
Dynamic Optimization of Cargo Movement by Trucks in
Metropolitan Areas with Adjacent Ports

Principal Investigators:

Petros Ioannou
University of Southern California
Center for Advanced Transportation Technologies
Electrical Engineering - Systems, EEB 200B
Los Angeles, CA 90089-2562

Anastasios Chassiakos
California State University at Long Beach
College of Engineering,
Long Beach, CA 90840-5602

Research Group:

Hossein Jula
University of Southern California
Center for Advanced Transportation Technologies
Electrical Engineering - Systems, EEB 324
Los Angeles, CA 90089-2563

Ricardo Unglaub
California State University at Long Beach
College of Engineering,
Long Beach, CA 90840-5602

Final Report,

June 2002

i

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated under the sponsorship of the Department of Transportation, University
Transportation Centers Program, and California Department of Transportation in the
interest of information exchange. The U.S. Government and California Department of
Transportation assume no liability for the contents or use thereof. The contents do not
necessarily reflect the official views or policies of the State of California or the
Department of Transportation. This report does not constitute a standard, specification,
or regulation.

ii

Abstract

Today, in the trucking industry, dispatchers perform the tasks of cargo assignment, and
driver scheduling. The growing number of containers processed at marine centers and
the increasing traffic congestion in metropolitan areas adjacent to marine ports,
necessitates the investigation of more efficient and reliable ways to handle the increasing
cargo traffic. In this report, it is shown that the problem of container movement by trucks
can be modeled as a “multi-Traveling Salesmen Problems with Time Windows” (m-
TSPTW). A two-phase exact algorithm based on dynamic programming is proposed that
will find the best routes for a fleet of trucks. Since the m-TSPTW problem is
Nondeterministic Polynomial (NP) hard, the computational time for large size problems
becomes very high. For the case of medium to large size problems, we develop two
computationally feasible methods: 1) a hybrid methodology consisting of dynamic
programming in conjunction with genetic algorithms, and 2) a heuristic insertion method.
Furthermore, since the cargo movement in a traffic network is a dynamic problem, we
use the heuristic insertion method to add newly arriving customers to the set of customers
with advanced requests. Computational results demonstrate the efficiency of the hybrid
method for static problems and the insertion method for the dynamic ones.

iii

Table of Contents

DISCLAIMER ...I

ABSTRACT.. II

DISCLOSURE ..VI

ACKNOWLEDGMENTS .. VII

1 INTRODUCTION... 1

2 CARGO MOVEMENT: PROBLEM DESCRIPTION AND FORMULATION........................... 4
2.1 CONTAINER MOVEMENT .. 4
2.2 PROBLEM DESCRIPTION.. 5
2.3 PROBLEM FORMULATION ... 5

3 VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS.. 10
3.1 VRPTW ... 10
3.2 MATHEMATICAL FORMULATION FOR VRPTW ... 10
3.3 SPECIAL CASES... 12
3.4 SOLUTION METHODS FOR VRPTW ... 12
3.5 DYNAMIC VRPTW... 13

4 PROPOSED METHODS FOR M-TSPTW .. 15
4.1 SOLUTION METHODS FOR TSPTW AND M-TSPTW.. 15
4.2 PROPOSED EXACT METHOD FOR M-TSPTW... 16

4.2.1 Methodology: .. 16
4.2.2 Computational Experiments: .. 19

4.3 GENETIC ALGORITHMS FOR M-TSPTW.. 19
4.3.1 Methodology: .. 20
4.3.2 Computational Experiments: .. 22

4.4 INSERTION METHOD.. 23
4.4.1 Methodology: .. 23
4.4.2 Computational Experiments: .. 26

4.5 REAL DATA... 26
4.6 DYNAMIC M-TSPTW ... 28

5 CONCLUSIONS AND RECOMMENDATIONS .. 31

6 IMPLEMENTATION... 32

REFERENCES.. 33

Deleted: II

Deleted: VI

Deleted: VII

Deleted: 4

Deleted: 4

Deleted: 5

Deleted: 5

Deleted: 10

Deleted: 10

Deleted: 10

Deleted: 12

Deleted: 12

Deleted: 13

Deleted: 15

Deleted: 15

Deleted: 16

Deleted: 16

Deleted: 19

Deleted: 19

Deleted: 20

Deleted: 22

Deleted: 23

Deleted: 23

Deleted: 26

Deleted: 26

Deleted: 28

Deleted: 31

Deleted: 32

Deleted: 33

iv

List of Figures

Figure 1: Typical routes starting from depot and ending at the same depot. The large empty circle

denotes the depot. Each small black circle denotes the origin (O) or the destination (D) of a
cargo... 6

Figure 2: Each origin-destination pair in Figure 1 can be grouped as a node. ... 8
Figure 3: Time window at origin [aO, bO], destination [aD, bD], and time window at destination shifted

back in time [a’D, b’D]. ... 8
Figure 4: All possible situations between time window at origin, and time window at destination

shifted back in time. The dashed area presents the time window at node OD.................................. 9
Figure 5: A graphical representation of a typical route. .. 23
Figure 6: The graphical representation of waiting time, excess time, service time, and time windows at

each node in a typical route.. 24
Figure 7: Route cost vs. the degree of dynamisms; NT=10... 29
Figure 8: Route cost vs. the degree of dynamisms; NT=20... 29
Figure 9: Route cost vs. the degree of dynamisms; NT=50... 30

Deleted: 6

Deleted: 8

Deleted: 8

Deleted: 9

Deleted: 23

Deleted: 24

Deleted: 29

Deleted: 29

Deleted: 30

v

List of Tables:

Table 1. The exact method: computational experiments... 19
Table 2. The hybrid GA method: computational experiments... 22
Table 3. Comparing exact, hybrid GA and insertion methods. ... 26
Table 4. Real Data solutions Comparison. ... 27
Table 5. The result of applying appointment system on acquired Real Data ... 28

Deleted: 19

Deleted: 22

Deleted: 26

Deleted: 27

Deleted: 28

vi

Disclosure

Project was funded in entirety under this contract to California Department of
Transportation.

vii

Acknowledgments

We would like to express our sincere gratitude to Dr. Maged Dessouky, Professor at the
Department of Industrial and System Engineering at the University of Southern
California, for numerous discussions, suggestions and guidance.

We would also like to thank Ms. Patty Senecal, Mr. Mike Johnson, and Mr. J.R. Barba of
Transport Express for helping us acquiring real data, and supplying us with useful
information.

1

1 Introduction

Today, the elimination of international trade barriers, lower tariffs and shifting centers of
global manufacturing and consumption leads to new dynamics in intermodal shipping.
Worldwide container trade is growing at a 9.5% annual rate, while the rate of growth for
the U.S. is around 6% (Vickerman 1998). The continuous increase in worldwide
container trade have forced terminals to cope with "avalanches" of containers, in such a
way that every major port is expected to double and possibly triple its cargo by year 2020
(Taleb-Ibrahimi et al. 1993, Ryan 1998).

The growth in the number of containers has already introduced congestion and threatened
the accessibility to many terminals. The congestion at a port, in turn, magnifies the
congestion in the adjacent metropolitan traffic network and affects the trucking industry
on three major service dimensions: travel time, reliability, and cost. Trucking is a
commercial activity, and trucking operations are driven by the need to satisfy customer
demands and the need to operate at the lowest possible cost (Meyer 1996). This industry
is highly competitive, with easy entry into almost any market, with relatively little
differentiation between operators and slim profit margins.

Today, in the trucking industry, human operators (dispatchers) still play the major role in
cargo assignment, route planning and driver scheduling. Dispatchers inform drivers about
traffic conditions, in addition to assisting them in departure/arrival decisions and
providing navigational information (Ng et al. 1995). Dispatchers currently obtain
information about traffic conditions, mostly through radio traffic reports and through
information relayed back by the drivers (Hall and Intihar 1997). The growing number of
containers at marine centers and the increasing traffic congestion in metropolitan areas
necessitates the investigation of more efficient, reliable and systematic ways to handle the
increasing amount of cargo in a metropolitan traffic network.

The purpose of this report is to investigate methods for improving the scheduling of
trucks, where ISO containers1 need to be transferred between marine terminals,
intermodal facilities, and end customers. The objective is to reduce empty miles, and to
improve customer service. As a consequence of reduced miles and better service,
container terminals can become more competitive, vehicle emissions will be reduced, and
drivers will incur less congestion related delays.

In this report, we show that the container movements by trucks in metropolitan area can
be modeled as a multi-Traveling Salesmen Problem with Time Windows (m-TSPTW).
This problem is often referred to as the full-truck-load problem in the academic literature
(Savelsbergh and Sol 1995). The problem entails the determination of routes for the fleet
of trucks so that the total distribution costs are minimized while various requirements
(constraints) are met. The m-TSPTW is an interesting special case of the Vehicle Routing

1 Most containers are sized according to International Standards Organization (ISO). Based on ISO, containers are described in terms
of TEU (Twenty-foot Equivalent Units) in order to facilitate comparison of one container system with another. A TEU is 8 feet wide,
8 feet high and 20 feet long. An FEU is an eight-foot high forty-foot container and is equivalent to two TEUs.

2

Problem with Time Windows (VRPTW) where the capacity constraints are relaxed.
Savelsbergh (1985) has shown that finding a feasible solution to the single Traveling
Salesman Problem with Time Windows (TSPTW) is a Nondeterministic Polynomial
(NP)-complete problem.

