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ABSTRACT

Many commonly occurring natural systems are modeled with mathematical
expressions and exhibit a certain stability. The inherent stability of these
equations allows them to serve as the basis for engineering predictions. More
complex models, such as those for modeling traffic flow, lack stability and
thus require considerable care when used as a basis for predictions. In 1960,
Gazis, Herman, and Rothery introduced their gemeralized car-follow (or GHR)
equation for modeling traffic flow. Experience has shown that this equation
may not be continuous for the entire range of input parameters. The
discontinuous behavior and nonlinearity of the equation suggest chaotic
solutions for certain ranges of input parameters. Understanding the chaotic
tendencies of this equation allows engineers to improve the reliability of
models and predictions based on those models. This paper describes chaotic
behavior and briefly discusses the methodology of the algorithm used to detect
its presence in the GHR equation. It also discusses two systems modeled with
the GHR equation and their associated chaotic properties.
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I. INTRODUCTION

Classical mathematical models for natural systems, most often linear, provide
well behaved results for a wide range of input parameters. These models, such
as Greenshield's for traffic flow (1) are characterized as being predictable,

deterministic, and exhibiting a kind of stability:

u=ug (1-k/ kj ) (1)

where u = speed,

<]
If

free flow speed,

e
il

density, and

kj = jam density.
Another physical example of a system with inherent stability is a pendulum
displaced 5.001° from vertical and released; its future motion will very
closely follow with that of a pendulum displaced 5° from vertical. This
illustrates a characteristic -- that small changes in initial conditions
should produce small changes in the resulting motion. Models of more complex
systems are often treated in the same way, and this assumption brings certain
freedoms with it. If small changes produce small changes, then there is
stability inherent in making predictions from a given mathematical model. If

small changes in initial conditions produce large changes in the results, care

must be taken when predicting based on that mathematical model.



2 Chaotic Behavior

Other models consisting of mostly nonlinear relationships -- often in the form
of differential and iterative equations =-- provide exceptions to behavior
patterns typical of the classical models. 7Two characteristics of mathematical
models are their ability to be predictable and deterministic. Any nonlinear
equation can possess both, one, or none of these characteristics. An example

illustrating the difference between the predictable and deterministic would

include the differential equation dx/dt = Rx(1l - x) and the iterative equation

X 4417 Rxn(l - xn). The equation dx/dt = Rx(1 - x) is classified as a

predictable and deterministic equation -- knowing x(0), the value of x at any

time t is [x(0)exp(Rt)]/{1 + [exp(Rt) =- 1] x(0)}. The iterative equation X 41

= Rxn(l - xn) is deterministic -- knowing X precisely gives x., but from some

1’

values of R it is not predictable because the only way to find x from
1,000,000

X is to iterate the equation 1 million times. This example illustrates

another feature of some systems, called "sensitive dependence on initial
conditions.”" A small uncertainty in x(0) will produce a small change in x(t)

for the differential equation, while a small change in X, for the iterative

equation -- for certain values of R -- produces complete uncertainty.

Specifically, if R = 3.9 and x, is between 0 and 1, every term X in sequence

0

also lies between 0 and 1. Taking x, = 0.4 yields x,, = 0.259, while taking

0 28

X, = 0.4000001 yields Xy = 0.870. This clearly demonstrates that this
equation is sensitive to initial conditions and that small -- 0.000001 --

changes in the input parameter can produce large changes in the results.

Unpredictability does not imply that any values for the variables can occur,
and for some systems a subset of variables called an "attractor" exists to

which the system evolves. Although constrained to lie on the attractor, the
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unfredictability arises from not knowing the long-term position on the
attractor. Such behavior is often reflected'in the complicated geometry of
the attractor. An example of a system with a simple attractor would be (in
polar coordinates) dr/dt = r(1 - r) d6/dt = 1. The attractor is the unit
circle r = 1 -- a point 0<r<l spirals outward toward r = 1, and a point r>1
spirals inward toward r = 1. Regardless of initial position, except r = 0, all

paths eventually are arbitrarily close, traveling counterclockwise around r =

1 at a constant rate.

