Cockpit Display of Traffic Information (CDTI) and Airport Moving Map Industry Survey

Danielle Hiltunen
Stinger Ghaffarian Technologies, Inc.
Cambridge, MA 02142

Stephanie G. Chase, PhD
Andrew Kendra
Young Jin Jo
U.S. Department of Transportation
John A. Volpe National Transportation Systems Center
Cambridge, MA 02142

Final Report — August 2016
DOT-VNTSC-FAA-16-14

Prepared for:
Federal Aviation Administration
Human Factors Division
800 Independence Avenue, SW
Washington, DC 20591
Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report.
This document provides an overview of Cockpit Display of Traffic Information (CDTI) products as of May 2016, including those with airport moving map functionality, and airport moving map applications without traffic depiction. This document updates and replaces the Volpe Center’s 2009 airport moving map industry survey. The information for this report was gathered through industry contacts, websites, and online product brochures. This report was conducted in support of the Federal Aviation Administration (FAA), but the information is intended to be of use to anyone interested in CDTI and airport moving map products. Nineteen manufacturers and two research organizations participated in this industry survey. Each provided a description of software and hardware components (when applicable), including display characteristics, depiction of traffic, airport moving map information elements, and other functions and capabilities. Participating manufacturers were classified into three categories based on their products: CDTI Installed, CDTI Portable, and Airport Moving Map Only (without traffic depiction). Note that although some manufacturers provide a portable CDTI function, a CDTI is NOT considered an Electronic Flight Bag (EFB) function per AC 120-76C, and can not be authorized for use for Part 121, 125, 135, 91F and 91K operations via the AC.
APPROXIMATE CONVERSIONS TO SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
<td>km</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>square millimeters</td>
<td>mm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.405</td>
<td>hectares</td>
<td>ha</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>square kilometers</td>
<td>km²</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>milliliters</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.765</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
</tbody>
</table>

NOTE: volumes greater than 1000 L shall be shown in m³

MASS				
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short tons (2000 lb)	0.907	megagrams (or “metric ton”)	Mg (or “t”)
oz	ounces	28.35	grams	g

TEMPERATURE (exact degrees)

<table>
<thead>
<tr>
<th>°F</th>
<th>Fahrenheit</th>
<th>5 (F-32)/9</th>
<th>Celsius</th>
<th>°C</th>
</tr>
</thead>
</table>

ILLUMINATION

<table>
<thead>
<tr>
<th>fc</th>
<th>foot-candles</th>
<th>10.76</th>
<th>lux</th>
<th>lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>fl</td>
<td>foot-Lamberts</td>
<td>3.426</td>
<td>candela/m²</td>
<td>cd/m²</td>
</tr>
</tbody>
</table>

FORCE and PRESSURE or STRESS

<table>
<thead>
<tr>
<th>lbf</th>
<th>poundforce</th>
<th>4.45</th>
<th>newtons</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbf/in²</td>
<td>poundforce per square inch</td>
<td>6.89</td>
<td>kilopascals</td>
<td>kPa</td>
</tr>
</tbody>
</table>

APPROXIMATE CONVERSIONS FROM SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.28</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.09</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm²</td>
<td>square millimeters</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>1.195</td>
<td>square yards</td>
<td>yd²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.47</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometers</td>
<td>0.386</td>
<td>square miles</td>
<td>mi²</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>0.264</td>
<td>gallons</td>
<td>gal</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>3.314</td>
<td>cubic feet</td>
<td>ft³</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>1.307</td>
<td>cubic yards</td>
<td>yd³</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>MASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>0.035</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>2.202</td>
<td>pounds</td>
<td>lb</td>
</tr>
<tr>
<td>Mg (or “t”)</td>
<td>megagrams (or “metric ton”)</td>
<td>1.103</td>
<td>short tons (2000 lb)</td>
<td>T</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>0.035</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>TEMPERATURE (exact degrees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
<td>1.8°C+32</td>
<td>Fahrenheit</td>
<td>°F</td>
</tr>
</tbody>
</table>

ILLUMINATION

<table>
<thead>
<tr>
<th>lx</th>
<th>lux</th>
<th>0.0929</th>
<th>foot-candles</th>
<th>fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd/m²</td>
<td>candela/m²</td>
<td>0.2919</td>
<td>foot-Lamberts</td>
<td>fl</td>
</tr>
</tbody>
</table>

FORCE and PRESSURE or STRESS

<table>
<thead>
<tr>
<th>N</th>
<th>newtons</th>
<th>0.225</th>
<th>poundforce</th>
<th>lbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>kPa</td>
<td>kilopascals</td>
<td>0.145</td>
<td>poundforce per square inch</td>
<td>lbf/in²</td>
</tr>
</tbody>
</table>

Si is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)
Acknowledgements

This technical report was prepared by the Aviation Human Factors Division at the Volpe National Transportation Systems Center. This research was completed with funding from the Federal Aviation Administration (FAA) Human Factors Division (ANG-C1) in support of the Aircraft Certification Service Avionics Branch (AIR-130). We would like to thank our FAA program managers, Regina Bolinger (ANG-C1) and Tom McCloy (formerly ANG-C1), as well as our technical sponsor Cathy Swider (AIR-134). We also thank Michelle Yeh (AIR-134) and Colleen Donovan (formerly ANG-C1) for their valuable guidance and feedback. Lastly, we thank the many manufacturers and research organizations who generously provided information for the industry survey.

The views expressed herein are those of the authors and do not necessarily reflect the views of the Volpe National Transportation Systems Center or the United States Department of Transportation.
This page is left blank intentionally.
6. Research Organizations ...167
 MITRE ..167
 NASA Ames Research Center ..172

References ...177

Appendix A: Additional CDTI and Airport Moving Map Publications181
List of Tables

Table 1. Participants ... 5
Table 2. Approvals/Compliance .. 11
Table 3. CDTI Traffic Symbols .. 18
Table 4. Airport Moving Map Information Elements .. 30
Table 5. CDTI and Airport Moving Map Capabilities ... 36
This page is left blank intentionally.
List of Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ACAS</td>
<td>Airborne Collision and Avoidance System</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance-Broadcast</td>
</tr>
<tr>
<td>AFD</td>
<td>Airport Facility Directory</td>
</tr>
<tr>
<td>ASA</td>
<td>Aircraft Surveillance Applications</td>
</tr>
<tr>
<td>ASAS</td>
<td>Aircraft Surveillance Applications Systems</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority</td>
</tr>
<tr>
<td>CAASD</td>
<td>Center for Advanced Aviation System Development</td>
</tr>
<tr>
<td>CAS</td>
<td>Crew Alerting System</td>
</tr>
<tr>
<td>CDTI</td>
<td>Cockpit Display of Traffic Information</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>EFB</td>
<td>Electronic Flight Bag</td>
</tr>
<tr>
<td>EFIS</td>
<td>Electronic Flight Information System</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IMA</td>
<td>Integrated Modular Avionics</td>
</tr>
<tr>
<td>ITP</td>
<td>In-Trail Procedures</td>
</tr>
<tr>
<td>MFD</td>
<td>Multi-Function Display</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>PED</td>
<td>Portable Electronic Device</td>
</tr>
<tr>
<td>PFD</td>
<td>Primary Flight Display</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>TAS</td>
<td>Traffic Alerting System</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TIS</td>
<td>Traffic Information System</td>
</tr>
<tr>
<td>TIS-B</td>
<td>Traffic Information System – Broadcast</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
</tbody>
</table>
This page is left blank intentionally.
Executive Summary

This industry survey provides an overview of currently available Cockpit Display of Traffic Information (CDTI) and airport moving map products and capabilities as of May 2016. This report was conducted in support of the Federal Aviation Administration (FAA) but the information is intended to be of use to anyone interested in CDTIs and airport moving map displays. Nineteen manufacturers and two research organizations participated in this industry survey. Each provided a description of software and hardware components (when applicable), including display characteristics, traffic symbols and airport moving map information elements (e.g., runways, taxiways, ramp areas, etc.), as well as other functions and capabilities.

