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EXECUTIVE SUMMARY 

Throughout the United States, the growth of traffic demand on freeways has far 

outpaced the growth rate of constructed lane miles.  This widening gap between travel 

demand and infrastructure supply has resulted in an increase in congestion levels.  Within 

the Seattle, WA area, this has translated to over 70 million hours of travel delay and over 

45 million gallons of excess fuel consumption at a cost of over $1 billion.  Given high 

construction costs and impacts, one accepted way to address these problems is to manage 

the existing infrastructure more efficiently with traffic control and management 

technologies such as ramp metering.  Studies performed within the Seattle area at the 

introduction of new ramp metering methodologies have shown coincided significant 

reductions in travel time as well as lower accident rates. 

Ramp metering breaks up long strings of vehicles merging onto the freeway and 

controls the freeway demand.  Outcomes of these actions include a reduction in 

secondary queuing within the merging area and a reduction of congestion within the 

downstream mainline portion of the freeway.  The simplest ramp metering methods are 

pre-timed and are mainly beneficial for recurring congestion such as predictably heavy 

rush-hour traffic.  Since most congestion is nonrecurring, such as congestion caused by 

accidents on the freeway, dynamic algorithms that use live traffic data from on-site 

sensors provide more benefit. 

In looking at existing ramp metering algorithms, we observed that some 

algorithms incur a long start-up time—the critical time that optimal adjustment is given 

to current traffic conditions.  Additionally, most algorithms we surveyed do not 



 viii

proactively reduce the chance of vehicle spillover onto city streets, and do not explicitly 

use ramp storage capacities to intentionally reduce mainline congestion. 

We have designed a new ramp metering algorithm that addresses these issues.  It 

is inspired by the Additive Increase Multiplicative Decrease (AIMD) congestion control 

mechanism used in the field of computer networking.  In our algorithm, a series of 

upstream on-ramps are selected to be metered at a multiplicatively reduced rate to 

regulate mainline traffic flow to the reduced capacity caused by congestion.  Then, ramp 

metering rates are additively increased to the initial ramp demand; the rate of increase is 

set to fill ramps to a prescribed storage capacity while avoiding overflow in a designated 

time period.  To continue addressing the remaining capacity deficit, additional upstream 

ramps are selected for metering, repeating the multiplicative/additive process. 

To test this algorithm, we implemented two models of Seattle area freeways—

Northbound I-5 in northern Seattle and Westbound I-90 in Bellevue and Issaquah within 

the PTV Vision VISSIM microscopic traffic simulator.  We also implemented the 

currently active Fuzzy Logic ramp metering algorithm per Washington State Department 

of Transportation specifications and consultation as a benchmark algorithm.  Our 

scenarios consisted of lane-blocking incidents during both peak-period and non-peak 

period traffic conditions modeled from two midweek days in August, 2006. 

We found in our experiments that our AIMD method outperformed the Fuzzy 

Logic algorithm in most cases, offering reduced system-wide delay and improved 

mainline travel.  In particular, AIMD significantly reduced the average systemwide 

vehicle delay by as much as 28.2%.  In one scenario, AIMD reduced ramp spillover into 
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surface streets that was otherwise observed with Fuzzy Logic.  In this scenario, 

systemwide total delay was reduced by 5.4% from that of Fuzzy Logic. 

Through our research efforts, we identified a selection of improvements that can 

be made to our algorithm and our models, as well as additional criteria that would be 

valuable for new experimental scenarios.  Our recommendations are to conduct further 

research to address these improvements and to develop the algorithm for eventual on-site 

testing. 
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1 INTRODUCTION 

From 1980 to 2005, yearly vehicle miles traveled in the US increased by 95.4% 

from 1.53 million to 2.99 million, while road mileage increased only about 3.5% from 

3.86 million miles to 4.00 million miles (Bureau of Transportation Statistics, 2007).  The 

enlarging gap between travel demand and infrastructure supply has increased the level of 

congestion nationwide.  According to the 2007 Urban Mobility Report (Schrank and 

Lomax, 2007), the annual average delay per person in the 85 surveyed-urban areas was 

44 hours in 2005, a 175% increase compared to that of 1982.  The Greater Seattle area 

has consistently been ranked as one of the most congested areas in the United States.  

Traffic congestion resulted in a total of 74.1 million person-hours of travel delay and 54.7 

million gallons of excess fuel consumption in Seattle in 2005, which correspond to a 

congestion cost of $1.41 billion, the 15th highest in the U.S. (Schrank and Lomax, 2007). 

Adding more roadways and lane capacity have been traditional solutions for 

solving traffic congestion problems.  However, due to the high construction costs, long 

project cycles, and complicated procedures for new construction projects, the increase of 

roadway mileage has lagged far behind the increase of demand over the past several 

decades.  A commonly accepted solution to address the gap between roadway supply and 

travel demand is to manage the existing infrastructure more efficiently with traffic control 

and management technologies.  Of these technologies, ramp metering has been regarded 

as the most direct and efficient countermeasure against freeway congestion 

(Papageorgiou et al, 2003).  Since the ramp metering concept was introduced in 1960s, 

ramp meters have been deployed across the country and proven to be effective for 

freeway congestion management (Bogenberger and May, 1999). 
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Ramp meters are stop-and-go signals located on entrance ramps of freeways.  

They are intended to improve traffic conditions on freeways by regulating how quickly 

vehicles can join the mainstream traffic.  This can bring about two outcomes: the 

reduction of secondary queuing within on-ramp merge areas caused by vehicle platoons, 

and the reduction of vehicles contributing to mainline congestion.  Ramp meters also 

have the capacity to distribute demand among multiple on-ramps, discourage short trips, 

and encourage the use of underutilized ramps and arterials (Jacobson et al, 1989). 

Ramp metering strategies can be divided into two categories: pre-timed meter 

control and traffic responsive meter control.  Pre-timed ramp metering is very similar to 

pre-timed intersection signal control. It does not rely on live traffic data.  Parameters are 

predetermined based on off-line analysis with historical data.  For this reason, pre-timed 

ramp meter control is only effective for recurrent congestion (Saito et al, 2003).  Since 

nearly 60% of traffic delays are caused by non-recurrent congestion (Cambridge 

Systematics Inc., 1990), pre-timed ramp meter control effectiveness is largely degraded 

in typical freeway applications.  To address this problem, traffic responsive ramp meters 

have been developed and deployed.  These ramp meters use real-time traffic detector data 

for meter rate calculations and are therefore responsive to both recurrent and non-

recurrent congestion. 

The effectiveness of traffic responsive ramp meters has been verified by several 

studies.  For example, Piotrowics and Robinson (1995) reported that Seattle’s FLOW 

ramp metering project that applied the Bottleneck algorithm (Jacobson et al, 1989) 

reduced freeway travel time from 22 min to 11.5 min and decreased accident rates by 

39% in the metered area.  The Fuzzy Logic ramp metering algorithm (Taylor and 
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Meldrum, 1998) currently employed by the Washington State Department of 

Transportation (WSDOT) outperformed the bottleneck algorithm in a test conducted by 

Taylor and Meldrum (2000b). Depending on the designs of traffic responsive ramp 

metering algorithms and characteristics of the roadway networks in which they are 

deployed, actual benefits can vary significantly from case to case. 

1.1 PROBLEM STATEMENT 

In order to operate a freeway according to particular goals in efficiency and to 

create minimal impact on the operation of surrounding city streets and the overall delay 

experienced by drivers, it is important for ramp metering strategies to address a number 

of challenges that are found within existing systems.  In particular, ramp metering 

strategies should allow for flexibility in configuration to meet a set of goals, and should 

provide safeguards against the overflow of traffic onto city streets.  Furthermore, an ideal 

ramp meter strategy should address these goals with a proactive methodology, reducing 

the amount of startup time needed for discovering and properly addressing a problem 

such as an incident on the freeway, thus reducing the amount of congestion and delay 

experienced by drivers. 

As seen in the next section, many existing strategies tend to be reactive rather 

than proactive.  For example, a particular measure for reducing the chance of ramp queue 

spillover may only occur when a loop detector placed at the entry of a ramp detects high 

occupancies.  Also, many strategies do not employ a methodology that intentionally uses 

the available ramp queue storage capacity for effecting an intended outcome; instead, the 

available capacity is not an explicit factor within such methodologies when real-time 

inputs are used to compute metering rates. 
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We address these two challenges through a novel approach for ramp metering that 

provides freeway operators an active control mechanism for immediately curbing the 

growth rate of delayed vehicles behind a targeted traffic-blocking incident or stationary 

choke point.  This is accomplished by limiting incoming on-ramp traffic to a fraction of 

normal flow rates and then additively increasing metering rates while filling the ramps to 

a predefined capacity; hence, the mechanism is called AIMD (Additive Increase, 

Multiplicative Decrease).  At this point, original throughput of the on-ramp is restored to 

avoid traffic spilling out beyond the ramp entrance.  We find through simulation that for 

certain types of scenarios, our targeted response method offers a significant reduction in 

the delay of mainline traffic when compared with the Fuzzy Logic algorithm (Taylor and 

Meldrum, 2000a) that is currently deployed by the Washington State Department of 

Transportation (WSDOT) in the two sites that we have modeled. 
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2 REVIEW OF PREVIOUS WORK 

A number of surveys, case studies, and implementation notes exist on ramp 

metering strategies (US Department Of Transportation Research and Innovative 

Technology Administration 2008) (Bogenberger and May, 1999).  Many designs have 

been devised and implemented in urban locations since the introduction of ramp meters 

in the 1960s.  We describe a selection of ramp metering algorithms to compare and 

contrast our work and also review some state-of-the-art examples of recent ramp 

metering research. 

2.1 RAMP METER RESEARCH EMPHASES 

2.1.1 Dynamic Congestion Response: ALINEA and METALINE 

Two long-standing examples of ramp metering strategies that are responsive to 

traffic congestion are the ALINEA (Asservissement linéaire d’Entrée Autoroutière) 

algorithm (Papageorgiou et al, 1991) and its area-wide variants as METALINE 

(Papageorgiou et al, 1990).  These approaches have been demonstrated to be beneficial 

and stable to the freeway under certain traffic operation policies.  The additive nature of 

the metering rate calculations inherent in these strategies, however, requires that several 

iterations be executed before effectiveness is achieved.  This is undesirable, as the 

Mobility Facts (Lerner-Lam, 1992) state that traffic delays increase geometrically with 

increases in incident duration.  Slow startup reduces the prevention of congestion and 

causes the most valuable time period for reducing total vehicle delay to be wasted.  In our 

work, we seek to promptly start our response at an effective level when ramp meters are 

enabled. 
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ALINEA and METALINE estimate traffic density from occupancy measurements 

at loop detectors downstream of the metered on-ramp.  The meter rate is adjusted 

according to a linear feedback control mechanism.  One assumption inherent in the 

operational theory behind these algorithms is the preservation of freeway efficiency at the 

cost of unlimited delay imposed on incoming vehicles.  This leaves opportunities for 

spillover onto surface streets and a decreased vehicle throughput on traffic entering the 

freeway.  These aspects directly conflict with traffic operation policies that are designed 

to minimally impact surrounding roadway networks, as well as policies that provide an 

equitable level of service to traffic in close proximity to incidents. 

2.1.2 Equity: BEEX 

An important aspect of ramp metering is that of equity: balancing a ramp meter’s 

congestion reduction capabilities with the delay experienced by drivers in varying 

proximities to congestion sites.  Zhang and Levinson (2005) find that the strongest 

metering strategy possible—that of maximum reduction of mainline delay at a bottleneck 

site—imposes severe delay penalties on on-ramp traffic closest to the bottleneck.  The 

most equitable metering strategy, on the other hand, is said to have the goal of allowing 

all drivers to experience the same average trip speed, regardless of their proximity to the 

bottleneck when entering the freeway.   The BEEX (Balanced Efficiency and Equity) 

demonstration specifically evaluates optimization methods for maximizing equity while 

minimizing efficiency loss (Zhang and Levinson, 2005).  An aspect of this involves 

nonlinearly weighing each vehicle’s travel time with the ramp meter-induced delay while 

giving preferred treatment to those vehicles most affected by metering.  In our system, it 

is possible to set ramp capacity variables to limit the maximum delay, but 
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equity/efficiency optimization as seen in BEEX can provide superior guidance in 

optimizing these settings automatically, system-wide. 

2.1.3 Prediction: SWARM 

SWARM (System-Wide Adaptive Ramp Metering) uses data from detectors 

placed at bottleneck locations to estimate roadway densities.  The system continuously 

applies a linear regression on recent Kalman filtered data to forecast rises in density.  If 

the prediction exceeds a preset saturation density, a calculated number of vehicles 

necessary to prevent the oversaturation are withheld among upstream ramp meters.  This 

system had recently been evaluated in the Portland, Oregon area (Ahn et al, 2007). 