A fluid turbulane model developed by Lorenz was a system of three differential

equations with three parameters:

dx/dt

-0x + 0y

dy/dt

rx -y - X2

dz/dt = xy - bz.
For parameter values ¢ = 10, r = 28, and b = 2.7, Figure 1 shows the attractor
for the system. As seen by intertracings between the two "lobes," the path
does not lie on a two-dimensional surface, nor does it fill any three-
dimensional region in space. This means that the attractor is a "fractal" and
not a standard mathematical object. Another feature of fractals is that
magnification of any portion of the attractor reveals increasingly finer
structures, which is in direct contrast to standard geometrical shapes =-- for
example the circle, which on magnification becomes even simpler -- more like a

straight line.



Figure 1. The Lorenz Attractor (x-axis is
horizontal, y-axis is vertical).

Figure 2. The first four stages of the Koch curve.
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A simple example of a fractal is the Koch curve, constructed by repeated
applications of a certain geometrical process. This process involves
subdividing a line segment into three equal lengths, erecting an equilateral

triangle over the middle third, and removing the base of the triangle.

This process is repeated in the x-axis plane for the four segments of one-
third length, and so on (Fig. 2). The self-similarity of the Koch curve is
apparent, and sufficiently magnifying any portion of the curve reproduces the

entire shape.
A "strange attractor" is one that is fractal, and chaotic dynamics are often a
manifestation of a strange attractor. To determine whether a system is

chaotic, strange attractors must be detected and quantified.

In the realm of dynamics, chaotic systems have three primary characteristics:

1. There is sensitive dependence on initial conditions,

2. The attractor cannot be decomposed into smaller attractors that do not

interact, and

3. Any trajectory is arbitrarily close to a periodic trajectory.



6 Chaotic Behavior

Chaos, primarily associated with a state of disorder and generally considered
Aetrimental to systems, has been discovered as a state of high ordef based on
geometry of the attractors. Unlike stochastic behavior, which arises from
statistical effects of treating large numbers of interacting particles
representing a threshold of indeferminism, chaotic behavior is completely
deterministic -- but unpredictable -~ and occurs in systems involving as few
as one variable. Predictability of chaotic systems is still limited to
knowledge of long-term behavior of the associated attractor. It is through
new mathematical techniques that one can identify and quantify attractors that
allow nonlinear systems to be evaluated. Also, by altering input parameters,
the shape of the associated attractor can be controlled, and thus systems can
be designed to produce reliable results even in chaotic states. The ability
to identify and quantify attractors provides the initial steps in evaluating

nonlinear chaotic systems.

Engineers have been applying the chaotic theory to thousands of systems,
including thermodynamics, electrical systems, material engineering, and
dynamical systems. In the field of ci§il engineering, chaos theory has been
applied to structural vibrations and hydraulic systems. It would appear that
traffic flow modeling -- containing many highly nonlinear differential

equations -- also offers applications for chaotic theory.

As early as 1935, engineers were developing models to describe traffic flow
principles, consisting of mathematical expressions to describe basic as well
as complex physical, human, and vehicular interactions. Early models for

uninterrupted macroscopic traffic flow consisted of explaining functional
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relatioﬁships between speed, flow, and density, disregarding precise inter-
actions between individual vehicles. Later models, called microscopic or
car-following models, were developed to describe behavior of a traffic stream
by the complex interrelationships involved as one vehicle follows another, and

by behavior of pairs of vehicles.

In 1960, Gazis, Herman, and Rothery (GHR) developed a generalized car-
following model (2) in which driver response is inversely proportional to the

spacing between vehicles:

¢ oy o [X_,,(¢+D)]" ) i
X t+T) = [X (t) - X ,.(t)] (2)
n+l [Xn(t) - Xn+1(t)]1 n n+l
where . = speed,
. = accelerations,

X = position of the leading vehicle,
X = position of the following vehicle,

T = lag time, and

o, m, and 1 = constant parameters.

This model was well accepted and has since been reintroduced with various
modifications. Experience with this equatiop has shown that it may not be
continuous for the entire range of input parameters. The discontinuous
behavior and nonlinearity of the GHR traffic-flow equation suggest chaotic
solutions for certain ranges of input parameters. The chaotic realms
represent areas where disturbances may not be dampened and predictability is
limited. By identifying the range of chaotic solutions and the input

parameters yielding such solutions, engineers can make greater use of these
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models. Also, engineers can control reliability of results in the chaotic
realm by altering the shape of the associated attractor through modifications

of input parameters -- reserved for future investigation.

