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1.0 INTRODUCTION 

1.1	 IMPORTANCE OF FRP RETROFIT FOR REINFORCED 
CONCRETE STRUCTURES 

A large number of reinforced concrete bridges in the U.S. are structurally deficient by today’s 
standards. The main contributing factors are changes in their use, an increase in load 
requirements, or corrosion deterioration due to exposure to an aggressive environment. In order 
to preserve those bridges, rehabilitation is often considered essential to maintain their capability 
and to increase public safety (Seible, et al. 1995; Kachlakev 1998). 

In the last decade, fiber reinforced polymer (FRP) composites have been used for strengthening 
structural members of reinforced concrete bridges. Many researchers have found that FRP 
composite strengthening is an efficient, reliable, and cost-effective means of rehabilitation 
(Marshall and Busel 1996; Steiner 1996; Tedesco, et al. 1996; Kachlakev 1998). Currently in 
the U.S., the American Concrete Institute Committee 440 is working to establish design 
recommendations for FRP application to reinforced concrete (ACI 440 2000). 

The Horsetail Creek Bridge is an example of a bridge classified as structurally deficient 
(Transportation Research Board 1999; Kachlakev 1998). This historic Bridge, built in 1914, is 
in use on the Historic Columbia River Highway east of Portland, Oregon. It was not designed to 
carry the traffic loads that are common today. Load rating showed that the bridge had only 6% 
of the required shear capacity for the transverse beams, 34% of the required shear capacity for 
the longitudinal beams, and approximately 50% of the required flexural capacity for the 
transverse beams (CH2M Hill 1997). There were no shear stirrups in any of the beams. Some 
exposed, corroded reinforcing steel was found during an on-site inspection; otherwise, the 
overall condition of the structure was generally very good. In 1998, the Oregon Department of 
Transportation (ODOT) resolved to use FRP composites to reinforce the beams. Strengthening 
the beams with FRP composites was considered advantageous due to the historic nature of the 
bridge, limited funding, and time restrictions. 

The load-carrying capacity of the bridge was increased by applying FRP sheets to the transverse 
and longitudinal beams. In the case of the transverse beams, both shear and flexural 
strengthening were required, while only shear strengthening was needed for the longitudinal 
beams. For flexural strengthening, carbon FRP (CFRP) composite was attached to the bottom of 
the beam with the fibers oriented along the length of the beam. For shear strengthening, glass 
FRP (GFRP) composite was wrapped from the bottom of the deck down the side of the beam 
around the bottom and up the other side to the deck. The fibers were oriented perpendicular to 
the length of the beam. 
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1.2 OBJECTIVES 

After construction, ODOT initiated research projects to verify the FRP strengthening concept 
used on Horsetail Creek Bridge. Four full-size beams constructed as similarly as possible to the 
transverse beams of the Horsetail Creek Bridge were tested with different FRP configurations. 
The project discussed in this report – development of computer models to predict the behavior of 
the Bridge – used the data from the beam tests for validation. The objectives of the computer 
modeling were to: 

•	 Examine the structural behavior of Horsetail Creek Bridge, with and without FRP laminates; 
and 

•	 Establish a methodology for applying computer modeling to reinforced concrete beams and 
bridges strengthened with FRP laminates. 

1.3 SCOPE 

Finite element method (FEM) models were developed to simulate the behavior of four full-size 
beams from linear through nonlinear response and up to failure, using the ANSYS program 
(ANSYS 1998). Comparisons were made for load-strain plots at selected locations on the beams; 
load-deflection plots at midspan; first cracking loads; loads at failure; and crack patterns at 
failure. The models were subsequently expanded to encompass the linear behavior of the 
Horsetail Creek Bridge. Modeling simplifications and assumptions developed during this 
research are presented. The study compared strains from the FEM analysis with measured 
strains from load tests. Conclusions from the current research efforts and recommendations for 
future studies are included. 

1.4	 COMPUTER MODELING OF FRP-STRENGTHENED 
STRUCTURES 

Typically, the behavior of reinforced concrete beams is studied by full-scale experimental 
investigations. The results are compared to theoretical calculations that estimate deflections and 
internal stress/strain distributions within the beams. Finite element analysis can also be used to 
model the behavior numerically to confirm these calculations, as well as to provide a valuable 
supplement to the laboratory investigations, particularly in parametric studies. Finite element 
analysis, as used in structural engineering, determines the overall behavior of a structure by 
dividing it into a number of simple elements, each of which has well-defined mechanical and 
physical properties. 

Modeling the complex behavior of reinforced concrete, which is both nonhomogeneous and 
anisotropic, is a difficult challenge in the finite element analysis of civil engineering structures. 
Most early finite element models of reinforced concrete included the effects of cracking based on 
a pre-defined crack pattern (Ngo and Scordelis 1967; Nilson 1968). With this approach, changes 
in the topology of the models were required as the load increased; therefore, the ease and speed 
of the analysis were limited. 
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A smeared cracking approach was introduced using isoparametric formulations to represent the 
cracked concrete as an orthotropic material (Rashid 1968). In the smeared cracking approach, 
cracking of the concrete occurs when the principal tensile stress exceeds the ultimate tensile 
strength. The elastic modulus of the material is then assumed to be zero in the direction parallel 
to the principal tensile stress direction (Suidan and Schnobrich 1973). 

Only recently have researchers attempted to simulate the behavior of reinforced concrete 
strengthened with FRP composites using the finite element method. A number of reinforced 
concrete beams strengthened with FRP plates were tested in the laboratory.  Finite element 
analysis with the smeared cracking approach was used to simulate the behavior and failure 
mechanisms of those experimental beams (Arduini, et al. 1997). Comparisons between the 
experimental data and the results from finite element models showed good agreement, and the 
different failure mechanisms, from ductile to brittle, could be simulated. The FRP plates were 
modeled with two-dimensional plate elements in that study, however, and the crack patterns of 
those beams were not predicted by the finite element analysis. The two-dimensional plate 
elements are surface-like elements, which have no actual thickness. Therefore, stress and strain 
results at the actual surfaces of the FRP plates were estimated by theoretical calculations. 

In addition, an entire FRP-strengthened reinforced concrete bridge was modeled by finite 
element analysis (Tedesco, et al. 1999). In that study truss elements were used to model the FRP 
composites. The results of the finite element analysis correlated well with the field test data and 
indicated that the external bonding of FRP laminates to the bridge girders reduced the average 
maximum deflections at midspan and reinforcing steel stresses by 9% and 11%, respectively. 
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2.0 MODELING FULL-SIZE REINFORCED CONCRETE 
BEAMS 

2.1 FULL-SIZE BEAMS 

Four full-size reinforced concrete beams, similar to the transverse beams of the Horsetail Creek 
Bridge, were fabricated and tested at Oregon State University (Kachlakev and McCurry 2000). 
Each beam had a different strengthening scheme as described below: 

• A Control Beam with no FRP strengthening. 

•	 A beam with unidirectional CFRP laminates attached to the bottom of the beam. The fibers 
were oriented along the length of the beam. This beam was referred to as the Flexure Beam. 

•	 A beam with unidirectional GFRP laminates wrapped around the sides and the bottom of the 
beam. The direction of the fibers was perpendicular to the length of the beam. This beam 
was referred to as the Shear Beam. 

•	 A beam with both CFRP and GFRP laminates as in the flexure and Shear Beams. This type 
of FRP strengthening was used on the transverse beams of the Horsetail Creek Bridge. The 
beam was referred to as the Flexure/Shear Beam. 

Strain gauges were attached throughout the beams to record the structural behavior under load: at 
the top and bottom fibers of the concrete at the middle of the span; on the sides of the beams in 
the high shear region; on the reinforcing bars; and on the FRP laminates. Midspan deflection 
was measured throughout the loading. 

The current study presents results from the finite element analysis of the four full-scale beams. 
The finite element model uses a smeared cracking approach and three-dimensional layered 
elements to model FRP composites. Comparisons between finite element results and those from 
the experimental beams are shown. Crack patterns obtained from the finite element analysis are 
compared to those observed for the experimental beams. 

The ANSYS finite element program (ANSYS 1998), operating on a UNIX system, was used in 
this study to simulate the behavior of the four experimental beams. In general, the conclusions 
and methods would be very similar using other nonlinear FEA programs. Each program, 
however, has its own nomenclature and specialized elements and analysis procedures that need 
to be used properly. The designer/analyst must be thoroughly familiar with the finite element 
tools being used, and must progress from simpler to more complex problems to gain confidence 
in the use of new techniques. 
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This chapter discusses model development for the full-size beams. Element types used in the 
models are covered in Section 2.2 and the constitutive equations, assumptions, and parameters 
for the various materials are discussed in Section 2.3. Geometry of the models is presented in 
Section 2.4, and Section 2.5 discusses a preliminary convergence study for the beam models. 
Loading and boundary conditions are discussed in Section 2.6. Nonlinear analysis procedures 
and convergence criteria are in explained in Section 2.7. The reader can refer to a wide variety of 
finite element analysis textbooks for a more formal and complete introduction to basic concepts 
if needed. 

2.2 ELEMENT TYPES 

2.2.1 Reinforced Concrete 

An eight-node solid element, Solid65, was used to model the concrete. The solid element has 
eight nodes with three degrees of freedom at each node – translations in the nodal x, y, and z 
directions. The element is capable of plastic deformation, cracking in three orthogonal 
directions, and crushing. The geometry and node locations for this element type are shown in 
Figure 2.1. 

Figure 2.1: Solid65 – 3-D reinforced concrete solid (ANSYS 1998) 

A Link8 element was used to model the steel reinforcement. Two nodes are required for this 
element. Each node has three degrees of freedom, – translations in the nodal x, y, and z 
directions. The element is also capable of plastic deformation. The geometry and node locations 
for this element type are shown in Figure 2.2. 
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Figure 2.2: Link8 – 3-D spar (ANSYS 1998) 

2.2.2 FRP Composites 

A layered solid element, Solid46, was used to model the FRP composites. The element allows 
for up to 100 different material layers with different orientations and orthotropic material 
properties in each layer. The element has three degrees of freedom at each node and translations 
in the nodal x, y, and z directions. The geometry, node locations, and the coordinate system are 
shown in Figure 2.3. 

Figure 2.3: Solid46 – 3-D layered structural solid (ANSYS 1998) 

2.2.3 Steel Plates 

An eight-node solid element, Solid45, was used for the steel plates at the supports in the beam 
models. The element is defined with eight nodes having three degrees of freedom at each node – 
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translations in the nodal x, y, and z directions. The geometry and node locations for this element 
type are shown in Figure 2.4. 

Figure 2.4: Solid45 – 3-D solid (ANSYS 1998) 

2.3 MATERIAL PROPERTIES 

2.3.1 Concrete 

Development of a model for the behavior of concrete is a challenging task. Concrete is a quasi-
brittle material and has different behavior in compression and tension. The tensile strength of 
concrete is typically 8-15% of the compressive strength (Shah, et al. 1995). Figure 2.5 shows a 
typical stress-strain curve for normal weight concrete (Bangash 1989). 
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Figure 2.5: Typical uniaxial compressive and tensile stress-strain curve for concrete (Bangash 1989) 

In compression, the stress-strain curve for concrete is linearly elastic up to about 30 percent of 
the maximum compressive strength. Above this point, the stress increases gradually up to the 
maximum compressive strength. After it reaches the maximum compressive strength σ cu , the 
curve descends into a softening region, and eventually crushing failure occurs at an ultimate 
strain ε cu . In tension, the stress-strain curve for concrete is approximately linearly elastic up to 
the maximum tensile strength. After this point, the concrete cracks and the strength decreases 
gradually to zero (Bangash 1989). 

2.3.1.1 FEM Input Data 

For concrete, ANSYS requires input data for material properties as follows: 

Elastic modulus (Ec).

Ultimate uniaxial compressive strength (f’c).

Ultimate uniaxial tensile strength (modulus of rupture, fr).

Poisson’s ratio (ν).

Shear transfer coefficient (βt).

Compressive uniaxial stress-strain relationship for concrete.
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For the full-scale beam tests (Kachlakev and McCurry 2000), an effort was made to 
accurately estimate the actual elastic modulus of the beams using the ultrasonic pulse 
velocity method (ASTM 1983, ASTM 1994). A correlation was made between pulse 
velocity and compressive elastic modulus following the ASTM standard methods. From 
this work, it was noted that each experimental beam had a slightly different elastic 
modulus; therefore, these values were used in the finite element modeling. 

From the elastic modulus obtained by the pulse velocity method, the ultimate concrete 
compressive and tensile strengths for each beam model were calculated by Equations 2-1, 
and 2-2, respectively (ACI 318, 1999). 

2 

f c ' = �� 
Ec � (2-1)

� 57000 

f r = 7.5 ' cf (2-2) 

fwhere: Ec , '  and f r  are in psi.c

Poisson’s ratio for concrete was assumed to be 0.2 (Bangash 1989) for all four beams. 