Although there has been a significant amount of research on the VRPTW (e.g., see Bodin
et al. 1983, Golden and Assad 1988, Desrochers et al. 1992, Fisher 1995, and Desrosiers
et al. 1995), there has been little work on the m-TSPTW. Since the m-TSPTW is a
relaxation of the VRPTW, it may appear at first that the procedures developed for the
latter could be applied to the m-TSPTW. However, as Dumas et al. (1995) point out,
these procedures are not well suited to the m-TSPTW. Hence, new procedures need to be
developed for the m-TSPTW. We note that Dumas et al. (1995) presented an efficient
exact solution procedure for the single vehicle TSPTW. However, in contrast to the
simple transformation of the m-TSP to the TSP, m-TSPTW cannot be easily converted to
a single vehicle TSPTW.

In this report, we propose three methodologies for solving the m-TSPTW problem.

• An exact method based on Dynamic Programming (DP) is proposed. The method
consists of two phases: 1) generating feasible solutions, and 2) finding the
optimum solution among all feasible solutions (set-covering problem).
Computational experiments show that the proposed exact method is efficient for
relatively small size problems consisting of few nodes (up to 15 nodes with
maximum window size 2 hours).

• For medium size problems, we develop a hybrid methodology consisting of
dynamic programming for generating feasible solution in conjunction with
genetic algorithms (GA). The GA algorithm is used to find a ‘good’ solution
among all feasible solutions. Experimental results show the efficiency of GA set-
covering algorithm for medium size problems (about 50 nodes with maximum
window size less than 2 hours).

• A heuristic insertion method is developed for large size problems (more than 50
nodes). In this method, nodes are sequentially inserted into already determined
routes. A new route is generated whenever a node cannot be added to any existing
route. Experimental results show that the method is computationally very fast and
it is fairly efficient for medium to large size problems (more than 50 nodes with
very wide window size, e.g. 9 hours).

It is worth mentioning that most techniques and models used in transportation planning,
scheduling, and routing use ‘known’ static data as their input (e.g., see Golden and Assad
1988, Desrochers et al. 1988, Laporte 1992, Savelsbergh and Sol 1995). In the real world,
however, truck operations contain a fairly high degree of uncertainties (e.g., see Powell et
al. 1995, Powell 1996). Since cargo assignment and route planning is a dynamic problem,
any efficient algorithm should also be dynamic. Despite this fact, little work has been
done in this area (Psaraftis 1995). For a dynamic system, two methodologies could be
employed: 1) insertion methods and 2) adaptation of static algorithms. The results of our
computational experiments, presented in Section 4, indicate that only the insertion
method is well suited to be considered as a dynamic algorithm for real time systems. The

3

insertion method is very fast and it is fairly efficient especially for the problems with
large number of customers.

In this report, we assume a deterministic transportation network. We assume that the
travel times on the links of the network are independent of the time when vehicles enter
that links. These assumptions are made to simplify the problem, get better insight, make
it possible to model the problem mathematically and come up with a close analytical
solution. In our future work, we intend to extend the following study into the non-
stationary stochastic networks.

The report is organized as follows. In Section 2, the container movement and trucking
operations in metropolitan areas are described, and is formulated as an asymmetric m-
TSPTW. In Section 3, we study a more general class of m-TSPTW, the VRPTW
problem, where solution methods for VRPTW are briefly reviewed, and dynamic aspects
of VRPTW are discussed in detail. In Section 4, we show that the VRPTW solution
methods are not well suited for m-TSPTW problem, and propose three methodologies for
solving the m-TSPTW problem.

4

2 Cargo Movement: Problem Description and Formulation

In this section, it is shown that the container movements by trucks can be modeled as an
asymmetric multi-Traveling Salesmen Problem with Time Windows (m-TSPTW). We
start with describing the container movement and trucking operations in metropolitan
areas.

2.1 Container Movement

Today, in trucking industry, human operators (dispatchers) perform the tasks of cargo
assigning, route planning and driver scheduling. Each day, the list of cargoes to be
handled during the day is passed to the dispatcher early in the morning. For containers,
this list contains the information about the origin and the destination of containers, if they
are over weight, contain HAZMAT2, or need to be handled before any specific time. The
dispatcher will assign a driver to each container based on the availability of the driver and
his skills. At most two containers will be assigned to each driver at a time. The dispatcher
will assign two containers if the delivery point of the first one is relatively close to the
pick up location of the second one. Otherwise, only one container is assigned to the
driver. Upon finishing his job(s), the driver would ask the dispatcher for new jobs. If new
jobs need to be accompanied by formal documentation or no job is available at the time,
the driver will be asked to go back to the depot, otherwise the new job(s) will be given to
him via the cell phone.

In today’s container terminals two operations are taking place: wheeled, and ground
(Ioannou et al. 2000). A wheeled operation is one in which the container is brought into
the container yard on a chassis, and then brought to the ship on the same chassis, and
lifted off. This empty chassis can then be used for inbound containers. The wheeled
operations, where possible, are more efficient than the grounded ones in terms of loading
and unloading rates as they require no container transfer and are random access. That
explains why the trucking companies are in favor of terminals with wheeled operations.
Ground operations, on the other hand, are very efficient in terms of space, since the
containers can be stacked 4-5 high when full, and even higher when empty. Ground
operations require more effort for storage and retrieval, since the container must be
transferred via lifting equipment, and often, multiple lifts are required in the yard where
containers are stacked on top of one another. It takes much longer for the trucker to be
served, since he/she has to get a chassis at the terminal, find the container stack location,
wait for his/her turn for the equipment to lift the container from the stack and put the
container on the chassis.

In today’s container industry, there are a lot of discussions about appointment windows.
The appointment systems are being considered as part of a solution for terminal
congestion. These systems are coming about because of the terminals’ need to 'manage

2 HAZardous MATerial.

5

the demand' (the flow of trucks). For instance, the Hanjin terminal at Port of Long Beach
has just started informing the local trucking companies of the list of containers they want
to be picked up on the hoot shift (i.e., 3:00 a.m. - 7:00 a.m.). However, no standard has
yet been maintained of how the appointment systems should be implemented.

As it was noted before, trucking operations are driven by the need to satisfy customer
demands and the need to operate at the lowest possible cost. These facts magnify the need
for finding better ways of performing trucking operations in metropolitan areas adjacent
to the ports.

2.2 Problem Description

The problem of interest, described above, can be stated more formally as follows: A set
of loads (containers) needs to be moved in a metropolitan (local) area. The local area
contains one truck depot (which thereafter will be called depot), as well as many end
customers including marine terminals and intermodal facilities. Associated to each load is
hard time windows imposed by customers for pickup and delivery at origin and
destination points, respectively.

A set of trucks (vehicles) is deployed to move the loads among the customers, and the
depot. Each truck can only serve a single load (e.g. one FEU3 size container) at a time,
and initially, all trucks are located at the depot. We assume that each driver may not be at
the wheel for more than a certain number of hours (working shift) in each working day
and has to drive his truck back to the depot within this time limit.

The objective is to minimize the total cost of providing service to loads within their
specified time constraints.

2.3 Problem Formulation

Let L be a set of n cargos (loads) li to be transferred in a transportation network G, i.e.
L={l1,l2,…,ln}; and V be a set of p vehicles labeled vi, i=1,2,..,p assigned to transfer the
cargos, i.e. V={v1,v2,…,vp}.

We assume that, at any time, a vehicle vi∈V can transfer at most a single cargo, say li∈L,
and that the information of the origin and the destination of the cargo li is known in
advance. We denote by O(li) and D(li) the origin and the destination of the cargo li,
respectively. The cargo li shall be picked up from its corresponding origin during a
specific period of time known as pickup time window and denoted by],[)()(ii lOlO ba ,

where)()(ii lOlO ba < . Likewise, cargo li shall be delivered at its corresponding destination

during a delivery time window denoted by],[)()(ii lDlD ba , where)()(ii lDlD ba < .

3 FEU: Forty-foot Equivalent Units (See also footnote 1 on page 1).

6

Let's assume that to the vehicle vi∈V the total number of K(i) cargos are assigned to be
transferred. Let δik∈L be the kth cargo assigned to vehicle vi among these cargoes. The
sequence of cargos assigned to the vehicle vi is called route and is denoted by ri, i.e.
ri={δi1, δi2,…,δik,…,δiK(i)}. Route ri is said to be feasible if it satisfies the time window
constraints at the origins and the destinations of all assigned cargoes, and the total time
needed for traveling on the route is less than a certain amount of time called the working
shift (time) and denoted by T.

It should be noted that:

 U
p

i
i Lr

1=

= , and I =ji rr ∅, for ∀i,j=1,..,p and i≠j, where ∅ indicates the empty set.

Figure 1 shows typical three feasible routes (r1, r2, and r3) starting from depot and ending
at the same depot. Solid lines, in Figure 1, illustrate the traveling between origin and
destination when the vehicle is loaded, while dashed lines indicate empty traveling
between destination and origin.

Figure 1: Typical routes starting from depot and ending at the same depot. The large empty circle
denotes the depot. Each small black circle denotes the origin (O) or the destination (D) of a cargo.

Let's denote by f(ri) the cost associated with each route i. f(ri) can be formulated as
follows:

 ∑∑
==

+
+=

)(

0
)()(

)(

1
)()(1

)(
iK

k
OD

iK

k
DOi ikikikik

ccrf δδδδ (1)

Where:

Route r1

Route r2

Route r3

O(δ31)

D(δ31)

O(δ32)

D(δ32)

O(δ33)

D(δ33)

O(δ11)

O(δ12)

O(δ13)

D(δ13)

D(δ12) D(δ11)

D(δ21)

O(δ21)

Route r1

Route r2

Route r3

O(δ31)

D(δ31)

O(δ32)

D(δ32)

O(δ33)

D(δ33)

O(δ11)

O(δ12)

O(δ13)

D(δ13)

D(δ12) D(δ11)

D(δ21)

O(δ21)

7

)()(ikik DOc δδ is the cost of carrying the kth cargo from its origin to its destination,

(solid lines between each pair of O(δik) and D(δik) in Figure 1),

)()(1+ikik ODc δδ is the cost of empty traveling between the destination of the kth cargo
to the origin of the (k+1)th cargo, (dashed lines between each pair of
D(δik) and O(δik+1) in Figure 1). Depot is denoted by k=0 and k=n+1, and

K(i) is the total number of cargos handled in route ri by vehicle vi.