This report discusses applicatién of chaotic theory to the GHR traffic-flow
equation. It includes a brief discussion of the methodology used to detect
chaos in the GHR equation -- a more detailed description of the methodology
can be obtained from the authors -- and two examples of systems modeled using
the GHR equation and their associated chaotic properties. A variety of input
parameters are evaluated in a detailed system and the resulting chaotic

properties are discussed.



II. DISCUSSION OF CHAOS

In recent years, a new method of evaluating nonlinear dynamics, called
"chaos," has arisen and achieved wide attention in journal articles on
mathematics, physics, chemistry, biology, and engineering. James Gleick's

Chaos: Making a New Science (New York: Viking-Penguin, 1987) made the New

York Times best-seller list. Another good reference is the article "Chaos" by
Crutchfield, et al. (3). Many nonlinear differential and difference equations
with an adjustable parameter exhibit chaotic behavior for some ranges of the
adjustable parameter. This chapter describes what constitutes chaotic behavior
and the methods used to quantify chaos. In many examples, chaotic dynamics
can be characterized by presence of a strange attractor in the state space of

the system.

To quantify the complexity of strange attractors, an extension of the familiar
notation of dimension is used. Consider a smooth curve C in three-dimensional
space. An approximation of the length L of C can be obtained by finding the
smallest number -- NC(e) -- of cubes of side length e needed to cover C, and
computing Nc(e) x e. As e is taken smaller, this approximation improves and
the limit L = lim e 0 NC(e) x e. Similarly, for a smooth surface S in three-
dimensional space, the area A is given by A = lim e 0 Ns(e) X ez. The curve
is one-dimensional and the surface two-dimensional is exhibited by the

exponent of e in the expression of length (the one-dimensional measure) or

area (the two-dimensional measure).
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Consider a simple example, where the curve is the line segment C = [(x,0,0):0<
x <1] and the surface in the square 8 = [(x,y,0):0<x,y<1]. Then for small e,
NC(e) = 1/e and NS(e) = 1/e2, so L =1 and A =1. Notice that trying to

measure the area of C yields

2 . 2
1 (e) x e = lim o0 (1/e) x e” =0

T a0 NC
and trying to measure the length of S yields

o 2 .
1 Ns(e) x e = lim 030 (1/e”) x e = =,

in e>0
Considering just the curve C, observe that for any number d<l, lim e 0 NC(e) b4
ed = e, and for any d>1, lim e 0 Nc(e) b4 ed = 0. Thus, the d-dimensional
measure of curve C has the following properties: it is infinite for d<1l, but
zero for d>1, and is the length for d = 1. Similarly, the d-dimensional

measure of surface S is infinite for d<2, zero for d>2, and the area for

d = 2.

For the Koch curve, the computation is more interesting. Téking e = (1/3)n,

it follows that N(e) = 4™ and so the Koch curve has length

] n ny, _
lim oo 47(1/37) =
and has area
. n n2 _
lim o 47(1/37)" = 0.
Thus the dimension of the Koch curve lies between 1 and 2. A straightforward
calculation shows that the exponent d for which
0 < lim N(e) x éd < o
e-»®
is given by

d = lim _ o 1n[N(e) ]/1n(1/3).
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This is the "capacity dimension" of the set and is closely related (and often
equal) to the "Hausdorff dimension." (For the Hausdorff dimension, ome must

consider all possible countable coverings of the set, not simply those by

cubes.) Observe that the Koch curve has a dimension of 1n4/1n3.

If the dimension of a set is not an integer, then the set is a fractal, but
some sets have integer dimensions that are fractals. The precise definition
of "fractal" involves defining yet another dimension =-- the topological dimen-

sion, which is beyond the scope of this report.






III. METHODOLOGY AND RESULTS

A. Methodology

This section describes the methodology used in develdping a computer algorithm
to test for presence of chaos in nonlinear systems. In measuring the capacity
dimension of systems of differential equations, counting boxes N (e) can be
prohibitively costly of computer memory and time. These problems can be
avoided by using Liapunov exponents. An infinitesimal sphere centered about a
point on a solution curve (of the differential equation) evolves after a short
time into an ellipsoid, and the Liapunov exponents are natural logs of the
ratios of the semi-major axes of the ellipsoid to the radius of the sphere,

time-averaged over the trajectory.

