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Executive Summary 
License Plate Recognition (LPR) technology has been used for off-line automobile enforcement 
purposes.  The technology has seen mixed success with correct reading rates as high as 60 to 
80% depending on the specific application and environment.  This limitation can be, and is often, 
remedied through human verification after the fact and before a citation is issued. 

Armed with advanced text-mining algorithms, this study enables LPR technology for real-time 
enforcement by matching plates whether correctly or incorrectly read at various locations in a 
network or along a corridor and, hence, tracking the movement and speed of vehicles.  The focus 
of the project is on heavy vehicles as they are required to enter weigh stations, where the LPR 
tracking information can be used, in real time, for speed enforcement and/or as a triggering 
factor for other inspection activities. 

The first phase of the project, which was reported previously, saw the development of the 
enabling text-mining algorithm and the demonstration of plate matching rate improvement from 
less than 60% to better than 90%.  However, the false-matching rate is still relatively high.  The 
second phase, which is reported herein, deployed the LPR technology and matching algorithm in 
a continuous fashion capturing plates throughout the day.  The improved algorithms developed in 
this phase of the study improves the positive matching rate to over 97% while keeping the false-
matching rate less than 1%.  The deployed LPR system is now capturing plates 24/7 on I-640 and 
I-40 in Knoxville, TN. 

The initial objective of the study was to devise an inexpensive and effective means for helping 
improve air quality in non-attainment metropolitan areas through speed enforcement.  The 
successful deployment of such a measure can also potentially lead to improved highway safety, 
fuel efficiency, and national security.  It is desirable to deploy this technology in a larger scale to 
realize the benefits and potential. 
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Chapter 1 – General Overview

Background 
The purposes of this study are to field-deploy LPR technology and develop necessary 
technologies for tracking large trucks, via license plate recognition, in real time.  During Phase A 
of this project, LPR technology was tested in a “mobile” setup (tripod-mounting) with limited 
deployment (one hour or so of data collection for each data collection period).  The main goal of 
Phase B, detailed herein, is to install a pair of LPR units “permanently” on Interstate 40 to 
capture truck license plates continuously.  This 24/7 operation would require much more 
stringent configuration in a real-world operational environment.  The data have to flow via a 
wireless network in real-time.  Better algorithm development is a key outcome of this phase. 

The main application of LPR technologies, from the perspective of local government, is speed 
monitoring and enforcement.  Yet other aspects such as homeland security, safety inspection, 
weight compliance, and vehicle profiling are also enabled because of the maturing technologies, 
including license plate recognition and automated plate matching. 

A United States Department of Transportation (US DOT) study in 2003 [Tang et al] found that 
reducing large truck speed by 10 mph could reduce NOx emission by 18% per large truck.  As a 
result, a number of metropolitan areas reduced the large truck speed limit on their urban 
Interstate highways.  Knoxville, TN is one of them.  In April 2006, Knoxville Regional 
Transportation Planning Organization lowered the speed limit for all large trucks with gross 
weight over 10,000 pounds on Interstate 40 (I-40) from 65 to 55 mph as a countermeasure to 
combat harmful emissions and improve air quality.  Before effectiveness of this action is 
assessed, an important question to ask is whether the lowered speed limit was enforced. 

According to Federal Highway Administration (FHWA) statistics, there is an estimated total of 
12 million large trucks passing through the Knoxville section of I-40 annually.  Among these, 
based on a previous study conducted by Han et al, at least 50% of all trucks were speeding.  To 
enforce the newly enacted speed limit on I-40, a major increase in the number of highway patrol 
officers, patrol vehicles, citations, and overall resource commitment is essential.  Otherwise, a 
lowered speed limit that does not yield an actual 10 mph speed reduction will have little benefit 
on air quality.  In light of limited state resources and the heightened desire to reduce large truck 
operational speed, the National Transportation Research Center, Inc. (NTRCI) funded this study 
to assess the feasibility of deploying automated License Plate Recognition (LPR) technology for 
tracking large trucks, for the purpose of speed measurement and enforcement.  Since large trucks 
are expected to pass through weigh stations for weighing and inspection purposes, it makes sense 
to track these trucks along the Interstates and, later, as they pull into the weigh station where 
their average speed can be used to initiate inspection and/or enforcement actions. 
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Project Team 
Phase B of this project was carried out by the University of Tennessee.  The principal 
investigator (PI) of the project was Dr. Lee D. Han, who was also the PI of Phase A of the 
project.  Francisco Moraes Oliveira-Neto, a Ph.D. candidate, assisted Dr. Han with algorithm 
development tasks while Stephanie Hargrove, also a Ph.D. student, assisted Dr. Han with 
fieldworks.  Some of the students involved in the fieldwork or data analysis aspects include 
Elliott Moore, Scott DeNeale, Sam Moss, Jonathan Liu, and Steven Han. 

A team of Tennessee Department of Transportation (TDOT) staff and PIPS engineers also 
assisted with the field deployment tasks. 

Project Description 
Phase A of this study found the current LPR technology to be less than perfect, largely due to the 
multitude of design differences of license plates from different states.  These include colors of 
the plates and the characters, fonts used, syntax, reflectivity, etc.  As a result, plates from some 
states are more challenging to recognize correctly than those from others.  LPR technology 
providers do offer ways to calibrate the internal LPR algorithms or the sensitivity of the imaging 
mechanism to favor certain colors (e.g. wave lengths), reflectivity, and syntaxes, but the 
improvement of readability of certain plates are typically at the cost of others.  Figure 1 shows 
actual results from Phase A of this study. 

 

Figure 1. Chart. Plate Recognition Rates for Different US States and Canadian Provinces. 
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For the plates with high recognition rates, matching the same plate at multiple locations in the 
highway network is relatively easy.  However, this is not the case for plates with low LPR 
recognition rates.  It is not unusual to have very low to near-zero correct matching rates for plates 
from some states because of the dismal LPR recognition rates.  By employing advanced text-
mining algorithms, license plates can be improved and, thus, enable the deployment of large 
truck tracking and monitoring in real-time.  During Phase A of this study, the matching 
algorithm relied heavily on the development of “truth matrices,” which are essentially look-up 
tables of the likelihood of one character being read as something else.  Truth matrices are 
difficult to establish, as they are different from one station to the next, and may change over 
time.  A significant amount of effort in Phase B went into addressing the issues of improving the 
correct license plate matching rate and reducing the false matching rate.  Chapter 2 of this study 
details a text-mining algorithm called Edit Distance that is the foundation of the plate matching 
algorithms. 

The single most challenging aspect of this research, albeit non-technical, was related to the field 
deployment of the LPR hardware.  To this end, Chapter 3 presents some of the activities of this 
task, the related challenges, and efforts to overcome these challenges that transpired during this 
study. 

Chapter 4 details scholarship research involved in improving the basic matching algorithm 
presented in Chapter 2.  The new and improved algorithms were subsequently implemented on 
the data collected after the deployment mentioned in Chapter 3.  The results are presented in 
Chapter 5 of this report. 

When a wide area deployment of the technology is realized, the objectives of air quality, safety, 
and fuel efficiency improvement would follow.  Moreover, the functionality of tracking large 
trucks on the nation’s highway network can also have functional implications on national 
security. 
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Chapter 2 – Plate Matching with Edit Distance 
The process of matching two strings involves a sequence of comparisons of individual characters 
to determine the degree of similarity between the two.  Consider, for example, a license plate 
with the string “4455HZ,” which is read by two LPR machines at two different locations.  
Suppose that at the first location, the plate was read as “4455IIZ” and at the second, “4455HZ.”  
Neither LPR unit “knows” whether it has read the plate correctly.  By looking at the two reports, 
one can either declare no match, or perhaps speculate a potential match since the two strings 
differ by only two pairs of characters:  “I”-“H” and “I”-“” (where “” represents a null or empty 
character).  If there were another plate that was read as “445OHZ” earlier at the first location, 
one may speculate that it is less likely that the “O”-“5” pair is a match.  The task here is to 
“teach” the computer to make such speculations. 

Techniques for measuring the similarity or dissimilarity between two strings have been 
developed in the past and have found application in areas such as handwritten character 
recognition and computation biology [Mei].  The pioneer in this field is Vladimir Levenshtein, 
who developed Edit Distance (ED), also known as Levenshtein distance, which is a metric that 
computes the distance between two strings as measured by the minimum-cost sequence of edit 
operations [Levenshtein].  Given two strings x and y, their Edit Distance describes how many 
fundamental operations are required to transform x into y.  These fundamental operations are 
termed as follows: 

• Substitutions: A character in x is replaced by the corresponding character in y. 
• Insertions: A character in y is inserted into x, thereby increasing the length of x by 

one character. 
• Deletions: A character in x is deleted, thereby decreasing the length of x by one 

character. 
 