The shear transfer coefficient, βt, represents conditions of the crack face. The value of βt 
ranges from 0.0 to 1.0, with 0.0 representing a smooth crack (complete loss of shear 
transfer) and 1.0 representing a rough crack (no loss of shear transfer) (ANSYS 1998). 
The value of βt used in many studies of reinforced concrete structures, however, varied 
between 0.05 and 0.25 (Bangash 1989; Huyse, et al. 1994; Hemmaty 1998). A number 
of preliminary analyses were attempted in this study with various values for the shear 
transfer coefficient within this range, but convergence problems were encountered at low 
loads with βt less than 0.2. Therefore, the shear transfer coefficient used in this study was 
equal to 0.2. A summary of the concrete properties used in this finite element modeling 
study is shown in Table 2.1. 

Table 2.1: Summary of material properties for concrete 

Beam Ec 
MPa (ksi)* 

fc ’ 
MPa 
(psi) 

fr 
MPa 
(psi) 

νννν βββt 

Control beam 19,350 
(2,806) 

16.71 
(2,423) 

2.546 
(369.2) 0.2 0.2 

Flexure beam 17,550 
(2,545) 

13.75 
(1,994) 

2.309 
(334.9) 0.2 0.2 

Shear beam 18,160 
(2,634) 

14.73 
(2,136) 

2.390 
(346.6) 0.2 0.2 

Flexure/Shear beam 17,080 
(2,477) 

13.02 
(1,889) 

2.247 
(325.9) 0.2 0.2 

β

*From pulse velocity measurements (Kachlakev and McCurry 2000) 
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2.3.1.2 Compressive Uniaxial Stress-Strain Relationship for Concrete 

The ANSYS program requires the uniaxial stress-strain relationship for concrete in 
compression. Numerical expressions (Desayi and Krishnan 1964), Equations 2-3 and 2-
4, were used along with Equation 2-5 (Gere and Timoshenko 1997) to construct the 
uniaxial compressive stress-strain curve for concrete in this study. 

E εcf = 2 (2-3) 
� ε �1 + ��
� ε 0 

2 f ' cε 0 = 
E 

(2-4) 
c 

fEc =
ε 

(2-5) 

where: 

f  = stress at any strain ε , psi 
ε  = strain at stress f 
ε 0 = strain at the ultimate compressive strength f c ' 

Figure 2.6 shows the simplified compressive uniaxial stress-strain relationship that was 
used in this study. 
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Figure 2.6: Simplified compressive uniaxial stress-strain curve for concrete 

The simplified stress-strain curve for each beam model is constructed from six points 
connected by straight lines. The curve starts at zero stress and strain. Point No. 1, at 0.30 
f’c, is calculated for the stress-strain relationship of the concrete in the linear range 
(Equation 2-5). Point Nos. 2, 3, and 4 are obtained from Equation 2-3, in which ε0 is 
calculated from Equation 2-4. Point No. 5 is at ε0 and f’c. In this study, an assumption 
was made of perfectly plastic behavior after Point No. 5. 

An example is included here to demonstrate a calculation of the five points (1-5) on the 
curve using the Control Beam model. The model has a concrete elastic modulus of 
2,806,000 psi. The value of f’c calculated by Equation 2-1 is equal to 2423 psi. For 
Point No. 1, strain at a stress of 727 psi (0.3 f’c) is obtained for a linear stress-strain 
relationship for concrete (Equation 2-5), and is 0.00026 in./in. Strain at the ultimate 
compressive strength, ε0, is calculated by Equation 2-4, and equals 0.00173 in./in. Point 
Nos. 2, 3, and 4 are calculated from Equation 2-3, which gives strains of 0.00060, 
0.00095 and 0.00130 in./in., corresponding to stresses of 1502, 2046 and 2328 psi, 
respectively. Finally, Point No. 5 is at the ultimate strength, f’c of 2423 psi and ε0 of 
0.00173 in./in. 

2.3.1.3 Failure Criteria for Concrete 

The model is capable of predicting failure for concrete materials. Both cracking and 
crushing failure modes are accounted for. The two input strength parameters – i.e., 
ultimate uniaxial tensile and compressive strengths – are needed to define a failure 
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surface for the concrete. Consequently, a criterion for failure of the concrete due to a 
multiaxial stress state can be calculated (William and Warnke 1975). 

A three-dimensional failure surface for concrete is shown in Figure 2.7. The most 
significant nonzero principal stresses are in the x and y directions, represented by σxp and 
σyp, respectively.  Three failure surfaces are shown as projections on the σxp-σyp plane. 
The mode of failure is a function of the sign of σzp (principal stress in the z direction). 
For example, if σxp and σyp are both negative (compressive) and σzp is slightly positive 
(tensile), cracking would be predicted in a direction perpendicular to σzp. However, if σzp 
is zero or slightly negative, the material is assumed to crush (ANSYS 1998). 

fc ’ 
fr 

fc ’ 

fr 

Figure 2.7: 3-D failure surface for concrete (ANSYS 1998) 

In a concrete element, cracking occurs when the principal tensile stress in any direction 
lies outside the failure surface. After cracking, the elastic modulus of the concrete 
element is set to zero in the direction parallel to the principal tensile stress direction. 
Crushing occurs when all principal stresses are compressive and lie outside the failure 
surface; subsequently, the elastic modulus is set to zero in all directions (ANSYS 1998), 
and the element effectively disappears. 

During this study, it was found that if the crushing capability of the concrete is turned on, 
the finite element beam models fail prematurely.  Crushing of the concrete started to 
develop in elements located directly under the loads. Subsequently, adjacent concrete 
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elements crushed within several load steps as well, significantly reducing the local 
stiffness. Finally, the model showed a large displacement, and the solution diverged. 

A pure “compression” failure of concrete is unlikely. In a compression test, the specimen 
is subjected to a uniaxial compressive load. Secondary tensile strains induced by 
Poisson’s effect occur perpendicular to the load. Because concrete is relatively weak in 
tension, these actually cause cracking and the eventual failure (Mindess and Young 1981; 
Shah, et al. 1995).  Therefore, in this study, the crushing capability was turned off and 
cracking of the concrete controlled the failure of the finite element models. 

2.3.2 Steel Reinforcement and Steel Plates 

Steel reinforcement in the experimental beams was constructed with typical Grade 60 steel 
reinforcing bars. Properties, i.e., elastic modulus and yield stress, for the steel reinforcement 
used in this FEM study follow the design material properties used for the experimental 
investigation (Kachlakev and McCurry 2000). The steel for the finite element models was 
assumed to be an elastic-perfectly plastic material and identical in tension and compression. 
Poisson’s ratio of 0.3 was used for the steel reinforcement in this study (Gere and Timoshenko 
1997). Figure 2.8 shows the stress-strain relationship used in this study. Material properties for 
the steel reinforcement for all four models are as follows: 

Elastic modulus, Es = 200,000 MPa (29,000 ksi) 
Yield stress, fy = 410 MPa (60,000 psi) 
Poisson’s ratio, ν = 0.3 

Tension 

εy 

Es 

-σ 

+σ 

fy 

-fy 

-εy 

Compression 

Figure 2.8: Stress-strain curve for steel reinforcement 
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Steel plates were added at support locations in the finite element models (as in the actual beams) 
to provide a more even stress distribution over the support areas. An elastic modulus equal to 
200,000 MPa (29,000 ksi) and Poisson’s ratio of 0.3 were used for the plates. The steel plates 
were assumed to be linear elastic materials. 

2.3.3 FRP Composites 

FRP composites are materials that consist of two constituents. The constituents are combined at 
a macroscopic level and are not soluble in each other. One constituent is the reinforcement, 
which is embedded in the second constituent, a continuous polymer called the matrix (Kaw 
1997). The reinforcing material is in the form of fibers, i.e., carbon and glass, which are 
typically stiffer and stronger than the matrix. The FRP composites are anisotropic materials; that 
is, their properties are not the same in all directions. Figure 2.9 shows a schematic of FRP 
composites. 

Reinforcing fiber  Polymer (binder) 
+ 

z 

y 

x  Unidirectional lamina 

Figure 2.9: Schematic of FRP composites (Gibson 1994, Kaw 1997) 

As shown in Figure 2.9, the unidirectional lamina has three mutually orthogonal planes of 
material properties (i.e., xy, xz, and yz planes). The xyz coordinate axes are referred to as the 
principal material coordinates where the x direction is the same as the fiber direction, and the y 
and z directions are perpendicular to the x direction. It is a so-called specially orthotropic 
material (Gibson 1994, Kaw 1997). In this study, the specially orthotropic material is also 
transversely isotropic, where the properties of the FRP composites are nearly the same in any 
direction perpendicular to the fibers. Thus, the properties in the y direction are the same as those 
in the z direction. 
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Glass fiber reinforced polymer was used for shear reinforcement on the Horsetail Falls Bridge 
because of its superior strain at failure. Carbon fiber reinforced polymer was used for flexural 
reinforcement because of its high tensile strength. Linear elastic properties of the FRP 
composites were assumed throughout this study.  Figure 2.10 shows the stress-strain curves used 
in this study for the FRP composites in the direction of the fiber. 
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Figure 2.10: Stress-strain curves for the FRP composites in the direction of the fibers 

Input data needed for the FRP composites in the finite element models are as follows: 

• Number of layers. 
• Thickness of each layer. 
• Orientation of the fiber direction for each layer. 
• Elastic modulus of the FRP composite in three directions (Ex, Ey and Ez). 
• Shear modulus of the FRP composite for three planes (Gxy, Gyz and Gxz). 
• Major Poisson’s ratio for three planes (νxy, νyz and νxz). 

Note that a local coordinate system for the FRP layered solid elements is defined where the x 
direction is the same as the fiber direction, while the y and z directions are perpendicular to the x 
direction. 

The properties of isotropic materials, such as elastic modulus and Poisson’s ratio, are identical in 
all directions; therefore no subscripts are required. This is not the case with specially orthotropic 
materials. Subscripts are needed to define properties in the various directions. For example, 
Ex ≠ E y and ν xy ≠ ν yx . Ex is the elastic modulus in the fiber direction, and Ey is the elastic 
modulus in the y direction perpendicular to the fiber direction. The use of Poisson’s ratios for 
the orthotropic materials causes confusion; therefore, the orthotropic material data are supplied 
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in the νxy or major Poisson’s ratio format for the ANSYS program. The major Poisson’s ratio is 
the ratio of strain in the y direction to strain in the perpendicular x direction when the applied 
stress is in the x direction. The quantity νyx is called a minor Poisson’s ratio and is smaller than 
νxy, whereas Ex is larger than Ey. Equation 2-6 shows the relationship between νxy and νyx (Kaw 
1997). 

ν yx = 
Ey ν xy (2-6)
Ex 

where: 
ν  = Minor Poisson’s ratioyx

Ex  = Elastic modulus in the x direction (fiber direction) 
E y  = Elastic modulus in the y direction 
ν xy = Major Poisson’s ratio 

A summary of material properties used for the modeling of all four beams is shown in Table 2.2. 

Table 2.2: Summary of material properties for FRP composites (Kachlakev and McCurry 2000) 
FRP 

composite 
Elastic modulus 

MPa (ksi) 
Major 

Poisson’s 
ratio 

Tensile 
strength 

MPa (ksi) 

Shear modulus 
MPa (ksi) 

Thickness of 
laminate 
mm (in.) 

CFRP Ex = 62,000 (9000) 
Ey = 4800 (700)* 
Ez = 4800 (700)* 

νxy = 0.22 
νxz = 0.22 
νyz = 0.30* 

958 (139) Gxy = 3270 (474)* 
Gxz = 3270 (474)* 
Gyz = 1860 (270)** 

1.0 (0.040) 

GFRP Ex = 21,000 (3000) 
Ey = 7000 (1000)* 
Ez = 7000 (1000)* 

νxy = 0.26 
νxz = 0.26 
νyz = 0.30* 

600 (87) 
Gxy = 1520 (220) 
Gxz = 1520 (220) 
Gyz = 2650 (385)** 

1.3 (0.050) 

*(Kachlakev 1998) 
** E 

G = y or z 
yz 2(1 +ν yz )

2.4 GEOMETRY 

The dimensions of the full-size beams were 305.0 mm x 6096 mm x 768.4 mm (12.00 in x 240.0 
in x 30.25 in). The span between the two supports was 5486 mm (216.0 in). Figure 2.11 
illustrates typical dimensions for all four beams before FRP reinforcing. By taking advantage of 
the symmetry of the beams, a quarter of the full beam was used for modeling. This approach 
reduced computational time and computer disk space requirements significantly.  The quarter of 
the entire model is shown in Figure 2.12. 
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Figure 2.11: Typical beam dimensions (not to scale) 

120” 
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Figure 2.12: Use of a quarter beam model (not to scale) 
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Figure 2.13 shows typical steel reinforcement locations for the full-size beams. In the finite 
element models, 3-D spar elements, Link8, were employed to represent the steel reinforcement, 
referred to here as link elements. The steel reinforcement was simplified in the model by 
ignoring the inclined portions of the steel bars present in the test beams. Figure 2.14 shows 
typical steel reinforcement for a quarter beam model. 

