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Abstract

Image processing has been applied to traffic analysis in recent years, with different goals.
In this report, a new approach is presented for extracting vehicular speed information, given a
sequence of real-time traffic images. We extract moving edges and process the resulting edge
information to obtain quantitative geometric measurements of Vehiclés. This differs from
existing approaches because we use simple geometric relations obtained directly from the image
instead of using reference objects to perform camera calibrations. Our method allows the
rec’dvery of the physical descriptions of traffic scenes without explicit camera calibration. In this
report, extensive experiments using images from active TMS (Transportation Management
System) freeway cameras are repbrted. The results presented in this report demonstrate the
validity of our approach which requires neither direct camera control nor placement of a

calibration object in the environment. We further argue that it is straightforward to extend our

. method to other related traffic applications






TABLE OF CONTENTS

DISCLAIMER I
ABSTRACT 1I
1 INTRODUCTION 1
1.1 ASSUMPTIONS «eveeteeeeeeseeeeeerereressassasaeneseessesssssessessississsessssesassasssaessassssenesens sessrmnnnnerestosstssssnssresinamirasasersensunssasasnees 2
1.2 REPORT OVERVIEW ...eieeeeuvereressesarastteessosstnsssssesssestasstesesessssssesassasaseseesssessasmeneaneioetssssisesssesmamsssiasssassnsinssessanses 2

2 SINGLE FRAME PROCESSING 4
D1 PREPROCESSING ...eeeeevseeeeeeseseessuesssasesesessusssasessesasssssasnssessassasessssessasasessasesesesaneaeesassssetsesssssosnessosstanesessasssssasssssesan 4
2.2 MOVING-EDGE DETECTION. . uveettessererstteeseissssaesessiossistssssassossssssssssssasssssssseassasssssssensesssssssnmesessivssssssssasssssasssasass 5
2.2.1 Sobel Edge DICLECIOT evveeveeeeeeeeeeeeeeeeseeesesese s es e es s bRt b}
2.2.2 Moving Edge Detection............uvecivnenereeneeieiiisissnsnesseseseeesesisenenes e eeveerte e et et e et et nerens 6

2.3 MORPHOLOGICAL OPERATION TO OBTAIN MOVING BLOBS ...eiciiieieeieeeieicntiiittie i tee e ee s cennraes s snsenessans 11
2.4 VEHICLE PROFILE APPROXIMATION . ...cittttitittitieieisisisiriereeassasasssssssassnsssesassssssssssssssssssessssssssrsrnsntsssssssnsssnmmnesanes 16
D4 ] CONVEX HULL EXIIQCIION oeeveereeeeereseseeeeeeesessesaneresaserssesseresssassasssasensensossessessesisasssessnasssasesseentesestentessosessens 16

2.4.2 Bounding BOx EXIFACHON .......cccoirvevruetienteeneeiettiitstssss sttt es ettt et s 18

3 GEOMETRIC ANALYSIS AND SPEED ESTIMATION FROM AN IMAGE SEQUENCE ..........ccconr-e. 20
3.1 DIRECTION OF IMOTION: (L evveeeerereeaerereresessseteessssasassssssseresasstssesssssssssmsesessaassssesesseeesesseeaessmssssmimmstetesssssisrassassns 20
3.2 GEOMETRIC RELATION INSIDE THE BOUNDING BOX.uoiiittiirirmiiiriireiiieieietaiereereeserienrearsinssseiesstsssesnsianesassassssnnes 21
3.3. DISTANCE AND SPEED ESTIMATION .........ucue.e. et eeear— e abarareraeannnas ettt evr e ————teaae i e e era—taeeataeanreeasaeas 22

4 FIELD TRIALS AND DISCUSSIONS 25
4.1 FIELD TRIALS METHODOLOGY .evvverremrerrreeeecrerenrerereserersssesianeanens ettt r s rer e 25
4.2 EXPERIMENT AL RESULTS. .. uuuuereeereaassestersiosseseressiesesssassessassasssssssessssasmsesesesssasnsensenmeeressassasseessemmsissssrsosssssensses 25
4.3 ERROR ANALYSIS «ovevtteesereeeraierieesessessestsesssssisseseesssesasasssssssssasssnsseessesaassessesssesssnmansssssssssssssemseeeiessinrsrsasassnseneses 28
4.4 POSSIBLE SYSTEM EXTENSIONS ....covururuscesisttemiare sttt ss 10 29

5 CONCLUSION 31
REFERENCES 32
APPENDIX A 35
APPENDIX B 36






"1 Introduction

In recent years, image processing has been applied to the field of traffic research with
goals that include queue detection, incident detection, vehicle classification, and vehicle counting
(1,2,3,4,5,6,7].

This report explicitly recognizes that speed is an important parameter in traffic analysis.
Relatively few efforts have attempted to measure speed by using video images from uncalibrated
cameras. Some preliminary research on pixel speed estimation in images appears in Soh et al [6]
and Picton [8]. A review of the literature on physical speed estimation shows that almost all of
the algorithms involve some man-made reference information. For example, Worrall et al [9]
describes an interactive tool for performing camera calibration. In this interactive application, an
operator first identifies vanishing points from parallel road marks and then pfacés a rectangular
grid on the image for calibration. Dickinson and Waterfall [10] and Ashworth et al [11] make
speed measurements from the known physical distance between two detection windows placed
on the road image. Similarly, several other papers [12, 13] suggest estimating speed by first
placing two detection lines (separated by a known distance) and then measuring travel times
between the lines. Houkes [14 ] determined four reference points to form a rectangle before
taking the off-line measurements. In that case, the camera had to remain in fhe same position
during all measurements for the process to be valid.

