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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated under the sponsorship of the Department of Transportation, University 
Transportation Centers Program, and California Department of Transportation in the 
interest of information exchange. The U.S. Government and California Department of 
Transportation assume no liability for the contents or use thereof.  The contents do not 
necessarily reflect the official views or policies of the State of California or the 
Department of Transportation.  This report does not constitute a standard, specification, 
or regulation.   
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Abstract 

Today, in the trucking industry, dispatchers perform the tasks of cargo assignment, and 
driver scheduling.  The growing number of containers processed at marine centers and 
the increasing traffic congestion in metropolitan areas adjacent to marine ports, 
necessitates the investigation of more efficient and reliable ways to handle the increasing 
cargo traffic. In this report, it is shown that the problem of container movement by trucks 
can be modeled as a “multi-Traveling Salesmen Problems with Time Windows” (m-
TSPTW).  A two-phase exact algorithm based on dynamic programming is proposed that 
will find the best routes for a fleet of trucks.  Since the m-TSPTW problem is 
Nondeterministic Polynomial (NP) hard, the computational time for large size problems 
becomes very high. For the case of medium to large size problems, we develop two 
computationally feasible methods: 1) a hybrid methodology consisting of dynamic 
programming in conjunction with genetic algorithms, and 2) a heuristic insertion method.  
Furthermore, since the cargo movement in a traffic network is a dynamic problem, we 
use the heuristic insertion method to add newly arriving customers to the set of customers 
with advanced requests. Computational results demonstrate the efficiency of the hybrid 
method for static problems and the insertion method for the dynamic ones. 
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1 Introduction  

Today, the elimination of international trade barriers, lower tariffs and shifting centers of 
global manufacturing and consumption leads to new dynamics in intermodal shipping. 
Worldwide container trade is growing at a 9.5% annual rate, while the rate of growth for 
the U.S. is around 6% (Vickerman 1998). The continuous increase in worldwide 
container trade have forced terminals to cope with "avalanches" of containers, in such a 
way that every major port is expected to double and possibly triple its cargo by year 2020 
(Taleb-Ibrahimi et al. 1993, Ryan 1998).  

The growth in the number of containers has already introduced congestion and threatened 
the accessibility to many terminals. The congestion at a port, in turn, magnifies the 
congestion in the adjacent metropolitan traffic network and affects the trucking industry 
on three major service dimensions: travel time, reliability, and cost.  Trucking is a 
commercial activity, and trucking operations are driven by the need to satisfy customer 
demands and the need to operate at the lowest possible cost (Meyer 1996). This industry 
is highly competitive, with easy entry into almost any market, with relatively little 
differentiation between operators and slim profit margins.  

Today, in the trucking industry, human operators (dispatchers) still play the major role in 
cargo assignment, route planning and driver scheduling. Dispatchers inform drivers about 
traffic conditions, in addition to assisting them in departure/arrival decisions and 
providing navigational information (Ng et al. 1995). Dispatchers currently obtain 
information about traffic conditions, mostly through radio traffic reports and through 
information relayed back by the drivers (Hall and Intihar 1997). The growing number of 
containers at marine centers and the increasing traffic congestion in metropolitan areas 
necessitates the investigation of more efficient, reliable and systematic ways to handle the 
increasing amount of cargo in a metropolitan traffic network.  

The purpose of this report is to investigate methods for improving the scheduling of 
trucks, where ISO containers1 need to be transferred between marine terminals, 
intermodal facilities, and end customers. The objective is to reduce empty miles, and to 
improve customer service. As a consequence of reduced miles and better service, 
container terminals can become more competitive, vehicle emissions will be reduced, and 
drivers will incur less congestion related delays. 

In this report, we show that the container movements by trucks in metropolitan area can 
be modeled as a multi-Traveling Salesmen Problem with Time Windows (m-TSPTW).  
This problem is often referred to as the full-truck-load problem in the academic literature  
(Savelsbergh and Sol 1995).  The problem entails the determination of routes for the fleet 
of trucks so that the total distribution costs are minimized while various requirements 
(constraints) are met. The m-TSPTW is an interesting special case of the Vehicle Routing 

                                                 

1 Most containers are sized according to International Standards Organization (ISO). Based on ISO, containers are described in terms 
of TEU (Twenty-foot Equivalent Units) in order to facilitate comparison of one container system with another. A TEU is 8 feet wide, 
8 feet high and 20 feet long. An FEU is an eight-foot high forty-foot container and is equivalent to two TEUs. 
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Problem with Time Windows (VRPTW) where the capacity constraints are relaxed.  
Savelsbergh (1985) has shown that finding a feasible solution to the single Traveling 
Salesman Problem with Time Windows (TSPTW) is a Nondeterministic Polynomial 
(NP)-complete problem. 

Although there has been a significant amount of research on the VRPTW (e.g., see Bodin 
et al. 1983, Golden and Assad 1988, Desrochers et al. 1992, Fisher 1995, and Desrosiers 
et al. 1995), there has been little work on the m-TSPTW.  Since the m-TSPTW is a 
relaxation of the VRPTW, it may appear at first that the procedures developed for the 
latter could be applied to the m-TSPTW.  However, as Dumas et al. (1995) point out, 
these procedures are not well suited to the m-TSPTW.  Hence, new procedures need to be 
developed for the m-TSPTW.  We note that Dumas et al. (1995) presented an efficient 
exact solution procedure for the single vehicle TSPTW.  However, in contrast to the 
simple transformation of the m-TSP to the TSP, m-TSPTW cannot be easily converted to 
a single vehicle TSPTW.   

In this report, we propose three methodologies for solving the m-TSPTW problem.  

• An exact method based on Dynamic Programming (DP) is proposed. The method 
consists of two phases: 1) generating feasible solutions, and 2) finding the 
optimum solution among all feasible solutions (set-covering problem). 
Computational experiments show that the proposed exact method is efficient for 
relatively small size problems consisting of few nodes (up to 15 nodes with 
maximum window size 2 hours).  

• For medium size problems, we develop a hybrid methodology consisting of 
dynamic programming for generating feasible solution in conjunction with 
genetic algorithms (GA). The GA algorithm is used to find a ‘good’ solution 
among all feasible solutions. Experimental results show the efficiency of GA set-
covering algorithm for medium size problems (about 50 nodes with maximum 
window size less than 2 hours).  

• A heuristic insertion method is developed for large size problems (more than 50 
nodes). In this method, nodes are sequentially inserted into already determined 
routes. A new route is generated whenever a node cannot be added to any existing 
route. Experimental results show that the method is computationally very fast and 
it is fairly efficient for medium to large size problems (more than 50 nodes with 
very wide window size, e.g. 9 hours).  

It is worth mentioning that most techniques and models used in transportation planning, 
scheduling, and routing use ‘known’ static data as their input (e.g., see Golden and Assad 
1988, Desrochers et al. 1988, Laporte 1992, Savelsbergh and Sol 1995). In the real world, 
however, truck operations contain a fairly high degree of uncertainties (e.g., see Powell et 
al. 1995, Powell 1996). Since cargo assignment and route planning is a dynamic problem, 
any efficient algorithm should also be dynamic. Despite this fact, little work has been 
done in this area (Psaraftis 1995).  For a dynamic system, two methodologies could be 
employed: 1) insertion methods and 2) adaptation of static algorithms.  The results of our 
computational experiments, presented in Section 4, indicate that only the insertion 
method is well suited to be considered as a dynamic algorithm for real time systems.  The 
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insertion method is very fast and it is fairly efficient especially for the problems with 
large number of customers. 

In this report, we assume a deterministic transportation network. We assume that the 
travel times on the links of the network are independent of the time when vehicles enter 
that links. These assumptions are made to simplify the problem, get better insight, make 
it possible to model the problem mathematically and come up with a close analytical 
solution. In our future work, we intend to extend the following study into the non-
stationary stochastic networks.  

The report is organized as follows.  In Section 2, the container movement and trucking 
operations in metropolitan areas are described, and is formulated as an asymmetric m-
TSPTW.  In Section 3, we study a more general class of m-TSPTW, the VRPTW 
problem, where solution methods for VRPTW are briefly reviewed, and dynamic aspects 
of VRPTW are discussed in detail.  In Section 4, we show that the VRPTW solution 
methods are not well suited for m-TSPTW problem, and propose three methodologies for 
solving the m-TSPTW problem. 