To relate the definition of Edit Distance to the problem at hand, we return to the example of the 
plate "4455HZ" being captured by two LPR stations.  Let x = "4455IIZ" and y = "4455HZ"; the 
task is to compute the number of fundamental operations to transform x into y.  (Note that x and 
y could have been assigned in reverse order since the “true” plate string is unknown.)  In this 
case, it can be established that the minimum number of operations is 2, which corresponds to the 
substitution of the first “I” in x by “H” and the deletion of the second “I” in x.  Therefore, the 
Edit Distance d(x,y) between x and y is 2. 

To understand why 2 is the minimum number of operations to transform x into y in our example, 
imagine the two strings disposed in a two-dimensional grid, as shown in Figure 2.  The points on 
the axes represent the corresponding sequence of characters, with the sequence x on the j axis 
and the y sequence on the i axis.  Let a move on this grid be represented by a link that ends on a 
point associated with the two characters (

 
xik

,y jk
).  A diagonal downward move is defined as a 

substitution; a horizontal move to the right represents a deletion; and a vertical downward move 
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represents an insertion.  Each node of the grid is associated with a function  γ ik , jk( ), which 
measures the cost of each move along the grid.  For the original construct of ED, this cost is set 
to 1 for insertions and deletions; in the case of substitutions,  γ ik , jk( )is 0 if the corresponding 
characters are the same, i.e., 

 
xik

= y jk
, or 1 if they are not the same.  If we “walk” from the 

origin point (0,0) to the end point (im,jm) on the grid, each potential path is associated with an 
overall cost, d, defined as: 

 
d i m , jm( )= γ ik , jk( )

k=0

n

∑  

Equation 1.  Edit Distance from the Origin to an End Point. 

where, 
n is the number of nodes of a path between (i0, j0) = (0,0) and (im, jm) = (|x|,|y|); and |x| 
and |y| are the lengths (number of characters) of x and y. 
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Figure 2. Chart. Distance to Traverse from One String to Another. 

As an example, consider two paths (drawn by the solid and dashed lines) reaching the point (im, 
jm) as shown in Figure 2.  Computing the number of editing operations performed by these two 
paths will result in 

 
dsolid i m , jm( )= 2  and 

 
ddashed i m , jm( )= 6 . 

To obtain the shortest path, one could exhaust all possible combinations of paths.  Fortunately, 
there is a less computationally expensive procedure called dynamic programming, proposed by 
[Wagner and Fisher].  A detailed description of this procedure can be found in the book Pattern 
Classification [Duda et al].  As a result of applying dynamic programming to the Edit Distance 
problem, d(x,y) is determined to represent the minimum cost to reach the point (im, jm), or 

 
d x,y( )= min d i m , jm( ){ }. 



 
 

7 
 

In many other applications, string y is provided by a list of words that has the maximum 
likelihood of containing the “true” value of the given string, x.  This pre-specified list of words is 
called a lexicon or reference for matching.  Using this list of words, it is possible to detect errors, 
generate candidate corrections, and rank these candidates.  However, the plate-matching problem 
at hand presents a significantly tougher challenge as neither x nor y is necessarily a true value 
from a limited pool of lexicon. 

Matching Methodology 
Since this study considered plates read at two different locations, in the remaining text they will 
be referred to as LPR Station 1 and LPR Station 2 where LPR Station 2 is downstream of LPR 
Station 1.  As such, for a given plate read at LPR Station 2, there are a number of candidate 
plates already read, correctly or not, at LPR Station 1 for matching purposes.  The number of 
candidate plates can be constrained by an imposed threshold value, τ , for the edit distance.  
There can also be a time window constraining the allowable travel time between the two stations.  
Therefore, the number of candidate plates read at LPR Station 1 for each plate at LPR Station 2 
is defined by the following constraints.  Figure 3 illustrates this. 

ED ≤ τ  

tti ∈ [ttlower, ttupper] 

Equation 2.  Eligible Plates for Matching within a Time Window. 

where, 

tti = travel time observed for a potential match i; 
[ttlower, ttupper] = lower and upper limits of the time window. 

 

Figure 3. Chart. Time Window of Matching Eligibility 



 
 

8 
 

Using these constraints, all string candidates read from LPR Station 1 are ranked, and the 
candidate with the least ED not exceeding τ  is selected.  In case there are multiple candidates 
tied with the least ED value, the first appearing in chronological order is selected. 

The time window initially includes the entire period of data collection.  In the end, two time 
windows were used to reduce comparison operations with limits defined as follows: 

ttuper = tt_mean + z × tt_std 

ttlower = tt_mean - z × tt_std 

Equation 3.  Upper and Lower Limits Defining a Time Window. 

where, 

tt_mean = sample mean travel time; 
tt_std = sample standard deviation of travel time; 
z = the number of standard deviations above or below the mean. 

Case Study and Results 
The LPR equipment used in Phase A of this study was manufactured by PIPS Technology.  Two 
older versions of the equipment were used to capture license plates of westbound trucks on I-40; 
one at Campbell Station Road (LPR Station 1) and the other downstream at the weigh station 
(LPR Station 2).  Both units used internal detection (plate-finder) software to trigger the camera 
and an infra-red-based illuminator, which was activated when a vehicle was within the camera's 
field of view.  The two cameras were set up to capture plates in the rightmost lane of the road.  
Data were collected on weekdays, between 1:00 PM and 4:00 PM, excluding days of abnormal 
traffic patterns.  The distance between the two stations was about 1.4 miles.  During five days of 
data collection, 2,671 plates were captured at the first station and 1,530 were captured at the 
second station.  Among these, a total of 787 were manually verified as identical.  In addition to 
reading plates, the equipment also “stamped” each plate image with time information, which was 
useful for later comparisons. 

LPR Performance 
The raw images stored in the LPR system database were viewed manually to compare with the 
detection reports.  The results show an average accuracy of 61% for Station 1 and 63% for 
Station 2.  Since the cameras were not permanently mounted (they were mounted on heavy 
tripods), the accuracies could potentially be higher. 

In spite of the moderate accuracy, the equipment was able to read most characters of the license 
plates.  Figure 4 shows the failure rate distribution, a chart of relative frequency of plates versus 
the number of characters misread per plate, for each LPR station. 
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Figure 4. Chart. Percent of Plates with Number of Misread Characters. 

Truck Speed 
The histograms of the sample speeds of the 787 trucks captured at both stations are shown in 
Figure 5.  Figure 6 shows truck-speed comparisons before (measured by tube) and after (using 
radar gun and LPR) the speed limit changed.  As observed in Figure 5, after the new speed limit 
went into effect, truck speed ranged from 40 mph to 75 mph, and most of the speed values (the 
20th percentile was approximately 55 mph) were higher than the actual speed limit of 55 mph.  
In Figure 6, comparing the before- and after-speed distributions, a shift of only about 8 mph in 
the average speed was observed, with no change in the variance. 

ED Performance Results 
To assess the performance of the matching methods implemented, modules in the MATLAB 
programming language were written to perform the calculations automatically.  The number and 
percentage of positive matches, the number of false-positive matches, and the average number of 
candidates per plate were used as performance measures.  

Four different threshold values, 0, 1, 2, and 3, were used to constrain edit distance.  The results 
are shown in Figure 7.  As the threshold value decreases, the number of candidates per plate gets 
smaller.  In fact, as the threshold gets smaller it is unlikely to have more than one candidate from 
LPR Station 1 match a given plate at LPR Station 2.  
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Figure 5. Chart. Frequency of Sample Truck Speeds. 

 

Figure 6. Chart. Cumulative Distribution of Sample Truck Speeds. 

Table 1 shows the results obtained when both the top-rank and the first chronological candidates 
are selected.  As can be seen, although smaller threshold values result in fewer false-positive 
matches, they also result in fewer positive matches.  Moreover, without considering the travel 
time information, false-positive matches are very likely to occur for threshold values of 2 and 3. 
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Figure 7. Chart. Number of Plate Candidates without Time Window. 

Table 1.  Performance of ED without Travel Time Constraints. 

SIMILARITY 
MEASURE 

USED 
THRESHOLD # OF 

MATCHES 

# OF 
POSITIVE 
MATCHES 

# FALSE 
POSITIVE 
MATCHES 

AVERAGE 
NUMBER OF 

CANDIDATES 

PERCENTAGE 
DETECTED 

ED 0 497 497 0 1.02 60% 
ED 1 692 667 25 1.08 81% 
ED 2 921 737 184 1.59 89% 
ED 3 1309 754 555 5.74 91% 

 
Constraining the number of candidates using only deterministic travel time intervals on each day, 
with z = 3 and 4, the distributions of candidates were computed as shown in Figure 8.  Table 2 
presents the results of combining the two constraints, Edit Distance and Travel Time, for each 
day of data collection.  Note that the time constraint (time window) was different for each day, as 
it depends on the mean and standard deviation observed on each day sampled. 