Participating manufacturers were classified into three categories based on their products: CDTI Installed, CDTI Portable, and Airport Moving Map Only (without traffic depiction). Note that the FAA considers only an airport moving map an Electronic Flight Bag (EFB) function, per Advisory Circular (AC) 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bag. The FAA does not consider a CDTI an EFB function. AC 120-76C is not applicable to Part 91 (excluding subparts F and K) operators, however, so these operators may utilize functions and capabilities that are not authorized for use by Part 121, 135, 91F and 91K operators. This industry survey is divided into eight main sections:

- **Section 1** provides a brief introduction to the survey and lists applicable FAA regulatory and guidance material and industry documents.
- **Section 2** lists the participants and describes the method for the survey.
- **Section 3** provides an overview of products, including four tables summarizing product approvals and compliance, traffic symbols, airport moving map elements, and capabilities offered by manufacturers and research organizations.
- **Section 4** contains detailed information tables for 19 manufacturers that provide CDTI products.
- **Section 5** includes detailed information tables for three manufacturers with only airport moving map applications that do not currently support traffic depiction.
- **Section 6** includes detailed information tables for two research organizations.
- The **References** section includes regulatory and guidance material, industry and research documents listed in this document.
- **Appendix A** provides a list of documentation related to CDTI and airport moving maps in addition to those provided in the References section.

The material presented in each detailed information table was gathered through collaboration with the participating manufacturers, from information provided at demonstrations, and in websites or brochures. A picture of each display and/or application is provided where available. For manufacturer displays and applications, information on FAA approvals received or in progress is also included as applicable. This document updates and replaces the Volpe Center’s 2009 *Surface Moving Map Industry Survey* (Yeh & Eon).
This page is left blank intentionally.
1. Introduction

Cockpit Displays of Traffic Information (CDTIs) provide a dynamic display of traffic to the flightcrew to support position awareness and visual acquisition of traffic out the window. In some implementations, In-Trail Procedures (ITP) and traffic indications may also be supported. CDTIs may also have airport moving map capabilities. These implementations incorporate an underlay of the airport surface, allowing the depiction of surface traffic, which may also include Automatic Dependent Surveillance-Broadcast (ADS-B) equipped vehicles. CDTIs and airport moving map applications may also be developed and used exclusively of one another, for example, an airport moving map application that displays ownship but does not present traffic.

The implementation of CDTIs and airport moving map displays may vary widely in terms of the type of hardware platform used (e.g., a dedicated display, multi-function display or portable electronic device), traffic symbology, airport moving map information elements depicted, and functions that may be performed (e.g. decluttering, zooming, taxi route guidance).

The purpose of this effort is to provide the Federal Aviation Administration (FAA) with industry trends about current CDTI and airport moving map products through periodic industry surveys. Although this document was prepared in support of the FAA, it is also intended to be useful to anyone interested in CDTI and airport moving map technologies, including other aviation or transportation authorities, customers, manufacturers, and researchers. This document is not intended to evaluate manufacturer compliance with specific FAA standards.

This industry survey provides an overview of currently available CDTI and airport moving map products as of May 2016. Manufacturers and research organizations were identified for this industry survey based on participation in previous surveys and a web search. Although efforts were made to provide as comprehensive a survey as possible, some manufacturers declined to participate or did not respond to the invitation. In total, 19 manufacturers and two research organizations participated in this industry survey.

Participating manufacturers were classified into three categories based on their products: CDTI Installed, CDTI Portable, and Airport Moving Map Only (without traffic depiction). The FAA only considers an airport moving map an EFB function, per Advisory Circular (AC) 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bag. A CDTI is not an EFB function, per the AC. AC 120-76C is not applicable to Part 91 (excluding subparts F and K) operators, however, so those operators may utilize functions and capabilities that are not authorized for use by Part 121, 135, 91F and 91K operators.

The FAA provides guidance for CDTIs and airport moving maps in the following documents:

- Advisory Circular (AC) 20-172B, Airworthiness Approval for ADS-B In Systems and Applications;
- Technical Standard Order (TSO)-C165a, Electronic Map Display Equipment for Graphical
Depiction of Aircraft Position (Own-Ship);

- Technical Standard Order (TSO)-C195b, Avionics Supporting Automatic Dependent Surveillance – Broadcast (ADS-B) Aircraft Surveillance Applications (ASA);

FAA guidance is also provided for obtaining authorization for the operational use of airport moving map in:

- Advisory Circular (AC) 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bag; and

FAA guidance regarding flight deck displays in general is provided in:

- Advisory Circular (AC) 25-11B, Electronic Flight Displays; and
- Technical Standard Order (TSO) C113a, Airborne Multipurpose Electronic Displays.

Additional guidance for displays, airborne equipment, electronic map displays, traffic indications and alerts, and symbology is provided in the following industry documents:

- RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment;
- RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification;
- RTCA DO-200B, Standards for Processing Aeronautical Data;
- RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware;
- RTCA DO-257A, Minimum Operational Performance Standards for the Depiction of Navigational Information on Electronic Maps;
- RTCA DO-272D, User Requirements for Aerodrome Mapping Information;
- RTCA DO-317B, Minimum Operational Performance Standards (MOPS) for Aircraft Surveillance Applications (ASA) System; and

The remainder of this industry survey is divided into seven sections:

- **Section 2** lists the participants and describes the method for the survey.
- **Section 3** provides an overview of products, including four tables summarizing product approvals and compliance, traffic symbols, airport moving map elements, and capabilities offered by manufacturers and research organizations.
- **Section 4** contains detailed information tables for 19 manufacturers that provide CDTI products.
- **Section 5** includes detailed information tables for three manufacturers with only airport moving map applications that do not currently support traffic depiction.
- **Section 6** includes detailed information tables for two research organizations.
- The **References** section includes regulatory and guidance material, industry and research documents listed in this document.
- **Appendix A** provides a list of documentation related to CDTI and airport moving maps in
addition to those provided in the References section.
This page is left blank intentionally.
2. Technical Approach

1.1 Participating Manufacturers and Research Organizations

Nineteen manufacturers and two research organizations participated in this industry survey. Although all efforts were made to be as comprehensive as possible, some manufacturers declined to participate or did not respond to the invitation. Manufacturers were classified into the following categories based on their products:

- **CDTI Installed** – manufacturers of installed CDTI products that may also provide airport moving map functionality, or a separate airport moving map application without traffic depiction (10 manufacturers)
- **CDTI Portable** – manufacturers of portable CDTI products (including software) that may also provide airport moving map functionality, or a separate airport moving map application without traffic depiction\(^1\) (6 manufacturers)
- **Airport Moving Map Only** – manufacturers with airport moving map applications that do not currently support traffic depiction (3 manufacturers)

Table 1 lists participating manufacturers by product type followed by research organizations. The table includes the name of the manufacturer or research organization, their product(s), and a website where more information can be found. Although the displays used by research organizations are not implemented products, the results of these efforts are publicly available, and manufacturers may incorporate some of the lessons learned in their product development.