 



  

4  

2 Cargo Movement: Problem Description and Formulation 

In this section, it is shown that the container movements by trucks can be modeled as an 
asymmetric multi-Traveling Salesmen Problem with Time Windows (m-TSPTW). We 
start with describing the container movement and trucking operations in metropolitan 
areas. 

2.1 Container Movement 

Today, in trucking industry, human operators (dispatchers) perform the tasks of cargo 
assigning, route planning and driver scheduling. Each day, the list of cargoes to be 
handled during the day is passed to the dispatcher early in the morning. For containers, 
this list contains the information about the origin and the destination of containers, if they 
are over weight, contain HAZMAT2, or need to be handled before any specific time. The 
dispatcher will assign a driver to each container based on the availability of the driver and 
his skills. At most two containers will be assigned to each driver at a time. The dispatcher 
will assign two containers if the delivery point of the first one is relatively close to the 
pick up location of the second one. Otherwise, only one container is assigned to the 
driver. Upon finishing his job(s), the driver would ask the dispatcher for new jobs. If new 
jobs need to be accompanied by formal documentation or no job is available at the time, 
the driver will be asked to go back to the depot, otherwise the new job(s) will be given to 
him via the cell phone. 

In today’s container terminals two operations are taking place: wheeled, and ground 
(Ioannou et al. 2000).  A wheeled operation is one in which the container is brought into 
the container yard on a chassis, and then brought to the ship on the same chassis, and 
lifted off.  This empty chassis can then be used for inbound containers.  The wheeled 
operations, where possible, are more efficient than the grounded ones in terms of loading 
and unloading rates as they require no container transfer and are random access. That 
explains why the trucking companies are in favor of terminals with wheeled operations. 
Ground operations, on the other hand, are very efficient in terms of space, since the 
containers can be stacked 4-5 high when full, and even higher when empty. Ground 
operations require more effort for storage and retrieval, since the container must be 
transferred via lifting equipment, and often, multiple lifts are required in the yard where 
containers are stacked on top of one another. It takes much longer for the trucker to be 
served, since he/she has to get a chassis at the terminal, find the container stack location, 
wait for his/her turn for the equipment to lift the container from the stack and put the 
container on the chassis. 

In today’s container industry, there are a lot of discussions about appointment windows.  
The appointment systems are being considered as part of a solution for terminal 
congestion. These systems are coming about because of the terminals’ need to 'manage 

                                                 

2  HAZardous MATerial. 
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the demand' (the flow of trucks).  For instance, the Hanjin terminal at Port of Long Beach 
has just started informing the local trucking companies of the list of containers they want 
to be picked up on the hoot shift (i.e., 3:00 a.m. - 7:00 a.m.).  However, no standard has 
yet been maintained of how the appointment systems should be implemented.  

As it was noted before, trucking operations are driven by the need to satisfy customer 
demands and the need to operate at the lowest possible cost. These facts magnify the need 
for finding better ways of performing trucking operations in metropolitan areas adjacent 
to the ports. 

2.2 Problem Description 

The problem of interest, described above, can be stated more formally as follows: A set 
of loads (containers) needs to be moved in a metropolitan (local) area. The local area 
contains one truck depot (which thereafter will be called depot), as well as many end 
customers including marine terminals and intermodal facilities. Associated to each load is 
hard time windows imposed by customers for pickup and delivery at origin and 
destination points, respectively.  

A set of trucks (vehicles) is deployed to move the loads among the customers, and the 
depot. Each truck can only serve a single load (e.g. one FEU3 size container) at a time, 
and initially, all trucks are located at the depot. We assume that each driver may not be at 
the wheel for more than a certain number of hours (working shift) in each working day 
and has to drive his truck back to the depot within this time limit. 

The objective is to minimize the total cost of providing service to loads within their 
specified time constraints. 

2.3 Problem Formulation 

Let L be a set of n cargos (loads) li to be transferred in a transportation network G, i.e. 
L={l1,l2,…,ln}; and V be a set of p vehicles labeled vi, i=1,2,..,p assigned to transfer the 
cargos, i.e. V={v1,v2,…,vp}.  

We assume that, at any time, a vehicle vi∈V can transfer at most a single cargo, say li∈L, 
and that the information of the origin and the destination of the cargo li is known in 
advance. We denote by O(li) and D(li) the origin and the destination of the cargo li, 
respectively. The cargo li shall be picked up from its corresponding origin during a 
specific period of time known as pickup time window and denoted by ],[ )()( ii lOlO ba , 

where )()( ii lOlO ba < . Likewise, cargo li shall be delivered at its corresponding destination 

during a delivery time window denoted by ],[ )()( ii lDlD ba , where )()( ii lDlD ba < . 

                                                 

3 FEU: Forty-foot Equivalent Units (See also footnote 1 on page 1).  
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Let's assume that to the vehicle vi∈V the total number of K(i) cargos are assigned to be 
transferred. Let δik∈L be the kth cargo assigned to vehicle vi among these cargoes. The 
sequence of cargos assigned to the vehicle vi is called route and is denoted by ri, i.e. 
ri={δi1, δi2,…,δik,…,δiK(i)}. Route ri  is said to be feasible if it satisfies the time window 
constraints at the origins and the destinations of all assigned cargoes, and the total time 
needed for traveling on the route is less than a certain amount of time called the working 
shift (time) and denoted by T.  

It should be noted that: 

 U
p

i
i Lr

1=

= , and I =ji rr ∅,  for ∀i,j=1,..,p and i≠j, where ∅ indicates the empty set. 

Figure 1 shows typical three feasible routes (r1, r2, and r3) starting from depot and ending 
at the same depot. Solid lines, in Figure 1, illustrate the traveling between origin and 
destination when the vehicle is loaded, while dashed lines indicate empty traveling 
between destination and origin. 

 
Figure 1: Typical routes starting from depot and ending at the same depot. The large empty circle 
denotes the depot. Each small black circle denotes the origin (O) or the destination (D) of a cargo. 

Let's denote by f(ri) the cost associated with each route i. f(ri) can be formulated as 
follows:  

 ∑∑
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)()( ikik DOc δδ is the cost of carrying the kth cargo from its origin to its destination, 

(solid lines between each pair of O(δik) and D(δik) in Figure 1), 

)()( 1+ikik ODc δδ is the cost of empty traveling between the destination of the kth cargo 
to the origin of the (k+1)th cargo, (dashed lines between each pair of 
D(δik) and O(δik+1) in Figure 1). Depot is denoted by k=0 and k=n+1, and 

K(i) is the total number of cargos handled in route ri  by vehicle vi.  

The objective is to find optimum routes for p vehicles providing the services to n cargos 
by traveling between origins and destinations of cargos and satisfying the time window 
constraints such that the completion of handling all cargos results in minimizing the total 
travel cost. The objective function, J can be written as follows: 

 ∑
=

=
p

i
irfMinJ

1

)( , (2) 

Let's assume that the travel cost for a vehicle, either loaded or empty, is static, and the 
cost associated with transferring a cargo li∈L between its origin and destination, 

)()( ii lDlOc , is independent of the order of transferring the cargo by a vehicle. Let’s also 
assume that the fleet of vehicles is homogenous. Therefore, no matter what the 
assignment and order of handling n cargoes are, the costs (.)(.)DOc  don't affect the cost 
function in Equation (2) and can be considered to be zero. That is the total cost function 
in Equation (2) is only affected by the cost associated with vehicles' empty traveling 
between the destinations of the kth and (k+1)th cargoes; and the problem of interest is 
reduced to finding the best feasible assignment and sequencing of n cargoes to p vehicles 
such that the total empty travel cost of the vehicles is minimum.  

In this report, we assume a deterministic transportation network in which the network 
parameters are known a priori. We also assumed that the travel time on a link of the 
network is independent of the time when a vehicle enters that link. These assumptions are 
made to simplify the problem, get better insight, and make it possible to model the 
problem mathematically and come up with a close analytical solution. In such a network, 
the order of the pick up/delivery points won’t affect the cost of operation.  