In this research, we assumed that we had no control over camera movements and thus
could not directly obtain information such as camera focus, tilt, or angle. We further assumed
that the camera parameters could change any time without our knowledge. In our project, we
were monitoring congested freeways and had neither the ability nor the authority to set

permanent marks on the road.



We believe on-line calibration is a necessary step in using the large, installed base of
TMS cameras. We propose that exact calibration is not necessary to estimate speed using our
algorithxﬁ; instead, we use information inherently available in the image. We focus on a 1-D
geometry for the traffic on the road. Using a car length distribution from our previous research
[15], we propose a novel method that extracts scaling signatures and computes the speed

distribution on the basis of the geometric relationships in the image.

1.1 ASSUMPTIONS

To clarify the problem presented here, we made several assumptions in oﬁr work:

a) Finite speed [16]: The speed of a vehicle has both physical and legal 1imit$.

b) Movement is smooth [16]: No sudden changes of directions are expected between
frame intervals (330ms).

c) Motion is constrained to the road plane [17], and thus we are posing camera .
calibration as a 1-D geometry problem.

In this work, we used 320x240 gray-scale images at a frame rate of 3 frames per second

(fps). These are demonstrated to be adequate for reliable analysis, as well as being small enough

to allow efficient processing.

1.2 REPORT OVERVIEW

Our algorithm for speed extraction first applies a series of operators to single images to
create a set of enhanced images. We then use this set of enhanced images to create a speed
estimation algorithm. In this report, we first describe the single image operations and then
present the overall algorithm as épplied to a group of images. Chapter 2 introduces major
procedures for each single irnagé. These consist of a preprocessing step, a moving-edge

detection step, a morphological operation step, and a convex hull and bounding box extraction



step. In Chapter 3, we discuss geometric relation analysis, as well as distance and speed
estimation algorithms for an image sequence. Chapter 4 presents the field trials, experimental
results, and discussion. In Chapter 5, we present conclusions about the effectiveness of the

algorithm.



2 Single Frame Processing

The single image processing steps are shown in Figure 2.1. These steps include
preprbcessing, moving edge detection, morphological operations, and convex hull and bounding
box extraction. The next section describes details of the pre-processing under the assumptions

presented earlier.

Preprocessing
(Median filtering)

Y

Moving-edge detection

Inter-differencing & Sobel

Y

Morphological operation

(dilation & erosion)

Y

Convex Hull & bounding
box extraction

Figure 2.1 Image processing flow for a single image
2.1 PREPROCESSING
The traffic images have a noise component from several interference sources. The types

of noise include the following [18]:

1) Salt-and-pepper noise, which occurs when an image is coded and transmitted over a
noisy channel or degraded by electrical sensor noise, as in video cameras.
2) Convolutional noise (blurring), which produces images that are degraded by lens mis-

focus, motion, or atmospheric turbulence, such as adverse weather conditions.



Both noisg sources contribute to high-frequency noise components. In our process,
median filtering is used to reduce this high-frequency noise. It preserves the edge information
required by our algorithm. Edges are a key image feature, as they remain prominent despite the
variations in the traffic scene’s ambient lighting. Our median filter uses a 3x3 kernel to remove
high frequency noise from the image.

The 3x3 kernel moves row by row, pixel by pixel. A pixel is regarded as the center of the
3x3 window'. The median value of the set of nine pixels in the 3x3 neighborhood is used as the
new filtered value of the pixel at the center. This way, impulse noise with extrerhe values can be
suppressed. Siﬁce the total area in our process is fixed iﬁ advance, locating the median value is
fast. It is the fifth value in the sorted array [19].

The next section describes the moving edge detection module of our algorithm. The

algorithm uses the images preprocessed by the median filtering just presénted.

2.2 MOVING-EDGE DETECTION

Moving edge detection is applied to extract the moving parts from a complex background
in an image sequence. The static background is then deleted to locate the moving objects.

2.2.1 Sobel Edge Detector

Let I(i,j) denote the pixel value being processed. Its neighbors are considered to
determine whether it is on an edge or not. Usually a 3x3 or 5x5 neighbor window is used for one
pixel. In our work, a 3x3 window is used for processing, as shown in the matrix below. For the

pixel I(i,j), the eight neighbors are I, through I

13 12 Il
I _ 1)) I
Is Is L
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The Sobel edge magnitude is computed is [20] as
LG, )= +v*)", (1)
where |
u=(L 20+ 1)-(1,+21,+1;), )
and |
v=QL+1L+1[)-(I,+2I,+1). (3)
The gradient is computed as
G, (@, ))= tan™ (ulv). “4)

The above computational process rnbves a 3x3 window with the current pixel as the
window center. Aftér.the magnitude is obtained, a threshold can be used to determine which
pixel is on an edge. If the Sobel magnitude is below the threshold, the pixel will be discarded.
This means that the magnitude response is not strong enough to claim an edge point. The
selection of an appropriate threshold is dependent on the content of the images.

An example is shown in Figure 2.2. We assert that most of the edges are detected by
Sobel edge detection.