<table>
<thead>
<tr>
<th>Manufacturer or Research Organization</th>
<th>Product(s)</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDTI Installed Manufacturers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen Avionics</td>
<td>Evolution: 1000C3 Pro PFD, 1500C3 PFD+MFD, 2000C3 PFD+MFD, 2500C3 PFD+MFD, 1000 MFD, 500 MFD, VFR PFD, 1000 Pro PFD, 1500 PFD+MFD, 2000 PFD+MFD, 2500 PFD+ MFD, 1000H MFD, 500H MFD, 1000H Pro PFD, 1500H PFD+ MFD, 2000H PFD+MFD, 2500H PFD+MFD</td>
<td>www.aspenavionics.com</td>
</tr>
<tr>
<td>Astronautics</td>
<td>Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System</td>
<td>www.astronautics.com</td>
</tr>
</tbody>
</table>

\(^1\) Portable CDTIs can not be authorized for use per A C 120-76C.
Table 1. Participants (continued)

<table>
<thead>
<tr>
<th>Manufacturer or Research Organization</th>
<th>Product(s)</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDTI Installed Manufacturers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U-CDTI option 1: Cockpit Display of Traffic Information (CDTI)
U-CDTI option 2: Surface Area Movement Management (SAMM)
U-CDTI option 3: CDTI Assisted Visual Separation (CAVS)
U-CDTI option 4: Merging and Spacing (M&S)
U-CDTI option 5: In-Trail Procedures (ITP) | http://www.acss.com/ |
| Boeing | 787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS)
747-8 Integrated Display System (IDS) | www.boeing.com |
| Dynon Avionics | SkyView | www.dynonavionics.com |
| Garmin | Apps: Garmin Pilot® (available for iOS and Android), SafeTaxi® (available on Garmin Pilot, certified and portable avionics)
Certified Avionics: G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series
Portable GPS: Aera 5XX series, Aera 7XX series, GPSMAP 49X series, GPSMAP 6XX series
Sport/Experimental Avionics: G3X, G3X-Touch | www.garmin.com |
| GENESYS Aerosystems | 3D Synthetic Vision EFIS IDU III, IDU-680, IDU-450 | http://genesys-aerosystems.com |
| Honeywell | Honeywell 2D Airport Moving Map, Honeywell CDTI SURF, Honeywell 3D Airport Moving Map, Honeywell CDTI AIR-B and VSA | www.honeywell.com |
| L-3 Communications | Lynx NGT-9000 | http://www.l-3com.com |
| Rockwell Collins | Pro Line Fusion® Integrated Avionics System | www.rockwellcollins.com |
| **CDTI Portable Manufacturers**\(^2\) | | |
| Advanced Flight Systems, Inc. (AFS) | AFS-5400, 5500, 5600, 5800 | www.advanced-flight-systems.com |
| AvMap | EKP V, EKP IV, EKPIV pro | www.avmap.us/index.php |

\(^2\) Portable CDTIs can not be authorized for use per AC 120-76C.
Table 1. Participants (continued)

<table>
<thead>
<tr>
<th>Manufacturer or Research Organization</th>
<th>Product(s)</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDTI Portable Manufacturers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlightPrep, Inc.</td>
<td>ChartBook-3, Helm X650, ChartCase Professional</td>
<td>www.flightprep.com</td>
</tr>
<tr>
<td>ForeFlight</td>
<td>ForeFlight Mobile</td>
<td>www.foreflight.com</td>
</tr>
<tr>
<td>SkyVision</td>
<td>Xtreme Vision</td>
<td>www.skyvisionxtreme.com</td>
</tr>
<tr>
<td>X-Avionics, LLC</td>
<td>Xavion</td>
<td>xavion.com</td>
</tr>
<tr>
<td>Airport Moving Map Only Manufacturers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lufthansa Systems</td>
<td>Lido Airport Moving Map</td>
<td>www.lhsystems.com</td>
</tr>
<tr>
<td>Terra Vision Flight Deck Applications</td>
<td>FollowTheGreen</td>
<td>www.terravision.co.il</td>
</tr>
<tr>
<td>Research Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITRE</td>
<td>Center for Advanced Aviation System Development (CAASD) CDTI prototype</td>
<td>www.mitre.org</td>
</tr>
<tr>
<td>NASA-Ames</td>
<td>Airport Moving Map Airport Moving Map Standard Display & Magic Carpet Display</td>
<td>www.nasa.gov/centers/ames</td>
</tr>
</tbody>
</table>

1.2 Methods

To gather information for this industry survey, the Volpe Center contacted CDTI and airport moving map manufacturers and research organizations. Once the manufacturer or research organization agreed to participate, the Volpe Center worked with the representative to collect information about each product. The information collected is intended to highlight human factors and usability aspects of the interface (e.g., the information depicted and the interactivity provided) rather than the technical aspects of implementation. Each participating manufacturer and research organization was asked for the following information regarding their products:

- Product name
- Website(s) where more information can be found
- A brief overview of the product and product images
• FAA approvals received or in progress, and compliance with regulatory and guidance material
• Characteristics of the hardware system(s) on which the application can be displayed (i.e., portable.installed, size, resolution, controls)
• Operating system and software capabilities (e.g., decluttering, panning, and zooming)
• Airport moving map data format (i.e., geo-referenced electronic chart or database driven), and the airport moving map information elements depicted
• Traffic display information (e.g., data source, symbol images, and data tag information)

A table containing this information for each participant was initially drafted by the Volpe Center based on previous information obtained from industry contacts, demonstrations, websites, and brochures. The draft table was sent to the representative at each participating manufacturer or research organization to review and edit, as needed. This document reflects the results of this collaborative effort.
3. Industry Overview

This section presents three tables that summarize the information provided by manufacturers and research organizations about their products:

- Table 2. Approvals/Compliance
- Table 3. CDTI Traffic Symbols
- Table 4. Airport Moving Map Information Elements
- Table 5. CDTI and Airport Moving Map Capabilities

Table 2. Approvals/Compliance summarizes approvals and compliance for all 19 manufacturers. Research organizations are not included, as they generally do not seek approval for research displays. A filled circle (●) indicates that the manufacturer currently has an approval. An open circle (○) indicates that the manufacturer is in the process of obtaining an approval. The products listed are installed CDTIs unless otherwise noted. A single asterisk (*) beside a manufacturer indicates that the manufacturer is a portable CDTI. Two asterisks (**) indicate that the manufacturer currently only provides an airport moving map application without traffic depiction. Note that three vendors did not indicate approvals or compliance with regulatory and guidance material in their respective surveys.

The following 22 documents listed below are applicable to CDTIs and/or airport moving maps, as well as the hardware they may be presented on. These documents were included in manufacturer survey responses, and are summarized in Table 2. Approvals/Compliance. To simplify the table, document versions are not indicated, but are included in each individual manufacturer’s survey. It is important to note that the FAA currently limits the display of ownship on portable electronic devices (PEDs) to surface operations only, at ground speeds of 80 knots or less.

FAA Guidance Material:

- TSO-C112c, ATCRBS/Mode S Airborne Equipment
- TSO-C113a, Airborne Multipurpose Electronic Displays
- TSO-C147a, TAS Airborne Equipment
- TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
- TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)
- TSO-C166b, Extended Squitter ADS-B and Traffic Information
- TSO-C195b, Avionics Supporting ADS-B ASA
• AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
• AC 20-165A, Airworthiness Approval of ADS-B Out Systems
• AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications
• AC 25-11B, Electronic Flight Deck Displays
• AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags

Industry Guidance Documents:
• RTCA DO-160, Environmental Conditions and Test Procedures for Airborne Equipment
• RTCA DO-178, Software Considerations in Airborne Systems and Equipment Certification
• RTCA DO-181, MOPS for ATCRBS/Mode S Airborne Equipment
• RTCA DO 200, Standards for Processing Aeronautical Data
• RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
• RTCA DO-257, MOPS for the Depiction of Navigation Information on Electronic Maps
• RTCA DO-260, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
• RTCA DO-272, User Requirements for Aerodrome Mapping Information
• RTCA DO-282, MOPS for UAT ADS-B
• RTCA DO-317, MOPS for ASA System
Table 2. Approvals/Compliance

Note: All information was provided by the manufacturers and has not been verified with the FAA.