The objective is to find optimum routes for p vehicles providing the services to n cargos
by traveling between origins and destinations of cargos and satisfying the time window
constraints such that the completion of handling all cargos results in minimizing the total
travel cost. The objective function, J can be written as follows:

 ∑
=

=
p

i
irfMinJ

1

)(, (2)

Let's assume that the travel cost for a vehicle, either loaded or empty, is static, and the
cost associated with transferring a cargo li∈L between its origin and destination,

)()(ii lDlOc , is independent of the order of transferring the cargo by a vehicle. Let’s also
assume that the fleet of vehicles is homogenous. Therefore, no matter what the
assignment and order of handling n cargoes are, the costs (.)(.)DOc don't affect the cost
function in Equation (2) and can be considered to be zero. That is the total cost function
in Equation (2) is only affected by the cost associated with vehicles' empty traveling
between the destinations of the kth and (k+1)th cargoes; and the problem of interest is
reduced to finding the best feasible assignment and sequencing of n cargoes to p vehicles
such that the total empty travel cost of the vehicles is minimum.

In this report, we assume a deterministic transportation network in which the network
parameters are known a priori. We also assumed that the travel time on a link of the
network is independent of the time when a vehicle enters that link. These assumptions are
made to simplify the problem, get better insight, and make it possible to model the
problem mathematically and come up with a close analytical solution. In such a network,
the order of the pick up/delivery points won’t affect the cost of operation.

In our future work, we intend to consider non-stationary stochastic networks in which the
travel times on the links as well as the service times at the nodes of the network are
stochastic processes. In other words, the travel time between each two nodes of the
network is a random variable, which depends on the time when a vehicle enters the link.
In such a network, the sequence of the pick up/delivery points will affect the cost of the
cargo movement.

8

Figure 2: Each origin-destination pair in Figure 1 can be grouped as a node.

Thus, each origin-destination pair, O(δik)-D(δik), in Figure 1 can be replaced by a node
OD(δik) where δik∈ ri and k=1,..,K(i), and the cost between two nodes is equal to the cost
of empty traveling between the destination of the first node to the origin of the second
one (see Figure 2).

The time window at node OD(δik) can be expressed in terms of: 1) time window at its
origin, 2) time window at its destination, and 3) the traveling time between the origin and
the destination,)()(ikik DOt δδ . Figure 3 demonstrates a typical relation between these three
factors and the time window [a’D ,b’D], where [a’D ,b’D] is the time window at destination
shifted back in time by)()(ikik DOt δδ . For the sake of simplicity, we eliminate all subscripts

δik in Figure 3.

Figure 3: Time window at origin [aO, bO], destination [aD, bD], and time window at destination shifted
back in time [a’D, b’D].

Figure 4 presents all possible situations between time windows [a’D ,b’D] and [aO ,bO].
The dashed areas, in Figure 4, indicate the time window at the origin of node OD during
which a vehicle can be loaded and yet to meet the time window constraint at destination.
Case IV is infeasible and may not happen in real situation.

OD(δ11)
OD(δ12)

OD(δ13)

Route r1

Route r2

Route r3

OD(δ21)

OD(δ31)

OD(δ32)OD(δ33)

OD(δ11)
OD(δ12)

OD(δ13)

Route r1

Route r2

Route r3

OD(δ21)

OD(δ31)

OD(δ32)OD(δ33)

aO
aD

a’D

bO
bD

tOD

b’D

aO
aD

a’D

bO
bD

tOD

b’D

9

The problem of interest can now be restated as follows: p vehicles are initially located at
the depot. They have to visit nodes OD(li), i=1,..,n; the task is to select some (or all) of
these vehicles and assign routes to them such that each node is visited exactly once
during the time window],[

ii ll ba , where],[
ii ll ba can be expressed as follows (see Figure

4).

)(ii lOl aa =

),(min)()()()(iiiii lDlOlDlOl tbbb −= (3)

Figure 4: All possible situations between time window at origin, and time window at destination
shifted back in time. The dashed area presents the time window at node OD.

The problem now falls in the class of asymmetric Multi-Traveling Salesmen Problems
with Time windows (m-TSPTW). In m-TSPTW, m salesmen are located in a city (i.e.
node: n+1) and have to visit n cities (nodes: 1,..,n). The task is to select some or all of the
salesmen and assign tours to them such that in the collection of all tours together the cost
(distance) is minimized and each city is visited exactly once within a specified time
window (Reinelt 1994). The problem is asymmetric since the traveling cost between each
two nodes i and j depends on the direction of the move. Note that,

 .)()()()()()()()(liODljODliOljDljOlDljODlOD cccc
ii

=≠= (4)

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

I II III

IV V VI

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

aO

a’D

bO

b’D

I II III

IV V VI

10

3 Vehicle Routing Problems with Time Windows

In Section 2, the movement of containers in metropolitan areas was discussed in detail. It
was shown that the problem falls in the class of asymmetric Multi-Traveling Salesmen
Problems with Time windows (m-TSPTW). The m-TSPTW problem is an interesting
special case of the Vehicle Routing Problem with Time Windows (VRPTW) where the
capacity constraints are relaxed. The main purpose of this section is to review the class
of VRPTW problems, present its mathematical formulation and discuss the special cases.
Solution methods for VRPTW are briefly reviewed, and finally, the dynamic aspects of
VRPTW are discussed.

3.1 VRPTW

The Vehicle Routing Problem with Time Windows (VRPTW) is a generalization of the
Vehicle Routing Problem (VRP) involving the added complexity of time windows. The
VRP and a variety of its practical applications have been the subject of a wide body of
research (Bodin et al. 1993, Golden and Assad 1988, Laporte 1992, Fisher 1995).

The VRPTW can be defined as follows: A number of vehicles, each with a given
capacity, is located at a single depot and must serve a number of geographically dispersed
customers. Each customer has a given demand and must be served within a specified time
window. The objective is to minimize the total cost of travel (Desrochers et al. 1988).

Time windows arise naturally in problems faced by business organizations. Time
windows can be hard or soft. With hard time windows, the delivery times cannot be made
outside the time window. That is, if a vehicle arrives at a customer location earlier than
the beginning of the time window, it has to wait till the customer is ready to begin
service. However, the vehicle cannot be served if it arrives at the customer location after
the latest time of the time window. In contrast, in the case of soft time windows, the time
windows can be violated at a cost (Desrosiers et al. 1995). In this report, we are focusing
on hard time windows.

3.2 Mathematical formulation for VRPTW

Let G=(ND,A) be a graph with node set ND={o,d,N} and arc set A={(i,j)| i, j ∈ ND}. The
nodes o and d represent the single depot (origin-depot and destination-depot), and
N={1,2,…,n} is the set of customers. To each arc (i,j)∈A, a cost cij and a duration of time
tij are associated representing the cost and the time of traveling between nodes i and j,
respectively. In addition, to each node i∈ ND, a service time si, a time window [ai, bi],
and a load variable qi are associated. The service time si is the duration of the time for a
vehicle to be served at node i, and ai and bi are the earliest and latest time to visit node i,
respectively. An arc (i,j)∈A is feasible iff ai+si+tij≤bj. Let V be the set of vehicles v with
capacity Q. A route in the graph G is defined as assigning a set of nodes rv={o,
wv

1,wv
2,…,wv

k, d} to vehicle v such that each arc in rv belongs to A, the capacity of the

11

vehicle is not exceeded, and the time service that begins at node j∈ rv is within the time
window of that node.

Let's also define:

 xv
ij=1 if arc (i,j)∈A is traveled by vehicle v and is in the optimal path4. xv

ij=0 otherwise,

Lv
i is the total load in vehicle v after serving node i, and

Tv
i is the time when service begins at node i by vehicle v.

The VRPTW can be formulated as follows:

 ∑ ∑
∈ ∈Vv Aji

v
ijij xcMin

),(

 (5a)

Subject to: ∑ ∑
∈ ∪∈

=
Vv dNj

v
ijx
}{

1 ∀ i∈N (5b)

 ∑∑
∈ ∈

≤
Vv Nj

v
oj Vx (5c)

 ∑ ∑
∪∈ ∪∈

=−
}{ }{

0
dNj oNj

v
ji

v
ij xx ∀ i∈N, v∈V (5d)

 0)(≤−++ v
jiji

v
i

v
ij TtsTx ∀ i,j∈ND, v∈V (5e)

 i
v

ii bTa ≤≤ ∀ i∈ND, v∈V (5f)

 0)(≤−+ v
ji

v
i

v
ij LqLx ∀ i,j∈ND, v∈V (5g)

 QLq v
ii ≤≤ ∀ i∈ND/{o}, v∈V (5h)

 0=v
oL ∀ v∈V (5i)

 { }1 ,0∈v
ijx ∀ (i,j)∈A, v∈V (5j)

Constraints (5b) require that only one vehicle visit each node in N. Constraints (5c)
ensure that at most |V| number of vehicles are used. To fix the number of vehicles, the
inequality should be replaced by equality. Constraints (5d) guarantee that the number of
vehicles leaving node j is the same as the number of vehicles entering the node.
Therefore, constraints (5b)-(5d) together enforce that at most |V| number of vehicles visit
all nodes in N only once. Constraints (5e) enforce the time feasibility condition on
consecutive nodes. Constraints (5f) specify the time window constraints at each node.
Constraints (5g)-(5i) guarantee the feasibility of the loads, and finally the constraints (5j)
are the binary constraints.