2.2.2 Moving Edge Detection

In previous work by Gil [21], moving objects were segmented from'the traffic
background with a motion detection algorithm based on a multi-resolution relaxation. This
resulted in a set of coarse binary masks for each vehicle. A refinement process was then applied
to obtain a more accurate description. In multi-resolution relaxation, both the starting and ending
resolution need to be selected on the basis of engineering judgment.. Fathy and Siyal [2] present

a window-based edge detection method that combines morphological edge detectors and a



median filtering. However, their process [2] requires the user to pre-place all the detection
windows at the key regions across the lanes, and therefore the user needs to have detailed
knowledge of the road. Kudo [22] applies a one-dimensional gradient operation to a sub-region

with a window along the road, which falls into the same category.

Original image
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Sobel edge image
Figure 2.2 Sobel edge detection
In this process, we use image differencing to extract motion information. There are two
basic differencin g methods in the literature: 1) background differencing and 2) interframe
differencing. In background differencing, a reference frame that contains no moving vehicles is
subtracted from each frame. In real world applications, where the ambient 1ighting‘varies

rapidly, the reference frame needs to be updated regularly to reflect the current background and



to provide reliable segmentation. This reference frame can be obtained by either grabbinga
frame when no vehicles are presented or by multi-frame accumulation [23]. Several methods are
suggested by Fathy and Siyal [2] and Koller et all [17] to update the background image.
However, these methods are slow and computationally expensive and thus cannot meet real-time
processing requirements. Furthermore, on congested freeways (the domain of interest) it is
difficult to obtain images with no vehicles that match the present iight level. Therefore, to
mitigate these problems, we adopt the inter-frame differencing method to eliminate the complex
background and detect the moving vehicles.

Cai [23] used forward and backward image differencing and then extra;ted common
regions corresponding to the moving areaé. Instead of extracting regions, Vieren [24] proposed a
method to combine inter-frame differencing and a differential operator to extract moving edges.
In our process, we combine inter-frame differencing with the Sobel edge detector to extract the
moving edges. To emphasize the movement signature, we use three sequential images and
process each image relative to its previous and subsequent images. In this way, we separate the
movement from the static background.

Our algorithm is applied to three images: the previous temporal image (L), the current
image of interest (I.), and the next temporal image (L,):

Edge_image = Sobel(I, —Ic)ﬁSobel(in -1) . (5)

That is:

1) Take the difference between the previous image I, and the current
image I_.
2) Take the difference between the next image I, and the current image

I..

c



3) Sobel edge operators are applied to these two different images to
get two edge images.

4) Compare the magnitudes of all edge pixels in the two edge images
resulting from the Sobel edge operator with a magnitude threshold.
Iﬁ the magnitude of a pixel is less than the threshold, then it is
set to be 0. Otherwise, it is set to be 1. This produces two
binary édge images.

5) Create the intersection of the two binary edge images. Extract
common moving edges present in the original current image, I..

This process produces an edge image for the current image of interest from which we will

extract individual vehicle information in the next chapter.

Figure 2.3 A typical sequence

Example images for the above process are shown in Figures 2.3, 2.4, 2.5, and 2.6. Figure

2.3 shows three original successive frames in an image sequence. Figure 2.4 shows the edge
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image of the difference image between the first two frames. Figure 2.5 shows the edge image of

the difference image between the second and third frames. Figure 2.6 shows the final moving

edge image. Almost all of the moving edges are extracted successfully.
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Figure 2.5 Sobel edges in the difference image between the second and third frames
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Figure 2.6 Moving edges

2.3 MORPHOLOGICAL OPERATION TO OBTAIN MOVING BLOBS

In the moving edge image just described, there are always gaps along the edges. To
obtain a profile of the vehicle, we need to enhance the moving edges. This enhancement uses the
morphological operators dilation and erosion with an appropriate structural element. The result
of sequentially applying dilation and erosion [25] is to remove specific image features smaller
than the structural element without affecting the large features of interest.

Dilation and erosion are two basic morphological operations, which will be discussed
first. Dilating an object is to-translate all its points with regard to a structural element followed
by union operation. On the other hand, eroding an object is to translate all its points first by
using a structural element and then to conduct the intersection operation to get the final result.
This way, dilation expands an object and erosion shrinks it by the size of the specified structural
element.

Images are dilated with the max operation. They are eroded with the min operation. A
structural element of N by N is used to define the max or min Operatior_l regions. To process an
image pixel, the region containing the pixél of interest and ifs (N-1) by (N-1) neighboring pixels

is processed, and the maximum or the minimum value is obtained.
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That is, for an image matrix with m by n, and a given element size N,

1) sort the pixel values in the N by N neighborhood
2) put the maximum in the dilation image matrix

3) put the minimum in the erosion image matrix.

Since we are processing binary images, the above sorting process can be simplified to test
whether the pixel value is 1 or 0. In this way, the operations are very fast. |

The selection of the size of the structural element N depends on the range of the size of
the vehicles of interest and the range of distance between the vehicles. For example, a vehicle
smaller than the structural element in the image will be removed by erosion. On the other hand,
several vehicles close to each other will be merged to a single blob after dilation. While our goal
is to extract as many vehicles as possible, we do not require every vehicle in the image to be
identified for our algorithm to accurately estfmate speed. Using morphological operations, some
vehicles will be removed by erosion because of their small size in the image (these have been
deemed too small to be useful in speed estimation) or will be merged by dilation because of their
proximity (these have been deemed inappropriate because of possible occlusion effects).

