
industrial, excluding apartments & community parcels that 
are relatively undeveloped 

High Density Index 

Crafted as an indicator of urban areas, this index is the 
percentage of parcel area classified as apartments, two- or 
three-family houses, offices, retail, or multi-use. These land 
uses were observed to be negatively correlated to vehicle use 
(both vehicle mode choice and VMT). 

 
 
 
 
 
 
Diversity-
related 
Variables 

Residential-
Commercial Balance 

The balance of residential land uses to commercial land uses 

Single-Other 
Residential Balance 

The balance of single-family residential to all other types of 
residential land uses. The idea behind creating this variable is 
that a variety of housing options may allow employed 
persons to live, on average, closer to their place of 
employment, thus shortening commutes 

Residential-
Community Balance 

The balance of residential to community land uses. As 
community land uses include schools, health facilities, 
churches, and other considerable trip attractors, it is thought 
that mixing community services into residential areas may 
reduce VMT. 

Community-
Commercial Balance 

The balance of community and commercial land uses. 
Mixing these may be expected to encourage trip chaining for 
non-home based trips. 

Apartment-Other 
Residential Balance 

The balance of apartments to all other types of residential 
land uses. As above, diverse available housing options may 
reduce commute times. 

Dissimilarity Index 
A measure of land use diversity calculated as described 
previously. 

 
 

Street Network 
Density 

The total length of street divided by the total parcel area. 

Transit Kernel Mean kernel density for transit stops of both buses and 
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Design-
related 
Variables 
 

Density subways. 

Junction Kernel 
Density 

Mean kernel density for junctions (intersections and 
interchanges). 

Street kernel density Mean kernel density for all streets 

Fare zone 1 Point 
Density 

The number of fare zone 1 transit stops per unit area. The 
Buffalo area metro system uses multiple fare zones, with 
zone 1 as the most urban and zone 4 as the most rural. It was 
found that TAZs that were at least partially contained in zone 
1 had significantly higher transit usage than those in zones 2, 
3 or 4. 

 Household Demographics 

The following five non-built-environment variables were taken from the travel survey, and are 

included as control variables: Median household income, Household vehicles, Household 

students, Household workers, and Household size. Including these variables helps address the 

previously-mentioned problem of residential self-selection to some extent.  At the same time, 

however, their inclusion may result in an under-estimation of the effects of the built environment. 

Consider, for example, Median Household Income, which is inversely correlated to several 

measures of density since it is likely that high-income households self-select to relatively low 

density neighborhoods.  Because of this, when median household income is found to be a 

significant explanatory variable for one of the travel behavior models, the correlated measures of 

density will be omitted to avoid issues with multi-collinearity.  Demographic variables are 

included in this study for the sake of completion and comparison to previous studies. 
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3.2  Travel Behavior Models 

To generate linear models that relate the built environment to each of the seven measures of 

travel behavior, ordinary least squares regression was used. Analysis was conducted in R (R 

Development Team, 2010), a statistical computing programming language, using the libraries 

‘stats’, ‘leaps’ (Lumley, 2009) and ‘faraway’ (Faraway, 2009). The models were made 

exhaustive stepwise linear regression; that is, regression in which every feasible subset of 

regressors is attempted with a user-defined objective to either minimize or maximize. Initially, 

the study defined the objective as that of the maximization of the adjusted R2, which defines the 

proportion of variation in the dependent variable explained by the predictors.  However, it was 

soon found that the resulting models would be over-fit, and significant multi-collinearity would 

exist. After the first several steps of the stepwise regression, the models would reach over 90% of 

its maximum adjusted R2, with each additional variable contributing little more to the 

explanatory power of the model. For some variables, the model yielding the maximum adjusted 

R2 would contain as many as 22 variables. Therefore, the objective was changed to that of 

minimizing Mallows’ CP, which is often used as a criterion for selecting subset regressor 

variables when utilizing stepwise regression (Mallows, 1973; Mallows, 1995).   

3.2.1 Mallows’ CP 

Mallows’ CP is defined as: 

௉ܥ ൌ
ܵܵ௥௘௦

௥௘௦ܵܯ
െ ܰ ൅ 2ܲ                     ܵܵ௥௘௦ ൌ ෍ሺ ௜ܻ െ ௣ܻ௜ሻଶ

ே

௜ୀଵ

 

Above, SSres is the residual sum of squares for a model with P regressors, MSres is the 

residual mean square when using all regressors, and N is the number of observations. Typically, 
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it is recommended that the selected model is that with the lowest CP for which CP ≈ P. However, 

it was noticed that some models for which CP < P could be selected with negligible loss to the 

adjusted R2 value. 

The models produced by this objective used significantly fewer variables, and the 

adjusted R2 typically was only reduced by several hundredths of a point. Plotted below, in Figure 

3.6, are the best models for non-motorized trip proportion that can be made with two or more 

variables. The best ten models are plotted for each number of included variables. The highest 

adjusted R2 is achieved with 16 variables. However, a seven-variable model has an adjusted R2 

only 0.02 lower than the best model.  

Figure 3.6: Adjusted R2 as a function of number of included variables 
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Figure 3.7: CP as a function of number of included variables 

 

 

Above, in Figure 3.7, are the CP values for the same models as those plotted in Figure 3.6. The 

lowest CP is achieved using a model with 11 variables and an intercept. This model has an 

adjusted R2 within 0.01 of the maximum. Thus, five fewer variables can be used with negligible 

loss to explanatory power. 

3.2.2 Regression Analysis 

Tables 3.3 through 3.7 summarize the best developed models for mode choice, VHT, and VMT, 

respectively, and list their corresponding statistics. 
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Table 3.3 : Non-motorized mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 0.107 3.978

Household vehicles -0.029 -0.195 -3.574

Household students 0.050 0.267 5.653

Population density 5.55E-06 0.300 4.015

Employment density -1.57E-06 -0.439 -4.343

Apartment-other residential bal. -0.060 -0.113 -2.151

Transit kernel density 1.46E-04 0.563 4.85

Junction kernel density 2.59E-04 0.154 1.779

Dissimilarity index -0.127 -0.128 -2.031

Residential proportion -0.091 -0.173 -2.507

Employment proportion -0.095 -0.141 -1.975

High density index 0.207 0.217 2.817

Adjusted R2:  0.425    Residual standard error: 0.0946 

F-statistic: 22.03,  p-value: < 2.2e-16 

 

Table 3.4: Transit mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 8.35E-03 0.402

Household vehicles -0.031 -0.282 -3.96

Household students -0.019 -0.136 -1.954

Household size 0.025 0.324 3.421

Single-other residential balance -0.094 -0.155 -2.651

Apartment-other residential bal. 0.047 0.120 2.534

Street network density 1.56E-03 0.417 2.982

Transit kernel density -7.13E-05 -0.375 -2.144

Junction kernel density -1.88E-04 -0.152 -1.426

Fare zone 1 density 5.79E-03 0.575 2.672

Dissimilarity index 0.186 0.256 4.205

Commercial proportion -0.194 -0.278 -4.033

Adjusted R2:  0.4636     Residual standard error: 0.06693 

F-statistic: 25.59,  p-value: <  2.2e-16 
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Table 3.5: Vehicle mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 0.657 12.895

Median household income 1.28E-06 0.129 1.99

Household vehicles 0.074 0.290 5.486

Household students -0.054 -0.172 -3.909

Employment density 1.69E-06 0.280 3.516

Single-other residential balance 0.169 0.121 1.942

Residential-community balance 0.063 0.097 2.138

Apartment-other residential bal. -0.114 -0.127 -2.619

Street network density -1.51E-03 -0.176 -1.81

Fare zone 1 density -0.010 -0.425 -3.253

Dissimilarity index 0.176 0.105 1.762

Commercial proportion 0.838 0.523 6.627

Employment proportion -0.373 -0.328 -4.772

High density index -0.269 -0.167 -2.755

Adjusted R2:  0.4954     Residual standard error: 0.1493     F-statistic: 24.63,  p-value: < 

2.2e-16 

 

Table 3.6: Home-based daily VHT per household 

Variable Coefficient β t-value 

(Intercept) -0.061 -0.334

Median household income 7.76E-06 0.123 2.341

Household students 0.271 0.135 1.92

Household size 0.463 0.404 5.392

Community-commercial 

balance -0.307 -0.073 -1.481

Residential proportion 0.674 0.120 2.227

Adjusted R2:  0.3654     Residual standard error: 1.067,     F-statistic: 37.04,  p-value: < 

2.2e-16 
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Table 3.7: Home-based daily VMT per household 

Variable Coefficient β t-value 

(Intercept) -0.960 -0.886

Median household income 7.29E-05 0.241 4.133

Household vehicles 1.166 0.150 2.142

Household size 1.834 0.333 5.332

Street kernel density -0.098 -0.116 -2.218

Adjusted R2:  0.3957     Residual standard error: 5.003     F-statistic: 52.23,  p-value: < 

2.2e-16 

 

3.2.3 Discussion 

As can be seen from the above, the values of the F-statistic for all models indicate that all 

developed models explain some variation in the response variable.  Looking at the R2 values, it 

can be concluded that the mode choice models appear to have higher explanatory value (i.e. the 

independent variables explain more of the variation in the response variable) compared to the 

VHT or VMT models.  The R2 values for the mode choice models were at least 0.425, which 

means that the built environment and the simple demographics included may be responsible for 

at least 42.5% of the zonal variation in mode choice. While the R2 values of the developed 

models may still be regarded as modest or low, it should be noted that the values obtained in this 

study compare quite favorably to those obtained by previous studies.  For example, the VMT 

models derived by Cervero and Kockelman (1997) had an R2 value in the range of 0.171 to 

0.203. For both VHT and VMT, the home-based models returned significantly better R2 values 

than the non-home-based models. This is likely primarily due to the omission of demographics 

from the non-home-based models, rather than a greater influence of the built environment on 

home-based travel. 
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With respect to the significance of the individual regression coefficients or independent 

variables, as judged by the t-statistic, it can be concluded that all the independent variables are 

statistically significant at a 90% confidence level, with the exception of the two variables shown 

in italics.  Moreover, most of these variables, with a few exceptions, appear to have the right sign 

or influence which agrees with prior intuition.  Where the sign does not seem to make sense, this 

is probably due to the inclusion of other closely-related variables in the model that capture the 

same effect.  For example, in the transit mode choice model, the coefficients of the street 

network density and fare zone 1 density variables both have a positive sign, which seems to 

make sense since an increase in either one of those variables should intuitively have a positive 

impact on transit ridership.  On the other hand, the fact that the coefficient of transit kernel 

density variable is negative is counter-intuitive.  However, it can be agreed that the former two 

variables (i.e. street and fare zone densities) are capturing the same effect, and hence the transit 

kernel density could be omitted from the model without too much loss in its explanatory power. 

Focusing specifically on the built environment variables, it can be seen that built 

environment variables, belonging to all three categories (density, diversity, and design), appear 

in the mode choice models.  This lends additional evidence to the hypothesis that the built 

environment does have an influence on mode choice, even after controlling for demographics.  

Fewer number of built environment variables ended up being significant in the home-based VHT 

or VMT models.  Specifically, only one built environment-related variable was found to be 

statistically significant in each of the VHT and VMT home-based models, after controlling for 

the socio-economic variables.  This suggests that the built environment has less influence on 

home-based travel than social and economic factors, and may be explained by the residential 

self-selection phenomenon.  As previously mentioned, the inclusion of the median household 
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income variable may force other density and diversity related measures out of the model because 

of high correlation among the variables.  For the non-home-based VHT and VMT, several built 

environment factors are present and significant, suggesting that roughly 20% of the variation in 

non-home-based travel may be explained by variations in the built environment factors. 

3.2.4  Elasticities 

As an additional measure of the relative influence of built environment factors on travel 

behavior, mid-point elasticities between the built environment and travel behavior measures were 

computed. The use of mid-point elasticities was first proposed by Cervero and Kockelman 

(1997). The mid-point elasticities are computed as follows: 

ܧ ൌ ߚ ൬
ҧݔ
തݕ

൰ 
where β is the regression coefficient, ݔҧ is the mean of the 

built environment variable, ݕത  is the mean of the travel 

behavior variable. 

The results are shown in Table 3.8, where elasticities of high absolute value may be expected to 

indicate greater influence. Variables included in linear models with relatively low significance 

levels were omitted from the elasticities table. 

By examining the elasticities, many extrapolations regarding the influence of the built 

environment on travel may be made. High-density development appears to encourage non-

motorized travel; however, zones of relatively high residential proportion produce fewer non-

motorized trips regardless of development density. Dense street networks appear to promote 

transit usage. Median household income, being inversely correlated to some measures of density 

and land use diversity, is highly significant in the home-based VMT model, which explains the 

absence of many built environment variables in this model. Household vehicle ownership does 
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not have a similar effect on the mode choice models because few built environment variables are 

correlated with household vehicle ownership. Zones of high dissimilarity, indicative of land use 

mixing, encourage transit usage to the point of creating a counterintuitive decline in non-

motorized travel. This may be attributable to the fact that all three mode choice proportions must 

sum to 100%, and also that many survey participants may not record non-motorized trips to and 

from transit stops but rather record only the transit trip. 

Table 3.8: Midpoint elasticities of variables present in travel behavior models 

 

 

Mode choice proportions Home-
based daily 
VHT per 
household 

Home-
based daily 
VMT per 
household

 Non-
motorized

Transit Vehicle 

Density 

Population density 0.475 

Employment density -0.177 0.017 

Residential proportion -0.523 0.191 

Commercial 
proportion -0.647 0.124 

 
Employment 

proportion -0.249 -0.087 
 

High density index 0.346 -0.040 

Diversity 

Residential-
commercial balance  

Single-other 
residential balance -1.101 0.087 

 
Residential-

community balance 0.038 
 

Community-
commercial balance --- 

Apartment-other 
residential balance -0.129 0.203 -0.022 

 

Dissimilarity index -0.499 1.482 0.062 

Design 

Street network density 1.043 -0.045 

Transit kernel density 0.209 -0.207 

Junction kernel 
density 0.292 --- 

 

Road kernel density -0.184 
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3.3 Principal Component Analysis 

Factor analysis is a statistical analysis tool that employs factors to describe variability among 

explanatory variables. Factors are unobserved variables that correlate well with several 

explanatory variables, thus implying a previously unknown structure exists within the data. 

Factor analysis can be employed to reduce the number of explanatory terms needed to describe 

most of the variability in the data and to find relationships among explanatory variables. For the 

task of relating travel behavior to the built environment, both applications of factor analysis are 

useful: many explanatory variables may be combined into a smaller number of factors for ease of 

study, and explanatory variables may be found to describe variability in a common factor, thus 

implying they are part of a common phenomenon.   

3.3.1 Factor Analysis 

Precedent for the use of factor analysis comes from Cervero and Kockelman (1997), who 

linearly combined built environment variables into factors. It was initially conjectured that the 

built environment would primarily impact travel behavior along three dimensions (the three Ds – 

density, diversity, and design). However, it was discovered that the assumption that the three Ds 

were independent dimensions of travel behavior was inaccurate, and only two factors were 

needed to account for most of the variability among the data. The first factor, intensity, was 

highly correlated with density and accessibility related variables, while the second factor, 

Fare zone 1 point 
density 0.472 -0.035 

 

Demo-
graphics 

Median household 
income 0.062 0.210 0.482 

Household vehicles -0.528 -1.133 0.118 0.252 

Household students 0.396 -0.298 -0.038 0.106 

Household size 1.394 0.622 0.601 
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walking quality, was composed of variables relating to design. Six variables were highly 

correlated with each factor, thus lowering the number of explanatory terms needed to explain 

most of the variability from 12 variables to two factors. The correlation coefficient relating each 

variable to its factor is referred to as the factor loading. Cervero and Kockelman obtained factor 

loadings of 0.796 or greater for the six variables comprising the intensity factor, indicating strong 

positive correlations between six measures of density and the intensity factor, and similarly 

strong correlations for the walking quality factor. 

3.3.2 Principal Component Analysis 

Related to factor analysis is principal component analysis (PCA). In PCA, each variable is 

considered as a dimension of the dataset. Thus, the Buffalo-area dataset used previously in linear 

modeling is a 22-dimensional dataset. This variable space is rotated about its many axes and a 

22-dimensional unit vector is drawn, along which the dataset has its maximum possible variation. 

The variation in the direction of the vector is removed from the dataset, thus ‘flattening’ the 22-

dimensional variable space into a space that, when rotated, is only 21-dimensional. Another unit 

vector is drawn that describes as much of the remaining variation in the data as possible, and the 

variation described by this data is removed. The process is repeated until 22 vectors are created. 

These vectors are the principal components. 

Conceptually, this procedure may be thought of as a rotation of the data as a new 

coordinate system is chosen, with each principal component being a unit vector along one of the 

axes. The first principal component created would lie on the axis along which the data varies the 

most. Each principal component is completely uncorrelated with all of the other principal 

components, as they are all orthogonal to one another. 
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Pictured below is a two-dimensional example of PCA. Only two variables are considered: 

population density (the x-dimension) and road network kernel density (the y-dimension). These 

two variables are well-correlated, so most of the variation falls along a clear line. As the values 

of the variables are significantly different in magnitude, they must be scaled so as to have the 

same variance, one, using the scale factors in Table 3.9, below: 

Table 3.9: Scale factors for example of principal component analysis 

 Population Density Road Kernel 
Scale Factor 6746.85 7.651196 
 

Pictured left in is a scatterplot of the two variables. Pictured right are the scaled variables and the 

two principal components. The first principal component describes 84.6%  of the variation in the 

data, while the second principal component describes the remaining 15.4%.  

Figure 3.8:  Example of principal component analysis

       

Principle component analysis of all 22 variables was conducted in R, using the set of 

independent variables in Table 3.2, along with the five household demographic variables (R 
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Development, 2010). All variables were scaled to have unit variance, as variances differ 

considerably between variables that occupy different orders of magnitude. Computations were 

performed using singular value decomposition of the variable matrix. 

Ideally, the first few principal components generated will account for almost all of the 

variation in the dataset, thus allowing the data to be described by a small number of principal 

components without much loss in accuracy. This may also imply that the data has an underlying 

structure in which a small number of phenomena cause most of the variation. Table 3.10 shows 

the proportion of the dataset variance accounted for by the first eight principal components. The 

first principal component can describe 36.7% of the variance of the data, and the first eight 

components account for 86.2% of the variance. Each additional component describes less 

variation, as expected. 

Table 3.10:  Proportion of variance attributable to each principal component 

  PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8 

Standard deviation  2.841  1.942 1.521 1.2467 1.08 0.893  0.8199  0.7863

Proportion of 

variance 

0.367  0.171 0.105 0.0707 0.053 0.0362  0.0306  0.0281

Cumulative 

proportion 

0.367  0.538 0.643 0.714 0.767 0.8033  0.8338  0.8619

 

Table 3.11, below, is the loading matrix. Each column represents the end coordinates of an 

origin-bound 22-dimensional unit vector, or principal component. High absolute values of the 

loadings indicate high correlations between the variable and the principal component. 
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Table 3.11: Principal component loading matrix 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

MHHI_2000 0.256 0.001 -0.195 -0.223 0.047 -0.227 0.272 -0.002 

HHVEH 0.198 -0.175 -0.358 0.053 0.164 -0.261 0.019 0.087 

HWORK 0.134 -0.262 -0.361 0.212 -0.027 -0.172 -0.022 0.117 

HSTUD 0.076 -0.246 -0.293 0.311 -0.208 0.384 -0.105 -0.194 

HHSIZ 0.141 -0.312 -0.341 0.262 -0.069 0.12 -0.051 -0.11 

PopDensity -0.153 -0.321 0.224 -0.025 -0.306 0.153 -0.053 0.055 

EmpDensity -0.26 0.044 -0.29 -0.16 -0.035 -0.129 -0.188 0.273 

ResCommBalance 0.084 -0.345 0.167 -0.027 0.189 0.065 0.058 0.56 

SingleResOtherResBalance 0.25 -0.063 -0.061 -0.168 0.268 0.008 0.439 0.013 

ResCommunBalance 0.052 -0.283 0.186 -0.046 0.506 0.266 -0.244 0.229 

CommunCommBalance -0.07 -0.273 0.076 -0.164 0.359 -0.333 -0.506 -0.509 

ApartmentOtherResBalance -0.073 -0.146 0.263 0.412 -0.146 -0.545 0.008 0.236 

SNDbyParcelArea -0.307 -0.13 -0.137 -0.188 -0.055 0.003 0.108 0.009 

TransitKernel -0.284 0.057 -0.298 -0.191 0.007 -0.123 -0.09 0.176 

JunctionKernel -0.29 -0.198 -0.076 -0.149 -0.033 0.126 0.085 0.032 

RoadKernel -0.259 -0.285 0.016 -0.172 -0.054 0.151 0.194 -0.062 

MeanFZ1PD -0.311 0.012 -0.225 -0.139 -0.025 -0.079 -0.061 0.114 

Dissim100m -0.237 0.005 -0.039 0.239 0.389 0.108 0.254 -0.109 

ResPercent 0.127 -0.324 0.071 -0.375 -0.152 -0.118 0.282 -0.26 

CommercePercent -0.279 0.014 -0.02 0.255 0.198 -0.184 0.282 -0.147 

EmpPercent -0.254 0.139 -0.079 0.227 0.277 0.137 0.163 -0.082 

HighDIndex1 -0.2 -0.271 0.219 0.161 -0.123 -0.165 0.207 -0.117 

 

The first principal component appears to be primarily composed of variables relating to 

transportation infrastructure. The highest loadings belong to the variables Fare zone 1 density, 

street network density, junction kernel density, and transit kernel density. All of these variables 

are thematically similar, as they are all aspects of transportation, and all of these variables have 

significantly lower loadings for the second principal component. Among the lowest loadings of 

the first principal component are variables relating to land use balance, which are thematically 

different from transportation-related variables. Two commerce-related variables, employment 
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density and commercial land area proportion, have the next two highest loadings for the first 

principal component. Although thematically different from the transportation variables, they are 

highly correlated with measures of transportation infrastructure (for example, employment 

density and transit kernel density are correlated with p=0.90), thus explaining their high loadings 

despite their lack of a thematic link. The first principal component may be tentatively assumed to 

represent the ‘transportation infrastructure’ dimension of the variable space. 

The second principal component appears to be primarily composed of variables relating 

to population distribution. The three variables with the highest loadings are residential to 

commercial balance, residential land area proportion, and population density. While the 

transportation-related variables from the first component were highly correlated with one another, 

these three variables are not. For example, population density and residential land area 

proportion are correlated with p=0.26. This shows that structures within the data that may not be 

apparent from a correlation matrix can because visible through the use of PCA. Road kernel 

density also has a high loading here, due to the cul-de-sac nature of many suburbs that give such 

neighborhoods high road densities (population density and road kernel density are correlated 

with p=0.69). Therefore, the theme for this principal component may be tentatively assumed to 

be ‘population density and distribution’. 

Four of the five highest loadings for the third principal component belong to household 

demographic variables. Thus, the first three principal component may be thought to represent the 

following three dimensions of the built environment: 
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Table 3.12:  Aspects characterized by first three principal components 

Principal component Built environment aspect 

First Transportation infrastructure 

Second Population density and distribution 

Third Household demographics 

 

After the first three principal components, underlying themes can no longer be found. This is to 

be expected, as less variation in the data remains to be explained after the variation from each 

principal component is removed. These first three components account for 64.3% of the variation 

in the built environment data.  