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
</table>
| **Advanced Flight Systems (AFS)**⁺
AFS-5400, 5500, 5600, 5800 | FAA | TC | C112 | 20-159 | RTCA DO-160 |
| | EASA | STC | C113 | 20-165A | RTCA DO-178 |
| | Other | Aircraft | C147 | 20-172B | RTCA DO-381 |
| | | | C154 | 25-11B | RTCA DO-254 |
| | | | C165 | 120-76G | RTCA DO-257 |
| | | | C166 | | RTCA DO-260 |
| | | | C195 | | RTCA DO-272 |
| | | | Other | | RTCA DO-282 |
| | | | | | RTCA DO-317 |
| **Aspen Avionics**
Evolution: 1000C3 Pro PFD, 1500C3 PFD+MFD, 2000C3 PFD+MFD, 2500C3 PFD+MFD, 1000 MFD, 500 MFD, VFR PFD, 1000 Pro PFD, 1500 PFD+MFD, 2000 PFD+MFD, 2500 PFD+MFD, 1000H MFD, 500H MFD, 1000H Pro PFD, 1500H PFD+MFD, 2000H PFD+MFD, 2500H PFD+MFD | FAA | TC | R22, R44, R66, STC, Approved Model List of Classes I, II and III Part 23 airplanes | C-157a (incomplete) | | |
| | EASA | | | | RTCA DO-160 |
| | Other | | | | RTCA DO-178 |
| | | | | | RTCA DO-381 |
| | | | | | RTCA DO-254 |
| | | | | | RTCA DO-257 |
| | | | | | RTCA DO-260 |
| | | | | | RTCA DO-272 |
| | | | | | RTCA DO-282 |
| | | | | | RTCA DO-317 |

Table 2. Approvals/Compliance (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System</td>
<td>•</td>
<td>•</td>
<td>A319, A320, A321</td>
<td>• •</td>
<td>• •</td>
</tr>
<tr>
<td>Aviation Communication & Surveillance Systems (ACSS)</td>
<td>•</td>
<td>B757, B767</td>
<td>• • • • • • • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
</tr>
<tr>
<td>SafeRoute™ (software suite)</td>
<td>•</td>
<td>B757, B747-8</td>
<td>• • • • • • • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
</tr>
<tr>
<td>AvMap® EKP V, EKP IV, EKP IV pro</td>
<td>•</td>
<td>B757, B747-8</td>
<td>• • • • • • • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
</tr>
<tr>
<td>Boeing 787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS) 747-8 Integrated Display System (IDS)</td>
<td>•</td>
<td>B757, B747-8</td>
<td>• • • • • • • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
</tr>
<tr>
<td>Dynon Avionics SkyView</td>
<td>•</td>
<td>•</td>
<td>• • • • • • • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
<td>• • • • • • • • • • •</td>
</tr>
</tbody>
</table>

Volpe
Table 2. Approvals/Compliance (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChartBook-3, Helm X650, ChartCase Professional</td>
<td>EASA</td>
<td>STC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ForeFlight</td>
<td>FAA</td>
<td>TC</td>
<td>Other</td>
<td></td>
<td>RTCA DO-178, RTCA DO-200, RTCA DO-254, RTCA DO-317</td>
</tr>
<tr>
<td>ForeFlight Mobile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENESYS Aerosystems</td>
<td>FAA</td>
<td>TC</td>
<td>Other</td>
<td></td>
<td>RTCA DO-178, RTCA DO-200, RTCA DO-254, RTCA DO-257, RTCA DO-260, RTCA DO-272, RTCA DO-317, Other</td>
</tr>
<tr>
<td>3D Synthetic Vision EFIS IDU III, IDU-680, IDU 450</td>
<td>EASA</td>
<td>Other</td>
<td>Various</td>
<td></td>
<td>Various (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Various (# not provided)</td>
</tr>
<tr>
<td>Garmin</td>
<td>FAA</td>
<td>TC</td>
<td>Other</td>
<td></td>
<td>RTCA DO-160, RTCA DO-178, RTCA DO-200, RTCA DO-254, RTCA DO-257, RTCA DO-260, RTCA DO-272, RTCA DO-317, Other</td>
</tr>
<tr>
<td>G500, G600</td>
<td>EASA</td>
<td>Other</td>
<td>Various</td>
<td></td>
<td>Various (27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Various (# not provided)</td>
</tr>
</tbody>
</table>

3 Garmin offers installed, portable and software products.
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>G950, G1000, G2000, G3000, G5000, GTN 6XX/7XX series</td>
<td>ANAC, TCCA</td>
<td>Various</td>
<td>C112, C113, C147, C154, C165, C166, C195</td>
<td>Various (# not provided)</td>
<td>Various (15)</td>
</tr>
<tr>
<td>GMX 200</td>
<td>ANAC, TCCA</td>
<td>Various</td>
<td>G53c, C110a, C118</td>
<td>Various (# not provided)</td>
<td>120-86</td>
</tr>
<tr>
<td>Honeywell CDTI AIR-B</td>
<td>Not provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDTI and Airport Moving Map Industry Survey 14
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell CDTI SURF</td>
<td></td>
<td></td>
<td>C119c, C119c, 120-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell 2D Airport Moving Map</td>
<td></td>
<td></td>
<td>C119c, 120-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell 2D Airport Moving Map</td>
<td></td>
<td></td>
<td>C119c, 120-86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Approvals/Compliance (continued)
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeppesen**</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
<tr>
<td>Jeppesen Airport Moving Map software and database for EFB systems</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
<tr>
<td>Jeppesen FliteDeck Pro 7.X, AMM Module, Mobile FliteDeck, FliteDeck Pro, Mobile FliteDeck VFR, JeppView FliteDeck, JeppView MFD</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
<tr>
<td>L-3 Communications Lynx NGT-9000</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
<tr>
<td>Lufthansa Systems**</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
<tr>
<td>Lido Airport Moving Map</td>
<td>FAA</td>
<td>EASA</td>
<td>Other</td>
<td>TC</td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rotating</td>
<td>STC</td>
</tr>
</tbody>
</table>

Table 2. Approvals/Compliance (continued)
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Authority</th>
<th>Certificate</th>
<th>Technical Standard Orders (TSOs)</th>
<th>Advisory Circulars (ACs)</th>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockwell Collins</td>
<td>FAAR</td>
<td>TC</td>
<td>TCSTC STC Aircraft EMB Legacy 450, 500</td>
<td>C112 C113 C147 C154 C165 C166 C185 Other 20-159 20-165A 20-172B 25-11B 120-76C Other RTCA DO-160 RTCA DO-178 RTCA DO-200 RTCA DO-254 RTCA DO-257 RTCA DO-260 RTCA DO-272 RTCA DO-282 RTCA DO-317 Other</td>
<td></td>
</tr>
<tr>
<td>Pro Line Fusion®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Avionics System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyVision*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xtreme Vision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications**</td>
<td>CAA</td>
<td></td>
<td></td>
<td></td>
<td>RTCA DO-267B ARINC 816</td>
</tr>
<tr>
<td>FollowTheGreen®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Avionics LLC*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xavion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Error! Reference source not found. presents all CDTI traffic symbols used by the 15 CDTI manufacturers, and two research organizations with CDTI products. The symbols have been categorized based on their attributes (i.e., airborne vs. ground, proximate vs. non-proximate). Symbols will generally appear in more than one column, as each symbol has more than one attribute (e.g., airborne, directional and proximate). The products listed are installed CDTIs unless otherwise noted. A single asterisk (*) beside a manufacturer indicates that the manufacturer is a portable CDTI.

Table 3. CDTI Traffic Symbols

Note: All information was provided by the manufacturers and has not been verified with the FAA.

