Slab representing cross section through top half of pavement, after treatment to enhance air voids and cracks, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-11, tie marks every half inch.
Slab representing cross section through bottom half of pavement, as polished, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-11, tic marks every half inch.
Slab representing cross section through bottom half of pavement, after sodium cobaltinitrite stain, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-11, tic marks every half inch.
Slab representing cross section through bottom half of pavement, after treatment to enhance air voids and cracks, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-11, tic marks every half inch.
Slabs representing full cross section through pavement, as polished, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every inch.
Slabs representing full cross section through pavement, after sodium cobaltinitrite stain, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every inch.
Slabs representing full cross section through pavement, after treatment to enhance air voids and cracks, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tie marks every inch.
Slab representing cross section through top half of pavement, as polished, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every half inch.
Slab representing cross section through top half of pavement, after sodium cobaltinitrite stain, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every half inch.
Slab representing cross section through top half of pavement, after treatment to enhance air voids and cracks, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tie marks every half inch.
Slab representing cross section through bottom half of pavement, as polished, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every half inch.
Slab representing cross section through bottom half of pavement, after sodium cobaltinitrite stain, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every half inch.
Slab representing cross section through bottom half of pavement, after treatment to enhance air voids and cracks, WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-12, tic marks every half inch.
Appendix A
I-696 Core Site

WB I-696, constructed 1978, at transverse joint, core A, MTU ID 696-05

Data Analysed - 9/19/6 at 12:16
Operator Name - Matt
Sample ID - 696-5

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2123.755</td>
<td>2123.755</td>
<td>4247.51</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>57</td>
<td>63</td>
<td>120</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>216</td>
<td>250</td>
<td>466</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>540</td>
<td>499</td>
<td>1039</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>771</td>
<td>1080</td>
<td>1851</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Results

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>7.0</td>
<td>7.8</td>
<td>7.4</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>26.6</td>
<td>30.8</td>
<td>28.7</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>66.4</td>
<td>61.4</td>
<td>63.9</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.183</td>
<td>0.152</td>
<td>0.164</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>3.79</td>
<td>3.98</td>
<td>3.88</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>20.7</td>
<td>26.3</td>
<td>23.6</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>363</td>
<td>509</td>
<td>436</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.193</td>
<td>0.152</td>
<td>0.169</td>
</tr>
</tbody>
</table>
WB I-696, constructed 1978, at transverse joint, core B, MTU ID 696-07

Data Analysed - 9/18/6 at 14:34
Operator Name - Matt
Sample ID - 696-7

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2123.755</td>
<td>2123.755</td>
<td>4247.51</td>
</tr>
<tr>
<td>Total Area Analyzed (cm²)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>59</td>
<td>46</td>
<td>105</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>206</td>
<td>228</td>
<td>434</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>547</td>
<td>539</td>
<td>1086</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>749</td>
<td>776</td>
<td>1525</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>7.3</td>
<td>5.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>25.3</td>
<td>28.0</td>
<td>26.7</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>67.3</td>
<td>66.3</td>
<td>66.8</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.180</td>
<td>0.179</td>
<td>0.186</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>3.51</td>
<td>4.96</td>
<td>4.13</td>
</tr>
<tr>
<td>Specific Surface (mm²/mm³)</td>
<td>19.4</td>
<td>25.8</td>
<td>22.2</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>353</td>
<td>365</td>
<td>359</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.206</td>
<td>0.155</td>
<td>0.180</td>
</tr>
</tbody>
</table>
 WB I-696, constructed 1978, away from transverse joint, core C, MTU ID 696-02

<table>
<thead>
<tr>
<th>Data Analysed - 8/21/6 at 17:42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Name - Matt</td>
</tr>
<tr>
<td>Sample ID - 696-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2123.755</td>
<td>2123.755</td>
<td>4247.51</td>
</tr>
<tr>
<td>Total Area Analyzed (cm²)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>65</td>
<td>41</td>
<td>106</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>217</td>
<td>242</td>
<td>459</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>531</td>
<td>530</td>
<td>1061</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>661</td>
<td>708</td>
<td>1369</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>26.7</td>
<td>29.8</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>65.3</td>
<td>65.2</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.214</td>
<td>0.189</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>3.34</td>
<td>5.90</td>
</tr>
<tr>
<td>Specific Surface (mm²/mm³)</td>
<td>15.6</td>
<td>26.4</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>311</td>
<td>333</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.257</td>
<td>0.151</td>
</tr>
</tbody>
</table>
WB I-696, constructed 1978, away from transverse joint, core D, MTU ID 696-01