Another way to visualize these dimensions is through the use of principal component 

biplots. Below, in Figure 3.9, is a biplot of the first two principal components. A vector is drawn 

for each variable using the variable’s loadings for principal components one and two as its end 

coordinates. Variable vectors pointing in either direction along the x-axis influence the first 

principal component, but not the second. Variables pointing along the y-axis influence the 

second principal component, but not the first. The magnitude of the influence is represented by 

the length of the vector.  
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Figure 3.9: Biplot of first two principal components 

 

Principal component values for each TAZ were computed and plotted behind the vectors, in gray. 

The first principal component appears to account for more variation in the data due to urban 

TAZs (left) returning very low values for PC1. This is conceptually correct, as transportation-

related variables vary more between urban and rural areas than population-related variables do 

(although both vary considerably). 
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3.4  Variable Transformation 

Preliminary variable analysis conducted prior to linear regression modeling suggests that some 

variables may have greater explanatory power if transformed. One variable, employment kernel 

density, was already indirectly transformed using ArcGIS. Originally, employment kernel 

density spanned several orders of magnitude, as urban TAZs would be covered by many 

overlapping and heavily-weighted kernel functions, while rural TAZs were largely empty. The 

employment kernel raster was transformed with a log function to reduce the large spread of zonal 

values when aggregated. This logarithmic transformation improved the variable’s correlation to 

the measures of travel behavior significantly. 

In general, a variable is transformed by applying a continuous function to all values of the 

valuable. Functions are typically parametric, and parameters are chosen that maximize the 

transformed variable’s linearity with the regressand, improve the symmetric of its distribution, 

and to improve the interpretability of the data prior to analysis. 

3.4.1 Spearman coefficients 

Evidence that other variables may be significantly improved through transformations comes 

from analysis of the Spearman correlation matrix (as shown in the Appendix). The matrix shows 

the Spearman rank correlation coefficient, ρ, between each dependent and explanatory variable. 

The Spearman coefficient measures how close each relation between a dependent and an 

independent variable is to being a monotonic function. Formally, it is the Pearson (linear) 

correlation of the ranked variables; that is, if the rank of each value of the variable were plotted, 

the Pearson coefficient of the scatterplot of the ranked variables gives the Spearman coefficient 

of the unranked variables. A Spearman coefficient of 1 or -1 indicates a perfectly monotonic 

function relating one variable to the other. The function may be increasing or decreasing, but 
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must be purely so. A Spearman coefficient close to zero indicates that the ranked variables 

cannot be well related using an increasing or decreasing function. 

Spearman coefficients are useful in determining if variables are good candidates for 

transformations. A variable may have a low Pearson coefficient, indicating a poor linear relation 

with a dependent variable, but a high Spearman coefficient, suggesting that a non-linear relation 

may exist. For example, employment density is linearly correlated with home-based VMT with a 

Pearson coefficient of only -0.18, but correlated with a Spearman coefficient of -0.38. Initially, 

two simple transformations were attempted: applying a square-root to each independent variable, 

and applying a base-10 log to each independent variable. Several variables were found to be 

better correlated after transformation. For example, the correlation between employment density 

and several travel behavior variable was improved after all values of employment density were 

square rooted. This is likely due to the large range of employment density; urban TAZs may 

employ several thousand persons per square mile, while rural TAZs may employ fewer than 10. 

Because of the large range and the non-normal distribution within the range, employment density 

may explain more variability in travel behavior when square rooted. 

3.4.2 Power transformations 

Rather than attempting several simple transformations such as square roots and log functions, a 

more rigorous approach was used. The approach selected was the use of a family of power 

transformations intended to transform all regressors closer to homoscedasticity and normal 

distributions, both of which are expected to improve a variable’s usefulness in ordinary-least-

squares regression modeling. Power-transformations are rank-preserving. 
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The most common type of power transformation is the Box-Cox family of parametric 

transformations, which take the following form: 

ሻߣሺݕ ൌ

ە
۔

ఒݕۓ െ 1
ߣ

,    if ߣ ് 0;

log ݕ ,        if ߣ ൌ 0.

 

Above, y is the variable to be transformed and λ is the power parameter. The parameter is 

adjusted so as to distribute the variable symmetrically and as close to normal as possible. This 

form of power transformation is unable to handle negative and zero values. 

3.4.3 Yeo-Johnson power transformations 

Many refinements to the Box-Cox family have been proposed; perhaps the most refined is the 

Yeo-Johnson family, defined below: 

ሻߣሺݕ ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
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ۖ
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ሺݕ ൅ 1ሻఒ െ 1
ߣ

ߣ ݂݅     , ് 0, ݕ ൒ 0;

logሺݕ ൅ 1ሻ,         ݂݅ ߣ ൌ 0, ݕ ൒ 0;

ሺ1 െ ሻଶିఒݕ െ 1
ߣ െ 2

ߣ ݂݅     , ് 2, ݕ ൏ 0;

െ logሺ1 െ ሻݕ ߣ ݂݅        , ൌ 2, ݕ ൏ 0

 

 

Above, y is the variable to be transformed and λ is the transformation parameter. The first two 

conditional cases are similar to the Box-Cox family, but are able to handle values of zero. The 

last two cases allow negative values of y to be present. 
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Two examples of built environment variables prior to and following the application of the 

Yeo-Johnson transformation are given. Population density varies considerably within the study 

area. Small, urban TAZs with high-rise housing have population densities in the tens of 

thousands of people per square mile, while suburban and rural TAZs are several orders less 

dense. Thus, the variable is distributed asymmetrically, and its skewed distribution means it is 

unlikely to be collinear with a well-distributed response variable, such as VMT per household. 

Figure 3.10 shows the original distribution of population density, and Figure 3.11 shows the 

distribution of the Yeo-Johnson transformed variable. Another example, transit kernel density, is 

given in Figure 3.12 (the original distribution) and Figure 3.13 (post-transformation distribution). 

Figure 3.10: TAZ population density, prior to transformation 
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Figure 3.11: TAZ population density, following Yeo-Johnson transformation 

 

 

Figure 3.12:   TAZ mean transit kernel density, prior to transformation 
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Figure 3.13: TAZ mean transit kernel density, following Yeo-Johnson transformation 

 

 

As most study area TAZs have little or no transit, mean kernel density in these zones is close to 

zero. Downtown TAZs contain many overlapping kernel functions, resulting in mean kernel 

densities several orders of magnitude higher than those of suburban and rural TAZs. After the 

transformation is applied, the distribution is much closer to normal and likely closer to linearity 

with transit choice proportion, one of the dependent travel behavior variables. 

Transforming to normality is not a guarantee of improved linearity with the measures of 

travel behavior, and it is not a guarantee that the resulting regression models will have greater 

explanatory power. Table 3.13, below, shows the maximum possible adjusted R2 values that can 

be obtained using only the original variable space, and using only the Yeo-Johnson transformed 

variable space. 
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Table 3.13: Maximum possible adjusted R2 of original variable space models 

and Yeo-Johnson transformed variable space models 

 Non-transformed Yeo-Johnson transformed 

Non-motorized proportion 0.426 0.355 

Transit proportion 0.465 0.429 

Vehicle proportion 0.497 0.475 

HB VHT per household 0.367 0.400 

HB VMT per household 0.416 0.451 

 

As seen above, explanatory power is lost in three models (the mode choice models) when all 

variables are transformed. Therefore, the transformation should be applied selectively, rather 

than to all variables. Several variables have significantly improved correlations with measures of 

travel behavior post-transformation, as summarized below, in Table 3.14. 

Table 3.14: Correlations of selected variables with travel behavior prior to 

and following Yeo-Johnson transformation 

 

Pearson correlations, prior to transformation 

  NonMSplit TransitSplit VehSplit HB_VHT_pHH  HB_VMT_pHH

Household students  0.21 ‐0.02 ‐0.03 0.48  0.39

Employment density  0.21 0.38 ‐0.27 ‐0.19  ‐0.18

Transit kernel density  0.29 0.45 ‐0.35 ‐0.22  ‐0.2

Mean fare zone 1 density  0.38 0.55 ‐0.43 ‐0.23  ‐0.25

 

Pearson correlations, following Yeo‐Johnson transformation 

  NonMSplit TransitSplit VehSplit HB_VHT_pHH  HB_VMT_pHH

Household students  0.15 ‐0.04 0.04 0.54  0.45

Employment density  0.31 0.46 ‐0.36 ‐0.28  ‐0.43

Transit kernel density  0.45 0.53 ‐0.43 ‐0.2  ‐0.38

Mean fare zone 1 density  0.52 0.54 ‐0.49 ‐0.17  ‐0.31
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Correlation coefficients in bold are those that have been improved by the transformation. For 

most variables, correlation with the five measures of travel behavior remains the same, or is 

improved or worsened only marginally. 

To gauge the usefulness of Yeo-Johnson power transformations against simpler 

transformation functions, three others were attempted: log, square root, and the reciprocal 

function. For the logarithmic and reciprocal functions, a constant of 1 was added to the 

independent variables to prevent undefined values from being returned. For base 10 log 

transformed variables, the Yeo-Johnson transformation returned equal or better correlations for 

all variables except for Fare zone 1 point density, for which the base 10 log was slightly better. 

Base 2 log and natural (base e) log returned the same correlation matrices as base 10 log, 

indicating the base of the logarithmic function does not matter. The square root transformation 

was similarly outperformed by Yeo-Johnson for most variables, with the only notable exception 

being, again, Fare zone 1 point density. Finally, the reciprocal function was applied, and all 

correlation coefficients were significantly worsened, except, again, for Fare zone 1 point density 

(although the signs of the coefficients were reversed). It can be concluded that the Yeo-Johnson 

power transformation  can be expected to outperform the simpler functions attempted, except in 

case of variables that contain a high proportion of values equal to zero. As fare zone 1 contained 

about 90 of the study area’s 314 TAZs, roughly two-thirds of the values for this variable are 

zero, which likely caused poor estimation of the Yeo-Johnson power parameter, ߣ . For 

consistency, the Yeo-Johnson transformed Fare zone 1 point density will be used instead of one 

of the other functional forms, as the Yeo-Johnson transformed variable is still significantly better 

than the non-transformed original. 
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3.4.4 Linear regression with selective Yeo-Johnson transformations 

Linear regression was re-attempted with a partially transformed variable space. The four 

variables in Table 6.2 (Household students, Employment density, Transit kernel density, and 

Fare zone 1 point density) will be Yeo-Johnson transformed, while the remaining 18 variables 

will remain non-transformed. As these four variables were present and highly significant in 

several of the original regression models, the models can be expected to be improved. 

The regression method remains the same: ordinary least squares linear regression, with 

the objective of minimizing Mallow’s CP rather than maximizing the adjusted R2. Analysis was 

again conducted in R, using the using the libraries ‘stats’, ‘leaps’ (Lumley, 2009) and ‘faraway’ 

(Faraway, 2009). At least one of the transformed variables was present in each of the models. 

The results are summarized in Table 3.15 through Table 3.19, below. Variables that have been 

Yeo-Johnson transformed are in bold, with their power parameter ߣ in parentheses. See Table B1 

in Appendix B for variable definitions. 

 

 

 

 

 

 

 

 

 

 



85 
 

 

 

Table 3.15: Non-motorized mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 1.30E-01 3.297

HHVEH -4.18E-02 -0.276 -3.527

HWORK -2.37E-02 -0.131 -1.667

HHSIZ 3.95E-02 0.370 4.727

PopDensity 3.85E-06 0.208 2.835

EmpDensity (0.04) -9.79E-03 -0.182 -2.369

ResCommBalance 3.46E-02 0.082 1.501

SNDbyParcelArea 1.82E-03 0.357 4.953

MeanFZ1PD (-1.12) 7.80E-02 0.219 3.003

Dissim100m -1.32E-01 -0.133 -2.184

ResPercent -7.69E-02 -0.146 -2.209

Adjusted R2:  0.387     Residual standard error: 0.0977 
F-statistic: 20.77,  p-value: < 2.2e-16 

 

Table 3.16:   Transit mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 4.41E-03  0.205

HHVEH -2.40E-02 -0.217 -3.232

HHSIZ 1.29E-02 0.165 2.65

SingleResOtherResBalance -1.04E-01 -0.171 -2.997

ApartmentOtherResBalance 4.64E-02 0.118 2.603

SNDbyParcelArea 1.99E-03 0.532 4.821

JunctionKernel -2.23E-04 -0.181 -1.696

MeanFZ1PD (-1.12) 3.34E-02 0.127 2.032

Dissim100m 2.10E-01 0.289 4.891

CommercePercent -1.88E-01 -0.269 -3.909

Adjusted R2:  0.454     Residual standard error: 0.0674 
F-statistic: 30.0,  p-value: < 2.2e-16 
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Table 3.17:   Vehicle mode choice proportion 

Variable Coefficient β t-value 

(Intercept) 5.93E-01 8.012

MHHI_2000 1.27E-06 0.128 1.962

HHVEH 9.70E-02 0.381 5.591

HHSIZ -3.69E-02 -0.205 -3.361

EmpDensity (0.04) 1.76E-02 0.194 2.420

ResCommunBalance 6.16E-02 0.095 2.012

ApartmentOtherResBalance -1.20E-01 -0.133 -2.635

SNDbyParcelArea -3.53E-03 -0.411 -5.731

MeanFZ1PD (-1.12) -7.05E-02 -0.117 -1.794

Dissim100m 1.81E-01 0.108 1.770

ResPercent 1.45E-01 0.164 2.297

CommercePercent 7.52E-01 0.469 5.587

EmpPercent -3.64E-01 -0.320 -4.281

HighDIndex1 -3.32E-01 -0.207 -2.677

Adjusted R2:  0.477     Residual standard error: 0.1519 

F-statistic: 23.02,  p-value: < 2.2e-16 

 

Table 3.18:   Home-based VHT per household 

Variable Coefficient β t-value 

(Intercept) 1.374 4.867

HSTUD (-0.64) 1.312 0.263 3.761

HHSIZ 0.389 0.339 4.787

EmpDensity (0.04) -0.118 -0.204 -4.53

Adjusted R2:  0.388     Residual standard error: 1.048 

F-statistic: 67.17,  p-value: < 2.2e-16 
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Table 3.19:   Home-based VMT per household 

Variable Coefficient β t-value 

(Intercept) 5.99E+00  2.94

MHHI_2000 3.97E-05 0.130994 2.089

HHVEH 1.45E+00 0.185466 2.685

HSTUD (-0.64) 6.25E+00 0.261205 3.795

HHSIZ 7.93E-01 0.14396 1.644

EmpDensity (0.04) -6.83E-01 -0.24672 -3.696

SNDbyParcelArea 7.42E-02 0.281957 3.067

RoadKernel -2.26E-01 -0.2686 -2.907

Adjusted R2:  0.4461     Residual standard error: 4.789 

F-statistic: 37.01,  p-value: < 2.2e-16 

 

3.4.5 Discussion 

The adjusted R2 values for the three mode choice models are slightly lower than those made 

previously with non-transformed variables (see Table 3.3 through Table 3.7). This is likely due to 

the highly skewed, non-normal distributions of these dependent variables (see Figures A7, A8, 

and A9 in Appendix A). Because the regressands are non-normal, it does not benefit the models 

for the regressors to be normally distributed. Thus, variables such as employment density and 

transit kernel density, which are positively skewed, should remain positively skewed so as to 

properly correspond to their effects on the response variables. This also illustrates the limited 

usefulness of Pearson correlation matrices in determining which variables are suited for which 

model. The Pearson correlation coefficients between the three mode choice variables and the 

four Yeo-Johnson transformed variables were improved by the transformation. However, the 

linear models were slightly worsened – indicating that the Pearson correlation matrix should only 
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be used in preliminary variable screening, as it is a poor predictor of which variables will be 

significant in models of non-normal dependent variables. 

In contrast, both the VHT and VMT models were improved by the inclusion of 

transformed variables. This is likely due to the relative normality of VHT and VMT distribution 

compared to the heavily skewed mode choice variables (see Figure A10 and Figure A11 in 

Appendix A). While still somewhat right-skewed, they are less skewed than explanatory 

variables such as transit kernel density, as seen in Figure 3.12. Thus, the transformation to 

normality benefits models of VHT and VMT. This is the typical assumption of linear regression 

– that both the dependent variable and all other independent variables are normally distributed. 

At least some of the missing explained variability in the models may be attributed to failures of 

these assumptions to hold. 

To summarize, it is recommended that transformations to normality are only used when 

the dependent variable in the modeling is itself normal. In terms of travel modeling, this would 

not include variables such as mode choice, as these are likely to be skewed heavily away from 

normal. In urban neighborhoods with heavy transit and non-motorized travel, this may be the 

case. However, for a large study area, the majority of which is composed of suburban zones with 

little transit usage and non-motorized travel, this is not the case, and thus no transformations to 

normality should be used. For VHT and VMT, which have less skewed distributions, 

transformations to normality may be used for the entire independent variable space (see Table 

3.13), or selectively, as performed above. 
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3.5 Applications to a Hypothetical Land Use Planning Scenario 

In this section, a hypothetical land use and transportation planning scenario will be presented and 

analyzed using the models developed in section 3.2– that is, models that do not include 

transformed variables. The scenario developed is one typical of urban infill, in which a relatively 

high-density housing development is constructed on previously vacant or underutilized land. The 

city of Buffalo had a peak population of approximately 580,000 in 1950. As of the 2000 Census, 

the population had halved to approximately 293,000 (Hevesi, 2004). Population loss during this 

time period is a common characteristic of ‘Rust Belt’ cities, and is commonly attributed to loss 

of manufacturing jobs. Loss of population and manufacturing creates vacant land within the city. 

Because of this, urban infill development efforts have been undertaken in the recent years. The 

effects of the new housing on the network, in terms of the change in total daily VHT and VMT 

travelled, as well as the estimated travel mode proportions, will be estimated based on the 

changes in explanatory variables caused by the development. 

3.5.1 TAZ 52 overview 

The zone selected for analysis is TAZ 52, in northen Buffalo. The Census 2000 nation-based 

Traffic Analysis Zone code designation for this TAZ is 3602952. The MAF/TIGER feature class 

code is G6320. Its Census 2000 functional status is S, denoting it (and all other TAZs) as a 

statistical, rather than legal, entity (US Census Bureau, 2008). Figure 3.14 shows the location of 

TAZ 52 within the study area. The zone lies approximately four miles north of downtown 

Buffalo, and two miles east of the Niagara River, which forms the western boundary of the study 

area.  
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Figure 3.14: Location of TAZ 52 within study area 

 

TAZ 52 is bounded to the south by the Scajaquada Expressway (NY-198) and Delaware Park, to 

the east by Parkside Ave., to the north by railroad tracks, and to the west by Elmwood Ave. The 

zone is bisected by Delaware Ave. The zone was selected for being of roughly average 

population and employment density for the study area, and for containing a variety of land uses. 

The northwest region of the zone contains commercial and industrial parcels, including storage 

facilities, retail, a dance hall, and a music hall. A large school occupies much of the north-central 

area. Much of the rest of the zone is covered by various residential parcels, with some multi-use 

commercial, apartments, and vacant parcels scattered throughout. See Figure C1 in Appendix C 

for a parcel-level land use map of the zone. 
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Each parcel in the entire study area is assigned a classification code by the New York State 

Office of Real Property Services (2006). 241 land uses were present in the study area; these can 

be categorized by the ten major categories (denoted by the hundreds digit of the three-digit land 

use code) used in the Assessors’ Manual. Table 3.20 below, shows area estimates for TAZ 52. 

Land uses considered as ‘developed’ are listed in section 3.1: Methodology. 

Table 3.20:  Area estimates by major category for TAZ 52 

Land use type Area estimate, ft2 % of area estimate 

Unknown 1097500 7.4% 
Agriculture 0 0.0% 
Residential 8515000 57.7% 
Vacant 347500 2.4% 
Commercial 2530000 17.1% 
Recreation/Entertainment 275000 1.9% 
Community 1772500 12.0% 
Industrial 125000 0.8% 
Public 0 0.0% 
Forest 92500 0.6% 
Total Parcel Area 14755000  
Total Developed Area 13217500  

 

These areas listed above are only estimates due to the way ArcGIS calculates cross-tabulated 

areas. The ‘Tabulate Area’ tool first overlays the study area with a raster grid. Each grid cell is 

assigned two values: a zone value (the TAZ number), and a land use value (the three-digit land 

use code of the majority land use in the cell). The number of cells of each land use code is then 

cross-tabulated by zone. True polygonal areas of each individual parcel are infeasible on such a 

large scale. The smallest cell size that would not crash the computer on which ArcGIS was being 

run was 50 ft; therefore, each cell is 2500 ft2, reflected in the above table. One side-effect of 

using raster-based area tabulations on a vector parcel map is that many of the cells contain vector 

detail that is lost. This is why the above table lists TAZ 52 as containing a small amount of forest 
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area, even though no forest parcels are in the zone. An adjacent zone, containing Delaware Park, 

shares raster cells with TAZ 52, thus causing 0.6% of the zone to be erroneously classified as 

forest. This error is small, however, and the estimates may be within 1% of the true areas. 

Table 3.21 and Table 3.22, below, show the zone’s values for the five dependent travel 

behavior variables and the 22 independent variables, respectively. Descriptions of the 

explanatory variables may be found in Table B1 in Appendix B.  The values in Table 3.21 and 

Table 3.22 may be compared to the summary statistics of the variables for the entire study area, 

in Table A1 (for travel behavior variables) and Table B2 (for explanatory variables). Zone 52 has 

mode choice proportions close to the study area mean, with slightly higher-than-mean VHT and 

VMT per household. 

 

Table 3.21:  Travel behavior variable values for TAZ 52 

Travel Behavior Variable Value 

Non-motorized proportion 0.0888

Transit proportion 0.0561

Vehicle proportion 0.8550

Home-based VHT per household 1.841

Home-based VMT per household 11.088
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Table 3.22:  Explanatory variable values for TAZ 52 

Explanatory Variable Value 

Median household income 43750 
Mean household vehicles 1.6100 
Mean household workers 1.2099 
Mean household students 0.8175 
Mean household size 2.4402 
Population density 8545.0 
Employment density 3887.3 
Residential-commercial balance 0.8584 
Single-residential to other-residential balance 0.4817 
Residential-community balance 0.6893 
Community-commercial balance 0.7106 
Apartment to other residential balance 0.2761 
Street network density 28.451 
Transit kernel density 75.386 
Junction kernel density 88.27 
Road kernel density 15.435 
Mean fare zone 1 point density 7.7963 
Dissimilarity index 0.2752 
Residential area proportion 0.6223 
Commercial area proportion 0.1714 
Employment area proportion 0.2548 
High-density index 0.2112 

 

Figure C2 in Appendix C shows the raster map used to compute the dissimilarity index of 

the zone. Dissimilarity values of zero cover much of the zone, as many residential cells do not 

border dissimilar land uses. Cells that border neighboring TAZs, as well as cells in the mix of 

land uses in the northwest portion of the zone, have higher dissimilarity values. The zone’s 

dissimilarity index of 0.27 is close to the study area zonal mean of 0.30. This makes TAZ 52 

particularly useful to analyze, as the baseline land use mix is close to that of the study area as a 

whole. 