Figures 2.7 and 2.8 show some morphologicai examples. Figure 2.7 shows the result of
dilation operation. Different structural element sizes (3x3 and 4x4) are used. Observe that
dilation with larger sized structural elements will make some blobs merge together. ,Fivgure 2.8

shows erosion operations. Erosion with larger sized structural elements causes some vehicles to

disappear from the image.
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(3) After erosion by a 4x4 structural element

Figure 2.8 Erosion examples
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The result of sequentially applying dilation and erosion [25] is to remove specific image
features smaller than the structural element without affecting the large features of interest. An
example is shown in Figure 2.9, where an image is first dilated and then eroded by the same 3x3

structural element.

Y -
S - = -
&S B -~ - -
&-_’ = -
J & P w -
=
%
After dilation

After erosion

Figure 2.9 Dilation followed by erosion

At this stage, the image of interest has been enhanced to emphasize the moving vehicles

that appear as blobs in the resulting image.
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2.4 VEHICLE PROFILE APPROXIMATION
2.4.1 Convex Hull Extraction

After the application of morphological operators above, moving edges are filled and
appear as solid moving “blobs.” To characterize the blobs, we use a convex hull to approximate
the contour of the vehicles. In many cases, a convex hull is a good approximation of the
projection of a car [21, 17].

In the image produced by the procedure in the previous section, the background is full of
0s, and only points inside and along the contours of the blob are of value 1. We select the
contour points by searching each scanline to find the rightmost or leftmost end of a blob.

Not all contour points selected by this method will belong to the convex hull. Therefore,
we need to select those points that are actuaHy on the hull. Koller [17] proposed a convex hull
extraction method that is suitable for our purpose. The procedure is to definé a convex hull
point, P,(x,,y,), by its location related to its pr;eceding point, P,(x,,y,), and following point

P,(x,,y,). A threshold T is used to determine the associated orientation of these three points,

where
X yl 1
T=\x, y, 1. (6)
X,y 1

A positive value of T indicates that those three points are in counter-clockwise order
along the contour. A negative T value indicates that they are in clock-wise order.
This algorithm is used to efficiently obtain all the points on the convex hull, as shown in

the following description:
1) If contour point P, is on the left side of the contour, T is computed

to check whether it is positive (counter-clockwise). 1If so, P, is
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regarded as being on the convex hull. If not, P, does not belong to
the hull.

Similarly, if P, is on the right side of the contour, T is computed
to check its sign. Now, contrary to the above left-side case, if T
is positive, it means P, is not on the convex hull. If T is negative

(clockwise), P, belongs to the hull and should be retained.

Figure 2.10 shows an example where a convex hull is extracted by using the above

method.

Moving blobs for convex hull extraction

Convex Hull for oné blob

Figure 2.10 Convex hull extraction example
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2.4.2 Bounding Box Extraction

To obtain scaling information directly from the image rather than using explicit camera
calibration, we exploit the known geometric relationships in the images. We do this by
constructing a bounding box to enclose the convex hull. This bounding box is used to isolate the
area of interest.in the image and is similar to window (or key region) processing described by
Fathy and Siyal [26] and Stewart et al [27]. However, unlike window processing, we are only
interested in looking for some sirriple geometric relations inside the box.

To obtain the bounding box from the convex hull with vertices x; and y,, the algorithm, as

“seen in Figure 2.11, is:

1) Arrange all the x, values as an array and find the minimum and
maximum.

2) Do the same for all y, values.

3) The resultiﬁg.box is the rectangle with wvertices (counter-clockwise
order) :

4) (min_x;, min_ y,) (max_x,, min_y;) (max_x;, max_y;)

5) (min_x,, max_y,).

(min_x, max_y;} fmax_x,, max_y,)

{min_x, min_y,} {max_x, min_y,}

Figure 2.11 Bounding box enclosing a convex hull
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This procedure is applied to each image in an image sequence, and we obtain a series of
convex hulls and bounding boxes that will be used to estimate the real travel distance and speed,
as covered in the next chapter.

Figure 2.12 shows an example of extracting the bounding box from a convex hull.

Convex Hull for bounding box extraction

Bounding box extracted

Figure 2.12 Bounding box extraction
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3 Geometric Analysis and Speed Estimation From an Image Sequence

The result from Chapter 2 is a series of convex hulls and bounding boxes. This chapter
describes utilizing the geometric features and this series of hulls and blobs for distance and speed
computation.

To estimate speed, we first obtain the direction of motion of each vehicle and theﬁ
compute the best fit line through the centroids of the convex hulls found in a series of images and
associated with a single vehicle. A threshold on the correlation coefficient [28] for the centroids
is used as the colinearity criterion to identify a single vehicle trabk. The best fit line for the
direction of travel is ﬁsed to obtain the pixel length of the vehicle, and we exploit a simple
triangular relationship in the bounding box to get the pixel length of the vehicle, which is then
used to compute the scale information in the images. Ground truth distance is estimated by using
scale information along the direction of motion, and these distances, with the frame rate of the

video sequence, are used to estimate speed.

3.1 DIRECTION OF MOTION: 0

We aésume that the vehicles make no sudden changes in directions between successive
video frames. This assumption allows us to track individual vehicles through successive frames.
We identify a single vehicle track by requiring that the centroids of the convex hull be colinear in
successive frames, as shown in Figure 3.1. The linear regression correlation coefficient r for
least square straight line fitting, as prcsented by Bevington [28], is the criterion for dgtermining
the colinearity of centroids.