In Table 2, for all threshold values tested it seems very unlikely (with the highest average 
number of candidates being 1.03) to have more than one candidate per plate.  In fact, most 
candidates turned out to be the true values (with only about 2% of mismatches in the worst case 
when a 97% plate-matching rate is also achieved).  It is worth noting that all cases of false 
matches in Table 2 came from pairs of plates where either one or both plates were misread by the 
LPR machines, or were not read at all at one of the two LPR stations.  Such could happen, for 
example, when a truck changes lane between the two LPR stations, either entering or exiting the 
monitored lane.  This means that any plate captured at both stations, correctly or not, has a high 
chance of being indentified and leading to a positive match; whereas a plate not read at one  
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Figure 8. Chart. Matching Candidate with 3 and 4 Standard Deviations of Travel Time. 

Table 2.  Performance of ED with Time Window Constraints. 

SIMILARITY 
MEASURE 

USED 
THRESHOLD # OF 

MATCHES 

# OF 
POSITIVE 
MATCHES 

# FALSE 
POSITIVE 
MATCHES 

AVERAGE 
NUMBER OF 

CANDIDATES 

PERCENTAGE 
MATCHED 

ED + tt1 0 471 471 0 1.00 61% 
ED + tt1 1 636 636 0 1.00 82% 
ED + tt1 2 719 716 3 1.01 93% 
ED + tt1 3 762 746 16 1.02 97% 
ED + tt2 0 477 477 0 1.00 61% 
ED + tt2 1 645 645 0 1.00 82% 
ED + tt2 2 731 726 5 1.01 93% 
ED + tt2 3 779 756 23 1.03 97% 

 
of the stations has an elevated probability of resulting in a false match.  Therefore, if the LPR 
machines were configured to aim at multiple lanes and, hence, capture more plates, the false 
matches may be further reduced.  To illustrate this, Table 3 presents the five false-positive 
matches for the case of ED ≤ 2 and the second time window constraint, z = 4. 

Table 3.  False Matches for ED ≤ 2 + tt2. 

LPR Station 2 LPR Station 1 Hypothetical 
Speed (mph) Time Recognized 

Characters 
Plate 

Number Time Recognized 
Characters 

Plate 
Number 

13:30:26 "1561" "1561" 13:28:46 "15S7" "15157" 111.28 
14:46:37 "1297D" "12990" 14:43:37 "12905" "12905" 40.62 
15:19:36 "1234" "1234" 15:16:57 "9214" "9214" 48.74 
15:14:12 "2JZ294" "2JZ294" 15:13:21 "2JF204" "2JF204" 70.74 
14:14:39 "9713" "9713" 14:13:13 "9214" "9214" 59.18 
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Discussions 
The “first generation” matching algorithm presented herein is not expected to achieve perfection 
with perfect plate matching rate and zero false matches.  Nevertheless, improvement can still be 
accomplished through further research on better plate similarity measures, dynamic travel time 
constraints, and improved configuration of LPR hardware.  

Concerning the similarity measure employed in this study, the main drawback of using the 
formulation of edit distance with unitary cost functions, in the case of comparing distinct 
characters, is that it does not account for the probabilities of LPR machine misreading certain 
characters.  For example, there is a relatively high chance of the characters "1," "0," and "B" 
being misread as "I," "O," and "8," respectively.  The probabilities of such incidences were not 
considered in Phase A of the project.  However, this information can be obtained by constructing 
a matrix of error probabilities taken by each LPR unit used.  Once the matrix is constructed, the 
challenge becomes how to design the weights (or the cost function) to be used in the edit 
distance calculation.  For example, what is the cost for transforming "0" into "O" given that the 
odds that "O" is misread as "0" are, for example, 50%.  Some initial work by the author suggests 
that using a cost function would increase the number of positive matches and reduce false-
positive matches.  For example, in the first row of Table 3, "1561" and "15S7" would not have 
been falsely matched if it were known that the character "6" is very unlikely to be recognized as 
"S," or vice versa. 

The travel time constraint used in this study is a simple and deterministic one.  A more suitable 
way of using travel-time information would take advantage of travel time distributions, which 
are believed to be a Gaussian function.  This way, the deterministic and chronological method 
used herein for selecting candidate plates would be replaced by a probabilistic method, where a 
candidate would be selected if it had both the lowest ED value and the highest travel time 
probability.  

As for the equipment setup on the roadside, past deployment experience indicates that a 
permanent rather than a mobile setup would lead to improved accuracy in plate reading in the 
first place.  To this end the newest version of LPR machines were mounted permanently on 
dynamic message signs (DMS) on Interstate 40. 

Another issue of interest is the effect of the distance between LPR units.  The closer two LPR 
units are located, the smaller in general the time window, and the less the chance of the presence 
of trucks with similar license plate numbers during the same time frame.  On the other hand, very 
closely located LPR units tend to capture more of the instantaneous speeds and not the average 
trip speed.  Trucks can simply slow down for the “speed trap” and then get back to the preferred 
cruising speed.  In this regard, LPR units spaced farther apart could be more effective as a speed 
deterrent.  Therefore, this distance should be one that neither compromises the desirable 
reliability of the algorithm nor affects traffic behavior. 
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The LPR pairs can be located anywhere along the main section of a roadway.  In fact, a design 
with LPR units every couple of miles along the Interstate has been studied recently.  One 
consideration though is the LPR pairs should not be too close to the exit ramp for the weigh 
station, where trucks may have already begun to slow down. 
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Chapter 3 – Field Deployment of LPR Technology 
During Phase A of the study, two relatively dated and different LPR units were mounted on 
tripods and situated on the side of I-40 to collect data for a total of five hours during daylight.  
The data were saved on a computer tethered to each LPR unit in the field and analyzed later on.  
A crucial task of Phase B of the study is to install state-of-the-art LPR units “permanently” over 
I-40 to continuously collect data for months under all lighting and weather conditions.  The data 
are to be relayed over a 3G cellular network for real-time filtering and analysis.  This is to 
prepare for the real-time vehicle tracking and enforcement applications in Phase C of the study. 

Due to the nature of the endeavor, a prohibitive amount of effort of Phase B was devoted to the 
actual field deployment of the LPR technology, even though equally important to the success of 
the project is the development of a plate-matching algorithm of high accuracy and low false-
matching rates.  The field deployment effort turned out to be a drawn-out and painstaking 
process with many delays and the eventual no-cost extension of the project.  We will not dwell 
on these challenges for the benefit of the reader.  Instead, the following section “fast-forwards” 
through the process just to give the reader a glimpse of the scale of the task. 

Key Project Partners 
The field deployment effort of this phase depended on the generous support of Tennessee 
Department of Transportation (TDOT), which granted us permission to mount LPR hardware on 
their existing hardware structures and the convenience of using their uninterrupted electricity, 
which is essential to the continuous deployment of LPR.  In comparison, gasoline powered 
generators were used for short-term data collections in Phase A.  TDOT also paid for and 
provided assistance of Tennessee Highway Patrol personnel for traffic control, a road crew for 
lane closure and reopening operations, and, most importantly, a trained electrician certified and 
experienced to work on the catwalk over the Interstate structures where the LPR cameras are 
mounted. 

Another invaluable partner of the field deployment effort is PIPS Technology, a Federal Signal 
company.  They provided two brand new cutting-edge P382 Spike-HD ALPR cameras for the 
use of this effort for free.  They also provided technical personnel in coordination with TDOT 
engineers for the installation, maintenance, and data networking tasks. 

Pre-Deployment Field Test 
A one-day equipment test of the PIPS P382 Spike-HD camera, which is to be used for field 
deployment later, was held in 2009.  The test site was on I-40 between Eblen Cave Road and Old 
Poplar Springs Rd (see Figure 9).  A mobile configuration, which involves essentially tripods 
and power generators, was used similar to that in Phase A of this study (see Figure 10).  The 
LPR units were collecting data within minutes after the completion of the setup, which was far 
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superior to the LPR units used previously, where it would take an hour or more to configure the 
LPR system. 

 

Figure 9. Map. Pre-deployment Field Test on I-40. 

 

Figure 10. Photographs. Actual Set-up at Pre-Deployment Test Site 1. 

Assessment of Deployment Sites 
Before the actual deployment of the LPR units, proper site or sites need to be selected.  Some of 
the aspects to consider include: 
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• Travel Direction – This study needs capture trucks and then recapture the same trucks 
again at the weigh station on the west end of Knoxville, TN.  As such, westbound 
direction is favored. 