Figures C3, C4, and C5 in Appendix C map the zone’s road kernel density, transit kernel 

density, and junction kernel density, respectively. Road kernel density is high in residential areas 
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and low in commercial and community areas. This is typical of the entire study area, and 

illustrates why road kernel density is well correlated with population density (ρ =0.69). Transit 

kernel density varies little within the zone, but is slightly higher around the cluster of bus stops 

near the apartments. Junction kernel density has significant intrazonal variability in TAZ 52 and 

its neighboring zones due to the large gaps in the rectangular residential street network grid. 

3.5.2 Scenario overview 

Of particular interest are two apartment complexes in the center of the zone. These apartments 

were constructed in an area primarily occupied by low-density, single family residential parcels. 

This may be an example of ‘urban’ encroachment into a primarily suburban neighborhood. If the 

population loss of Buffalo were to stop and the city were to grow again, such developments 

would likely become more common as formerly suburban neighborhoods are developed to 

higher densities. Thus, it may be of use to determine the effects of the construction of new, high-

density housing on the zone’s travel behavior. 

As determined in section 3.3: Principal Component Analysis, most of the variability in 

the explanatory variables may be thought of as occurring along three dimensions: aspects of the 

transportation infrastructure, aspects of population density and distribution, and household 

demographics (see Table 3.12). Zonal household demographics are not a built environment 

factor and will thus be held constant as controls for the scenario.  Two land use scenarios will be 

developed around the first two principal components as follows: 
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Table 3.23: Scenario summaries 

Scenario Description 
Built environment 

dimensions affected 

Explanatory variables 

affected 

Baseline The current, unmodified zone --- --- 

A 
Low-density housing replaced with 

apartments 

Population density and 

distribution (PC2) 

Population density, 

single-residential to 

other-residential 

balance, community-

commercial balance, 

high-density index 

B 
As Scenario A, also with improved 

transit coverage 

As Scenario A (PC2), 

also Transportation 

infrastructure (PC1) 

As Scenario A, also 

transit kernel density, 

mean fare zone 1 point 

density 

 

Figure C6, in Appendix C, shows the hypothetical land use development plan. Two blocks near 

the existing apartments that are currently occupied by low-density single unit residential housing 

will be redeveloped into apartments. An estimated 158 residents live in these two blocks; the 

apartments will increase the population five-fold, to 790. This five-fold density increase estimate 

was obtained by estimating the ratio of the density of the existing four-floor Delaware Avenue 

apartments to the existing single family residences.  

3.5.3 Estimation of explanatory variables 

Assuming a five-fold population density increase on the two affected blocks, the explanatory 

variables can be re-computed for Scenario A. The zonal population density will increase by 16%, 

several land use balance variables will change, and the high density index will increase by 24%. 

For Scenario B, the same land use changes will occur, along with improvements in transit 

coverage that will double the zone’s mean transit kernel density and fare zone 1 point density. As 
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the existing Delaware Avenue apartments are served by clusters of transit stops (see Figure C4 in 

Appendix C), the improvement of transit coverage fits the proposed development of new 

apartments. Table 3.24, below, summarizes the changes in explanatory variables estimated for 

both scenarios: 

Table 3.24:  Estimated changes in explanatory values for hypothetical scenarios 

Explanatory Variable Baseline value Scenario A Scenario B 

Median household income 43750 43750 43750 

Mean household vehicles 1.610 1.610 1.610 

Mean household workers 1.210 1.210 1.210 

Mean household students 0.818 0.818 0.818 

Mean household size 2.440 2.440 2.440 

Population density 8545 9883 9883 

Employment density 3887 3887 3887 

Residential-commercial balance 0.858 0.858 0.858 

Single-residential to other-residential balance 0.482 0.440 0.440 

Residential-community balance 0.689 0.689 0.689 

Community-commercial balance 0.711 0.711 0.711 

Apartment to other residential balance 0.276 0.542 0.542 

Street network density 28.451 28.451 28.451 

Transit kernel density 75.38 75.38 150.77 

Junction kernel density 88.27 88.27 88.27 

Road kernel density 15.43 15.43 15.43 

Mean fare zone 1 point density 7.796 7.796 15.59 

Dissimilarity index 0.275 0.275 0.275 

Residential area proportion 0.622 0.622 0.622 

Commercial area proportion 0.171 0.171 0.171 

Employment area proportion 0.255 0.255 0.255 

High-density index 0.211 0.262 0.262 

 

Highlighted in blue in Table 3.24 are variables related to population density and distribution that 

are changed in both Scenario A and Scenario B. Highlighted in red are transit-related variables 

affected only by Scenario B. Six of the 17 built environment variables are affected by Scenario 

B. The remaining 11 built environment variables are those related to employment, community 
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land uses, and the street network that are not expected to be significantly impacted by the 

scenarios. 

3.5.4 Estimation of travel behavior  

Because the linear models for home-based VHT and VMT do not include any of the six affected 

explanatory variables, these two models will be omitted from the following analysis. The three 

mode choice variables will be estimated for the baseline scenario (existing conditions), Scenario 

A (only land use changes), and Scenario B (land use and transit changes). Analysis was 

conducted using the predict.lm function in R, yielding fitted values summarized in Table 3.25, 

below: 

Table 3.25:  Mode choice fitted values 

Travel behavior 
variable 

Actual 
value 

Fitted value 
(baseline) 

Fitted value 
(scenario A) 

Fitted value 
(scenario B) 

Non-motorized 
proportion 

0.089 0.087 0.089 0.100 

Transit proportion 0.056 0.058 0.075 0.114 

Vehicle proportion 0.855 0.808 0.757 0.680 

 

As the three mode choice linear models were estimated independently of one another, the fitted 

values are not guaranteed to sum to 1. Thus, a scale factor can be applied to each fitted value to 

enforce this constraint. The scale factor for each is computed as follows: 

ݎ݋ݐ݂ܿܽ ݈݁ܽܿܵ ൌ  
1

∑ ݊݋ܰ െ ,݀݁ݖ݅݋ݐ݋݉ ,ݐ݅ݏ݊ܽݎݐ ݏ݊݋݅ݐݎ݋݌݋ݎ݌ ݈݄݁ܿ݅݁ݒ
 

After scaling, the following mode choice estimates for each scenario are obtained: 
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Table 3.26:  Scaled mode choice fitted values 

Travel behavior 
variable 

Actual 
value 

Fitted value 
(baseline) 

Fitted value 
(scenario A) 

Fitted value 
(scenario B) 

Non-motorized 
proportion 

0.088838 0.091344 0.096681 0.111796 

Transit proportion 0.056162 0.061009 0.081029 0.127841 

Vehicle proportion 0.855001 0.847647 0.82229 0.760362 

 

As seen above in Table 3.26, the scaled fitted value for the baseline, existing conditions in TAZ 

52 closely match those reported by the travel survey (actual values). All three mode proportions 

are within 1% of the actual values, thus validating the models for this zone. 

The models predict that, for Scenario A, non-motorized trip proportion will remain 

roughly the same, while 2% of the zone’s trips will be taken by transit rather than vehicles. The 

shift in mode choice predicted for Scenario B is more drastic; vehicle proportion will drop by 

9%, transit proportion will increase by 7%, and non-motorized proportion will increase by 2%. 

According to the TransCAD model of Erie County, TAZ 52 generates an estimated 20,619 trips 

each day (about 12 per household).   Table 3.27, below, shows the number of trips taken by each 

mode, as estimated by the travel survey and the linear models (baseline scenario), as well as 

Scenario A and Scenario B. Also listed are the percent changes relative to the baseline scenario. 

 

Table 3.27:  Estimated number of trips by mode 

 
Travel 
survey 

Baseline 
scenario 

Scenario A Scenario B 

Travel behavior 
variable 

Estimate Estimate Estimate % change Estimate % change 

Non-motorized 
trips 

1832 1883 1993 5.8% 2305 22.4% 

Transit trips 1158 1258 1671 32.8% 2636 109.5% 

Vehicle trips 17629 17478 16955 -3.0% 15678 -10.3% 
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The predictions made in Table 3.27 are based on the assumption that neither scenario will 

change the total number of trips taken in the zone, but rather only the mode choice proportions. 

This assumption is somewhat unrealistic, and was made only to illustrate the absolute magnitude 

of the change in zonal travel, measured in number of trips, that may be attributable to the 

scenarios. Under Scenario B, for example, the number of transit trips would double, while 10% 

fewer vehicle trips would be made. Even when the transit infrastructure is not altered, as in 

Scenario A, 33% more transit trips are taken, and a modest 3% reduction in vehicle trips can be 

seen. This is attributable to apartment dwellers being less likely to own vehicles and more likely 

to use transit. This, in turn, may be due to transit coverage being maximized by placing transit 

stops in densely populated regions, such as between the apartment complexes in TAZ 52 (see 

Figure C4 in Appendix C). This may also be due, in part, to the relatively low income of 

apartment dwellers.  

3.6 Summary 

In this chapter, a post-processor method of quantifying the impact of the built environment and 

smart growth strategies on travel behavior was developed.  The models developed were then 

applied to a hypothetical land use and transportation planning scenario.  The next chapter will 

describe the second approach pursued in this study in order to develop planning tools that are 

sensitive to the built environment and land-use variables, namely an enhanced four-step planning 

process.  
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4. ENHANCED TRAVEL DEMAND FORECASTNG PROCESS 

SENSITIVE TO SMART GROWTH STRATEGIES 

This chapter will describe an enhanced four step, travel demand forecasting process which was 

developed to allow the process to better model and reflect the impact of proposed smart growth 

strategies on travel behavior.  This chapter begins with a description of the variables used in this 

part of the study to quantify land use.  This is followed by the enhanced models developed by the 

study for the trip generation, trip distribution and mode choice steps, respectively. Finally, a case 

study will be presented to demonstrate the feasibility of applying the enhanced travel demand 

forecasting method to assess the impact of different smart growth land use scenarios. 

4.1 Variables to Quantify Smart Growth Strategies  

The land use variables used in this part of the research can be grouped under the four D’s 

previously described in Chapter two.  A brief description of those variables is included below.  In 

addition, the variables used to capture TAZ-specific characteristics are also described.     

4.1.1 TAZ Size Variables 

The size of a TAZ is gauged in several different dimensions. The TAZ size variables we use in 

this research are listed in Table 4.1.  Because TAZs are generally very small in town center area, 

and relatively big in rural area, the AREA variable is always a proxy of many other un-quantified 

factors. For example, bigger TAZs are associated with sparse land use, low levels of access to 

opportunity sites, and longer trips. Considering the fact that farm land and forecast are not 

associated with travel behaviors, a DAREA variable is defined by excluding forest and 

agricultural land uses from AREA.  
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Table 4.1 TAZ Size Variables Used in This Research 

Variable name Definitions  

AREA The area of a TAZ in square miles  

DAREA The developed area of a TAZ in square miles, which is obtained 

by subtracting forest and agricultural land uses from the total area 

POP The number of residents in a TAZ  

HH The number of households in a TAZ  

TEMP The total number of employees in a TAZ  

MEMP The number of manufacturing employees in a TAZ 

REMP The number of retail employees in a TAZ 

WSEMP The number of whole sale employees in a TAZ 

OEMP The number of all other employees in a TAZ 

 

Population and number of households are major determinants of a TAZ’s trip production. 

Employment is a good measure of a TAZ’s attractiveness to trips. For example, in HBW trips’ 

destination choice model, TEMP is the most important variable. In HBShop trips’ destination 

choice, REMP explains much of the variation. More retail employment in a TAZ means stronger 

attractiveness of shopping trips.  

4.1.2 Density 

In this research, we generated two density variables: population density and employment density.  

Table 4.2 Density Variables Used in This Research 

Variable name Definitions  

POP_DE POP/AREA 

EMP_DE TEMP/AREA
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4.1.3 Diversity 

The Diversity variables used in this research are listed in Table 4.3. Detailed descriptions of 

these variables were provided in Chapter 2, specifically under section 2.2.2.  

Table 4.3 Diversity Variables Used in This Research 

Variable name Definitions  

DISSM Dissimilarity index 

LD_EPY Land use entropy 

EMP_EPY Employment entropy 

NWK_LD_EPY Non-work land use entropy 

BAL Jobs housing balance 

EMPOPOP Normalized Employment to Population Ratio 

 

In this research, three entropy variables are defined: EMP_EPY, LD_EPY, and NWK_LD_EPY 

(Table 4.3). EMP_EPY uses four distinct employment types: REMP, WSEMP, MEMP, and 

OEMP. LD_EPY uses six land use categories as follows: residential, commercial, public, 

community, industrial, and park & recreation. NWK_LD_EPY uses four land use categories: 

residential, commercial, public, and park & recreation. These land uses are considered not to be 

attractors of work-related trips. Basically NWK_LD_EPY excludes two land uses from the 

definition of LD_EPY, which are community and industrial, because they attract a lot of work-

related trips.  
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4.1.4 Design 

The Design variables used in this research are listed in Table 4.4. Due to the limitation of data 

source, we generate four design variables. The first one is a binary variable: RAMP or not. It 

measures whether there is access to freeway in a TAZ. People who like driving would be more 

likely to live near freeway, so this variable could represent residents’ characteristics in a TAZ. 

The second variable is freeway coverage rate, which is defined to be the percentage of area 

within 1 mile from freeway. It is another measure of freeway availability. 

Road density is defined based on total area and developed area. Higher road density could 

improve both auto usage and non-motorized, as walk and bike paths are usually along roads. In 

the future study, a sidewalk variable would be more helpful in the mode selection models.  

Transit coverage is defined as the proportion of area within 0.25 miles from transit stops, 

including both bus stops and rail stops. 0.25 miles is treated as an up-limit of walking distance 

for most people in Buffalo area.  

Table 4.4 Design Variables Used in This Research 

Variable name Definitions  

Ramp or not Whether there is ramp access to freeway in a TAZ 

Freeway coverage rate Proportion of a TAZ within 1 miles from freeway 

Transit coverage rate Proportion of a TAZ within 0.25 miles from transit stops

Road density Length of road/AREA 
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4.2 Trip Generation 

In this step, the multiple linear regression technique is applied to relate the trip production of a 

TAZ to a set of zonal attributes of that TAZ. The zonal attributes considered include size 

variables and 4Ds variables. The 4Ds variables are explicitly considered in order to measure 

smart growth strategies’ impacts, if any, on trip generations. Since the trip generation rates are 

heavily dependent on trip purposes, the trip production models are purpose specific, as is 

described in more detail later in this section.   Finally, while the trip generation step in traditional 

four-step method includes both trip production and trip attraction model, the enhanced travel 

demand forecasting approach developed in this study does not include trip attraction models.  

This is because only the doubly constraint gravity model needs trip attraction, and that model is 

not used in the proposed framework.  

4.2.1 Existing Approaches to Trip Generation Modeling 

There are three major techniques developed for trip generations, including the growth factor 

method, multiple linear regression and cross-classification analysis (Ortuzar and Willumsen 

2001). The growth factor method is heavily dependent on historical data. But smart growth 

strategies could change the travel behavior, making a simple extension of historical data not a 

good method to evaluate smart growth.  

Cross-classification aims to build a multi-dimensional matrix with each dimension 

representing an independent variable, stratified into a number of discrete classes and categories. 

The contribution of each variable to trip production is explicit in this method, but the method 

lacks a statistical measure to assess reliability of the results. More importantly, only a limited 

number of variables could be included to avoid complex and degenerate cross-classification 
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tables. That’s why the cross-classification method is not selected to evaluate smart growth 

strategies in this study. 

Multiple linear regression models address the shortcomings of both the two method 

mentioned above. It could incorporate many variables, and the flexibility of selecting variables 

makes it capable of capturing some unknown characteristics. Multiple linear regression method 

is used at the end.  

4.2.2 Data Description 

 Definition of Trip Purposes 

The definition of trip purpose is based on the recorded activities at the two trip ends. Table 4.5 

lists the activity types available in the 2002 Buffalo-Niagara Regional Household Travel Survey 

and their corresponding code. Table 4.6 shows the purpose of a trip is defined according to the 

activities at the two trip ends. It needs to mention that Home Based School (HBSch) trip 

production is not modeled in this research, due to the little influence of school bus on the traffic 

network.  
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Table 4.5 Trip End Activities 

Code Description of activity 

1 At home activities (eating, TV, sleeping, homemaker, etc) 

2 Working at home (job related) 

3 Work (include regularly scheduled volunteer work) 

4 Work-related (errands, meeting, etc) 

5 Attending school 

6 School-related 

7 Childcare 

8 Quick stop (gas, ATM, coffee, etc) 

9 Shopping 

10 Visit friends/relatives 

11 Personal business (medical/dental, errands, etc.) 

12 Eat meal outside of home (restaurant, take out, etc.) 

13 Entertainment, recreation, fitness 

14 Civic/Religious 

15 Pick up/Drop off passenger 

16 Change mode of transportation 

17 Other, specify 

Note: This table comes from the support files of the 2002 Buffalo-Niagara Regional Household Travel 

Survey 
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Table 4.6 Definition of Trip Purposes 

          Destination 

Origin 

Home  

(1[1] 2) 

Work  

(3 4) 

School  

(5 6) 

Shopping 

(9) 

Social Recreation 

(10 13 14) 

Other (7 8 11 

12 15 16 17)  

Home (1 2)  HBW HBSch[2] HBShop HBSR HBO 

Work (3 4) HBW NHBW NHBW NHBW NHBW NHBW 

School (5 6) HBSch NHBW NHBO NHBO NHBO NHBO 

Shopping (9) HBShop NHBW NHBO NHBO NHBO NHBO 

Social Recreation 

(10 13 14) 

HBSR NHBW NHBO NHBO NHBO NHBO 

Other (7 8 11 12 

15 16 17) 

HBO NHBW NHBO NHBO NHBO NHBO 

Note: [1]: All the numbers in the parenthesis mean activity code. See Table 4.5. 

[2]: Home based school 

 

 Data Weighting 

The 2002 Buffalo-Niagara Regional Household Travel Survey includes a single weight variable 

that was developed to account for the over sampling or under sampling of particular population 

segments. The Census Transportation Planning Package (CTPP) data from the 2000 Census were 

used to calculate the household size by vehicle ownership factor.  The 2000 U.S. Bureau of the 

Census data were used to calculate all other weight factors.  

To compensate for over sampling or under sampling, the sample was balanced relative to 

household size and vehicle ownership by developing a weight factor (wgt1).  An income weight 

(wgt2) was then developed to compensate for over or under representation of some income 

categories.  Following this, a county weight (wgt3) was developed to compensate for under 

representation in Erie county and over representation in Niagara county. Finally, the county 

weight was multiplied by the product of the household size and vehicle ownership weight and 

income weight (wgt1*wgt2*wgt3) to produce the final weight variable (finwgt). The expansion 
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factor (expfct) was calculated by dividing the total households based on Census 2000 data 

(468,719) by the number of households surveyed (2,779). When using the sample data to run 

population estimates, the final expansion factor was applied.  This final expanded weight was the 

product of “finwgt” and “expfct”. 

 Preliminary Analysis 

A preliminary data analysis is conducted to see how the trips are distributed among the different 

trip purposes. The trip production and weighted trip production for each trip purpose are shown 

in Table 4.7. While HBW trips do not have the highest market share, they are nevertheless 

among the most important trip purpose because they are the major reason behind congestion in 

morning and evening peak hours.  

Table 4.7 Number of Trips Generated In Each Purpose  

Trip 

Purpose 

Total number of 

trips 

Percentage Total number of trips 

(Weighted) 

Percentage 

HBW 3,078 0.18 470,039 0.17 

HBShop 1,358 0.08 222,304 0.08 

HBSR   1,830 0.11 300,846 0.11 

HBO   5,012 0.30 847,824 0.31 

NHBW  933 0.06 145,787 0.05 

NHBO   4,540 0.27 745,283 0.27 

Sum 16,751 1 2,732,083 1 

 

What needs to be mentioned is that the Greater Buffalo-Niagara area, where the 2002 Buffalo-

Niagara Regional Household Travel Survey was conducted, includes 554 TAZs. But the parcel-

level land use map we use to generate the land use variables only covers Erie county, meaning 
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we do not have land use variables in Niagara County. As a result, all the modeling work is based 

on the 402 TAZs in Erie County. 

4.2.3 Model Development 

The data of 360 TAZs, randomly sampled from the 402 TAZs, are used as the calibration data, 

and the remaining 42 zones are used to validate the trip production model. Validation 

performance is assessed by comparing the actual production and estimated production. 

 HBW Trips’ Production Model 

The HBW trip production model (Table 4.8) has only one independent variable: total number of 

workers in a TAZ, and no land use variables are found to be statistically significant in the model. 

Model validation results are shown in Figure 4.1, from which it can be seen that the model gives 

very accurate predictions.  

Table 4.8 HBW Trip Production Model 

Variables Estimated Coefficient

Constant 16 

Total number of workers 1.114*** 

Number of observations=360 

Adjusted R squared=0.868 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 
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Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.1 Validation Performance of HBW Trips’ Production Model  

 

 HBShop Trips’ Production Model 

HBShop trips’ production model is shown in Table 4.9. The model has two significant 

independent variables: the total number of vehicles and transit coverage rate. Total number of 

vehicles is highly correlated with some other variables, such as population and total income of a 

TAZ, but it gives the highest adjusted R squared among them and is selected accordingly. The 

model also indicates that higher transit coverage rate promotes HBShop trips, maybe because 

housewives with no cars can take transit to go shopping when their husbands are not at home. 

Compared with HBW trips’ production model, this model has lower adjusted R squared, and as a 

result, the validation (Figure 4.2) shows higher inconsistency.  
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Table 4.9 HBShop Trip Production Model 

Variables Estimated Coefficient

Constant -115* 

Total number of vehicles 0.482*** 

Transit coverage rate 543.6*** 

Number of observations=360 

Adjusted R squared=0.567 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 

 

 

Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.2 Validation Performance of HBShop Trips’ Production Model  

 

 HBSR Trips’ Production Model 

HBSR trips’ production model (Table 4.10) has exactly the same set of independent variables as 

HBShop model. Same with HBShop model, total number of vehicles gives the highest adjusted 

R squared among some correlated variables. The coefficient of transit coverage rate in this model 

is less than that in the HBShop model. It probably means shoppers are more likely to take transit 
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than people who do social recreations. The model is validated (Figure 4.3), with productions of 

about 5 TAZs underestimated and 3 or 4 TAZs slightly overestimated.  

Table 4.10 HBSR Trips’ Production Model 

Variables Estimated Coefficient

Constant -140.4** 

Total number of vehicles 0.574*** 

Transit coverage rate 352.3*** 

Number of observations=360 

Adjusted R squared=0.642 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 

 

 

Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.3 Validation Performance of HBSR Trips’ Production Model 
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childcare, all the activities are more likely to be affiliated with workers than non-workers. That’s 

why HBO trips production is so closely related to the number of workers in a TAZ. The 

validation (Figure 4.4) shows excellent predictions, proving the applicability of the model.  

Table 4.11 HBO Trip Production Model 

Variables Estimated Coefficient

Constant -153.8 

Total number of workers 1.9*** 

Number of observations=360 

Adjusted R squared=0.744 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 

 

 
Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.4 Validation Performance of HBO Trips’ Production Model  

 NHBW Trips’ Production Model 

The NHBW trips’ production model (Table 4.12) shows that retail employment and other 

employment are the two most significant independent variables. NHBW trips usually start from 

service facilities, like shops, restaurants, and service stores, thus the production of NHBW trips 

is closely related to a TAZ’s retail employment. Transit service also helps a TAZ generate more 
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NHBW trips. The chart of validation performance (Figure 4.5) shows good predictions for all 

TAZs but one, which has extremely many NHBW trips. This might be because this TAZ is 

located in Buffalo CBD, and has too many unpredicted trips from restaurants back to work after 

lunch.  