2.1.4 System Integration: MILOS 

MILOS (Multi-objective, Integrated, Large-scale, Optimized System) uses a 

selection of advanced computational techniques and a system communications 

architecture to negotiate interactions between freeway traffic and surface street signal 

control systems.  The entire area-wide ramp metering operation is treated as a series of 

linear optimization problems that receive dynamically changing inputs from roadway 

detectors and traffic controllers.  Ramp queue usage is calculated according to cost 

coefficients.  Additionally, the system analyzes traffic patterns to predict appropriate 

strategies for alleviating impending congestion (Ciarallo and Mirchandani, 2002).  

MILOS is now being evaluated in an Arizona freeway corridor (Head and Mirchandani, 

2006).  Although our work is not as complex and general-purpose as MILOS, we 

anticipate that the MILOS system integration work can provide insight for scaling a 

system as ours. 
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2.2 RAMP METERING IN MINNESOTA 

We briefly review the progression of ramp metering algorithms deployed in 

Minnesota to illustrate the effectiveness of new methodologies both on road network 

efficiency and also on public perception. 

2.2.1 ZONE 

The basic concept behind the Minnesota ZONE algorithm, in effect before the 

year 2002, was to control the volume of traffic passing through a series of roadway 

segments with the goal of keeping density at or below a constant value.  These segments 

were usually allocated in such a way that the upstream ends carried free-flowing traffic 

and the downstream ends contained a critical bottleneck.  One zone could span several 

off-ramps and metered on-ramps.  The volume consistency was maintained by using 

ramp meters to make the sum of upstream volumes coming from mainline sources and 

controlled on-ramps equal to the sum of downstream volumes destined for off-ramps and 

reduced-capacity bottlenecks.  (Bogenberger and May, 1999) 

Although ZONE had been effective in reducing freeway congestion and accident 

rates, ramp meter-induced delays on on-ramps in excess of 4 minutes experienced by 

many drivers prompted the legislature to force all 430 Twin Cities-area ramp meters to be 

shut off for 6 weeks in 2000.  The absence of metering was studied carefully, and results 

revealed several benefits that can be largely attributed to ramp metering.  For example, 

during the period of no ramp metering, a 22% increase in freeway travel time and a 26% 

increase in crashes were observed.  (Cambridge Systematics, 2001) 
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2.2.2 SZM 

This prompted the development of a new ramp metering algorithm that improved 

upon safety and flexibility, but also imposed waits of no longer than 4 minutes.  SZM 

(Stratified Zone Metering) characterizes freeway traffic conditions through the use of 

layers of segments.  Unlike the single layer of segments found in ZONE, the SZM layers 

are hierarchical: the lowest layer contains zones that are defined by 2 contiguous stations, 

the next layer’s zones each contain 3 contiguous stations, etc.  This structure is 

hierarchically evaluated to meter on-ramp traffic to compensate for the excess demand 

found within all layers, determining system-wide metering rates according to downstream 

zones, ramp queue length, and maximum allowable ramp delay (Xin and Horowitz, 

2004). 

Further research is underway in estimating accurate queue sizes given 

inaccuracies in detection technologies employed (Liu et al, 2007).  Most ramps in the 

Twin Cities area are equipped with queue and passage loop detectors—the queue detector 

being found toward the start of the ramp and the passage loop being found toward the 

end.  These pairs of loops are used in SZM as check-in/check-out detectors to keep a 

count of ramp meter queue length.  This check-in/check-out conservation methodology 

produces erroneous queue length estimations if one or both of the loops do not count 

accurately.  Liu et. al. (2007) proposes that ramps equipped with only an accurate queue 

loop detector use the ramp metering rate to substitute bad passage detector counts.  For 

ramps with inaccurate counts from both the queue and passage detectors, a Kalman 

filtering model is applied to improve accuracy.  Since we currently use similar check-

in/check-out counts in our algorithm, this work is of interest for long-term robustness. 
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2.3 RAMP METERING IN WASHINGTON STATE 

2.3.1 Bottleneck 

The WSDOT commissioned the development of the Bottleneck algorithm in 1978 

for use in the Seattle area.  Bottleneck was designed within a framework that uses two 

algorithms—an independent and integrated algorithm—to generate two metering rates; 

the more restrictive rate was selected as the implemented rate.  While the independent 

algorithm (called the Local Algorithm) consisted of using a curve to derive a 

predetermined metering rate from loop detector occupancies in the freeway mainline 

upstream of a metered on-ramp, the integrated Bottleneck algorithm had a broader area of 

impact (Jacobson et al, 1989). 

For each segment often consisting of an upstream on-ramp and downstream off-

ramp, Bottleneck compares the occupancies of detectors against threshold values that 

represent the freeway operating at capacity.  For each segment satisfying this threshold, 

similar segment-based volume entry/exit metrics as employed as seen in ZONE to 

quantify the excess demand that must be controlled upstream through metering.  While 

the segments employed in Bottleneck are smaller than those of ZONE, a tunable number 

of upstream on-ramp metering rates outside of the each segment can be influenced via 

weighting factors.  As a result, segments that contain recurring bottlenecks are configured 

to apply heavy weights to influence the on-ramp meter rates in the neighboring upstream 

segments (Jacobson et al, 1989). 

As with the Minnesota shutdown study, freeway benefits were observed in the 

Seattle area that were at least partially attributed to the introduction of ramp meters.  

When ramp metering was introduced, the travel time in a 6.9-mile (11.1 km) site 
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decreased by 43% in the first two years.  And, among a 5-year pre-metering period 

ending in 1981 and a 3-year post-metering period beginning in 1985, a 38% decrease was 

observed in the number of accidents within the analyzed 12.4-mile (20.0 km) corridor 

(Jacobson et al, 1989). 

2.3.2 Fuzzy Logic 

The WSDOT later commissioned the development of a new ramp metering 

algorithm for the Seattle region that employed fuzzy logic, a means of comparing values 

in a qualitative fashion rather than by absolute, black-and-white metrics.  This was done 

because of insufficiencies found in the Bottleneck and Local strategies employed up until 

1999.  Both Bottleneck and Local strategies performed poorly in the presence of 

inaccurate or malfunctioning loop detectors.  Also, they caused oscillations in queue 

length and metering rate because of decisions within the algorithms activated by constant 

thresholds and the lack of inputs originating from other locations within the system 

(Taylor and Meldrum, 2000a).  For these and other reasons including gradual changes in 

vehicle volumes in critical portions of freeway, Bottleneck required constant tuning 

(Taylor and Meldrum, 2000b).  Poor detector layout was also a source of concern that 

could not be corrected by the older algorithms.  Ultimately, Fuzzy Logic showed 

improved performance in the study sites, including a reduction of queue detector 

occupancy (a sign of shorter ramp queues), and much less oscillation of queue lengths.  It 

was also observed that Fuzzy Logic produced metering rates that were more appropriate 

for given current traffic conditions than what was experienced previously. 

The Fuzzy Logic algorithm currently deployed in the Seattle freeway network 

converts a variety of system-wide live detector input data into qualitative terms (e.g. 
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“very high”, “low”, etc.)  These qualitative classifications for downstream occupancy, 

local speed, etc. are then weighed according to a set of rules and reformulated into a final 

metering rate.  For each meter, inputs for these rules include mainline speed and 

occupancy at each metered on-ramp, the maximum occupancy and speed found among a 

selected set of downstream loop detector stations, and occupancies at detectors placed 

toward the entry end of the on-ramp (Taylor and Meldrum, 2000a).  This general-

purpose, qualitative system is reportedly straightforward to configure for a particular 

location and is robust to imprecise or missing detector data (Taylor and Meldrum, 1998). 

Our algorithm differs from Fuzzy Logic in several regards.  Our algorithm is 

explicitly instructed where an incident is located and monitors the growth and dispersal 

of congestion, whereas traffic operations personnel manually enable and disable Fuzzy 

Logic metering on groups of ramps in response to incidents (unpublished data).  We have 

designed our algorithm to deliberately use all permitted ramp storage capacity to effect an 

intended outcome—congestion reduction at the site of the incident—whereas Fuzzy 

Logic does not bear such an explicit definition for ramp storage space usage.  Fuzzy 

Logic therefore may not exert a desired degree of traffic control in as many scenarios 

because it reacts only to inputs from a limited number of roadway sensors.  A 

consequence of this in worst-case scenarios is that traffic can overflow onto city streets—

a politically undesirable outcome that causes problems in city traffic operations 

(Jacobson et al, 1989).  While our algorithm’s meter rate is additively adjusted to avoid 

such spillovers, Fuzzy Logic reactively accelerates its metering rate when detectors 

placed toward the end of the on-ramp are occupied by waiting vehicles.  In light of these 



 13

observations, we have observed that no amount of ramp metering can improve the worst 

cases of traffic congestion. 

Because our modeled freeways currently use the Fuzzy Logic algorithm, we have 

chosen to implement Fuzzy Logic within our models as a benchmark algorithm for our 

experiments. 
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3 METHODOLOGY 

A search on the Internet for the keywords “traffic congestion control” presents 

results that mostly pertain to computer network congestion rather than roadway network 

congestion.  But, computer network congestion control theories may be applicable to 

roadway networks with appropriate modifications, offering new ways to envision 

roadway traffic management.  The Additive Increase Multiplicative Decrease (AIMD) 

congestion control mechanism (Chiu and Jain, 1989) employed by Transmission Control 

Protocol (TCP) networks provides one such inspiration.  It is through this concept that we 

have developed an area-wide system for coordinated ramp meter control and focused 

upon its applicability for addressing freeway congestion. 

3.1 ADDITIVE INCREASE, MULTIPLICATIVE DECREASE 

The AIMD mechanism is primarily intended to address computer network 

congestion promptly by setting the entering network traffic rate to a level that is 

sufficiently low to avoid further deterioration of network traffic flow.  This concept is 

also important for roadway traffic networks because traffic queues can form quickly at 

bottlenecks but take much longer to discharge. 

 The AIMD mechanism is applied to a coordinated ramp meter group using a two-

step algorithm.  First, the upstream on-ramps that are to be metered are selected as seen in 

Figure 3-1; the criteria for selection are based upon the measurements of reduced 

capacity.  Then, the ramp metering rates at each ramp are systematically set as shown in 

Figure 3-2. Details of the two steps are described in Sections 3.2 and 3.3.  
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Figure 3-1.  AIMD algorithm response group flowchart 
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Figure 3-2.  AIMD algorithm metering rate flowchart 
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3.2 RESPONSE GROUP ASSEMBLY 

 
Station i+1Station i

Storage 
capacity P 

On-Ramp i+1On- Ramp  i

Passage
detector

Queue
detector

Off-ramp
detectorOff - Ramp i Off-Ramp i

Roadway Section i+1Roadway Section i 
Station i+1Station i

i+1 

Off-ramp
detector- Ramp i Off-Ramp  +1

Roadway Section i+1Roadway Section i 

Demand
detectorRamp

meter

 

Figure 3-3.  Freeway layout example 
 

Figure 3-3 shows a section of typical freeway layout.  Our assumptions 

concerning segments are that segments are bounded by loop detector stations.  Typically, 

loop detector stations are around half a mile (0.8 km) apart and contain at most around 

half of an interchange on each end. 

In selecting the response group—the contiguous pool of upstream ramps that are 

metered to  mitigate a particular area of downstream congestion—it is helpful to propose 

that an incident such as a lane-blocking disabled vehicle exists between Stations i and i + 

1 in Figure 3-3.  Here, the upstream traffic flow from the mainline and on-ramps (if any) 

at Station i represents the demand.  In addition, the eventual downstream mainline and 

off-ramp traffic flow found at Station i + 1, if less than the traffic flow at Station i, is a 

consequence of the reduced capacity caused by the incident and growing vehicle density 

behind it. 
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Let us define k to be the time that the incident location is made known to the ramp 

metering system so that a response group can be established.  We also assume that time 

interval k occurs after the start of the incident at time interval k0.  In our experimental 

system, each time interval is 20 seconds, the length of time used by WSDOT sensors for 

reporting periodical measurements. 

Two variables are estimated and used to establish the response group: the number 

of vehicles queued behind the bottleneck or incident, and a measure of the excess demand 

given the reduced capacity imposed by the congestion. 

3.2.1 Vehicle Queue Estimation 

We must determine an approximation of the number of vehicles that are queued 

up behind the incident location at time interval k to establish an appropriately-sized initial 

response group.  Our approach is to quantify the number of vehicles within a roadway 

segment.  This can be done by counting the number of vehicles that leave each segment 

on the downstream end for a sufficient amount of time and subtract this from the count 

for entering vehicles on the upstream end of the same segment.  Specifically: 
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where 

Vin is the volume of traffic entering the upstream end of Station i in vehicles per 

time interval, with corresponding on-ramp volumes included, and 

Vout is the volume of traffic leaving the downstream end of Station i, with 

corresponding off-ramp volumes included. 