#5 Steel rebar 

2.5” 

20” 

66” 

3.5”  #5 Steel rebar 

#6 Steel rebar  #7 Steel rebar240” 

B 

A  B 

A72” 

2#5 Steel rebar 

3.5” 

12”  12” 

30.25” 
1#5 Steel rebar 

30.25” 

2#6 & 1#5 Steel rebar 

3#7 & 2#6 Steel 
rebar 

2.5” 
20”  20” 

2.5” 

3#7 Steel rebar 

Section A-A Section B-B 

Figure 2.13: Typical steel reinforcement locations (not to scale) (McCurry and Kachlakev 2000) 

Ideally, the bond strength between the concrete and steel reinforcement should be considered. 
However, in this study, perfect bond between materials was assumed. To provide the perfect 
bond, the link element for the steel reinforcing was connected between nodes of each adjacent 
concrete solid element, so the two materials shared the same nodes. The same approach was 
adopted for FRP composites. The high strength of the epoxy used to attach FRP sheets to the 
experimental beams supported the perfect bond assumption. 
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Figure 2.14: Typical steel reinforcement for a quarter beam model. Reinforcement at the common faces was entered 
into the model as half the actual diameter. (not to scale) 
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In the finite element models, layered solid elements, Solid46, were used to model the FRP 
composites. Nodes of the FRP layered solid elements were connected to those of adjacent 
concrete solid elements in order to satisfy the perfect bond assumption. Figure 2.15 illustrates 
the element connectivity. 

Concrete solid elements 

Link element FRP layered solid element 

(b) (a) 

Figure 2.15: Element connectivity:  (a) concrete solid and link elements; (b) concrete solid 
and FRP layered solid elements 

Reinforcing schemes for the full-size beams are shown in Figure 2.16. The GFRP and CFRP 
composites had various thicknesses, depending upon the capacities needed at various locations 
on the beams. 
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30.25” 29.25” 
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240” 
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30.25” 
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60” 

114” 
240” 

Unidirectional CFRP 
(see Fig. 2.16(a)) 

Unidirectional GFRP 
(see Fig. 2.16(b)) 

Figure 2.16: FRP reinforcing schemes (not to scale): (a) Flexure Beam; (b) Shear Beam; (c) Flexure/Shear Beam 
(McCurry and Kachlakev 2000) 

The various thicknesses of the FRP composites create discontinuities, which are not desirable for 
the finite element analysis. These may develop high stress concentrations at local areas on the 
models; consequently, when the model is run, the solution may have difficulties in convergence. 
Therefore, a consistent overall thickness of FRP composite was used in the models to avoid 
discontinuities. The equivalent overall stiffness of the FRP materials was maintained by making 
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compensating changes in the elastic and shear moduli assigned to each FRP layer. For example, 
if the thickness of an FRP laminate was artificially doubled to maintain a constant overall 
thickness, the elastic and shear moduli in that material were reduced by 50% to compensate. 
Note that the relationship between elastic and shear moduli is linear. Equation 2-7 shows the 
relationship between elastic and shear moduli (ANSYS 1998). 

E E
G = x y 

xy E + E + 2ν E 
(2-7) 

x y xy x 

where: 
= Shear modulus in the xy planeGxy 

E  = Elastic modulus in the x directionx

E y  = Elastic modulus in the y direction 
ν xy = Major Poisson’s ratio 

For this study, minor modification of dimensions for the FRP reinforcing was made due to 
geometric constraints from the other elements in the models, i.e., meshing of concrete elements, 
steel rebar locations and required output locations. Figure 2.17 shows the modified dimensions 
of the FRP reinforcing schemes for the quarter beam models. 
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Unidirectional CFRP (see Fig. 2.17(a)) 

(c) 

26.75” 

6” 

Figure 2.17: Modified dimensions of FRP reinforcing for strengthened beam models (not to scale): 
(a) Flexure Beam; (b) Shear Beam; (c) Flexure/Shear Beam 
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2.5 FINITE ELEMENT DISCRETIZATION 

As an initial step, a finite element analysis requires meshing of the model. In other words, the 
model is divided into a number of small elements, and after loading, stress and strain are 
calculated at integration points of these small elements (Bathe 1996).  An important step in finite 
element modeling is the selection of the mesh density.  A convergence of results is obtained 
when an adequate number of elements is used in a model.  This is practically achieved when an 
increase in the mesh density has a negligible effect on the results (Adams and Askenazi 1998). 
Therefore, in this finite element modeling study a convergence study was carried out to 
determine an appropriate mesh density. 

Initially a convergence study was performed using plain concrete beams in a linear analysis. 
SAP2000, another general-purpose finite element analysis program, was also used to verify the 
ANSYS results in the linear analysis study (OSU 2000).  The finite element models 
dimensionally replicated the full-scale transverse beams. That is, five 305.0 mm x 6096 mm x 
768.4 mm (12.00 in x 240.0 in x 30.25 in) plain concrete beams with the same material 
properties were modeled in both ANSYS and SAP2000 with an increasing number of elements: 
1536, 3072, 6144, 8192, and 12160 elements, respectively.  Note that at this stage the advantage 
of geometrical symmetry was not utilized in these models. In other words, complete full-size 
beams were modeled. A number of response parameters was compared, including tensile stress, 
strain, deflection at the center bottom fiber of the beam, and compressive stress at the center top 
fiber of the beam. The four parameters were determined at the midspan of the beam. 
Comparisons of the results from ANSYS and SAP2000 were made, and the convergence of four 
response parameters is shown in Figure 2.18 for a plain concrete beam (not the reinforced 
concrete Control Beam) used in these preliminary convergence studies. 
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Figure 2.18: Convergence study on plain concrete beams: (a), (b), (c), and (d) show the comparisons between 
ANSYS and SAP2000 for the tensile and compressive stresses; and strain and deflection at center midspan of the 

beams, respectively. 

As shown in Figure 2.18, both programs gave very similar results. The results started to 
converge with a model having 6144 elements. Although the plain concrete models were not a 
good representation of the large-scale beams, due to lack of steel reinforcement, they suggested 
that the number of concrete elements for the entire reinforced beam should be at least 6000. 

Later, another convergence study was made using ANSYS. FEM beam models were developed 
based on the reinforced concrete Control Beam. Only quarters of the beams were modeled, 
taking advantage of symmetry. Four different numbers of elements – 896, 1136, 1580 and 2264 
– were used to examine the convergence of the results. Three parameters at different locations 
were observed to see if the results converged. The outputs were collected at the same applied 
load as follows: deflection at midspan; compressive stress in concrete at midspan at the center of 

St
ra

in
 

Te
ns

ile
 S

tre
ss

 (p
si

) 

D
ef

le
ct

io
n 

(in
.) 

C
om

pr
es

si
ve

 S
tre

ss
 (p

si
) 

26




the top face of the beam models; and tensile stress in the main steel reinforcement at midspan. 
Figure 2.19 shows the results from the convergence study. 
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Figure 2.19: Results from convergence study:  (a) deflection at midspan; (b) compressive 
stress in concrete; (c) tensile stress in main steel reinforcement 
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Figure 2.19 shows that the differences in the results were negligible when the number of 
elements increased from 1580 to 2264. Therefore, the 1580 element model, which was 
equivalent to 6320 elements in the full-beam model, was selected for the Control Beam model 
and used as the basis of the other three FRP-strengthened beam models as well. It can thus be 
seen that regardless of steel reinforcement, the results started to converge with a model having 
approximately 6000 elements for the entire beam. 

Figure 2.20 shows meshing for the Control Beam model. A finer mesh near the loading location 
is required in order to avoid problems of stress concentration. 

Loading location 

Figure 2.20: FEM discretization for a quarter of Control Beam 

FRP layered solid elements are connected to the surfaces of the concrete solid elements of the 
Control Beam as shown in Figure 2.15(b). The dimensions for the FRP reinforcing schemes are 
shown in Figure 2.17. Numbers of elements used in this study are summarized in Table 2.3. 

Table 2.3: Numbers of elements used for finite element models 
Number of elements 

Model Concrete Steel 
reinforcement 

FRP 
composites 

Steel 
plate Total 

Control Beam 1404 164 - 12 1580 

Flexure Beam 1404 164 222 12 1802 

Shear Beam 1404 164 490 12 2070 

Flexure/Shear Beam 1404 164 1062 12 2642 
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2.6 LOADING AND BOUNDARY CONDITIONS 

The four full-size beams were tested in third point bending, as shown in Figure 2.21. The finite

element models were loaded at the same locations as the full-size beams. In the experiment, the

loading and support dimensions were approximately 51 mm x 203 mm x 305 mm (2 in x 8 in x

12 in) and 102 mm x 305 mm (4 in x 12 in), respectively.  A one-inch thick steel plate, modeled

using Solid45 elements, was added at the support location in order to avoid stress concentration

problems. This provided a more even stress distribution over the support area. Moreover, a

single line support was placed under the centerline of the steel plate to allow rotation of the plate.

Figure 2.22 illustrates the steel plate at the support.


8” 

4” 

30.25” 

84” 
156” 

12” 

228” 
12” 

Top View Loading area 

Side View 

2” 

Bottom View 
Support area 

12” 

240” 

Figure 2.21: Loading and support locations (not to scale) (McCurry and Kachlakev 2000) 
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Figure 2.22: Steel plate with line support 

Because a quarter of the entire beam was used for the model, planes of symmetry were required 
at the internal faces. At a plane of symmetry, the displacement in the direction perpendicular to 
the plane was held at zero. Figure 2.23 shows loading and boundary conditions for a typical 
finite element model. Rollers were used to show the symmetry condition at the internal faces. 

Figure 2.23: Loading and boundary conditions (not to scale) 
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When the loaded beam starts to displace downward, rotation of the plate should be permitted. 
Excessive cracking of the concrete elements above the steel plate was found to develop if 
rotation of the steel plate was not permitted, as shown in Figure 2.24(a). 

Concrete cracking (a) (b) 

Figure 2.24: Displacements of model:  (a) without rotation of steel plate (b) with rotation of steel plate 

2.7 NONLINEAR SOLUTION 

In nonlinear analysis, the total load applied to a finite element model is divided into a series of 
load increments called load steps. At the completion of each incremental solution, the stiffness 
matrix of the model is adjusted to reflect nonlinear changes in structural stiffness before 
proceeding to the next load increment.  The ANSYS program (ANSYS 1998) uses Newton-
Raphson equilibrium iterations for updating the model stiffness. 

Newton-Raphson equilibrium iterations provide convergence at the end of each load increment 
within tolerance limits. Figure 2.25 shows the use of the Newton-Raphson approach in a single 
degree of freedom nonlinear analysis. 
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Load 

Converged solutions 

Displacement 

Figure 2.25: Newton-Raphson iterative solution (2 load increments) (ANSYS 1998) 

Prior to each solution, the Newton-Raphson approach assesses the out-of-balance load vector, 
which is the difference between the restoring forces (the loads corresponding to the element 
stresses) and the applied loads. Subsequently, the program carries out a linear solution, using the 
out-of-balance loads, and checks for convergence. If convergence criteria are not satisfied, the 
out-of-balance load vector is re-evaluated, the stiffness matrix is updated, and a new solution is 
attained. This iterative procedure continues until the problem converges (ANSYS 1998). 

In this study, for the reinforced concrete solid elements, convergence criteria were based on force 
and displacement, and the convergence tolerance limits were initially selected by the ANSYS 
program. It was found that convergence of solutions for the models was difficult to achieve due 
to the nonlinear behavior of reinforced concrete. Therefore, the convergence tolerance limits 
were increased to a maximum of 5 times the default tolerance limits (0.5% for force checking 
and 5% for displacement checking) in order to obtain convergence of the solutions. 

2.7.1 Load Stepping and Failure Definition for FE Models 

For the nonlinear analysis, automatic time stepping in the ANSYS program predicts and controls 
load step sizes. Based on the previous solution history and the physics of the models, if the 
convergence behavior is smooth, automatic time stepping will increase the load increment up to 
a selected maximum load step size. If the convergence behavior is abrupt, automatic time 
stepping will bisect the load increment until it is equal to a selected minimum load step size. The 
maximum and minimum load step sizes are required for the automatic time stepping. 
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In this study, the convergence behavior of the models depended on behavior of the reinforced
concrete.  Flexure/Shear Beam model is used here as an example to demonstrate the load
stepping.  Figure 2.26 shows the load-deflection plot of the beam with four identified regions
exhibiting different reinforced concrete behavior. The load step sizes were adjusted, depending
upon the reinforced concrete behavior occurring in the model as shown in Table 2.4.

Figure 2.26: Reinforced concrete behavior in Flexure/Shear Beam

Table 2.4: Summary of load step sizes for Flexure/Shear Beam model

Load step sizes (lb)
Reinforced concrete behavior

Minimum Maximum

1  Zero load – First cracking 1000 5000

2  First cracking – Steel yielding 2 75

3  Steel yielding – Numerous cracks 1 25

4  Numerous cracks – Failure 1 5

As shown in the table, the load step sizes do not need to be small in the linear range (Region 1).
At the beginning of Region 2, cracking of the concrete starts to occur, so the loads are applied
gradually with small load increments.  d step size of 0.91 kg (2 lb) is defined for
the automatic time stepping within this region.  irst cracking occurs, the solution becomes
difficult to converge.  If a load applied on the model is not small enough, the automatic time
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stepping will bisect the load until it is equal to the minimum load step size. After the first 
cracking load, the solution becomes easier to converge. Therefore the automatic time stepping 
increases the load increment up to the defined maximum load step size, which is 34.05 kg (75 lb) 
for this region. If the load step size is too large, the solution either needs a large number of 
iterations to converge, which increases computational time considerably, or it diverges. In 
Region 3, the solution becomes more difficult to converge due to yielding of the steel. 
Therefore, the maximum load step size is reduced to 11.35 kg (25 lb). A minimum load step size 
of 0.45 kg (1 lb) is defined to ensure that the solution will converge, even if a major crack occurs 
within this region. Lastly, for Region 4, a large number of cracks occur as the applied load 
increases. The maximum load step size is defined to be 2.27 kg (5 lb), and a 0.45 kg (1 lb) load 
increment is specified for the minimum load step size for this region. For this study, a load step 
size of 0.45 kg (1 lb) is generally small enough to obtain converged solutions for the models. 