Table 4.12 NHBW Trips’ Production Model 

Variables Estimated Coefficient

Constant 30.4 

Retail employment 0.464*** 

Other employment 0.123*** 

Transit coverage rate 271*** 

Number of observations=360 

Adjusted R squared=0.541 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 

 

 

Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.5 Validation Performance of NHBW Trips’ Production Model  
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 NHBO Trips’ Production Model 

NHBO trips include all kinds of trips not classified into other trip purposes, thus have the biggest 

randomness, making it more difficult to be predicted by a linear regression model. The model 

has three significant variables (Table 4.13). It is easy to understand why retail and other 

employment are significant in the model, as NHBO trips are non-home-based. The total number 

of households in the model might be an indicator of the overall attractiveness of a TAZ. The 

validation performance chart (Figure 4.6) shows higher prediction errors than all other models, 

which can be explained by NHBO trip production’s inherent randomness.  

The NHB models give relatively lower R squared than the HB models. This is because the 

survey targeted at residents, not travelers leaving or entering a TAZ. So the actual estimation of 

trip production given by the survey is more accurate for HB trips than for NHB trips. That 

explains the lower adjusted R squared of NHB trips’ production models.  

Table 4.13 NHBO Trip Production Model 

Variables Estimated Coefficient

Constant -20.8 

Total number of HHs 0.69*** 

Retail employment 2.857*** 

Other employment 0.644*** 

Number of observations=360 

Adjusted R squared=0.675 

Note: ***: coefficient is significant at 0.01 confidence level.  
**: coefficient is significant at 0.02 confidence level 
*: coefficient is significant at 0.05 confidence level 
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Note: The 42 TAZs are sorted by their ID and assigned values from 1 to 42 as TAZ number.  

Figure 4.6 Validation Performance of NHBO Trips’ Production Model 
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zone of a trip; and (4) land use variables such the 4D indices of a destination zone. The inclusion 

of the land use variables, particularly the ones related to the destination alternatives, allows the 

enhanced forecasting method to quantify how land use patterns affect travelers’ destination 

choice behavior.  

In addition, since the destination choice decision heavily rely on what a trip is made for, 

destination choice models are developed for five trip purposes respectively, which are home 

based work (HBW) trips, home based shopping (HBShop) trips, home based social recreational 

and other (HBSRO), non-home based work (NHBW) trips, and non-home based other (NHBO) 

trips.  The major outcomes of this section are the best destination choice models that can be used 

to predict the probability for an individual trip with certain purpose to choose a zone as the travel 

destination. These destination choice probabilities are then aggregated to estimate the OD trip 

tables of different trips purposes.  

4.3.1 Existing Approaches to Trip Distribution Modeling 

There are three major types of trip distribution models that are used to predict OD demand, 

including: (1) growth-factor methods; (2) gravity models; and (3) destination choice models. 

Among them, the first two are aggregate models for estimating the number of trips between each 

OD pair while the last one is disaggregate models that focus on destination choice decisions of 

individual trips (Ortuzar and Willumsen 2001) The concepts, advantages and disadvantages of 

them are discussed below. 

Growth factor methods estimate the future-year OD demand by inflating the base-year 

OD demand by certain ratios (called growth factors).  There are different variants such as the 

uniform growth-factor methods, the singly constrained growth-factor methods, and the doubly 
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constrained growth-factor methods, depending on if a uniform growth factor or more 

sophisticated growth factors are used. These methods do not consider the impact of 

transportation costs on future travel demand, and thus are little sensitive to policies (such as new 

land use patterns and new transportation modes) that may significantly improve the system 

performance, In this context, they are not appropriate to evaluate smart growth strategies.  

Gravity models are the most commonly used trip distribution models. They usually share 

the following basic functional form as follows (Ortuzar and Willumsen 2001): 

௜ܶ௝ ൌ ௜ܣ ௜ܱܤ௝ܦ௝݂ሺܿ௜௝ሻ     

Where 

Ti=Total number of trips produced from TAZ i;  

Oj=Trip production of TAZ i; 

Dj=Trip attraction of TAZ j; 

݂ሺܿ௜௝ሻ=Friction factor which is usually a decreasing function of the travel cost between TAZ i 
and TAZ j; 

௜ܣ ൌ 1
∑ ௝݂൫ܿ௜௝൯௝ܦ௝ܤ

൘  

௜ܤ ൌ 1
∑ ௜ܣ ௜ܱ݂൫ܿ௜௝൯௝

൘  

 

Several disadvantages of gravity models prevent them from being used to evaluate smart 

growth strategies. For example, these models only use automobile travel times as OD travel cost, 

ignoring travel times of other modes such as walking, biking and transit. Moreover, gravity 

models do a bad job modeling intra-zonal trips or local travel within a given TAZ. For instance, 

smart growth strategies place an emphasis on mixed land uses, and walkable neighborhoods. 

Such higher non-motorized connectivity, higher development density and higher land use 
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mixtures are not well represented by relatively large TAZs and zone centroids connectors. 

(DKS_Associates 2007). As a consequence, gravity models are indifferent to the smart-growth 

neighborhood designs and the designs of conventional suburban neighborhoods with 

disconnected local networks and homogenous land-uses. What’s more, since gravity models 

focus on the distribution trends of trips but not individual trip makers, they cannot capture the 

impact of new policies such as smart growth on travelers’ travel decisions. 

In contrast to the aforementioned approaches, destination choice models are disaggregate 

and individual-trip oriented. These models focus on the choice situation in which a traveler faces 

all the TAZ in an area as potential destination alternatives when making a trip from an origin 

TAZ. They estimate the probability of a traveler choosing a destination alternative, assuming that 

this probability is mainly affected by the corresponding traveler’s socio-demographic attributes, 

travel cost, land use characteristics of the destination zone, and so on. Among many potential 

affecting factors, land use characteristics of a destination TAZ can be measured by the 

quantitative 4D variables (Density, Diversity, Destination and Design). These land use variables, 

when combined, serve as a generalized attractiveness indicator for a destination TAZ. Different 

from the double-constrained gravity models, which consider both the trip production and the trip 

attraction of a zone as modeling constraints, the constraint of trip attractions are relaxed in 

destination choice models. It means travelers have more freedom to choose their favorite 

destinations, thus giving the model more flexibility to reflect potential travel pattern changes 

resulted from smart growth.  

As there are always hundreds or thousands of TAZs in an area, and it is not practical to 

estimate a model with so many alternatives, one major challenge of destination choice modeling 

is to reduce the size of the alternative set. To do so, many researchers used random sampling 
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method to get fewer representatives of destination alternatives. For instance, Bhat et al. randomly 

selected 9 zones plus the actual chosen zone from 986 TAZs in the Boston Metropolitan Area as 

an alternative set in a study of home based social recreation trips’ destination choice (Bhat, 

Govindarajan et al. 1998). The San Francisco’s travel demand model has 40 stratified sampled 

alternatives out from 1728 TAZs (Jonnalagadda, Freedman et al. 2001). The Boise, Idaho 

model’s destination choice part was also estimated by using a stratified importance sampling. 

The sample includes origin zone, the destination zone, a sample of 20 out of 40 zones nearest to, 

but not including, the origin, and 20 zones of the remaining zones. Thus it sampled 42 

alternatives from several hundred TAZs in total (Shiftan 1998). New Hampshire model uses very 

similar number of alternative (Cambridge_Systematics_Inc 1998). What these researchers 

typically do is to firstly group the original destination alternatives into a number of strata, and 

then sample certain number of destination alternatives from each stratum based on the 

importance level of this stratum. These sampled destination alternatives, when grouped, formed 

the new destination choice set (Ben-Akiva and Lerman 1985). In Tel Aviv, the full set of 1244 

zones was used for the destination-choice models (Shiftan and Ben-Akiva 2010). While most 

models predict location choices at the TAZ level, the Sacramento model predicts location at the 

parcel level. A sample of 100 parcels from more than 700,000 was used for estimation (Shiftan 

and Ben-Akiva 2010). 

There are many applications of destination choice models, particularly in the activity-

based travel demand forecasting paradigm (Cambridge_Systematics_Inc 1998; Shiftan 1998; 

Jonnalagadda, Freedman et al. 2001). Destination choice models may also be combined with 

other travel choice models.  For example, in the San Francisco model, destination choices and 

mode choices are modeled simultaneously, by using a nested choice tree structure (Jonnalagadda, 
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Freedman et al. 2001).  Greenwald built several binary logistic choice models to estimate the 

decisions to travel intrazonally or interzonally, and reached the conclusion that intrazonal trips 

might be influenced by urban form (Greenwald 2006). Bhat built a Multinomial Logit model in a 

research to capture destination choices of home-based social recreation trips. The modeling 

results showed that land use attributes, such as a zone’s retail space and non-retail space, and 

percentage of water area, could influence the attractiveness of a zone for recreational activities 

(Bhat, Govindarajan et al. 1998). In the San Francisco destination choice model, a destination 

zone’s characteristics are measured by including some dummy variables indicating whether a 

zone is in CBD, UBD, Silicon Valley, etc (Jonnalagadda, Freedman et al. 2001). These 

applications provide rich information about the types of affecting factors that should be 

considered in the current study. 

4.3.2 Model Formulation 

In the specific destination choice situation, each trip that originates in a TAZ can choose any 

TAZ (including the origin TAZ) as the destination. Thus, all the zones in the Buffalo region (402 

TAZs in total) can theoretically be considered as the destination alternatives for a trip. In order to 

reduce the size of the alternative set, we applied a stratified sampling technique (Ben-Akiva and 

Lerman 1985). Following the sampling process, we firstly stratified all the 402 TAZs to four 

strata, which are: (1)stratum 1 that only includes origin TAZ; (2) stratum 2 that includes all the 

other TAZs  that are less than d1 miles away from the origin TAZ; (3) stratum 3 that includes the 

TAZs in the distance between d1 and d2 miles away from the origin TAZ; and (4) stratum 4 that 

includes all the remaining TAZs (see Figure 4.7).  
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Figure 4.7 Illustration of Destination Choice Sampling Strategy 

After the stratification, we sampled one TAZ from each stratum as the new destination 

alternatives. Therefore, the new destination choice set includes four TAZs. It needs to mention 

that the chosen destination TAZ is always included in the new choice set, and thus no TAZ was 

sampled from the stratum in which the chosen TAZ is included. The boundaries of the strata are 

chosen using the 33% percentile and 66% percentile, so that strata 2, strata 3 and strata 4 have 

the same number of chosen alternatives. The values of d1 and d2 are given together with the 

modeling results later in this section.  

Given such a stratified sampling process, the decision  to  choose  alternative  i  among  

the  sampled  choice  set  as  the  destination  can  be represented by a enhanced Multinomial 

Logit model as shown below: 
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Where: 

Pn(i|D)=The conditional probability of alternative i being chosen given the choice set D for trip n; 

qin=The selection probability of sampling the desired number of alternatives from the stratum  

where  alternative  i  belongs  to,  for  trip  n. It can be used as the expansion factor for alternative 
i; 

పܸ௡തതതത=The expected utility of choosing alternative i for n; 

Mi=A size measure of the stratum where alternative i belongs to;  

Bin=The  measure  of  the  variability  of  the  utilities  of  alternatives  in  the  stratum  where 
alternative i is sampled from; 

µᇱ ൌ µכ

µൗ - The nonnegative ratio of the corresponding scale parameters;  

 

For alternatives within the same stratum, the correlation coefficient between them is 

equal to (1 െ µᇱଶሻ Therefore, µᇱ needs to satisfy: 0൑ µᇱ ൏ 1. If µᇱ equals to 1, the correlation 

coefficient between alternative utilities is zero. In this case, the parameters of the specified 

choice model are not dependent on the definition of strata. Hence, µᇱ can be seen as a measure of 

the stratification strategy’s efficiency.  

 ௜௡, as a measure of the variability of the choice utilities in a stratum, is usually difficult to beܤ

observed or modeled. Considering this, it was assumed that B୧୬ is approximately equal among 

strata. Therefore, the equation is simplified as follows.  
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The size measurement chosen for this study is total employment, retail employment, population, 

number of households, number of TAZs, and area. Each size variable was tested when we built 

the model and the best was selected.  

4.3.3 Data Sources and Data Assembly 

The data source for this study is the 2002 Buffalo-Niagara Regional Household Travel Survey. 

The survey collected data on socio-demographic attributes of the household. The survey also 

included a one-day activity diary to be filled by all members of the household more than 5 years 

old. The survey recorded more than 20,000 trips.  

There are 551 TAZs in the Greater Buffalo-Niagara area. Unfortunately, GBNRTC only 

provided a more detailed parcel map for Erie County, which includes 402 TAZs, as mentioned 

before. Since the generation of more detailed land use attributes, such as diversity indices, relies 

on the parcel map information, all the modeling work is based on the 402 TAZs of Erie County 

but not Niagara County. GBNRTC also provided a TransCAD TAZ layer and transportation 

network layer of the whole region, from which we got basic land use attributes of each TAZ, 

such as area, population, number of households, total employment, retail employment, average 

household income, average household size, etc. We also generated the travel distances and travel 

times of different modes for each OD pair based on the TransCAD network distances, reported 

travel times in the survey, and the average speeds of different modes. These attributes, when 

combined, form the pool of the potential affecting factors for the discrete choice modeling. 

1. The steps to generate the modeling data are as follows: 

2. The TAZ-based land use attributes  were created from the information available in the 

parcel land use map;  
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3. The trips recorded in the travel survey were categorized into five groups by trip purposes, 

including HBW trips, HBShop trips, HBSRO trips, NHBW trips, and NHBO trips; 

4. For the data set of each trip purpose, the origin and destination of a trip were projected to 

the TransCAD TAZ layer and traffic network map. The shortest network distance for 

each trip was generated using a GIS tool. All the trips of each purpose, excluding 

intrazonal trips, were sorted by trip distances. Then the two distance cutpoints d1 and d2 

that are used to define the destination alternative sampling strata were determined so that 

the trips were divided into three equal-size groups. We have five trip purposes, thus 

different sets of distance cutpoints were generated for different trip purposes;  

5. For each trip of a purpose, four candidate destination TAZs were selected based on the 

distance cutpoints. To be more specific, origin TAZ itself was alternative 1. Alternative 2 

was randomly sampled from the TAZs which are less than d1  miles from the origin TAZ. 

Alternative 3 was randomly sampled from the TAZs that are within d1 miles and d2 miles 

from the origin TAZ. At last, alternative 4 was randomly sampled from the TAZs that are 

further than d2 miles away from the origin TAZ. The chosen TAZ was selected 

automatically, and no TAZ was sampled from the stratum where the chosen TAZ is; and 

6. The travel survey trip files were combined with the corresponding person/household 

socio-demographic files and TAZ level land use files, using SQL application in ACCESS, 

to append the socio-demographic characteristics of the individual to each of the trip 

production, and land use attributes to each of the trip ends.  

The final data included 1334 trip observations for the HBW purpose, 679 trip observations for 

the HBShop purpose, 3035 trip observations for the HBSRO purpose, 933 trip observations for 
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the NHBW purpose, and 4113 observations for the NHBO purpose. 80% of the observations in 

each purpose were used to calibrate the model, and the rest 20% were used for model validation.  

4.3.4 Modeling Results 

 Destination Choice Model of Home Based Work Trips 

There are 1,002 HBW trip observations used for model calibration, and 332 trip observations for 

model validation. The distance cut-points d1 and d2 are 4.65 miles and 9 miles, which were the 

33 percentile and 66 percentile distances of the trip distribution respectively (see Figure 4.8).  A 

number of models were specified, and the best model is shown in Table 4.14. This best model 

starts with a base model that only includes socio-demographic variables and trip distances. After 

the inclusion of land use variables to the base model, the MacFadden Pseudo R squared goes up 

by 50% from 0.22 to 0.33. This indicates that land use variables play significant roles in 

explaining travelers’ destination choice behavior.  

 

Figure 4.8  Trip Length Distribution of HBW Trips 
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Table 4.14 Destination Choice Model of HBW Trips 

Variable  Alt. 1 Alt. 2 Alt. 3 Alt. 4 

Alternative specific constant  -0.8657 

(0.000)[1] 

-1.1022 

(0.000) 

-1.6884 

(0.000) 

Piecewise distance between 0~1.5 

miles 

-0.02876 

(0.000) 

-0.02876 

(0.000) 

-0.02876 

(0.000) 

-0.02876 

(0.000) 

Piecewise distance between 1.5~3 

miles 

-0.5385 

(0.000) 

-0.5385 

(0.000) 

-0.5385 

(0.000) 

-0.5385 

(0.000) 

Piecewise distance between 3~5 

miles  

-0.3691 

(0.000) 

-0.3691 

(0.000) 

-0.3691 

(0.000) 

-0.3691 

(0.000) 

Piecewise distance more than 5 

miles  

-0.1426 

(0.000) 

-0.1426 

(0.000) 

-0.1426 

(0.000) 

-0.1426 

(0.000) 

Household Income of traveler 

 (1000 dollars)  

-0.01245 

(0.000) 

   

Female or not: 1 if yes, 0 if not.   -0.1191 

(0.000) 

-0.1191 

90.000) 

-0.5771 

(0.000) 

Traveler’s age 0.01048 

(0.000) 

   

Number of jobs participated by the 

traveler  

0.6865 

(0.000) 

   

Activity duration  0.0005408 

(0.000) 

0.002075 

(0.000) 

0.004479 

(0.000) 

Total employment of destination 

TAZ  

0.0001612 

(0.000) 

0.0001612 

(0.000) 

0.0002260 

(0.000) 

0.0003568 

(0.000) 

Dissimilarity index of destination 

TAZ  

0.5703 

(0.000) 

0.4802 

(0.000) 

  

Land use entropy of destination 

TAZ  

0.6652 

(0.000) 

0.6652 

(0.000) 

  

Normalized employment-to- 

population ratio  

0.1629 

(0.000) 

0.6071 

(0.000) 

0.6071 

(0.000) 

0.6071 

(0.000) 
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Freeway coverage rate  -0.6792 

(0.000) 

   

Log(Total employment of all  

TAZs in a stratum)  

0.5949 

(0.000) 

0.5949 

(0.000) 

0.5949 

(0.000) 

0.5949 

(0.000) 

Summary statistics 

Number of observations =1002 

Base model’s McFadden Pseudo R squared=0.2221 

Final model’s McFadden Pseudo R squared after adding land use variables=0.3307 

Note: [1]: The value in the parentheses is the p-value of the coefficient.  
 

As shown in the best model, 16 variables, including land use attributes play significant 

roles in explaining the destination choice behavior of HBW trips. Travel distance enters the 

utility of all the four groups in a piecewise fashion to take into account a possible nonlinear 

marginal impact of distance on travelers’ destination choices. And the results show exactly the 

case: within 1.5 miles, distance has relatively small marginal impact (-0.008); when the distance 

is greater than 1.5 miles, the marginal impact of it becomes stronger but then decreases as 

distance gets larger. Such a pattern is consistent with the trip frequency distribution (Figure 4.8). 

Higher household income reduces the possibility of selecting alternative 1 (i.e., intrazonal travel), 

and this might be a result of mid-class residential suburbanization. Mid-class families tend to live 

in suburban neighborhoods, which are further away from job locations, and a result their HBW 

trips are more likely to be inter-zonal. Females and older people make more intra-zonal trips than 

males and younger people. It is interesting to find that having more jobs encourages intrazonal 

travels. This could be explained by time constraints: if a person needs to pursue multiple jobs, 

the most efficient way is to arrange jobs near home so that s/he does not need to spend too much 

time in traveling. Activity duration is positively related to the utilities of alternative 2, 3 and 4 
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(interzonal travels). It might be because longer time spent at work makes a long travel 

worthwhile.  

In terms of land use variables, we can see that more employment opportunities attract 

more HBW trips. In addition, the employment-to-population ratio exerts extra positive effects on 

all the four utilities. The positive values of two diversity-related land use variables (land use 

entropy and dissimilarity index) in utility function 1 and utility function 2 also make TAZs in 

these two groups more attractive. In addition, the parameter of dissimilarity index is higher for 

alternative 1 than that for alternative 2, indicating that intra-zonal travels are more likely to be 

induced by dissimilar land uses than inter-zonal travels. Moreover, the negative coefficient of the 

freeway coverage rate (which represents the proportion of a destination TAZ which have 

freeway in one mile away) in alternative 1 show that easy access to freeway actually discourages 

intra-zonal travels. This finding supports that idea that highway facilities induce more auto-

oriented long distance travels.  

Table 4.15 Validation Performance of the HBW Trips’ Destination Choice Model 

HBW Trips Alt.1  Alt.2 Alt.3 Alt.4 Overall 

Actual 24 104 100 104 332 

Estimated 4 108 104 116 332 

Correctly estimated 3 63 62 77 205 

Percentage of correctly estimated 12.5% 60.6% 62% 74.0% 61.7% 

 

The model was validated using 332 trip observations. The validation results in Table 4.15 shows 

that the overall prediction accuracy is 61.7%. In general, the model tends to overestimate the 

probability of TAZs further away while underestimating the possibility of choosing nearer TAZs. 

The reason could be that the true destination choice behavior, particularly for intrazonal trips, is 
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not well revealed by the modeling data, due to the fewer intrazonal trips available in the 

modeling dataset.  

 Destination Choice Model of Home Based Shop Trips 

There are 510 HBShop trip observations in the calibration data, and 169 observations in the 

validation data. The distance cut-points d1 and d2 are 2.28 miles and 4.5 miles, which represent 

the 33 percentile and 66 percentile distances of the trip distribution respectively as shown in 

Figure 4.9. A number of models were specified, and the best model is shown in Table 4.16. This 

best model starts with a base model that only includes socio-demographic variables and trip 

distances. After the inclusion of land use variables to the base model, the MacFadden Pseudo R 

squared goes up from 0.29 to 0.48 by 65.5%. That means land use variables play significant roles 

in explaining travelers’ destination choice behavior for HBShop trips as well.  

 

Figure 4.9 Trip Length Distribution of HBShop Trips 
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Table 4.16 Destination Choice Model of HBShop Trips 

Variable  Alt. 1 Alt. 2 Alt. 3 Alt. 4 

Constant  -1.1558 

(0.000)[1] 

2.0191 

(0.000) 

-0.3754 

(0.000) 

Distance -1.5869 

(0.000) 

-0.3169 

(0.000) 

-1.0301 

(0.000) 

-0.3092 

(0.000) 

Activity duration -0.03016 

(0.000) 

-0.005427 

(0.000) 

-0.00174 

(0.000) 

 

Female or not: 1 if yes, 0 if not 0.4869 

(0.000) 

0.3392 

(0.000) 

0.3345 

(0.000) 

 

Population of DTAZ  0.000141 

(0.000) 

0.000141 

(0.000) 

0.000141 

(0.000) 

0.000141 

(0.000) 

Retail employment of Destination TAZ  0.9008E-4 

(0.000) 

0.001451 

(0.000) 

0.001308 

(0.000) 

0.001842 

(0.000) 

Land use entropy of Destination TAZ 1.1910 

(0.000) 

0.0013 

(0.000) 

  

Transit coverage rate of Destination TAZ 2.5217 

(0.000) 

2.5217 

(0.000) 

0.4114 

(0.000) 

 

Log(Number of retail employees of all  

TAZs in a group)  

0.5579 

(0.000) 

0.5579 

(0.000) 

0.5579 

(0.000) 

0.5579 

(0.000) 

Summary statistics 

Number of observations =510 

Base model’s McFadden Pseudo R squared=0.2930 

Final model’s McFadden Pseudo R squared after adding land use variables=0.4791 

Note: [1]: The value in the parentheses is the p-value of the coefficient.  
 