In our future work, we intend to consider non-stationary stochastic networks in which the 
travel times on the links as well as the service times at the nodes of the network are 
stochastic processes. In other words, the travel time between each two nodes of the 
network is a random variable, which depends on the time when a vehicle enters the link. 
In such a network, the sequence of the pick up/delivery points will affect the cost of the 
cargo movement. 
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Figure 2: Each origin-destination pair in Figure 1 can be grouped as a node. 

Thus, each origin-destination pair, O(δik)-D(δik), in Figure 1 can be replaced by a node 
OD(δik) where δik∈ ri and k=1,..,K(i), and the cost between two nodes is equal to the cost 
of empty traveling between the destination of the first node to the origin of the second 
one (see Figure 2).  

The time window at node OD(δik) can be expressed in terms of: 1) time window at its 
origin, 2) time window at its destination, and 3) the traveling time between the origin and 
the destination, )()( ikik DOt δδ . Figure 3 demonstrates a typical relation between these three 
factors and the time window [a’D ,b’D], where [a’D ,b’D] is the time window at destination 
shifted back in time by )()( ikik DOt δδ . For the sake of simplicity, we eliminate all subscripts 

δik in Figure 3.  

 

Figure 3: Time window at origin [aO, bO], destination [aD, bD], and time window at destination shifted 
back in time [a’D, b’D]. 

Figure 4 presents all possible situations between time windows [a’D ,b’D] and [aO ,bO]. 
The dashed areas, in Figure 4, indicate the time window at the origin of node OD during 
which a vehicle can be loaded and yet to meet the time window constraint at destination. 
Case IV is infeasible and may not happen in real situation.  
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The problem of interest can now be restated as follows: p vehicles are initially located at 
the depot. They have to visit nodes OD(li), i=1,..,n; the task is to select some (or all) of 
these vehicles and assign routes to them such that each node is visited exactly once 
during the time window ],[

ii ll ba , where ],[
ii ll ba  can be expressed as follows (see Figure 

4). 

 )( ii lOl aa =  

  ),( min )()()()( iiiii lDlOlDlOl tbbb −=  (3) 

 

Figure 4: All possible situations between time window at origin, and time window at destination 
shifted back in time. The dashed area presents the time window at node OD. 

The problem now falls in the class of asymmetric Multi-Traveling Salesmen Problems 
with Time windows (m-TSPTW). In m-TSPTW, m salesmen are located in a city (i.e. 
node: n+1) and have to visit n cities (nodes: 1,..,n). The task is to select some or all of the 
salesmen and assign tours to them such that in the collection of all tours together the cost 
(distance) is minimized and each city is visited exactly once within a specified time 
window (Reinelt 1994). The problem is asymmetric since the traveling cost between each 
two nodes i and j depends on the direction of the move. Note that, 

 .)()()()()()()()( liODljODliOljDljOlDljODlOD cccc
ii

=≠=  (4) 

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

I II III

IV V VI

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

I II III

IV V VI



  

10  

3 Vehicle Routing Problems with Time Windows 

In Section 2, the movement of containers in metropolitan areas was discussed in detail.  It 
was shown that the problem falls in the class of asymmetric Multi-Traveling Salesmen 
Problems with Time windows (m-TSPTW).  The m-TSPTW problem is an interesting 
special case of the Vehicle Routing Problem with Time Windows (VRPTW) where the 
capacity constraints are relaxed.  The main purpose of this section is to review the class 
of VRPTW problems, present its mathematical formulation and discuss the special cases. 
Solution methods for VRPTW are briefly reviewed, and finally, the dynamic aspects of 
VRPTW are discussed.   

3.1 VRPTW 

The Vehicle Routing Problem with Time Windows (VRPTW) is a generalization of the 
Vehicle Routing Problem (VRP) involving the added complexity of time windows. The 
VRP and a variety of its practical applications have been the subject of a wide body of 
research (Bodin et al. 1993, Golden and Assad 1988, Laporte 1992, Fisher 1995).  

The VRPTW can be defined as follows: A number of vehicles, each with a given 
capacity, is located at a single depot and must serve a number of geographically dispersed 
customers. Each customer has a given demand and must be served within a specified time 
window. The objective is to minimize the total cost of travel (Desrochers et al. 1988).  

Time windows arise naturally in problems faced by business organizations. Time 
windows can be hard or soft. With hard time windows, the delivery times cannot be made 
outside the time window. That is, if a vehicle arrives at a customer location earlier than 
the beginning of the time window, it has to wait till the customer is ready to begin 
service. However, the vehicle cannot be served if it arrives at the customer location after 
the latest time of the time window. In contrast, in the case of soft time windows, the time 
windows can be violated at a cost (Desrosiers et al. 1995). In this report, we are focusing 
on hard time windows. 

3.2 Mathematical formulation for VRPTW 

Let G=(ND,A) be a graph with node set ND={o,d,N} and arc set A={(i,j)| i, j ∈ ND}. The 
nodes o and d represent the single depot (origin-depot and destination-depot), and 
N={1,2,…,n} is the set of customers. To each arc (i,j)∈A, a cost cij and a duration of time 
tij are associated representing the cost and the time of traveling between nodes i and j, 
respectively. In addition, to each node i∈ ND, a service time si, a time window [ai, bi], 
and a load variable qi are associated. The service time si is the duration of the time for a 
vehicle to be served at node i, and ai and bi are the earliest and latest time to visit node i, 
respectively. An arc (i,j)∈A is feasible iff ai+si+tij≤bj. Let V be the set of vehicles v with 
capacity Q. A route in the graph G is defined as assigning a set of nodes rv={o, 
wv

1,wv
2,…,wv

k, d} to vehicle v such that each arc in rv belongs to A, the capacity of the 
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vehicle is not exceeded, and the time service that begins at node j∈ rv is within the time 
window of that node.   

Let's also define: 

 xv
ij=1 if arc (i,j)∈A is traveled by vehicle v and is in the optimal path4. xv

ij=0 otherwise, 

Lv
i is the total load in vehicle v after serving node i, and 

Tv
i is the time when service begins at node i by vehicle v. 

The VRPTW can be formulated as follows: 

 ∑ ∑
∈ ∈Vv Aji

v
ijij xcMin  

),(

 (5a) 

Subject to: ∑ ∑
∈ ∪∈

=
Vv dNj

v
ijx
}{

1 ∀ i∈N (5b) 

 ∑∑
∈ ∈

≤
Vv Nj

v
oj Vx   (5c) 

 ∑ ∑
∪∈ ∪∈

=−
}{ }{

0
dNj oNj

v
ji

v
ij xx  ∀ i∈N, v∈V  (5d) 

 0)( ≤−++ v
jiji

v
i

v
ij TtsTx  ∀ i,j∈ND, v∈V (5e) 

 i
v

ii bTa ≤≤  ∀ i∈ND, v∈V (5f) 

 0)( ≤−+ v
ji

v
i

v
ij LqLx  ∀ i,j∈ND, v∈V (5g) 

 QLq v
ii ≤≤  ∀ i∈ND/{o}, v∈V (5h) 

 0=v
oL  ∀ v∈V (5i) 

 { }1  ,0∈v
ijx  ∀ (i,j)∈A, v∈V (5j) 

Constraints (5b) require that only one vehicle visit each node in N. Constraints (5c) 
ensure that at most |V| number of vehicles are used. To fix the number of vehicles, the 
inequality should be replaced by equality. Constraints (5d) guarantee that the number of 
vehicles leaving node j is the same as the number of vehicles entering the node. 
Therefore, constraints (5b)-(5d) together enforce that at most |V| number of vehicles visit 
all nodes in N only once. Constraints (5e) enforce the time feasibility condition on 
consecutive nodes. Constraints (5f) specify the time window constraints at each node. 
Constraints (5g)-(5i) guarantee the feasibility of the loads, and finally the constraints (5j) 
are the binary constraints. 