Failure for each of the models is defined when the solution for a 0.45 kg (1 lb) load increment 
still does not converge. The program then gives a message specifying that the models have a 
significantly large deflection, exceeding the displacement limitation of the ANSYS program. 

2.8 COMPUTATION RESOURCES 

In this study, HP 735/125 workstations with a HP PA-7100 processor and 144MB of RAM were 
used. A disk-space up to 1 GB was required for the analysis of each full-scale beam. 
Computation time required up to 120 hours. 
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3.0 RESULTS FROM FINITE ELEMENT ANALYSIS OF FULL-
SIZE BEAMS 

This chapter compares the results from the ANSYS finite element analyses with the experimental 
data for the four full-size beams (McCurry and Kachlakev 2000). The following comparisons 
are made: load-strain plots at selected locations; load-deflection plots at midspan; first cracking 
loads; loads at failure; and crack patterns at failure. Also discussed are the development of crack 
patterns for each beam and summaries of the maximum stresses occurring in the FRP composites 
for the finite element models. The data from the finite element analyses were collected at the 
same locations as the load tests for the full-size beams. 

3.1 LOAD-STRAIN PLOTS 

Conventional 60 mm (2.36 in) long resistive strain gauges were placed throughout the full-size 
beams on concrete surfaces, FRP surfaces, and inside the beams on the main steel reinforcing 
bars at midspan. The locations of selected strain gauges used to compare with the finite element 
results are shown in Figure 3.1. 

12” 
120” 

A 6” 

A #6 steel bar Section A-A#7 steel bar 
59” FRP composites 

240” 
= selected strain gauge 

Figure 3.1: Selected strain gauge locations (not to scale) 

3.1.1 Tensile Strain in Main Steel Reinforcing 

For the Control, Flexure, and Shear Beams, experimental strain data were collected from strain 
gauges on the No.7 steel rebar at the midspan. For the Flexure/Shear Beam, strain data were 
collected from a strain gauge on the No.6 steel rebar at midspan. Locations of the strain gauges 
are shown in Figure 3.1. Comparisons of the load-tensile strain plots from the finite element 
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analyses with the experimental data for the main steel reinforcing at midspan for each beam are
shown in Figures 3.2 - 3.5.  Note that the vertical axis shown in the figures represents the total
load on the beams.

Figure 3.2 shows that before the strain reverses in the Control Beam, the trends of the finite
element and the experimental results are similar.  cially in the linear range the strains from
the finite element analysis correlate well with those from the experimental data.   finite
element model then has lower strains than the experimental beam at the same load.  
reversing strain in the experimental beam is possibly due to a local effect caused by the major
cracks, which take place close to the midspan.  s behavior does not occur in the finite element
model with a smeared cracking approach.  Finally, the steel at midspan in the finite element
model and the actual beam does not yield prior to failure.

Figure 3.2: Load-tensile strain plot for #7 steel rebar in Control Beam

Figure 3.3 shows good agreement for the strains from the finite element analysis and the
experimental results for the Flexure Beam up to 489 kN (110 kips).  e finite element model for
the Flexure Beam then has higher strains than the experimental results at the same load.  
489 kN (110 kips), the strain in the beam reverses.  e steel yields at an applied load of 614 kN
(138 kips) for the model, whereas the steel in the experimental beam has not yielded at failure of
the beam.
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Figure 3.3: Load-tensile strain plot for #7 steel rebar in Flexure Beam

Figure 3.4 shows that the strain data from the finite element analysis and the experimental data
for the Shear Beam have similar trends.  r to the plots of strains in the steel for the Flexure
Beam, the finite element model for the Shear Beam has higher strains than the experimental
results at the same load.  e steel in the finite element model yields at an applied load of
480 kN (108 kips), whereas the steel in the actual beam yields at approximately 560 kN
(126 kips), a difference of 14%.

Figure 3.4: Load-tensile strain plot for #7 steel rebar in Shear Beam
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Figure 3.5 shows that the strains calculated by ANSYS agree well with those from the
experimental results for the Flexure/Shear Beam.  imilar to the Control, Flexure and Shear
Beams, the strains for the Flexure/Shear Beam from the finite element analysis correlate well
with those from the experimental data in the linear range.  Loading of the beam stopped at
712 kN (160 kips) due to limitations in the capacity of the testing machine.  
the steel in the beam yields before failure, which supports calculations reported for the testing
(McCurry and Kachlakev 2000).

Figure 3.5: Load-tensile strain plot for #6 steel rebar in Flexure/Shear Beam
(Beam did not fail during actual loading.)

In general, the plots of load versus tensile strains in the main steel reinforcing from the finite
element analyses have similar trends to those from the experimental results.  In the linear range,
the strains calculated by the finite element program are nearly the same as those measured in the
actual beams.  r, after cracking of the concrete, an inconsistency occurs in the results of
the finite element analyses and the experimental data.  r the Control Beam, ANSYS predicts
that the strains occurring in the steel are lower than those in the actual beam, while the predicted
strains for the other three models are higher than those in the actual beams.

In a reinforced concrete beam at a sufficiently high load, the concrete fails to resist tensile
stresses only where the cracks are located as shown in Figure 3.6(a).  Between the cracks, the
concrete resists moderate amounts of tension introduced by bond stresses acting along the
interface in the direction shown in Figure 3.6(b).  This reduces the tensile force in the steel, as
illustrated by Figure 3.6(d) (Nilson 1997).

0

25

50

75

100

125

150

175

200

0 650 1300 1950 2600 3250 3900 4550 5200 5850 6500

Microstrain (in/in.)

L
oa

d 
(k

ip
s)

Experiment
ANSYS

Steel yielding

S

Based on the model,

Howeve
Fo



CL 

(a) 

(b) 

CL 

(d) 

(c) 

bond stresses on concrete 

bond stresses on steel 

variation of tension force in steel 

steel tension 

Figure 3.6: Variation of tensile force in steel for reinforced Concrete Beam: (a) typical cracking; (b) cracked 
concrete section; (c) bond stresses acting on reinforcing bar; (d) variation of tensile force in steel (Nilson 1997) 

Generally, strains in the steel reinforcement for the finite element models were higher than those 
for the experimental beams after cracking of the concrete. Figure 3.7 shows the development of 
the tensile force in the steel for the finite element models. In the smeared cracking approach, the 
smeared cracks spread over the region where the principal tensile stresses in the concrete 
elements exceed the ultimate tensile strength, as shown in Figures 3.7(a) and 3.7(b), rather than 
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having discrete cracks. The stiffness of the cracked concrete elements in the finite element 
model reduces to zero, so they cannot resist tension. Therefore, the tension in the steel elements 
for the finite element model does not vary as in the actual beam. The tensile force in a steel 
element is constant across the element (Figure 3.7(c)). For this reason, strains from the finite 
element analyses could be higher than measured strains. This could also explain the difference 
in the steel yielding loads between the finite element model and the experimental results for the 
Flexure and Shear Beams, as shown in Figures 3.3 and 3.4, respectively. 

cracked concrete elements 

CL 

(a) 

CL 

(b) 

(c) 

steel element (link element) 

average tensile force in steel element 

steel tension 

Figure 3.7: Development of tensile force in the steel for finite element models: (a) typical smeared cracking; 
(b) cracked concrete and steel rebar elements; (c) profile of tensile force in steel elements 

The inconsistency in the strain of the Control Beam between the model and the experimental 
results could be due to cracks in close proximity to the strain gauge. A crack could create 
additional tensile strains. For the beams with FRP reinforcement, the composite would provide 
some constraint of the crack and therefore, less strain in the immediate vicinity of the crack. 
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Finally, improved results for the finite element model predictions could be obtained from a more
complete characterization of the material properties of the concrete and the steel.
Characterization of the concrete could be achieved by testing core samples from the beams.
Characterization of the steel could be achieved by testing tension coupons of the steel reinforcing
bars to determine the actual stress-strain behavior and yield strength rather than using design
properties and an elastic-plastic model.  or example, limited testing of tension coupons by
ODOT indicated that the yield stress ranged from 460 to 520 MPa (66 to 75 ksi) compared to the
nominal 410 MPa (60 ksi) used in the model.

3.1.2 Tensile Strain in FRP Composites

The locations of the strain gauges on the FRP reinforcing are shown in Figure 3.1.  For the
flexure and Flexure/Shear Beams, actual strain data were collected at the bottom of the beam at
midspan on the surface of the CFRP composite.  he Shear Beam, the strains were measured
at the bottom of the beam 1500 mm (59 in) from the end of the beam on the surface of the GFRP
composite.  risons of the load-tensile strain plots from the finite element analyses with the
experimental data for the FRP-strengthened beams are shown in Figures 3.8 - 3.10.

Figure 3.8 shows good agreement for the CFRP strains from the finite element analysis and the
experimental results for the Flexure Beam.  odel, however, consistently shows somewhat
higher strains than the experimental results at the same load.  end is similar to what was
observed for the steel strain in the Flexure Beam.

Figure 3.8: Load versus tensile strain in the CFRP for the Flexure Beam

Figure 3.9 shows that the GFRP strain data from the finite element analysis and the experimental
data for the Shear Beam have similar trends initially.  Similar to the Flexure Beam, the strains
calculated by the finite element analysis for the Shear Beam are higher than those for the

0

20

40

60

80

100

120

140

160

0 225 450 675 900 1125 1350 1575 1800 2025 2250

Microstrain (in/in.)

L
oa

d 
(k

ip
s)

Experiment
ANSYS

F

For t

Compa

The m
This tr



42

experimental results at the same load.  fter 222 kN (50 kips), however, the difference in strains
between the finite element model and the experimental results increases more dramatically.

Figure 3.9: Load versus tensile strain in the GFRP for the Shear Beam

Figure 3.10 shows that the CFRP strain data from the finite element analysis and the
experimental data for the Flexure/Shear Beam are in good agreement up to 712 kN (160 kips).
The strains from the finite element model are again somewhat higher than the strains in the
actual beam.

Figure 3.10: Load versus tensile strain in the CFRP for the Flexure/Shear Beam (Actual beam did not fail)
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3.1.3 Compressive Strain in Concrete

The compressive strain data for concrete collected from the beam are compared with results from
the finite element analysis.  rain gauge was placed at midspan on the top face of all four
beams as shown in Figure 3.1.  igures 3.11 - 3.14 are comparisons of the load-compressive
strain plots for all four beams.

Figure 3.11 shows that the load-compressive strain plots for the concrete from the finite element
analysis and the experimental data have excellent agreement in the Control Beam.  gure 3.12
shows that the load-compressive strain plots for the Flexure Beam have a similar trend; however,
strains in the concrete calculated by ANSYS are higher than those from the experimental results
at the same load.

Figure 3.11: Load-compressive strain plot for concrete in Control Beam
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Figure 3.12: Load-compressive strain plot for concrete in Flexure Beam

Figure 3.13 shows the load-compressive strain plots for the Shear Beam.  For applied loads from
0 to 467 kN (0 to 105 kips), the load-strain plots from the finite element model and the
experimental results do not correlate well.  Figure, the experimental beam
exhibits nonlinear behavior.  avior should not happen at this load level.  
erroneous test data or local material imperfections may have caused the behavior.  For example,
cracks may be occurring at the interfaces between the cement and aggregate, due to their
differences in elastic modulus, thermal coefficient of expansion, and response to change in
moisture content when the concrete is hardened.  (110 kips), large strains occur
for the finite element model, whereas at a load of 534 kN (120 kips) similar behavior takes place
for the actual beam.  ese loads are close to the yielding loads of the steel, as shown in Figure
3.4.  yielding of the steel explains the large concrete strains.
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Figure 3.13: Load-compressive strain plot for concrete in Shear Beam

For the Flexure/Shear Beam, Figure 3.14, strains from the finite element model were consistently
larger than strains from the actual beam.  havior, which is also evident in the Flexure
Beam, may be due to inaccuracy of the input materials properties for the model, as already
discussed.

Figure 3.14: Load-compressive strain plot for concrete in Flexure/Shear Beam
(Actual beam did not fail.)
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3.2 LOAD-DEFLECTION PLOTS

Direct current displacement transducers (DCDTs) were used to measure deflections for the
experimental beams at midspan at the center of the bottom face of the beams.  or ANSYS,
deflections are measured at the same location as for the experimental beams.  gures 3.15 - 3.18
show the load-deflection plots from the finite element analyses and the experimental results for
all four beams.

Figure 3.15 shows that the load-deflection plot from the finite element analysis agrees well with
the experimental data for the Control Beam.  In the linear range, the load-deflection plot from the
finite element analysis is stiffer than that from the experimental results by approximately 66%.
The first cracking load for the finite element analysis is 104.5 kN (23.5 kips), which is higher
than the load of 78.3 kN (17.6 kips) from the experimental results by 34%.  fter first cracking,
the finite element model is again stiffer than the actual beam by approximately 28%.  At 400 kN
(90 kips) for the model, yielding of the No.7 steel bar occurs at a location approximately 1800
mm (70 inches) from the end of the beam, resulting in the decreased stiffness.  Lastly, the final
load of 454 kN (102 kips) from the model is lower than the ultimate load of 476 kN (107 kips)
from the experimental data by only 5%.