4 The optimal path is a cycle of all nodes with the smallest possible total cost of arcs.

12

3.3 Special Cases

multi-Traveling Salesmen Problem with Time Windows (m-TSPTW): The m-TSPTW
emerges in the full-truck-load problem (Savelsbergh and Sol 1995). This problem is our
main interest here, since it is motivated by truck service applications found in the local
operations where ISO containers need to be transferred between marine terminals,
intermodal facilities, and end customers (see Section 2). The m-TSPTW is a special case
of the m-VRPTW in which the vehicle capacities are infinite. The mathematical
formulation of the problem can be obtained by eliminating constraints (5g)-(5i). In this
report, and due to the social constraints imposed on truck drivers, we add another
constraint to the standard m-TSPTW formulation as follows:

 TTT v
o

v
d ≤− ∀ v∈V (5k)

Constraint (5k) requires that each vehicle shall be used less than a certain number of
hours per day.

Traveling Salesman Problem With Time Windows (TSPTW): The special case of a m-
TSPTW in which the number of vehicles is limited to one is TSPTW. That is, we replace
constraint (5c) with an equality and set |V|=1.

Multi-tour Traveling Salesman Problem (m-TSP): If we relax constraints (5e) and (5f),
the problem will be equivalent to an m-TSP. Furthermore, if the number of vehicles is
limited to one, the problem is equivalent to a Traveling Salesman Problem (TSP). TSP is
the most prominent member of the rich set of combinatorial optimization problems
known to be NP-hard. An excellent survey on computational solutions for the TSP is
presented in Reinelt (1994). An m-TSP can be easily transformed to a TSP involving
only one salesman (see Bellmore and Hong 1974). However, it should be noted that in
contrast to the relation between the TSP and the m-TSP, the m-TSPTW cannot be
transformed into an equivalent TSPTW.

Vehicle Scheduling Problem (VSP): If the time windows in (5f) consist of a single value,
in other words, if ai=bi ∀ i∈N, the m-TSPTW becomes VSP. It should be noted that VSP
is solvable as the Minimum Cost Flow Problem (MCFP) in polynomial time (Lee 1992)
and, thus, it is not NP hard. This class of problems is very practical and arises in many
fields, such as airline, rail, school bus, and urban transportation.

3.4 Solution methods for VRPTW

The solution methods for VRPTW can be grouped into the following major categories:
exact methods, and heuristic methods.

Exact methods: The first paper proposing the exact method for solving VRPTW was
published in 1987 (Kolen et al. 1987). Since then a number of papers have been
published and the algorithms almost all use one of the following three principles:
dynamic programming– (Kolen et al. 1987), Lagrange relaxation (Fisher 1994), and
Dantzig-Wolfe decomposition/column generation (Desrochers 1992).

13

Heuristic methods: Heuristic methods for VRPTW have been studied since 1970’s. These
methods are mainly based on two phases: 1) route construction, and 2) route
improvement. A good review and comparison of early heuristics can be found in
Solomon (1987) and in Desrosiers et al. (1995). Recently, new approaches based on
modern heuristics and meta-heuristics, including tabu search (TS), genetic algorithms
(GA) and simulated annealing (SA), are being applied to VRPTW (e.g. see Taillard and
Badeau 1997). Savelsbergh (1985) has shown that finding a feasible solution to the
VRPTW is an NP-complete problem. Consequently, exact methods are efficient for small
size problems. Larger size problems, however, can only be solved using heuristic
methods.

3.5 Dynamic VRPTW

Most techniques and models used in transportation planning, scheduling, and routing
including those used for VRPTW, use ‘known’ static data as their input. For instance, it is
assumed in most VRPTW work that the customer demands, travel costs, and travel times
are static and fully known in advance. In the real world, however, and especially in the
trucking industry, truck operations contain a fairly high degree of uncertainties. The
traffic characteristics of the selected routes may change (i.e. due to congestion in the
route) during the truck operations. Unexpected delays at customer locations may happen.
The customer may also alter the requested time window for service after the set of routes
has been determined for trucks. Furthermore, at the time of cargo assignment and route
planning, carriers may know only a portion of cargoes to be served. That is, new cargoes
may be added/extracted to/from the set of the tasks in an unpredictable fashion.

The VRP is dynamic if information (input) on the problem is made known to the
decision-maker or is updated concurrently with the determination of the set of routes
(Psaraftis 1995). The dynamic VRP has recently emerged as an active area of research
due to recent technological advances in information and communication technologies
(Psaraftis 1995, Powell et al. 1995, Gendreau and Potvin 1997). These technologies such
as Electronic Data Interchange (EDI), Global Positioning Systems (GPS), and
Geographical Information Systems (GIS) significantly enhance one’s ability in acquiring
data in real time. However, technology alone is not sufficient to ensure success. The need
remains to develop dynamic, quick and efficient algorithms capable of providing good
solutions in real time (Crainic and Laporte 1997).

Although the dynamic methods and models undoubtedly present the ‘wave of the future’
(Powell et al. 1995), little work has been done in this area. Perhaps the dynamic Dial-A-
Ride Problem (DARP)5 is among the most researched problems in transportation
planning (Gendreau and Potvin 1997). In this problem, a new customer’s request is added

5 DARP is a special case of Pickup and Delivery Problem with Time Windows (PDPTW). In PDPTW, there is a single depot, a
number of vehicles with given capacities, and a number of customers with given demands. Each customer must be served to pick up
goods at his origin during a specified time window, and to deliver the items at his destination during another specified time window.
The objective is to minimize the total travel cost. DARP arises in transportation systems for handicapped and the elderly. In these
situations, the temporal constraints imposed by the customers strongly restrict the total vehicle load at any instant of time, and the
capacity constraints are of secondary importance.

14

to the list of tasks, or is refused service. Two approaches have been reported in the
literature: 1) insertion methods and 2) adaptation of static algorithms. In insertion
methods, a fair amount of requests are known beforehand and are scheduled statically.
Then, real time requests are incorporated (inserted) in the initial solution framework
(Wilson and Colvin 1977, Jaw et al. 1986, Madsen et al. 1995). In the second method, the
dynamic problem is solved as a sequence of static problems. Psarsftis (1980, 1988) used a
Dynamic Programming (DP) algorithm initially to solve a single vehicle, static DARP.
The DP algorithm is then applied repetitively when new requests occur.

15

4 Proposed Methods for m-TSPTW

As it was stated in Section 2, the m-TSPTW is a special case of the Vehicle Routing
Problem with Time Windows (VRPTW) where the capacity constraints are relaxed.
Consequently, one may think of applying the same solution methods for m-TSPTW by
relaxing the capacity constraints in VRPTW. Although the idea of using solution methods
on VRPTW in m-TSPTW looks very rational, the experimental results show otherwise.
In their work, Dumas et al. (1995) state: ‘Even though the TSPTW is a special case of
VRPTW, the best known approach to the latter problem (Desrochers et al. 1992) is not
well suited to solve the TSPTW. This column generation approach would experience
extreme degeneracy difficulties in this case.’

Since solution methods for VRPTW are not well suited for m-TSPTW, researchers have
sought methods tailored for the TSPTW and m-TSPTW. In this Section, first we review
the existing solution methods for TSPTW and m-TSPTW. Despite the importance of m-
TSPTW in trucking industry, the research on TSPTW and m-TSPTW has been scant
(Desrosiers et al. 1995). In this report, three methodologies for solving m-TSPTW are
proposed. Experimental results are used to show the efficiency of each method regarding
the optimality of the solution and the problem size.

4.1 Solution Methods for TSPTW and m-TSPTW

Since finding a feasible solution to TSPTW and m-TSPTW is NP-complete problem
(Savelsbergh 1985), most research has been focused on heuristic algorithms. Lin and
Kernighan (1973) proposed a heuristic algorithm based on k-interchange concept for
TSPTW. The method involves the replacement of k arcs currently in the solution with k
other arcs. Lee (1992) developed two heuristics based on the Vehicle Scheduling
Problem (VSP) for the m-TSPTW. The VSP algorithms are exact in that they can find the
optimal solution to the VSP in polynomial time. However, solutions found by VSP
algorithms may be infeasible for the m-TSPTW. Two construction heuristics are
developed to assign each customer to a route. Improvement heuristics are then developed
to combine the initial routes. Calvo (2000) proposed using a new heuristic method for
the TSPTW based on solving an auxiliary assignment problem. To find better solutions,
the algorithm used two objective functions. As soon as it was trapped in a local
minimum, the algorithm used the second objective function to widen its neighborhood
region.

Despite the difficulty of the TSPTW, few authors have focused on exact solution. Dumas
et al. (1995) used Dynamic Programming (DP) enhanced by a variety of elimination tests
to solve the single vehicle TSPTW optimally. These tests took advantage of the time
window constraints to significantly reduce the number of arcs in the graph to eliminate
states. The authors managed to solve problems of up to 200 nodes with small window
size, and problems of up to 80 nodes with larger time windows.

As we noted previously, in contrast to the relation between the TSP and the m-TSP (see
Reinelt 1994), the m-TSPTW cannot be transformed into an equivalent TSPTW. In this

16

report, the following methodologies are developed to extend the earlier work on the
single vehicle TSPTW:

1) An exact two-phase Dynamic Programming (DP),

2) A hybrid methodology consisting of DP in conjunction with genetic algorithms
(GA), and

3) A heuristic insertion method.

We next describe our approaches for solving the m-TSPTW.