• Truck Traffic – It is important that ample truck traffic is present in the travel lanes where 
the LPR units are to be installed. 

• Mounting Considerations – The LPR units should be mounted securely in an elevated 
angle with minimal likelihood of occlusion.  The location should be very close to the 
moving traffic.  To this end, roadside poles and overhead sign locations are most 
desirable. 

• Availability of Power – The LPR units need reliable and continual power supply.  The 
light poles along I-40 are many, but they are switched on and off by the utility company 
depending on time of the day.  When the lights are off, no power is supplied to the pole.  
Existing Remote Traffic Microwave Sensor (RTMS) devices along I-40 rely primarily on 
solar energy, which is not desirable for guaranteed 24/7 operations.  TDOT’s traffic 
cameras are mounted on very high poles typically over 60 feet off the side of the travel 
lanes.  Although these poles have continuous power supply, the poles are too thick in 
cross section for mounting and their locations too far from the traffic.  The Dynamic 
Message Signs (DMS) are right on top of all lanes of the moving traffic and provide one 
of the few options with continuous and reliable power supply. 

• Coupling of Locations – Multiple (at least two) sites are needed for LPR plate capturing 
and matching purpose.  A reasonable distance between each pair of sites is a 
consideration.  If the distance is very short, vehicle travel time may fluctuate 
significantly.  If the distance is too great, many vehicles may enter and exit the stretch of 
the roadway and only a low percentage of vehicles would be traversing the entirety of the 
study site. 

After pouring over the map of the TDOT ITS infrastructural locations (see Figure 11), consulting 
with TDOT and PIPS Technology engineers, and many site visits and meetings, Dynamic 
Message Signs #3 (see Figure 12), and #7(see Figure 13), were selected for permanent 
installation.  The use of DMS sign structures, instead of the originally proposed ITS camera 
locations, was determined with the input from TDOT and PIPS Technology.  DMS sign 
structures arch over the travel lanes and provide good clearance and appropriate angle for LPR 
applications.  In addition, a continuous and reliable electrical power supply is available. 

The next issue concerning these sites was selecting the exact lane at each site where the LPR 
cameras should be installed to maximize the number of trucks captured at both sites under the 
constraint of using only one camera per site.  For the I-640W location( see Figure 13) it is clear 
after some field observations that the second (middle) lane is the most suitable for LPR 
installation as this lane sees the greater number of trucks than the other lanes. 

The decision was more challenging for the I-40W DMS site (see Figure 12) where there are five 
travel lanes with the right two lanes merging from I-640 and continuing toward the Papermill 
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Exit.  After studying and extracting truck volume information from the video of traffic traversing 
this section of I-40, we found that lane 3 typically has more trucks than lane 2 (from left) (see 
Figure 14).  Therefore, the LPR camera was installed over lane 3. 

 

Figure 11. Map. TDOT ITS Infrastructure Considered for LPR Study. 
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Figure 12. Photograph. TDOT DMS #3 on I-40 Near Papermill Road. 

 

Figure 13. Photograph. TDOT DMS #7 on I-640W Near Pleasant Ridge Road. 
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Figure 14. Chart. Lane Distribution of Truck Traffic on I-40 Near DMS #3. 

Deployment Approval and Preparations 
Multiple meetings were held to determine the study sites, the LPR camera to be used, equipment 
mounting options, electricity and access concerns, etc.  After these meetings, TDOT authorized 
the work to move forward with installation of two sets of LPR cameras at Station 1 (DMS #7) 
and Station 2 (DMS #3)(see Figure 15).  With aerial photos, we measured the travel distance 
between the two stations to be 3.00 miles.  This was also verified with field measures.  With a 
posted speed limit of 55 mph throughout the study area, the expected legal maximum travel time 
for vehicles to traverse the study section can be calculated to be about 3.27 minutes or 196 
seconds. 
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Figure 15. Map. Deployment Site between Stations 1 and 2. 

A significant amount of effort subsequently went into coordinating various partners and their 
help to have all the hardware manufactured, the mounting mechanism designed and approved, 
the necessary wireless communication means procured, the data network configured, etc.  
Ultimately, all logistics had to be planned out so that the installation effort would cause the least 
amount of disruption to the traffic and ensure maximum safety to field workers as well as the 
motoring public. 

Field Installation of LPR Hardware 
After a very long delay due to TDOT maintenance contract issues and LPR hardware 
availability, field installation was finally underway.  A total of about 6 hours at each site was 
required for traffic control, utility installation, site preparation, camera mounting, real-time 
calibration, etc.  The cameras were finally installed and are broadcasting data 24/7 via 3G 
cellular networks.  Figure 16 showcases the field installation effort. 
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Figure 16. Photograph. Highlights of Field Installation Activities. 

Post-installation Data Verification 
Multiple tests were conducted on the LPR data from the two stations.  Known license plates were 
used on probe vehicles (see Figure 17) to verify the recognition accuracy at the two camera 
locations for two weeks after the installation and before the full-scale data analysis tasks. 

 

Figure 17. Photograph. Probe Vehicle and Corresponding LPR Results. 
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Chapter 4 – Plate Matching with Weighed Edit Distance  
An efficient plate-matching algorithm based on Edit Distance was presented in Chapter 2 of this 
report.  Before  One potential improvement on the aforementioned algorithm is the recognition 
of the “distance” between two strings should be treated differently in different cases.  That is, the 
Edit Distance should be weighed in the algorithm to improve matching rate, and more 
importantly, reduce false-matching cases.  To this end, the algorithm was revised and improved 
as presented herein.   

Most of the work presented here was performed prior to or in parallel to the field deployment 
effort presented in Chapter 3.  As such, data from the newly deployed system did not make their 
way into this portion of the study.  Nevertheless, the algorithms presented herein were applied to 
the data later on and the results are presented in Chapter 5 of this report. 

Background 

Similarity Measures between Two Strings 
The process of matching two strings involves a sequence of comparisons of individual characters 
to determine the degree of similarity between two strings. In the literature of text mining, the edit 
distance is one popular technique to measure the similarity between two strings. Given two 
strings x and y, the edit distance calculates how many fundamental operations are required to 
transform x into y. These fundamental operations are termed as substitutions when a character in 
x is replaced by the corresponding character in y; insertions when a character in y is inserted into 
x, thereby increasing the length of x by one character; and deletions when character in x is 
deleted, thereby decreasing the length of x by one character [Duda]. 

The edit distance ( )d x y→  between two strings x, y, can be calculated based on the following 
recurrent equation, as proposed by Wagner and Fischer (1974): 

( , ) min{ ( 1, 1) ( ),

                             ( 1, ) ( ),
                             ( , 1) ( )},

i j

i

j

d i j d i j x y
d i j x
d i j y

γ

γ ε
γ ε

= − − + →

− + →
− + →

 

Equation 4.  Edit Distance between Two Strings x and y. 

where ( , )d i j  is the edit distance between x[1..i] and y[1..j], and d(0,0) = 0. Theγ ’s are the cost 
functions. For example, ( )i jx yγ → is the cost for the change (substitution) from xi to yj.  The 

( )ixγ ε→ , where ε  represents the empty character, is the cost incurred by a deletion of xi.  

( )jyγ ε → is the cost incurred by an insertion of yj. Thus, the edit distance ( )d x y→ would be 

given by (| |,| |)d x y , where the notation |∙| corresponds to the length of a string.  
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Various extensions of the original edit distance measure have been proposed to account for 
different situations. The original assignment for the cost functions as proposed by Levenshtein 
(1966) was to set ( ) 0i jx yγ → =  if i jx y= , or ( ) 1i jx yγ → = , otherwise ( ix  and jy  cannot beε  

at the same time).  Ocuda et al. (1976) proposed the generalized edit distance (GED) to assign 
different weights to the edit operations as a function of the character or the characters involved.  
For example, a cost associated with the edit substitution " " " "U V→  could be smaller than the 
edit substitution" " " "Q V→ . The error rates can be reduced by adjusting the values of the weight 
for each fundamental edit operation in accordance with the kinds and occurrence probabilities. In 
addition to weight assignments, Oommen (1986) also proposed to constrain the ED by the 
number and type of edit operations to be included in the optimal edit transformation, and he 
named this new approached as constraint edit distance (CED). The main idea of the CED is to 
search for the optimal ED subject to a certain number of substitutions, insertions, and deletions.  

The most recent advance in ED calculation was made by Wei (2004) who proposes the Markov 
edit distance (MED). The main idea is to calculate ED according to lengths of sub-patterns and a 
simple measure that compares how close the histograms of the two sub-patterns are. The cost 
function in the MED is defined as 1 2( )p pγ → , where p1 and p2 are two sub-patterns, which at 
least one of them is not a single symbol of the alphabet. Wei pointed out that in working with 
sub-patterns the statistical dependencies among the values assumed by adjacent positions in 
patterns can be better exploited in such way that a variety of string operations are incorporated, 
in addition to all operations already defined in previous literatures.  