From experiments, we claim that we are able to identify a single vehicle in a succession '
of images if the colinearity of the centroids produces a linear regression correlation coefficient r

greater than 0.90, where
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and x, and y, are the coordinates of convex hull centroids.
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Figure 3.1 Colinearity of convex hull centroids

3.2 GEOMETRIC RELATION INSIDE THE BOUNDING BOX

To get the scale information from the images, we exploit the triangular relationship
within the bounding box, as shown in Figure 3.2. The pixel length, L_pixel, of a vehicle is
estimated along the best fit line (L) indicating the direction of travel. It is estimated to be the
length of the cord along the best fit line that intersects the bounding box.

box_ width (8)

L_ pixel = :
sin &
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L_length

b _widdth

Figure 3.2 Triangular relation

To map the pixel length to ground truth vehicle lengths, we use the empirical vehicle
length distribution shown in Figure 3.3 [15]. This allows us to readily obtain the ratio of the
physical length, L_physical, and the pixel length, L_pixel, which is the scale factor s,

] 9
S=£‘—p}2}@—l (ft/ pixel) . 2

L_ pixel

This will play a key role in the next step.

3.3 DISTANCE AND SPEED ESTIMATION

Next, we estimate the travel distance between frames and the vehicle speed using the

scale factor just obtained from the above geometric analysis.

First, some assumptions are made:
a) Distance traveled by a car is defined by the displacement of its centroid.
b) Scale change is smooth (linear with pixel distance) along the camera focus.

Therefore, all scale changes form an equal difference sequence.



1

23

¢) Scale is homogeneous (constant) inside the car (box), so that the scale obtained from

the ratio of the two lengths is equal to the scale factor at the centroid.

Histegram of obsemwed lengths (sample size:26087)
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Figure 3.3 Vehicle length histogram

To obtain the physical distance of moving centers, we estimate the scale factors at each
pixel along the travel path having angle & . To this end, we first need to compute the total

number of pixels along the travel path, which can be obtained by using

# tical pixel 10
# of pixels along moving angle 0. = OfVer'zca pixels ’ (10)
sin ¢¢

where the number of vertical pixels is simply the vertical pixel length between the first and the

last centroids.

For an image sequence with k frames, where s, is the scale factor at the centroid of the
convex hull of the vehicle of interest in the first frame, s, is the scale factor at the centroid of the
convex hull of the vehicle in the k-th frame, and the number of pixels along the driving path

between these two centroids is n, we can compute the scale change per pixel, As, as
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ns =TS (g pixel?) | (1h)
(n-1)
The total distance D traversed between the images is then obtained by summing up the scale
factor series as
D =ns+ ”(”2“ Das ()
(5,+5) (12)
2

The speed is then estimated as the ratio of the interframe travel distance and the known frame

rate.

The material just presented is the firét published algorithm for an estimate of single
vehicle speed using a statistical vehicle length and an uncalibrated camera. The algorithm
creates scale information on the fly from information contained in the image and does not require
calibration markers in the physical environment.

The algorithm presented here is validated against ground truth measurements in the next

chapter.
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4 Field Trials and Discussions

4.1 FIELD TRIALS METHODOLOGY

To test our algorithm, we compared the distance estimates (called estimated distance)
obtained with our dynamic calibration technique with ground truth measurements on the
freeway. Because the travel time interval is set by the inter-frame time, the only unknown is the

ground truth travel distance. Field trials used both the distance between and the size of the center

stripes. Both these measurements are published by WSDOT, as seen in Appendix A.

4.2 EXPERIMENTAL RESULTS

Through extensive trials we tested the presented algorithm under different lighting
conditions. Estimation error is defined as the difference of the ground truth distance and the
estimated distance divided by the ground truth distance. Figure 4.1 shows the estimation error
values and estimation error histogram for 60 image sequences. As suggested by Worrall et al

[9], the mean car length, L, of 25.63 ft. is used in scale factor computations. The average

estimation error for these 60 sequences is 8.7 percent.
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Figure 4.1 Errors and error histogram for 60 image sequences
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Experiments suggested that when the area of shadow created by a vehicle is larger than
two thirds of the vehicle area in the image, the estimation errors of our algorithm are
unacceptable. We call this situation the severe shadow effect. Twenty SU.Cl:l sequences were
tested. The estimation error histogram is shown in Figure 4.2. Most produced estimation errors
over 15 percent, some even over 25 percent. A typical image sequence with serious shadow
effects is shown in Figure 4.3. Figure 4.4 shows two moving edge images for two frames in this
sequence, where many moving edges actually represent the edges of shadows rather than those
of the original vehicles. Initial analysis indicated that shadows will affect the reliability of the
moving edge detection, the convex hull extraction, and, finally, the scaling computation, théreby

distorting the distance and speed estimation. Without a priori knowledge of shadow shapes and

directions, the effect of shadows cannot easily be included in this algorithm.
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Figure 4.2 Errors and error histogram for 20 image sequences with severe shadow effects

Quantitative analysis of shadow effects is one focus for future improvements to the

algorithm.
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Figure 4.4 Moving edges

4.3 ERROR ANALYSIS

From Worrall et al [9], the random variable vehicle length, L_physical (L is used below

for simplicity), can be expressed as its expected value L,, (mean) and some deviation AL, that is
L=L +AL . (13)
For an image sequence with k frames, suppose L, is the car pixel length in the first frame

and L, is the car pixel length in the k-th frame. Consider a case in which the cars are moving
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analysis is similar for a case in which the cars are moving toward the camera.) Combining
equations (9) and (12) gives us the estimated distance D,,

Dm :_ﬁ(_[l_*__Ll)
2°L, L
n, 1 10
=L Z(—+=
'"2(L L )

1 'k

(14)

Considering length deviation in equation (13) gives us the deviated distance D, as

D, =(L, +AL)ﬁ(i+i).