                                                 

4 The optimal path is a cycle of all nodes with the smallest possible total cost of arcs.  
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3.3 Special Cases 

multi-Traveling Salesmen Problem with Time Windows (m-TSPTW): The m-TSPTW 
emerges in the full-truck-load problem (Savelsbergh and Sol 1995).  This problem is our 
main interest here, since it is motivated by truck service applications found in the local 
operations where ISO containers need to be transferred between marine terminals, 
intermodal facilities, and end customers (see Section 2).  The m-TSPTW is a special case 
of the m-VRPTW in which the vehicle capacities are infinite. The mathematical 
formulation of the problem can be obtained by eliminating constraints (5g)-(5i).  In this 
report, and due to the social constraints imposed on truck drivers, we add another 
constraint to the standard m-TSPTW formulation as follows:  

 TTT v
o

v
d ≤−         ∀ v∈V (5k) 

Constraint (5k) requires that each vehicle shall be used less than a certain number of 
hours  per day. 

Traveling Salesman Problem With Time Windows (TSPTW): The special case of a m-
TSPTW in which the number of vehicles is limited to one is TSPTW. That is, we replace 
constraint (5c) with an equality and set |V|=1.  

Multi-tour Traveling Salesman Problem (m-TSP): If we relax constraints (5e) and (5f), 
the problem will be equivalent to an m-TSP.  Furthermore, if the number of vehicles is 
limited to one, the problem is equivalent to a Traveling Salesman Problem (TSP). TSP is 
the most prominent member of the rich set of combinatorial optimization problems 
known to be NP-hard. An excellent survey on computational solutions for the TSP is 
presented in Reinelt (1994). An m-TSP can be easily transformed to a TSP involving 
only one salesman (see Bellmore and Hong 1974). However, it should be noted that in 
contrast to the relation between the TSP and the m-TSP, the m-TSPTW cannot be 
transformed into an equivalent TSPTW.  

Vehicle Scheduling Problem (VSP): If the time windows in (5f) consist of a single value, 
in other words, if ai=bi ∀ i∈N, the m-TSPTW becomes VSP. It should be noted that VSP 
is solvable as the Minimum Cost Flow Problem (MCFP) in polynomial time (Lee 1992) 
and, thus, it is not NP hard. This class of problems is very practical and arises in many 
fields, such as airline, rail, school bus, and urban transportation.  

3.4 Solution methods for VRPTW 

The solution methods for VRPTW can be grouped into the following major categories: 
exact methods, and heuristic methods.  

Exact methods: The first paper proposing the exact method for solving VRPTW was 
published in 1987 (Kolen et al. 1987). Since then a number of papers have been 
published and the algorithms almost all use one of the following three principles: 
dynamic programming– (Kolen et al. 1987), Lagrange relaxation (Fisher 1994), and 
Dantzig-Wolfe decomposition/column generation (Desrochers 1992).  
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Heuristic methods: Heuristic methods for VRPTW have been studied since 1970’s. These 
methods are mainly based on two phases: 1) route construction, and 2) route 
improvement.  A good review and comparison of early heuristics can be found in 
Solomon (1987) and in Desrosiers et al. (1995).  Recently, new approaches based on 
modern heuristics and meta-heuristics, including tabu search (TS), genetic algorithms 
(GA) and simulated annealing (SA), are being applied to VRPTW (e.g. see Taillard and 
Badeau 1997).  Savelsbergh (1985) has shown that finding a feasible solution to the 
VRPTW is an NP-complete problem. Consequently, exact methods are efficient for small 
size problems. Larger size problems, however, can only be solved using heuristic 
methods. 

3.5 Dynamic VRPTW 

Most techniques and models used in transportation planning, scheduling, and routing 
including those used for VRPTW, use ‘known’ static data as their input. For instance, it is 
assumed in most VRPTW work that the customer demands, travel costs, and travel times 
are static and fully known in advance. In the real world, however, and especially in the 
trucking industry, truck operations contain a fairly high degree of uncertainties. The 
traffic characteristics of the selected routes may change (i.e. due to congestion in the 
route) during the truck operations. Unexpected delays at customer locations may happen. 
The customer may also alter the requested time window for service after the set of routes 
has been determined for trucks. Furthermore, at the time of cargo assignment and route 
planning, carriers may know only a portion of cargoes to be served. That is, new cargoes 
may be added/extracted to/from the set of the tasks in an unpredictable fashion.  

The VRP is dynamic if information (input) on the problem is made known to the 
decision-maker or is updated concurrently with the determination of the set of routes 
(Psaraftis 1995). The dynamic VRP has recently emerged as an active area of research 
due to recent technological advances in information and communication technologies 
(Psaraftis 1995, Powell et al. 1995, Gendreau and Potvin 1997). These technologies such 
as Electronic Data Interchange (EDI), Global Positioning Systems (GPS), and 
Geographical Information Systems (GIS) significantly enhance one’s ability in acquiring 
data in real time. However, technology alone is not sufficient to ensure success. The need 
remains to develop dynamic, quick and efficient algorithms capable of providing good 
solutions in real time (Crainic and Laporte 1997).  

Although the dynamic methods and models undoubtedly present the ‘wave of the future’ 
(Powell et al. 1995), little work has been done in this area. Perhaps the dynamic Dial-A-
Ride Problem (DARP)5 is among the most researched problems in transportation 
planning (Gendreau and Potvin 1997). In this problem, a new customer’s request is added 

                                                 

5 DARP is a special case of Pickup and Delivery Problem with Time Windows (PDPTW). In PDPTW, there is a single depot, a 
number of vehicles with given capacities, and a number of customers with given demands. Each customer must be served to pick up 
goods at his origin during a specified time window, and to deliver the items at his destination during another specified time window. 
The objective is to minimize the total travel cost. DARP arises in transportation systems for handicapped and the elderly. In these 
situations, the temporal constraints imposed by the customers strongly restrict the total vehicle load at any instant of time, and the 
capacity constraints are of secondary importance. 
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to the list of tasks, or is refused service. Two approaches have been reported in the 
literature: 1) insertion methods and 2) adaptation of static algorithms. In insertion 
methods, a fair amount of requests are known beforehand and are scheduled statically. 
Then, real time requests are incorporated (inserted) in the initial solution framework 
(Wilson and Colvin 1977, Jaw et al. 1986, Madsen et al. 1995). In the second method, the 
dynamic problem is solved as a sequence of static problems. Psarsftis (1980, 1988) used a 
Dynamic Programming (DP) algorithm initially to solve a single vehicle, static DARP. 
The DP algorithm is then applied repetitively when new requests occur.  
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4 Proposed Methods for m-TSPTW 

As it was stated in Section 2, the m-TSPTW is a special case of the Vehicle Routing 
Problem with Time Windows (VRPTW) where the capacity constraints are relaxed.  
Consequently, one may think of applying the same solution methods for m-TSPTW by 
relaxing the capacity constraints in VRPTW. Although the idea of using solution methods 
on VRPTW in m-TSPTW looks very rational, the experimental results show otherwise. 
In their work, Dumas et al. (1995) state: ‘Even though the TSPTW is a special case of 
VRPTW, the best known approach to the latter problem (Desrochers et al. 1992) is not 
well suited to solve the TSPTW. This column generation approach would experience 
extreme degeneracy difficulties in this case.’  

Since solution methods for VRPTW are not well suited for m-TSPTW, researchers have 
sought methods tailored for the TSPTW and m-TSPTW.  In this Section, first we review 
the existing solution methods for TSPTW and m-TSPTW.  Despite the importance of m-
TSPTW in trucking industry, the research on TSPTW and m-TSPTW has been scant 
(Desrosiers et al. 1995). In this report, three methodologies for solving m-TSPTW are 
proposed. Experimental results are used to show the efficiency of each method regarding 
the optimality of the solution and the problem size.   

4.1 Solution Methods for TSPTW and m-TSPTW 

Since finding a feasible solution to TSPTW and m-TSPTW is NP-complete problem 
(Savelsbergh 1985), most research has been focused on heuristic algorithms. Lin and 
Kernighan (1973) proposed a heuristic algorithm based on k-interchange concept for 
TSPTW. The method involves the replacement of k arcs currently in the solution with k 
other arcs.  Lee (1992) developed two heuristics based on the Vehicle Scheduling 
Problem (VSP) for the m-TSPTW. The VSP algorithms are exact in that they can find the 
optimal solution to the VSP in polynomial time. However, solutions found by VSP 
algorithms may be infeasible for the m-TSPTW. Two construction heuristics are 
developed to assign each customer to a route. Improvement heuristics are then developed 
to combine the initial routes.  Calvo (2000) proposed using a new heuristic method for 
the TSPTW based on solving an auxiliary assignment problem. To find better solutions, 
the algorithm used two objective functions. As soon as it was trapped in a local 
minimum, the algorithm used the second objective function to widen its neighborhood 
region.  