4.2 Proposed Exact Method for m-TSPTW

A two-phase Dynamic Programming (DP) based method is proposed for solving m-
TSPTW. The method is the extension of the algorithm used for TSPTW and proposed in
(Desrosiers1995 and Dumas 1995). In phase one, a forward DP is used to generate all
feasible solutions, which will be called states. To reduce the computational time and the
number of states, extensive elimination tests are performed before and during running the
DP algorithm. The elimination tests take advantage of the time window constraints in
(5e), (5f) and (5k) to significantly reduce the number of states. The outcome of the first
phase will be sets of feasible solutions. The sets, then, will be fed to another DP
algorithm in order to find a set of routes with minimum total cost which covers all nodes.
That is, the second DP solves a set-covering problem in order to extract the optimum set
of solutions among all sets of solutions. In the followings, we explain the exact method in
detail.

4.2.1 Methodology:

Phase One: In this Section, for convenience, we adopt the same notation as in Subsection
3.2. We require that the triangular inequality hold for both the travel costs and the travel
times between each two nodes of the Graph G (See Section 3 for definition of G). That is,
for any i,j,k∈ND, we have cik ≤cij +cjk and tik ≤tij +tjk.

We define the state (S,i,t) as follows: S⊆N is an unordered set of visited nodes, i∈S is the
last visited node, and t is the time service begins at node i. Assigned to each state is a cost
denoted by F(S,i,t) and defined as the least cost with minimum spanned time of a path
starting at node {o}∈ND passing through every node of S exactly once and ending at
node i. Note that, there are several paths that visit set S and end at node i. Among them,
we choose the one with minimum cost and minimum spanned time (see the state
elimination test ‘II.a’, below).

Let fr(S)∈N be the first node in set S. The starting time of set S is denoted by tfr(S) and is
defined as tfr(S)= max(ao, afr – so – to,fr). This time indicates the earliest possible vehicle
dispatching time from the depot such that no waiting time is necessary at fr(S).

In order to reduce the computational time, two types of elimination tests are performed:
arc elimination, and state elimination.

17

I) Arc elimination tests: The arc elimination tests take advantage of the time
window constraints (5e), (5f) and (5k) to significantly reduce the number of
states. These tests are performed before and during running the DP algorithm.

a) Arc elimination before running the algorithm. Let EAT(i,j) be the earliest
arrival time at node j from node i. EAT(i,j) defined as follows:

 EAT(i,j)=ai+si+tij (6)

 Let also BEFORE(j) be the set of all nodes that should be visited before
node j, and is defined as follows:

 BEFORE(j)={ k∈ND | EAT(j,k)>bk } (7)

Nodes which can not be covered by set BEFORE(j) will be added to set
FORBID(j). In the arc elimination tests, as soon as the algorithm reaches
a node j which cannot be added to set S of state (S,i,t), neither node j nor
FORBID(j) will be explored at any other state generated from that state.
The Forbidden nodes for set S will be kept in the set U(S).

b) Arc elimination during running the algorithm. Given state (S,i,t), ai≤t≤bi,
the time to visit node j∈N after node i is t+si+tij. The reachability time
of depot, {d}∈ND, after visiting node j is denoted by t’ and is defined as
t’=max(aj, t+si+tij)+sj+tj,d. Node j can be added to set S if all of the
following tests are satisfied.

 t+si+tij≤bj (8a)

 t’≤bd (8b)

 t’-tfr(S) ≤T (8c)

Note that, if node j can not meet any of the tests in (8), node j as well as
all nodes in FORBID(j) will be kept in the set U(S) and will not be
explored at any other states generated from S.

II) State elimination tests. This set of tests implement the Dynamic Programming
algorithm to reduce the number of states: a) during performing phase one, and
b) after finishing this phase.

a) State elimination during running the algorithm. Given states (S,i,t1) and
(S,i,t2), the second state is eliminated if t1≤t2 and F(S,i,t1)≤F(S,i,t2).

b) State elimination after finishing the algorithm, Given states (S,d,t1) and
(S,d,t2), the second state is eliminated if F(S,d,t1)≤F(S,d,t2). Test II-b
reduces the number of states passing to the next phase in order to reduce
the computational time in phase II.

Algorithm:

Step 1: Initialization: level l=1,

Form {S,i,t}: S={o,i}, t=tfr(S), F(S,i,t)=co,i,

U(S)=FORBID(i) ∀(o,i)∈A,

18

Step 2: During: Set level l=l+1

 For all states S in l-1

 If U(S)∪S≠N,

 For ∀(i,j)∈A, j∉U(S), i is the last node in S, j satisfies tests in (8)

Generate new state {Sj,j,tj}

S/{d}∪{j} Sj,

tj= max(aj, t+si+tij)

F(Sj,j,tj)=F(S,i,t)+cij

U(Sj)=U(S) ∪ FORBID(j)

 Perform test II-a

Step 3: Termination: If no node was generated in level l

 Form S∪{d}, F(S,d,t’)=F(S,j,t)+cj,d where j is the last node in S

 Perform test II-b

 Stop

 Otherwise: Go to Step 2

Phase Two: The outcome of the first phase is sets of feasible solutions (routes) with
their associated costs. Let’s assume that R routes were generated in Phase I. Let xr be one
if the route r∈R is selected among the optimum routes, and zero otherwise. Associated to
route r is the cost Fr which was calculated in the previous phase. Let also βir be equal to
one if route r visits node i∈N, and zero otherwise. The set-covering problem can be
formulated as follows:

 Min ∑
=

R

r
rr xF

1

 (9a)

Subject to:

 1
1

=∑
=

R

r
rir xβ (9b)

 }1,0{=rx (9c)

In order to find the set of routes in (9) which covers all nodes in G exactly once with
minimum total cost, the routes generated in Phase I are fed to another DP algorithm.
That is, the second DP solves a set-covering problem in order to extract the optimum set
of solutions among all sets of solutions. It should be mentioned that the set covering
problem has also been proven to be NP-hard (Garey 1979).

In phase II, the state (St,v) is defined as follows: St⊆N is an unordered set of visited
nodes, and v is the number of routes (vehicles) forming the state St. Assigned to each
state is a cost denoted by g(St, v) and is defined as the least total costs of routes forming

19

St (covering every node of St). Given states (St, v1) and (St, v2), the second state is
eliminated if g(St,v1)<g(St,v2). Furthermore, if g(St,v1)=g(St,v2) the second state is
eliminated if v1≤v2.

The outcome of Phase II will be a set of routes covering all nodes in G exactly once with
total minimum cost.

4.2.2 Computational Experiments:

The exact method was coded in Matlab developed by Math Works, Inc. The
experimental tests consist of a Euclidean plane in which customer coordinates are
uniformly distributed between 0 and 7, and travel times and costs equal distances. The
'time to start service' at each node is generated as a uniform random variable between
9:00 a.m. to 5:00 p.m. The time window at each node has two sides. Each side consists of
a time window generated as a uniform random variable in the interval [0,1]. The service
time at each node is assumed to be a uniform random variable generated between 30
minutes to 2 hours.

The coordinates of the depot were generated randomly between 3 and 4 using uniform
distribution function. The time window at depot is set between 6:00 a.m. till 20:00 p.m.
and the service time at depot is assumed to be zero.

The experimental results for graph G with different number of nodes (customers) are
presented in Table 1. The experiments were tested on an Intel Pentium III, 600 MHZ. In
Table 1, each set of customers (row) is built upon the previous row. For instance, for
number of customers (nodes) equal to 10, we use the same randomly generated customers
for N=7 and added 3 newly generated customers. For the first three sets of tests, where
the problem size was relatively small (less than 15 nodes), the exact method was able to
find the optimal solution.

Table 1. The exact method: computational experiments.

No of nodes Optimum Cost CPU time6

7 13.68 0.44

10 22.47 2.31

15 38.04 156.65

20 NAa NA

a) NA: The result couldn’t be obtained

4.3 Genetic Algorithms for m-TSPTW

The exact method was applied on few sets of problems as shown in Table 1. Since the
problem is NP-hard, the computational time for large size problems is fairly high. What
we observed in our computational experiments is the DP algorithm for set covering

6 CPU time: is the time in seconds that has been used by the simulation program to obtain the final result.

20

(phase II) is computationally slow with problems involving around or more than 20
nodes.

Although the proposed method is capable of finding the exact solution for small size
problems, the algorithm becomes computationally very costly for problems of medium or
larger size. Hence, it is desirable to find a mechanism that results in a compromise
between the quality of the solution and the computational time needed to obtain that
solution. Meta-heuristic methods such as Tabu Search, Simulated Annealing (SA), and
Genetic Algorithms (GA) offer such a mechanism that forces the algorithm out of the
locally optimal solutions in their search for the globally optimal solution. These methods
have been recently considered and applied to Set Covering Problems (SCP) with
promising results, for instance see Beasley and Chu (1996), Lorena and Lopes (1997),
Sen (1993), and Jacobs and Brusco (1994).

Since it is computationally prohibitive to find the optimal solution among the feasible set
of solutions, we propose using a genetic algorithm for solving the second phase in order
to find a ‘good’ solution for large size problems.

4.3.1 Methodology:

First, the sets of the routes found in Phase I are encoded in the form of matrix β presented
in (9). Matrix β is an n×m matrix, where n is the number of customers in graph G and m
in the number of the routes generated in phase I. Each element βij of this matrix has a
binary value, i.e., it is either one or zero. The βij is one if route j visits node i∈N, and zero
otherwise. Without loss of generality, we assume that the columns of β are ordered in
decreasing order of number of ones in each column (nodes visited by the route j), and
columns with equal number of ones are ordered in increasing order of cost. Equation
(10) illustrates a typical matrix β for a graph of 4 nodes where 11 feasible routes were
generated in Phase I.



