As shown in Table 4.16, nine types of variables, including land use variables influence 

the destination choice behavior of HBShop trips. Trip distance is the most important factor and 

enters the four utility functions directly. The distance parameter in alternative 1 is the largest 
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among all the four distance parameters, meaning that a traveler is more reluctant to travel 

intrazonally than interzonally with the increase of travel distance. Longer activity duration 

encourages the selection of alternative 4, and this might be a result of the isolation of large 

shopping centers from residential areas. Females prefer nearer destinations more than males, as 

indicated by its negative parameters in alternative 2, 3 and 4.  

In terms of land use variables, a HBShop trip is more likely to visit a destination with 

more retail employment. The positive parameters of land use entropy in utility function 1 and 

function 2 indicate that higher land use entropy makes a TAZ more attractive to HBShop trips, 

and the affects go to zero for the TAZ further away. Moreover, TAZs with higher transit 

coverage could attract more HBShop trips, but the attractiveness drops down to zero if the TAZ 

is more 4.5 miles away.  

Table 4.17 Validation Performance of the HBShop Trips’ Destination Choice Model 

HBShop Trips Alt. 1 Alt. 2 Alt. 3 Alt. 4 Sum 

Actual 33 46 45 45 169 

Estimated 21 68 41 39 169 

Correctly Estimated 12 39 28 35 114 

Prediction Accuracy 36.4% 84.8% 62.2% 77.8% 67.5% 

 

Table 4.17 shows the validation results of the model. Again, the model tends to 

overestimate the probability of TAZs further away while underestimating the possibility of 

choosing nearer TAZs. The possible reason could be that the true destination choice behavior, 

particularly for intrazonal trips, is not well revealed by the modeling data, due to the fewer 

intrazonal trips available in the modeling dataset. 
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 Destination Choice Model of Home Based Social Recreation and Home Based Other Trips 

There are 2,421 HBSRO trip observations in the calibration data, and 614 observations in the 

validation data. The distance cutpoints d1 and d2 are 2.64 miles and 5.08 miles, which are the 33 

percentile and 66 percentile distances of the trip distribution respectively as shown in Figure 4.10.  

A number of models were specified, and the best model is shown in Table 4.18. This best model 

starts with a base model that only includes socio-demographic variables and trip distances. After 

the inclusion of land use variables to the base model, the MacFadden Pseudo R squared goes up 

from 0.17 to 0.21 by 23.5%.  

 

Figure 4.10 Trip Length Distribution of HBSRO Trips 
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Table 4.18 Destination Choice Model of HBSRO Trips 

Variable  Alt. 1 Alt. 2 Alt. 3 Alt. 4 

Constant  0.2997 

(0.000)[1] 

0.1687 

(0.000) 

-1.2654 

(0.000) 

Distance -0.9233 

(0.000) 

-0.8216 

(0.000) 

-0.5368 

(0.000) 

-0.2079 

(0.000) 

Female or not: 1 if yes, 0 if not.  0.1926 

(0.000) 

   

License or not: 1 is yes, 0 if not  -0.3631 

(0.000) 

   

Activity duration   0.001507 

(0.000) 

0.005031 

(0.000) 

0.007236 

(0.000) 

Total households of Destination TAZ  0.0003703

(0.000) 

0.0003703

(0.000) 

0.0001941 

(0.000) 

0.0001941

(0.000) 

Other employment of Destination TAZ 0.2008E-4 

(0.000) 

0.2008E-4 

(0.000) 

  

Freeway coverage rate  0.06183 

(0.000) 

0.01418 

(0.000) 

0.01418 

(0.000) 

Log(Total employment of all TAZs in a 

group) 

0.5706 

(0.000) 

   

Summary statistics 

Number of observations =2421 

Base model’s McFadden Pseudo R squared=0.1743 

Final model’s McFadden Pseudo R squared=0.2082 

Note: [1]: The value in the parentheses is the p-value of the coefficient.  
 

As is shown in Table 4.18, nine variables, including land use variables, influence the 

destination choice behavior of HBSRO trips. Two size-related land use variables, the number of 

households and other employment, and one Design-related land use variable, Freeway coverage 

rate, are main factors that attract HBSRO trips. In terms of socio-demographic variables, females 
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prefer nearer destinations, and licensed people prefer further destinations. Longer activity 

duration increases the likelihood of making longer trips.  The R squared of HSRO model is 

relatively low. This could be explained by the internal chaos of HBSRO trips, which include all 

trips that cannot be categorized into other trip purposes.  

Table 4.19 Validation Performance of the HBSRO Trips’ Destination Choice Model 

HBSRO Trips Alt. 1 Alt. 2 Alt. 3 Alt. 4 Overall 

Actual 112 205 120 177 614 

Estimated 50 246 153 165 614 

Correctly Estimated 26 147 70 117 360 

Prediction Accuracy 23.2% 71.7% 58.3% 66.1% 58.6% 

 

Table 4.19 shows the validation results of the model. The overall prediction accuracy is 

58.6%. Again, the model tends to overestimate the probability of TAZs further away while 

underestimating the possibility of choosing nearer TAZs. The possible reason is the same with 

those of HBW model and HBShop model.  

 Destination Choice Model of Non Home Based Work Trips 

There are 748 NHBW trip observations in the calibration data, and 185 observations in the 

validation data. The distance cut-points d2 and d2 are 2.53 miles and 5.6 miles, which represent 

the 33 percentile and 66 percentile distances of the trip distribution respectively as shown in 

Figure 4.11. The trip distribution figure shows that NHBW trips have shorter than other trip 

purposes. This could be explained by trip chaining behavior. A HBW trip chain could include at 

least one HBShop or HBSRO trip, and a NHBW trip. In this case NHBW trips are always shorter 

than HBW trips. NHBW could also be a trip back to work after lunch break. The lunch trip is 

more likely shorter than the distance from home to work. 
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A number of models were specified, and the best model is shown in Table 4.20. This best model 

starts with a base model that only includes socio-demographic variables and trip distances. After 

the inclusion of land use variables to the base model, the MacFadden Pseudo R squared goes up 

from 0.19 to 0.27 by 42.1%. That means land use variables play significant roles in explaining 

travelers’ destination choice behavior.  

 

Figure 4.11 Trip Length Distribution of NHBW Trips 
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Table 4.20 Destination Choice Model of Non Home Based Work Trips 

Variable  Alt. 1 Alt. 2 Alt. 3 Alt. 4 

Constant  1.1652 

(0.000)[1] 

1.6801 

(0.000) 

1.1497 

(0.000) 

Distance -0.4591 

(0.000) 

-0.6164 

(0.000) 

-0.4186 

(0.000) 

-0.1858 

(0.000) 

Female or not: 1 if yes, 0 if not.  -0.5635 

(0.000) 

-0.5635 

(0.000) 

-1.1679 

(0.000) 

Activity duration  -0.002629 

(0.000) 

   

Traveler’s age 0.01969 

(0.000) 

   

Total employment of Destination TAZ  0.0001144

(0.000) 

0.0002614

(0.000) 

0.0003175 

(0.000) 

0.0004489

(0.000) 

Non work land use entropy of Destination 

TAZ 

0.9465 

(0.000) 

0.9465 

(0.000) 

  

Dissimilarity index of Destination TAZ 0.2202 

(0.000) 

0.2202 

(0.000) 

  

Log(Total employment of all TAZs in a 

group)  

0.5374 

(0.000) 

0.5374 

(0.000) 

0.5374 

(0.000) 

0.5374 

(0.000) 

Summary statistics 

Number of observations =748 

Base model’s McFadden Pseudo R squared=0.1910 

Final model’s McFadden Pseudo R squared=0.2686 

Note: [1]: The value in the parentheses is the p-value of the coefficient.  
 

Similar with the previous models, the NHBW trips’ destination choice model has variables like 

trip distance, gender, age and activity duration. Females and/or senior citizens prefer nearer 

TAZs, and longer activity duration increases the utility of further TAZs.  
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In terms of land use variables, a NHBW trip is more likely to visit a destination with more total 

employment, and the same amount of total employment seems to have stronger attraction power 

in a TAZ further away. Non work land use entropy and dissimilarity index are significant in the 

utility functions of alternative 1 and alternative 2, indicating that shorter travels are more likely 

to be induced by diversified land uses than longer travels. 

Table 4.21 Validation Performance of the NHBW Trips’ Destination Choice Model 

NHBW trips Alt. 1 Alt. 2 Alt. 3 Alt. 4 Overall 

Actual 18 52 53 62 185 

Estimated 7 47 55 76 185 

Correctly Estimated 3 29 27 47 106 

Prediction Accuracy 16.7% 55.8% 50.9% 75.8% 57.3% 

 

The model validation is shown in Table 4.21. Again with the same reason with other models, the 

model tends to overestimate the probability of TAZs further away while underestimating the 

possibility of choosing nearer TAZs.  

 Destination Choice Model of Non Home Based Other Trips 

There are 3,302 NHBO trip observations in the calibration data, and 811 observations in the 

validation data. The distance cutpoints d2 and d2 are 2.55 miles and 5.35 miles, which are the 33 

percentile and 66 percentile distances of the trip distribution respectively as shown in Figure 4.12. 

A number of models were specified, and the best model is shown in Table 4.22. This best model 

starts with a base model that only includes socio-demographic variables and trip distances. After 

the inclusion of land use variables to the base model, the MacFadden Pseudo R squared goes up 

from 0.14 to 0.18, by 28.6%. That means land use variables play moderate roles in explaining 

travelers’ destination choice behavior. NHBO trips have great internal chaos, as they include all 
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trips that could not be categorized into other trip purposes. That’s why the R squared of this 

model is the lowest among the five destination choice models.  

 

Figure 4.12 Trip Length Distribution of NHBO Trips 
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Table 4.22 Destination Choice Model of Non Home Based Other Trips 

Variable  Alt. 1 Alt. 2 Alt. 3 Alt. 4 

Constant  0.2654 

(0.000)[1] 

1.1605 

(0.000) 

-0.3886 

(0.000) 

Distance  -0.1250 

(0.000) 

-0.7368 

(0.000) 

-0.5121 

(0.000) 

-0.1765 

(0.000) 

License or not: 1 is yes, 0 if not    0.5136 

(0.000) 

0.7005 

(0.000) 

1.2631 

(0.000) 

Activity duration   0.0009028

(0.000) 

0.001375 

(0.000) 

0.003413 

(0.000) 

Retail employment of Destination TAZ   0.000429 

(0.000)1 

0.0005037 

(0.000) 

0.0007784

(0.000) 

Balance of Destination TAZ 0.6143 

(0.000) 

0.6143 

(0.000) 

  

Transit coverage rate 0.7856 

(0.000) 

0.7856 

(0.000) 

  

Road density of Destination TAZ 0.001053 

(0.000) 

0.001053 

(0.000) 

0.001053 

(0.000) 

0.001053 

(0.000) 

Log(Retail employment of all TAZs in a 

group)  

0.3692 

(0.000) 

0.3692 

(0.000) 

0.3692 

(0.000) 

0.3692 

(0.000) 

Summary statistics 

Number of observations =3302 

Base model’s McFadden Pseudo R squared=0.1426 

Final model’s McFadden Pseudo R squared=0.1848 

Note: [1]: The value in the parentheses is the p-value of the coefficient.  
 

As is shown by the model results in Table 4.22, NHBO trips’ destination choice model 

includes variables like trip distance, license or not, and activity duration. Trip distance’s effect 

on intrazonal trips is relatively small, and the effect is strongest for alternative 2, then gets 
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weaker as alternatives get further away. These coefficients show that NHBO trips’ length 

distribution should be similar to that of HBW trips, instead of the distribution curve shown in 

Figure 4.12. This finding reveals that Figure 4.12 is actually not a precise description of the trip 

length distribution. Both having licenses and longer activity duration make the selection of 

further TAZs more likely.  

In terms of land use variables, a NHBO trip is more likely to travel to a TAZ with more 

retail employment, and the effect caused by the same amount of retail employment gets stronger 

when the TAZ gets further away. Balance is significant in alternative 1 and alternative 2, 

meaning shorter trips are more likely to be induced by higher balance TAZs. Same with the 

previous models, higher Transit coverage rate help TAZs in alternative 1 and 2 attract more 

NHBO trips, but has no effect in TAZs more than 2.55 miles away. Higher road density always 

means more opportunities, thus could attract more trips. Road Density has the same amount of 

effect in each of the four alternatives.  

Table 4.23 Validation Performance of the NHBO Trips’ Destination Choice Model 

NHBO trips Alt. 1 Alt. 2 Alt. 3 Alt. 4 Overall 

Actual 123 239 228 221 811 

Estimated 74 243 235 259 811 

Correctly Estimated 32 129 122 143 426 

Prediction Accuracy 26.0% 54.0% 53.5% 64.7% 52.5% 

 

The model validation is shown in Table 4.23. Again with the same reason with other models, the 

model tends to overestimate the probability of TAZs further away while underestimating the 

possibility of choosing nearer TAZs. 
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4.4 Mode Choice Modeling 

This section describes the process of building mode choice models to predict travelers’ mode 

choice decisions in the Greater Buffalo-Niagara area. Six transportation modes available in the 

area are considered as the potential mode choice alternatives, including walk, bike, auto 

(including both driving and passenger), bus, rail, and taxi/shuttle. In addition to travelers’ socio-

economic characteristics and trip related attributes, the land use variables of both the origin and 

destination of a trip are included specifically in order to measure how land use patterns affect 

travelers’ mode choice decisions. Land use variables are grouped into three categories, 

corresponding to the 3Ds measures of density, diversity, and design indices introduced earlier in 

Chapter 2. 

Considering the important role of intra-zonal trips in the travel demand forecasting and 

especially when assessing smart growth strategies, mode choice models are developed for 

intrazonal trips and for interzonal trips separately. The major outcome of this section is two sets 

of mode choice models for intra- and inter-zonal trips which can be used to predict the 

probability of a trip choosing a certain mode, given information about the factors affecting the 

potential mode choice. 

4.4.1 Methodology 

 Mode Choice Set 

There are ten modes reported in the 2002 Buffalo-Niagara Regional Household Travel Survey, 

including: walk, bike, auto driver, auto passenger, metro bus, metro rail, school bus, 

taxi/shuttle/limousine, motorcycle and others. For the modeling purpose, auto driver and auto 



143 
 

 

passenger are combined as one “auto” mode while “school bus”, “motorcycle” and “others or 

refuse” are deleted due to either the small market share or few observations. Therefore, six 

modes are finally considered as the mode choice alternatives, which are walk, bike, auto, bus, 

rail, and taxi/shuttle. Table 4.24 shows the relationship between the original modes in the raw 

data and the mode alternatives included in the modeling data as well as the reported market share 

for each one of them. The basic statistics for the key attributes of these modes, such as the 

number of observed trips, average trip distances, and trip or activity durations are summarized in 

Table 4.25. 

Table 4.24 Mode Shares from the 2002 Buffalo-Niagara Regional Household Travel Survey 

Reported modes Combined mode alternatives used 

in mode choice models 

Market share (%) 

Walk Walk 7.5 

Bike Bike 0.53 

Auto Driver  

Auto 

63.55 

Auto Passenger 18.42 

Metro Bus Bus 2.96 

Metro Rail Rail 0.44 

School bus Not considered 5.95 

Taxi/Shuttle 

bus/Limousine 

 

Taxi/Shuttle 0.51 

Motorcycle Not considered 0.00 

Other and Refuse Not considered 0.11 

 

Variable summaries of each of the 6 modes are listed in Table 4.25.  
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Table 4.25 Mode Related Statistics 

 Walk Bike Auto Bus Rail Taxi/Shuttle bus

Number of trips 1016 73 16173 314 56 50 

Average trip distance (miles) 0.88 

(1.49)[1]

1.69 

(1.32) 

5.15 

(5.00) 

3.87 

(3.08) 

3.84 

(3.26) 

2.75 

(2.52) 

Trip duration (minutes) 9.95 

(10.00) 

16.40 

(22.62)

15.15 

(12.56)

34.75 

(23.72)

25.20 

(23.55) 

18.66 

(15.08) 

Activity duration (minutes) 243.2 

(258.9) 

173.5 

(196.0)

209.6 

(236.9)

263.4 

(253.8)

183.2 

(229.5) 

245.7 

(283.2) 

Note: [1] The number in the parenthesis is the standard derivation.  

 Nested Structure 

In this research, the six mode alternatives are arranged in a choice tree structure to characterize 

the interrelationships of non-motorized modes (such as walk and bike), motorized modes (i.e., 

auto, transit, and taxi/shuttle bus) and transit modes (i.e., rail and bus). Three choice trees, as 

shown in Figure 4.13, Figure 4.14, and Figure 4.15, were tested and the best one was selected, in 

terms of higher R squared and IV parameters.  The results showed that the model of choice tree 3 

had the highest R squared. In terms of IV parameters, the model of choice tree 1 has an IV 

parameter as 4, far beyond the reasonable range, and the model of choice tree 2 has two IV 

parameters more than 1, while the model of choice tree 3 had only one of the four IV parameters 

slightly out of range (IV parameter of motorized branch is 1.035). Thus choice tree 3 is selected 

as the best tree structure.  
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Figure 4.13 Nest Tree Structure 1 

 

Figure 4.14 Nest Tree Structure 2 

 

Figure 4.15 Nest Tree Structure 3 

 Why Not Use Purpose-Specific Models 

Both the trip generation and destination choice are purpose-specific models. Should mode choice 

model also be purpose specific? A data pre-analysis was performed to answer this question. The 

mode share of each purpose is shown in TABLE 4.26. It shows that the mode market share does 

Walk Auto

Non-motorized Motorized 

Bike Bus Taxi/Shuttle Rail

Walk Auto 

Non-motorized Motorized 

Bike Transit Taxi/Shuttle  

Bus Rail 

Walk 

Non-motorized Transit 

Bike

Auto Taxi/Shuttle 

Bus Rail



146 
 

 

not vary much among different trip purposes (especially when the auto driver and the auto 

passenger modes are combined).  

TABLE 4.26 Mode Share Percentage of Each Trip Purpose 

Mode Mode HBW HBShop HBSRO NHBW NHBO 

1 Walk 2.8 5.7 8.6 7.5 6.4 

2 Bicycle 0.4 0.6 0.7 0.3 0.2 

3 Auto Driver 85.6 68.6 63.2 81.6 68.6 

4 Auto 

Passenger 6.6 20.0 23.6 6.2 18.3 

5 Metro bus 4.3 3.8 1.9 3.1 3.0 

6 Metro Rail 0.3 0.0 0.2 0.5 1.1 

7 School bus 0.0 0.0 1.2 0.2 1.7 

8 Taxi/Shuttle 0.0 1.1 0.4 0.5 0.5 

9 Motorcycle 0.0 0.0 0.0 0.0 0.0 

10 Other/Refuse 0.0 0.1 0.2 0.1 0.1 

 

As the selection of non-motorized modes is highly dependent on travel distance, we analyzed the 

mode share of intrazonal trips and interzonal trips, as shown in Table 4.27. The walk market 

share in intrazonal trips is 28.9%, while only 3.5% in interzonal trips. The market share of Auto 

Driver, on the other hand, is much higher in inter-zonal trips than that in intra-zonal trips. 
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Table 4.27 Mode Share Percentage of Intrazonal and Interzonal Trips 

ID Mode Intrazonal Interzonal 

1 Walk 28.9 3.5 

2 Bicycle 1.2 0.4 

3 Auto Driver 47.6 66.5 

4 Auto Passenger 16.2 18.8 

5 Metro bus 0.5 3.4 

6 Metro Rail 0.3 0.5 

7 School bus 4.8 6.2 

8 Taxi/Shuttle bus/Limousine 0.3 0.5 

9 Motorcycle 0.0 0.0 

10 Other and Refuse 0.2 0.1 

 

Given the discussions above, we abandoned building purpose-specific models, but instead we 

develop two models: one for intra-zonal trips and the other for inter-zonal trips.  

4.4.2 Data Source and Data Assembly 

 Data Assembly 

The steps to generate the dataset are as follows: 

1) Generate the TAZ-based land use attributes from the parcel land use map.  

2) The two trip ends, which are coded in “location”, are projected onto the TransCAD TAZ and 

traffic network map. The shortest network distance for each trip is generated using a GIS tool. 

As there are multiple “locations” in one TAZ, we also get the trip distance of the intrazonal 

trips.  

3) We find the TAZ for each trip end’s location. Following this, the trips recorded in the travel 

survey are categorized into two groups: intra-zonal trips and inter-zonal trips, and each group 
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is stored in a separate file. Specifically, 1986 intra-zonal trip observations and 2665 inter-

zonal trip observations are randomly sampled from the two data files to build the models.  

4) Each trip is duplicated six times, with each record having a separate mode. Given the travel 

time of the chosen mode, the travel times of the other five modes are calculated using the 

speed ratios.  

5) The trip datasets of both intra-zonal and inter-zonal trips are matched with the 

person/household socio-demographic file and TAZ level land use file to get the socio-

demographic characteristics, and land use attributes for each of the trip ends.  

The final intra-zonal trip dataset thus includes 1986 trip observations (1986*6 = 11916 records), 

whereas the inter-zonal trip dataset includes 2665 trip observations (2665*4=15990 records). 

Around 80% of the observations in each dataset are used to calibrate the model, and the 

remaining 20% are used for model validation.  

Estimating the Trips’ Travel Time  

As an indicator of travel cost, travel time is a very important variable influencing travelers’ mode 

choices. Each trip observation in the 2002 Buffalo-Niagara Regional Household Travel Survey 

has a chosen mode and the travel time for that mode. However, the travel time for the alternative 

modes needed to be estimated for the purposes of model building. Considering the limitation of 

data source, we use a simplified method to generate the travel times. Specifically, we use the 

survey data to define the average speed ratios of the six modes. Then given the actual travel time 

of the chosen mode, we calculate the travel time of all the other five modes. The process of 

generating the speed ratios is shown in Table 4.28. We split the survey trips into all the six 

modes, and calculate the average speed of the trips in each mode. Then based on the calculated 
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speeds, we set some reasonable values, as shown in the fourth row of Table 4.28. The set of 

travel time ratios is: walk: bike: auto: bus: rail: taxi/shuttle = 30 : 10 : 3 : 10 : 6 : 10. 

Table 4.28 Travel Time Ratios of the Six Modes 

Mode Walk Bike Auto Bus Rail Taxi 

Average speed/mph 2.68 11.76 23.13 9.77 15.46 9.48 

Standard Derivation 1.39 16.48 25.31 16.39 16.47 7.4 

Assumed speed/mph 3 9 30 9 15 9 

Travel time ratio 30 10 3 10 6 10 

4.4.3 Model Formulation 

The nested logit model assumes that multiple choices share unobserved attributes, and wraps 

these alternatives into a nest. The utility of an elemental alternative m in nest d is expressed as 

follows. 