The weight (or cost) functions can play an important role in the calculation of GED and CED 
measures.  Several authors proposed different ideas to consider the type of errors that may be 
present in a given application domain. In an application of handwritten text recognition, Seni et 
al. (1996) introduced additional operations (merge, split and pair-substitution), refined these set 
of operations as unlikely, likely and very likely, and established the order of importance of the 
new classification of operations relative to each other. Then, they assigned the cost for each of 
the classes of operation, e.g., an unlikely deletion is more penalized than a likely deletion.  

Marzal and Vidal (1993) computed the weight function using the estimated probability matrix 
for substitutions, insertions and deletions of any pair symbols of the alphabet for the application 
of hand written digit recognition. They transformed the probability matrix into weight function 
by computing the negative logarithm of each probability value. 

The MED, as proposed by Wei (2004), defines the probability of a certain sequence of operations 
to convert a string, x, into another string, y, as a Gibbisian probability distribution function, 
which in turn is defined as ( ) exp( ( ) / ) /P x y U x y T Z→ = − → , where T and Z are constant 
parameters to be calibrated.  The term ( )U x y→  is the energy that is required to overcome the 
distance, i.e., the edit distance, between string x and string y. The most desirable configuration 
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for transforming x into y would be the one that maximizes ( )P x y→ , which in turn implies the 

minimization of ( )U x y→ . ED and GED are special cases of the MED. 

License Plate Matching Application 
We have already presented the concept of license plate matching using Edit Distance in Chapter 
2.  But it bears to review it some of the key points.  Consider, for example, a license plate whose 
lettering is constituted by the string “4455HZ” which should be read by two LPR machines at 
different locations. Suppose that at the first location, the plate was read as “4455IIZ” and at the 
second, “4455HZ.” Note that neither LPR unit knows whether it has read the plate correctly. 
Applying the original idea of ED to the LPR example above, for x = "4455HZ" and y ="4455IIZ" 
we obtain ( )d x y→ = 2, whereas for x = "4455HZ" and y ="445OHZ" we obtain ( )d x y→ = 1. 
In the event that y ="445OHZ" has been observed earlier at the first station and belongs to the set 
of candidates to match x = "4455HZ," one would claim that "4455HZ" and "445OHZ" is a 
genuine match, whereas, in reality, they may belong to different plates, since it is unlikely that 
the pair “O”-“5” would form a match. Thus, in order to improve the matching performance, the 
ED method and the cost (or weight) functions γ ’s should consider the LPR mistakes in reading 
certain characters. This can be achieved using the extensions of ED as found in the literature, 
combined with proper cost functions for the LPR application. 

All LPR misinterpretations can be translated into a matrix of error probabilities where each cell 
is given the likelihood of certain pair-wise character symbol occurrence. During the LPR 
machine operation there is a relatively high chance of certain characters (e.g. "1," "0," and "B") 
being misread (e.g. "I," "O," and "8," respectively), by the LPR machine. Such information can 
be obtained by constructing a matrix of reading probabilities taken by each LPR unit used. Once 
the matrix is constructed, the challenge becomes how to design the weights (or the cost function) 
to be used in the edit distance calculation. The basic idea is that the higher the probability of the 
error occurrence, the smaller the weight to compensate for the corresponding character error. 
Therefore, in Equation 4, the unitary values of the cost functions would be replaced by 
appropriate weight functions based on the confusion matrices of LPR machines. 

In designing the weight function, however, one should have in mind that the LPR application is 
different from common applications in the sense that there is no reference or list of true values to 
match the target value.  For each recognized string in one location there are a set of other 
recognized strings for matching in another location, and the true plate number is unknown. 
Therefore, the designed weight function should associate both probability matrices of each LPR 
machine. It is expected that using such a cost function would increase the number of positive 
matches and reduce false-positive matches. In this chapter, we propose a suitable weight 
assignment for comparing strings read by LPR machines located at two points, based on error 
probabilities of the LPR machines in misreading certain characters. 
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Analyzing the GED and CED formulations it seems that CED is a more suitable measure to 
match pair strings recognized by LPR systems, thus reflecting more adequately the most 
common errors made by the LPR machine used in this study. Considering the possible errors that 
may happen when recognizing characters of USA plates, the most common errors are as follows: 
first, some of the plate characters are missed by the LPR machine, consequently, decreasing the 
length of the original string; second, stickers around the plate frame can be recognized as 
additional characters, thus resulting in recognized string with longer length; and finally, some of 
the characters are misread by the LPR machine, thus keeping the same length as the genuine 
string. As can be seen reversal errors are never expected, and any compensation technique should 
not reflect such errors. 

The GED framework on the other hand does not completely account for the actual errors 
encountered in LPR applications and may sometimes compensate for reversal errors. For 
example, given two strings x = "ABC123" and y = "BCA123" which certainly come from 
different vehicles, under the GED framework, ( )d x y→  would be computed making a deletion 
of the first "A" from x and a insertion of "A" after "C" into x, which would result in two editing 
operations. Whereas, if compensation for reversal errors is prohibited, one would say that the 
number of operations in this example would be the 3 substitutions instead:" " " "A B→ , 
" " " "B C→  and " " " "C A→ . The latter result could be achieved only if ED were constrained by 
the number of editing operations, such as allowing only substitutions without deletions and 
insertions in this case. 

Methodology 

Weight Scheme Proposed 
In this study we deal with the problem of matching vehicle plates for a single origin-destination, 
or two-point survey, referred to as station g and station h. Station h is located downstream of 
station g. For any given plate read at station h, there are a number of candidate plates already 
read at station g for matching purposes. As will be seen in the following sections, every two 
recognized strings are matched up to find the best assignment that minimizes an overall cost. To 
measure the cost of each pair-wise match, the ED formulation will be applied with different 
weight functions. 

In designing the new weight functions for the application of vehicle tracking, we assume that the 
sequence of edit operations to convert a string x into a string y is independent of each other, i.e., 
there is no dependence relationship between neighborhood characters of the strings x and y. This 
means that in recognizing characters on the plate, the readings of LPR machine may not be 
affected by the position of the character or by the other surrounding characters.  
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It is also assumed that matrices containing the likelihoods of character misinterpretation by each 
machine are available or can be estimated from a dataset containing both reading and true values 
of the license plate numbers. We name such matrices as confusion matrices. 

Remark: The confusion matrix is denoted by Cl where the element l
ijC can represent either the 

conditional probability ( | )i jp r t  that a given true character jt was recognized as ir by a LPR 

machine l, or the inverse conditional probability ( | )j ip t r that for a given recognized character ir  

its ground truth character is jt . The matrix has as its diagonal elements the probabilities that a 

character is correctly read and as its off-diagonal elements the misreading probabilities. In our 
problem of vehicle tracking, each matrix Cl is a N by N square matrix where N is the total 
number of possible alpha-numeric (plus the empty one) characters in which either jt or ir  may 

assume (in our application, N is 37 which means 36 alphanumeric characters plus the empty one, 
representing the missing character, and that makes possible deletion and insertion operations). 

Weigh Function 

Let 1 2... ...
xi lx x x x x=  and 1 2... ...

yj ly y y y y=  be any two sequence of characters read at stations g 

and h with string lengths equal to xl and yl , respectively. Suppose that the two strings are 

disposed along the axes of a grid, as illustrated in Figure 18, with editing operations represented 
as the following moves on the grid: downward along the diagonal for substitution, eastward for 
deletion, and vertical downward for insertion. There is a multitude of editing operation 
combinations to convert x  into y , which can be adequately represented by all possible directed 

paths from the point (0, 0) to the point ( xl , yl ) on the grid. If the first assumption above holds, the 

probability of a given sequence of editing operations to compare x  and y is given by the 
following formulation 

0

( ) ( , )
n

k k
k

p x y p i j
=

→ =∏  

Equation 5.  Probability of a Sequence of Editing Operations for Comparing x and y. 

where, n is the number of nodes of an path between (i0, j0) = (0,0) and  (in, jn) = ( xl , yl ). The

( , )k kp i j is the probability of the corresponding editing operation associated with the point 

( , )k ki j on the grid, that is the likelihood to observe a character outcome 
kj

y  at station h, for a 

given character outcome
ki

x obtained at station g. On the grid, the moves ( 1, 1) ( , )k k k ki j i j− − → , 

( 1) ( , )k k ki i j− →  and ( , 1) ( , )k k k ki j i j− →  represent substitution, deletion and insertion, 
respectively. 
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Figure 18. Chart. Sample Grid of Edit Distance between Two Strings x and y. 