Figure 3.15: Load-deflection plot for Control Beam

Figure 3.16 shows that the load-deflection plots for the Flexure Beam from the experimental data
and the finite element analysis are in reasonably good agreement.  eam,
the finite element model is stiffer than the actual beam in the linear range by approximately 55%.
The finite element model cracks at 104.1 kN (23.4 kips), which is 8% higher than the actual
beam load of 96.5 kN (21.7 kips).  r first cracking, the two plots have a similar trend;
however, the finite element model is again stiffer than the experimental beam by approximately
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27%.  for the model is 623 kN (140 kips), which is less than the ultimate load of
689 kN (155 kips) for the actual beam by 10%.

Figure 3.16: Load-deflection plot for Flexure Beam

As shown in Figure 3.17, the two load-deflection plots for the Shear Beam correlate well with
each other.  nite element model is stiffer than the actual beam in the linear range by
approximately 52%.  first cracking load for the finite element model is 96.1 kN (21.6 kips),
which is higher than the load of 87.6 kN (19.7 kips) from the experimental results by 10%.  fter
first cracking, the finite element model and the actual beam have almost the same stiffness.
Large deflections begin to occur in the finite element model, however, at a load of 489 kN
(110 kips), whereas the same behavior in the actual beam is observed at about 534 kN (120 kips).
It is evident that the yielding of the steel reinforcement creates the large deflections.  nal
load for the finite element model is 525 kN (118 kips), which is less than the ultimate load of
689 kN (155 kips) for the experimental beam by 24%.
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Figure 3.17: Load-deflection plot for Shear Beam

Figure 3.18 compares the two load-deflection plots for the Flexure/Shear Beam up to 712 kN
(160 kips).  eflection plot from the finite element analysis agrees well with the
experimental data.  In the linear range, the load-deflection plot from the finite element analysis is
slightly stiffer than that from the experimental results by about 12%.  e first cracking load
levels from the finite element analysis and the experimental results are 101.9 kN (22.9 kips) and
96.1 kN (21.6 kips), respectively, a difference of 6%.  fter cracking, the stiffness for the finite
element model is slightly higher than the experimental data by approximately 14%.  a
load of 645 kN (145 kips), the stiffness of the finite element model decreases due to the yielding
of the steel reinforcement in the beam model.  e failure load in the model is 930 kN
(209 kips).
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Figure 3.18: Load-deflection plot for Flexure/Shear Beam (Actual beam did not fail)

In general, the load-deflection plots for all four beams from the finite element analyses agree
quite well with the experimental data.  or the four beams, the finite element load-deflection
plots in the linear range are stiffer than the experimental plots by 12% - 66%.  first cracking
loads for all four models from the finite element analyses are higher than those from the
experimental results by 6% - 34%.  fter first cracking, the stiffness of the finite element models
is again higher than that of the experimental beams by 14% - 28%.

There are several factors that may cause the higher stiffness in the finite element models.
Microcracks produced by drying shrinkage and handling are present in the concrete to some
degree.  These would reduce the stiffness of the actual beams, while the finite element models do
not include microcracks.  ect bond between the concrete and steel reinforcing is assumed in
the finite element analyses, but the assumption would not be true for the actual beams.  
slip occurs, the composite action between the concrete and steel reinforcing is lost.  
overall stiffness of the actual beams could be lower than what the finite element models predict,
due to factors that are not incorporated into the models.

Figure 3.19 illustrates the differences in load-deflection behavior for the four beams, and Figure
3.20 compares the four finite element models.  h figures show that the stiffness of the beams
before and after applying FRP strengthening is approximately the same in the linear range.  After
first cracking, the stiffness of the FRP-strengthened beams from the finite element analyses is
higher than that for the Control Beam, which is consistent with the experimental results.
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Figure 3.19: Load-deflection plots for the four beams based on measurements 
(Beam No.4 did not fail) (Kachlakev and McCurry 2000) 
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Figure 3.20: Load-deflection plots for the four beams based on ANSYS finite element models 

For comparing the load-carrying capacity of the beams, the finite element models have the same 
sequence as the actual beams. For the finite element models, the Flexure, Shear, and 
Flexure/Shear strengthened beams have higher load carrying capacities than the Control Beam 
by 37%, 16%, and 105%, respectively.  The experimental FRP-strengthened Flexure, Shear, and 
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Flexure/Shear Beams have capacities greater than the Control Beam by 45%, 45%, and 104%, 
respectively.  Note that the capacity of the actual Flexure/Shear Beam was estimated from hand 
calculations (Kachlakev and McCurry 2000). 

3.3 FIRST CRACKING LOADS 

The first cracking load from the finite element analysis is the load step where the first signs of 
cracking occur for concrete in the model. Loads at first cracking from the model and the 
experimental results are compared in Table 3.1. 

Table 3.1: Comparisons between experimental and ANSYS first cracking loads 
First cracking load (kips)

Beam 
Experimental* ANSYS 

% Difference 

Control Beam 17.6 23.5 34 

Flexure Beam 21.7 23.4 7.8 

Shear Beam 19.7 21.6 9.6 
Flexure/Shear Beam 21.6 22.9 6.0 

*(McCurry and Kachlakev 2000) 

The first cracking loads from the finite element analyses and the experimental data are within 
10% for three of the conditions. In all cases, the first cracking load from ANSYS is higher than 
that from the experimental data. This is possibly due to the relative homogeneity of the finite 
element models when compared to the relative heterogeneity of the actual beams that contain a 
number of microcracks. The finite element results also support the experimental observation that 
after applying the FRP composites, the FRP reinforcing scheme for the Shear Beam results in the 
lowest first cracking load when compared to the other two FRP-strengthened beams. 

3.4 EVOLUTION OF CRACK PATTERNS 

In ANSYS, outputs, i.e., stresses and strains, are calculated at integration points of the concrete 
solid elements. Figure 3.21 shows integration points in a concrete solid element. A cracking 
sign represented by a circle appears when a principal tensile stress exceeds the ultimate tensile 
strength of the concrete. The cracking sign appears perpendicular to the direction of the 
principal stress as illustrated in Figure 3.22. 
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z 
y 

x 

Figure 3.21: Integration points in concrete solid element (ANSYS 1998) 

z 

y 

x 

Integration point 

Cracking sign 

Principal stress direction 

Figure 3.22: Cracking sign (ANSYS 1998) 

Figure 3.23 shows the coordinate axes used in this finite element modeling study, where x, y, and 
z correspond to the length, width, and height directions for the beams, respectively. 

z 
y 

x 

Origin (0,0,0) 

Figure 3.23: Coordinate system for finite element models 
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Figure 3.24 shows typical cracking signs in an ANSYS model. A side face of a quarter beam 
model is used to demonstrate. As shown in Figure 3.24(a), at the bottom of the beam at midspan, 
principal tensile stresses occur mostly in the x direction (longitudinally). When the principal 
stresses exceed the ultimate tensile strength of the concrete, circles as cracking signs appear 
perpendicular to the principal stresses in the x direction. Therefore the cracking signs shown in 
the figure appear as vertical straight lines occurring at the integration points of the concrete solid 
elements. Hereafter, these will be referred to as flexural cracks. 

(b) 

x 

z 

(a) 

(c) 

(b)(a) (c) 

Figure 3.24: Typical cracking signs occurring in finite element models: (a) flexural cracks; (b) compressive cracks; 
(c) diagonal tensile cracks 

Figure 3.24(b) shows the type of cracking signs observed for concrete elements underneath the 
loading locations. For a concrete structure subjected to uniaxial compression, cracks propagate 
primarily parallel to the direction of the applied compressive load, since the cracks result from 
tensile strains developed due to Poisson’s effect (Mindess and Young 1981; Shah, et al. 1995). 
Similar behavior is seen in the finite element analysis. Loads in the z direction result in tensile 
strains in the y direction by Poisson’s effect. Thus, circles appear perpendicular to the principal 
tensile strains in the y direction at integration points in the concrete elements near the loading 
location. These will be referred to as compressive cracks. 

Figure 3.24(c) shows cracking signs where both normal and shear stresses act on concrete 
elements. By using transformation equations, directions and magnitudes of the principal stresses 
can be obtained (Gere and Timoshenko 1997). At the location shown in the Figure, normal 
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tensile stresses generally develop in the x direction and shear stresses occur in the xz plane. 
Consequently, the direction of tensile principal stresses becomes inclined from the horizontal. 
Once the principal tensile stresses exceed the ultimate tensile strength of the concrete, inclined 
circles appearing as straight lines perpendicular to the directions of the principal stresses appear 
at integration points of the concrete elements. Hereafter, these will be referred to as diagonal 
tensile cracks. 

The ANSYS program records a crack pattern at each applied load step. Figures 3.25 and 3.26 
show the evolution of crack patterns for each beam. In general, flexural cracks occur early at 
midspan. When applied loads increase, vertical flexural cracks spread horizontally from the 
midspan to the support. At a higher applied load, diagonal tensile cracks appear. Increasing 
applied loads induces additional diagonal and flexural cracks. Finally, compressive cracks 
appear at nearly the last applied load steps. The cracks appear underneath the loading location 
on the Control and Flexure Beam models. For the Shear Beam model, there are no compressive 
cracks appearing underneath the loading location. On the Flexure/Shear Beam model, significant 
cracks appear at the top part of the beam. The appearance of the cracks defines the failure mode 
for the beams, which will be discussed in Section 3.6. 
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102 kips 
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(a) (b) 

Figure 3.25: Evolution of crack patterns:  (a) Control Beam; (b) Flexure Beam 
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160 kips 

209 kips 

100 kips 

118 kips 

(a) (b) 

Figure 3.26: Evolution of crack patterns (Continued): (a) Shear Beam; (b) Flexure/Shear Beam 



3.5 LOADS AT FAILURE 

Table 3.2 compares the ultimate loads for the full-size beams and the final loads from the finite 
element simulations. ANSYS underestimates the strength of the beams by 5%-24%. One reason 
for the discrepancy is that the inclined portions of the steel reinforcement are excluded from the 
finite element models. Toughening mechanisms at the crack faces may also slightly extend the 
failures of the experimental beams before complete collapse. The finite element models do not 
have such mechanisms. 

Table 3.2: Comparisons between experimental ultimate loads and ANSYS final loads 

Beam 

Ultimate load 
(kips) from 

Experimental 
results* 

Final load 
(kips) from 

ANSYS 
% Difference 

Control beam 107 102 -5 
Flexure Beam 155 140 -10 
Shear beam 155 118 -24 
Flexure/Shear beam 160** 209 N/A 

*(McCurry and Kachlakev 2000)

**This is not an ultimate load. The testing was limited by the testing machine capacity.


Toughening mechanisms are illustrated in Figure 3.27 (Shah, et al. 1995). The grain bridging 
process, shown in Figure 3.27(a), occurs when the crack has advanced beyond an aggregate that 
continues to transmit stresses across the crack. Interlock between cracked faces, shown in Figure 
3.27(b), can cause energy dissipation and load transfer through friction across the crack. A blunt 
crack tip, shown in Figure 3.27(c), requires additional energy for crack propagation than a sharp 
crack. Finally, Figure 3.27(d) shows crack branching due to concrete heterogeneities. Energy is 
consumed in creating the crack branches. 

(a) (b) 

Friction between 
crack faces 

Aggregates 

Figure 3.27: Toughening mechanisms:  (a) aggregate bridging; (b) crack-face friction 
(Shah, et al. 1995) 
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(c) (d) 

Main crack tip 

Secondary crack tip
Void 

Main crack 

Figure 3.27 (continued): Toughening mechanisms: (c) crack tip blunted by void; 
(d) crack branching  (Shah, et al. 1995) 

The material properties assumed in this study may be imperfect. The stress-strain curve for the 
steel used for the finite element beam models should be obtained directly from material testing. 
The actual reinforcing steel has a different stress-strain curve when compared to the idealized 
steel used for the finite element modeling, as shown in Figure 3.28. Therefore, this may help to 
produce the higher ultimate load in the experimental beams. Moreover, the perfectly plastic 
stress-strain relationship for the concrete after the ultimate compressive stress might also cause 
the lower failure load in the finite element models. 

(a) (b) 

Figure 3.28: Stress-strain curve for reinforcing steel: (a) as determined by tension test; (b) idealized 
(Spiegel and Limbrunner 1998) 
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3.6 CRACK PATTERNS AT FAILURE 

In testing the actual beams, the failure modes for the three beams that failed were as predicted. 
The Control and Flexure Beams failed in shear. The Shear Beam failed in flexure at the 
midspan, with yielding of the steel reinforcing followed by a compression failure at the top of the 
beam. 

Crack patterns obtained from the finite element analyses at the last converged load steps are 
compared to failure photographs from the actual beams (Figures 3.29 and 3.30). For the Control 
Beam, Figure 3.29(a), the crack pattern from ANSYS and the actual beam agree very well. 
Diagonal tensile cracks propagate from the support toward the loading area. The cracks occur 
mostly in the high shear stress region. A similar pattern developed for the Flexure Beam and 
was simulated by ANSYS, as shown in Figure 3.29(b). 