A relation between the capacity dimension and the Liapunov exponents is
expressed in a conjecture of Kaplan and Yorke (4). Arrange the Liapunov
exponents in non-increasing order and let k be the largest integer for which
the sum of the exponents is greater than zero. The Kaplan-Yorke conjecture is
that

o =k + ((8, + 4.+ 8)/8,,1).

Although there are counterexamples to this conjecture, it is often true and

holds rigorously under very general conditions o<k + (61 +..+ Gk)/5k+1).

Preceding page blank 13



14 Chaotic Behavior
Determining the Liapunov exponents requires some care. The authors use a
method developed by Shimada and Nagashima (Q?, and also independently by
Bennetin, Galgani, and Strelcyn (6) (see also Seqtion 5.3b of Reference 7).
Together with the Kaplan-Yorke conjecture, this method gives computational

access to the dimension of attractors of high-dimensional systems.

Computing the first Liapunov exponent is sufficient to test for the presence
of chaos. A positive Liapunov exponent indicates stretching of nearby
trajectories, thus guaranteeing the sensitive dependence on initial

conditions that characterizes chaos.

As a test, this method (algorithm) was used to compute the dimension of the
Lorenz attractor (Fig. 1), and the accepted value of 2.06 was obtained.
Because of the complexity of the calculations and the agreement to two decimal

places, the algorithm used in this report was considered accurate.

B. Results

The GHR equation was solved by a four-point Runge-Kutta method, modified for a
delay differential equation. Tangent vectors also were processed as an array,
their evolutions being governed by the Jacobian of the GHR equation. To
prevent focusing of the transported tangent vectors to the direction of that
with the largest Liapunov exponent, the Gram-Schmidt method was applied to
produce a new orthonormal basis. (This method is described in References 6
and 7.) The Liapunov exponents are the natural logs of the lengths of the
transported tangent vectors, time averaged along the trajectory. The

Kaplan-Yorke conjecture then is applied to determine the Hausdorff dimension.
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The initial traffic model, consisting of eight vehicles and no disturbances --
i.e., intersections, signals, bottlenecks, etc. -- was developed with the GHR
traffic flow equation (Eq. 2) and tested for the presence of chaotic behavior.

The following parameter values were selected for the system:

Variable Description Value

Number of Vehicles 8

n

T Lag Time 1 sec

k, Jam Density 260 vehicle/mile
u% Free Flow Speed 55 mph

u_ Steady State Speed 40 mph

1 Constant Parameter 2

The value of 1 was selected, based on ranges previously used by Ceder and May
(8). Values for two additional variables m and o were calculated -- as a
subroutine in the program -- using equations derived from the GHR equation:

In[1 - k/k;] 1-1

ln[uo/uf]
and
Y- 1-1 x ug 1-m
" 1I-m k, 1-1°
J

The step size selected was 0.01 sec, requiring the algorithm to generate
matrices of 100 rows and 16 columns to compute and store values. The program

was written in Pascal and designed to compute only the first Liapunov
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exponent, because that is sufficient to detect chaotic behavior. The
simplicity of this problem, as well as the cost of computer time, did not
warrant calculation of the capacity dimension -- that will be reserved for the

next system to be discussed.

Calculation of first Liapunov exponents for 5000 sec required about 8 hr of
CPU time on a VAX 11-785 computer. The resulting Liapunov exponents were
positive, indicating sensitive dependence on initial conditiomns, and

thus the presence of chaotic behavior in the GHR traffic flow equation -- for

these parameters -- even for a simple system.

Figure 3 shows change in the first Liapunov exponents for the first 500 sec.
It shows oscillations that occur due to transient behavior or "system noise,"

caused by numerical rounding.