2L, L 15)

Let e be the absolute error of distance measurement, and thus e = D,, - D,,. Combining equations

(14) and (15) gives the mean of error e,

E{e}=§<—l—+—1—>E{AL},

L L '
k 1 (16)
where E{*} is the expected value operator, and the variance, Var{e}, is
n, 1 1.,
Var{e}=[=(—+—)]"Var{AL}.
2L L
' 17

Equations (16) and (17) reveal that the length deviation (L) directly affects the
measurement error, since the pixel number n and pixel lengths L, and L, are uniquely determined

for a specific image sequence with k frames.

4.4 POSSIBLE SYSTEM EXTENSIONS

The speed information obtained from this work can be used directly for many
applications, such as traffic congestion detection. It is also worthwhile to note that with some
modifications, our method can be readily extended to other traffic analysis, including incident

detection, traffic model verification, and travel time estimation. The techniques introduced in
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this report can be used as a basis for developing general-purpose, advanced intelligent traffic
surveillance systems. For example, combined with character pattern recognition process, our

method can be extended to recognize the vehicle license plate number, which has recently

become an active research area.
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5 Conclusion

There are many challeﬁging problems in studying real tfaffic scenes.within a complex
background. In this report, efficient image processing techniques are applied to traffic analysis
to esti‘mate travel speed from image sequences of moving vehicles. Simple geometric relations
are obtained directly from the image itself and are used to deal with real-world problems without
explicit camera calibration. Furthermore, the techniques presented are validated against ground
truth by field trials. Error analysis is also given in detail. The car length distribution is shown to
be a key factor in the accuracy of speed sensing.

Some problems remain to be solved, including the effect of shadows and occlusion of
vehicles.

As a result of the work presented here, a manuscript has been submitted to the JEEE
Intelligent Transportation Systems Council for presentation at ITSC’99, a peer reviewed

conference. A copy of this manuscript appears in Appendix B.
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Abstract

In this paper we present a new algorithm to esti-
mate speed using a sequence of video images from an
un-calibrated camera. The algorithm uses frame differ-
encing to isolate moving edges and track vehicles between
frames. The algorithm uses a known vehicle length dis-
tribution with image information to estimate speed.

1 Introduction

Image processing techniques have been applied to traf-
fic scenes for a variety of purposes including: queue de-
tection, incident detection, vehicle classification, and ve-
hicle counting (1, 2, 3, 4, 5]. In this paper, we present
a new algorithm to estimate speed using a sequence of
video images from an un-calibrated camera. This work
is motivated by the large number of roadside cameras
installed by DOT’s to observe traffic. The cameras are
typically not installed in a manner that they can easily be
calibrated, and they are typically used by operators who
can tilt, pan, and zoom using a joystick to change the
camera calibration. The combination of movable cam-
eras and lack of calibration makes estimating speed for
un-calibrated cameras a challenge.

Relatively few efforts have been made to measure
speed using video images from un-calibrated cameras.
Some preliminary research on pixel speed estimation in
images appears in [4]. In previous work few efforts were
made to map pixel speed to ground truth speed. A re-
view of the literature on speed estimation using cameras
indicates that most algorithms either use reference in-
formation in the scene or create such references interac-
tively. For example, Worrall [6] reports an interactive
tool to perform camera calibration in which an operator
uses parallel road marks to identify vanishing points and
then places a rectangular calibration grid on the image.
Further, in [7] and [8], speed measurements are made
using the known physical distance between two detec-
tion windows placed on the road image by an operator.
Similarly, several other authors [9, 10] suggest estimating
speed by placing two detection lines, of known separa-
tion, in the image and measuring travel times between
the lines. In addition, Houkes [11] suggest the selection
of 4 reference points forming a rectangle and performing
off-line measurements. All these methods require the op-

L. Li
Dept. of Electrical Engineering

University of Washington
Seattle, WA 98195

erator to perform a calibration procedure before speed
estimation can be undertaken.

In this paper, it is assumed that we have no control
over camera movements, and thus cannot directly obtain
information such as camera focus, tilt, or angle. It is
further assumed that the camera parameters can change
with time. In the work presented here, we are monitoring
congested freeways and have neither the ability nor the
authority to set permanent marks on the road. Given
this scenario, we believe on-line calibration is a necessary
step to enable the use of the large, installed base of TMS
cameras.

We assert that exact calibration is not necessary to
estimate speed. Instead, we use: (1) geometric relation-
ships inherently available in the image, (2) some com-
mon sense assumptions (listed below) that reduce the
problem to a 1-D geometry, and (3) the distribution of
vehicle lengths, to propose a novel method that extracts
scale information and estimates speed.

To describe and demonstrate our speed estimation
scheme, we first review the assumptions made in for-
mulating the algorithm. We then enumerate the steps of
the algorithm, followed by a discussion of the individual
steps. Finally we present some preliminary quantitative
results of the algorithm.

2 Underlying Assumptions

To create an algorithm to estimate speed from video
images we make several assumptions to simplify the
problem:-

1. The speed of the vehicles is finite. The speed of a
vehicle has both physical and legal limits.

2. The vehicle movement is smooth. There are no sud-
den changes of direction in the time interval (330ms)
between frames in the image sequence.

3. Motion is constrained to the road plane. Tracking of
vehicles in the image sequence is a one dimensional
problem.

4. The scale factor (feet per pixel) varies linearly along
the direction of vehicle travel. This assumption con-
strains the vehicles to be moving generally toward
or generally away from the camera.