Figure 3.30(a) shows that numerous cracks occur at midspan of the finite element model. The 
crack pattern and steel yielding at the midspan (Figure 3.4) for the finite element Shear Beam 
support the experimental results that the beam fails in flexure. Note, however, that the crushing-
related cracks observed at the top of the actual beam were not seen in the model because the 
crushing capability in ANSYS was turned off. Moreover, cracks appearing at the final load step 
at failure were not observable because of the diverged solution that defined the failure in the 
model. 

Calculations suggested that the actual Flexure/Shear Beam would be limited by the crushing 
strength of the concrete and fail in flexure (McCurry and Kachlakev 2000). Figure 3.30(b) 
illustrates the final crack pattern for the beam predicted by the ANSYS program. Numerous 
compressive cracks occur at the top part of the beam, and many flexural cracks are observed at 
midspan as well. Moreover, the steel at the midspan in the model yields, as shown in Figure 3.5. 
These observations support the conclusion that the beam would fail in flexure. 
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Figure 3.29: Crack patterns at failure: (a) Control Beam; (b) Flexure Beam 



Photo N/A 
Beam did not fail. 
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Figure 3.30: Crack patterns at failure: (a) Shear Beam; (b) Flexure/Shear Beam 



3.7 MAXIMUM STRESSES IN FRP COMPOSITES 

For the actual flexure and Shear Beams, there was no evidence that the FRP reinforcing failed 
before overall failure of the beams. This is confirmed by the finite element analyses. In Table 
3.3 maximum stresses for the last converged load step are compared to the ultimate tensile 
strengths for the composites, along with the location of the maximum stress. Figure 3.31 shows 
the maximum stress locations in the FRP composites. 

Table 3.3: Maximum stresses developed in the FRP composites and the corresponding 
ultimate tensile strengths 

Beam Maximum tensile 
stress (ksi) 

Ultimate tensile 
strength (ksi)* 

Location 
(x, y, z) (in)** 

Flexure beam (CFRP) 28.7 139 (66,6,0) 

Shear beam (GFRP) 7.22 87.0 (114,4,0) 

Flexure/Shear beam 71.8 (CFRP) 
5.91 (GFRP) 

139 (CFRP) 
87.0 (GFRP) 

(120,0,0) 
(57,4,0) 

*(Kachlakev and McCurry 2000)

**(x, y, z) corresponds to (length, width, height) directions on the beams.  The origin (0, 0, 0) is at

the corner of the bottom face of the beams as shown in Figure 3.31(a).


(a)  (b) 

114” 

4” 

66” 

6” 

= maximum stress location 
in each FRP composite Origin 

(0,0,0) 

Figure 3.31: Locations of maximum stresses in FRP composites: (a) Flexure Beam; (b) Shear Beam 
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 (c) 

57” 
4” = maximum stress location 

in each FRP composite 

120” 

Figure 3.31 (continued): Locations of maximum stresses in FRP 
composites: (c) Flexure/Shear Beam 

3.7.1 Comparisons to Parallel Research 

A parallel modeling effort was conducted at Oregon State University by Chansawat for the 
Control Beam and the Flexure/Shear Beam (Chansawat 2000). The Control Beam models from 
Chansawat’s work and this study have nearly the same geometric configurations. One 
difference, however, between the two Control Beam models was the method of mesh generation. 
This study uses mesh generation based on a solid modeling method, whereas mesh generation of 
Chansawat’s model was based on a direct generation method. The load stepping defined for the 
analyses was also different, especially the load step sizes close to failure. Chansawat used 0.045 
kg (0.1 lb) as the minimum load step size, while this study used a 0.45 kg (1 lb) load increment. 

The Flexure/Shear Beams from the two studies also had nearly the same geometric 
configurations as the Control Beam, except for the number of elements, due to the different 
methods used in modeling the FRP composites. For Chansawat’s model, CFRP and GFRP 
composites were modeled as layers in one element, whereas for this study each FRP composite 
was separately modeled. Mesh generation and load stepping for the two studies were also 
different. 

The computed stiffnesses from the two models are almost identical for both the Control and 
Flexure/Shear Beams. The crack patterns predicted by the ANSYS program from the two 
studies are very similar.  The load-carrying capacities of the beams from the two studies are 
slightly different, however. The failure loads of the Control Beam and Flexure/Shear Beam 
modeled by Chansawat are higher than this study by 0.5% and 4% respectively.  The differences 
in the FRP composite modeling and the load stepping between the two analyses could have 
caused these differences in the load-carrying capacities. 
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4.0 ANALYSIS OF HORSETAIL CREEK BRIDGE 

4.1 INTRODUCTION 

This chapter presents the analysis of the Horsetail Creek Bridge. The FEM techniques 
developed for the nonlinear analysis of the full-scale beams were extended into this 
investigation. Field test data for the bridge were provided by the Oregon Department of 
Transportation (ODOT 2000, ODOT 2001). Unfortunately, field test data were available only for 
the structure after FRP strengthening.  There was no control set of data available to represent the 
bridge’s response prior to the retrofit. A finite element model of the Horsetail Creek Bridge after 
retrofitting was developed, and two levels of truck loading were applied to the bridge model at 
different locations, as in the actual bridge test. Comparisons between ANSYS predictions and 
field data are discussed in this chapter. In addition, a finite element model of the bridge before 
retrofitting was also developed and analyzed. 

4.2 BRIDGE DESCRIPTION AND FIELD DATA 

4.2.1 Horsetail Creek Bridge 

The Horsetail Creek Bridge consists of three spans 6096 mm (20 ft) long and 7315 mm (24 ft) 
wide with spread footing foundations. For the transverse beams, the FRP strengthening detail is 
generally the same as that for the Flexure/Shear Beam discussed in Chapter 3. However, due to 
the bridge deck, the height of GFRP laminates is shorter on the bridge compared to the 
Flexure/Shear Beam. On the longitudinal bridge beams, only GFRP laminates were used to 
provide adequate shear resistance. The plan and elevation of the bridge are shown in Appendix 
A along with the steel reinforcement and FRP strengthening details. 

4.2.2 Loading conditions 

Two field tests were conducted by ODOT (ODOT 2000, ODOT 2001).  They will be referred to 
as “Field Test 1,” and “Field Test 2.” Field Test 1 was performed in November 2000, and Field 
Test 2 in February 2001. In each field test, strain data were collected with an empty and a full 
truck at seven positions on the Bridge, as shown in Figure 4.1. The truck weights used for Field 
Test 2 were kept as similar as possible to those used for Field Test 1 for verification purposes. 
Due to the winter season, however, a snowplow was mounted on the truck used in Field Test 2. 
As a result, the weights for both empty and full truck loads were somewhat different between 
field tests. The configurations and axle weights for the trucks used in both tests are shown in 
Appendix B. 

65




66

Figure 4.1: Locations of truck on the Horsetail Creek Bridge

(a) Position 1

126”

(b) Position 2

246”

(c) Position 3

366”

(d) Position 4

435”

Columbia River -- North
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Figure 4.1 (continued): Locations of truck on the Horsetail Creek Bridge

4.2.3 Field data

Fiber optic strain sensors were placed in the concrete and on the surface of the FRP laminates
when the composite was applied. They were located on the bottom and side of one transverse
beam and one longitudinal beam, as shown in Appendix C.  erse and
the longitudinal beams are shown in Figure 4.2 (shaded areas).

(e) Position 5

486”

(f) Position 6

606”

(g) Position 7

675”

The locations of these transv



Figure 4.2: Locations of the monitored beams on the Horsetail Creek Bridge 

4.3 FEM MODEL 

ANSYS was used to model the Horsetail Creek Bridge. Due to the much more complex 
geometry and reinforcement details compared with the full-size beams, more modeling time and 
effort were needed, however. 

4.3.1 Materials properties 

Most of the materials properties used in the nonlinear analysis of the full-scale beams were 
applicable to the bridge study, as shown in Table 4.1. The two exceptions were the initial 
modulus of elasticity of concrete and the yield strength of the steel bars, which were assigned 
19,650 MPa (2,850,000 psi) and 276 MPa (40,000 psi) (Grade 40 steel), respectively. 

Table 4.1: Material properties (Kachlakev and McCurry, 2000; Fyfe Corp., 1998) 
Type of Material Material Properties 

ν E 
(psi) 

G 
(psi) 

Strength 
(psi) 

Thickness 
(in.) 

Concrete 0.2 2850000 - f'c = 2500** 
f't = 375 

-

Reinforcing steel 0.3 29000000** - fy = 40000** -
CFRP laminate ν12 = 0.216 E11 = 9000000 

ν13 = 0.216 E22 

ν23 = 0.3* 
= 700000* 

E33 = 700000* G23 

G12 = 473700* 
G13 = 473700* 

= 270000*** 

σult(ten.) = 139000 
σult(comp.) = 86880 

τult(12) = 14500 

0.042 

GFRP laminate ν12 = 0.216 E11 = 3000000 
ν13 = 0.216 E22 

ν23 = 0.3* E33 

= 1000000* 
= 1000000* G23 

G12 = 220000 
G13 = 220000 

= 385000*** 

σult(ten.) = 87000 
σult(comp.) = 48330 

τult(12) = 4400 

0.052 

*(Kachlakev 1998) 
**(CH2M Hill 1997) 
*** 

G23 = E2 

2(1 +ν 23 ) 
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4.3.2 Bridge modeling and analysis assumptions 

Modeling and analysis assumptions explained in Chapter 2 were applied in the overall bridge 
analysis. In addition, another assumption was made in the bridge study. In order to analyze all 
the load locations on the bridge deck without changing the mesh, the load for each set of dual 
tires was lumped and assumed to occur at the center of the dual tires, as shown in Figure 4.3. 
The truck configuration from Field Test 1 was used in all FE analyses. 

189” 

54” 

72” 81” 

(a) 

(b) 

190” 

96” 

15” 
12” 

56” 

26” 

98” 

Figure 4.3: Truck load simplification: (a) and (b) show configurations of the dump truck and the 
simplified truck, respectively 

At locations where the lumped load did not coincide with a node in the mesh, the load was 
linearly distributed to the nearest nodes. An example of this distribution is shown in Figure 4.4. 
With this approach, truck loads were applied to the bridge deck regardless of the locations of the 
nodes. 
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(1/2)P/3 
2L/3L/3 

P 

(1/2)2P/3 

(1/2)2P/3S/2 (1/2)P/3 

S/2 

(a) (b) 

Figure 4.4: Linear truck load distribution 

4.3.3 Finite element discretization 

The constitutive models, material properties, and assumptions previously discussed were used in 
the bridge analysis. As with the full-scale beam modeling, SOLID65, LINK8, and SOLID46 
elements were used to model the bridge. Taking advantage of symmetry, only a longitudinal half 
of the bridge was modeled. The columns of the bridge were also modeled and were assumed to 
be rigidly fixed to the ground. Therefore, all degrees of freedom (DOF) at the bottoms of the 
columns were restrained. Only vertical translation was restrained, however, where the walls are 
located (at both ends of the bridge). It was also assumed that the corners of the bridge were 
rigidly fixed to the ground where the spread footings are located. The effects of the boundary 
conditions defined in the study will be discussed in the next section. The numbers of elements 
used in the model are summarized in Table 4.2. 

Table 4.2: Summary of the number of 
elements used in the bridge model 

Type of Element No. of Elements 
Concrete (SOLID65) 
Steel Bar (LINK8) 
FRP (SOLID46) 

9520 
4354 
1168 

Total 15042 

The bridge model with steel reinforcement details is shown in Figure 4.5. The label “1-0.78 in2” 
represents one steel bar with an area of 0.78 in2, while “2-2 in2” represents two steel bars with an 
area of 2 in2 for each bar, and so on. A standard size bar could not be used because undeformed 
square bars were used in the actual bridge. “Lumping” of reinforcing steel bar areas was used in 
the FE bridge modeling, as in the full-size beam modeling. The steel reinforcement details of the 
actual bridge are shown in Appendix A. 
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2-2 in2 

4-1 in2 

1-0.39 in2 

1-0.78 in2 

2-2 in2 

1-1 in2 

3-1 in2 

1-0.78 in2 

1-0.39 in2 

2-1 in2 

1-0.39 in2 

(a) 

(b) 

Figure 4.5: Steel reinforcement details: (a) and (b) show typical reinforcement in the 
transverse and longitudinal beams at the middle and at the end of the bridge, respectively 
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3.9 in2 @ 9” 
Both ways 

(c) 

(d) 

Figure 4.5 (continued): Steel reinforcement details: (c) and (d) show typical 
reinforcement in the bridge deck at both ends of the bridge 
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(e) 

Figure 4.5 (continued): Steel reinforcement details: (e) shows typical reinforcement in the columns 

Figure 4.6 shows the FRP laminates. The sections of the longitudinal beams with 2 layers and 4 
layers of GFRP are indicated. Except for the presence of the deck, the composite configuration 
on the longitudinal and transverse beams was identical to the configuration for the Shear Beam 
and Flexure/Shear Beam discussed in Chapter 3. 
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2 GFRP 
4 GFRP 

See note 

(a) 

(c)(b) 

Figure 4.6: FE bridge model with FRP laminates: (a), (b), and (c) show the FRP strengthening in different views. 
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Figure 4.7 shows the boundary conditions for the model. 