Despite the difficulty of the TSPTW, few authors have focused on exact solution. Dumas 
et al. (1995) used Dynamic Programming (DP) enhanced by a variety of elimination tests 
to solve the single vehicle TSPTW optimally. These tests took advantage of the time 
window constraints to significantly reduce the number of arcs in the graph to eliminate 
states. The authors managed to solve problems of up to 200 nodes with small window 
size, and problems of up to 80 nodes with larger time windows.  

As we noted previously, in contrast to the relation between the TSP and the m-TSP (see 
Reinelt 1994), the m-TSPTW cannot be transformed into an equivalent TSPTW. In this 
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report, the following methodologies are developed to extend the earlier work on the 
single vehicle TSPTW:  

1) An exact two-phase Dynamic Programming (DP),  

2) A hybrid methodology consisting of DP in conjunction with genetic algorithms 
(GA), and 

3) A heuristic insertion method.  

We next describe our approaches for solving the m-TSPTW.  

4.2 Proposed Exact Method for m-TSPTW 

A two-phase Dynamic Programming (DP) based method is proposed for solving m-
TSPTW. The method is the extension of the algorithm used for TSPTW and proposed in 
(Desrosiers1995 and Dumas 1995). In phase one, a forward DP is used to generate all 
feasible solutions, which will be called states. To reduce the computational time and the 
number of states, extensive elimination tests are performed before and during running the 
DP algorithm. The elimination tests take advantage of the time window constraints in 
(5e), (5f) and (5k) to significantly reduce the number of states. The outcome of the first 
phase will be sets of feasible solutions. The sets, then, will be fed to another DP 
algorithm in order to find a set of routes with minimum total cost which covers all nodes. 
That is, the second DP solves a set-covering problem in order to extract the optimum set 
of solutions among all sets of solutions. In the followings, we explain the exact method in 
detail. 

4.2.1 Methodology: 

Phase One: In this Section, for convenience, we adopt the same notation as in Subsection 
3.2. We require that the triangular inequality hold for both the travel costs and the travel 
times between each two nodes of the Graph G (See Section 3 for definition of G). That is, 
for any i,j,k∈ND, we have cik ≤cij +cjk  and tik ≤tij +tjk. 

We define the state (S,i,t) as follows: S⊆N is an unordered set of visited nodes, i∈S is the 
last visited node, and t is the time service begins at node i. Assigned to each state is a cost 
denoted by F(S,i,t) and defined as the least cost with minimum spanned time of a path 
starting at node {o}∈ND passing through every node of S exactly once and ending at 
node i. Note that, there are several paths that visit set S and end at node i. Among them, 
we choose the one with minimum cost and minimum spanned time (see the state 
elimination test ‘II.a’, below).  

Let fr(S)∈N be the first node in set S. The starting time of set S is denoted by tfr(S) and is 
defined as tfr(S)= max(ao, afr – so – to,fr). This time indicates the earliest possible vehicle 
dispatching time from the depot such that no waiting time is necessary at fr(S). 

In order to reduce the computational time, two types of elimination tests are performed: 
arc elimination, and state elimination. 
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I) Arc elimination tests: The arc elimination tests take advantage of the time 
window constraints (5e), (5f) and (5k) to significantly reduce the number of 
states. These tests are performed before and during running the DP algorithm. 

a) Arc elimination before running the algorithm. Let EAT(i,j) be the earliest 
arrival time at node j from node i. EAT(i,j)  defined as follows: 

  EAT(i,j)=ai+si+tij (6) 

 Let also BEFORE(j) be the set of all nodes that should be visited before 
node j, and is defined as follows: 

  BEFORE(j)={ k∈ND | EAT(j,k)>bk } (7) 

Nodes which can not be covered by set BEFORE(j) will be added to set 
FORBID(j). In the arc elimination tests, as soon as the algorithm reaches 
a node j which cannot be added to set S of state (S,i,t), neither node j nor 
FORBID(j) will be explored at any other state generated from that state. 
The Forbidden nodes for set S will be kept in the set U(S). 

b) Arc elimination during running the algorithm. Given state (S,i,t), ai≤t≤bi, 
the time to visit node j∈N after node i is t+si+tij. The reachability time 
of depot, {d}∈ND, after visiting node j is denoted by t’ and is defined as 
t’=max(aj, t+si+tij)+sj+tj,d. Node j can be added to set S if all of the 
following tests are satisfied.  

 t+si+tij≤bj   (8a) 

 t’≤bd  (8b) 

 t’-tfr(S) ≤T (8c) 

Note that, if node j can not meet any of the tests in (8), node j as well as 
all nodes in FORBID(j) will be kept in the set U(S) and will not be 
explored at any other states generated from S. 

II) State elimination tests. This set of tests implement the Dynamic Programming 
algorithm to reduce the number of states: a) during performing phase one, and 
b) after finishing this phase.  

a)  State elimination during running the algorithm. Given states (S,i,t1) and 
(S,i,t2), the second state is eliminated if t1≤t2 and F(S,i,t1)≤F(S,i,t2). 

b) State elimination after finishing the algorithm, Given states (S,d,t1) and 
(S,d,t2), the second state is eliminated if F(S,d,t1)≤F(S,d,t2). Test II-b 
reduces the number of states passing to the next phase in order to reduce 
the computational time in phase II. 

Algorithm: 

Step 1: Initialization:  level l=1,  

Form {S,i,t}: S={o,i}, t=tfr(S), F(S,i,t)=co,i,  

U(S)=FORBID(i)    ∀(o,i)∈A, 
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Step 2: During:    Set level l=l+1 

    For all states S in l-1 

    If U(S)∪S≠N,  

    For ∀(i,j)∈A, j∉U(S), i is the last node in S, j satisfies tests in (8) 

Generate new state {Sj,j,tj} 

S/{d}∪{j} Sj,  

tj= max(aj, t+si+tij) 

F(Sj,j,tj)=F(S,i,t)+cij     

U(Sj)=U(S) ∪ FORBID(j) 

  Perform test II-a 

Step 3: Termination:   If no node was generated in level l  

     Form S∪{d}, F(S,d,t’)=F(S,j,t)+cj,d where j is the last node in S 

       Perform test II-b 

       Stop 

  Otherwise: Go to Step 2   

Phase Two:  The outcome of the first phase is sets of feasible solutions (routes) with 
their associated costs.  Let’s assume that R routes were generated in Phase I. Let xr be one 
if the route r∈R is selected among the optimum routes, and zero otherwise. Associated to 
route r is the cost Fr which was calculated in the previous phase. Let also βir be equal to 
one if route r visits node i∈N, and zero otherwise. The set-covering problem can be 
formulated as follows: 

 Min    ∑
=

R

r
rr xF

1

 (9a) 

Subject to: 

  1
1

=∑
=

R

r
rir xβ  (9b) 

  }1,0{=rx  (9c) 

In order to find the set of routes in (9) which covers all nodes in G exactly once with 
minimum total cost, the routes generated in Phase I are fed to another DP algorithm.  
That is, the second DP solves a set-covering problem in order to extract the optimum set 
of solutions among all sets of solutions. It should be mentioned that the set covering 
problem has also been proven to be NP-hard (Garey 1979). 

In phase II, the state (St,v) is defined as follows: St⊆N is an unordered set of visited 
nodes, and v is the number of routes (vehicles) forming the state St. Assigned to each 
state is a cost denoted by g(St, v) and is defined as the least total costs of routes forming 
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St (covering every node of St). Given states (St, v1) and (St, v2), the second state is 
eliminated if g(St,v1)<g(St,v2). Furthermore, if g(St,v1)=g(St,v2) the second state is 
eliminated if v1≤v2. 

The outcome of Phase II will be a set of routes covering all nodes in G exactly once with 
total minimum cost. 

