Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Reducing Noise and Vibration of Hydraulic Hybrid and Plug-In Hybrid Electric Vehicles: Phase I Final Report [2009]

Filetype[PDF-268.73 KB]


  • English

  • Details:

    • Corporate Creators:
    • Resource Type:
    • Geographical Coverage:
    • Corporate Publisher:
    • Abstract:
      The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (NVH) solutions for hybrid vehicles. The soaring fuel prices require imperious steps in developing alternate propulsion technologies. The design and development of hybrid vehicles is a critical issue for an economy dependent on an efficient, fast, and secure transportation system. To date, better fuel economy has been mainly achieved by combining two propulsion sources (hybridization) and/or by developing better managing algorithms for the internal combustion engines. Examples for the hybridization are the plug-in hybrid electric and the hydraulic-hybrid vehicles. An example of managing internal combustion engines is the cylinder on demand as a solution that Honda has recently introduced. One common problem with these solutions is excessive noise and vibration that is caused by switching between the propulsion sources and propulsion modes. To mitigate this problem there is a need to develop vibration isolation devices that can provide isolation over a wide range of frequencies. This proposal seeks to study the NVH problem of the hybrid vehicles and to introduce isolation mounts to overcome these issues.

      Hydraulic and elastomeric mounts are generally used to dynamically isolate engines and power trains from the chassis, while statically holding these elements together. Hydraulic mounts overcome some of the drawbacks of the elastomeric mounts. The stiffness and damping of the hydraulic mounts varys with frequency and amplitude of vibration. It is possible to design a hydraulic mount that has a significantly larger static stiffness, compared to an elastomeric mount, and has a much smaller dynamic stiffness at a specific frequency. To achieve low vibration transmissibility, the mount can be tuned to the primary frequency of the vibration source. On the other hand, to isolate the high frequency vibration of the engine, the mount should have low stiffness and low damping, which is not possible to achieve.

      This project proposes to develop a semi-active mount, which will be realized by improving the existing hydraulic mounts through adding a magnetorheological (MR) fluid element. In response to magnetic fields, MR fluids change their viscosity, which can be harnessed in a variable stiffness and damping mount. The resulting mount will provide shock and vibration isolation over a wide range of frequencies. This extended isolation frequency range will be achieved through the variable dynamic stiffness of the MR portion of the mount. This solution will make it possible to improve the noise and vibration characteristic of hybrid vehicles with alternative propulsion systems.

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26