 



 19

The time between time intervals k0 and k should be long enough to represent 

typical free-flow travel time under incident-free conditions from one end of the segment 

that contains the incident to the other. 

If congestion is detected promptly, Q should be small.  At each successive time 

interval, Q can be updated by performing:    
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where 

w is the number of intervals between queue size estimation measurements.  In our 

model, w = 3.  A value that is greater than 1 provides a greater degree of 

stability in measurements. 

3.2.2 Excess Demand Estimation 

Ιf Q(i, k) and Q(i, k0) are approximately equal given typical fluctuations in normal 

traffic flow, then traffic density between the incident location and Station i is not 

increased between intervals  k and k0.  This implies that the reduced capacity caused by 

the incident is still sufficient to handle the demand and that on-ramp control is not 

necessary.  However, if Q(i, k) is significantly higher than Q(i, k0), then excess demand is 

witnessed and on-ramp metering is necessary. 

The excess demand over the reduced capacity, denoted by ΔD in vehicles per time 

interval, represents the upstream demand that exceeds the reduced capacity at the incident 

location.  Assuming that the vehicle volumes observed at Station i + 1 are limited by the 

reduced capacity at the site of the incident, ΔD can be estimated as:    
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where 

a is the number of time intervals to sample in acquiring a stable excess demand 

estimation.  In our experiments incorporating a 2-minute startup delay, we 

have empirically found 0kka −=  to produce reasonable results for ΔD.  In 

our simulations, smaller values of a have resulted in less stability. 

3.2.3 Automatic Segment Extension 

In the worst types of congestion, the queue can extend beyond the upstream end of the 

segment in which it originates.  To have better measures of queue size and excess 

demand, it is then necessary to track the queue into the upstream neighboring segment.  

An automated comparison of density and speed can be used to notify the system of the 

need to extend the segment. 

Traffic volume V, space-mean speed s , and traffic density d are three 

fundamental variables in traffic flow theory and hold the following relationship:                                             

dsV ⋅=  (4)
 

Traffic density has been used as the sole variable for freeway Level of Service 

(LOS) analysis (Transportation Research Board, 2000). However, using the density alone 

for congestion detection may result in frequent false alarms because even when d is high, 

throughput can remain high as long as traffic flow does not enter a breakdown, low-speed 

condition.  As has been observed in practice, s  is low and d is high when congestion 

occurs. 

Our models assume the use of loop detectors.  Assuming vehicles travel at a 

constant speed over each roadway section, the occupancy of interval k at station i can be 

related to vehicle length and speed as: 
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where 

k is the time interval index, 

i is the roadway section index, 

N is the number of vehicles counted for the interval, 

x is the vehicle index among all counted vehicles, 

s is vehicle speed for each vehicle, 

l is the effective length for each vehicle, roughly equal to the sum of vehicle 

length and loop detector length, 

T is the length of time interval, and 

O is the loop measured occupancy. 

 

Since we assume that all vehicles travel at approximately a constant speed ),( kis , 

then Equation (5) can be rewritten as 
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where 

l is the mean effective vehicle length.  We use ft18=l (5.5 m) in our calculations 

based on the study by Wang and Nihan (2003). 

Since hourly traffic volume V(i,k) = N(i,k)/T, using V(i,k) to replace N(i,k)/T 

yields 
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Comparing Equation (7) with Equation (4), we can obtain 
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Consequently, space-mean traffic speed can be calculated as 
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Given high signal to noise ratios found in occupancy measurements, it is ideal to 

use speed trap detectors to supply s , as we have done in our models. 

If  

crdkid >),(  (10)
and 

crskis <),(  (11)
 

then congestion is detected. Here dcr is a pre-specified critical density value (in 

our model: 50 vehicles per mile, or 31 veh/km) and scr is a chosen critical speed value (in 

our model: 40 miles per hour, or 64 km/h).  Selections of these thresholds are based upon 

observations of volume-density relationships in (Drake et al, 1967). 

Once congestion is detected on a segment boundary, the vehicle volumes from the 

new, upstream segment are incorporated into mainline queue estimations by superseding 

Equation (2) with: 
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where 

E is the number of segment extensions to be incorporated.  In our model E is not 

extended beyond 1.  While it is possible to proceed beyond one extension, we 

did not perform any tests with this, primarily because of the propagation of 
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inaccuracies that would be likely found in live loop detector measurements.  

More on this issue and consequences of this limitation are discussed in 

Section 3.5.3. 

 

Other variables as defined in Equation (2).  Similar changes are made to Equation 

(3) for ΔD. 

3.2.4 Response Group Size 

If DΔ  can be controlled to be less than 0, the growth of the queue can be reversed.  To 

approach this goal, we can meter ramp traffic in an ordered fashion so that the total 

blocked on-ramp demand in an interval is no smaller than DΔ .  Based on the AIMD 

mechanism, the initial ramp metering rate r for an on-ramp j is set at a fraction of the on-

ramp demand: 

))()((),( jHjFmkjr −⋅=  (13)
where 

m is the multiplier coefficient that is between 0 and 1, and 

F is the total on-ramp demand in vehicles per time interval.  On-ramp demand 

should be a stable value measured over a span of time greater than 3 min., or 

considered constant.  In our model, it is 10 min., measured from the advance 

queue detector placed at the entry of the on-ramp. 

H is the flow rate of HOV vehicles using the ramp’s HOV bypass in vehicles per 

time interval, or 0 if no bypass exists.  In our model, H is sampled similarly as 

F, but is measured from the HOV passage detector.  This change in position 

from the on-ramp’s entry point guarantees that measured vehicles are only 

HOV vehicles. 
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For clarity, we shall define f = F – H, where f is the on-ramp demand for non-

bypassed vehicles.  Equation (13) then becomes: 

)(),( jfmkjr ⋅=  (14)
Suppose n upstream on-ramps should be included in the response group.  The 

total blocked vehicles for interval k is then expected to be 

∑ ∑
−= −=

−=−
i

nij

i

nij
jfmkjrjf )()1()),()((  (15)

The total blocked vehicles for interval k should satisfy 
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where 

β is a coefficient with a value no less than 1.0. If a higher β value is chosen, then 

a stronger response will be initiated and a bigger response group will be 

established.  This coefficient affects the proportion of emphasis given to the 

efficient flow of mainline, uncontrolled traffic versus the efficiency of traffic 

that enters the freeway through metered on-ramps. 

 

Since the constrained upstream traffic takes time to arrive at the congestion area, 

the accumulation of delayed vehicles in the congestion area may increase over a certain 

time period after ramp metering is started and then decrease until the congestion is fully 

discharged or all possible available ramp capacity is exhausted. 

In this derivation we assume all vehicles entering the freeway through ramps in 

the response group are destined toward the incident site.  In reality, this is not necessarily 
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true; drivers penalized by ramp metering while entering the freeway may exit before 

encountering the incident site.  Depending upon origin-destination travel patterns within a 

particular geographic region, the estimation of the number of ramps needed within the 

response group according to (17) may be too low.  Furthermore, to prevent excess delay 

caused by a large response group, the extent of the response group may need to be 

limited. 

In our simulations, an assigned ratio of vehicles exit at each diverge point 

regardless of each vehicle’s origin.  Our simulations therefore represent an unfavorable 

origin-destination travel characteristic, introducing more systemwide delay and less 

congestion control than what might be otherwise experienced if more vehicles stay on the 

freeway longer after entering.  Ideally, this systemwide delay can be reduced by 

incorporating relevant origin-destination travel patterns for the region into the model; in 

our case, however, these patterns were unknown. 

3.2.5 Response Group Recurring Reevaluation 

As seen in the Figure 3-1 flowchart, response group assemblies are recomputed 

periodically throughout the duration of the congestion to respond appropriately to short-

term changes in ΔD and ramp demand.  It is also possible to only recompute response 

group assemblies when ramp queues fill up, but in our experimental system, we find a 

slight improvement in performance when response groups are recomputed once every 

minute.  We attribute this improvement in performance by the need for our algorithm to 

be adaptive toward stochastic vehicle arrivals to the ramp meter queue. 

To facilitate the recomputing of response groups during the course of on-ramps 

filling, it is necessary to incorporate the current number of queued vehicles in each ramp 
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to estimate the number of vehicles that can still be withheld.  Equation (17) is 

correspondingly updated as follows: 
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where 

U is the number of vehicles already queued in the respective on-ramp, and 

P is the usable ramp storage capacity. 

3.2.6 Ramp Queue Counting 

U, the number of vehicles in an onramp queue, is found by maintaining running 

counts of vehicles that pass through the advance queue detectors and the passage 

detectors.  While this method for counting vehicles can prove to be problematic as seen in 

Minnesota (Liu et al, 2007), we use it in simulation with the expectation that it can 

eventually be replaced by a suitable estimation method. 

With the current check-in/check-out scheme employed within our model, many 

ramps do not allow for clear distinction between HOV vehicles and single-occupant 

vehicles.  Some ramps have a single advance queue detector before the HOV bypass lane 

is available.  Other ramps equipped with longer HOV bypass lanes have suitably-placed 

advance queue detectors, but vehicles are free to change lanes after passing over the 

detectors.  As a result, the ramp queue counts include those vehicles that are bypassing 

the queue on the HOV lane.  At times of busy HOV bypass activity, the estimations on 

queued vehicles may be artificially low.  Due to the higher speed of vehicles in the 

generally short bypass lane, a maximum of one or two vehicles affects the queue length 

estimation at any one time. 
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3.3 RAMP METERING RATE CALCULATION 

The initial restrictive rate for ramp meter j is set at a multiple m of the on-ramp 

demand as shown in Equation (14).  Thereafter, the rate increases additively from interval 

to interval with the goal of avoiding ramp queue spillover onto local streets.  The 

increment for ramp meter j depends on how many vehicles the ramp can store.  Our intent 

is for the ramp meter rate to reach the nonrestrictive level (the initial on-ramp demand) 

when the ramp is filled to its safely usable storage capacity P.  When considering the 

value P for each ramp, spare capacity for sporadic peak arrival patterns should be 

factored.  P also directly affects the maximum delay experienced by each driver and can 

be limited accordingly. 

If it takes u intervals for the initially restrictive metering rate fm ⋅  to reach on-

ramp demand f that is subject to metering (measured in units of vehicles per interval), u 

can be calculated as 
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where 

)( jrΔ  is the interval increment for on-ramp j. 

 
The total blocked vehicles should be equal to the safely usable storage capacity P 

after u intervals.  We find the value of )( jrΔ  that achieves this goal through the use of 

arithmetic progression, where the sum of all evenly-spaced values a1 through au over u 

increments is 
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In summing the traffic demand that is restricted by the ramp meter, we get: 
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Rearranging terms for Equation (21) yields 
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On-ramps with smaller storage space and larger demand will have a larger 

increment than those with a larger storage space and lower demand.  From the initial rate 

set as seen in Equation (14), the metering rate is incremented at each interval by rΔ .  (As 

mentioned earlier, the interval used in our model is 20 sec.) 

)(),()1,( jrkjrkjr Δ+=+  (23)
 
3.3.1 AIMD and Prior Queuing 

Under some circumstances, it is necessary to assume that a queue may already 

exist within an on-ramp when it is added to the response group.  In particular, when a 

ramp is removed from a response group and undergoes a shutdown procedure (see 

Section 4.5.5), vehicles may still be queued in the event that the ramp is re-added. 

In cases where AIMD must account for vehicles already queued, it is necessary to 

incorporate the number of queued vehicles into the Equation (14) calculation of initial 

metering rate.  Equation (14) can then be updated as: 
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3.3.2 Demand Rate Tracking 

Equations (14) and (22) for r and rΔ , respectively, are formulated under the 

assumption that the ramp demand, F, is constant.  It may be necessary to assume the 

ramp demand changes over time, making dependent variables as r and rΔ  require 
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adjustment at predefined intervals to better match the most current ramp demand 

measurements.  When the ramp metering rate is to be updated, the ramp meter rate can be 

calculated according to Equation (24), and rΔ  can be recalculated as in Equation (22) 

with the most recent ramp demand rate sampled over a period of time. 

In our model, we update r and rΔ  in this way once every minute, letting Equation 

(23) be evaluated at the remaining 20-second intervals. 

3.3.3 Rate Limits 

An upper and lower limit may be placed on the output metering rate.  An upper 

limit on rate is needed to prevent the ramp meter signal from oscillating between red and 

green too quickly.  An upper limit that produces a cycle time of around 3 seconds is 

therefore desirable; the maximum meter rate is limited to 1160 vehicles per hour as in the 

WSDOT Fuzzy Logic algorithm specifications (Taylor and Meldrum, 2000a). 