4.2.2 Computational Experiments: 

The exact method was coded in Matlab developed by Math Works, Inc.  The 
experimental tests consist of a Euclidean plane in which customer coordinates are 
uniformly distributed between 0 and 7, and travel times and costs equal distances.  The 
'time to start service' at each node is generated as a uniform random variable between 
9:00 a.m. to 5:00 p.m. The time window at each node has two sides. Each side consists of 
a time window generated as a uniform random variable in the interval [0,1].  The service 
time at each node is assumed to be a uniform random variable generated between 30 
minutes to 2 hours.   

The coordinates of the depot were generated randomly between 3 and 4 using uniform 
distribution function.  The time window at depot is set between 6:00 a.m. till 20:00 p.m. 
and the service time at depot is assumed to be zero. 

The experimental results for graph G with different number of nodes (customers) are 
presented in Table 1. The experiments were tested on an Intel Pentium III, 600 MHZ.  In 
Table 1, each set of customers (row) is built upon the previous row. For instance, for 
number of customers (nodes) equal to 10, we use the same randomly generated customers 
for N=7 and added 3 newly generated customers.  For the first three sets of tests, where 
the problem size was relatively small (less than 15 nodes), the exact method was able to 
find the optimal solution.  

Table 1. The exact method: computational experiments. 

No of nodes Optimum Cost CPU time6 

7 13.68 0.44 

10 22.47 2.31 

15 38.04 156.65 

20 NAa NA 

a) NA:  The result couldn’t be obtained 

4.3 Genetic Algorithms for m-TSPTW 

The exact method was applied on few sets of problems as shown in Table 1.  Since the 
problem is NP-hard, the computational time for large size problems is fairly high. What 
we observed in our computational experiments is the DP algorithm for set covering 

                                                 

6 CPU time: is the time in seconds that has been used by the simulation program to obtain the final result. 
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(phase II) is computationally slow with problems involving around or more than 20 
nodes.  

Although the proposed method is capable of finding the exact solution for small size 
problems, the algorithm becomes computationally very costly for problems of medium or 
larger size. Hence, it is desirable to find a mechanism that results in a compromise 
between the quality of the solution and the computational time needed to obtain that 
solution. Meta-heuristic methods such as Tabu Search, Simulated Annealing (SA), and 
Genetic Algorithms (GA) offer such a mechanism that forces the algorithm out of the 
locally optimal solutions in their search for the globally optimal solution. These methods 
have been recently considered and applied to Set Covering Problems (SCP) with 
promising results, for instance see Beasley and Chu (1996), Lorena and Lopes (1997), 
Sen (1993), and Jacobs and Brusco (1994).  

Since it is computationally prohibitive to find the optimal solution among the feasible set 
of solutions, we propose using a genetic algorithm for solving the second phase in order 
to find a ‘good’ solution for large size problems. 

4.3.1 Methodology: 

First, the sets of the routes found in Phase I are encoded in the form of matrix β presented 
in (9). Matrix β is an n×m matrix, where n is the number of customers in graph G and m 
in the number of the routes generated in phase I. Each element βij of this matrix has a 
binary value, i.e., it is either one or zero. The βij is one if route j visits node i∈N, and zero 
otherwise.  Without loss of generality, we assume that the columns of β are ordered in 
decreasing order of number of ones in each column (nodes visited by the route j), and 
columns with equal number of ones are ordered in increasing order of cost.  Equation 
(10) illustrates a typical matrix β for a graph of 4 nodes where 11 feasible routes were 
generated in Phase I. 
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A solution is defined as a set of routes (columns in β) that visited all the nodes (rows in 
β) in graph G exactly once. We used an m-bit binary string, which will be called 
chromosome thereafter, to represent a solution structure.  A value 1 for the ith bit in the 
string implies that column i is in the solution set.  Equation (11) shows two typical 
solutions (chromosomes) for matrix β in (10).  
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 (11) 
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To each chromosome a cost (fitness function) is associated which determines how 'good' 
each chromosome is. With binary representation, the fitness function ψj of chromosome j 
can be simply calculated by 

 ∑
=

⋅=
m

i
ijij F

1

ρψ  (12) 

where ρij is the value of the ith bit in the chromosome j, and Fi is the cost of traveling on 
route i calculated in phase I.   

The initial population of chromosomes is generated by randomly assigning feasible route 
i to chromosome j. The route i is weighted more if it covers more of the remaining nodes 
with less total costs.  Among all population of chromosomes two are “selected” for 
generating new chromosome (offspring). We used the binary tournament selection 
method by forming two groups of chromosomes with equal number of chromosomes in 
each group.  The chromosomes are randomly placed in each group. One chromosome 
from each group with the best fitness function is selected to produce an offspring. 
Crossover and mutation operators are then applied on two selected chromosomes to 
generate the offspring. Let’s assume that chromosomes j and k have been selected for 
producing the offspring l. By applying the crossover operator, the value of ρil (the ith bit 
in chromosome l) is set equal to ρij by probability p, which is equal to  

 ,
kj

jp
ψψ

ψ
+

=  (13) 

and to ρik with probability (1-p). Obviously, if the values of ρij and ρik are equal, the value 
of ρil will be equal to this value, i.e., ρil=ρij=ρik.  By applying the mutation operator, the 
value of ρil will be inverted by some small probability q. However, the new generated 
offspring, i.e. lth chromosome, may not be feasible. A heuristic method can be used to 
make the chromosome feasible (e.g., see Beasley and Chu 1996).  

The newly generated offspring substitutes one of the chromosomes in the initial 
population with fitness function worse than the average fitness of all population. This 
procedure will continue till the termination criterion is met, which is a predetermined 
number of iterations. 

The GA algorithm is summarized as follows: 

Step 1: Form matrix β;  

Generate the initial population.  

Step 2: Select two chromosomes for generating offspring. 

Step 3: Apply the crossover operator. 

Step 4: Apply the mutation operator. 

Step5: Make the offspring feasible. 

Step 6: Calculate the fitness function associated to the offspring. 
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Step 7: Substitute one of the chromosome in the initial population with offspring. 

Step 8: Repeat the steps 2-8 until the termination criterion is met. The best 
solution is the one with the minimum fitness function in the population. 

It is worth mentioning that it is generally believed that GA is slow and would take time to 
find a high quality solution (Zalzala and Fleming P.J. 1997).  The amount of 
computational effort required by this algorithm depends on the size of the problem, i.e., 
number of the nodes in graph G (number of the rows in matrix β) and the number of the 
generated feasible solutions in Phase I (number of the columns in matrix β).  

4.3.2 Computational Experiments: 

The hybrid GA method was also coded in Matlab.  Table 2 shows the results of using the 
hybrid GA method for finding the best solution among all feasible solutions (the top 
number in each cell is the value of the objective function, whereas the lower number is 
the computational time in seconds, as supplied by Matlab). The same data sets generated 
in Subsection 4.2.2 were used here to evaluate the efficiency of the GA method.  For each 
set of nodes, the genetic algorithm was applied 10 times in order to assess the reliability 
and repeatability of the algorithm.  A comparison of Tables 1 and 2 indicates that the 
hybrid GA algorithm was able to find the optimum solution for 7, 10 and 15 number of 
nodes at every trial in a relatively short amount of time.  

These promising results encouraged us to extend the number of nodes in graph G up to 
100.  Thus, we used the same methodology described in Subsection 4.2.2 to generate new 
set of nodes (customers).  That is each set of customers (row) is built upon the previous 
row.  Table 2 also shows the result of using the GA algorithm for finding a good solution 
to the graphs having more than 15 nodes.  

 
Table 2. The hybrid GA method: computational experiments. 