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aircraft</td>
<td>Vehicle</td>
</tr>
<tr>
<td>Advanced Flight Systems (AFS)*</td>
<td></td>
<td>Non-Directional</td>
<td>Non-Proximate</td>
</tr>
<tr>
<td>AFS-5400, 5500, 5600, 5800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen Avionics Evolution</td>
<td>10003C Pro PFD,</td>
<td>Non-Directional</td>
<td>Non-Proximate</td>
</tr>
<tr>
<td>Evolution 1500C3 PFD=MFD,</td>
<td>2000C3 PFD=MFD,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution 2500C3 PFD=MFD,</td>
<td>1000 MFD,</td>
<td>Non-Directional</td>
<td>Non-Proximate</td>
</tr>
<tr>
<td>Evolution 1000 PFD=MFD,</td>
<td>Evolution 1000,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution 1500, Evolution</td>
<td>2000, Evolution</td>
<td>Non-Directional</td>
<td>Non-Proximate</td>
</tr>
<tr>
<td>2500</td>
<td>2500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Astronautics</th>
<th>Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMMI), NEXIS™ Flight-Intelligence System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Symbols</td>
<td>Directional</td>
<td>Non-DIRECTIONAL</td>
<td>PROXIMATE</td>
</tr>
<tr>
<td>Ground Symbols</td>
<td>Aircraft</td>
<td>Non-DIRECTIONAL</td>
<td>PROXIMATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIRECTIONAL</td>
</tr>
<tr>
<td></td>
<td>Vehicle</td>
<td>DIRECTIONAL</td>
<td>PROXIMATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIRECTIONAL</td>
</tr>
</tbody>
</table>

Data Source: ADS-B, TS-8.
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownship</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Communication & Surveillance Systems (ACSS)</td>
<td></td>
<td>Directional</td>
<td>Aircraft</td>
</tr>
<tr>
<td>SafeRoute™ (software suite)</td>
<td></td>
<td>Non-Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Data Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coupled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution (Traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisory or Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td>Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Data Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution (Traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Data Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution (Traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Directional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Proximate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Data Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution (Traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Data Source: ADS-B, TIS-B
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownship</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
<th>Aircraft</th>
<th>Vehicle</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Directional</td>
<td>Non-Probable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Probable</td>
<td>Limited Data Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution/Traffic Advisory or Alert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACSS (continued)</td>
<td></td>
<td>Directional</td>
<td></td>
<td></td>
<td></td>
<td>ADS-B, TIS-B</td>
</tr>
<tr>
<td>SafeRoute<sup>TM</sup></td>
<td></td>
<td>Non-Directional</td>
<td>Non-Probable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(software suite)</td>
<td></td>
<td>Non-Probable</td>
<td>Limited Data Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvMap<sup>*</sup></td>
<td></td>
<td>Directional</td>
<td></td>
<td></td>
<td></td>
<td>ADS-B, TIS-B</td>
</tr>
<tr>
<td>EKP V, EKP IV, EKPVIV pro</td>
<td></td>
<td>Non-Directional</td>
<td>Non-Probable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Probable</td>
<td>Limited Data Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Source</td>
<td></td>
<td></td>
<td></td>
<td>Mode-C</td>
</tr>
<tr>
<td>Manufacturer Products</td>
<td>Ownership</td>
<td>Airborne Symbols</td>
<td>Ground Symbols</td>
<td>Aircraft</td>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Boeing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TCAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADS-B</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. CDTI Traffic Symbols (continued)

- **MAP (MAP)**: Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS)
- **PLAN (PLAN)**: 747-8 Integrated Display System (IDS)
- **TCAS**: Traffic Collision Avoidance System
- **ADS-B**: Automatic Dependent Surveillance-Broadcast
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
<th>Aircraft</th>
<th>Vehicle</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td>Non-Directional</td>
<td>Proximate</td>
<td>Non-Proximate</td>
<td>Full Data Quality</td>
</tr>
<tr>
<td>Dyon Avionics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyView</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlightPrep*</td>
<td>Variety of Icons available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChartBook-3, Helm X550, ChartCase Professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ForeFlight*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ForeFlight Mobile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin
Garmin Pilot®, SafeTaxi®, G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series, Aera 5XX series, Aera 7XX series, GP5MAP 49X series, GP5MAP 6XX series, G3X, G3X-Touch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Directional</td>
<td>Non-Directional</td>
<td>Proximate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnote:
ADS-B
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aircraft</td>
</tr>
<tr>
<td></td>
<td>Directional</td>
<td>Non-Directional</td>
<td>Proximate</td>
</tr>
<tr>
<td>Garmin (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Garmin, SafeTaxi®, G500, G600, G700, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series, Aera 5XX series, Aera 7XX series, G95MAP 49X series, GP55MAP 6XX series, G3X, G3X-Touch

TIS, TAS, TASS
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GENESYS Aerosystems</td>
<td>3D Synthetic Vision EFIS</td>
<td>IDU III, IDU-680, IDU-450</td>
<td></td>
</tr>
<tr>
<td>Honeywell</td>
<td>Honeywell 2D Airport Moving Map, Honeywell CDTI SURF, Honeywell 3D Airport Moving Map, Honeywell CDTI AIR-B and VSA</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. CDTI Traffic Symbols (continued)
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell (continued)</td>
<td>Honeywell 2D</td>
<td>Directional</td>
<td>Aircraft</td>
</tr>
<tr>
<td>Airport Moving Map, Honeywell</td>
<td>Non-Directional</td>
<td>Non-Directional</td>
<td>Non-Directional</td>
</tr>
<tr>
<td>CDTI SURF, Honeywell</td>
<td>Proximate</td>
<td>Proximate</td>
<td>Proximate</td>
</tr>
<tr>
<td>3D</td>
<td>Full Data Quality</td>
<td>Full Data Quality</td>
<td>Full Data Quality</td>
</tr>
<tr>
<td>Airport Moving Map, Honeywell</td>
<td>Coupled</td>
<td>Coupled</td>
<td>Coupled</td>
</tr>
<tr>
<td>CDTI AIR-B and VSA</td>
<td>Selected</td>
<td>Selected</td>
<td>Selected</td>
</tr>
<tr>
<td></td>
<td>Off Scale</td>
<td>Off Scale</td>
<td>Off Scale</td>
</tr>
<tr>
<td></td>
<td>Caution (Traffic Advisory/Alert)</td>
<td>Caution (Traffic Advisory/Alert)</td>
<td>Caution (Traffic Advisory/Alert)</td>
</tr>
<tr>
<td></td>
<td>Warning/Resolution Advisory</td>
<td>Warning/Resolution Advisory</td>
<td>Warning/Resolution Advisory</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td>L-3 Communications</td>
<td>Directional</td>
<td>Directional</td>
<td>Directional</td>
</tr>
<tr>
<td>Lynx NGT-9000</td>
<td>Non-Directional</td>
<td>Non-Directional</td>
<td>Non-Directional</td>
</tr>
<tr>
<td></td>
<td>Data Source</td>
<td>Data Source</td>
<td>Data Source</td>
</tr>
<tr>
<td></td>
<td>ADS-B</td>
<td>ADS-B</td>
<td>ADS-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAS</td>
<td>TAS</td>
</tr>
</tbody>
</table>
Table 3. CDTI Traffic Symbols (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Ownership</th>
<th>Airborne Symbols</th>
<th>Ground Symbols</th>
<th>Aircraft</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-3 Communications (continued) Lynx NGT-9000</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>X-Avionics LLC* Xavion</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>Manufacturer Products</td>
<td>Ownership</td>
<td>Airborne Symbols</td>
<td>Ground Symbols</td>
<td>Data Source</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directional</td>
<td>Non-Directional</td>
<td>Proximate</td>
<td>Non-Proximate</td>
</tr>
<tr>
<td>MITRE</td>
<td></td>
<td>▲</td>
<td>▲</td>
<td>◇</td>
<td>A</td>
</tr>
<tr>
<td>CAASD CDTI prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Ames</td>
<td></td>
<td>▲</td>
<td>▲</td>
<td>◇</td>
<td>A</td>
</tr>
<tr>
<td>Airport Moving Map Standard Display & Magic Carpet Display</td>
<td></td>
<td>▲</td>
<td>▲</td>
<td>◇</td>
<td>A</td>
</tr>
<tr>
<td>ADMS-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 shows the airport information elements depicted on the airport moving map each of the 15 manufacturers and two research organizations with airport moving map applications. A filled circle (●) indicates that the manufacturer currently supports a given capability. An open circle (○) indicates that a capability is under development. The products listed are installed CDTIs unless otherwise noted. A single asterisk (*) beside a manufacturer indicates that the manufacturer is a portable CDTI. Two asterisks (**) indicate that the manufacturer currently only provides an airport moving map application without traffic depiction.