Uz restrained (due to wall) 

All DOFs restrained 

Figure 4.7: Boundary conditions for the bridge 
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4.4	 COMPARISONS OF ANSYS AND SAP 2000 PREDICTIONS WITH 
FIELD DATA 

On examining the ANSYS results for all of the truck positions, it was found that the bridge did 
not crack for the empty truck. Therefore, the study was a linear analysis, and it was possible to 
include the linear analysis results obtained from SAP2000 in these comparisons (OSU 2000) as a 
preliminary verification of the ANSYS model. Differences between the ANSYS and SAP2000 
bridge models are pointed out in Table 4.3. It should be noted that the strain results obtained for 
both ANSYS and SAP2000 are based on essentially the truck weights used in Field Test 1. 

Table 4.3: Differences between ANSYS and SAP2000 bridge models 
Categories Models 

ANSYS SAP2000 [OSU, 2000] 
Types of Elements 

Concrete 
Steel 
FRP 

SOLID65 (Nonlinear) 
LINK8 (Nonlinear) 
SOLID65 (Nonlinear) 

Conventional solid element (Linear) 
Truss element (Linear) 
Truss element (Linear) 

Material Properties 
Concrete 

Steel 
FRP 

See Table 4.1 
See Table 4.1 
See Table 4.1 (Orthotropic) 

E = 2850000 psi, ν = 0.2 
E = 29000000 psi, ν = 0.3 
E(CFRP) = 9000000 psi, ν = 0.23 
E(GFRP) = 3000000 psi, ν = 0.21 

Model Descriptions 
Modeling Approach 

Height of the Columns 
Size of the Columns 

A longitudinal half of the bridge Full model 
modeled (Symmetry) 
192" (16') high 
14.6" x 14.6" 

174" (14.5') high 
16" x 16" 

Boundary Conditions 
Under Columns 

Left End 
Right End 

All DOFs restrained 
See Figure 4.6 
See Figure 4.6 

All DOFs restrained 
All DOFs restrained 
Vertical translation restrained 

Total No. of Elements 
Concrete 

Steel 
FRP 
Total 

20192 
9428 
2336 
31956 

10642 
3862 
1175 
15679 

The differences between these two models will affect comparisons of the structural response 
predictions between ANSYS and SAP2000. In the SAP2000 analysis, truss elements with 
isotropic material properties are used to represent the FRP laminates (OSU 2000), which is not as 
realistic and may reduce the overall structural stiffness compared to the SOLID46 elements with 
orthotropic material properties that are used to model the FRP laminates in ANSYS. The 

76




differences in the boundary conditions at both ends of the bridge deck also affect the solutions. 
At the right end of the SAP2000 bridge model, horizontal translations are permitted, but not for 
the ANSYS bridge model. This may also reduce the stiffness in the SAP2000 bridge structure 
relative to the ANSYS model. On the other hand, one factor will make the ANSYS bridge 
model somewhat less stiff than the SAP2000 model: i.e., the differences in height and size of the 
columns. As shown in Table 4.3, larger and shorter columns were used in the SAP2000 analysis 
and made the SAP2000 model stiffer. (The size and height of the columns used in the ANSYS 
model were those directly measured from the actual bridge.) 

Additionally, the differences in the number of elements used in the ANSYS and SAP2000 
models will also affect the solutions. After the symmetry condition is taken into account, the 
ANSYS model has more than twice as many elements as the SAP2000 model, as shown in Table 
4.3. Thus, it is expected that due to more realistic modeling of both the element types and the 
geometric properties, together with the use of more elements, the ANSYS model will provide the 
best prediction of the behavior of the bridge under truck loadings. 

L 

X 

L2 

L1 

S1 

S2 

S3 

S4 
S* 

3 

Figure 4.8: Fiber optic sensor (plan view) 

The relatively long gauge length of the sensor [1070 mm (42”)] on the bridge made comparisons 
challenging where the strains varied considerably over those lengths. Due to the length of the 
fiber optic sensors, it would not be appropriate to use the result from only one node from the FE 
model to represent the strain value. The strains from several nodes need to be examined to 
obtain a strain comparable to the field data. The strain calculation is based on a weighted 
average that depends on the “tributary” length for each node. For instance, consider a fiber optic 
sensor attached to an FE model.  Then: 

* 
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S1

2
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S
2
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S
2

3 (L 2 + X)+ 
S3

2
X 

(4.1)avg L 
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where: 
Savg = Average strain used to compared with the field strain data 
S1, S2, S3, and S4 = ANSYS nodal strains 
L1, L2, and L3 = Length of each element 
L = Length of the fiber optic sensor 
S*

3 = Interpolated strain between S3 and S4 

There were 12 sensors installed on the bridge to measure flexural strains. In Field Test 1, data 
were obtained from the following eight sensors: 

•	 T0FC: The strain at the center bottom fiber of the concrete for the transverse 
beam at midspan. 

•	 T1FC: The strain at the center bottom of the transverse beam at midspan on the 
FRP laminate. 

•	 T0FR: The strain at 1”-off center for the bottom fiber of the concrete for the 
transverse beam at the north end. 

•	 T1FR: The strain at 1”-off center for the bottom of the transverse beam at the 
north end on the FRP laminate. 

•	 L0FC: The strain at the center bottom fiber of the concrete for the longitudinal 
beam at midspan. 

•	 L1FC: The strain at the center bottom of the longitudinal beam at midspan on 
the FRP laminate. 

•	 L0FL: The strain at 1”-off center for the bottom fiber of the concrete for the 
longitudinal beam at the east end. 

•	 L0FR: The strain at 1”-off center for the bottom fiber of the concrete for the 
longitudinal beam at the west end. 

In Field Test 2, data were obtained from the same set of sensors except T1FR, which 
malfunctioned at the time of the test. 

Comparisons between ANSYS predictions and Field Tests 1 and 2 for the strains versus the 
various truck locations are shown in Figures 4.9 and 4.10. To better represent the effects of the 
moving truck on the structural behavior of the bridge, the strains are also plotted versus the 
distances of the single front axle of the truck from the end of the bridge (Figure 4.1) and are 
shown in Figures 4.11 and 4.12. Basically, these plots are similar to “influence lines,” but for a 
truck instead of a unit load. It should be noted that SAP2000 results are available only for the 
empty truck condition and only at locations T0FC and L1FC. 
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Figure 4.9: Comparison of strains from Field Tests 1 and 2, ANSYS, and SAP2000 for the empty truck at the seven Locations: (a) - (d) show the strains on the 
transverse beam 
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Figure 4.9 (continued): Comparison of strains from Field Tests 1 and 2, ANSYS, and SAP2000 for the empty truck at the seven Locations: (e)-(h) 
show the strains on the longitudinal beam. 
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Figure 4.10: Comparison of strains from Field Tests 1 and 2, ANSYS, and SAP2000 for the empty truck at the seven locations: (a) - (d) show the strains on the 
transverse beam 
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Figure 4.10 (continued): Comparison of strains from Field Tests 1 and 2, ANSYS, and SAP2000 for the empty truck at the seven locations: (e)-(h) show the 
strains on the longitudinal beam. 
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Figure 4.11: Comparison of strain versus distance of the single axle from the end of the bridge deck for Field Tests 1 and 2, ANSYS, and SAP2000 based on an 
empty truck: (a) - (d) show the strains on the transverse beam 
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Figure 4.11 (continued): Comparison of strain versus distance of the single axle from the end of the bridge deck for Field Tests 1 and 2, ANSYS, and SAP2000 
based on an empty truck: (e)-(h) show the strains on the longitudinal beam 
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Figure 4.12: Comparison of strain versus distance of the single axle from the end of the bridge deck for Field Tests 1 and 2, ANSYS, and SAP2000 based on a 
full truck: (a) - (d) show the strains on the transverse beam 
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Figure 4.12 (continued): Comparison of strain versus distance of the single axle from the end of the bridge deck for Field Tests 1 and 2, ANSYS, and SAP2000 
based on a full truck: (e)-(h) show the strains on the longitudinal beam 
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Figures 4.9 – 4.12 show that ANSYS in general provides reasonable predictions for both strains 
and the trends in the strains versus the various truck locations. For the comparisons of ANSYS 
and SAP2000 with the field data (Figures 4.11 (a) and (f)), both ANSYS and SAP2000 show 
similar trends to the field data; however, ANSYS predicts the behavior more accurately, as 
expected. The comparison between ANSYS results and field data are discussed below for the 
empty truck, full truck, and general conditions. 

4.4.1 Analysis of responses to empty truck load 

4.4.1.1 Discussion of responses on the transverse beam (Figures 4.11 (a)-(d)) 

Maximum strains for T0FC and T1FC from Field Test 1 and ANSYS are obtained when 
the single axle of the truck is at 11,000 mm (435 inches) from the end of the bridge deck 
(Position 4 from Figure 4.1 (d)). At this location the load from the tandem axle is right 
above the transverse beam that has the fiber optic sensors attached (Figures 4.1 (d) and 
4.2). The same is also true for T0FR and T1FR. 

4.4.1.2 Discussion of responses on the longitudinal beam (Figures 4.11 (e)-(h)) 

Maximum strains for L0FC and L1FC from Field Test 1 and ANSYS occur when the 
single axle of the truck is about 9700 mm (380 inches) and 15,000 mm (600 inches) from 
the end of the bridge deck (Positions 3 and 6 from Figures 4.1 (c) and (f), respectively). 
At Positions 3 and 6, the loads from the single and tandem axles have the greatest effect 
on the middle span of the instrumented longitudinal beam as one expects by inspecting 
Figures 4.1 and 4.2. 

For the L0FL sensor (Figure 4.11 (g)), field and ANSYS results show that the maximum 
strain is reached when the truck is 12,300 mm (486 inches) from the end of the bridge 
(Position 5). At Position 5, the tandem axle is closest to the L0FL sensor. For the L0FR 
sensor, the maximum strain is achieved when the truck is 11,000 mm (435 inches) from 
the end (Position 4). At this position, the single axle is closest to the L0FR sensor. It 
might appear that if the truck is at Position 6, a large strain should also be achieved at 
L0FR. Although the tandem axle of the truck is closest to the L0FR sensor, however, the 
single axle has moved across the second transverse beam, which tends to deflect the 
longitudinal beam up. The effect of producing negative strain is observed at Position 1 in 
which all the measured strains in the longitudinal beam are negative. 

4.4.2 Analysis of responses to full truck load 

4.4.2.1 Discussion of responses on the transverse beam (Figures 4.12 (a)-(d)) 

As discussed above, the maximum strains on the transverse beam can be obtained when 
the truck is at 11,000 mm (435 inches) from the end of the bridge deck (Position 4). The 
trends are steeper, however, than those under an empty truck load. The proportion of the 
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load distributed to the tandem axle relative to the load distributed to the single axle under 
a full truck load is much higher than that in the empty truck load case. In other words, 
the load from the tandem axle has more influence on the strain at that location than that 
from the single axle. 

4.4.2.2 Discussion of responses on the longitudinal beam (Figures 4.12 (e)-(h)) 

The maximum strains for L0FC and L1FC are developed when the truck is at 15,400 mm 
(606 inches) from the end (Position 6). The load from the tandem axle most significantly 
affects the strain at this location. For L0FL, the maximum strain occurs when the truck is 
at 12,300 mm (486 inches) from the end of the bridge deck (Position 5), because the 
tandem axle is closest to the sensor. Large strains for L0FR are obtained when the truck 
is at 11,000 mm (435 inches) and 15,400 mm (606 inches) from the end (Positions 4 and 
6), as the single and tandem axles are closest to the sensor. The maximum occurs for 
Position 6 because the load from the tandem axle is much higher than that from the single 
axle. Unlike the empty truck load condition, the effect from the single axle is not 
sufficient to cancel that from the tandem axle closer to the sensor. 

4.4.3 Analysis of responses in general 

Figures 4.9 – 4.12 show that ANSYS predicts reasonably well the values and the trends in strains 
versus truck locations. The two sets of field data were comparable, though the strains for the 
loaded truck were generally less in Field Test 2 due to the lower weight of the loaded truck in 
Field Test 2 (see Appendix B). Also, there was occasional anomalous behavior in Field Test 1 
data compared to Field Test 2 and ANSYS results. The reason for the discrepancies was not 
investigated. 

Based on the comparisons, the ANSYS bridge FE model is stiffer than the actual bridge, as 
expected. Generally, an FE model of a reinforced concrete structure predicts that the structure is 
stiffer than it actually is. One reason for this is because the materials in the FE model are 
perfectly homogenous, unlike those in the actual structure. Moreover, the boundary conditions 
strictly defined in the FE model are more rigid than the actual structure, and the discretization 
itself imposes additional constraints on the displacements. Additionally, micro-cracks in the 
concrete and bond slip between the concrete and reinforcing steel bars, as well as other 
imperfections in construction, may lessen the stiffness of the actual structure. 