No of 
nodes 

Best solution in each of 10 trials using GA 

7 13.68a/ 
0.93 

13.68/ 
1.59 

13.68/ 
1.16 

13.68/ 
0.55 

13.68/ 
0.55 

13.68/ 
0.66 

13.68/ 
0.66 

13.68/ 
1.26 

13.68/ 
1.32 

13.68/ 
0.99 

10 22.47/ 
1.65 

22.47/ 
2.91 

22.47/ 
3.46 

22.47/ 
1.21 

22.47/ 
2.42 

22.47/ 
1.15 

22.47/ 
4.23 

22.47/ 
5.49 

22.47/ 
3.24 

22.47/ 
8.73 

15 38.04/ 
4.18 

38.04/ 
10.2 

38.04/7.
8 

38.04/ 
9.28 

38.04/ 
6.21 

38.04/ 
5.05 

38.04/ 
10.9 

38.04/ 
13.0 

38.04/ 
9.44 

38.04/ 
7.75 

20 55.2/ 
20.7 

54.3/ 
29.3 

53.6/ 
23.4 

55.2/ 
29.4 

54.0/ 
13.8 

55.2/ 
25.3 

54.1/ 
22.2 

54.3/ 
28.9 

54.2/ 
18.5 

54.1/ 
27.2 

30 89.1/ 
82.9 

90.0/  
47 

89.0/  
71 

88.1/ 
87.5 

87.9/ 
66.4 

88.5/ 
83.4 

88.9/ 
88.5 

88/  
85.4 

87.9/  
53 

87.8/ 
87.6 

50 158/ 
145 

153/ 
192 

153/ 
181 

151/ 
187 

154/ 
187 

150/ 
187 

151/ 
183 

150/ 
169 

153/  
190 

151/ 
191 

100 325/ 
2457 

325/ 
2051 

329/ 
2066 

329/ 
2327 

325/ 
2304 

324/ 
2178 

330/ 
2122 

335/ 
2529 

325/ 
2343 

324/ 
2199 

a) The best value obtained from GA method / CPU time.  
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4.4 Insertion method 

Due to the fact that the m-TSPTW is an NP-hard problem, together with the reality that 
the practical problems might have hundreds, or even thousands, of customers with wide 
time windows, there is not much hope for finding an optimal algorithm that works in 
practice.  Recall that even finding a feasible solution to the m-TSPTW problem is NP-
hard (Savelsbergh 1985). Therefore, the development of heuristic algorithms for this 
class of problems is of primary interest (Solomon 1987). This is the main reason why the 
majority of research in this area (and related ones, i.e. VRP, VRPTW, DARP) has been 
focused on finding an algorithm that will find ‘good solution’ in reasonably short amount 
of time, e.g., see Solomon (1987), Jaw et al. (1986), Madsen et al. (1995), Lee (1992), 
and Cavo (2000).  

In his paper, Solomon (1987) described a variety of heuristics. He conducted an extensive 
computational study of evaluating the performance of each heuristic. He found that 
several heuristics performed well in different problem environments; however, in 
particular insertion-type heuristic consistently gave very good results.  In this Subsection, 
we also develop an insertion heuristic for large size problems.  The effectiveness and 
more importantly the quickness of developed algorithm, which will be discussed later, 
encourage us to use the same heuristic in dynamic situations. 

4.4.1 Methodology: 

The main classifications of heuristic methods are: 1) tour construction heuristics and 2) 
tour improvement heuristics.  In tour construction heuristic, an algorithm builds 
(constructs) a set of feasible routes. In insertion heuristic a set of routes is built by 
inserting one request at a time into one route.  Here, we are developing a sequential 
insertion procedure in which one route is generated at a time, and new route is initialized 
when the current routes are full. First, the algorithm searches for feasible insertions of 
customers into active routes, and then an optimization procedure is used to find the best 
feasible insertion location. 

Feasible insertion procedure: Let r={o,1,..,i,j,j+1,..,n,d} be a feasible solution (route) 
starting from origin {o}, visiting nodes in route r only once, and ending at destination {d}. 
Figure 5 illustrates a typical route r. 

Figure 5: A graphical representation of a typical route. 
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Let Ar be the arc set associated with route (solution) r defined as Ar={(i,j)| i,j∈ r, and j is 
visited immediately after i}. Let cij and tij represent the cost and the time of traveling 
between two consecutive nodes i and j, respectively. Let also Ti be the time when service 
begins at node i.  Recall that associated to each node i∈ r are a service time si and a time 
window [ai, bi], where si is the duration of the time for a vehicle to be served at node i, 
and ai and bi are the earliest and the latest time to visit node i, respectively.   

Assuming that node j is visited after node i, the waiting time at node j denoted by wj is 
defined as the duration of time at node j the vehicle has to wait before being served, and 
is given by  

 wj=max(0,aj-(Ti+si+tij)). (14) 

Similarly, the excess time at node i denoted by ∆i is defined as the portion of the time-
window (at node i) between the latest time to visit node i, bi, and the time that the service 
has started at node i, and is given by  

 ∆i=bi-max(Ti,ai) (15) 

Figure 6 shows graphically the values of waiting time, excess time, service time, and time 
windows at each node of typical route r. Each arrow in Figure 6 indicates the traveling 
between pairs (i,j) in Ar. 

Figure 6: The graphical representation of waiting time, excess time, service time, and time windows 
at each node in a typical route. 

Let δ tij be the disturbance (changes from the nominal value) occurs in the traveling time 
between nodes i and j. The feasibility margin of the solution r to the changes in traveling 
time in link (i,j) is denoted by ϕr

ij and can be defined as the maximum value of δ tij such 
that the solution r is still feasible. The feasibility margin of solution r with respect to the 
changes in traveling time of the link (i,j) can be computed as follows:  
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The feasibility margin ϕr
ij implies how robust is the solution r to the changes on the 

traveling time between nodes i and j.  The feasibility margin in (16) can also be 
calculated recursively as follows: 
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where M is a big number. Having defined the feasibility margin between each two nodes 
of route r, we shall now investigate the feasibility of inserting a node (customer) l 
between nodes i and j in route r.  Node l can be inserted between each two consecutive 
nodes i and j if the following inequalities are satisfied: 

 til+wl+sl+tlj-tij≤ϕr
ij (18) 

 Ti+si+til≤bl (19) 

Equation (18) indicates that the time changes in route i caused by inserting the node l 
between nodes i and j should be less than or equal to the feasibility margin between these 
two nodes. And, Equation (19) ensures that node l is visited before the latest time bl.  

Optimization procedure: Recall that to each route r a cost Cr is associated. The cost Cr 
is the summation of traveling costs between each two consecutive nodes in r. In other 
words, Cr is the total cost of traveling throughout all nodes of route r in the specified 
order.  Let’s assume that node l can be inserted between nodes i and j in route r. That is 
the inequalities (18) and (19) are met. The changes in cost Cr due to inserting node l 
between nodes i and j is denoted by ∆Cr

ij and is given by  

 ∆Cr
ij=cil + cl j - cij. (20) 

To insert a node l in route r, we first find all feasible insertion locations according to (18) 
and (19).  Among all feasible locations (arcs) in route r, a candidate arc (i,j)∈Ar is one 
which results in minimum changes in cost Cr. In other words, we are interested in finding 

 r
ijCMin ∆

∈
  

rAj)(i,
 (21) 

We then examine all routes r to find the best locations among all feasible locations to 
insert node l. That is we are interested in finding the best candidate among all candidates 
with minimum cost of insertion, i.e., 

 

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



 ∆

∈

r
ijCMinMin     

rAj)(i,r
 (22) 

Here, we summarize the insertion method: 

Step 1: Initialization: construct the first route R=1. 

Step 2: Select the next customer to be inserted  

 a) For all routes r=1,..,R 
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Find the best feasible location in route r for inserting the customer, according to 
(21) 

b) If there is any feasible solution among all routes r=1,..R find the route r* 
results in minimum changes in the cost Cr 

C) If there is no feasible location in Step 2-a for customer insertion, add another 
route to the set of routes, i.e. R=R+1, and insert the customers in the newly 
generated route. 

Step 3: Termination: if there are no more customers to be inserted, Stop; 

Otherwise go to Step 2. 

4.4.2 Computational Experiments: 

The same sets of generated customers in Table 2, for different number of customers in 
graph G, are used for evaluating the insertion method. Table 3 summarizes and compares 
the cost and the CPU time of the exact method, the hybrid Genetic Algorithm (GA) 
method, and insertion method. As it is shown in Table 3, exact method is efficient for 
relatively small size problems consisting of a few nodes. GA is capable of finding 
optimum solution for small size problems, and able to find ‘good’ solution for medium to 
large size problems (more than 30 nodes). It should be noted that in our computational 
experiments the maximum number of generated solutions (offspring) in GA was limited 
to 1000. Obviously, the larger the number of solutions is, the better the final result is. 
Finally, The heuristic insertion method was able to find relatively good solutions for 
medium to large size problems (more than 50 nodes); furthermore, the method is 
computationally very fast.  