Likewise, a lower limit on rate directly affects the maximum possible delay 

experienced by drivers in the ramp meter queue and reduces the likelihood of ramp meter 

violations (Cambridge Systematics 2001).  The Fuzzy Logic default parameters state the 

maximum cycle time as 19.3 seconds, or a minimum rate of 187 vehicles per hour 

(Taylor and Meldrum, 2000a). 

When evaluating Equations (14) and (17), it is important to consider these limits 

as they can ultimately affect the number of vehicles that can be withheld on each ramp. 

3.3.4 Ramp Queue Overflow Correction 

The additive rate adjustment methodology employed in the AIMD algorithm is 

designed to fill ramp queues to a predefined capacity.  Although extra space within the 

ramp may be allocated to accommodate unexpected rises in demand, this may not be 
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enough to prevent overflow in all cases.  When overflow absolutely must be prohibited, a 

feature similar to that found in SZM (Xin et al, 2004) and Bottleneck (Jacobson et al, 

1989) is employed to temporarily increase the ramp meter rate when the occupancy 

measured from the advance queue detector at the on-ramp entry is over a predefined 

threshold.  In our experimental system, the ramp meter rate is multiplied by a factor of 

1.33 when the ramp queue exceeds the safely usable storage capacity P plus a maximum 

allowed deviation.  This value of 1.33 was found in initial simulation trial runs to 

satisfactorily limit spillover from sporadic demand increases; the value of 1.2 caused too 

weak of a response to effectively reduce spillover delay.  The current system should be 

configured to minimize or eliminate the strength and frequency at which this overflow 

mechanism engages, as this negatively impacts the effectiveness of AIMD by letting 

additional vehicles enter the freeway. 

3.3.5 Ramp Demand Measurements 

The ramp demand measurements used to supply the variable F in Equation (13) 

come from vehicle counts taken at the advance queue detector.  If the ramp queue 

overflows and backs over the advance queue detectors, the measured rate decreases.  

Without safeguards, the perceived demand is decreased and the ramp meter rate is 

correspondingly decreased.  In the current implementation, this creates an undesirable 

vicious cycle that can produce more congestion on city streets. 

To avoid this problem, ramp demand samples are only taken when the occupancy 

of the advance queue detector is less than a given threshold.  In our experimental model, 

this threshold is 10%.  The value of 10% was chosen based on the observation of 

occupancy values in free-flowing traffic.  While this works for our experimental model, 
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this is not an ideal solution because demand samples are not taken at times of 

unexpectedly high demand.  Ideally, demand measurements should be obtained from 

sensors and systems surrounding the streets that are not as prone to the problems 

mentioned. 

3.4 INPUT REQUIREMENTS 

Our implementation of AIMD uses a variety of inputs that can be made available 

from roadway detectors.  In particular, we assume that the detectors are the same type as 

found in our experimental model site: 6-foot by 6-foot (1.8m by 1.8m) inductor loops 

embedded in the roadway surface.  These inductor loops can individually provide vehicle 

count information as well as occupancy measurements—an indication of how long one or 

more vehicles occupy that particular measured patch of pavement.  A high occupancy can 

be an indication of congestion.  Inductor loops placed in sequential pairs on each lane can 

be used to measure vehicle speed and vehicle length. 

These are the detectors and inputs that AIMD uses: 

• Mainline detectors: 

o Vehicle counts: check-in and check-out for mainline queue size estimation 

Q 

o Occupancy: for incident segment extension 

o Speed: for incident segment extension 

• Exit detectors: 

o Vehicle counts: check-out for mainline queue size estimation Q 

• Advance queue detectors: 

o Vehicle counts: Ramp demand estimation F 
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o Occupancy: Ramp demand sampling suspension. 

• Demand detectors: 

o Occupancy: call for the signal controller 

• Passage detectors: 

o Vehicle counts: Ramp queue check-out for queue length estimation U. 

Check-in for mainline queue size estimation Q.  HOV bypass: estimate for 

HOV bypass demand H. 

 

Some of these detectors are different than what exists today in the sections of 

freeway that we have modeled.  In particular, we include the following additions: 

• Advance queue detectors in HOV bypass lanes:  In reality, advance queue 

detectors are generally only found in general-purpose lanes.  Our AIMD 

implementation uses a ramp queue count check-in/check-out detector pair for all 

traffic entering the on-ramp. 

• Advance queue detectors in general-purpose lanes:  Not all ramps are actually 

equipped with advance queue detectors.  Again, our AIMD implementation 

requires vehicle counts for queue measuring. 

• Mainline detectors that measure speed:  Dual-loop speed traps are only actually 

found in locations generally over 1 mile apart.  While it is possible to estimate 

speed from single loop detectors using the technique described in (Wang and 

Nihan, 2003), these estimations can be high in variance.  For the purposes of 

staging our experiments in a controlled environment, we prefer to provide low-

variance data for our inputs. 
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3.5 FUTURE METHODOLOGY 

3.5.1 AIMD Coexistence 

Many ramp metering strategies are designed to reduce secondary queuing in on-

ramp merge areas.  One of the mechanisms that help the most with secondary queue 

reduction is the breakup of platoons—series of consecutive vehicles that are “dumped” 

onto an on-ramp from an adjacent signalized intersection (Bogenberger and May, 1999). 

Since AIMD is designed specifically for reducing delay caused by nonrecurring 

congestion at a particular point on the mainline, it is not intended to run before or after 

the response group selection mechanism deems it necessary to turn on ramp metering.  

This, however, leaves the job of platoon breakup and other local ramp congestion 

mitigation unresolved under the AIMD algorithm alone.  One solution is to allow AIMD 

to coexist with another ramp metering algorithm.  For example, Fuzzy Logic can control 

metering rates; then, when a response group is established, AIMD can override all Fuzzy 

Logic metering rates within the response group to effect the necessary changes in vehicle 

flow to reduce the mainline congestion around a particular incident.  When the mainline 

queue caused by the incident clears, the AIMD response group will be empty, AIMD will 

shut down, and Fuzzy Logic ramp meter rates will no longer be overridden. 

This approach to coexistence can also be applied to multiple AIMD response 

groups.  Currently, no research has been performed within this project on the presence of 

multiple response groups (e.g. the mitigation of multiple congestion sites within our 

models) or background ramp metering.  It is possible for the most upstream response 

group to override metering rates generated within the next downstream response group 

that encroaches on the upstream congestion site. 
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3.5.2 Automatic Incident Discovery 

The operational model of initiating a response group—informing the system of 

the presence of a new incident—comprises entering the segment of the incident into the 

system, as well as providing an estimate on how long the incident has existed.  A 

recommended form of incident discovery involves drivers calling traffic centers using 

their cellular phones (Xia and Horowitz, 2005), and this is the form that we use within 

our experimental scenarios.   

Ideally, this manual step of incident discovery can be automated.  However, 

reliable automatic discovery of incidents has been an area of ongoing research and for 

robustness requires more advanced techniques than the procedure described in Section 

3.2.3.  For example, many challenges exist in automatic video-based detection (Shehata 

et al, 2008) and the proper classification of traffic conditions from sensor data (Ghosh-

Dastidar and Adeli, 2006).  It is important to consider that the quality of discovery, 

including reliability and location accuracy, depends upon the degree of traffic flow sensor 

coverage on the freeway. 

3.5.3 End-of-Incident Shockwave Tracking 

For isolated incidents at moderately busy times of the day—especially incidents 

that cause lane blockages—congestion is fairly localized to the site of the incident.  At 

times closer to peak volumes, however, when the freeway is operating more toward 

critical capacity, any minor perturbation has the capability of generating congestion.  

Furthermore, congestion takes longer to clear. 

One phenomenon that had repeatedly been observed in our simulations is the slow 

movement of congestion upstream in a giant aggregate shockwave when the incident is 
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cleared.  This shockwave may propagate past several roadway segments.  The best 

response group-related action for this phenomenon may be to progressively remove 

downstream ramps from the response group as the shockwave propagates backward.  Our 

current methodology, however, does not currently define a means for accomplishing this.  

Instead, the original section and the adjacent upstream segment (added because of the 

incident segment extension function) track the elevated volume within those two 

segments, but do not cause ideal response group action after the shockwave leaves those 

segments.  Instead, the response group is liable to be made empty prematurely, removing 

AIMD ramp meter control before congestion is cleared. 
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4 EXPERIMENT DESIGN 

4.1 PLATFORM 

We have implemented our urban freeway models using the PTV Vision VISSIM 

microscopic traffic simulator (PTV Vision, http://www.ptvamerica.com/software.html).  

VISSIM provides the means to define roadways, driver behaviors, vehicle handling 

characteristics, and other representations of real-life transportation systems and to 

simulate all traffic flow according to a vehicle following model.  VISSIM’s most 

sophisticated driver behavior model is based on the work of Wiedermann (1991).  

VISSIM also has the capability of controlling signals through a proprietary scripting 

language called VAP (Vehicle Actuated Programming).  We implemented AIMD and our 

benchmark algorithm, Fuzzy Logic, in VAP for controlling the virtual ramp meters in our 

model. 

Each simulation run is seeded with a random number.  Due to the chaotic nature 

of vehicle interactions in congestion, outcomes of individual runs can vary considerably.  

For this reason, all of our simulation results are averaged over 10 runs; 10 was assumed 

to offer an acceptable margin of error. 

4.2 MODEL 1: I-5 

 
Figure 4-1.  I-5 model segments 
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Our first model encompasses 5.6 miles (9.0 km) of northbound Interstate 5 from 

NE 45th St. past NE 145th St. in northern Seattle, WA.  This region is informative for our 

preliminary tests because of the existence of 7 metered on-ramps and varying degrees of 

traffic densities that coincide with daily commuter patterns.  In this modeled area, 

archived traffic flow speed measurements in 20-second intervals are available from 5 

dual-loop detector stations, and volume/occupancy measurements of mainline and 

interchange locations are available from 8 additional loop detector stations.  Interstate 5 

in Seattle is well-equipped for automated traffic monitoring because of the inputs needed 

for the Fuzzy Logic ramp metering algorithm currently in operation, as well as other 

traffic reporting purposes. 

As seen in Figure 4-1, this stretch of Interstate 5 varies from 3 to 5 lanes wide, 

including add-lanes from 2 on-ramps and exit only lanes to 2 off-ramps.  The 

northernmost 2 miles (3.2 km) feature a left-side high-occupancy vehicle (HOV) lane.  

Of the 7 on-ramps, 5 of these have an HOV bypass lane that allows qualified vehicles to 

avoid the ramp meter queue.  While the posted speed limit is 60 miles per hour (97 

km/h), the free flow speed generally ranges from around 55 to 65 miles per hour (89 to 

105 km/h).  Note that the figure shows segment numbers on the roadway; each segment 

number corresponds with the detector station that is positioned at the segment’s upstream 

vertical line.  Each segment is also marked with its approximate length in miles. 

The positions of the virtual loop detectors in our model are similar to those found 

on Interstate 5, including the mainline single-loop detectors and speed traps, advance 

queue detectors at the starts of each on-ramp, and presence/passage detectors at each 

signal head.  We note, however, that positions are not exact.  During the course of this 
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research, we did not access resources that revealed precise loop detector locations, but we 

did find precise ramp meter locations.  The need for precise loop detector locations was 

deemed a lower priority compared with other tasks at hand; it was assumed that the 

ultimate delay outcomes in simulation would not be significantly different. 

To calibrate each of our test scenarios within the model, we chose Tuesday, 

August 8, 2006 for our tests due to the availability of sufficient 20-second data, the 

general absence of faulty loop detectors, normal driving patterns, and the minimal impact 

on traffic due to weather.  (This day is reported to have been overcast).  Our simulation 

model was calibrated following a similar approach introduced in Zhang et al. (2008).  We 

calibrated our model by configuring driver behavior and speed distribution parameters so 

that modeled speed mean and variance resembled the 20-second loop detector speed trap 

data.  We also specified vehicle distributions that mirrored the presence of heavy vehicles 

(based on vehicle length measurements in dual-loop detector data) and HOV vehicles. 

We also observed that it was necessary to calibrate VISSIM virtual loop detector 

occupancy measurements to physical loop detectors installed in Seattle freeways.  We 

found that comparable occupancy rates are produced by VISSIM when the virtual loop 

detectors on the I-5 model are configured to be 11 by 6 feet (5.8 by 1.8 m), as opposed to 

the 6 by 6-foot (1.8 by 1.8 m) actual detector sizes. 
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4.3 MODEL 2: I-90 

 
Figure 4-2.  I-90 model segments 

 

The second model consists of 6.7 miles (10.8 km) of westbound Interstate 90 

from Highlands Dr. NE at the eastern end of Issaquah to 161st Ave. SE in the eastern part 

of Bellevue, WA.  This portion of I-90 is also well-equipped with sensors, including 12 

mainline stations as seen in Figure 4-2.  Five of these can measure mainline speed.  There 

exist 4 exits and 4 entries.  The first two (from the right, or east) have two general-

purpose lanes metered separately, the third entry is fed by a slip ramp and a loop ramp 

(both metered separately), and all on-ramps contain HOV bypass lanes.  This stretch of I-

90 consistently contains 3 general-purpose lanes, but also contains an added left-side 

HOV lane that starts midway through the modeled site.  The posted speed limit is 60 

miles per hour (97 km/h), and the free flow speed generally ranges from around 60 to 75 

miles per hour (97 to 121 km/h).  Comparable occupancy rates for the I-90 model are 

found when modeled detectors are configured to be 13 by 6 feet (4.0 by 1.8 m). 