The FEM predictions could potentially be improved by using more accurate material properties 
for the concrete and providing more realistic boundary conditions. The 17 MPa (2500 psi) 
compressive strength of concrete used in the model complies with AASHTO bridge rating 
recommendations for all bridges built prior to 1959 (McCurry 2000).  The actual compressive 
strength of the concrete and modulus of elasticity are most likely substantially higher than the 
values used in the FE model. The concrete material properties are unknown, however, unless the 
strength of the on-site concrete is tested using core samples. ODOT has not performed these 
tests on the historic structure. Pulse-velocity tests have recently been conducted by OSU to 
provide estimates of the material properties of the in-situ concrete. Preliminary findings indicate 
that the actual concrete is stiffer by approximately 30%. 
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A more flexible and realistic structure can be obtained if the boundary conditions are modeled by 
properly considering the soil-structure interface.  As discussed earlier, the FE bridge model used 
in this study is assumed to be rigidly restrained at the spread footing foundations and the walls at 
both ends of the bridge. That is, all degrees of freedom at each boundary node at the foundations 
(at the bottoms of the columns and at the corners of the bridge where the end transverse beams 
meet the longitudinal beams) are fully restrained. Vertical translation is restrained along the 
bottom of the transverse beams where the walls are located. The boundary conditions can be 
improved by introducing a boundary or spring element to represent the stiffness of the soil at the 
supports of the bridge. With these more realistic boundary conditions, some translation and 
rotation at the foundations would occur, as in the actual bridge. 

4.5	 ANALYSIS OF THE UNSTRENGTHENED HORSETAIL CREEK 
BRIDGE 

Although strain data for the Horsetail Creek Bridge before the FRP strengthening were not 
available, it was interesting to examine the response of the bridge before the retrofit using the 
ANSYS model. An unstrengthened bridge model was developed using the same methodology as 
for the strengthened bridge. The FE bridge model with steel reinforcement details prior to the 
retrofit is shown in Figure 4.5. Only the full truck load was applied to the model for each 
location shown in Figure 4.1. Comparison of the strains from the FE bridge models with and 
without the FRP strengthening was made for T0FC, T0FR, L0FL, L0FC, and L0FR in Tables 4.6 
and 4.7. 

Differences in structural performance before and after retrofitting were not dramatic because the 
bridge did not crack under the applied truck load. The bridge operated within its linear range, and 
the effect of the retrofit was minimal in the linear region. Similar findings were shown in 
Chapter 3 for the individual beams. However, after cracking, the individual beams strengthened 
with the FRP laminates showed noticeable improvements in structural performance by delaying 
the propagation of cracks and reducing the deflection of the beams. Thus, more significant 
improvements in overall bridge performance due to the FRP would be expected when the non-
linear, post-cracking behavior is examined in a planned future study. 

Table 4.6: Comparison of strains on the transverse beam between FE bridge models 
with and without FRP strengthening 

Truck Locations 
(Distances 

from the end) 

Strain (Microstrain) 
T0FC T0FR 

W/ FRP W/O FRP Diff. (%) W/ FRP W/O FRP Diff. (%) 
1 (126") 
2 (246") 
3 (366") 
4 (435") 
5 (486") 
6 (606") 
7 (675") 

15.35 
36.90 
61.01 
74.43 
71.42 
30.71 
13.15 

15.96 
38.32 
63.48 
77.45 
74.36 
32.10 
13.87 

-3.947 
-3.829 
-4.059 
-4.057 
-4.111 
-4.533 
-5.524 

11.05 
26.96 
42.77 
50.39 
48.13 
22.87 
10.53 

11.50 
28.06 
44.52 
52.41 
50.15 
23.95 
11.15 

-4.014 
-4.083 
-4.101 
-4.012 
-4.184 
-4.734 
-5.850 
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Table 4.7: Comparison of strains on the longitudinal beam between FE bridge models with and without FRP 
strengthening 

Truck Locations 
(Distances 

from the end) 

Strain (Microstrain) 
L0FL L0FC L0FR 

W/ FRP W/O FRP Diff. (%) W/ FRP W/O FRP Diff. (%) W/ FRP W/O FRP Diff. (%) 
1 (126") 
2 (246") 
3 (366") 
4 (435") 
5 (486") 
6 (606") 
7 (675") 

-4.986 
0.046 
-3.360 
0.786 
10.47 
8.685 
1.043 

-4.999 
0.057 
-3.350 
0.813 
10.54 
8.740 
1.068 

-0.260 
-22.01 
0.290 
-3.488 
-0.588 
-0.629 
-2.339 

-2.885 
0.005 
7.213 
6.589 
10.51 
21.07 
8.577 

-2.881 
0.026 
7.290 
6.656 
10.59 
21.19 
8.641 

0.138 
-377.7 
-1.059 
-1.021 
-0.747 
-0.566 
-0.746 

-1.093 
-0.860 
3.857 
6.553 
3.788 
11.02 
9.390 

-1.092 
-0.854 
3.893 
6.601 
3.845 
11.08 
9.445 

0.071 
0.778 
-0.918 
-0.727 
-1.498 
-0.592 
-0.590 

90




5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 SUMMARY AND CONCLUSIONS 

5.1.1 Conclusions for finite element models of the full-scale beams 

1.	 The general behavior of the finite element models represented by the load-deflection plots at 
midspan show good agreement with the test data from the full-scale beam tests. However, 
the finite element models show slightly more stiffness than the test data in both the linear and 
nonlinear ranges. The effects of bond slip (between the concrete and steel reinforcing) and 
microcracks occurring in the actual beams were excluded in the finite element models, 
contributing to the higher stiffness of the finite element models. 

2.	 The load-strain plots for selected locations from the finite element analysis show fair 
agreement with the test data. For the load-tensile strain plots for the main steel reinforcing at 
midspan, the strains from the finite element analysis and the experimental data correlate well 
in the linear range, and the trends in the nonlinear range are generally comparable. The load-
compressive strain plots (at midspan at the center of the top face) from the full-size beams 
have good agreement with those from the finite element analysis, especially for the Control 
Beam. 

3.	 The final loads from the finite element analyses are lower than the ultimate loads from the 
experimental results by 5% - 24%. This is probably due in part to neglecting the inclined 
portions of the steel reinforcement; ignoring the effects of concrete toughening mechanisms; 
and using assumed materials properties values instead of measured values. 

4.	 The load carrying capacity of the Flexure/Shear strengthened beam predicted by the finite 
element analysis is higher than that of the Control Beam by 105%, which agrees very well 
with hand calculations showing that the FRP-strengthened beam has a higher ultimate load 
than the Control Beam by 104%. 

5.	 The crack patterns at the final loads from the finite element models correspond well with the 
observed failure modes of the experimental beams, and the crack pattern predicted by the 
finite element analysis for the Flexural strengthened beam agrees with hand calculations 
showing that the beam fails in flexure. 

5.1.2 Conclusions for finite element models of the Horsetail Creek Bridge 

For the Horsetail Creek Bridge after the FRP retrofit, the model structure is uncracked for both 
the empty and full trucks. ANSYS reasonably predicts both strains and trends in the strains 
versus the truck locations. For the two truck loads, the response of the bridge on the monitored 
transverse and longitudinal beams can be summarized as follows: 
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1.	 The maximum strains at the center bottom (on concrete and on FRP laminates) of the 
transverse beam at midspan are produced when the load from the tandem axle (which is 
larger than that from the single axle) is directly above the beam. 

2.	 The maximum strains at the center bottom (on concrete and on FRP laminates) of the 
longitudinal beam at midspan are obtained when the load from the tandem axle of the truck is 
at midspan of the beam. A large strain also occurs under an empty truck when the load from 
the single axle, which weighs approximately the same as the tandem axle, is at midspan of 
the beam. 

3.	 As the analysis of the ANSYS bridge model is essentially linear for the uncracked structure, 
responses from a preliminary linear elastic model using SAP2000 were used to compare with 
those from ANSYS. It was shown that the trends in the strain results for the various 
locations of the truck obtained from the ANSYS and SAP2000 models were similar. 
However, ANSYS predicts the experimental behavior more accurately. 

Although there are no field data available for the bridge’s response prior to the FRP 
strengthening, an FEM model of the unstrengthened bridge was also developed to compare 
structural behavior with that of the FRP-strengthened bridge. Analyses were performed for the 
loaded truck as it moved across the bridge. The results were as follows: 

1.	 As in the analysis of the bridge after the retrofit, the behavior prior to retrofit is essentially 
linear because the bridge model does not crack under the truck load. 

2.	 The comparisons between both bridge models show that the differences in structural 
responses before and after the retrofit are not significant. The bridge is only slightly stiffer 
from the FRP. Similar results were also found in the study of the full-scale beams when the 
beams were still uncracked. 

5.2 RECOMMENDATIONS 

5.2.1 Recommended FE modeling and analysis procedure 

Nonlinear analysis after cracking is essential to model beams up to their failure. Nonlinear 
reinforced concrete FE models, either with or without FRP laminates, however, are susceptible to 
numerical instability.  For the development of the FE bridge model, the structural details of the 
actual bridge are quite complex.  Simplification is possible, and the most important details can be 
modeled, producing sufficiently accurate predictions with less CPU time and disk-space 
consumed. Recommendations for both linear and nonlinear analyses of reinforced concrete 
models are as follows: 

1.	 Simplification should be made in modeling both full-scale beams and bridges to reduce 
modeling difficulties and computing resources. Reinforcing steel bars can be “lumped” in 
locations associated with the FE mesh for the model. In addition, a consistent overall 
thickness of FRP composites can be used to avoid discontinuities. 
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2.	 At the beginning of FE model development, a reasonable mesh and a convergence study are 
needed to obtain a reliable model. Convergence of the solution is achieved when an adequate 
number of elements is used in a model. For reinforced concrete models in a nonlinear 
analysis, however, too fine of a mesh may cause numerical instability.  On the other hand, if 
the mesh is too coarse, the analysis will not be sufficiently accurate. Generally, when an 
actual crack or groups of cracks occur in concrete, the width of the crack band is many times 
larger than the maximum aggregate size (Shah, et al. 1995). As a result, the concrete element 
size should be two to three times greater than the maximum aggregate size to correctly and 
realistically model the actual cracks using the smeared cracking approach (Barzegar, et al. 
1997; Isenberg 1993; Shah, et al. 1995). In this study, the maximum nominal aggregate size 
used in the experimental beams was 30 mm (1 in), and the minimum FE element size for the 
full-scale beams was 50.8 mm x 50.8 mm x 44.45 mm (2 in x 2 in x 1.75 in) and 33.02 mm x 
33.02 mm x 63.5 mm (1.3 in x 1.3 in x 2.5 in) for the Horsetail Creek Bridge. 

3.	 Tolerances in convergence criteria should carefully be defined in a nonlinear analysis. With 
load adjustment, tolerances for both force and displacement criteria may need to be relaxed 
to avoid a diverged solution. After the load range that produces a diverged solution is 
revealed from a previous ANSYS trial run, either tolerance or load adjustments or both have 
to be made to prevail over the divergence problem at that loading level. 

4.	 In a nonlinear reinforced concrete analysis, the shear transfer coefficient must be assumed. 
For closed cracks, the coefficient is assumed to be 1.0, while for open cracks it should be in 
the suggested range of 0.05 to 0.5, rather than 0.0, to prevent numerical difficulties 
(Barzegar, et al. 1997; Huyse, et al. 1994; Isenberg 1993; Najjar, et al. 1997). In this report, 
a value of 0.2 was used, which resulted in accurate predictions. Values less than 0.2 were 
tried, but they caused divergence problems at very low loading levels. 

5.2.2 Recommended FE modeling procedure for reinforced concrete beams 

1.	 The symmetry of the beams should be used to reduce computational time and computer disk 
space requirements. In this project, a quarter of the full-size beam, with proper boundary 
conditions, was used for modeling. 

2.	 A steel plate needs to be included in the models at the support locations to represent the 
actual support condition in the full-size beams. The steel plate also provides a more even 
stress distribution over the support area to avoid problems of stress concentration. 

3.	 For nonlinear analysis of a reinforced concrete beam, the total load applied to a model must 
be divided into a number of load steps. Sufficiently small load step sizes are required, 
particularly at changes in behavior of the reinforced concrete beam, i.e., major cracking of 
concrete, yielding of steel, and approaching failure of the reinforced concrete beam. Properly 
defining minimum and maximum sizes for each load step, depending upon the behavior of 
the reinforced concrete beam, assists in convergence of the solutions and reduces computer 
computational time. 
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5.2.3	 Recommended FE modeling procedure for the reinforced concrete 
bridge 

1.	 Symmetry should be used in bridge modeling. In this project, only a longitudinal half of the 
bridge was modeled. 

2.	 For simplification of load configurations, the load from each set of tires for both single and 
tandem axles can be lumped to the center of each set.  Furthermore, the lumped load at 
locations where it does not coincide with a node in the FEM mesh needs to be linearly 
distributed to the nearest nodes in order to analyze a variety of truck locations on the bridge 
deck. 

3.	 Model accuracy can be improved by using realistic materials property values and by properly 
defining boundary conditions. For the Horsetail Creek Bridge, the actual compressive 
strength of the concrete and modulus of elasticity were most likely substantially higher than 
the assumed values used in the FE model. For the boundary conditions, the soil-structure 
interface should be considered to better represent the actual behavior of the structure. This 
may be done by using boundary springs and assigning them reasonable stiffness values from 
properties of the on-site soil. 

4.	 In order to assess the ultimate capacity of the FRP-strengthened Horsetail Creek Bridge, a 
nonlinear analysis to failure needs to be performed. 
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