Table 4. Airport Moving Map Information Elements

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Data Format</th>
<th>Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geo-referenced Database Driven</td>
<td>Ownership Runways Runway Centerlines Runway Labels Taxiways Taxiway Centerlines Taxiway Labels Hold Lines Non-Movement Areas Ramp Areas Grassy Areas Buildings Building Labels Route Guidance Surface Traffic Surface Indications & Alerts Other</td>
</tr>
<tr>
<td>Advanced Flight Systems, Inc. (AFS)* AFS-S400, 5500, 5600, 5800</td>
<td>• •</td>
<td>• • • • • • • •</td>
</tr>
<tr>
<td>Aspen Avionics Evolution: 1000C3 Pro PFD, 1500C3 PFD+MFD, 2000C3 PFD+MFD, 2500C3 PFD+MFD, 1000 MFD, 500 MFD, VFR PFD, 1000 Pro PFD, 1500 PFD+MFD, 2000 PFD+MFD, 2500 PFD+MFD, 1000H MFD, 500H MFD, 1000H Pro PFD, 1500H PFD+MFD, 2000H PFD+MFD, 2500H PFD+MFD</td>
<td>• •</td>
<td>• • • • • • • •</td>
</tr>
</tbody>
</table>

Note: All information was provided by the manufacturers and has not been verified with the FAA.
Table 4. Airport Moving Map Information Elements (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Data Format</th>
<th>Data Elements</th>
<th>Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer Products</td>
<td>Geo-referenced</td>
<td>Database Driven</td>
<td>Ownership</td>
</tr>
<tr>
<td>Astronautics Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation Communication & Surveillance Systems (ACSS) SafeRouteTM (software suite)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvMap* EKP V, EKP IV, EKPIV pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS) 747-8 Integrated Display System (IDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Astronautics Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System
- AvMap* EKP V, EKP IV, EKPIV pro
- Boeing 787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS) 747-8 Integrated Display System (IDS)

* AvMap product available in multiple configurations:
- White, black or magenta
- PAPI lights

- Deicing areas, parking stands, construction, helipads, service roads

CDTI and Airport Moving Map Industry Survey 31
Table 4. Airport Moving Map Information Elements (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Data Format</th>
<th>Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlightPrep<sup>+</sup> ChartBook-3,Helm X650, ChartCase Professional, iChart 2.5</td>
<td>Geo-referenced, Database Driven</td>
<td>Variety of icons available</td>
</tr>
<tr>
<td>ForeFlight<sup>+</sup> ForeFlight Mobile</td>
<td>Geo-referenced</td>
<td>Variety of icons available</td>
</tr>
<tr>
<td>Garmin<sup>+</sup> Garmin Pilot®, SafeTaxi®, G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series, Aera 5XX series, Aera 7XX series, GPSMAP 49X series, GPSMAP 6XX series, G3X, G3X-Touch</td>
<td>Geo-referenced</td>
<td>Variety of icons available</td>
</tr>
</tbody>
</table>

⁺Garmin offers installed, portable, and software products.
<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Data Format</th>
<th>Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell 2D Airport Moving Map, Honeywell CDTI SURF, Honeywell 3D Airport Moving Map, Honeywell CDTI AIR-B and VSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Runways</td>
</tr>
<tr>
<td>Honeywell</td>
<td>Database Driven</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynon Avionics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyView</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynon Avionics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyView</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Runways</td>
</tr>
<tr>
<td>SkyView</td>
<td>Database Driven</td>
<td>Yes</td>
</tr>
<tr>
<td>Jeppesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeppesen Airport Moving Map software and database for EFB systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Runways</td>
</tr>
<tr>
<td>Jeppesen</td>
<td>Database Driven</td>
<td>Yes</td>
</tr>
<tr>
<td>FliteDeck Pro 7 & AMM Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck, FliteDeck Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Runways</td>
</tr>
<tr>
<td>Manufacturer Products</td>
<td>Data Format</td>
<td>Map Elements</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Runways</td>
</tr>
<tr>
<td>Jeppesen (continued)**</td>
<td>Database Driven</td>
<td>Ownership</td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck VFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JeppView MFD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JeppView FliteDeck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lufthansa Systems**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lido Airport Moving Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockwell Collins Pro Line Fusion® Integrated Avionics System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closed ramp/taxiway, parking stand, construction, vertical structures (e.g., trees), airport beacons, various markings, procedural notes

CAT I/II/III Holding, parking stand

Hot spots, construction, helipads, windsocks, airport reference point, water, de-icing areas
Table 4. Airport Moving Map Information Elements (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Data Format</th>
<th>Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geo-referenced</td>
<td>Ownership</td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications** FollowTheGreen®</td>
<td>Database Driven</td>
<td></td>
</tr>
<tr>
<td>MITRE CAASD CDTI prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Ames Airport Moving Map Standard Display & Magic Carpet Display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- TerraVision Flight Deck Applications: FollowTheGreen®
- MITRE CAASD CDTI prototype
- NASA Ames Airport Moving Map Standard Display & Magic Carpet Display

Additional Details:
- Closed runway/taxiway, service reads, parking stand, runway exit line, runway shoulder
- Departure spots
Table 5 lists CDTI and airport moving map capabilities for all manufacturers and research organizations. The products listed are CDTIs unless otherwise noted. The products listed are installed CDTIs unless otherwise noted. A single asterisk (*) beside a manufacturer indicates that the manufacturer is a portable CDTI. Two asterisks (**) indicate that the manufacturer currently only provides an airport moving map application without traffic depiction.

Table 5. CDTI and Airport Moving Map Capabilities

Note: All information was provided by the manufacturers and has not been verified with the FAA.

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Operating System</th>
<th>Decluttering</th>
<th>Panning</th>
<th>Autozoom</th>
<th>Manual Zoom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Flight Systems, Inc. (AFS)*
AFS-5400, 5500, 5600, 5800</td>
<td>Linux</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Aspen Avionics
Evolution: 1000C3 Pro PFD, 1500C3 PFD+MFD, 2000C3 PFD+MFD, 2500C3 PFD+MFD, 1000 MFD, 500 MFD, VFR PFD, 1000 Pro PFD, 1500 PFD+MFD, 2000 PFD+MFD, 2500 PFD+MFD, 1000H MFD, 500H MFD, 1000H Pro PFD, 1500H PFD+MFD, 2000H PFD+MFD, 2500H PFD+MFD</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Astronautics
Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System</td>
<td>Microsoft, Linux (custom)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Aviation Communication & Surveillance Systems (ACSS)
SafeRoute™ (software suite)</td>
<td>Linux, iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>AvMap*
EKP V</td>
<td>Windows</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>EKP IV, EKPIV pro</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Boeing
787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS), 747-8 Integrated Display System (IDS)</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Dynon Avionics
SkyView</td>
<td>Linux</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>FlightPrep*
ChartBook-3, Helm X650, ChartCase Professional</td>
<td>Windows</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>ForeFlight*
ForeFlight Mobile</td>
<td>iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Garmin5
Garmin Pilot®, SafeTaxi®,
G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series, Aera 5XX series, Aera 7XX series, GPSMAP 49X series, GPSMAP 6XX series, G3X, G3X-Touch
G5000, 6XX series, Aera 5XX series, Aera 6XX series, G3X, G3X-Touch</td>
<td>iOS, Android</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>GENESIS Aerosystems
3D Synthetic Vision EFIS, IDU III, IDU-680, IDU-450</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

5 Garmin offers installed, portable and software products.
Table 5. CDTI and Airport Moving Map Capabilities (continued)

<table>
<thead>
<tr>
<th>Manufacturer Products</th>
<th>Operating System</th>
<th>Decluttering</th>
<th>Panning</th>
<th>Autozoom</th>
<th>Manual Zoom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Honeywell 2D Airport Moving Map, Honeywell CDTI SURF, Honeywell 3D Airport Moving Map, Honeywell CDTI AIR-B and VSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeppesen**</td>
<td>Windows</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Jeppesen Airport Moving Map software and database for EFB systems, Jeppesen FliteDeck Pro 7.X & AMM Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck, Jeppesen FliteDeck Pro, JeppView FliteDeck, JeppView MFD</td>
<td>Windows, iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck VFR</td>
<td>Windows, iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>L-3 Communications</td>
<td>Lynx NGT-9000</td>
<td>Windows, Linux</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lido Airport Moving Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>Custom</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Pro Line Fusion® Integrated Avionics System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyVision*</td>
<td>Windows, iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Xtreme Vision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications**</td>
<td>Windows, Linux</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>FollowTheGreen³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Avionics LLC*</td>
<td>iOS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Xavion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Research Organizations

MITRE	Linux	•	•
CAASD CDTI prototype			
NASA Ames	Linux	•	•
Airport Moving Map Standard Display & Magic Carpet Display			
This page is left blank intentionally.
4. CDTI Manufacturers

The statements made in these tables are based solely on the information that was provided by each manufacturer and has not been verified with the FAA. Per AC 120-76C, a CDTI is not an EFB function, and can NOT be authorized for use by Part 121, 125, 135, 91F and 91K operators.