If one makes the negative logarithm in both sides of Equation 5 and minimize the result, we will 
obtain the following expression 

0

1( ) min log
( , )

n

k k k

d x y
p i j=

   → =   
   
∑  

Equation 6.  Minimization of Probability for a Given Editing Sequence. 

Indeed, to find the most likelihood match or sequence of editing operations, Equation 5 should 
be maximized, which implies to minimize its negative natural logarithm. 

If ( , )k kp i j  can be estimated from the collected dataset, the proposed weight function can be 

calculated as 1( , ) log
( , )k k

k k

i j
p i j

γ
 

=  
 

. This formulation can be used in existing edit distance 

measures such as GED and CED. 

The problem now becomes how to estimate ( , )k kp i j . As mentioned before, the context 
presented in this research differs from existing situations in the sense that there is no true 
reference string (plate). As will be seen, the method proposed to overcome this problem consists 
in applying conditional probability theory to associate the misreading probabilities given by the 
confusion matrices Cg and Ch of station g and h, respectively, and obtain estimates of ( , )k kp i j  
for any possible character association. 

Computation of the conditional probability of association character outcomes 

To estimate the key probability ( , )k kp i j for the weight function of Equation 6, we need to 

estimate the probability that the corresponding pair of character outcomes 
ki

x  and 
kj

y at station g 
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and h is actually the exact same character.  Such character association likelihood can be 
estimated on the basis of conditional probability ( | )

k kj ip y x  of observing 
kj

y  at h given 
ki

x  at g. 

To simplify the subsequent description let x and y now be any character outcome at station g and 
h, respectively. Furthermore, let t be a true character. Assuming that any character is equally 
likely to appear anywhere on a plate and that the machines work independently, we can estimate 
the conditional probability of observing the character outcome y at h, given a character outcome 
x at g, for true characters t, as the following expression: 

,

( , | ) ( )
( , )( | )
( ) ( , | ) ( )

t

y t

p x y t p t
p x yp y x
p x p x y t p t

= =
∑
∑

 

Equation 7.  Probability of Observing y at h given Observing x at g. 

It can be shown that Equation 7 can be rewritten as 

( | ) ( | ) ( | )
t

p y x p y t p t x=∑  

Equation 8.  Simplified form of Equation 7. 

where, 

( | ) ( )( | )
( )

p x t p tp t x
p x

=  and ( ) ( | ) ( )
t

p x p x t p t=∑  

Equation 9.  Basic Relationships of Conditional Probability. 

Notice that Equation 8 is composed by a summation of products with two factors ( | )p y t and 
( | )p t x each, which can be viewed as entries of two confusion matrices. Let us define Cg as the 

confusion matrix whose entries are the values ( | )p t x  and Ch as the confusion matrix whose 
entries are the values ( | )p y t . Therefore, since by definition the ground truth characters are 
referred to the columns in matrices Cg and Ch, an estimate of all possible character associations, 
or conditional probabilities ( | )p y x , is given by the following matrix multiplication: 

.( )C = C Cg h T  

Equation 10.  Association Matrix as a Function of Confusion Matrices. 

where,  

( )Ch T  is the transpose of Ch.  
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With index notation, each element ijC  of C is therefore given by ( | )ij j iC p y x= , where i = 1, … 

, N; and j = 1, … , N. 

Finally, the probability ( , )k kp i j  in Equation 6 should be approximated by ( | )j ip y x  and can be 

obtained directly by simply searching for the cell in matrix C in which the associated characters 
correspond to those involved at the editing operation at node ( , )k ki j on the grid of Figure 18. 

Matching Methodology without Using Passage Time Information 
In this section we describe the problem of matching plate number observations collected by a 
two-point survey, or dual LPR setup, using an offline procedure without using passage time 
information. In such, edit distance is calculated for all pair-wise matches between any two 
datasets provided by the LPR machines so that the set of assignments that minimizes the overall 
cost is determined. The motivation of finding this matching was to assess discriminative power 
of different similarity measures. Since the number of pair-wise combinations is expected to be 
large (number of outcomes in station g multiplied by the number of outcomes in station h), if any 
similarity measure is capable of discriminating genuine from false matches in this worst case 
scenario, we may claim that it is a good similarity measure for LPR application. 

Our proposed vehicle tracking based on LPR technology, which can be viewed as a weighted 
bipartite matching problem, can be summarized as follows. First, for each outcome at station h, a 
vector with length equal to the number of pair-wise matches formed with all outcomes at station 
g is constructed, where each element is the similarity measure (edit distance) between the 
corresponding outcomes; second, the assignment with the least cost value is selected as a 
potential match; finally, a threshold on ED-values is used to discriminate the resulting pair-wise 
matches between potential positive and false matches. Figure 19 shows a flowchart of this 
procedure. 

Notice that the number of observations in the two sets can differ as some vehicles either do not 
pass through the two stations or they may not have their plates recognized by either one of the 
two LPR stations. The result of this is an increasing chance of having false matches being 
detected as genuine. 

Vehicle Tracking Considering Passage Time Information 
Considering the two-point survey again, in this section we propose a matching procedure 
incorporating the passage time information, or time stamps, to improve the performance of the 
template matching. This procedure is to be used in situations where it is needed to decide 
whether or not a plate currently detected at downstream station h can be matched to a subset of 
plate detected at upstream station g. Such applications can involve speed enforcement or online 
estimation of travel time for information systems. 
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Return the set of matches for
the analyzed period

Given a LPR dataset for an
analyzed period

Compute the similarity measure
values between all pair-wise string

outcomes

For each string outcome at station h
search for the best match at station g

with the least ED-cost value

Apply a ED-threshold to discriminate
the resulting matches between

positive and false matches

 

Figure 19. Chart. Procedure for Identifying the Most Likely Match Pair. 

In essence, our proposed matching procedure consists in matching any current outcome jy  (j is 

an index to keep track of the outcome location in the dataset) at station h to a subset of the 
earliest previous observations at station g. The subset of candidates at station g is formed by 
those outcomes whose corresponding passage time falls within a time window constraint. Such 
time window constraint is bounded by the upper and lower limits of the expected travel times on 
the road. Furthermore, the width of this time window constraint is adequately reduced every time 
there exists a high chance for the similarity measure to classify a match as genuine, when in 
reality it was false. 

Initially, let us define the notation used. Set the pair-wise string ( , )i jx y , as a potential match – 

where ix  is the ith outcome observed at station g and jy  is the jth outcome read at station h. That 

means that ix  is the best earliest previous observation at station g to match jy . In this case, the 

journey time of the corresponding vehicle will be estimated by the time-difference between the 
passage times recorded at station g and h, i.e. ij j it v u= − , where iu  and jv  are the corresponding 

time stamps at station g and h, respectively. Furthermore, let us define the range of values that 
the similarity measure ( )ij i jd d x y= →  can assume as [0, maxτ ], where maxτ  is the maximum 
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possible value of ijd in which we may still declare ( , )i jx y  as a genuine match. Finally, let us 

define the range [0, *τ ], such that max* (0, )τ τ∈ , in which it is very likely that ( , )i jx y  constitutes 

a genuine match.  

The matching procedure, as shown in Figure 20 and Figure 21, can be described by the following 
steps: 1) Match any current observation jy  at station h to a subset of the earliest previous 

observations at station g corresponding to the survey period gt∆ , and search among the 
candidates for the best string ix with the least edit distance; 2) If *ijd τ≤ , we declare the match

( , )i jx y  as genuine; 3) Otherwise, if max* ijdτ τ< ≤ , we declare ( , )i jx y a valid match only if the 

estimated journey time ijt  lies within a time constraint estimated from a sample of previously 

observed passage times from matches already classified as genuine. Such sample is collected 
looking at all matches obtained for a survey period ht∆  in station h. 

The survey period gt∆ , or time window constraint, at g to establish each subset of outcome 
candidates is given by ( , )g

j u j lt v jt v jt∆ = − − , where ujt  is an upper bound for the journey time 

while ljt  is a lower bound.  Therefore, if j u ij j lv jt t v jt− ≤ ≤ − , the corresponding match ( , )i jx y

is classified as potential match, but not as genuine yet. 

Assuming that the genuine journey times come from a symmetric density function, such as the 
normal distribution, it is quite true that the closer ijt is to the mean of the distribution, more likely 

the match ( , )i jx y  is to be genuine. Also, it is known that the likelihood of having a genuine 

match increases when the similarity measure decreases. Therefore, to define the travel time 
constraint acting on the ED domain ( *τ , maxτ ] we define the following inequality constraint 

( )( )
( )

jt h
ij

ijjt h

t t
z d

t
µ

σ
− ∆

≤
∆

,  max* ijdτ τ< ≤  

Equation 11.  Travel Time Constraint. 

where, ( )jt htµ ∆  and ( )jt htσ ∆ are the moving average and standard deviation of the journey 

times for the corresponding earliest period ht∆ of analysis and ( )ijz d is the number of standard 

deviation to define the interval limits which is a monotonically decreasing function of the 
similarity measure value ijd . 