<table>
<thead>
<tr>
<th>Data Analysed - 8/14/ 6 at 16:26</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Name - Matt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample ID - 696.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bottom half</td>
<td>top half</td>
</tr>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2123.755</td>
<td>2256.98</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>Air Stops</td>
<td>80</td>
<td>66</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>212</td>
<td>238</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>520</td>
<td>509</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>672</td>
<td>830</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air vol%</td>
<td>9.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>26.1</td>
<td>29.3</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>64.0</td>
<td>62.6</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.207</td>
<td>0.199</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>2.66</td>
<td>3.61</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>12.9</td>
<td>19.3</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>316</td>
<td>368</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.311</td>
<td>0.208</td>
</tr>
</tbody>
</table>
I-696, constructed 1995, at transverse joint, core A, MTU ID 696-06

<table>
<thead>
<tr>
<th>Data Analyzed - 9/11/6 at 12:21</th>
<th>Operator Name - Matt</th>
<th>Sample ID - 696-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2168.163</td>
<td>2220.408</td>
<td>4388.571</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>45</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>232</td>
<td>261</td>
<td>493</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>536</td>
<td>512</td>
<td>1048</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>774</td>
<td>802</td>
<td>1576</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air vol%</td>
<td>5.5</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>28.5</td>
<td>32.1</td>
<td>30.3</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>65.9</td>
<td>63.0</td>
<td>64.5</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.178</td>
<td>0.170</td>
<td>0.180</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>5.16</td>
<td>6.53</td>
<td>5.80</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>26.3</td>
<td>30.7</td>
<td>27.5</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>357</td>
<td>361</td>
<td>359</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.152</td>
<td>0.130</td>
<td>0.146</td>
</tr>
</tbody>
</table>
WB I-696, constructed 1995, at transverse joint, core B, MTU ID 696-08

Data Analysed - 9/12/6 at 17:31
Operator Name - Matt
Sample ID - 696-8

Raw Data

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2131.592</td>
<td>2262.204</td>
<td>4393.796</td>
</tr>
<tr>
<td>Total Area Analyzed (cm(^2))</td>
<td>41.8</td>
<td>41.6</td>
<td>83.4</td>
</tr>
<tr>
<td>Air Stops</td>
<td>85</td>
<td>18</td>
<td>103</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>246</td>
<td>252</td>
<td>498</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>485</td>
<td>543</td>
<td>1028</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>816</td>
<td>813</td>
<td>1629</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>1176</td>
<td>693</td>
<td>1869</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>10.4</td>
<td>2.2</td>
<td>6.3</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>30.2</td>
<td>31.0</td>
<td>30.6</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>59.4</td>
<td>66.8</td>
<td>63.1</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.137</td>
<td>0.125</td>
<td>0.170</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>2.89</td>
<td>14.00</td>
<td>4.83</td>
</tr>
<tr>
<td>Specific Surface (mm(^2/)mm(^3))</td>
<td>21.2</td>
<td>59.0</td>
<td>26.9</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>552</td>
<td>306</td>
<td>425</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.189</td>
<td>0.068</td>
<td>0.149</td>
</tr>
</tbody>
</table>
WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-04

Data Analysed - 9/6/6 at 15:3
Operator Name - Matt
Sample ID - 696-4

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2123.755</td>
<td>2123.755</td>
<td>4247.51</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>43</td>
<td>54</td>
<td>97</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>262</td>
<td>281</td>
<td>543</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>508</td>
<td>478</td>
<td>986</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>483</td>
<td>643</td>
<td>1126</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>5.3</td>
<td>6.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>32.2</td>
<td>34.6</td>
<td>33.4</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>62.5</td>
<td>58.8</td>
<td>60.6</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.295</td>
<td>0.259</td>
<td>0.274</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>6.09</td>
<td>5.20</td>
<td>5.60</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>17.2</td>
<td>18.2</td>
<td>17.8</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>227</td>
<td>303</td>
<td>265</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.233</td>
<td>0.219</td>
<td>0.225</td>
</tr>
</tbody>
</table>
I-696, constructed 1995, away from transverse joint, core D, MTU ID 696-03

Data Analyzed - 8/22/6 at 12:9
Operator Name - Matt
Sample ID - 696-3

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>2149.878</td>
<td>2131.592</td>
<td>4281.47</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>41.6</td>
<td>41.6</td>
<td>83.2</td>
</tr>
<tr>
<td>Air Stops</td>
<td>47</td>
<td>21</td>
<td>68</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>223</td>
<td>283</td>
<td>506</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>543</td>
<td>509</td>
<td>1052</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>813</td>
<td>813</td>
<td>1626</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>550</td>
<td>536</td>
<td>1086</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Results			
Air vol%	5.8	2.6	4.2
Paste vol%	27.4	34.8	31.1
Aggregate vol%	66.8	62.6	64.7
Secondary Phase vol%	0.0	0.0	0.0
Spacing Factor (mm)	0.252	0.185	0.229
Paste/Air ratio	4.74	13.48	7.44
Specific Surface (mm^2/mm^3)	17.9	39.1	24.3
Void Frequency (voids/m)	256	251	254
Average Chord Length (mm)	0.223	0.102	0.165
I-696, constructed 1995, at transverse joint, core A, MTU ID 696-09