=

10001001010
00100111011
01001100111
00010010101

β (10)

A solution is defined as a set of routes (columns in β) that visited all the nodes (rows in
β) in graph G exactly once. We used an m-bit binary string, which will be called
chromosome thereafter, to represent a solution structure. A value 1 for the ith bit in the
string implies that column i is in the solution set. Equation (11) shows two typical
solutions (chromosomes) for matrix β in (10).

]00000001100[1
]00010000010[1

=
=

chrm
chrm

 (11)

21

To each chromosome a cost (fitness function) is associated which determines how 'good'
each chromosome is. With binary representation, the fitness function ψj of chromosome j
can be simply calculated by

 ∑
=

⋅=
m

i
ijij F

1

ρψ (12)

where ρij is the value of the ith bit in the chromosome j, and Fi is the cost of traveling on
route i calculated in phase I.

The initial population of chromosomes is generated by randomly assigning feasible route
i to chromosome j. The route i is weighted more if it covers more of the remaining nodes
with less total costs. Among all population of chromosomes two are “selected” for
generating new chromosome (offspring). We used the binary tournament selection
method by forming two groups of chromosomes with equal number of chromosomes in
each group. The chromosomes are randomly placed in each group. One chromosome
from each group with the best fitness function is selected to produce an offspring.
Crossover and mutation operators are then applied on two selected chromosomes to
generate the offspring. Let’s assume that chromosomes j and k have been selected for
producing the offspring l. By applying the crossover operator, the value of ρil (the ith bit
in chromosome l) is set equal to ρij by probability p, which is equal to

 ,
kj

jp
ψψ

ψ
+

= (13)

and to ρik with probability (1-p). Obviously, if the values of ρij and ρik are equal, the value
of ρil will be equal to this value, i.e., ρil=ρij=ρik. By applying the mutation operator, the
value of ρil will be inverted by some small probability q. However, the new generated
offspring, i.e. lth chromosome, may not be feasible. A heuristic method can be used to
make the chromosome feasible (e.g., see Beasley and Chu 1996).

The newly generated offspring substitutes one of the chromosomes in the initial
population with fitness function worse than the average fitness of all population. This
procedure will continue till the termination criterion is met, which is a predetermined
number of iterations.

The GA algorithm is summarized as follows:

Step 1: Form matrix β;

Generate the initial population.

Step 2: Select two chromosomes for generating offspring.

Step 3: Apply the crossover operator.

Step 4: Apply the mutation operator.

Step5: Make the offspring feasible.

Step 6: Calculate the fitness function associated to the offspring.

22

Step 7: Substitute one of the chromosome in the initial population with offspring.

Step 8: Repeat the steps 2-8 until the termination criterion is met. The best
solution is the one with the minimum fitness function in the population.

It is worth mentioning that it is generally believed that GA is slow and would take time to
find a high quality solution (Zalzala and Fleming P.J. 1997). The amount of
computational effort required by this algorithm depends on the size of the problem, i.e.,
number of the nodes in graph G (number of the rows in matrix β) and the number of the
generated feasible solutions in Phase I (number of the columns in matrix β).

4.3.2 Computational Experiments:

The hybrid GA method was also coded in Matlab. Table 2 shows the results of using the
hybrid GA method for finding the best solution among all feasible solutions (the top
number in each cell is the value of the objective function, whereas the lower number is
the computational time in seconds, as supplied by Matlab). The same data sets generated
in Subsection 4.2.2 were used here to evaluate the efficiency of the GA method. For each
set of nodes, the genetic algorithm was applied 10 times in order to assess the reliability
and repeatability of the algorithm. A comparison of Tables 1 and 2 indicates that the
hybrid GA algorithm was able to find the optimum solution for 7, 10 and 15 number of
nodes at every trial in a relatively short amount of time.

These promising results encouraged us to extend the number of nodes in graph G up to
100. Thus, we used the same methodology described in Subsection 4.2.2 to generate new
set of nodes (customers). That is each set of customers (row) is built upon the previous
row. Table 2 also shows the result of using the GA algorithm for finding a good solution
to the graphs having more than 15 nodes.

Table 2. The hybrid GA method: computational experiments.

No of
nodes

Best solution in each of 10 trials using GA

7 13.68a/
0.93

13.68/
1.59

13.68/
1.16

13.68/
0.55

13.68/
0.55

13.68/
0.66

13.68/
0.66

13.68/
1.26

13.68/
1.32

13.68/
0.99

10 22.47/
1.65

22.47/
2.91

22.47/
3.46

22.47/
1.21

22.47/
2.42

22.47/
1.15

22.47/
4.23

22.47/
5.49

22.47/
3.24

22.47/
8.73

15 38.04/
4.18

38.04/
10.2

38.04/7.
8

38.04/
9.28

38.04/
6.21

38.04/
5.05

38.04/
10.9

38.04/
13.0

38.04/
9.44

38.04/
7.75

20 55.2/
20.7

54.3/
29.3

53.6/
23.4

55.2/
29.4

54.0/
13.8

55.2/
25.3

54.1/
22.2

54.3/
28.9

54.2/
18.5

54.1/
27.2

30 89.1/
82.9

90.0/
47

89.0/
71

88.1/
87.5

87.9/
66.4

88.5/
83.4

88.9/
88.5

88/
85.4

87.9/
53

87.8/
87.6

50 158/
145

153/
192

153/
181

151/
187

154/
187

150/
187

151/
183

150/
169

153/
190

151/
191

100 325/
2457

325/
2051

329/
2066

329/
2327

325/
2304

324/
2178

330/
2122

335/
2529

325/
2343

324/
2199

a) The best value obtained from GA method / CPU time.

23

4.4 Insertion method

Due to the fact that the m-TSPTW is an NP-hard problem, together with the reality that
the practical problems might have hundreds, or even thousands, of customers with wide
time windows, there is not much hope for finding an optimal algorithm that works in
practice. Recall that even finding a feasible solution to the m-TSPTW problem is NP-
hard (Savelsbergh 1985). Therefore, the development of heuristic algorithms for this
class of problems is of primary interest (Solomon 1987). This is the main reason why the
majority of research in this area (and related ones, i.e. VRP, VRPTW, DARP) has been
focused on finding an algorithm that will find ‘good solution’ in reasonably short amount
of time, e.g., see Solomon (1987), Jaw et al. (1986), Madsen et al. (1995), Lee (1992),
and Cavo (2000).

In his paper, Solomon (1987) described a variety of heuristics. He conducted an extensive
computational study of evaluating the performance of each heuristic. He found that
several heuristics performed well in different problem environments; however, in
particular insertion-type heuristic consistently gave very good results. In this Subsection,
we also develop an insertion heuristic for large size problems. The effectiveness and
more importantly the quickness of developed algorithm, which will be discussed later,
encourage us to use the same heuristic in dynamic situations.

4.4.1 Methodology:

The main classifications of heuristic methods are: 1) tour construction heuristics and 2)
tour improvement heuristics. In tour construction heuristic, an algorithm builds
(constructs) a set of feasible routes. In insertion heuristic a set of routes is built by
inserting one request at a time into one route. Here, we are developing a sequential
insertion procedure in which one route is generated at a time, and new route is initialized
when the current routes are full. First, the algorithm searches for feasible insertions of
customers into active routes, and then an optimization procedure is used to find the best
feasible insertion location.

Feasible insertion procedure: Let r={o,1,..,i,j,j+1,..,n,d} be a feasible solution (route)
starting from origin {o}, visiting nodes in route r only once, and ending at destination {d}.
Figure 5 illustrates a typical route r.

Figure 5: A graphical representation of a typical route.

o

1

i j

n

ti,j

j+!
to,1

tj,j+1

d

o

1

i j

n

ti,j

j+!
to,1

tj,j+1

d

24

Let Ar be the arc set associated with route (solution) r defined as Ar={(i,j)| i,j∈ r, and j is
visited immediately after i}. Let cij and tij represent the cost and the time of traveling
between two consecutive nodes i and j, respectively. Let also Ti be the time when service
begins at node i. Recall that associated to each node i∈ r are a service time si and a time
window [ai, bi], where si is the duration of the time for a vehicle to be served at node i,
and ai and bi are the earliest and the latest time to visit node i, respectively.

Assuming that node j is visited after node i, the waiting time at node j denoted by wj is
defined as the duration of time at node j the vehicle has to wait before being served, and
is given by

 wj=max(0,aj-(Ti+si+tij)). (14)

Similarly, the excess time at node i denoted by ∆i is defined as the portion of the time-
window (at node i) between the latest time to visit node i, bi, and the time that the service
has started at node i, and is given by

 ∆i=bi-max(Ti,ai) (15)

Figure 6 shows graphically the values of waiting time, excess time, service time, and time
windows at each node of typical route r. Each arrow in Figure 6 indicates the traveling
between pairs (i,j) in Ar.

Figure 6: The graphical representation of waiting time, excess time, service time, and time windows
at each node in a typical route.