Parameters ( )jt htµ ∆  and ( )jt htσ ∆ can be estimated from a sample of passage times from 

matches classified as genuine during a previous survey period ht∆  at h, or from matches 
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obtained in previous days during the same survey period ht∆ . Outliers should be eliminated from 
the sample if they lie outside a constraint interval calculated around the sample median [Clark]. 

Is
( ) *?i jd x y τ→ ≤

Set              as genuine match
with high confidence

Is

max

( )?

   *

jt
ij

ijjt

ij

t
z d

d

µ
σ

τ τ

−
≤

< ≤

Set              as
potential genuine

match

Yes

Yes

Set               as
potential false match

Return the classification
 of

( , )i jx y

( , )i jx y

( , )i jx y

( , )i jx y

Given the estimates

from a sample of the most recent
matches classified as genuine

( ), ( )jt h jt ht tσ µ∆ ∆

Match      to the best earliest
outcome     at g

jy
ix

No

No

 

Figure 20. Illustration. Proposed Matching Procedure. 
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( , )g
j u j lt v jt v jt∆ = − −

( )i jd x y→

( , )i ix u

Station g

Station h

( , )j jy v

ht∆

 

Figure 21. Illustration.  Travel Time and Time Window Considerations. 

New Editing Constraints 
LPR machines usually do not reverse the characters on the plates. For this reason it is very likely 
that any pair of read strings can have its sequence of characters lined up if they come from the 
same vehicle. Thus, considering that reversal errors are not made by LPR machines, the CED 
with editing constraints defined as a function of the string lengths may potentially eliminate false 
positive matches that otherwise would be obtained if a GED formulation were used.  

Therefore in this research, it is worth noting that the edit operation constraints used in CED are 
defined based on the length differences of the strings being compared. Hence, for any pair of 
read strings x  and y , with lengths given by xl  and yl , we propose the following constraint sets 

(i,e,s) of insertions, deletions and substitutions to transform x  into y . 

(i,e,s) =( y xl l− , 0, xl ),  if  y xl l> ; 

(i,e,s) = (0, x yl l− , yl ), if  y xl l< ; 

(i,e,s) = (0, 0, xl ), if y xl l= . 

Equation 12.  Restrictions of Editing Operations. 

The three restrictions above state that insertions or deletions will be allowed only if the lengths 
of two strings are different, otherwise only substitutions will be allowed. Hence, the use of CED 
with these constraints enables us to find the most likely character alignments between a pair of 
strings. 
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Case Study and Experimental Results 
The aforementioned methods were implemented to match plates from our Phase A dataset, which 
consists of large truck plates captured at two sequential stations along I-40.   

Performance of Vehicle Tracking Procedures 
The dataset was divided into two parts: one for calibration of the model parameters and the other 
for comparison of the performances of the similarity measures. Since there were 5 days of data, 
all combinations of 3 datasets out of 5 were used as calibration data, with the remaining 
combinations with 2 datasets as validation data. Thus, each of the 10 combinations with three 
days of data was used to estimate 20 confusion matrices, i.e., 10 matrices of type C1 and 10 
matrices of type C2 for LPR stations 1 and 2, respectively. These confusion matrices were then 
included into the formulation of CED and GED in combination with our proposed weight 
functions defined previously. 

Considering the possible ways of defining the editing weights into the recurrent calculation of 
ED (see Figure 18), four procedures were indentified to calculate the ED between pair of strings, 
as follows: 

D1: Edit distance with zero or one cost assignments, which corresponds to the original idea 
of Levenshtein; 

D2: GED using weight function as in Equation 6, with ( , )k kp i j  estimated by ( | )p y x , as 
defined in Equation 8; 

D3: Original CED with zero or one cost assignments and constrained by the editing sets 
defined in Equation 12; 

D4: CED using weight function as in Equation 6 and ( , )k kp i j as in Equation 8, and 
constrained by the editing sets defined in Equation 12. 

The performance of our proposed procedures, D2 and D4, were then compared to the popular ED 
and CED methods, D1 and D3. All four procedures above were then applied to all 10 
combinations of two remaining days of data, used as validation period.  

As mentioned earlier, the performance of the similarity measures was investigated under a worst 
case scenario that consisted in matching up the two sets of plates for each remaining day, without 
using passage time information or the recorded time stamps. The main premise there was that 
under this worst-case scenario the most suitable measure for LPR application should be able to 
accurately match every two set of plates with fewer false matches. 

Regarding the measures of performance, the percentage of positive matches and the percentage 
of false matches were calculated for a range of ED-thresholds covering the domain of all 
possible ED values, ranging from 0 to 20. In order to derive the performance measures, it was 
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necessary to obtain the ground truth values of the plate numbers by manually recording them 
when visualizing their images provided by the LPR datasets. The efficiency of each similarity 
measure was then established by drawing curves relating the percentage of correct matches to the 
percent of false matches over the domain of ED values. Thus, ten such charts were determined 
and all of them presented similar results as the chart shown in Figure 22 for one of the possible 
combination of datasets.  

 

Figure 22. Chart. Efficiency of Similar Measures. 

The first thing to notice in Figure 22 is that existing ED or CED combined with our proposed 
weight functions yielded considerably improved performance for vehicle tracking. Second, with 
respect to two measure frameworks, GED and CED, there was not any evidence of difference in 
performance between these two measures over all 10 analysis performed. Therefore, there is not 
empirical evidence yet to state that CED equipped with the proposed editing operation 
constraints, as defined in Equation 12, is a better procedure to compensate for the mostly 
common errors made by LPR machines.  

In general, either D2 or D4 measures were able to achieve around 90% of positive matches with 
about 5% to 8% of false matches. In addition, it is worth noting that these measures achieved 
almost 80% of positive matches with approximately 1% to 2% of false matches. Thus, it seems 
that any ED formulation equipped with the proposed weight functions has the most 
discriminative power to match data from LPR systems when the target or reference values for 
matching are unknown.  
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Performance of the Online Vehicle Tracking Procedure 
In this section the efficiency of the proposed online matching procedure, which incorporates the 
passage time information was assessed. This procedure was combined with the most suitable 
similarity measure chosen before, calibrated and evaluated using the 10 sets of data 
combinations. 

As for the parameters of the online procedure summarized at the flowchart of Equation 10, it was 
observed from the calibration datasets that the best threshold values *τ  and maxτ  would be 5 and 
20, respectively.  The time window constraint gt∆  was defined assuming an upper bound for the 
vehicle speed of 90 mph and a lower bound of 35 mph. The moving averages and standard 
deviations were calculated from every previous time block ht∆ containing at least 5 matches 
classified as genuine. From the calibration datasets, was established that 10ht∆ =  min was a 
suitable survey period for this purpose. Outliers were removed based on the procedure proposed 
by Clark et al. (2002) where any journey time value lying outside the interval determined by 
Equation 13 was classified as an outlier. 

1
| |

3

n

i e
i

e

JT M
M

n
=

−
± ×

∑
 

Equation 13.  Outlier Boundaries Determination. 

where 

JTi = journey time for vehicle i, 

Me = median for each 10-min block of journey times, and 

n = number of observations inside each block. 

The number of standard deviations given by the function ( )ijz d , which establishes the time 

window constraint acting over the domain ( *τ , maxτ ] was defined by the quadratic function of 
Equation 14 below 

max

max( ) 9
*
ij

ij

d
z d

τ
τ τ

−
= ×

−
 

Equation 14.  Number of Standard Deviations for Time Window Constraints. 

Equation 14 guarantees that at the largest time constraint, when 3z = , ijd  is equal to its lowest 

value i.e. *ijd τ= . Whereas when max
ijd τ= the time window constraint vanishes, meaning that 

when the similarity measure approaches its highest possible value the analyzed match will be 
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considered genuine only if the time-difference ijt  is exactly equal to the mean estimated journey 

time. 

After applying the above procedure combined with measure D2 to all 10 combinations of two 
days of data used for validation, it was in general achieved between 95% and 98% of genuine 
matches and about 0.5% to 1.5% of false matches. As a base scenario for comparison, we 
calibrated and applied the same procedure using measure D1. As a result, for the calibrated 
parameters * 0τ =  and max 5τ = , we achieved a positive matching rate between 93.5% and 96.5% 
but with false matching rate of about 2.2% to 3.6%. 