࢓ࢊࢁ ൌ തതതࢊ܄ ൅ തതതത࢓܄ ൅ തതതതത࢓ࢊ܄ ൅ ઽ࢓തതതത ൅ ઽ࢓ࢊതതതതത    

Where 

ௗܸതതത = The systematic component of utility common to all elements using nest d.  

௠ܸതതതത =The systematic component of utility common to all elements using alternative m.  

ௗܸ௠തതതതത = The remaining systematic component of utility specific to the combination (d,m).  

ε௠തതതത = The unobserved components of the total utility attributable to the alternative m. 

εௗ௠തതതതത= The random utility component.  

 

Several assumptions are further made as listed below: 

אതതതത and εୢ୫തതതതത are independent for all d࢓ߝ (1 א௡and mܦ   .௡ܯ

2) The terms εௗ௠തതതതത are independent and identically Gumbel distributed with scale parameter ߤௗ. 

3) ε࢓തതതത is distributed to that ݉ܽאୢݔ஽೙೘
ܷௗ௠ is Gumbel distributed with scale parameter ߤ௠. 
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With these assumptions, the probability of choosing an elemental alternative m in nest d can be 

represented by a nested logit model as shown below: 

௡ܲሺ݀ሻ ൌ ୣµ೏ሺV೏തതതതതశೇᇲ೏ሻ

∑ ୣµ೏ሺV೏ᇲതതതതതതశೇᇲ೏ᇲሻ
ౚᇲಣವ೙

    

ሻࢊ|࢓ሺ࢔ࡼ  ൌ തതതതതതതሻ࢓ࢊ܄തതതതതశ࢓܄ሺܕૄ܍

∑ ᇲതതതതതതതതሻ࢓ࢊ܄ᇲതതതതതതశ࢓܄ሺܕૄ܍
ࢊ࢔ࡹᇲ૓ܕ

   

 

Where: 

Pn(m|d)=The conditional probability of elemental alternative m being chosen given the choice set 
Mnd for observation n; 

Pn(d)= The conditional probability of nest d being chosen given the choice set Dn for observation 
n;  

ௗܸതതത = The systematic component of utility common to all elements using nest d.  

௠ܸതതതത =The systematic component of utility common to all elements using alternative m.  

ௗܸ௠തതതതത = The remaining systematic component of utility specific to the combination (d,m).  

ܸԢௗ ൌ
1

௠ߤ ݈݊ ሺ෍ ݁ఓ೘ሺ௏೘തതതതା௏೏೘തതതതതതሻ

௠ఢெ೙೏

ሻ 

ఓ೏

ఓ೘ ൌ ඥ1 െ ,ሺܷௗ௠ݎ݋݋ܿ ܷௗ௠ᇱሻ   should be within 0 and 1.  

 

The nest structure could have more than two levels. More information about the nest logit model 

can be found in Ben-Akiva’s book (Ben-Akiva and Lerman 1985). 

4.4.4 Mode Choice Model Results 

 Mode Choice Model of Intrazonal Trips 
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Table 4.29 Mode Choice Model of Intrazonal Trips 

Variable  Non-motorized Motorized 

Walk Bike Auto Bus Rail Taxi/ 

Shuttle 

Alternative specific 

constant 

5.2785 

(0.000)[1] 

-0.3691 

(0.000) 

 -3.7438 

(0.000) 

-4.1742 

(0.000) 

-504.65 

(0.000) 

Travel time  -0.2610 

(0.000) 

-0.2610 

(0.000) 

-0.2610 

(0.000) 

-0.1068 

(0.000) 

-0.1068 

(0.000) 

-0.4138 

(0.000) 

Number of vehicles 

owned per person 

-2.8792 

(0.000) 

-2.8792 

(0.000) 

 -7.8823 

(0.000) 

-7.8823 

(0.000) 

-4.8946 

(0.000) 

Traveler’s age  0.00348 

(0.000) 

    5.1593 

(0.000) 

Average personal 

income in the 

household (1000 

dollars) 

 0.01722 

(0.000) 

    

Activity Duration       0.002614 

(0.000) 

TAZ population density 0.864E-4 

(0.000) 

 -0.526E-4 

(0.000) 

   

TAZ employment 

density  

0.107E-4 

(0.000) 

 -0.367E-4 

(0.000) 

   

TAZ dissimilarity index    -1.1521 

(0.000) 

   

TAZ employment 

entropy 

2.7903 

(0.000) 

     

Existence of ramp to 

freeway 

(1: yes 0: no)  

  0.1558 

(0.000) 

   

Transit coverage     0.7798 0.7798  
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(0.000) (0.000) 

IV parameter  0.9447 

(0.000) 

1.0348 

(0.000) 

Summary statistics 

Number of observations =1600 

Base Model McFadden Pseudo R squared=0.8731 

Final Model McFadden Pseudo R squared=0.8800 

Note: [1] All the variables are significant at 0.01 confidence level.  
 

The values and signs of the estimated coefficients provide rich implications about the 

impacts of the different factors on mode choice. In the intra-zonal trips’ mode choice model 

(Table 4.29), the estimated coefficients of trip travel time in all the six utility functions are 

negative, meaning longer travel time decreases the likelihood of selecting a mode. More 

specifically, transit users are not as sensitive to travel time increase as users of non-motorized 

modes and auto, indicating transit users have lower value of time. On the other hand, taxi users 

have higher value of time.  

Higher auto ownership results in less usage of all modes except auto, and especially less 

usage of transit. This is because transit is a substitute for auto, thus people without cars become 

dependent on transit. Different from transit, walk and bike are a supplement, not a substitute to 

auto, as they are available for only short trips. What’s more, considering the positive impact of 

average personal income on bike usage, it appears that biking is regarded as a means for exercise 

and healthy living among the middle- and upper- class residents.  Age seems to be positively 

related to walk and taxi, maybe senior citizens walk near their house for leisure, and use taxi 

more for longer trips. Longer activity duration actually makes taxi more attractive.  
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In terms of land use variables, as can be seen, TAZ density and diversity do change 

travelers’ mode choices. Higher density TAZs encourage walk and discourage auto. Higher 

dissimilarity index, or more diversified TAZs discourage auto usage, and higher employment 

entropy encourage walking. The existence of a ramp in a TAZ is related to automobile travel. 

This is evidence that highway facilities induce more auto-oriented long distance trips, or that 

easy access to highway could attract people who like driving. Finally, it is easy to understand 

that accessibility to transit stops (higher parameter of Transit coverage) would encourage usage 

of bus and rail.  

Table 4.30 Validation Performance of the Intrazonal Trips’ Mode Choice Model 

Intrazonal 

trips 

Walk Bike Auto Bus Rail Taxi Overall 

Actual 98 3 266 1 17 1 386 

Estimated 115 0 268 0 1 2 386 

Correctly 

estimated 

85 0 249 0 0 0 334 

Percentage 86.7% 0 93.6% 0 0 0 86.5% 

 

The developed mode choice model of intra-zonal trips is validated using data from the 

same survey. As can be seen from Table 4.30, 86.5% of the trip observations for validation are 

correctly estimated.  
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 Mode Choice Model of Inter-zonal Trips 

Table 4.31 Mode Choice Model of Interzonal Trips 

Variable  Non-motorized Motorized 

Walk Bike Auto Bus Rail Taxi/ 

Shuttle 

Alternative specific 

constant 

6.7287 

(0.000)[1] 

1.9793 

(0.000) 

 0.1277 

(0.000) 

-5.6021 

(0.000) 

-0.9257 

(0.000) 

Travel time  -0.1797 

(0.000) 

-0.1797 

(0.000) 

-0.1385 

(0.000) 

-0.0544 

(0.000) 

-0.0544 

(0.000) 

-0.1321 

(0.000) 

Number of vehicles 

owned per person 

-2.5176 

(0.000) 

-4.2726 

(0.000) 

 -9.0987 

(0.000) 

-5.0475 

(0.000) 

-6.4991 

(0.000) 

Female or not -0.1616 

(0.000) 

-2.4571 

(0.000) 

   0.5744 

(0.000) 

Age  -0.0105 

(0.000) 

    0.0541 

(0.000) 

Number of trips made 

per person per day 

  0.1639 

(0.000) 

   

DTAZ population 

density  

0.1664E-4 

(0.000) 

0.8729E-4 

(0.000) 

    

DTAZ employment 

density  

0.1664E-4 

(0.000) 

     

OTAZ employment 

entropy 

  0.6107 

(0.000) 

   

Existence of ramp to 

freeway in OTAZ (1: 

yes 0: no) 

  0.7200 

(0.000) 

   

DTAZ Transit 

Coverage  

   3.0520 

(0.000) 

4.6174 

(0.000) 

 

IV parameter  0.8867 

(0.000) 

0.9228 

(0.000) 
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Summary statistics 

Number of observations =2132 

Base Model McFadden Pseudo R squared=0.9168 

Land Use Model McFadden Pseudo R squared=0.9222 

Note: [1] All the variables are significant at 0.01 confidence level.  
 

A separate model choice model is identified for inter-zonal trips (Table 4.31). The trip 

travel time parameters are all negative in all the six utility functions. Different from the intra-

zonal trips’ mode choice model, non-motorized modes are most strongly influenced by the 

increase of travel time. This might be because inter-zonal trips could have distances as long as 40 

miles and travel time as long as one hour. With the increase of trip distance and travel time, the 

probability of choosing non-motorized modes drops down to zero. Same with intra-zonal trips’ 

model, transit users have the lowest value of time.  

The effect of vehicle ownership on inter-zonal trips’ mode choice is very similar to that 

on intra-zonal trips. The only difference is that the parameter of auto ownership in bus is larger 

(in terms of absolute values) than that in rail. This might be because the service coverage area for 

buses in Buffalo is much larger than rail, and as a result, it is more likely to be taken as auto’s 

substitute (there is only one rail line in this area, which mainly serves downtown Buffalo).  

Males are more likely than female travelers to walk or bike.  On the other hand, females 

tend to use taxi/shuttle bus more than males. Senior citizens take the taxi more and walk less, 

while in intra-zonal trips’ mode choice model, senior citizens walked more. This may be because 

shorter intra-zonal trips may be primarily for leisure and exercise for senior citizens, while 

longer inter-zonal trips are not. People who need to make multiple trips per day usually prefer 

the auto, since it provides better flexibility.  
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In terms of land use variables, both the origin TAZ’s and destination TAZ’s land use 

variables influence travelers’ mode choices. Higher population density and/or higher 

employment density in destination TAZ promote walk. Furthermore, population density of 

destination TAZ is positively related to bike usage. If origin TAZ’s employment entropy is 

higher, travelers starting from that zone actually drive more and walk less; no obvious reason 

was readily apparent to explain this. Existence of ramp to freeway encourages automobile usage, 

and transit coverage of a TAZ makes market share of bus and rail higher.  

Table 4.32 Validation Performance of the Interzonal Trips’ Mode Choice Model 

Interzonal 

trips 

Walk Bike Auto Bus Rail Taxi Overall 

Actual 17 2 503 7 3 1 533 

Estimated 15 0 511 5 0 2 533 

Correctly 

predicted 

12 0 500 3 0 1 516 

Percentage 70.6% 0 99.4% 42.9% 0 100% 96.8% 

 

The mode choice model of inter-zonal trips was validated using data from the same survey (see 

Table 4.32). As can be seen, 96.8% of the 533 observations are correctly estimated.  
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4.5 Case Study 

As a demonstration of how the enhanced travel demand forecasting method developed in this 

research may be applied, the method was used to evaluate several hypothetical smart growth land 

use scenarios. Specifically, the method was first applied to the base case Buffalo model.  

Following this, several smart growth strategies were assumed, and their likely impact was 

evaluated. By comparing the scenario analysis results, insight are gleaned regarding the impact 

of smart growth strategies on travel demand and the applicability of the proposed method. The 

details are shared as below. 

4.5.1 Enhanced Travel Demand Forecasting Framework and Steps 

The developed enhanced travel demand forecasting modeling framework to evaluate smart 

growth strategies is shown in Figure 4.16. As can be seen, it follows the modeling structure of 

the traditional four-step travel demand models, but is improved by taking into consideration 

individual travelers’ travel behaviors, particularly in the steps of destination choice and mode 

choice, as described above. When applied to evaluate a land use scenario, the framework starts 

with the data collection in order to get the travel and land use related information.  Then, trip 

generation models are run to predict the number of trips produced by each TAZ for each trip 

purpose. After the total trips are predicted, a trip population synthesizer is used to generate the 

profile for each trip in terms of the socio-economic characteristics of the household and the 

person who make the trip and the trip-related attributes, such as activity duration. In addition, the 

land use attributes for the origin and all the potential destinations of each trip are added to the 

synthesized trip data.  Later on, destination choice models are used to predict the probability for 

each synthesized trip to choose a destination TAZ in the area. Furthermore, the mode choice 

models will be run to estimate the mode choice decision for each trip. These individual-trip-



158 
 

 

based destination choice and mode choice decisions are then aggregated to get the OD trip tables 

by trip purposes by modes.  As the last step, the OD demand is assigned to the transportation 

network to obtain the performance indicators such as VMT and VHT.  The key steps of the 

modeling framework are discussed in detail below. All the procedures are implemented using a 

Java code. 

 

Figure 4.16 Enhance Travel Demand Forecasting Framework 

 

Trip Generation 

As the first modeling step in the framework, the trip generation models developed in section 4.2 

are used to predict the total number of trips produced (called trip production) from each TAZ for 

each of six trip purposes. The estimated trip productions are shown in Table 4.33 with 10 TAZs 

as the examples. In total, 2,676,784 trips are produced by Erie County during a typical weekday.  

These estimated trip productions will remain the same for all the land use scenarios.  

 

 

Traffic Assignment 

Mode Split 

Destination Choice 

Trip Synthesizer 

Zonal Data and Land Use 

Trip Generation 
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Table 4.33 Estimated Trip Productions of TAZs during a Typical Weekday (Trips) 

TAZ 

Trip purposes 

HBW HBShop HBSR HBO NHBW NHBO 

1 302 551 359 334 753 2473 

2 16 431 213 0 521 1153 

3 16 428 211 0 521 1156 

4 16 431 214 0 430 686 

…       

161 1305 647 2724 150 948 161 

162 586 444 1251 145 394 162 

163 537 548 1225 268 809 163 

164 345 516 830 468 1622 164 

165 357 763 1098 783 3528 165 

166 1811 823 3797 138 824 166 

……       

Sum 464479 293800 303838 730955 142860 740830 

 

 Trip Synthesizer 

After the trip production from each TAZ is estimated, the trip synthesizer is used to generate the 

profile for each trip in terms of the trip maker’s socio-economic characteristics, the associated 

household’s attributes and trip related attributes. In terms of trip makers’ and households’ 

attributes, the trip synthesizer generates 14 socio-economic variables for each trip as shown in 

Table 4.34,  including the trip maker’s age, gender, whether a student or not, number of jobs, 

household size, household income, car ownership, and so on. In addition, activity duration is 

generated for each trip as the main trip attributes. When determining the specific value for each 

attribute, the trip synthesizer does random sampling from the survey data. Specifically, what it 

does is to randomly select a value from the observed distribution of an attribute and then assign it 
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to a target trip. By doing so for each attribute of each trip, we generate a trip profile data as the 

outcome of trip synthesis. 

It needs to note that this random synthesis process could generate unrealistic trip 

attributes. For example, when independently assigning values to HWORK (number of workers in 

a household), HSTUD (number of students in a household), and HHSIZ (household size) for a 

trip, we may have values assigned to HWORK and HSTUD larger than HHSIZ. To avoid these 

inconsistent assignments, we added constraints to address the relationships between different 

attributes. For instance, we added a constraint in the trip synthesizer to make sure that HWORK 

and HSTUD are always less than or equal to HHSIZ. We did so for other attributes as well.  

To give more details about how the trip synthesizer works, we use the HBW trips of TAZ 

25 as an example. As the initial input, 2,508 HBW trips are predicted to be produced from TAZ 

25 as the result of the trip generation step. When using the trip synthesizer to generate the profile 

for each of the 2,508 HBW trips, we firstly obtained all the five HBW trips originated at TAZ 25 

and their associated information from the 2002 Buffalo-Niagara Regional Household Travel 

Survey (Table 4.34). Then, we used the five trips as the seeds to determine the attributes for each 

of the 2,508 HBW trips. For example, we randomly selected a value (which is 3) from the five 

reported HHSIZ values and assigned it to HHSIZ of the first predicted trip, and did the same 

thing for other attributes of the trip as well as for other trips.  By doing so, we synthesized the 

profiles for the 2,508 trips as shown in Table 4.35.  
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Table 4.34 Five HBW Trips Originated at TAZ 25 from the Survey 

TAZ HHSIZ HHVEH HWORK HSTUD … PERINCM FEMALE AGE JOBS STUDE NTRIPS ACTDUR 

25 3 3 3 1  19.8 0 45 2 2 1 622 

25 3 3 3 1  19.8 1 45 1 2 3 410 

25 1 0 1 0  20 1 60 1 2 2 570 

25 2 0 1 0  17.5 1 46 1 2 6 365 

25 2 0 1 0  17.5 1 46 1 2 6 65 

 

Table 4.35 Synthesized HBW Trip Set Originated at TAZ 25 

TAZ HHSIZ HHVEH HWORK HSTUD … PERINCM FEMALE AGE JOBS STUDE NTRIPS ACTDUR 

25 3 0 3 1  19.83 1 46 1 2 6 410 

25 2 0 1 0  17.50 0 46 1 2 3 622 

25 2 3 1 1  19.83 1 46 1 2 2 570 

25 1 3 1 0  17.50 1 46 1 2 6 65 

25 2 0 1 1  19.83 1 46 2 2 1 622 

25 2 3 1 0  19.83 0 60 1 2 2 365 

25 1 0 1 1  20.00 1 60 1 2 6 410 

25 3 3 3 0  19.83 1 60 1 2 3 570 

25 2 0 1 0  20.00 1 60 1 2 6 65 

…             
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Destination Choice 

This step is to estimate the probability for a trip to choose a destination TAZ given a land use 

scenario.  Theoretically speaking, each trip can go to any of the 402 TAZs in the Erie County as 

the destination. Therefore, the choice probability should be estimated for each TAZ for a 

synthesized trip. However, to do so is very computationally challenging due to the large number 

of trips involved (i.e., 2,676,784 synthesized trips) and the large destination alternative set (i.e., 

402 TAZs) available to each trip. To solve this issue, we used the stratified random sampling 

techniques, as we did for the calibration of destination choice models, to select four destination 

TAZs as the representative choice alternatives for each trip.  Figure 4.17 shows the four distance-

based strata we used to sample destination alternatives, and the stratification strategy is the same 

as the one we used to calibrate destination choice models. After sampling four alternative 

destination TAZs for each trip, the land use attributes for these TAZs were retrieved and attached 

to the trip profile data estimated from the trip synthesis step. By doing so, we added land use 

attributes, particularly for alternative destination TAZs, to the original trip profile data.  
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Figure 4.17 The Distance-Base Stratified Sampling Technique 

 

After the data preparation, the destination choice models were run for each trip of a given trip 

purpose, to estimate the probability of that trip choose a destination TAZ.  

Mode Choice 

After running the destination choice models to derive the probability of a trip choosing a 

destination, the mode choice models were run to determine the probability of that trip choosing 

one of the six available transportation modes. Specifically, for each trip, the intra-zonal mode 

choice model was applied to the first sampled destination TAZ that is the same as the origin of 

the trip, and the inter-zonal mode choice model was used to other destination TAZs. The direct 

outcome of this step is the estimated probability for a trip to visit a destination TAZ by using 
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certain mode. These trip-based choice probabilities were then aggregated to get the OD trip 

tables by modes.  

It needs to mention that trip travel times are a key input used to estimate the mode choice 

probabilities. For inter-zonal trips that involve the destination TAZs other than the origin TAZ of 

a trip, we used the TransCAD multiple shortest path module to generate trip travel times. For 

intra-zonal trips, it was a bit challenging since TransCAD assumes zero travel time for any 

intrazonal travel. To solve this problem, we designed a random distance generator to generate the 

trip distance for each intra-zonal trip, assuming the distance could be anywhere from zero to the 

diameter of the origin TAZ. Then we divided each trip distance by the average speed of each 

mode to get the travel times by modes for each trip. Several random distance generators were 

tested, the best one that returns the most consistent intra-zonal mode market share was used at 

the end.  

 Traffic Assignment 

As the last step of the travel demand forecasting process, for each scenario, we used the all-or-

nothing assignment method to load the estimated auto trips to the roadway network in the region. 

Bus and rail trips were not assigned as they contribute very little to the major performance 

measures such as VMT and VHT. Trips of taxi/shuttle bus were also not assigned either due to 

their negligible market shares.  

4.5.2 Scenario Analyses 

Three smart growth land use scenarios are designed to test the feasibility of the proposed travel 

demand forecasting approach. The first scenario assumes that a shopping center would be added 

to a suburb residential area. In the second scenario, a mixed land use smart growth policy will be 
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promoted all across Erie County, and as a result the land use dissimilarity index in the whole 

county improves. The last scenario focuses on transit-oriented smart growth strategies, assuming 

the implementation of these strategies will increase the transit coverage all across the whole 

county. The detailed analyses are discussed below. 

 Smart Growth Scenario One: Redevelopment in a TAZ 

This scenario assumes there would be a major redevelopment in TAZ 221. TAZ 221 is located in 

the north eastern part of Erie county, and is a suburban area dominated by residential land uses. 

It is chosen as a representative of single-land-use zones that are typical in Erie County.  

 

Note: The red rectangle means the shopping center.  

Figure 4.18 Parcel Level Map of TAZ 221 

As shown in Figure 4.18, TAZ 221 is composed of single family dwelling units, very limited 

office space, an outdoor sports area, and two vacant lands. In this scenario, we assume a 

shopping plaza, that involves multiple types of employment opportunities such as retail and 
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wholesale, will be built in the vacant land. Due to the addition of the shopping center, the 

demographics and land use variables of this TAZ are changed as shown in Table 4.36.  