5. The lengths of the vehicles in the images are real-
izations from a known vehicle length distribution.

With these assumptions, the vehicles are treated as
though they travel in one dimension along a straight line
in the image. The vehicles are tracked across these im-
ages to obtain scale factors that estimate the real-world
distance represented by pixels at various locations in the
image. Using a linear function to fit to the empirical
scale factors it is possible to estimate the real-world dis-
tance traveled. Combining the distance traveled with
the known frame rate allows us to estimate speed. An
algorithm to perform this estimation is presented in the
next section.

3 The Algorithm

The algorithm operates on a series of at least five se-
quential images. The inner loop operates on sequential
groups of three images to create one enhanced image.
The outer loop uses a sequence of enhanced images to
estimate speed.

Outer Loop

1. Obtain five or more sequential images (320x240),
gray scale at three frames per second (e.g.
(L, Livr, Liva, Lits, Liva, ..., Jix v) where N > 5)

2. Create sets of three sequential images
(e.g. [Li, Lis+1, Iiy2] is the ith set of (N — 2) sets)

Inner Loop

For each of the sets of three sequential video
images, perform the following:

(a) Median filter each image.

(b) Difference the first and second images ((I; —
I;11)) as well as the third and second images
(Iiva — I;+1)) to get two difference images.

(c) Apply a Sobel edge detector to the difference
images to obtain edge images Sobel(I; 42— Ii+1)
and Sobel(I; — I;11) .

(d) Threshold the edge images to create binary im-
ages. :

(e) Intersect the two binary images to obtain the
moving edge image (M E(I;41)) for the I;4; im-
age:

ME(I»L‘+1) = Threshold(Sobel(IHg - I¢+1))
N Threshold(Sobel(I; — I;41)).

(f) Apply dilation to the moving edge image.
(g) Apply erosion to the moving edge image.

(h) Identify the set of points C;(I;41) for the j con-
vex hulls in the moving edge image M E(Ii41).

(i) Calculate centroid p(i + 1,7) = (z,y) for the
jth convex hull in image I;1;.

38

(j) Calculate the set of points for the bounding
boxes B;(l;;1) for the j convex hulls.

End of the inner loop

3. Select sets of co-linear centroids [p(¢ + 1,7), p(2 +
2,7}, p(E+3,7), o(N —2,4)] in sequential im-
ages and estimate a best fit line through these
points. The slope of this line is the tangent of the
angle of motion « for the jth centroid in the series
of images. This is used to establish a new coor-
dinate, z, along the direction of motion such that
2% = z? + y? and tan(a) = dy/dz.

4. For evach of the collinear bounding boxes in sequen-
tial images, estimate the pixel length L(:+ 1,7)
along the direction o using !

sup(y 1 y € B;(Tig1)) — inf(y:y € B;i(Liy1))
sin o

5. Estimate the scale factor g (feét/pixel) for the z lo-
cation of the centroid p(i + 1, ) using the mean ve-
hicle length !,

l

9(i+1,2) = LGHL)

6. Using a series of two or more scale factor estimates,
estimate the slope (m) and intersection (b) of the
scale factor function g(z|m,b) using

min |lg(z|m,b) — (i +1,2)|| Vi,

(m,b)
where g(z|m, b) = mz+b, and z is the distance along
a line at an angle o in the images.

7. Estimate the interframe distances,

Zt1
dg =/ " q(2)dz

k

V ke(i+1,N-2).

8. Estimate the mean of interframe distances, E[dy],
and use the ratio of the interframe mean and the
frame rate (At) to estimate speed,

Eldy)

S= Ar

End Outer Loop

4 Algorithm Operation

To explain the operation of the algorithm just enu-
merated, we identify the basic tasks necessary to es-
timate speed from sequential un-calibrated images and
map these tasks into the steps in the algorithm. The
tasks necessary to obtain speed from un-calibrated im-
ages are: (1) obtain sequential images, (2) identify the
moving vehicles in the sequential images, (3) track the

Lsup is the supremum or least upper bound and inf is the infi-
mum or greatest lower bound [12]
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Figure 1: Typical image sequence (left). Sobel edges in the difference
image (right top). Moving edge image for the bottom right image created
by intersecting difference images. intersecting (right bottom).

vehicles between images, (4) dynamically estimate the
scale factor in feet per pixel, and (5) estimate speed from
distance traveled and the interframe delay.

As mentioned earlier, the algorithm operates on sets
of sequential images taken from DOT CCTV cameras.
The images used in this work are, grey scale, 320 by 240
pixels, sampled three times per-second. The resolution
and sample rate are selected to provide sufficient detail
in the image to identify individual vehicles and to cap-
ture sequential images rapidly enough so that individual
vehicles can be tracked between images without pattern
recognition techniques (e.g. the vehicles moves no more
that about one vehicle length between images).

The images used in our algorithm are taken from road-
side CCTV cameras installed by Washington State DOT
in their traffic management role. The DOT transports
the video from the roadside cameras to the control cen-
ter using a dedicated fiber system. In the control center,
operators can pan, tilt, and zoom the cameras using a
joystick. The cameras are actively being used for traffic
management activities. No camera calibration informa-
tion is available for these cameras, and it is the purpose
of this work to demonstrate that the images from such
cameras can be used as an alternative speed estimate

The video is digitized at a rate of three-frames per
second and stored in files using the Jpeg image format.
These Jpeg files are the sequential images required for
step one in the outer loop of the algorithm. Sets of three
sequential images are used in the inner loop of the al-
gorithm. The left side of Figure 1 shows two example
images. . '

In step (b) of the algorithm, a median filter, using

a 3x3 kernel, is applied to each image to remove high
frequency noise in the images [13, 14].