Conclusions 
We proposed a new procedure to compute the weight functions that can be used in existing 
distance measures when the confusion matrix of the LPR machines are available or can be 
estimated. The experimental results and analyses showed that the most suitable procedures for 
vehicle tracking based on the plates recognized by a dual LPR setup are either GED or CED 
formulation combined with the weight function and editing constraints proposed in this paper. 
These procedures have achieved about 90% of positive matches with only 5% to 8% of false 
matches. This represents a promising result for transportation planning purposes, or even for 
automatic traffic speed monitoring. 

When the travel information is incorporated as second level constraint into the matching 
procedure, it observed a great gain in performance. The proposed method achieved about 95% to 
98% of positive matches with about 0.5% to 1.5% of false matches. Although the matching rate 
was increased significantly when using the travel time information, further work is needed to 
validate this procedure for other situations of traffic conditions and setups of the LPR machine. 
The procedure was applied during a period with slight traffic variation resulting in small 
dispersion of travel times, which might have contributed to this good performance. In addition, 
the stations were setup relatively close to each other, so that there was no major source of traffic 
disturbance to disperse the travel times as most vehicles (trucks in this case) travelled in direct 
fashion through two station sections. Further studies are needed to extend this study for the case 
of multiple setups of LPR units, such as in a large area, to estimate origin-destination demand. 

Another issue of interest is the sample size (number of outcomes) needed to estimate the 
character misreading matrices Cg and Ch. These estimates are site-dependent as they reflect the 
characteristic (plate, vehicle, environment, etc) of the locations where the LPR machines are 
installed. Therefore, if there are many sources of variation, noise, to estimate the misreading 
probabilities, it would be necessary to have a large amount of data to achieve a required error 
precision. Such, estimation would also require more human intervention since the ground truth 
values of the plates are determined manually.  
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In situations where the LPR equipments are installed permanently, the human effort can be 
eliminated if there is a mechanism of estimating the conditional probabilities for the association 
matrix C by means of a learning process without human intervention. The sample size is still a 
concern in this case, however, now the system can keep learning until an error precision is finally 
reached, or the conditional probabilities converge to values within a threshold. This will be 
subject of further studies. 
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Chapter 5 – Analysis Results 
Chapter 2 of this report gave an in-depth presentation on how text-mining approaches, e.g. 
Lichtenstein Edit Distance, were applied with success to the plate-match task at hand. Edit 
Distance algorithm is usually applied to situations where text strings with uncertain accuracy 
were compared against “true” string values.  The task of this research, however, is to match pairs 
of text strings with no “true” values available.  In other words, we constantly face the challenge 
of not knowing for sure if a match, based on the algorithm, was correct or not.  Efforts were 
concentrated on 1) raising correct matching rate, 2) reducing false matching rate, and 3) 
increasing matching speed. 

During this study, we built on the algorithm we developed previously in Chapter 2 and 
developed a number of improved algorithms, which were presented in Chapter 4.  These 
algorithms were implemented on the captured plated data from the new “permanent installation” 
as detailed in Chapter 3.  The process of painstaking data analyses and the results are presented 
in this Chapter. 

Collection of Ground Truths 
An automated license plate data importing and editing software within Microsoft Excel® was 
developed to allow the gathering of ground truth by students (see Figure 23).  Ground truths of 
license plates are crucial to this research for three reasons: 

1. Establish baseline LPR accuracy. 
2. Derive “truth matrices” (as well as “confusion matrices”) for LPR. 
3. Provide positive matching rates. 

A total of 120 hours, or about 40,000 license plates were processed individually taking about 150 
hours of manual groundtruthing effort altogether. 

Character Recognition Accuracy 
The accuracies of the two LPR units were around 26% and 54%.  These are significantly lower 
than the 61% and 63% in Phase A of the study.  The reason for the low accuracies is we did not 
calibrate the image processing units after installation.  LPR accuracy can be improved if one 
calibrated the unit to favor plates from certain states or certain colors.  However, we purposely 
kept the LPR units in their generic form to emulate scenarios where 1) they are deployed without 
prior knowledge of state mixes, plate colors, reflectivity, designs, etc., 2) designs of license 
plates change significantly over time, and 3) the accuracy of LPR units deteriorate naturally over 
time.  On one hand, this certainly makes the matching task much more challenging than those 
presented in Chapters 2 and 4.  On the other hand, we have a much more realistic situation to 
work with.  The individual character reading error rates are shown here in Figure 24.  It should 
be noted that even though the frequencies of zero misread characters (the first columns on the 
left of the chart) are relatively low, the frequencies of zero, one, and two misread characters (the 
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first three columns on the left of the chart) are quite high collectively.  With the subpar reading 
accuracy, we strive to attain a matching rate of over 90%. 

 

Figure 23. Photograph. Excel-based Ground Truth Collection Software. 

 

 

Figure 24. Chart. Frequencies of Number of Characters Recognized Erroneously. 
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Development of Truth Matrices and Association Matrix 
With the ground truth extracted, individual truth matrices were developed for the LPR stations.  
Based on the truth matrices and Bayesian probability, we derived an association matrix for the 
probability of a character being read as X at station 1 and Y at station 2.  The association matrix 
is the key component for implementing non-integer Edit Distance calculations. 

It should be noted that the association matrix may be different for a different time of day, day of 
week, month of year and can change over time.  The association matrix provided here(see Table 
4) is actually of significant value to LPR manufacturers.  It is unfortunate that for most cases 
users of LPR technology do not have an association matrix to work with because of the time and 
resources required to derive them.  The use of an association matrix to help improve plate-
matching rate is detailed in Chapters 2 and 4. 

Table 4.  Association Matrix Derived from Ground Truths. 

 

Truck Travel Time and Speed Calculation 
We used our plate-matching algorithm to calculate the travel times and estimate the speeds of 
individual vehicles traversing the 3-mile section from I-640 to I-40.  The speed data fluctuated 
throughout the day and dipped during morning peak hours(see Figure 25).  The speed data were 
verified against TDOT’s ITS RTMS speed data, which we also collected as a part of this 
research project. 
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Figure 25. Chart. Truck Speed Fluctuation over a 24-hour Period. 

Even though the 3-mile study section has a significant 90-degree right turning curve, a major 
merging area, and at least one lane-changing maneuver required for the large trucks, 93% of the 
trucks were speeding over the posted speed limit of 55 miles per hour (see Figure 26).  If this 
two-LPR unit configuration were installed on a straight section of the Interstate system, one 
would probably expect near 100% of the trucks speeding over the 55 mph limit and a significant 
portion of them exceeding the speed limit by more than 10 mph. 

Improved Matching Rates 
The matching rate without using our series of matching algorithms is less than 40%.  With the 
algorithms we developed in Chapter 4 they improved significantly to achieve 97% or higher 
matching rates and very low false matching rates (see Table 5).  These results are better than any 
achieved in literature.  Even more impressive than the matching rates are the very low false 
matching rates we have achieved with the more sophisticated matching algorithms.  With a false 
matching rate of less than 1%, tremendous economy is accomplished. 

The Olieveira-Han Learning Algorithm not only yielded the best performance in both high 
positive matching rates and low false matching rates, but the performance continues to improve 
over time as the algorithm continues to learn on its own in the field (see Figure 27).  The 
performance is also very stable over time without unexpected fluctuation 

 



 
 

45 
 

 

Figure 26. Chart. Truck Speed Distribution in Study Area 

 

Table 5.  Plate Matching Accuracy Results. 
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Figure 27. Chart. Performance of Oliveira-Han Automated Learning over Time. 
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Chapter 6 – Conclusions  
This study has successfully accomplished the proposed tasks and concluded that automated truck 
speed enforcement on Interstate highways using license plate recognition technology (LPR) is 
highly feasible (with over 97% positive-matching rate and less than 1% false-matching rate), 
even when LPR performance is, at times, less than desirable (less than 30% of accuracy).  The 
points below suggest that we move forward towards deploying the algorithms. 

• Many metropolises reduced the posted speed limit for large trucks for the purposes of air 
quality and safety; 

• To derive benefits from such action, the reduced speed limit has to be enforced; 
• A large-scale enforcement of the new speed limit is often extremely challenging due to 

fiscal and human resource constraints; 
• Large trucks are required to enter weigh stations; 
• By tracking these trucks at various locations along the Interstate highways, warnings and 

citations could be issued when they stop at the weigh station; 
• Most tracking systems are either too expensive, non-universal, or still in development; 
• All trucks are required to have license plates; 
• Even though LPR technology is not perfect, the text-mining algorithms developed in this 

study can match a high percentage of truck plates and, also, determine their speeds; 
• It would be desirable to proceed with a real-time LPR large truck tracking and speed 

monitoring study before the eventual deployment. 
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