4.1 Installed CDTI Manufacturers

This section includes surveys for manufacturers with installed CDTI products. These products may also provide airport moving map functionality, or in a few cases, may provide a separate airport moving map application that does not depict traffic information. Note that Garmin is included in this section, but also offers portable CDTIs and software products.

<table>
<thead>
<tr>
<th>Aspen Avionics</th>
<th>Location: Albuquerque, NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td></td>
</tr>
<tr>
<td>Evolution 1000C3 Pro PFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1500C3 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2000C3 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2500C3 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1000 MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 500 MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution VFR PFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1000 Pro PFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1500 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2000 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2500 PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1000H MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 500H MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1000H Pro PFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 1500H PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2000H PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Evolution 2500H PFD+MFD</td>
<td></td>
</tr>
<tr>
<td>Website(s)</td>
<td></td>
</tr>
<tr>
<td>• www.aspenavionics.com</td>
<td></td>
</tr>
<tr>
<td>Product Overview(s)</td>
<td></td>
</tr>
<tr>
<td>The Aspen Systems consist of a Primary Flight Display that is used as a CDTI, and Multi-function displays that can be used for both CDTI and airport moving maps. Display of ground traffic on the airport moving map is not presently supported.</td>
<td></td>
</tr>
</tbody>
</table>
Aspen Avionics
Location: Albuquerque, NM

![Images courtesy of Aspen Avionics](image)

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>Fort Worth Aircraft Certification Office</td>
</tr>
<tr>
<td>EASA</td>
<td>TCP</td>
</tr>
<tr>
<td>Other</td>
<td>Other TC/STC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>TC/STC Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Aircraft Robinson R22, R44, R66</td>
</tr>
<tr>
<td>STC</td>
<td>Aircraft: Approved Model List of Classes I, II and III Part 23 airplanes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSO</th>
<th>TSO Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO-C112e</td>
<td>ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>TSO-C113</td>
<td>Airborne Multipurpose Electronic Displays (TSO-C113)</td>
</tr>
<tr>
<td>TSO-C147a</td>
<td>TAS Airborne Equipment</td>
</tr>
<tr>
<td>TSO-C154c</td>
<td>UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>TSO-C165</td>
<td>Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>TSO-C166b</td>
<td>Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>TSO-C195a</td>
<td>Avionics Supporting ADS-B ASA (Incomplete)</td>
</tr>
<tr>
<td>Other: TSO-C157a (Incomplete)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA Regulatory and Guidance Material</th>
<th>FAA Regulatory and Guidance Material Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 20-159</td>
<td>Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>AC 20-165A</td>
<td>Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>AC 20-172B</td>
<td>Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>AC 25-11B</td>
<td>Electronic Flight Deck Displays</td>
</tr>
<tr>
<td>AC 120-76C</td>
<td>Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td>Other</td>
<td>Other FAA Regulatory and Guidance Material Details</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry Documents</th>
<th>Industry Documents Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCA DO-160E</td>
<td>Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>RTCA DO-178B</td>
<td>Software Considerations in Airborne Systems and Equipment Certification (Software Level: C)</td>
</tr>
<tr>
<td>RTCA DO-181E</td>
<td>MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>RTCA DO-200A</td>
<td>Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>RTCA DO-254</td>
<td>Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td>RTCA DO-257A</td>
<td>MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>RTCA DO-260B</td>
<td>MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>RTCA DO-272D</td>
<td>User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>RTCA DO-282B</td>
<td>MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>RTCA DO-317A</td>
<td>MOPS for ASA System</td>
</tr>
<tr>
<td>RTCA DO-321</td>
<td>Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>RTCA DO-322</td>
<td>Safety, Performance and Interoperability Requirements Document for</td>
</tr>
</tbody>
</table>

Volpe

CDTI and Airport Moving Map Industry Survey
Installed CDTI Manufacturers
<table>
<thead>
<tr>
<th>Aspen Avionics</th>
<th>Location: Albuquerque, NM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATSA-SURF Application</td>
</tr>
<tr>
<td></td>
<td>RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
<td>PFD, MFD</td>
</tr>
<tr>
<td>Display Size</td>
<td>6.0” for single panel (x2 and x3 for dual and triple displays)</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>400 x 760</td>
</tr>
<tr>
<td>Brightness</td>
<td>Transreflective LCD display readable in direct sunlight. Autobrightness and manual adjustment.</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>Buttons</td>
<td>Yes: Range, phase of flight, and pilot selectable</td>
</tr>
<tr>
<td></td>
<td>Yes: Rotary knob and cursor based</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Operating System</td>
<td>Aspen Proprietary</td>
</tr>
<tr>
<td>Decluttering</td>
<td>Yes: Range, phase of flight, and pilot selectable</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Panning</td>
<td>Yes: Rotary knob and cursor based</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Autozoom</td>
<td>Yes: Based on current flight leg</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>Yes: Dedicated zoom buttons</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Indications and Alerts</td>
<td>Traffic Alerts (when available) are presented as an amber symbol. A coverage indication is presented when available. Traffic is only inhibited by the sensor.</td>
</tr>
</tbody>
</table>
Aspen Avionics

Location: Albuquerque, NM

<table>
<thead>
<tr>
<th>Taxi Route Guidance</th>
<th>The taxi diagram is a geo-referenced NACO airport diagram. The ownship is superimposed on the display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image courtesy of Aspen Avionics</td>
<td></td>
</tr>
</tbody>
</table>

| Noteworthy Features and Applications | Angle of attack and synthetic vision are available on the PFD and MFDs. |

<table>
<thead>
<tr>
<th>Airport Moving Map Information Elements Depicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport Moving Map Data Format</td>
</tr>
<tr>
<td>✗ Geo-referenced: Raster</td>
</tr>
<tr>
<td>✗ Database driven</td>
</tr>
<tr>
<td>Ownship</td>
</tr>
<tr>
<td>Runways</td>
</tr>
<tr>
<td>Runway Centerlines</td>
</tr>
<tr>
<td>Runway Labels</td>
</tr>
<tr>
<td>Taxiways</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
</tr>
<tr>
<td>Taxiway Labels</td>
</tr>
<tr>
<td>Hold Lines</td>
</tr>
<tr>
<td>Non-movement Areas</td>
</tr>
<tr>
<td>Ramp Areas</td>
</tr>
<tr>
<td>Grassy Areas</td>
</tr>
<tr>
<td>Buildings</td>
</tr>
<tr>
<td>Building Labels</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Aspen Avionics

Location: Albuquerque, NM

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ ADS-B: (Combined Max of 31 targets)</td>
<td></td>
</tr>
<tr>
<td>✗ TIS: (Combined Max of 31 targets)</td>
<td></td>
</tr>
<tr>
<td>✗ TIS-B: (Combined Max of 31 targets)</td>
<td></td>
</tr>
<tr>
<td>✗ TAS: (Combined Max of 31 targets)</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Display Range