 

Table 4.36 Changes of Land Use Variables in Scenario One 

Demographics and Land Use Attributes Base Case After Building the Shopping Center

Retail employees 0 400 

Wholesale employees 16 66 

Other employees 597 795 

Total employees 648 1296 

Employment density  

(employees/squared miles) 

290.58 581.16 

Normalized employment to population ratio -0.7845 -0.611 

Employment entropy 0.3035 0.658 

Retail land use (squared feet) 0 500000 

Land use entropy 0.2979 0.6 

Non-work land use entropy 0.2857 0.55 

Dissimilarity index 0.1552 0.5 

 

Then we run the model. The travel behavior changes after the redevelopment are shown in Table 

4.37 and Table 4.38. The number of intrazonal trips in TAZ 221 almost doubles, which means 

the travelers in TAZ 221 are more likely to make shorter interzonal trips and intrazonal trips in 

the scenario. As a result, VMT of the trips produced by TAZ 221 decreases by 15.1%, and VHT 

decreases by 4.63%. Table 4.38 shows that the market share of the different modes does not 

change much. Thus, it seems that that particular scenario’s land use changes influenced travel 

behavior mainly by changing destination choice instead of mode choice.  
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Table 4.37 Overall Travel Demand Changes (Scenario one) 

 Base case Scenario one Percent Change 

Trip production 20298 20298 0 

Intrazonal trips 1346 2627 95.2 

VMT (miles) 101381 86047 -15.1 

VHT (hours) 2850 2718 -4.63 

 

Table 4.38 Mode Shifts (Scenario One) 

Modes Base case Scenario 1 

Market 

share (%) 

% among 

intrazonal trips 

Market share 

(%) 

% among 

intrazonal trips 

Walk 2 2 2 2 

Bike  3 17 4 18 

Auto  92 81 92 79 

Bus  3 0 2 0 

Rail  0 0 0 0 

Taxi  0 0 0 0 

 

 Smart Growth Scenario Two: Mixed Land Use Policy 

This scenario assumes a mixed land use policy is promoted in the whole Erie county area. This 

policy aims to change the isolation of land use function, and makes different land uses more 

mixed together in a finer grain. It is also assumed that the proportion of employment type and 

proportion of each land use’ are do not change, so that only the dissimilarity index increases 

while employment entropy and land use entropy remain the same. The enhanced travel demand 

forecasting approach is run five times, with the dissimilarity index steadily increasing. The VMT 

reduction of each trip purpose and overall reduction are shown in Figure 4.19. 
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As is shown in Figure 4.19, VMT of HBW and NHBW trips are most strongly influenced 

by land use diversification strategies. A 10% inflation of dissimilarity index leads to 0.3% 

reduction of HBW trips’ VMT, and 0.42% reduction of NHBW trips’ VMT. The relationship 

between VMT reduction and dissimilarity index inflation is approximately linear. And the 

elasticity of total VMT reduction to dissimilarity index inflation is -0.01. Compared with the 

elasticities given by INDEX-4D method (Criteron_Planner&Engineers and 

Fehr&Peers_Associates 2001), where the elasticity of daily VMT with respect to a diversity 

indicator is 0.05, this result is a much lower value. This might be a result of the sparse land uses 

in this area and people’s dependence on private vehicles.  

There is one problem within this scenario. It is very rare in real life when only 

dissimilarity index changes while all other variables remain the unchanged. So this scenario is an 

ideal simplification of real life. Thus more complex scenario designs, which consider the 

interrelations among the variables, are needed in future work.  

 

Figure 4.19 VMT Reduction in Scenario Two 
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 Smart Growth Scenario Three: Transit-oriented Policy 

Another important set of smart growth strategies aim to build transit-oriented neighborhoods to 

attract more travelers to bus or rail. This scenario assumes there is a transit-oriented policy 

implemented in the whole Erie county, so that transit coverage rate, which denotes the proportion 

of a TAZ within 0.25 miles from transit stops, increases in all the 402 TAZs. Same with scenario 

two, the model is run five times, with each transit coverage rate has an increasing inflation. The 

VMT reductions are shown in Figure 4.20.  

As is shown in Figure 4.20, VMT of HBShop trips are mostly influenced by transit-

oriented developments. The elasticity of HBShop trips’ VMT reduction to transit coverage rate 

inflation is -0.1, which is relatively high. VMT of HBSRO trips is also reduced when transit 

coverage rate increases, but the reduction is not as big as the VMT reduction of HBShop trips. 

The elasticity of total VMT to transit coverage rate is -0.015. In both the two trip purposes, the 

relationship between VMT reduction and transit coverage rate inflation is approximately linear.  

 

Figure 4.20 VMT Reduction in Scenario Three 
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4.5.3 Summary of Scenario Analyses 

The three scenario studied show that travel behavior, which is denoted by VMT and VHT, is 

impacted by different land use patterns. To be more specific, redevelopments in a low density 

residential neighborhood induce more intra-zonal trips in the TAZ, and reduce the daily VMT of 

this TAZ by 15.1%. Higher dissimilarity land uses in Erie county can shorten the HBW and 

NHBW trips by increasing the probability of choosing destination TAZs less than 4.65 miles. 

Provision of transit infrastructure to Erie county impacts the destination choices of HBShop and 

HBSRO trips. Higher transit coverage rate is associated with shorter HBShop and HBSRO trips. 

Both higher mixed land uses and transit-oriented land uses could reduce the overall VMT of Erie 

county.  

The sensitivity of this model to smart growth strategies is moderate at most. The 

elasticity between VMT and dissimilarity index is -0.01, and the elasticity between VMT and 

transit coverage rate is -0.015. Compared to the elasticities in INDEX-4Ds method 

(Criteron_Planner&Engineers and Fehr&Peers_Associates 2001) where the elasticity between 

VMT and 4Ds variables is at least 0.04, the sensitivity of the enhanced travel demand forecasting 

approach is smaller.  Still, the scenario analysis proves that the enhanced travel demand 

forecasting method could be used to evaluate the impacts of smart growth strategies. Considering 

the fact that most MPOs in US are still using traditional four-step method, this finding means 

they can improve their model with relatively small consumption of time and cost to make it 

sensitive the smart growth strategies, instead of spending a lot of money in reconstructing 

activity-based model.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

This section briefly summarizes the main conclusions derived from this stud.  The section is 

divided into two parts.  The first part lists the conclusions derived from the study’s work 

involving the development of the post-processor method for assessing the likely impacts of smart 

growth on travel behavior.  The second part, on the other hand, focuses on the enhanced four-

step travel demand forecasting process developed. 

5.1 Post-processor Method Conclusions 

In this study, a method of relating zonal travel behavior to built environment factors was 

presented and applied to a Buffalo, NY study area. Travel behavior was quantified in three ways: 

mode choice, daily VHT per household, and daily VMT per household. The built environment 

was characterized by iterative testing and refinement of variables based on a variety of data 

sources. Linear regression was used to create models relating variations in travel behavior to the 

built environment. 

The resulting models may be applied to transportation planning as tools to estimate the 

potential impact of a development plan on travel behavior. Changes in TAZ-level mode choice, 

VMT and VHT may be estimated, provided the development plan is expected to significantly 

alter the built environment in a way that can be quantified in the explanatory variables. The 

models themselves may be examined in the absence of a development plan to serve as guidance 

in future planning. Among the main conclusions of the study are: 
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1. Zonal mode choice is highly correlated to built environment factors, especially those 

related to density or design, even when controlling for relevant demographics such as 

household vehicle ownership. 

2. Home-based vehicle travel is affected by the built environment to a lesser degree than by 

social or economic factors, as both home-based VHT and VMT models include only a 

single built environment variable of moderate significance.  This may be attributable to 

the residential self-selection phenomenon. 

3. Minimizing Mallow’s Cp as a regression objective appears to create better models than 

maximizing the adjusted R2, as fewer variables can be used with only negligible loss in 

explanatory power. 

4. Principal component analysis can be used to examine the data structure of the 

explanatory variable space. For this study, it revealed that three principal components 

account for most (64%) of the variability in the explanatory variable space: the first is 

related to aspects of the transportation infrastructure, the second is related to aspects of 

population density and distribution, and the third is related to household demographics. 

5. Power transformations to normality, when applied to explanatory variables, do not 

improve the modeling of mode choice, as the dependent mode choice variables are 

skewed asymmetrically. However, transformations such as the Yeo-Johnson family of 

power transformations do improve the modeling of more normally distributed variables, 

such as household VHT and VMT.  

6. The models can easily be applied in a post-processor fashion to land use planning 

scenarios. For the hypothetical high-density residential development overviewed in 
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section 3.5, it was estimated that the proportion of a zone’s trips taken by vehicle may be 

lowered by as much as 8% by re-developing low-density suburban housing to a higher 

density. 

Many principles of smart growth, such as promoting mixed land use development, appear to be a 

valid way to encourage non-vehicle travel in the study area, as indicated by the statistical 

significance of diversity measures in the non-motorized and transit models. Moreover, high 

density development appears to encourage non-motorized travel, and dense street networks 

appear to encourage transit usage. As few built environment factors were present in the 

household home-based VHT and VMT models, the effects of smart growth planning on these 

measures of travel behavior is less visible. 

5.2 Enhanced Four-step Travel Demand Forecasting Method 

The most important finding of this part of the research pertains to the enhanced methodology 

developed. The study demonstrates that the traditional four-step method could be enhanced and 

made more sensitive to smart growth strategies. The enhanced travel demand forecasting method 

has many advantages over traditional method, particularly with respect to destination choice and 

mode choice, two of the most important components of travel demand forecasting process. The 

disaggregate destination choice and mode choice model used in this research allow incorporation 

of a multitude of socio-economic variables, and also zonal land use variables of both the two trip 

ends. The scenario studied show that it is applicable to extend the enhanced travel demand 

forecasting method beyond academic area and into practice.  

This research also supports the claims that compact, mixed-use, pedestrian-friendly and 

transit-friendly designs can reduce vehicle trips, encourage non-motorized modes, decrease 
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average trip length, and reduce daily VMT. Despite of having subjective factors in determining 

which variable to include in the model, the enduring statistical significance of some variables 

lend strong proof to the claim that smart growth strategies could reduce VMT.  

Specifically, higher dissimilarity land uses can shorten the HBW and NHBW trips by 

increasing the probability of choosing destination TAZs less than 4.65 miles. More evenly 

distributed land use pattern (higher land use entropy) makes the HBW and HBShop trips shorter. 

Provision of transit infrastructure also has impacts on the destination choices of HBShop and 

HBSRO trips. Higher transit coverage rate is associated with shorter HBShop and HBSRO trips. 

With respect to mode choice, compared with inter-zonal trips, intra-zonal trips’ traffic 

mode choice is more sensitive to built-environmental changes, maybe because non-motorized 

modes are more likely to be available for short-distance intra-zonal trips than for longer inter-

zonal trips. Higher population density and employment density both encourage non-motorized 

mode, while discourage auto travels in intrazonal trips. Provision of more convenient transit 

service increases the mode share of bus and rail for both intrazonal and interzonal trips.  

Overall, the effects of the built environment factors on travel demand in the Greater 

Buffalo-Niagara area appear to be moderate at best. The findings are best summarized by the 

elasticities of VMT with respect to the land use variables quantifying built environment, 

resulting from applying the enhanced methodology, which revealed values falling in the range of 

0.01 to 0.1 (see Table 5.1).  
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Table 5.1 Elasticities between VMT of Different Trip Purpose and Built Environment 

 Dissimilarity index Land use entropy Transit coverage rate

VMT of HBW trips -0.03 -0.075  

VMT of HBShop trips  -0.081 -0.1 

VMT of HBSRO trips   -0.011 

VMT of NHBW trips -0.041   

VMT of NHBO trips    

Overall VMT -0.01 -0.027 -0.013 

Findings from the study thus support the claims that compact, mixed-use, pedestrian-

friendly and transit-friendly designs can reduce vehicle trips, encourage non-motorized modes, 

decrease average trip length, and reduce daily VMT. Moreover, the study has developed two 

useful methodologies which can be applied to increase the sensitivity of current modeling tools 

toward assessing the likely impacts of proposed smart growth strategies. 

5.3 Post Processor Method versus the Enhanced Four-Step Demand Forecasting Method 

 Each of the two approaches investigated in this study to increase the sensitivity of 

transportation planning models to the likely impacts of smart growth, have their own set of 

strengths and limitations.  The post-processor method is quite straightforward, easy to implement, 

and very computationally efficient.  However, the models developed would be specific to the 

geographic area from which the data used in developing the model were obtained.  On the other 

hand, the enhanced four-step process defines a general framework which may be applied to any 

region.  While the specific models would still need to be recalibrated for each region using that 

particular region household travel survey data, the enhanced framework is general enough to 

allow it to be applied to any region.  Finally, while the data and computational requirements of 

the enhanced four-step process exceed those for the post-processor method, the results from the 

enhanced process are expected to be of higher accuracy.    
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Appendix A 

Travel behavior variables 

 

 

Figure A1:   Chloropleth map of vehicle trip proportion by TAZ 

 



 

Figure A2:  Chloropleth map of transit trip proportion by TAZ 

 



 
 

Figure A3:   Chloropleth map of non-motorized trip proportion by TAZ 

 

 

 

 

 



 
 

Figure A4:   Chloropleth map of home-based daily VHT per household by TAZ 



 
 

Figure A5:   Chloropleth map of home-based VMT per household by TAZ 

 

 

 

 



Table A1: Summary statistics for travel behavior variables (mean, median, and quartiles) 

 

NonMSplit  TransitSplit  VehSplit  HB_VHT_pHH  HB_VMT_pHH 

Min.   :0.00000   

1st Qu.:0.00000   

Median :0.02669   

Mean   :0.07724   

3rd Qu.:0.10927   

Max.   :1.00000   

Min.   :0.00000   

1st Qu.:0.00000   

Median :0.00000   

Mean   :0.03817   

3rd Qu.:0.02102   

Max.   :0.81620   

Min.   :0.0000   

1st Qu.:0.8226   

Median :0.9577   

Mean   :0.8655   

3rd Qu.:1.0000   

Max.   :1.0000   

Min.   :0.0000   

1st Qu.:0.5799   

Median :1.3705   

Mean   :1.5632   

3rd Qu.:2.3140   

Max.   :9.2872   

Min.   : 0.000   

1st Qu.: 1.861   

Median : 4.900   

Mean   : 6.413   

3rd Qu.: 9.292   

Max.   :51.358   

 

 
Figure A6:   Matrix plot of travel behavior variables 
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As all modes included in the travel survey were categorized as non-motorized, transit, or vehicle, 

the sum of all three mode proportions for each zone is one. This constraint is clearly visible as 

the diagonal distribution of the mode choice scatterplots (upper left). Negative correlations 

between non-motorized or transit mode choice and the measures of vehicle travel are also clearly 

visible. Most zones appear to rely entirely on vehicle travel, as confirmed by the quartiles in 

Table A1, above, and in Figure A7, below. 

 

 
Figure A7: Personal vehicle dependence in Erie County 

 

 

As seen above, roughly two-thirds of the study area TAZs are heavily reliant on personal vehicle 

travel, which accounts for 90% or more of the trips taken in these zones. Spatial variation in 

vehicle dependence can be seen in Figure A1. Distributions of the other two mode choices, non-

motorized and transit, can be found in Figure A8 and Figure A9, respectively.  
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Figure A8:  Distribution of non-motorized trip proportions 

 

 
Figure A9:  Distribution of transit trip proportions 

Histogram of TAZ-level non-motorized trip choice
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Histogram of TAZ-level transit trip choice
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Figure A10:  Distribution of home-based VHT per household 

 

 

Figure A11:  Distribution of home-based VMT per household 
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Appendix B 
  



Appendix B 

Explanatory variables 

 

Prior to modeling, a much larger set of variables (including transformed variables) was tested for 

correlation with the dependent variables. Many with low correlations were discarded, and others 

were discarded for quantifying the same effect as another variable (for example, several ways of 

computing population density were tested, and only the best was kept). Table XXXXX from 

Chapter 3: Methodology shows the variables eventually included in linear models. Table B1, 

below, shows the variable space initially used in linear modeling, including variables not present 

in the final models, along with expanded descriptions of each variable. 

 

Table B1: Explanatory variable descriptions 

D
em

og
ra

ph
ic

s 

MHHI_2000 Median household income from the 2000 census 

HHVEH Number of vehicles owned by the household 

HWORK Number of employed persons in the household 

HSTUD Number of students in the household 

HHSIZ Total residents of the household. Household vehicles, 

workers, students and size were self-reported by survey 

participants. 

B
ui

lt 
en

vi
ro

nm
en

t v
ar

ia
bl

es
 

PopDensity Population density, computed as population divided by the 

total area of the zone. Other measures of population density 

were attempted, such as population over developed area and 

population over residential area; these measures were 

discarded prior to modeling due to having slightly worse 

correlations with the dependent variables. 

EmpDensity Employment density, computed as persons employed in the 

zone divided by the total area of the zone. 

ResComm Balance These balance-based variables were computed using the 

balance formula reviewed in Methodology. This variable is 

the balance of residential and commercial land use area. Many 



other land use balance measures were attempted and discarded 

prior to modeling. 

SingleResOtherRe

s Balance 

The balance of single-family residential area to all other types 

of residential area (including double-family, triple-family, 

apartments, and rural housing). The variable is intended to 

quantify mix of housing types, thought to shorten mean 

commute times by allowing people of all housing preferences 

to live near their workplace. 

ResCommun 

Balance 

The balance of residential and community land use area. As 

community land uses include schools, health facilities, 

churches, and other considerable trip attractors, it is thought 

that mixing community services into residential areas may 

reduce VMT. 

CommunComm 

Balance 

The balance of community and commercial land use area. 

Mixing these may encourage trip chaining. 

ApartmentOtherRe

s Balance 

The balance of apartments to all other types of residential land 

uses. As above, diverse available housing options may reduce 

commute times. As few TAZs have significant area devoted to 

apartments, significant variation only exists among urban 

TAZs. 

SNDbyParcelArea Street network density, computed as the total length of street 

divided by the parcel-covered area of the zone. Other methods 

for computing street network density were attempted, 

including dividing by the total area of the zone and by the 

developed area of the zone; these variables were discarded in 

favor of per-parcel- area. 

JunctionD 

byStreetLength 

Junction point density, computed as the number of junctions 

(modeled as nodes in ArcGIS Network Analyst, including 

intersections and interchanges) divided by the total length of 

street. Other methods of computing junction density included 



junctions per total area and junctions per developed area; 

these were discarded. This variable describes the same aspect 

of the built environment as junction kernel density. As the 

variables were not too highly correlated with one another 

(p=0.74), both were included in the variable set for linear 

modeling, and at most one of these two variables was allowed 

in each model.  

StreetProx400ft Street network proximity, computed as the proportion of 

parcel area within 400ft of any street. Similar to street 

network density, which was used in favor of this variable in 

the final linear models.  Other distances were attempted; 400ft 

was found to maximize variability (giving dense urban zones 

a value close to 1, sparse rural zones a value close to 0, and 

most zones well-distributed in between) and correlation with 

the dependent variables. 

TransitPoint Transit point density, computed as the total number of transit 

stops (for both buses and rail) divided by total area. This 

variable was eventually discarded in favor of transit kernel 

density. 

TransitKernel Transit kernel density, computed as the mean transit kernel 

value for the zone. All transit points were given the same 

weight and kernel radius, set at 100m. The concept of kernel 

density is explained in the Methodology section. 

JunctionKernel Junction kernel density, computed as the mean junction kernel 

value for the zone. Each junction was given the same weight 

and kernel radius, set at 100m. This variable was expected to 

partially account for the pedestrian friendliness of a zone, as 

short blocks are expected to encourage pedestrian travel. 

RoadKernel Road kernel density, computed as the mean road kernel value 

for the zone. All roads were given the same weight and kernel 

radius, set at 100m. This is the only line-kernel variable – all 



other kernel densities are point-kernels. 

EmpKernelWeight

ed 

Employment kernel density, computed as the mean 

employment kernel value for the zone. Each place of 

employment was given a kernel function weighted for the 

number of employees and  a radius of 0.5 miles. This variable 

was transformed with the log function prior to inclusion in the 

regression variable set so as to improve its distribution. Prior 

to applying the logarithm, the variable spanned many orders 

of magnitude. Its correlation with the dependent variables was 

significantly improved. 

MeanFZ1PD The number of fare zone 1 transit stops per unit area. At the 

time the travel survey was conducted, the Buffalo area metro 

system used multiple fare zones, with zone 1 as the most 

urban and zone 4 as the most rural. It was found that TAZs 

that were at least partially contained in zone 1 had 

significantly higher transit usage than those in zones 2, 3 or 4, 

due to extra fees incurred when travelling between zones and 

better transit infrastructure in zone 1. 

Dissim100m Mean dissimilarity index for all cells in the zone. More on this 

variable can be found in methodology. Another dissimilarity 

index, based on a smaller, 50m grid was attempted. As many 

parcels are smaller than 100m, it was thought that 50m would 

better capture land use mixing. However, the 100m-based 

dissimilarity index was found to be better correlated with 

travel behavior, and the 50m-based index was discarded. 

ResPercent Proportion of parcel area designated as residential. Low 

correlation with population density (p=0.26). 

CommercePercent Proportion of parcel area designated as commercial. 

Correlated with employment density (p=0.49). 

EmpPercent Proportion of parcel area designated as employment 



(commercial, community or industrial, excluding apartments 

& community parcels that are relatively undeveloped). 

DevPercent Proportion of parcel area that is developed – that is, not 

vacant, unknown, agricultural, forest, or relatively 

undeveloped community parcels. 

HighDIndex1 Crafted as an indicator of urban areas, this index is the 

percentage of parcel area classified as apartments, two- or 

three-family houses, offices, retail, or multi-use. These land 

uses were observed to be negatively correlated to vehicle use 

(both vehicle mode choice and VMT). Well correlated with 

population density (p=0.70) but not employment density 

(p=0.22). 

ResPercentDev Proportion of developed parcel area classified as residential. 

EmpPercentDev Proportion of developed parcel area classified as employment. 

Along with ResPercentDev, not in any final linear models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table B2: Summary statistics for built environment variables (mean, median, and 

quartiles) 

MHHI_2000  HHVEH  HWORK  HSTUD  HHSIZ 

Min.   :     0   
1st Qu.: 28919   
Median : 41368   
Mean   : 42375   
3rd Qu.: 53986   
Max.   :113755   

Min.   :0.000   
1st Qu.:0.958   
Median :1.447   
Mean   :1.384   
3rd Qu.:2.000   
Max.   :4.000   

Min.   :0.000   
1st Qu.:0.540   
Median :1.004   
Mean   :1.013   
3rd Qu.:1.439   
Max.   :4.000   

Min.   :0.0000   
1st Qu.:0.0000   
Median :0.4895   
Mean   :0.6118   
3rd Qu.:0.9526   
Max.   :4.0559   

Min.   :0.000   
1st Qu.:1.629   
Median :2.187   
Mean   :2.100   
3rd Qu.:2.738   
Max.   :7.000   

PopDensity  EmpDensity  ResPercent  CommercePercent  EmpPercent 

Min.   :    0   
1st Qu.: 1579   
Median : 4705   
Mean   : 6602   
3rd Qu.: 8955   
Max.   :50925   

Min.   :    18.24   
1st Qu.:   754.39   
Median :  2217 
Mean   :  8731  
3rd Qu.:  5038   
Max.   :340339 

Min.   :0.0000   
1st Qu.:0.2694   
Median :0.4488   
Mean   :0.4432   
3rd Qu.:0.6267   
Max.   :0.9164   

Min.   :0.00000   
1st Qu.:0.03493   
Median :0.09192   
Mean   :0.12751   
3rd Qu.:0.16580   
Max.   :0.72266   

Min.   :0.00000   
1st Qu.:0.07716   
Median :0.15593   
Mean   :0.20223   
3rd Qu.:0.25765   
Max.   :0.97232   

HighDIndex1  ResComm 
Balance 

SingleRes 
OtherResBalance 

ResCommun 
Balance 

CommunComm 
Balance 

Min.   :0.00000   
1st Qu.:0.03423   
Median :0.08534   
Mean   :0.12914   
3rd Qu.:0.19066   
Max.   :0.62379   

Min.   :0.0000   
1st Qu.:0.2742   
Median :0.5786   
Mean   :0.5350   
3rd Qu.:0.7896   
Max.   :0.9995   

Min.   :0.0000   
1st Qu.:0.3766   
Median :0.4949   
Mean   :0.4481   
3rd Qu.:0.5577   
Max.   :0.6099   

Min.   :0.0000   
1st Qu.:0.2514   
Median :0.5725   
Mean   :0.5225   
3rd Qu.:0.8141   
Max.   :0.9942   

Min.   :0.0000   
1st Qu.:0.1601   
Median :0.4717   
Mean   :0.4643   
3rd Qu.:0.7421   
Max.   :0.9841   

Apartment 
OtherResBalance 

Dissim100m  SNDbyParcelArea  TransitKernel  JunctionKernel 

Min.   :0.00000   
1st Qu.:0.00000   
Median :0.06417   
Mean   :0.16498   
3rd Qu.:0.21439   
Max.   :0.98223   

Min.   :0.01756   
1st Qu.:0.22552   
Median :0.27504  
Mean   :0.30380   
3rd Qu.:0.35668   
Max.   :0.80555   

Min.   :  1.965   
1st Qu.: 11.095   
Median : 19.668   
Mean   : 25.523   
3rd Qu.: 32.164   
Max.   :190.472   

Min.   :   0.000   
1st Qu.:   2.236   
Median :   8.390   
Mean   : 110.602   
3rd Qu.:  30.490   
Max.   :3704.965   

Min.   :  2.098   
1st Qu.: 31.939   
Median : 77.678   
Mean   : 87.072   
3rd Qu.:123.928   
Max.   :589.747   

RoadKernel  MeanFZ1PD       

Min.   : 0.8849   
1st Qu.: 5.9221   
Median :10.8498   
Mean   :12.1290   
3rd Qu.:17.2323   
Max.   :42.3906   

Min.   : 0.000   
1st Qu.: 0.000   
Median : 0.000   
Mean   : 3.113   
3rd Qu.: 2.429   
Max.   :62.621   

     

     

     

     

     

     

 



Note that, in Table B2, mean values are not weighted for TAZ size. Thus, mean employment 

density is higher than mean population density, despite the study area having more people than 

employed people. This is an example of Simpson’s paradox. 