To identify the moving vehicles in the images, the
non-moving background must be removed. Two basic
techniques to remove the static background information
appear in the literature. The first is to obtain a frame
with only the background that can be subtracted from
the frames in which there are vehicles [15]. This frame
is then updated to match the current lighting levels [2].
This method is not only computationally expensive, but
it may be impossible, on congested freeways, to obtain an
image with the correct lighting level and with no vehicles
present. The second technique uses sequential frames to
perform forward and backward differences between the
frames [16, 15, 17]. Vieren [17] suggests using interframe
differences with a differential operator to extract moving
edges.

The algorithm presented here uses interframe differ-
ences and then applies a Sobel edge detector to the re-
sulting image. Step (d) of the algorithm creates two
difference images, and step (e) applies the Sobel edge de-
tector to those images. The resulting images are thresh-
olded to obtain a binary images. The upper right image
in Figure 1 is the binary image that results of apply-
ing the Sobel edge detector to the difference of the two
images in the left column of Figure 1. The two binary im-
ages are intersected in step (f) of the algorithm to obtain
a moving edge image. The resulting moving edge image
for the example sequence appears in the lower right of
Figure 1.

Examining the lower right image in Figure 1 shows
that while we have identified the moving edges, those



edges do not make closed polygons identifiable as indi-
vidual vehicles. To overcome this problem and create
closed curves, we use two morphological operations. We
enhance the moving edge image by sequentially apply-
ing dilation and erosion. [18] Dilation of an object is
the translation of all of its points with regard to a struc-
tural element followed by a union operation. Dilation is
applied to the binary image to close the curves in the
moving edge image; it also expands the overall size of
the area enclosed. Erosion is then used to shrink the ob-
ject back to the original size. In the algorithm presented,
a 3x3 structural element is used in step (f) to perform
dilation and in step (g) to perform erosion.

After the application of the morphological operators,
the moving edges are filled in to create moving blobs.
These moving blobs represent the vehicle motion in the
images: Past work has asserted that the convex hull sur-
rounding a vehicle in an image is a good approximation
of the projection of a vehicle in the image [19]. To char-
acterize the moving blobs, we first calculate the convex
hull for the blobs in step (h) of the algorithm. We also
calculate the centroid of the convex hulls in step (i). The
centroids of the convex hulls are used as the effective lo-
cation of the vehicle in the image.

Having located a vehicle in one image, the vehicle is
tracked across images by enforcing co-linearity of the
centroids of the convex hulls. The left side of Figure
2 presents a representation of three convex hulls with
centroids (z1,v1), (z2,¥2), (%3,y3). In step (3) of the al-
gorithm, the vehicle is tracked as moving along the line
at an angle (o) relative to the horizontal scan lines in
the image. In the work presented here, a minimum value
of 0.90 of the linear regression correlation coefficient,

n n

n
-nzxiyi —Zfb‘izyi
i=1

i=1 i=1

T =

(”Z 7 — (Z z:)%) % (n Z yi - (Z v:)?)H?
(1)

i=1 i=1 t=1 i=1
is used to identify co-linear centroids and track a vehi-
cle. This completes tasks one through four necessary to
estimate speed.

The fifth task necessary to estimate speed is to make
an estimate of the scale factor that maps distance trav-
eled in the image to distance traveled on the road. We
have assumed the vehicles are taken from a known dis-
tribution {20], and we can use the properties of that dis-
tribution to estimate the length of the vehicles in the
images. We make individual estimates of the scale fac-
tor (§) as the ratio of the mean vehicle length (), taken
from the known distribution, and the estimate of vehi-
cle length from the image. This latter length is approxi-
mated by the length of the line, in the direction of travel,
crossing the bounding box surrounding the convex hull
of the vehicle. The right side of Figure 2 illustrates this
approximation, and step 4 in the algorithm provides this
estimate.

40

‘We assume that the scale factor q changes linearly
along the path that the vehicle travels,

q(z|m,b) = mz +b, e)

where z is the distance along a line at an angle « in the
images. The parameters of this scale factor function are
estimated in step 6 of the algorithm using the set of scale
factor estimates from step 5. The distance traveled is the
integral of this function along the z direction,

d= [zz q(2)dz. (3)

~1

This distance is estimated in step 7 of the algorithm.

Finally, having an estimate of the distance traveled,
we use the interframe sample time in step 8 to estimate
the vehicle speed,

Eldy]
o (4)

This provides an estimate of speed from un-calibrated
cameras.

5 Empirical Results

This paper presents preliminary results of applying
the algorithm to images from a variety of lighting condi-
tions. Figure 3 is a histogram of the error between the
individual speed estimates and the ground truth. These
results are for 60 tests of the algorithm without regard
to lighting effects. There are errors as large as 30% in
one of the tests. On examining the relationship between
lighting conditions and the error in the estimates it has
become clear that the shadow effects may account for the
errors of over 10% in the speed estimate. Reconsiling the
algorithms against lighting conditions is an ongoing ef-
fort.

This paper presents a new algorithm to estimate speed
from un-calibrated cameras. Un-calibrated cameras are
widely available to DOT operators and can provide a
valuable, additional quantitative measure for traffic op-
erations and traveler information.
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