Data Analysed - 6/5/7 at 16:21
Operator Name - Matt
Sample ID - 696-9

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>1886.041</td>
<td>1886.041</td>
<td>3772.082</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>37.0</td>
<td>36.9</td>
<td>73.9</td>
</tr>
<tr>
<td>Air Stops</td>
<td>23</td>
<td>31</td>
<td>54</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>242</td>
<td>259</td>
<td>501</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>453</td>
<td>431</td>
<td>884</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Stops</td>
<td>722</td>
<td>721</td>
<td>1443</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>210</td>
<td>759</td>
<td>969</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>22</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>3.2</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>33.5</td>
<td>35.9</td>
<td>34.7</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>62.7</td>
<td>59.8</td>
<td>61.3</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.6</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.467</td>
<td>0.156</td>
<td>0.223</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>10.70</td>
<td>8.35</td>
<td>9.28</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>14.0</td>
<td>37.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>111</td>
<td>402</td>
<td>257</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.286</td>
<td>0.107</td>
<td>0.146</td>
</tr>
</tbody>
</table>
WB I-696, constructed 1995, away from transverse joint, core C, MTU ID 696-11

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>1886.041</td>
<td>1886.041</td>
<td>3772.082</td>
</tr>
<tr>
<td>Total Area Analyzed (cm^2)</td>
<td>37.0</td>
<td>37.0</td>
<td>73.9</td>
</tr>
<tr>
<td>Air Stops</td>
<td>30</td>
<td>47</td>
<td>77</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>245</td>
<td>248</td>
<td>493</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>446</td>
<td>427</td>
<td>873</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total Stops</td>
<td>722</td>
<td>722</td>
<td>1444</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>456</td>
<td>1044</td>
<td>1500</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air vol%</td>
<td>4.2</td>
<td>6.5</td>
<td>5.3</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>33.9</td>
<td>34.4</td>
<td>34.1</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>61.8</td>
<td>59.1</td>
<td>60.5</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.249</td>
<td>0.140</td>
<td>0.174</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>8.20</td>
<td>5.28</td>
<td>6.40</td>
</tr>
<tr>
<td>Specific Surface (mm^2/mm^3)</td>
<td>23.3</td>
<td>34.0</td>
<td>29.8</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>242</td>
<td>554</td>
<td>398</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.172</td>
<td>0.118</td>
<td>0.134</td>
</tr>
</tbody>
</table>
I-696, constructed 1995, away from transverse joint, core D, MTU ID 696-12

<table>
<thead>
<tr>
<th>Data Analysed - 5/14/ 7 at 16:55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Name - Matt</td>
</tr>
<tr>
<td>Sample ID - 696-12</td>
</tr>
</tbody>
</table>

Raw Data

<table>
<thead>
<tr>
<th></th>
<th>bottom half</th>
<th>top half</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traverse Length (mm)</td>
<td>1886.041</td>
<td>1886.041</td>
<td>3772.082</td>
</tr>
<tr>
<td>Total Area Analyzed (cm²)</td>
<td>36.3</td>
<td>37.0</td>
<td>73.3</td>
</tr>
<tr>
<td>Air Stops</td>
<td>43</td>
<td>41</td>
<td>84</td>
</tr>
<tr>
<td>Paste Stops</td>
<td>219</td>
<td>247</td>
<td>466</td>
</tr>
<tr>
<td>Aggregate Stops</td>
<td>448</td>
<td>434</td>
<td>882</td>
</tr>
<tr>
<td>Secondary Phase Stops</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stops</td>
<td>710</td>
<td>722</td>
<td>1432</td>
</tr>
<tr>
<td># of Air Void Intercepts</td>
<td>1090</td>
<td>860</td>
<td>1950</td>
</tr>
<tr>
<td># of Filled Void Intercepts</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Results

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air vol%</td>
<td>6.1</td>
<td>5.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Paste vol%</td>
<td>30.9</td>
<td>34.2</td>
<td>32.5</td>
</tr>
<tr>
<td>Aggregate vol%</td>
<td>63.1</td>
<td>60.1</td>
<td>61.6</td>
</tr>
<tr>
<td>Secondary Phase vol%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spacing Factor (mm)</td>
<td>0.120</td>
<td>0.157</td>
<td>0.138</td>
</tr>
<tr>
<td>Paste/Air ratio</td>
<td>5.09</td>
<td>6.02</td>
<td>5.55</td>
</tr>
<tr>
<td>Specific Surface (mm²/mm³)</td>
<td>38.8</td>
<td>32.1</td>
<td>35.3</td>
</tr>
<tr>
<td>Void Frequency (voids/m)</td>
<td>578</td>
<td>456</td>
<td>517</td>
</tr>
<tr>
<td>Average Chord Length (mm)</td>
<td>0.103</td>
<td>0.125</td>
<td>0.113</td>
</tr>
</tbody>
</table>
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-06.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrile stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-03.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, top half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Appendix A
I-696 Core Site

Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrile stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09. Note voids in slag aggregate particle filled with alkali-silica reaction product.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, at transverse joint, bottom half of core A, MTU ID 696-09.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitritre stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Appendix A
I-696 Core Site

Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and nearby air void filled with reaction product, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core C, MTU ID 696-11.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and adjacent voids filled with reaction product, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, top half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Alkali silica reaction in fine aggregate and associated cracking, before and after sodium cobaltinitrite stain, polished slab from I-696, constructed 1995, away from transverse joint, bottom half of core D, MTU ID 696-12.
Example of chert particle exhibiting alkali-silica reaction without any associated cracking, from thin section prepared from core from I-696, constructed 1978, at transverse joint, MTU ID 696-07. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting alkali-silica reaction with minor cracking within particle, from thin section prepared from core from I-696, constructed 1978, at transverse joint, MTU ID 696-07. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting deleterious alkali-silica reaction, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-03. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting deleterious alkali-silica reaction, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-03. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting deleterious alkali-silica reaction, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-03. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting deleterious alkali-silica reaction, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-03. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example secondary ettringite in entrained air voids, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-03. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Example of chert particle exhibiting deleterious alkali-silica reaction, from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-12. From top to bottom: transmitted light, crossed-polars, and epifluorescent mode images.
Epifluorescent mode (left) and transmitted light (right) images at transition between zone of abundant entrained air and zone without entrained air at a depth of approximately 3 inches (75 mm). Example from thin section prepared from core taken from I-696, outside lane, away from joint, MTU ID 696-03.
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1978, away from transverse joint, MTU ID 696-01 (each individual frame measures 2.612 x 1.959 mm).
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1978, away from transverse joint, MTU ID 696-01, after masking out air voids and fine aggregate to isolate cement paste (each individual frame measures 2.612 x 1.959 mm).
Average cement paste pixel intensities per frame, and equivalent w/c values (as compared to 28-day moist cured mortar samples) from thin section prepared from core from I-696, constructed 1978, away from transverse joint, MTU ID 696-01.

<table>
<thead>
<tr>
<th>cement paste pixel fluorescence measurements (average intensity per frame)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>72</td>
<td>80</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>66</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>81</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>equivalent w/c (y = 0.0044x + 0.0329)</th>
<th>0.36</th>
<th>0.32</th>
<th>0.35</th>
<th>0.38</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.33</td>
<td>0.37</td>
<td>0.39</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.34</td>
<td>0.34</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-08 (each individual frame measures 2.612 x 1.959 mm).
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-08, after masking out air voids and fine aggregate to isolate cement paste (each individual frame measures 2.612 x 1.959 mm).
Average cement paste pixel intensities per frame, and equivalent w/c values (as compared to 28-day moist cured mortar samples) from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-08.

<table>
<thead>
<tr>
<th>cement paste pixel fluorescence measurements (average intensity per frame)</th>
<th>75</th>
<th>83</th>
<th>80</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>75</td>
<td>82</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>75</td>
<td>75</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

| equivalent w/c \(y = 0.0044x + 0.0329 \) |
|---|---|---|---|
| 0.37 | 0.36 | 0.39 | 0.38 |
| 0.37 | 0.39 | 0.36 | 0.39 |
| 0.36 | 0.35 | 0.36 | 0.36 |
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-11 (each individual frame measures 2.612 x 1.959 mm).
Mosaic of 12 epifluorescent mode images collected from thin sections prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-11, after masking out air voids and fine aggregate to isolate cement paste (each individual frame measures 2.612 x 1.959 mm).
Average cement paste pixel intensities per frame, and equivalent w/c values (as compared to 28-day moist cured mortar samples) from thin section prepared from core from I-696, constructed 1995, away from transverse joint, MTU ID 696-11.

<table>
<thead>
<tr>
<th>Cement paste pixel fluorescence measurements (average intensity per frame)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>68</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>76</td>
<td>65</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>92</td>
<td>85</td>
<td>93</td>
<td>87</td>
</tr>
</tbody>
</table>

Equivalent w/c ($y = 0.0044x + 0.0329$)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.31</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>0.36</td>
<td>0.36</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>0.38</td>
<td>0.43</td>
<td>0.40</td>
<td>0.44</td>
</tr>
</tbody>
</table>