4.4 DELAY ZONE CONFIGURATION 

VISSIM contains functionality for measuring the travel time incurred by all 

vehicles that go from one location to another.  Each of these zones is defined by two 

markers within the model’s roadway network that signify the start and the end.  Vehicles 

that travel within the zone but do not pass through both markers are not counted within 
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that respected zone.  These zones can also be used to measure delay.  Delay in each 

vehicle is determined from the reduction of speed that effects some hindrance or 

obstruction.  Examples of these include red signals, slow leading vehicles, and traffic 

congestion. 

To understand the effect of each experimental scenario, delay zones positioned at 

all entry and exit points in the model have been divided into four classifications: 

• Controlled:  Traffic that has entered the freeway through a metered on-ramp.  

Note that the meter may not be operating per response group state at startup stages 

of each simulation run. 

o 1.  Traffic that passes through the incident site 

o 2. Traffic that does not pass through the incident site.  Note that some of 

this traffic may be affected by the congestion that results from the 

incident. 

• Uncontrolled:  Traffic that has entered on the mainline or through the unmetered 

express lane terminus (found in the I-5 model) 

o 3.  Traffic that passes through the incident site 

o 4.  Traffic that does not pass through the incident site. 

 

VISSIM provides average delays representing all delay zones in each category.  

In our reporting, we consider Controlled categories together and both Uncontrolled 

categories together.  The Controlled categories are an especially important indication of 

system performance because vehicles entering through metered entries are subject to 

ramp meter-induced delay on the on-ramps as well as incident-induced congestion on the 
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mainline.  These can then be compared with the Uncontrolled categories to understand 

the impact of the meters on traffic that is local to the incident site. 

 

We also configured the following delay zones: 

• Entire network:  Controlled and Uncontrolled categories together.  This is the 

overall network delay. 

• Incident area delay:  Delay zones positioned around the incident site and 

expected congestion growth area.  This is an indication of congestion severity. 

• Ramp queue delay:  Each modeled ramp is equipped with a delay zone that 

measures signal-induced delay. 

• Spillover delay:  The model is configured with extra roadway beyond the entry 

of each on-ramp and corresponding delay zones to simulate surface streets.  Any 

delay measured in these zones is an indication of queued traffic spilling out onto 

city streets.  Severe cases imply a decrease in throughput.  Spillover delay is 

reported separately from controlled traffic delay. 

• Secondary queuing delay:  Delay zones positioned in merging and weaving 

areas at the end of each on-ramp. 

4.5 MODEL CONFIGURATION 

4.5.1 VAP Structure 

The VAP code for Fuzzy Logic and AIMD are unified into one code.  This was 

partially done because of the shared code needed to facilitate the response group on/off 

mechanism for measuring Fuzzy Logic in a way equitable to AIMD in some of our tests.  
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This also allows for easier configuration for use with new models.  Despite this code 

unification, the code is modular and can readily be broken apart into an AIMD-only 

implementation or a Fuzzy Logic-only implementation. 

4.5.2 VAP Settings 

Several variables introduced in the “methodology” section are defined as 

constants or defined when the system is informed of a new incident: 

• System-level variables: 

o Code timeslice:  The number of times per simulation cycle the VAP code 

is run: 2. 

o Loop cycle: The number of seconds each loop collects vehicle counts and 

occupancy between reads: 20 sec. 

o Dwell time:  The minimum amount of time required for the demand 

detector to be occupied by a vehicle before the signal will turn green: 1.5 

sec. 

o Green time:  The time duration that the “green” signal head indicator is 

shown: 1.5 sec. 

o Minimum red time:  The minimum duration that the “red” signal head 

indicator is shown: 1.6 sec.  This plus the green time specify the minimum 

allowed cycle time.  Note that since the VAP code is run twice each 

simulation second, the minimum red time is actually 2 sec. within our 

simulations.  Our implementation maintains the residuals from this 

discrepancy and compensates throughout the run of the simulation. 
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o Yellow time:  the amount of time ramp meters display the “amber” 

indication” before ramp metering begins: 3 sec.  In VISSIM, this 

indication prompts virtual drivers to stop. 

o Maximum signal cycle:  The maximum cycle time allowed for the signal: 

20 sec.  This limits the AIMD maximum cycle to 0.7 sec. greater than the 

related Fuzzy Logic default setting. 

• Settings specific to AIMD: 

o Multiplier m (see Section 3.2.4):  This had been empirically found to 

work suitably at a setting of 0.33 in a series of initial tests. 

o Response group strength β (see Section 3.2.4):  Most of our experiments 

had been run with this set at 1 (nominal strength).  We have found, 

however, that minor adjustments between uncontrolled traffic efficiency 

and controlled traffic efficiency can be made by changing this parameter. 

o Safely usable storage capacity P (see Section 3.3):  This generally ranges 

from 15 to 25 among all ramps. 

o Ramp demand advance queue occupancy threshold (see Section 3.3.5):  

10% 

o Ramp demand sampling cycles:  Ramp demand measurements are 

sampled over an extended period of time to produce a relevant, but stable 

value.  We empirically chose 30, which represents 10 min. 

o Excess demand coefficient (see Section 3.3.4):  1.33 

o Response group cycles:  This is the number of cycles that must occur 

between each reevaluation of response group size.  Values too small are 
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sensitive to vehicle volume fluctuations, and values too high cause slow 

ramp meter response.  We empirically chose 3 cycles which translates to 1 

min. 

o Response group queue threshold:  This estimated number of vehicles in 

the mainline queue must exceed this value in order for a response group to 

be established.  We empirically chose 15.  Values that were less caused 

the model to be susceptible to traffic volume fluctuations after the 

response group was empty, and values that were greater caused ramp 

meters to be shut off too soon. 

o Decay factor (see Section 4.5.3):  Specific to each scenario. 

• Settings specific to Fuzzy Logic: 

o All parameters and defaults for Fuzzy Logic come from the WSDOT 

Fuzzy Logic operations training material (Taylor and Meldrum, 2000a).  

We had communicated with knowledgeable personnel at WSDOT to 

receive updates in configuration information that had been a result of 

recent construction projects or adjustments due to changing travel patterns. 

4.5.3 Vehicle Diffusion and Decay 

In VISSIM, vehicles on modeled freeways sometimes totally stop in a mainline 

lane and wait for gaps in neighboring traffic to appear before making a lane change.  This 

often happens at diverge points at exits and around incident sites.  Ideally, these vehicles 

should have made the lane change further upstream.  Although many vehicles do change 

lanes sufficiently early, not all vehicles follow suit. 
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Two scenarios happen in reality that cannot be modeled with existing simulation 

tools.  First, VISSIM lacks the sufficient simulation of courtesy that many Seattle-area 

drivers give in letting such waiting drivers make desired lane changes.  Second, in reality, 

if a driver cannot see an opening in a neighboring lane, the driver is conscious of the 

traffic that he or she is blocking in his or her own lane and drive onward to the next exit 

after a short period of time.  By default, simulated drivers in VISSIM wait a default 60 

seconds, creating an unrealistically sizeable traffic jam in the process. 

We have not found a means to incorporate the first scenario into our model and do 

not believe that it is entirely necessary for sufficient quality in our results.  But, the 

second scenario can be approximated by changing the VISSIM vehicle diffusion driver 

behavior parameter.  We estimate that drivers will stand still on a roadway to make a lane 

change for an average of 5 seconds.  In the simulation, if these vehicles cannot make the 

lane change, they are removed from the simulation.  This produces a similar effect as 

drivers giving up on an intended lane change and instead accelerating. 

Among our models, vehicles are removed from 0 to about 1.5 vehicles per 

simulated minute.  For the higher rates of removals, this may result in over 30 vehicles 

disappearing from the traffic network.  Unfortunately, no mechanism exists in VAP for 

detecting these removals.  Therefore, there is no way to automatically account for these 

removals in the check-in/check-out mainline detector pairs that are used to estimate 

mainline queue length.  This causes artificially high queue length estimations and can 

prevent the response group from becoming empty and shutting down. 
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The AIMD implementation is therefore equipped with a decay variable—a rate 

that is determined from one simulation run conducted for each scenario that adjusts the 

check-out counters to factor in the removed vehicles. 

4.5.4 Fuzzy Logic Implementation 

In order to facilitate an equitable comparison between AIMD and the algorithm in 

use by WSDOT, Fuzzy Logic, it was necessary to implement Fuzzy Logic to function as 

close to the actual WSDOT implementation as possible, as described in (Taylor and 

Meldrum, 2000a). 

We note the following details that pertain to our implementation: 

• WSDOT traffic operations personnel often manually turn on ramp meters 

upstream of congestion sites based upon intuition and experience.  Ramp meters 

are often turned on in groups based upon proximity of ramps to the incident and 

proximity to other ramps.  We consulted with one who had such experiences to 

verify that the Fuzzy Logic ramp meter selection was appropriate for the type and 

severity of incident being simulated (unpublished data).  Generally, the meter (or 

group of meters) immediately upstream of the incident is enabled.  Then, after 

approx. 5 minutes, if it is observed that the congestion caused by the incident is 

growing, the meter (or group of meters) upstream of the first activation are 

enabled.  These activations remain in effect until it is observed that the congestion 

is cleared. 

• The mechanism for triggering and resetting the ramp meter signal are different 

than the actual implementation.  In our model, we do not use the passage detector 
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to verify that a vehicle has advanced.  Since simulated VISSIM drivers always go 

on “green”, we assumed that this was of little concern. 

• Each Fuzzy Logic meter is configured to observe the highest occupancy and 

speed from a specific selection of downstream mainline loop stations.  In reality, 

many of these stations are beyond the end of the modeled area.  We therefore do 

not observe the Fuzzy Logic algorithm responding to congestion that could 

happen far downstream of the incident location outside of our modeled area. 

• The deployed implementation of Fuzzy Logic uses data from single loop detectors 

to derive local mainline speed—one of the inputs used by the algorithm in 

determining its output metering rate.  This estimation is performed using this 

function (Taylor and Meldrum, 2000a): 

gOccupancy
VolumeSpeed

⋅
=  (25)

where 

g is a constant factor to convert density to occupancy, as defined in (Taylor and 

Meldrum, 2000a). 

 

Our models use the speed measurements provided by the virtual loop detectors, 

offering samples that are subject to far smaller variance. 

• Differences in loop detector placements as described in Section 4.2 may affect 

overall performance of Fuzzy Logic.  Since loop detectors are believed to be in 

comparable positions, it is assumed that the overall outcome is not significantly 

different.  This is, however, a concern for future work when there are 

opportunities for revisiting simulated outcomes and comparing them with reality. 
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• For the two multi-lane on-ramps found in the I-90 model, the Fuzzy Logic 

implementation as coded approximates the implementation as specified by 

WSDOT (Taylor and Meldrum, 2000a).  While the report calls for one Fuzzy 

Logic configuration per meter, we found it best to approximate the rates of each 

meter by treating the two-lane on-ramp as a whole and dividing the single rate by 

2.  For a more accurate Fuzzy Logic implementation, we can code all signals as 

being on separate ramps. 

4.5.5 Ramp Meter Shutdown Procedure 

As mentioned in Section 4.5.4, WSDOT traffic operations personnel today are 

responsible for manually enabling and disabling ramp metering within the Seattle area 

(unpublished data).  After ramp metering is enabled, traffic operations personnel then 

monitor the freeway condition around the incident site to determine when it is appropriate 

to shut off ramp metering, such as when the incident is cleared.  Traffic operations 

personnel may also elect to temporarily shut off meters for high-volume on-ramps in 

cases where mainline congestion is backing up onto a ramp and interfering with ramp 

meter operation. 

In our simulations, we have automated the shutoff when we detect that no 

congestion exists.  This detection is derived from the code pertaining to sectional check-

in/check-out vehicle volumes that are used for AIMD response group establishment.  

This automation is designed to approximate traffic operations procedures, although we do 

acknowledge that this automated process likely shuts off meters sooner and reduces 

overall delay that would otherwise occur. 
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In current freeway operations, when ramp metering is shut off, the meters operate 

at the minimal cycle to quickly, yet gradually, empty the ramp queue to the freeway.  The 

absence of such a scheme results in many vehicles being “dumped” onto the freeway at 

once—a likely source of additional congestion.  When no vehicle presence is detected at 

the ramp meter for 4 seconds, the signal head is then shut off.  This behavior is 

incorporated within our simulation models. 