Let δ tij be the disturbance (changes from the nominal value) occurs in the traveling time
between nodes i and j. The feasibility margin of the solution r to the changes in traveling
time in link (i,j) is denoted by ϕr

ij and can be defined as the maximum value of δ tij such
that the solution r is still feasible. The feasibility margin of solution r with respect to the
changes in traveling time of the link (i,j) can be computed as follows:

1 2 i j j+1 n

T1 a1

b1

T2
ai

bi

∆2

∆i
siTi

Tj

Tj+1

Tn

tim
e

node

w2

sj+1

tij

1 2 i j j+1 n

T1 a1

b1

T2
ai

bi

∆2

∆i
siTi

Tj

Tj+1

Tn

tim
e

node

w2

sj+1

tij

25

)(
},,..,1,{ ∑

=+∈
+∆=

k

jl
lkdnjjk

r
ij wMinϕ . (16)

The feasibility margin ϕr
ij implies how robust is the solution r to the changes on the

traveling time between nodes i and j. The feasibility margin in (16) can also be
calculated recursively as follows:

M

A (i,j)Minw
r

dd

rr
jjjj

r
ij

=

∈∀∆+=

+

+

1,

1,),(

ϕ

ϕϕ
 (17)

where M is a big number. Having defined the feasibility margin between each two nodes
of route r, we shall now investigate the feasibility of inserting a node (customer) l
between nodes i and j in route r. Node l can be inserted between each two consecutive
nodes i and j if the following inequalities are satisfied:

 til+wl+sl+tlj-tij≤ϕr
ij (18)

 Ti+si+til≤bl (19)

Equation (18) indicates that the time changes in route i caused by inserting the node l
between nodes i and j should be less than or equal to the feasibility margin between these
two nodes. And, Equation (19) ensures that node l is visited before the latest time bl.

Optimization procedure: Recall that to each route r a cost Cr is associated. The cost Cr
is the summation of traveling costs between each two consecutive nodes in r. In other
words, Cr is the total cost of traveling throughout all nodes of route r in the specified
order. Let’s assume that node l can be inserted between nodes i and j in route r. That is
the inequalities (18) and (19) are met. The changes in cost Cr due to inserting node l
between nodes i and j is denoted by ∆Cr

ij and is given by

 ∆Cr
ij=cil + cl j - cij. (20)

To insert a node l in route r, we first find all feasible insertion locations according to (18)
and (19). Among all feasible locations (arcs) in route r, a candidate arc (i,j)∈Ar is one
which results in minimum changes in cost Cr. In other words, we are interested in finding

 r
ijCMin ∆

∈

rAj)(i,
 (21)

We then examine all routes r to find the best locations among all feasible locations to
insert node l. That is we are interested in finding the best candidate among all candidates
with minimum cost of insertion, i.e.,







 ∆

∈

r
ijCMinMin

rAj)(i,r
 (22)

Here, we summarize the insertion method:

Step 1: Initialization: construct the first route R=1.

Step 2: Select the next customer to be inserted

 a) For all routes r=1,..,R

26

Find the best feasible location in route r for inserting the customer, according to
(21)

b) If there is any feasible solution among all routes r=1,..R find the route r*
results in minimum changes in the cost Cr

C) If there is no feasible location in Step 2-a for customer insertion, add another
route to the set of routes, i.e. R=R+1, and insert the customers in the newly
generated route.

Step 3: Termination: if there are no more customers to be inserted, Stop;

Otherwise go to Step 2.

4.4.2 Computational Experiments:

The same sets of generated customers in Table 2, for different number of customers in
graph G, are used for evaluating the insertion method. Table 3 summarizes and compares
the cost and the CPU time of the exact method, the hybrid Genetic Algorithm (GA)
method, and insertion method. As it is shown in Table 3, exact method is efficient for
relatively small size problems consisting of a few nodes. GA is capable of finding
optimum solution for small size problems, and able to find ‘good’ solution for medium to
large size problems (more than 30 nodes). It should be noted that in our computational
experiments the maximum number of generated solutions (offspring) in GA was limited
to 1000. Obviously, the larger the number of solutions is, the better the final result is.
Finally, The heuristic insertion method was able to find relatively good solutions for
medium to large size problems (more than 50 nodes); furthermore, the method is
computationally very fast.

Table 3. Comparing exact, hybrid GA and insertion methods.

Dynamic Programming Genetic Algorithma Insertion method No of
nodes Cost CPU time Cost CPU time Cost CPU time

7 13.68 0.44 13.68 0.97 17.69 0.11

10 22.47 2.31 22.47 3.45 28.23 0.11

15 38.04 156.65 38.04 8.38 45.64 0.22

20 NAb NA 54.42 23.87 63.31 0.39

30 NA NA 88.5 75.27 96.15 0.83

50 NA NA 152.4 181.2 170.74 2.14

100 NA NA 327.1 2257 330.91 8.62

a) In average (based on the results of 10 trials). b) The result/data couldn’t be obtained

4.5 Real data

The developed algorithms were tested using real examples containing a truck depot,
container terminals, intermodal facilities and end customers supplied by the trucking
company, Transport Express, in the City of Los Angeles. The city has some unique

27

specifications. It is adjacent to the Port of Los Angeles, the Port of Long Beach, and the
Intermodal Container Transfer Facility (ICTF). Transport Express is a trucking company,
which also does the warehousing and distributing. The loaded containers are brought to
the depot, get unloaded, and then distributed among the end customers.

The real data were obtained through shadowing the dispatcher within a typical day. It is
observed that, the dispatcher assigned the jobs to drivers (assignment problem), based on
the availability of the drivers and the jobs. The priority in the assignment goes to those
drivers who show up early at the depot. The dispatcher makes sure that the jobs are
distributed evenly without concerns of optimizing a cost function. During the day, 64
containers were assigned to 22 drivers. This number includes 42 containers, which were
moved between depot and the container terminals. This number shows the amount of
similar activities at the depot.

Time windows for container delivery were very large, i.e., between 7:00 a.m. to 4:00 p.m.
Only 10 jobs were associated with tighter time windows, i.e., before noon or after noon.
This fact of having 65 nodes with wide time windows would actually render both the
exact and the hybrid GA methods incapable of demonstrating any results. Thus, the only
choice left was to use the insertion method. However, we want to re-emphasize the fact
that by developing the exact and/or the hybrid method we haven’t had any intention of
optimizing the current ways of operations at the trucking companies or at the container
terminals, but the future modes. We will discuss about the future modes later in this
Subsection.

Table 4 shows the results obtained by applying the insertion method to the set of real data
obtained from Transport Express. The cost in Table 4 is set equal to travel distance. In
addition, the following assumptions were made before applying the insertion method
algorithm.

The velocity of trucks: 30 miles/hour

Time to load or unload a container: 20 minutes
Table 4. Real Data solutions Comparison.

Insertion method Dispatcher
No. of nodes

Cost No. Vehicles Used Cost No. Vehicles Used

65 49.25 12 56.16 22

In our personal communication with people at Transport Express, we have learned that
many container terminals in the Port of Los Angeles and Port of Long Beach have plans
to enforce tight time windows (appointment system) at their gates in near future. The
appointment systems are being considered as part of a solution for reducing terminal
congestion and for the need to manage the future demand, i.e., the increasing number of
containers at terminals and, consequently, the growing flow of trucks at gates. In the
appointment system, a truck has to show up at the gates during a specific period of time
to deliver or pick-up any specific container. It is worth mentioning that no standard has
yet been established of how the appointment system should be implemented.

28

In the shed of this light, we made a scenario based on the real data we got from Transport
Express. We assumed that the trucking company has to pickup and deliver the same
cargo in a day with time windows assigned to each customer. We kept those time
windows assigned to 10 jobs (described above) and we assign a time window with the
length of 30 minutes to the other customers. We assumed that the velocity of trucks is 20
miles/hour and the loading or unloading time for any container is 30 minutes, and the cost
is equal to travel distance. The results obtained by implementing the appointment system
is shown in table 5 for the hybrid GA and for the insertion method.

Table 5. The result of applying appointment system on acquired Real Data .

Insertion method Hybrid GA methoda

No. of nodes
Cost No. Vehicles Used Cost No. Vehicles Used

65 82.83 23 79.25 24.4

a) In average (based on the results of 10 trials).

4.6 Dynamic m-TSPTW

Recall that cargo movement is a dynamic problem; thus, any efficient algorithm should
be quick, efficient and dynamic. In this subsection, we assume that the information of
some or all of the customers is not available at the time of the route planning and
scheduling. In other words, at the time of cargo assignment, carriers know only a portion
of the customers to be served. The goal is to incorporate the new customer requests in
existing pre-planned routes or to determine new routes to satisfy these requests.

In Section 3, we noted that, for a dynamic system, two methodologies could be
employed: 1) insertion methods and 2) adaptation of static algorithms. The results of our
computational experiments, presented above, indicate that only the insertion method is
well suited to be considered as a dynamic algorithm for real time systems. The insertion
method is very fast, compared to the other methods, and it is fairly efficient especially for
the problems with large number of customers (see Table 3). Thus we are adopting the
insertion method for dynamic systems to incorporate the new customers requests.

To measure the dynamism of a system, we adopt the concept of the Degree of
Dynamisms introduced by Lund et al. (1996). The degree of dynamisms, denoted by DD,
of a dynamic system can be defined as follows,

 %100×=
T

D

N
NDD , (23)

where ND is the number of new customers and NT is the total number of customers
(advanced request customers as well as new customers). For advanced request
customers, we use hybrid GA method for planning the routes for vehicles.

Figures 7, 8 and 9 show the efficiency of the insertion method in finding a good solution
for a dynamic system with various degrees of dynamisms and different total number of
customers.

29

Figure 7: Route cost vs. the degree of dynamisms; NT=10.

Figure 8: Route cost vs. the degree of dynamisms; NT=20.

0 10 20 30 40 50 60 70 80 90 100
22

23

24

25

26

27

28

29

C
os

t

degree of dynamisms, %

0 10 20 30 40 50 60 70 80 90 100
54

55

56

57

58

59

60

61

62

63

64

Degree of dynamisms, %

C
os

t

30

0 10 20 30 40 50 60 70 80 90 100
150

155

160

165

170

175

Degree of dynamisms, %

 A
ve

ra
ge

 c
os

t

Figure 9: Route cost vs. the degree of dynamisms; NT=50.