Figure 4 illustrates change in Liapunov exponents over time for the first 5000
sec. No oscillations are apparent because the graph scale does not allow for
sufficient detail. The large positive value (about 375) of the first Liapunov
exponent resulting after the transients have died indicates sensitive
dependence on initial conditions. The magnitude of the first Liapunov
exponent should not be used as an indicator of quantitative degree of chaos in
the GHR equation, since no mathematical evidence exists directly relating
magnitude of the first Liapunov exponent to the degree of chaotic behavior

present.
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To further clarify this equation's sensitive dependence on initial conditionms,
a small sinusoidal perturbation (range between 0 and 0.1) was added to the
velocity parameter of the lead vehicle. The graph of the first Liapunov
exponent versus time for the sinusoidal perturbation (Fig. 4) has a more
pronounced peak in the curve and a lower resulting value for the first
Liapunov exponent (about 355) after all transients have died out (near 5000
sec). This indicates that the system (with perturbation) settles more quickly
to an attractor than the undisturbed system. This system's sensitive
dependence on initial conditions is clearly illustrated by a comparison of the
two graphs, showing how a small change in the adjustable parameter signifi-
cantly affects the shape of the solution curve for the first Liapunov

exponent.

A second system, consisting of a coordinated signal network, was modeled with
the GHR traffic-flow equation (Fig. 5). The network had five signals spaced
at intervals ranging from 500 to 1500 ft. The network was coordinated with a
60-sec cycle, and offsets between consecutive signals were computed
accordingly. It was loaded with eight vehicles at the design speed of 30 MPH
(44 ft/sec). Initial vehicle positions were selected so that no vehicle was
located within an intersection, or directly affected by a signal indication
for the first second. This was necessary to allow the computer algorithm to
initialize the matrices necessary to compute and store position and velocity
values. Also, the network was designed so that the entrance and exit rates of
vehicles were identical. This simplified the modeling and was accomplished by

including 1500 ft of additional roadway from Signal 5 to Signal 1.
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Figure 6. Capacity dimension vs. time.

16
|
: Initial Speed = 40 ft/sec
15 l'
I
| HE A
- :
s 1 ] ; \— .
I5) H Initial Speed = 44 ft/sec (Design Speed)
£ h\
a I :
Iy J —Initial Speed = 50 ft/sec
-8 ‘....‘.'..--.,'
o
a,
]
3]

11 I Y
10 20 30 50 60 70
Seconds

20



’Methodology 21

Fof the network model, the program was modified so that each vehicle
constantly looked at the light ahead of it. If the light was green, the
acceleration term for that vehicle was not changed. If the light was yellow
or red, a negative term was added to the acceleration, if necessary, to stop
the vehicle at the light. For example, if when the light turned yellow the
vehicle was close enough to the light to pass through the intersection before
the light turned red, then the acceleration term was not modified. If a
vehicle was stopped at a red light, when the light turned green a positive
acceleration term was added to bring the vehicle up to the speed limit,

provided that this would not result in collision with another vehicle.

Capacity dimensions were calculated for each second for the traffic signal
network, using initial speeds of 40, 44 and 50 ft/sec (Fig. 6). This figure
illustrates the relationship between initial velocities and their resulting
capacity dimensions. The capacity dimension for the design speed of 44 ft/sec
was 14.25, indicating presence of a strange attractor -- an attractor that is
fractal -- to which the system can be reduced. This also shows that for an
initial velocity of &4 ft/sec, 14 degrees of freedom (14 variables) are
necessary to examine the system at any point in time. However, the resulting
capacity dimension for initial speeds of 40 and 50 ft/sec is 16.0 (16 degrees
of freedom) -- maximum for this system. This further demonstrates the system-
sensitive dependence on initial conditions, and that the system modeled is

inherently less complex at the design speed.
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IV. CONCLUSIONS
Chaotic behavior has been shown to exist in two relatively simple systems
modeled with the GHR traffic flow equation (Eq. 2). This was done by
demonstrating the equation's sensitive dependence on initial conditions
(positive first Liapunov exponents) and the presence of a strange attractor
(indicated by non-integer capacity dimension). Two different capacity
dimensions resulted from simulations using three different initial velocity
parameters. The design speed of 44 ft/sec resulted in a capacity dimension of
about 14, and speeds slightly higher and lower resulted in a dimension of 16.
This indicates that the degree of freedom and complexity of the system

increase as speeds deviate from the design speed.

As work continues, more details regarding the attractor's geometric properties
wili be investigated. Knowing the geometric limitations of the attractor will
improve predictions. Information as to how the attractor changes shape with
various input parameters will also be obtained, making more precise
predictions possible for greater ranges of input parameters. Finally,
attempts will be made to quantify the degree of robustness -- effects caused
by large changes of input parameters -- further improving the reliability of

predictions based on the GHR equation.
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