4.5.6 Accidents 

The simulations conducted in this research sometimes do not show a significant 

difference between systemwide delays under the presence of ramp meter control versus 

delays under no ramp meter control.  This is contrary to results seen in ramp meter 

studies such as the Minnesota shutdown (Cambridge Systematics, 2001) and the WSDOT 

Bottleneck study (Jacobson et al, 1989) that show dramatic improvements when ramp 

meter control is introduced to a region.  A key factor for this discrepancy can be 

attributed to the fact that our simulation models do not incorporate the presence of 

accidents.  Collisions within a merging area can dramatically affect vehicle flow and 

therefore cause congestion.  The Minnesota and WSDOT studies show decreases in 

accident rates along with their observations of reductions in delay.  Since all VISSIM 

modeled drivers are not capable of causing accidents, our models cannot address this 

important aspect of ramp metering. 

4.6 TEST SCENARIOS 

In order to evaluate AIMD’s performance under a variety of conditions, eight 

scenarios were created; the I-5 scenarios take place on Tuesday, August 8, 2006, and the 

I-90 scenarios are configured for Thursday, August 3, 2006.  Vehicle volumes used are 
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presented in Table 4-1 and Table 4-2.  Note that the ramp numbers coincide with the 

segment numbers as seen in Figure 4-1 and Figure 4-2. 

Table 4-1.  I-5 vehicle volumes (veh/hr) on Aug. 8, 2006 

Time Main On-ramps Off-ramps 
1 2 4 6 ExpLn. 9a 9b 12 2 3 4 7 9 10

8:00a 4631 439 432 289 777 0 158 428 596 299 544 380 793 269 513 
11:00a 5372 616 424 281 628 0 212 492 622 444 661 485 1109 600 588 
1:30p 4711 727 581 358 706 2077 281 601 739 506 684 567 1093 132 713 

 

Table 4-2.  I-90 vehicle volumes (veh/hr) on Aug. 3, 2006 

Time Main On-ramps Off-ramps 
2 4 6a 6b 9 3 5 8 10 

5:45a 2031 534 1210 686 588 492 205 145 158 607 
9:30a 1820 587 1221 807 495 644 390 265 419 1191 
4:00p 1755 427 889 711 433 928 305 365 354 869 

 

In each of our scenarios, we simulate a congestion-causing incident that occurs 15 

simulated minutes after the start.  Delays are not recorded until 600 seconds.  This allows 

for “warm-up time” within our simulation—a population of all regions of our model with 

a steady vehicle density.  Each scenario is configured with the vehicle volumes for the 

main entry point, on-ramps, reversible express lane terminus (in the case of I-5 models), 

and off-ramps. 

Each scenario generally involves a hypothetical accident blocking the right lane in 

a particular location.  A driver in the area of the incident uses a cellular phone to report 

the general location of the incident to a traffic hotline.  As a result, the regional traffic 

operations center personnel enables ramp metering on the freeway 2 minutes after the 

start of the incident in attempts to slow the growing congestion.  (The actual average 

startup time reported by WSDOT for incident response notification is 1.75 minutes) 

(WSDOT, 2008).  Meanwhile, an incident response crew is dispatched to mitigate the 

lane blockage.  Our model unblocks the lanes after the respective duration, but the ramp 
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meters are still enabled until a sufficient reduction in congestion is detected at the 

incident site. 

Two variations of most scenarios involve the incident lasting 10 minutes and the 

incident lasting 20 minutes.  We generally limit our cases to these durations because of 

current model implementation limitations in tracking the congestion area through 

multiple stations as identified in Section 3.2.3.  We also note that among all types of 

incidents, the average incident duration is reported to be 14.0 minutes (WSDOT, 2008). 

Each of our test scenarios are configured with 14% HOV vehicles.  This had been 

found by comparing measured traffic volumes in HOV mainline and ramp bypass lanes 

with volumes found in general-purpose lanes during busy hours.  Due to the possibility 

that some HOV vehicles may have occupied general-purpose lanes, this estimate is likely 

low. 

We also estimated heavy vehicle proportions from length classifications collected 

by dual-loop detector stations.  The proportion of heavy vehicles (or vehicles longer than 

40 feet) was found to be approximately 6% of the total share during our simulation 

periods. 

We set the duration of each simulation to encompass all incident-induced delay; 

each simulation generally ends when incident-induced delay is no longer present.  For 

this reason, as well as the fact that our ramp meter algorithm implementation is limited in 

regards to properly handling recurring congestion, we chose times for simulations that 

involve moderate traffic—usually times that are at the start or end of a peak period.  In 

our models, we found that congestion caused by lane-blocking incidents rarely cleared 

within peak periods. 
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4.6.1 I-5 Scenarios 

Scenario 1a: 8:00 AM, after Lake City Way Interchange 

This first scenario consists of an incident taking place in the 4th segment 650 ft 

(198 m) downstream of the Lake City Way on-ramp.  This area of I-5 is curved, three 

lanes wide, and generally exhibits slower free-flowing traffic during this hour than seen 

in other portions of the model.  This takes place during the reverse-morning commute 

time period.  Three upstream on-ramps provide metered control. 

 

Scenario 1b: 11:00 AM, after Lake City Way Interchange 

Scenario 2 takes place at the same location as Scenario 1, but during a mid-day 

elevation in overall traffic volumes. 

 

Scenario 2a: 8:00 AM, after Northgate On-Ramp 

This third scenario takes place in the 9th segment 2100 ft (641 m) downstream of 

the Northgate on-ramp.  This portion of roadway is five lanes wide due to the addition of 

two left-hand lanes at the terminus of reversible express lanes.  Six upstream on-ramps 

are available within our model for controlling incoming traffic.  Unlike all of the other 

scenarios, this scenario involves the blockage of three lanes.  Three lanes are necessary 

for creating sufficient congestion at this time to warrant the use of ramp meters. 

 

Scenario 2b: 1:30 PM, after Northgate On-Ramp 

Scenario 2b’s site is the same location as Scenario 2a’s.  This scenario involves 

the blockage of one right lane. 
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4.6.2 I-90 Scenarios 

Scenario 3a: 5:45 AM, before 161st Ave. SE Off-Ramp 

This scenario takes place at the beginning of the morning commute on Westbound 

I-90 in the 10th segment, 850 ft (259 m) upstream of the 161st Ave. SE off-ramp.  This 

portion of I-90 is four lanes wide and rarely experiences recurring congestion. 

 

Scenario 3b: 9:30 AM, before 161st Ave. SE Off-Ramp 

Scenario 3b exists in the same location but at a later time.  At 9:30 AM, the 

morning commute peak traffic conditions are coming to an end. 

 

Scenario 4a: 9:30 AM, after W. Lk. Sammamish Pkwy. SE On-Ramp 

We located the incident site within Scenario 4a to be 1000 ft (305 m) downstream 

of the W. Lk. Sammamish Pkwy. SE on-ramp, in the 9th segment.  This is also a location 

that is free of recurring congestion. 

 

Scenario 4b: 4:00 PM, after W. Lk. Sammamish Pkwy. SE On-Ramp 

This final scenario takes place at the same location, but in the afternoon.  As with 

the other I-90 scenarios, this time is normally free-flowing without recurring congestion.  

In order to illustrate the effects of incident-induced mainline queuing backing up into the 

W. Lk. Sammamish Pkwy. SE on-ramp on the AIMD and Fuzzy Logic ramp metering 

methods, a special 30-minute incident is simulated. 
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5 FINDINGS/DISCUSSION 

5.1 I-5 SCENARIOS 

Scenario 1a: 8:00 AM, after Lake City Way Interchange 

Table 5-1 and Table 5-2 show the average vehicle delay (AVD), average number 

of stops, and vehicle counts amid our 10 simulation runs.  Table 5-1 pertains to a lane-

blocking incident that lasts for 10 minutes, while Table 5-2 pertains to a 20-minute 

incident.  As described in Section 4.4, delay zones are configured within our model to 

report average delay on uncontrolled vehicles (e.g. those vehicles entering the roadway 

network through the freeway mainline), and controlled vehicles (e.g. those vehicles 

entering through on-ramps that are subject to metering). 

 

Table 5-1.  Scenario 1a results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD* Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 27.7 0.2 2161 25.1 0.5 785 6.6 27.0 0.3 2946 
Fuzzy Logic 30.7 0.3 2159 20.9 0.3 788 3.7 28.1 0.3 2946 
No Control 32.0 0.4 2157 18.2 0.2 783 0.2 28.3 0.3 2940 

   * AVD = Average Vehicle Delay, in sec. 
 

Table 5-2.  Scenario 1a results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 71.7 1.2 3073 49.8 1.4 1118 14.1 65.9 1.3 4191 
Fuzzy Logic 76.0 1.4 3070 44.4 1.1 1126 8.9 67.5 1.3 4195 
No Control 81.3 1.6 3067 37.0 0.8 1121 0.7 69.4 1.4 4189 
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Total Vehicle Delay, Scenario 1a, 10-min.
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Total Vehicle Delay, Scenario 1a, 20-min.
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Figure 5-1.  Scenario 1a total vehicle delay 

 

Figure 5-1 shows the total vehicle delays for uncontrolled and controlled vehicles, 

as well as total systemwide delay.  The error bars depict the 95% confidence interval of 

the mean for each category of total delay according to t-statistics.  In order to illustrate 

the comprehensive effect of metering, the controlled delay includes traffic that is delayed 

on the ramps including overflows from ramp entrances.  Average vehicle delay for this 

portion of controlled traffic is also reported separately.  This is an important metric that 

can illustrate the potential negative impact of delay perceived by drivers desiring to enter 

the freeway.  In reality, under severe delay, some of these vehicles may likely involve 

drivers that choose not to use the respective entrances and instead use surface streets to 

find other entrances to the freeway.  We, however, are not able to reflect such drivers’ 

route choice behaviors in our simulation experiments. 

The 10- and 20-minute cases are configured to record delay for 32 and 45 

simulation minutes, respectively, after a 10-minute warm-up period.  16% of the approx. 

3460 veh/hr that pass through the incident site comes from ramps that can be metered. 

This scenario shows a similar systemwide average vehicle delay of AIMD to that 

of Fuzzy Logic; p=0.16 for the 10-minute case and p=0.48 for the 20-minute case.  But, 
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there exists a significant difference in priorities between delays imposed on uncontrolled 

and controlled vehicles.  AIMD decreases average delay on uncontrolled traffic from that 

of no control by 13.4% in the 10-minute case (p=0.01) and 11.8% in the 20-minute case 

(p=0.01).  For the 10-minute case, AIMD performs significantly better than Fuzzy Logic, 

decreasing average uncontrolled delay by 9.8% (p=0.01); however, for the 20-minute 

case, AIMD’s performance is comparable to that of Fuzzy Logic (p=0.21). 

 

Scenario 1b: 11:00 AM, after Lake City Way Interchange 

Table 5-3, Table 5-4, and Figure 5-2 show the results for this scenario.  The 10-

minute incident case records delay measurements for 35 simulation minutes, and the 20-

minute case covers 60 minutes.  Of the approx. 4350 veh/hr through the incident site, 

15% originate from on-ramps that can be metered. 

 

Table 5-3.  Scenario 1b results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 50.4 0.5 2749 40.8 0.9 785 12.1 48.3 0.6 3535 
Fuzzy Logic 54.8 0.7 2743 34.8 0.7 788 5.5 50.4 0.7 3531 
No Control 56.1 0.8 2749 29.6 0.5 784 0.2 50.2 0.7 3533 

 

Table 5-4.  Scenario 1b results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 83.7 1.7 4694 53.9 1.6 1374 11.7 77.0 1.7 6067 
Fuzzy Logic 83.1 1.6 4703 46.1 1.2 1376 6.1 74.7 1.5 6078 
No Control 86.3 1.8 4702 40.3 0.9 1368 0.2 75.9 1.6 6069 
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Total Vehicle Delay, Scenario 1b, 10-min.
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Total Vehicle Delay, Scenario 1b, 20-min.
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Figure 5-2.  Scenario 1b total vehicle delay 

 

Similar to Scenario 1a, comparable performance is again seen between AIMD and 

Fuzzy Logic for systemwide average delay in the 10-minute case (p=0.50) and the 20-

minute case (p=0.39).  For average vehicle delay among uncontrolled vehicles, the 8.0% 

reduction from the 10-minute Fuzzy Logic case to the AIMD case is still insignificant 

(p=0.28), and the slight increase from the 20-minute Fuzzy Logic case to the AIMD case 

is also insignificant (p=0.41). 