 
Table 3. Comparing exact, hybrid GA and insertion methods. 

Dynamic Programming Genetic Algorithma Insertion method No of 
nodes Cost CPU time Cost CPU time Cost CPU time 

7 13.68 0.44 13.68 0.97 17.69 0.11 

10 22.47 2.31 22.47 3.45 28.23 0.11 

15 38.04 156.65 38.04 8.38 45.64 0.22 

20 NAb NA 54.42 23.87 63.31 0.39 

30 NA NA 88.5 75.27 96.15 0.83 

50 NA NA 152.4 181.2 170.74 2.14 

100 NA NA 327.1 2257 330.91 8.62 

a)  In average (based on the results of 10 trials).  b)  The result/data couldn’t be obtained 

4.5 Real data 

The developed algorithms were tested using real examples containing a truck depot, 
container terminals, intermodal facilities and end customers supplied by the trucking 
company, Transport Express, in the City of Los Angeles. The city has some unique 
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specifications. It is adjacent to the Port of Los Angeles, the Port of Long Beach, and the 
Intermodal Container Transfer Facility (ICTF). Transport Express is a trucking company, 
which also does the warehousing and distributing. The loaded containers are brought to 
the depot, get unloaded, and then distributed among the end customers.  

The real data were obtained through shadowing the dispatcher within a typical day. It is 
observed that, the dispatcher assigned the jobs to drivers (assignment problem), based on 
the availability of the drivers and the jobs. The priority in the assignment goes to those 
drivers who show up early at the depot. The dispatcher makes sure that the jobs are 
distributed evenly without concerns of optimizing a cost function. During the day, 64 
containers were assigned to 22 drivers. This number includes 42 containers, which were 
moved between depot and the container terminals. This number shows the amount of 
similar activities at the depot. 

Time windows for container delivery were very large, i.e., between 7:00 a.m. to 4:00 p.m. 
Only 10 jobs were associated with tighter time windows, i.e., before noon or after noon. 
This fact of having 65 nodes with wide time windows would actually render both the 
exact and the hybrid GA methods incapable of demonstrating any results. Thus, the only 
choice left was to use the insertion method.  However, we want to re-emphasize the fact 
that by developing the exact and/or the hybrid method we haven’t had any intention of 
optimizing the current ways of operations at the trucking companies or at the container 
terminals, but the future modes. We will discuss about the future modes later in this 
Subsection.  

Table 4 shows the results obtained by applying the insertion method to the set of real data 
obtained from Transport Express.  The cost in Table 4 is set equal to travel distance. In 
addition, the following assumptions were made before applying the insertion method 
algorithm.  

The velocity of trucks: 30 miles/hour 

Time to load or unload a container: 20 minutes 
Table 4. Real Data solutions Comparison. 

Insertion method Dispatcher 
No. of nodes 

Cost No. Vehicles Used Cost No. Vehicles Used 

65 49.25 12 56.16 22 

 

In our personal communication with people at Transport Express, we have learned that 
many container terminals in the Port of Los Angeles and Port of Long Beach have plans 
to enforce tight time windows (appointment system) at their gates in near future. The 
appointment systems are being considered as part of a solution for reducing terminal 
congestion and for the need to manage the future demand, i.e., the increasing number of 
containers at terminals and, consequently, the growing flow of trucks at gates.  In the 
appointment system, a truck has to show up at the gates during a specific period of time 
to deliver or pick-up any specific container. It is worth mentioning that no standard has 
yet been established of how the appointment system should be implemented.  
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In the shed of this light, we made a scenario based on the real data we got from Transport 
Express.  We assumed that the trucking company has to pickup and deliver the same 
cargo in a day with time windows assigned to each customer. We kept those time 
windows assigned to 10 jobs (described above) and we assign a time window with the 
length of 30 minutes to the other customers. We assumed that the velocity of trucks is 20 
miles/hour and the loading or unloading time for any container is 30 minutes, and the cost 
is equal to travel distance.  The results obtained by implementing the appointment system 
is shown in table 5 for the hybrid GA and for the insertion method.   

 
Table 5. The result of applying appointment system on acquired Real Data . 

Insertion method Hybrid GA methoda 

No. of nodes 
Cost No. Vehicles Used Cost No. Vehicles Used 

65 82.83 23 79.25 24.4 

a)  In average (based on the results of 10 trials). 

4.6 Dynamic m-TSPTW 

Recall that cargo movement is a dynamic problem; thus, any efficient algorithm should 
be quick, efficient and dynamic. In this subsection, we assume that the information of 
some or all of the customers is not available at the time of the route planning and 
scheduling.  In other words, at the time of cargo assignment, carriers know only a portion 
of the customers to be served.  The goal is to incorporate the new customer requests in 
existing pre-planned routes or to determine new routes to satisfy these requests.  

In Section 3, we noted that, for a dynamic system, two methodologies could be 
employed: 1) insertion methods and 2) adaptation of static algorithms.  The results of our 
computational experiments, presented above, indicate that only the insertion method is 
well suited to be considered as a dynamic algorithm for real time systems. The insertion 
method is very fast, compared to the other methods, and it is fairly efficient especially for 
the problems with large number of customers (see Table 3). Thus we are adopting the 
insertion method for dynamic systems to incorporate the new customers requests.  

To measure the dynamism of a system, we adopt the concept of the Degree of 
Dynamisms introduced by Lund et al. (1996). The degree of dynamisms, denoted by DD, 
of a dynamic system can be defined as follows, 

 %100×=
T

D

N
NDD , (23) 

where ND is the number of new customers and NT is the total number of customers 
(advanced request customers as well as new customers).  For advanced request 
customers, we use hybrid GA method for planning the routes for vehicles. 

Figures 7, 8 and 9 show the efficiency of the insertion method in finding a good solution 
for a dynamic system with various degrees of dynamisms and different total number of 
customers. 
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Figure 7: Route cost vs. the degree of dynamisms; NT=10. 

Figure 8: Route cost vs. the degree of dynamisms; NT=20. 
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Figure 9: Route cost vs. the degree of dynamisms; NT=50. 
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5 Conclusions and Recommendations 

In this report, we investigated the cargo movement in metropolitan areas adjacent to 
ports. In particular, we were interested in improving the methods for trucks scheduling 
and route planning, where ISO containers need to be transferred between marine 
terminals, intermodal facilities, and end customers. The objective was to reduce empty 
miles, and to improve customer service.  We showed that the container movements by 
trucks can be modeled as an asymmetric multi-Traveling Salesmen Problem with Time 
Windows (m-TSPTW). Moreover, we proposed three methodologies for solving the m-
TSPTW:  

• An exact two-phase Dynamic Programming (DP), for problems with less than 15 
nodes and maximum window size 2 hours. 

• A hybrid methodology consisting of DP in conjunction with genetic algorithms 
(GA), for problems with about 50 nodes and maximum window size 2 hours. 

• A heuristic insertion method, for problems with more than 50 nodes with very 
wide window size. 

We also investigated the dynamic problems in which the information of new customers 
becomes available after the set of routes has been determined.  The results of our 
computational experiments indicate that the insertion method is well suited to be 
considered as a dynamic algorithm for real time systems. The insertion method is very 
fast, compared to the other methods, and it is fairly efficient especially for problems with 
large number of customers.  
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6 Implementation 

The container movement operations are moving in a direction where, scheduling and 
routing will be coordinated in an effort to reduce empty travel times, reduce congestion at 
the terminals and reduce the overall cost.  In this report we developed and tested several 
algorithms for scheduling and routing of trucks carrying containers for terminals and 
customers in a Metropolitan Area.  These algorithms are developed to deal with problems 
faced in such environments and be computationally feasible especially in a dynamic 
environment.  We interacted with Transport Express and use real data to evaluate the 
developed algorithms.  The developed algorithms are ready for implementation by 
trucking companies.  For this to be possible however, savings in cost and improved 
reliability in the working environment has to be established.  This requires additional 
work and collaboration with a particular trucking company and is part of future work. 
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