 

Table B3: Pearson correlation matrix, dependent and independent variables 

  NonMSplit TransitSplit VehSplit HB_VHT_pHH  HB_VMT_pHH

MHHI_2000  ‐0.32 ‐0.43 0.49 0.33  0.49

HHVEH  ‐0.3 ‐0.36 0.49 0.45  0.54

HWORK  ‐0.09 ‐0.17 0.26 0.44  0.47

HSTUD  0.21 ‐0.02 ‐0.03 0.48  0.39

HHSIZ  0.03 ‐0.11 0.19 0.58  0.52

PopDensity  0.5 0.38 ‐0.39 ‐0.02  ‐0.23

EmpDensity  0.21 0.38 ‐0.27 ‐0.19  ‐0.18

ResCommBalance  0.07 ‐0.09 0.11 0.23  0.09

SingleResOtherResBalance  ‐0.35 ‐0.48 0.48 0.24  0.31

ResCommunBalance  0.01 ‐0.06 0.16 0.14  0.01

CommunCommBalance  0.11 0.18 ‐0.04 ‐0.01  ‐0.03

ApartmentOtherResBalance  0.12 0.2 ‐0.2 ‐0.1  ‐0.16

SNDbyParcelArea  0.44 0.56 ‐0.45 ‐0.18  ‐0.28

JunctionDbyStreetLength  0.28 0.33 ‐0.27 ‐0.1  ‐0.28

StreetProx400ft  0.34 0.3 ‐0.21 0  ‐0.2

TransitPoint  0.32 0.44 ‐0.36 ‐0.24  ‐0.22

TransitKernel  0.29 0.45 ‐0.35 ‐0.22  ‐0.2

JunctionKernel  0.46 0.53 ‐0.42 ‐0.13  ‐0.3

RoadKernel  0.48 0.51 ‐0.41 ‐0.09  ‐0.29

EmpKernelWeighted  0.32 0.48 ‐0.37 ‐0.23  ‐0.24

MeanFZ1PD  0.38 0.55 ‐0.43 ‐0.23  ‐0.25

Dissim100m  0.16 0.46 ‐0.22 ‐0.19  ‐0.27

ResPercent  0.01 ‐0.17 0.2 0.3  0.25

CommercePercent  0.23 0.37 ‐0.24 ‐0.28  ‐0.34

EmpPercent  0.13 0.36 ‐0.34 ‐0.3  ‐0.34

DevPercent  0.16 0.15 ‐0.1 0.06  ‐0.04

HighDIndex1  0.42 0.41 ‐0.35 ‐0.08  ‐0.26

ResPercentDev  ‐0.05 ‐0.26 0.26 0.32  0.32

EmpPercentDev  0.06 0.3 ‐0.28 ‐0.32  ‐0.37

 

In Table B3, above, many of the household demographic variables (the first five rows) are well-

correlated to the measures of travel behavior. All are positively correlated with vehicle use. 

Population density, transit kernel density, and junction kernel density – all of which are related to 



density – appear to be good candidate predictors for mode choice.  The balance of single-family 

housing to all other types of residences (denoted by the variable SingleResOtherResBalance) 

appears to be the best diversity-related variable, and is positively correlated with vehicle use. 

This is likely due to the prevalence of double-family housing in suburban areas. Street network 

density, which is related to both density and design, is a surprisingly good indicator of both non-

motorized travel and transit usage. The dissimilarity index was developed by Cervero and 

Kockelman (1997) to be an indicator of pedestrian travel, as it was thought that mixed land uses 

encourage non-vehicle work trips. However, for this study, dissimilarity of land uses was found 

to be only a weak indicator of non-motorized travel. A larger version of this matrix with more 

explanatory variables was used to screen for poorly-correlated variables to discard, and to select 

the best method of computing variables such as population density, for which there were several 

ways to define area (such as total area, parcel-covered area, and area classified as residential).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table B4: Spearman correlation matrix, dependent and independent variables 

  NonMSplit TransitSplit VehSplit HB_VHT_pHH  HB_VMT_pHH

MHHI_2000  ‐0.32 ‐0.52 0.51 0.31  0.49

HHVEH  ‐0.23 ‐0.36 0.41 0.49  0.64

HWORK  0 ‐0.11 0.14 0.52  0.58

HSTUD  0.14 0.07 ‐0.04 0.62  0.51

HHSIZ  0.06 ‐0.08 0.08 0.69  0.65

PopDensity  0.47 0.51 ‐0.48 0.12  ‐0.06

EmpDensity  0.33 0.49 ‐0.43 ‐0.21  ‐0.38

ResCommBalance  0.17 0.08 ‐0.07 0.29  0.19

SingleResOtherResBalance  ‐0.18 ‐0.43 0.35 0.21  0.35

ResCommunBalance  0.18 0.09 ‐0.09 0.2  0.13

CommunCommBalance  0.24 0.25 ‐0.21 0.07  0.04

ApartmentOtherResBalance  0.2 0.3 ‐0.27 0.05  ‐0.04

SNDbyParcelArea  0.48 0.53 ‐0.52 ‐0.02  ‐0.21

TransitKernel  0.5 0.59 ‐0.56 ‐0.11  ‐0.32

JunctionKernel  0.51 0.56 ‐0.56 ‐0.01  ‐0.2

RoadKernel  0.52 0.54 ‐0.54 0.01  ‐0.18

MeanFZ1PD  0.49 0.61 ‐0.59 ‐0.17  ‐0.34

Dissim100m  0.07 0.29 ‐0.16 ‐0.16  ‐0.27

ResPercent  0.13 ‐0.01 0.02 0.36  0.35

CommercePercent  0.21 0.36 ‐0.26 ‐0.2  ‐0.34

EmpPercent  0.16 0.32 ‐0.28 ‐0.24  ‐0.36

HighDIndex1  0.43 0.53 ‐0.45 ‐0.01  ‐0.19

 

Explanatory variables not found in any of the finalized regression models were omitted from the 

above matrix. 

 

 

 

 

 

 

 

 

 



Table B5: Pearson correlation matrix, dependent variables and Yeo-Johnson power 

transformed independent variables 

  NonMSplit TransitSplit VehSplit HB_VHT_pHH  HB_VMT_pHH

MHHI_2000  ‐0.32 ‐0.44 0.53 0.35  0.48

HHVEH  ‐0.29 ‐0.36 0.49 0.46  0.55

HWORK  ‐0.07 ‐0.17 0.27 0.48  0.5

HSTUD  0.15 ‐0.04 0.04 0.54  0.45

HHSIZ  0.02 ‐0.11 0.22 0.59  0.53

PopDensity  0.41 0.33 ‐0.26 0.04  ‐0.19

EmpDensity  0.31 0.46 ‐0.36 ‐0.28  ‐0.43

ResCommBalance  0.07 ‐0.09 0.11 0.23  0.1

SingleResOtherResBalance  ‐0.31 ‐0.46 0.43 0.21  0.29

ResCommunBalance  0.01 ‐0.06 0.16 0.15  0.01

CommunCommBalance  0.11 0.18 ‐0.04 ‐0.01  ‐0.04

ApartmentOtherResBalance  0.16 0.16 ‐0.18 ‐0.06  ‐0.16

SNDbyParcelArea  0.44 0.47 ‐0.36 ‐0.11  ‐0.31

TransitKernel  0.45 0.53 ‐0.43 ‐0.2  ‐0.38

JunctionKernel  0.43 0.46 ‐0.36 ‐0.1  ‐0.31

RoadKernel  0.43 0.44 ‐0.32 ‐0.06  ‐0.27

MeanFZ1PD  0.52 0.54 ‐0.49 ‐0.17  ‐0.31

Dissim100m  0.13 0.42 ‐0.17 ‐0.17  ‐0.25

ResPercent  0 ‐0.18 0.22 0.32  0.27

CommercePercent  0.2 0.33 ‐0.19 ‐0.25  ‐0.36

EmpPercent  0.12 0.32 ‐0.28 ‐0.25  ‐0.36

HighDIndex1  0.36 0.38 ‐0.28 ‐0.09  ‐0.28

 

 
 
 
Ideas for figures: 
Study area land uses 
Study area dissimilarity cells 
Dissimilarity values (0-8) 
Population, employment density 
Road, transit, junction kernel density 
Land use by type (in square feet and percentage for whole study area) 



 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 
  



 
Figure C1: Land uses within TAZ 52 

 
Parcels of the same type were aggregated; thus, individual parcel boundaries are not shown. Land use classifications are defined by the 
New York State Assessors’ Manual (New York State Office of Real Property Services, 2006).  



 
Figure C2: Land uses within TAZ 52 as 100 meter cells, as used for dissimilarity index computations 

 
More bla goes here 
 



 
Figure C3: Road network kernel density raster map 

 
More bla goes here 



 
Figure C4: Transit kernel density raster map 

 
More bla goes here 



 
Figure C5: Junction kernel density raster map 

 
More bla goes here 



 
Figure C6: Land uses in TAZ 52, hypothetical land use scenario 

 
The red box denotes the two blocks that are re-developed from low-density single unit residential housing to apartments. 
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Appendix D 

Annotated R Code 
 
#Initialization: 
 
#setwd("C:/Documents and Settings/Andrew Tracy/Desktop/Andrew's 
Research Shortcuts") 
#setwd("K:/Research Backup") 
setwd("E:/Research Backup") 
ind=read.table("indfinal.txt",header=T) 
dep=read.table("depfinal.txt",header=T) 
indYJ=read.table("indfinalwithYJ.txt",header=T) 
attach(dep) 
dim(dep);dim(ind) 
names(dep); names(ind) 
library(leaps) 
library(faraway) 
library(QuantPsyc) 
library(alr3) 
 
#Summary statistics: 
 
format(summary(dep),justify="none"); 
format(summary(ind),justify="none")     #for min, max, quantiles 
mean(dep); mean(ind) 
sd(dep); sd(ind) 
 
#Stepwise regression: 
 
library(leaps) 
reg1adjr=leaps(ind,NonMSplit,method="adjr2",int=TRUE); 
reg1cp=leaps(ind,NonMSplit,method="Cp",int=TRUE) 
reg2adjr=leaps(ind,TransitSplit,method="adjr2",int=TRUE); 
reg2cp=leaps(ind,TransitSplit,method="Cp",int=TRUE) 
reg3adjr=leaps(ind,VehSplit,method="adjr2",int=TRUE); 
reg3cp=leaps(ind,VehSplit,method="Cp",int=TRUE) 
reg4adjr=leaps(ind,HB_VHT_pHH,method="adjr2",int=TRUE); 
reg4cp=leaps(ind,HB_VHT_pHH,method="Cp",int=TRUE) 
reg5adjr=leaps(ind,HB_VMT_pHH,method="adjr2",int=TRUE); 
reg5cp=leaps(ind,HB_VMT_pHH,method="Cp",int=TRUE) 
 
plot(reg1cp$size,reg1cp$Cp)        #used to gauge usefullness 
plot(reg2cp$size,reg2cp$Cp)        #of Mallow's Cp as a stepwise 
plot(reg3cp$size,reg3cp$Cp)        #regression stopping point 
plot(reg4cp$size,reg4cp$Cp) 
plot(reg5cp$size,reg5cp$Cp) 
plot(reg1adjr$size,reg1adjr$adjr2) 
plot(reg2adjr$size,reg2adjr$adjr2) 
plot(reg3adjr$size,reg3adjr$adjr2) 
plot(reg4adjr$size,reg4adjr$adjr2) 



plot(reg5adjr$size,reg5adjr$adjr2) 
 
plot(reg1cp$size,reg1cp$Cp,xlab="Variables in 
model",ylab="Cp",main="Number of variables in model vs. Cp") 
plot(reg1adjr$size,reg1adjr$adjr2,xlab="Variables in 
model",ylab="Adjusted R-squared",main="Number of variables in model 
vs. Adjusted R-squared") 
 
library(faraway) 
maxadjr(reg1adjr,best=5)   #retrieves five models with the best 
adjusted r-squared values 
maxadjr(reg2adjr,best=5) 
maxadjr(reg3adjr,best=5) 
maxadjr(reg4adjr,best=5) 
maxadjr(reg5adjr,best=5) 
reg1adjr$adjr2; reg2adjr$adjr2; reg3adjr$adjr2; reg4adjr$adjr2; 
reg5adjr$adjr2   #shows stepwise adjusted r-squared values 
 
reg1cp$Cp; min(reg1cp$Cp) 
reg1cp$which [x,]   #where x is the row of the model with the minimum 
Cp, or where Cp ≈ P 
 
attach(ind) 
reg1=lm(dep$NonMSplit~HHVEH+HSTUD+PopDensity+EmpDensity+ApartmentOther
ResBalance+TransitKernel+JunctionKernel+Dissim100m+ResPercent+EmpPerce
nt+HighDIndex1) 
reg2=lm(dep$TransitSplit~HHVEH+HSTUD+HHSIZ+SingleResOtherResBalance+Ap
artmentOtherResBalance+SNDbyParcelArea+TransitKernel+JunctionKernel+Me
anFZ1PD+Dissim100m+CommercePercent) 
reg3=lm(dep$VehSplit~MHHI_2000+HHVEH+HSTUD+EmpDensity+SingleResOtherRe
sBalance+ResCommunBalance+ApartmentOtherResBalance+SNDbyParcelArea+Mea
nFZ1PD+Dissim100m+CommercePercent+EmpPercent+HighDIndex1) 
reg4=lm(dep$HB_VHT_pHH~MHHI_2000+HSTUD+HHSIZ+CommunCommBalance+ResPerc
ent) 
reg5=lm(dep$HB_VMT_pHH~MHHI_2000+HHVEH+HHSIZ+RoadKernel) 
#the above can also be obtained with reg1$call, reg2$call, etc. 
summary(reg1); summary(reg2); summary(reg3); summary(reg4); 
summary(reg5) 
 
#Standardized coefficients: 
 
lm.beta(reg1); lm.beta(reg2); lm.beta(reg3); lm.beta(reg4); 
lm.beta(reg5) 
 
#Correlation matrices: 
 
round(cor(dep,ind),2)                                      #Pearson, 
linear correlation matrix 
round(cor(dep,ind,method="spearman"),2)      #Spearman, non-linear 
(monotonic function) matrix 
 



#Principal component analysis: 
 
allindPCA=prcomp(ind,scale=TRUE,center=TRUE) 
summary(allindPCA) 
round(allindPCA$sdev,3) 
names(allindPCA) 
round(allindPCA$rotation[,1:8],3) 
round(allindPCA$center,3) 
round(allindPCA$scale,3) 
plot(allindPCA,xlab="Principal Components") 
biplot(allindPCA, col = c("lightgray","black"),main="Biplot of PC1 and 
PC2",cex=.8) 
 
#Plots: 
 
hist(dep$NonMSplit,xlab="Non-motorized mode choice 
proportion",main="Histogram of TAZ-level non-motorized trip 
choice",breaks=15) 
hist(dep$TransitSplit,xlab="Transit mode choice 
proportion",main="Histogram of TAZ-level transit trip 
choice",breaks=15) 
hist(dep$VehSplit,xlab="Vehicle mode choice 
proportion",main="Histogram of TAZ-level vehicle use") 
hist(dep$HB_VHT_pHH,main="Histogram of home-based VHT per 
household",xlab="Total daily VHT by all household members") 
hist(dep$HB_VMT_pHH,main="Histogram of home-based VMT per 
household",xlab="Total daily VMT by all household members") 
 
hist(ind$PopDensity,breaks=10,main="Histogram of population 
density",xlab="Population density, persons per square mile") 
hist(yj$PopDensity,breaks=10,main="Population density, after Yeo-
Johnson transformation",xlab="Population density, after transform") 
hist(ind$TransitKernel,breaks=20,main="Histogram of transit kernel 
density",xlab="Mean transit kernel density") 
hist(yj$TransitKernel,breaks=20,main="Transit kernel density, after 
Yeo-Johnson transformation",xlab="Mean transit kernel density, after 
transform") 
 
 
 
 
#Variable transformations: 
 
library(alr3) 
transind=bctrans1(ind, Y = NULL, start = NULL, family = "yeo.johnson")   
#applies Yeo-Johnson transformation 
names(transind); summary(transind) 
yj=powtran(transind)         #to output the transformed variables 
 
reg6cp=leaps(yj,HB_VHT_pHH,method="Cp",int=TRUE)    #used to analyze 
VHT and VMT models 



reg7cp=leaps(yj,HB_VMT_pHH,method="Cp",int=TRUE)    #when all 
variables were YJ transformed 
reg6cp$Cp; min(reg6cp$Cp) 
reg6cp$which 
reg7cp$Cp; min(reg7cp$Cp) 
reg7cp$which 
 
log10ind=log(ind+1); round(cor(logind,dep),2)       #used to compare 
Yeo-Johnson 
log2ind=log2(ind+1); round(cor(log2ind,dep),2)      #to simpler 
transformation functions 
sqrtind=sqrt(ind); round(cor(sqrtind,dep),2) 
recipind=(1/(ind+1)); round(cor(recipind,dep),2) 
 
round(cor(yj,dep),2) 
round(cor(logind,dep),2) 
round(cor(sqrtind,dep),2) 
round(cor(recipind,dep),2) 
 
qq=leaps(yj,NonMSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1)     
#used to produce Table 6.1 
qq=leaps(yj,TransitSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(yj,VehSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(yj,HB_VHT_pHH,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(yj,HB_VMT_pHH,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
 
qq=leaps(ind,NonMSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(ind,TransitSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(ind,VehSplit,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(ind,HB_VHT_pHH,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
qq=leaps(ind,HB_VMT_pHH,method="adjr2",int=TRUE);maxadjr(qq,best=1) 
 
reg8cp=leaps(indYJ,NonMSplit,method="Cp",int=TRUE)      #regression 
with selected 
reg9cp=leaps(indYJ,TransitSplit,method="Cp",int=TRUE)  #variables 
transformed 
reg10cp=leaps(indYJ,VehSplit,method="Cp",int=TRUE) 
reg11cp=leaps(indYJ,HB_VHT_pHH,method="Cp",int=TRUE) 
reg12cp=leaps(indYJ,HB_VMT_pHH,method="Cp",int=TRUE) 
reg8cp$Cp; min(reg8cp$Cp) 
reg8cp$which [x,]            #where x is the row with the minimum Cp 
reg9cp$Cp; min(reg9cp$Cp) 
reg9cp$which [x,] 
reg10cp$Cp; min(reg10cp$Cp) 
reg10cp$which [x,] 
reg11cp$Cp; min(reg11cp$Cp) 
reg11cp$which [x,] 
reg12cp$Cp; min(reg12cp$Cp) 
reg12cp$which [x,] 
 
attach(ind) 



reg8=lm(dep$NonMSplit~HHVEH+HWORK+HHSIZ+PopDensity+EmpDensity.0.04+Res
CommBalance+SNDbyParcelArea+MeanFZ1PD.minus1.12+Dissim100m+ResPercent) 
reg9=lm(dep$TransitSplit~HHVEH+HHSIZ+SingleResOtherResBalance+Apartmen
tOtherResBalance+SNDbyParcelArea+JunctionKernel+MeanFZ1PD.minus1.12+Di
ssim100m+CommercePercent) 
reg10=lm(dep$VehSplit~MHHI_2000+HHVEH+HHSIZ+EmpDensity.0.04+ResCommunB
alance+ApartmentOtherResBalance+SNDbyParcelArea+MeanFZ1PD.minus1.12+Di
ssim100m+ResPercent+CommercePercent+EmpPercent+HighDIndex1) 
reg11=lm(dep$HB_VHT_pHH~HSTUD.minus0.64+HHSIZ+EmpDensity.0.04) 
reg12=lm(dep$HB_VMT_pHH~MHHI_2000+HHVEH+HSTUD.minus0.64+HHSIZ+EmpDensi
ty.0.04+SNDbyParcelArea+RoadKernel) 
summary(reg8);summary(reg9);summary(reg10);summary(reg11);summary(reg1
2) 
lm.beta(reg8); lm.beta(reg9); lm.beta(reg10); lm.beta(reg11); 
lm.beta(reg12) 
 
# Land use planning scenario 
 
reg1$fitted.values[42]   #Where [42] is the row corresponding 
reg2$fitted.values[42]   #to the scenario TAZ 
reg3$fitted.values[42] 
reg4$fitted.values[42] 
reg5$fitted.values[42] 
 
ind[42,]                 #Outputs explanatory variable values 
dep[42,]                 #Outputs travel behavior values 
 
scenarioA=read.table("scenarioA.txt",header=T) 
scenarioB=read.table("scenarioB.txt",header=T) 
 
predict.lm(reg1,scenarioA) 
predict.lm(reg2,scenarioA) 
predict.lm(reg3,scenarioA) 
predict.lm(reg4,scenarioA) 
predict.lm(reg5,scenarioA) 
 
predict.lm(reg1,scenarioB) 
predict.lm(reg2,scenarioB) 
predict.lm(reg3,scenarioB) 
predict.lm(reg4,scenarioB) 
predict.lm(reg5,scenarioB) 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E 
 
 
 
 



 

 

 

Summary Statistics of Trip Production Data  

TAZ data Mean Median Standard 

Variation 

HBW trips production (Weighted) 1142 770 1332 

HBShop trips production (Weighted) 705 364 907 

HBSR trips production (Weighted) 775 339 1051 

HBO trips production (Weighted) 2140 1194 2628 

NHBW trips production (Weighted) 368 197 476 

NHBO trips production (Weighted) 1950 1097 2364 

Total number of workers 1168 788 1134 
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