 

Scenario 2a: 8:00 AM, after Northgate On-Ramp 

Scenario 2a’s results are shown in Table 5-5, Table 5-6, and in Figure 5-3.  Delay 

measurements are recorded for 35 simulation minutes for the 10-minute case and 43 

minutes for the 20-minute case.  47% of the approx. 4570 veh/hr through the incident site 

are potentially subject to ramp metering. 

Table 5-5.  Scenario 2a results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 30.6 0.5 2780 39.4 0.9 1736 15.4 33.9 0.7 4156 
Fuzzy Logic 35.7 0.7 2773 32.8 0.7 1737 0.8 35.5 0.7 4155 
No Control 34.8 0.7 2777 31.6 0.6 1740 0.3 34.4 0.7 4159 
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Table 5-6.  Scenario 2a results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 66.9 1.9 3698 87.9 2.4 2344 30.6 75.0 2.1 5555 
Fuzzy Logic 76.5 2.3 3704 74.9 2.3 2349 7.6 77.9 2.4 5562 
No Control 79.6 2.4 3693 73.0 2.2 2350 0.2 79.3 2.4 5562 
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Total Vehicle Delay, Scenario 2a, 20-min.
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Figure 5-3.  Scenario 2a total vehicle delay 

 

While AIMD does not offer significantly different systemwide average delay than 

no control in the 10-minute case (p=0.73), it does offer a significant 5.4% delay reduction 

from no control in the 20-minute case (p=0.04).  The systemwide average delay for Fuzzy 

Logic, on the other hand, is not significantly different than that of no ramp meter control 

in both cases (p=0.38 and p=0.67 for 10- and 20-minute cases, respectively).  For the 10-

minute case, a significant 14.2% reduction in average vehicle delay for uncontrolled 

vehicles is seen from that of Fuzzy Logic (p=0).  The corresponding 20-minute case 

provides a 12.5% reduction in average delay (p=0.01). 
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Scenario 2b: 1:30 PM, after Northgate On-Ramp 

Table 5-7, Table 5-8, and Figure 5-4 show the results for Scenario 2b.  In this 

scenario, 67 simulated minutes of delay are recorded for the 10-minute case, and 140 

minutes are recorded for the 20-minute case.  Of the approx. 6740 veh/hr that pass 

through the incident site, 40% come from on-ramps that are subject to metering. 

Table 5-7.  Scenario 2b results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 39.5 0.2 7576 46.3 0.5 3921 5.2 42.8 0.3 10577 
Fuzzy Logic 43.2 0.2 7563 47.3 0.5 3921 1.3 46.0 0.3 10557 
No Control 44.5 0.2 7583 47.8 0.5 3918 0.3 47.0 0.3 10576 

 
Table 5-8.  Scenario 2b results, 20 min. 

Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 59.2 0.3 15920 68.8 0.8 8261 5.1 64.3 0.5 22251 
Fuzzy Logic 63.2 0.4 15936 71.9 0.9 8272 3.7 68.2 0.6 22272 
No Control 70.5 0.5 15920 76.1 1.0 8257 1.3 74.8 0.6 22248 
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Total Vehicle Delay, Scenario 2b, 20-min.
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Figure 5-4.  Scenario 2b total vehicle delay 

 

Here, both Fuzzy Logic and AIMD reduce systemwide delay from the None case.  

Fuzzy Logic’s systemwide reduction in average vehicle delay is varied (p=0.39 and 

p=0.05 for the 10- and 20-minute cases, respectively), and AIMD’s benefits follow suit 



 60

(p=0.09 and p=0.04 when compared with no control for 10- and 20-minute cases, 

respectively).  Here, however, a moderate difference is seen in the average delay 

reduction for uncontrolled traffic between AIMD and no control; where Fuzzy Logic 

offers varied reductions in delay (by 2.9% and 10.4% for 10- and 20-minute cases, 

respectively; p=0.36 and p=0.03), AIMD offers more significant reductions by 11.2% and 

16.0% for the 10- and 20-minute cases, respectively (p=0.04 and p=0.03). 

5.2 I-90 SCENARIOS 

Scenario 3a: 5:45 AM, before 161st Ave. SE Off-Ramp 

The results for Scenario 3a are found in Table 5-9, Table 5-10, and Figure 5-5.  

The 10-minute incident simulation recorded delay for 52 simulation minutes and the 20-

minute incident simulation recorded delay for 82 simulation minutes.  Of the approx. 

3930 veh/hr passing through the incident site, 66% originate from on-ramps. 

Table 5-9.  Scenario 3a results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 73.6 0.9 1752 97.6 1.5 3015 16.4 88.7 1.3 4767 
Fuzzy Logic 111.5 2.1 1749 130.4 2.7 2996 9.8 123.5 2.5 4745 
No Control 114.8 2.1 1751 125.0 2.4 2995 0.8 121.2 2.3 4746 

 

Table 5-10.  Scenario 3a results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 175.0 3.7 2756 204.6 4.8 4685 17.0 193.7 4.4 7442 
Fuzzy Logic 202.0 4.7 2756 221.5 5.5 4679 12.1 214.3 5.2 7435 
No Control 208.3 5.0 2752 217.6 5.5 4666 0.8 214.2 5.3 7418 
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Total Vehicle Delay, Scenario 3a, 10-min.
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Total Vehicle Delay, Scenario 3a, 20-min.
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Figure 5-5.  Scenario 3a total vehicle delay 

 

Fuzzy Logic offers no significant systemwide difference in average delay when 

compared with no control (p=0.58 and p=0.99 for 10- and 20-minute incident durations, 

respectively).  However, this scenario shows a marked benefit in systemwide average 

delay for AIMD when compared with Fuzzy Logic—decreases by 28.2% and 9.6% for 

10- and 20-minute cases, respectively (p=0 and p=0.03). 

Note in particular how the average vehicle delay is reduced on the controlled 

vehicles between AIMD and Fuzzy Logic by 25.1% and 7.6% for 10- and 20-minute 

cases, respectively (p=0.00 and p=0.06).  We discuss possible causes for these results in 

the next section. 

 

Scenario 3b: 9:30 AM, before 161st Ave. SE Off-Ramp 

Table 5-11, Table 5-12, and Figure 5-6 show the results for Scenario 3b.  For the 

52 simulation minutes of recorded delay in the 10-minute case and the 73 minutes of 

recorded delay in the 20-minute case, 73% of the approx. 3310 veh/hr that reach the 

incident site come from controllable on-ramps. 
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Table 5-11.  Scenario 3b results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 58.7 0.9 1571 91.0 1.9 3214 19.8 80.4 1.6 4786 
Fuzzy Logic 88.5 2.0 1570 114.2 2.8 3199 7.3 105.7 2.5 4768 
No Control 90.3 2.1 1571 108.9 2.7 3194 1.0 102.8 2.5 4764 

 

Table 5-12.  Scenario 3b results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 169.1 4.5 2233 231.3 6.7 4472 29.2 210.6 6.0 6704 
Fuzzy Logic 201.4 5.8 2230 254.5 8.0 4452 22.8 236.8 7.3 6682 
No Control 222.8 6.6 2224 260.7 8.0 4423 1.5 248.0 7.5 6646 
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Total Vehicle Delay, Scenario 3b, 20-min.
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Figure 5-6.  Scenario 3b total vehicle delay 

 

The behavior of this scenario is similar to that of Scenario 3a.  Again, the 

difference in average systemwide delay between Fuzzy Logic and no control is 

insignificant (p=0.50 and p=0.24).  AIMD offers significant systemwide reduction in 

average delay from that of Fuzzy Logic—a 23.9% reduction in the 10-minute case and an 

11.1% reduction in the 20-minute case (p=0.00 for both). 
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Scenario 4a: 9:30 AM, after W. Lk. Sammamish Pkwy. SE On-Ramp 

Table 5-13, Table 5-14, and Figure 5-7 show the results for Scenario 4a.  Vehicle 

delays are recorded for 37 simulation minutes in the 10-minute case and 57 minutes in 

the 20-minute case.  Of the approx. 3500 veh/hr that pass through the incident site, 73% 

are subject to the possibility of ramp meter control. 

Table 5-13.  Scenario 4a results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 26.7 0.2 1116 41.2 0.5 2310 11.4 36.5 0.4 3426 
Fuzzy Logic 34.3 0.3 1115 42.9 0.5 2311 4.5 40.1 0.4 3426 
No Control 36.1 0.4 1116 40.4 0.5 2306 0.7 39.0 0.5 3422 

 

Table 5-14.  Scenario 4a results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 48.5 0.6 1727 73.4 1.4 3543 19.9 65.2 1.1 5270 
Fuzzy Logic 60.3 0.9 1726 78.9 1.5 3545 13.0 72.7 1.3 5271 
No Control 82.6 1.6 1726 90.1 1.8 3541 0.8 87.6 1.7 5267 
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Total Vehicle Delay, Scenario 4a, 20-min.
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Figure 5-7.  Scenario 4a total vehicle delay 

 

In the 10-minute case, the systemwide average vehicle delay between no control 

and Fuzzy Logic is not significantly different (p=0.73).  The corresponding 9.0% 

reduction from Fuzzy Logic to AIMD is moderately significant, however (p=0.08).  But, 
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in the 20-minute case, Fuzzy Logic significantly reduces the systemwide average vehicle 

delay by 17.0% (p=0.03).  The additional 10.3% reduction from Fuzzy Logic afforded by 

AIMD in this 20-minute case is moderately significant (p=0.08).  As in previous 

scenarios, the delay imposed by ramp metering on controlled vehicles for the 20-minute 

case results in complete systemwide improvement that reduces the overall average delay 

of all classifications of vehicles. 

 

Scenario 4b: 4:00 PM, after W. Lk. Sammamish Pkwy. SE On-Ramp 

In this final scenario, results are shown in Table 5-15, Table 5-16, and Figure 5-8.  

The 10-minute case had been configured to record delay for 28 simulation minutes and 

the 20-minute case recorded delay for 45 simulation minutes.  The traffic volume through 

the incident site was approx. 2540 veh/hr, including 74% from on-ramps. 

Table 5-15.  Scenario 4b results, 10 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 23.5 0.2 831 48.4 1.0 1592 20.3 39.9 0.7 2423 
Fuzzy Logic 30.8 0.4 829 49.5 1.0 1593 7.2 43.1 0.8 2422 
No Control 34.1 0.5 829 49.7 1.0 1596 4.2 44.4 0.8 2425 

 

Table 5-16.  Scenario 4b results, 20 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 34.6 0.5 1329 83.3 2.1 2531 36.9 66.5 1.5 3860 
Fuzzy Logic 49.8 1.0 1330 83.1 2.1 2528 18.0 71.6 1.8 3858 
No Control 54.2 1.2 1329 80.8 2.1 2526 11.1 71.6 1.8 3856 
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Total Vehicle Delay, Scenario 4b, 20-min.

0

20

40

60

80

Unctrl. Ctrl. Ramps System

Vehicles

Ti
m

e 
(h

rs
) AIMD

Fuzzy

None

 
Figure 5-8.  Scenario 4b total vehicle delay 

 

Fuzzy Logic exerts comparable average systemwide delay as the None case in 

both 10- and 20-minute cases (p=0.48 and p=0.99, respectively).  This scenario shows a 

moderately reduced average systemwide delay for AIMD from that of Fuzzy Logic in the 

10-minute case—a decrease by 7.4% (p=0.06).  For the 20-minute case, AIMD’s 

reduction by 7.1% is significant (p=0.02). 

This general trend is also seen in the average vehicle delays for uncontrolled 

traffic.  While Fuzzy Logic does show a significant reduction in delay from no control by 

9.7% and 8.1% for 10- and 20-minute cases, respectively (p=0.01 and p=0.03), AIMD 

shows a further significant reduction from that of Fuzzy Logic by 23.7% and 30.5% 

(p=0.01 and p=0.03). 

In this scenario, we observe traffic that backs up into the W. Lk. Sammamish 

Pkwy. SE on-ramp and overflows when the incident is allowed to last for long periods of 

time.  To compare the response of AIMD to that of Fuzzy Logic under this overflow 

condition, we conducted another case for this scenario—a 30-minute incident.  The 

results for this case are shown in Table 5-17 and Figure 5-9. 
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Table 5-17.  Scenario 4b results, 30 min. 
Vehicles Æ Uncontrolled Controlled Ramps Systemwide 
È Algorithm AVD Stops Count AVD Stops Count AVD AVD Stops Count 

AIMD 54.5 1.1 1765 121.9 3.3 3358 45.3 98.7 2.6 5123 
Fuzzy Logic 70.4 1.8 1763 122.3 3.5 3362 28.6 104.4 2.9 5125 
No Control 76.3 2.0 1763 119.9 3.5 3356 24.7 104.9 3.0 5119 
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Figure 5-9.  Scenario 4b total vehicle 
delay for 30-minute incident 

Figure 5-10.  Spillover delay on the I-90 
Segment 9 on-ramp 

 

Here, the systemwide average vehicle delay of Fuzzy Logic is not significantly 

different than no control (p=0.89), but the uncontrolled average vehicle delay for Fuzzy 

Logic is significantly less than that of no control by 7.7% (p=0.03).  AIMD shows a 

significant reduction in systemwide average vehicle delay from Fuzzy Logic by 5.4% 

(p=0.02), and also a corresponding reduction in uncontrolled vehicle average delay by 

22.6% (p=0). 