31

5 Conclusions and Recommendations

In this report, we investigated the cargo movement in metropolitan areas adjacent to
ports. In particular, we were interested in improving the methods for trucks scheduling
and route planning, where ISO containers need to be transferred between marine
terminals, intermodal facilities, and end customers. The objective was to reduce empty
miles, and to improve customer service. We showed that the container movements by
trucks can be modeled as an asymmetric multi-Traveling Salesmen Problem with Time
Windows (m-TSPTW). Moreover, we proposed three methodologies for solving the m-
TSPTW:

• An exact two-phase Dynamic Programming (DP), for problems with less than 15
nodes and maximum window size 2 hours.

• A hybrid methodology consisting of DP in conjunction with genetic algorithms
(GA), for problems with about 50 nodes and maximum window size 2 hours.

• A heuristic insertion method, for problems with more than 50 nodes with very
wide window size.

We also investigated the dynamic problems in which the information of new customers
becomes available after the set of routes has been determined. The results of our
computational experiments indicate that the insertion method is well suited to be
considered as a dynamic algorithm for real time systems. The insertion method is very
fast, compared to the other methods, and it is fairly efficient especially for problems with
large number of customers.

32

6 Implementation

The container movement operations are moving in a direction where, scheduling and
routing will be coordinated in an effort to reduce empty travel times, reduce congestion at
the terminals and reduce the overall cost. In this report we developed and tested several
algorithms for scheduling and routing of trucks carrying containers for terminals and
customers in a Metropolitan Area. These algorithms are developed to deal with problems
faced in such environments and be computationally feasible especially in a dynamic
environment. We interacted with Transport Express and use real data to evaluate the
developed algorithms. The developed algorithms are ready for implementation by
trucking companies. For this to be possible however, savings in cost and improved
reliability in the working environment has to be established. This requires additional
work and collaboration with a particular trucking company and is part of future work.

33

References

Beasley J.E. and Chu P.C. (1996), “A genetic algorithm for the set covering problem,”
European Journal of Operational Research, vol. 94, pp. 392-404.

Bellmore M. and Hong S. (1974), “Transformation of multi-salesmen problem to the
standard salesman problem,” Journal of ACM, vol.21, pp. 400-504.

Bodin L., Golden B., Assad A., and Ball M. (1983), “Routing and scheduling of vehicles
and crews: the state of the art,” Computers & Operations Research, vol.10, no.2,
pp. 63-211.

Cavo R.W. (2000), “A new heuristic for the traveling salesman problem with time
windows,” Transportation Science, vol. 34, no. 1, pp. 113-124.

Crainic T.G. and Laporte G. (1997), “Planning models for freight transportation,”
European Journal of Operational Research, vol. 97, pp. 409-438.

Desrochers M., Lenstra J.K., Savelsbergh M.W.P., Soumis F. (1988), “Vehicle routing
with time windows: optimization and approximation,” In: Golden B.L., Assad
A.A., (eds) Vehicle Routing: Methods and Studies, North Holland, Amesterdam,
pp. 65-84.

Desrochers M., Desrosiers J., and Solomon M.(1992), “A new optimization algorithm for
the vehicle routing problem with time windows,” Operations Research, vol. 40,
pp. 342-354

Desrosiers J., Dumas Y., Solomon M.M., and Soumis F. (1995), “Time constrained
routing and scheduling,” in: Ball M.O., Magnati T.L., Monma C.L., Nemhauser
G.L., (eds.) Network Routing, Handbooks in Operations Research and
management Science, Volume 8, INFORMS, Elsevier Science, pp. 35-130.

Dumas Y., Desrosiers J., Gelinas E., and Solomon M.M. (1995), “An optimal algorithm
for the traveling salesman problem with time windows,” Operations Research,
vol. 43, no. 2, pp. 367-371.

Fisher M. (1994), “Optimal solution of vehicle routing problems minimum k-trees,”
Operations research, vol. 37, pp. 319-328.

Fisher M. (1995), “Vehicle routing,” in: Ball M.O., Magnati T.L., Monma C.L.,
Nemhauser G.L., (eds.) Network Routing, Handbooks in Operations Research
and management Science, Volume 8, INFORMS, Elsevier Science, pp. 1-33.

Garey M.R. and Johnson D.S. (1979), Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, San Francisco.

34

Gendreau M., Potvin J.Y. (1997), “Dynamic vehicle routing and dispatching”, Technical
report, CRT 97-38, Center de Recherche sur les Transport, universite de
Montreal, November.

Golden B.L. and Assad A.A. (1988), (eds.), Vehicle Routing: Methods and Studies, North
Holland Publication, Amsterdam.

Hall R.W. and Intihar, C. (1997) “Commercial Vehicle Operations: Government
Interfaces and Intelligent Transportation Systems”, California PATH Research
Report UCB-ITS-PRR-97-12.

Ioannou P.A., et al. (2000), Cargo Handling Technologies, Technical Report, Department
of Electrical Engineering, University of Southern California.

Jacobs L.W. and Brusco M.J. (1994), “A simulated annealing based heuristic for the set-
covering problem,” Proceedings of Decision Sciences Institute, vol. 2, pp. 1189-
91.

Jaw J.J., Odoni A. R., Psaraftis H. N., and Wilson N. H. M. (1986), "A heuristic
algorithm for the multi-vehicle advance request dial-a-ride problem with time
windows," Transportation Research, vol. 20B, no. 3, pp. 243-257.

Laporte G. (1992), “The vehicle routing problem: an overview of exact and approximate
algorithms,” European Journal of Operational Research, vol. 59, pp. 345-358.

Lee M.S. (1992), New Algorithms for the m-TSPTW, Ph.D. Thesis, University of
Maryland Collage Park.

Lin S. and Kernighan B. (1973), “An effective heuristic algorithm for the traveling
salesman problem,” Operations Research, vol. 1, pp. 498-516.

Lorena L. and Lopes L. S. (1997), “Genetic algorithms applied to computationally
difficult problems,” Journal of Operational Research Society, vol.48, pp. 440-
445.

Lund K., Madson O.B.G., and Solomon M.M. (1996), Vehicle routing problems with
varying degree of dynamism, Technical Report, IMM, The Department of
Mathematical Modelling, Technical University of Denmark.

Kolen A.W.J., Rinnooy Kaan A.H.G., and Trienekens H.W.J.M. (1987),“Vehicle routing
with time windows,” Operations Research, vol. 35, no. 2, pp. 266-273.

Madsen O.B.G., Ravn H.F., and Rygaard J.M. (1995), “A heuristic algorithm for a dial-
aride problem with time windows, multiple capacities and multiple objectives,”
Annals of operations Research, vol. 60, pp. 193-208.

Meyer, Mohaddes Associates, Inc. (1996), Gateway Cities Trucking Study. Gateway
Cities Council of Governments Southeast Los Angeles County.

35

Ng L., Wessels, R.L., Do D., Mannering F., and Barfield W. (1995) “Statistical Analysis
of Commercial Driver and Dispatcher Requirements for Advanced Traveller
Information Systems.” Transportation Research-C, vol. 3, no.6, 353-369.

Powell W.B., Jaillet P., and Odoni A. (1995), “Stochastic and dynamic networks and
routing,” in: Ball M.O., Magnati T.L., Monma C.L., Nemhauser G.L., (eds.)
Network Routing, Handbooks in Operations Research and management Science,
Volume 8, INFORMS, Elsevier Science, pp. 141-295.

Powell W.B. (1996), “A stochastic formulation of the dynamic assignment problem, with
an application to truckload motor carriers,” Transportation Science, vol. 30, no.
3, pp. 195-219.

Psaraftis H.N. (1980), “A dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem,” Transportation Science, vol. 14,
pp. 130-154.

Psaraftis H.N. (1988) “Dynamic vehicle routing problems,” in: Golden B.L., and Assad
A.A. (1988), (eds.), Vehicle Routing: Methods and Studies, North Holland
Publication, Amsterdam, pp. 223-248.

Psaraftis H.N. (1995), “Dynamic vehicle routing: status and prospects”, Annals of
Operations Research, vol. 61, pp. 143-164.

Reinelt G. (1994), The traveling salesman problem: computational solutions for TSP
applications, Lecture Notes in Computer Science, Springer-Verlag.

Ryan N.K.(1998), “The Future of Maritime Facility Designs and Operations,” Proceeding
of 1998 Simulation Conference, pp. 1223-1227.

Savelsbergh M.W.P. (1985), “Local search in routing problems with time windows,”
Annals of Operations Research, vol. 4, no.1-4, pp. 285-305.

Savelsbergh M.W.P. and Sol N. (1995), “The general pickup and delivery problem”
Transportation Science, vol. 29, no. 1, pp. 17-29.

Sen S. (1993), “Minimal cost set covering using probabilistic methods,” Proceeding of
1993 ACM/SIGAPP Symposium of Applied Computing, pp. 157-164.

Solomon M. M. (1987), “Algorithms for the vehicle routing and scheduling problems
with time window constraints,” Operations Research, vol. 35, no. 2, pp. 254-
265.

Taillard E. and Badeau P. (1997), “A tabu search heuristic for the vehicle routing
problem with soft time windows,” Transportation Science, vol. 31, no. 2.

Taleb-Ibrahimi M., Castilho B. D., and Daganzo C. F. (1993), "Storage Capacity vs.
Handling work in Container terminal," Transportation Research B, vol. 27B,
no.1, pp. 13-32.

36

Vickerman M. J. (1998), “Next-Generation Container Vessels: Impact on transportation
Infrastructure and Operations,” TR News, vol. 196, pp. 3-15, May-June.

Wilson N.H.M., and Colvin N.H. (1977), “Computer dial-a-ride algorithms research
project,” Technical Report R-76-20, Department of Civil Engineering,
Massachusetts Institute of Technology.

Zalzala A.M.S., and Fleming P.J. (1997), Genetic Algorithms in engineering Systems,
IEE control Engineering Series 55.