As the incident remains in effect, the queue forming behind the incident site on 

the mainline backs up into the on-ramp and eventually overflows beyond the end of the 

ramp.  As seen in Figure 5-10, all three ramp metering cases show the occurrence of 

spillover, indicated by vehicle delay measured within the spillover region of the modeled 

on-ramp.  Fuzzy Logic shows a significant amount of added delay.  We have observed 
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that the rule structure of Fuzzy Logic aggravates the spillover condition; while traffic is 

backed up into the on-ramp, the traffic queue also overlaps the local mainline loop 

detectors.  This causes a high occupancy reading to be made for the local occupancy 

input for the Fuzzy Logic method.  Although rules are also in place for accelerating the 

ramp meter rate at times of high queue and advance queue detector occupancy, this does 

not result in metering rates that lead to similar spillover behavior as seen under AIMD 

and no meter control.  It is at such times that traffic operations personnel may elect to 

manually switch off the Fuzzy Logic metering in order to reduce such spillover 

(unpublished data).  Given AIMD’s similarity in spillover delay to the no ramp metering 

case, such a manual shutoff is not as necessary for AIMD. 

5.3 DISCUSSION 

A characteristic of several scenarios such as Scenario 1a is the apparent lack of 

differences in delays between the presence of ramp meter control and no ramp meter 

control.  When comparing systemwide delay under Fuzzy Logic to no ramp meter control 

in Scenario 1a, a paired t-test shows insignificant differences (p=0.79 for the 10-minute 

case and p=0.38 for the 20-minute case).  As described in Section 4.5.6, the benefits of 

ramp metering regarding the reduction of accident rates within merging areas is not 

testable using our models; therefore, this important benefit is not considered in the 

comparisons of average and total delays between metered and unmetered cases.  This is a 

likely contributing factor to the prevalence of insignificant differences in delays among 

ramp meter methods. 

Another contributing factor to Fuzzy Logic’s insignificant change within our 

experiments may be inherent in its sensor placements and its corresponding ramp 
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metering rate response.  In the times of day chosen for our simulations that feature free-

flowing traffic under normal circumstances, most areas within the models continue to 

contain free-flowing traffic when the incident is underway.  Queues behind incidents 

grow considerably—sometimes to thousands of feet over several minutes—before they 

reach local loop detectors.  Until high occupancy readings are registered at local loop 

detectors, Fuzzy Logic operates at a fast metering rate and causes practically no vehicles 

to be withheld from the mainstream.  Its only significant benefit can therefore be 

prevalent in the merging area—especially if accident rates are incorporated into our tests.  

AIMD, on the other hand, begins the metering rate at the ramp upstream of the incident at 

a third of the demand rate and adjusts its rate until the entire ramp capacity is utilized, 

adding additional ramps as necessary—a response specifically intended to reduce 

mainline queue severity. 

As hinted in the sometimes wide spread of the error bars in the total delay graphs, 

delay results can vary considerably among the 10 runs that comprise a complete 

simulation for a particular scenario, ramp meter method, and incident duration.  While we 

occasionally encountered unusually sizeable outliers in our data and subsequently 

changed the range of random number seeds for the 10 runs to avoid them, we found that 

some series of runs still offered high variance.  We attributed outliers to the few times we 

observed erroneous behavior in the simulations, such as deadlocked vehicles.  Even so, in 

the 20-minute case of Scenario 1b for example, measurements for average system delay 

ranged from 63.7 sec. to 142.1 sec.  We have yet to determine whether this spread is an 

issue that pertains to the intended operation of the simulation software.  Until this is 
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clarified, all results with these kinds of spreads, including the favorable I-90 scenarios, 

must be regarded with this in mind. 

The percentage of vehicles encountering an incident site that come from 

controlled on-ramps likely dramatically affects the success of our ramp meter 

experiments.  This vehicle mixture affects the amount of control that a ramp metering 

method can exert on freeway congestion.  In particular, it is helpful to observe that the I-5 

scenarios feature a mixture with a low percentage of controlled vehicles, whereas the I-90 

scenarios exhibit a higher percentage.  Our modeled section of I-90 also incorporates 

ramps with larger storage capacities than found on our I-5 model. 

Another factor that can influence ramp meter simulation results is the overall 

vehicle volume, affected by time of day.  We believe that there exist ranges of optimal 

volumes and vehicle mixtures that allow for uncommonly favorable ramp meter 

performance in the models.  As described in Section 6.2, it has yet to be determined 

through future research how broad these peak-performance ranges are, and whether there 

exist ways for capitalizing on various system characteristics of these time periods. 
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6 CONCLUSIONS 

6.1 SUMMARY 

Inspired by computer network control theory, we have devised a preliminary 

strategy for ramp metering that attempts to provide a strong, immediate response to 

congestion caused by freeway incidents.  The AIMD mechanism is also intended to 

minimize the chances for vehicles queued in on-ramps to spill out into local streets.  Our 

simulation scenarios—involving a 5.6 mile (9.0 km) model of Interstate 5 in Seattle and a 

6.7 mile 10.8 km) model of Interstate 90 with free-flowing traffic—compare the 

performance of AIMD and Fuzzy Logic strategies, as well as no ramp metering. 

We observed from our 8 simulations scenarios that our new method exhibits a 

systemwide performance that is comparable or better than Fuzzy Logic.  In particular, 

AIMD significantly reduces the average systemwide delay by as much as 28.2% from 

that of Fuzzy Logic.  In one scenario, AIMD reduces ramp spillover into surface streets 

that was otherwise observed with Fuzzy Logic.  In this scenario, systemwide average 

delay is reduced by 5.4% from that of Fuzzy Logic. 

While it is possible for this strategy to be invoked automatically, we infer that it 

may be actively initiated as a traffic control mechanism by traffic operations personnel as 

incidents are discovered or reported.  Since our work is not optimal for all congestion 

scenarios, we also anticipate that this strategy can supplement or be integrated with other 

ramp meter strategies, enabling the best performance for a wide variety of circumstances. 
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6.2 RECOMMENDATIONS 

The authors recommend that further study be conducted on the AIMD algorithm 

and its use in traffic operations.  These recommendations are necessary to leverage the 

findings within this research to fully realize the method’s potential for directly 

influencing congestion. 

A key factor in the comparison of ramp meter algorithm effectiveness is the 

accuracy of traffic models under congested conditions.  Overall, a ramp metering 

algorithm provides systemwide benefit if the delay imposed upon vehicles within the 

ramp is less severe than the consequential delay imposed by those vehicles within the 

mainline queue at the incident site.  Although the simulated models have been calibrated 

under free-flowing conditions, this research has not incorporated a comprehensive 

evaluation of accuracy under congested conditions.  Model inaccuracies can consequently 

cause the severity of mainline vehicle congestion to be misestimated, resulting in 

systemwide delay measurements that do not show full advantage for ramp metering 

methodologies such as Fuzzy Logic or AIMD.  In this research, the level of simulated 

congestion severity has been found to be sensitive to simulator version number, 

mechanisms used to impose congestion, the number of simulation cycles per second, and 

driver behavior parameters used at the site of the incident.  From observation, overall 

vehicle dissipation in some cases is believed to be too rapid, reducing the perceived 

systemwide benefit of ramp metering.  Further research is therefore needed in ensuring 

realistic operation for congested conditions; this may necessitate repeated on-site 

investigation of nonrecurring congestion cases as well as the use of multiple simulation 

software packages. 
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Many of our simulation scenarios did not show significant delay reductions 

between the presence of ramp metering control and no control.  This can largely be 

attributed to the lack of accidents within our model as described in Section 4.5.6, as well 

as calibration challenges as described in the previous paragraph.  We have observed, 

however, that overall demand depending upon the time of day play a significant role in 

ramp meter effectiveness; ramp metering is ineffective in our models when traffic is too 

sparse or too congested.  Further study should be given to the effectiveness of ramp 

metering in context of varying systemwide volumes.  This can assist in determining 

appropriate responses to incidents given the time of day, incident type, and location. 

Our models’ adherence to today’s roadway sensor configurations limit AIMD’s 

theoretical potential for congestion prevention.  The AIMD method is intended to reduce 

mainline traffic buildup immediately, but when it is enabled well after congestion has 

begun, its utility can be diminished.  Since we had always assumed a two-minute startup 

time in our scenarios and also assumed the use of discrete loop detectors that only allow 

for a view of systemwide traffic conditions at sparsely-spaced points within the corridor, 

we have found that our capabilities of addressing the incident properly are limited.  To 

evaluate the benefit of advanced incident detection technologies as identified in Section 

3.5.2 (e.g. denser sensor networks, or zone-wide vehicle detection rather than point-

based), AIMD can readily be configured to take advantage of such technologies in ways 

that are not as apparent with Fuzzy Logic.  Valuable insight would be gained from 

determining whether this would result in significant congestion reduction. 
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Various improvements can be made to the AIMD implementation, including 

improved techniques for demand rate tracking (see Section 3.3.2), congestion detection 

(Section 3.5.2) and end-of-incident shockwave tracking (Section 3.5.3). 

Our simulation scenarios only pertain to incidents that occur during times of free-

flowing traffic.  While we only report simulations of nonrecurring congestion, we do 

anticipate that it is possible to represent choke points within AIMD similar to incidents.  

This is another aspect that should be studied further. 

The scenarios in this work consist of hypothetical incidents.  To better evaluate 

the performance of AIMD, a simulation scenario should consist of an incident that had 

actually occurred and had created enough disturbances to be clearly identifiable within 

the archived traffic volume data.  A simulation of the same kind of incident can then 

allow better determination of the accuracies of the model in terms of reduced capacity 

vehicle flow, ramp metering rates, and congestion duration. 

The current implementation of AIMD assumes accurate vehicle counts between 

check-in and check-out detectors on on-ramps as well as the mainline.  Work similar to 

that performed for SZM by Liu et al (2007) in evaluating improved, robust 

methodologies for vehicle counting should be applied to this research.  Techniques may 

include using occupancy to estimate density and using filtering algorithms to increase the 

accuracy of vehicle counts.  In considering loop detectors, it has been observed that 

occupancy is a better measure for detecting ramp queue presence than volume counting 

(Taylor and Meldrum, 2000b).  Reasons for this include detector misalignment to 

vehicles’ paths of travel as well as lane-changing and weaving patterns that cause 



 74

multiple counts or no counts.  Ultimately, this potentially high signal-to-noise ratio can 

produce bad aggregations. 

The traffic volume data used in our research had been retrieved from TDAD 

(Traffic Data Acquisition and Distribution) system (Dailey and Pond, 2001), an online 

data retrieval application developed by the University of Washington College of 

Engineering Intelligent Transportation Systems Research Program.  Although it would 

have been preferable for recently archived traffic detector measurements to be used, this 

20-second data source is no longer available.  20-second data, as opposed to 5-minute or 

1-minute data, is necessary for research projects such for many reasons.  For example, the 

variance found in 20-second data is helpful for understanding various traffic patterns as 

well as diagnosing the presence of inaccurate loop detectors.  We therefore find it critical 

to have access to timely 20-second data for quality traffic operations research. 

Factoring street traffic volumes feeding the on-ramps is another important 

consideration for further research.  The proper modeling of signalized intersections that 

are near the entrances of on-ramps allows for realistic patterns of vehicles to be directed 

to on-ramps.  This platooning, or grouping of vehicles, may impact the overall 

performance of ramp metering and show additional benefit in terms of reduced secondary 

queuing in the merge area. 

Finally, we believe that that the evaluation of any ramp metering algorithm within 

a test region of a freeway corridor can offer more concrete conclusions than simulation 

alone.  A study can evaluate the overall delay imposed upon controlled and uncontrolled 

vehicles before and after the introduction of the new algorithm.  Although VISSIM 

simulates vehicles in a microscopic fashion, its car following model bears some 
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insufficiencies for traffic traveling at low speeds in freeway congestion as described 

earlier.  Additional possible differences in simulated traffic behavior as compared with 

observed traffic behavior include merging aggressiveness, lane-changing behavior 

upstream of a diverge point, accident rate (for all simulated drivers are perfect drivers), 

and the courtesy that some drivers offer to others who are making a lane change, as 

described in Section 4.5.3.  While AIMD requires more development before on-site 

testing is appropriate, all simulation results should be evaluated with this possibility in 

mind. 
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