- Minimum: 2 NM
- Maximum: 40 NM
- Default: 5 NM

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Advisory, Directional</td>
<td>Traffic Advisory. If directionality is provided, the TA will be directional. For Blended ADS-B traffic, the ID can be displayed on the MFD. The TA parameters are generated by the traffic sensor, and controlled by the system the CDTI is interfaced to.</td>
<td>TAS or TCAS 1, or blended with ADS-B</td>
<td></td>
</tr>
<tr>
<td>Traffic Advisory, Non-Directional</td>
<td>The TA parameters are generated by the traffic sensor, and controlled by the system the CDTI is interfaced to.</td>
<td>TAS or TCAS 1, or blended with ADS-B</td>
<td></td>
</tr>
<tr>
<td>Proximity Alert, Directional</td>
<td>Proximity Alert. If directionality is provided from the traffic sensor, the directionality will be shown. For ADS-B or Blended ADS-B traffic, the ID can be displayed on the MFD. < 1200 ft and 6 NM of ownship</td>
<td>TAS or TCAS 1, or blended with ADS-B or ADS-B alone</td>
<td></td>
</tr>
<tr>
<td>Proximity Alert, Non-Directional</td>
<td>< 1200 ft and 6 NM of ownship</td>
<td>TAS or TCAS 1, or blended with ADS-B</td>
<td></td>
</tr>
<tr>
<td>Other traffic, Directional</td>
<td>Other traffic. If directionality is provided from the traffic sensor, the directionality will be shown. For ADS-B or Blended ADS-B traffic, the ID can be displayed on the MFD. > 1200 ft and 6 NM of ownship</td>
<td>TAS or TCAS 1, or blended with ADS-B or ADS-B alone</td>
<td></td>
</tr>
<tr>
<td>Other traffic, Non-Directional</td>
<td>> 1200 ft and 6 NM of ownship</td>
<td>TAS or TCAS 1, or blended with ADS-B</td>
<td></td>
</tr>
</tbody>
</table>
Aspen Avionics

Location: Albuquerque, NM

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
<td>✓</td>
</tr>
<tr>
<td>Altitude</td>
<td>✓</td>
</tr>
<tr>
<td>Actual</td>
<td>☐</td>
</tr>
<tr>
<td>Relative</td>
<td>✓</td>
</tr>
<tr>
<td>Geometric</td>
<td>☐</td>
</tr>
<tr>
<td>Ground speed</td>
<td>☐</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
<td>✓</td>
</tr>
<tr>
<td>Above/Below 500' (climb/descent arrows)</td>
<td>✓</td>
</tr>
<tr>
<td>Other:</td>
<td>☐</td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
<td>✓</td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
<td>✓</td>
</tr>
<tr>
<td>Traffic category</td>
<td>✓</td>
</tr>
<tr>
<td>Monitored by TCAS (or TAS overlay/blending)</td>
<td>✓</td>
</tr>
<tr>
<td>Other:</td>
<td>☐</td>
</tr>
</tbody>
</table>

A data block is provided for each traffic symbol with the relative altitude and vertical direction (as acquired from the sensor). Relative altitude is shown as two digits indicating the relative altitude difference, in hundreds of feet, from ownship, using a plus symbol (+) and minus symbol (-) to denote traffic above and below ownship, respectively. Arrows are used to depict vertical movement in relation to ownship. An up-arrow indicates climbing traffic, and a down-arrow indicated descending traffic. Traffic traveling at the same altitude as ownship shows an altitude of "00".

TAS overlay/blending (if supported) is accomplished by the Traffic Sensor (such as the L3 NGT-9000+). The Aspen display accepts the blended results from the Traffic Sensor, but does not participate in the blending.
Astronautics

Location: Milwaukee, WI

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Universal Cockpit Display of Traffic Information (UCDTI) including Airport Moving Map (AMM), NEXIS™ Flight-Intelligence System</th>
</tr>
</thead>
</table>
| Website(s) | • www.astronautics.com

Product Overview(s)

Astronautics’ CDTI application, co-developed with ACSS, uses ARINC-816 Airport Mapping Databases for the depiction of the AMM. CDTI operating independently presents own-ship position on the map and runway awareness. CDTI displays airport maps with own ship position, and can also display other aircraft and vehicles equipped with ADS-B In capabilities. The AMM is designed to deliver situational awareness information to the pilot by tracking aircraft and other vehicles operating in the terminal, taxi, and runway areas in relationship to own-ship position. With a Linux certified OS, CDTI can display the position of other aircraft and vehicles based on ADS-B inputs while in flight.

Approvals/Compliance

| Authority | FAA
| TC/STC | Certification Office: Atlanta ACO
| EASA |
| Other |
| TC |
| STC | Aircraft: Airbus A319, A320, A321
| Other |
| TSO | TSO-C112e, ATCRBS/Mode S Airborne Equipment
| TSO-C113a, Airborne Multipurpose Electronic Displays
| TSO-C147a, TAS Airborne Equipment
| TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
| TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)
| TSO-C166b, Extended Squitter ADS-B and Traffic Information
| TSO-C195b, Avionics Supporting ADS-B ASA
<p>| Other |</p>
<table>
<thead>
<tr>
<th>Astronautics</th>
<th>Location: Milwaukee, WI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>Other: FAA Order 8900.1</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-160F, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C/D/E)</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-200B, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: C/D)</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>Other: DO-275A</td>
</tr>
<tr>
<td>Other</td>
<td>Hardware Platform(s)</td>
</tr>
<tr>
<td>Hardware</td>
<td>Display Size</td>
</tr>
<tr>
<td>Hardware</td>
<td>Display Resolution</td>
</tr>
<tr>
<td>Hardware</td>
<td>Brightness</td>
</tr>
<tr>
<td>Hardware</td>
<td>Controls</td>
</tr>
<tr>
<td>Hardware</td>
<td>Buttons</td>
</tr>
<tr>
<td>Hardware</td>
<td>Keyboard (e.g., USB, Bluetooth)</td>
</tr>
<tr>
<td>Hardware</td>
<td>Mouse/cursor</td>
</tr>
<tr>
<td>Hardware</td>
<td>Stylus</td>
</tr>
<tr>
<td>Hardware</td>
<td>Touch Screen</td>
</tr>
<tr>
<td>Hardware</td>
<td>Other</td>
</tr>
<tr>
<td>Astronautics</td>
<td>Location: Milwaukee, WI</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Capabilities</td>
<td></td>
</tr>
<tr>
<td>Operating System</td>
<td>Microsoft Windows (Version 7), Linux (Custom Astronautics Kernel)</td>
</tr>
</tbody>
</table>
| **Decluttering** | Yes, No
Touch screen or bezel button to remove excess information. Users can select Ground Traffic, Airborne Traffic or All Traffic to be removed separately from the display. Flight IDs and position vectors can also be independently selected for display. Additionally, traffic can be filtered by altitude. |
<p>| Panning | Yes: Click and drag or bezel / soft-key based panning on the Airport Plan page, No |
| Autozoom | Yes, No |
| Manual zooming | Yes: Touch screen buttons or physical bezel buttons, No |
| Indications and Alerts | Visual alerts are presented in dialog box at bottom center of display. Alerts include prioritized advisories and cautions (only supported when the CDTI is used to select or couple airborne traffic), ASA state (target lost / degraded, application availability, faults, and designated traffic status), System state (communication failures, missing data, out of date / missing databases). |
| Taxi Route Guidance | Taxi route information is not included. |
| Noteworthy Features and Applications | |
| Airport Moving Map Information Elements Depicted | |
| Airport Moving Map Data Format | Geo-referenced, Database driven |</p>
<table>
<thead>
<tr>
<th>Astronautics</th>
<th>Location: Milwaukee, WI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Image courtesy of Astronautics</td>
</tr>
</tbody>
</table>

Ownship	Magenta triangle
Runways	Light grey with white border
Runway Centerlines	White dash
Runway Labels	Blue text in black text box
Taxiways	Medium grey
Taxiway Centerlines	--
Taxiway Labels	Blue text
Hold Lines	Yellow lines
Non-movement Areas	Black
Ramp Areas	Dark grey
Grassy Areas	Black
Buildings	Solid brown with a solid brown outline. (As with the range scales, colors can be customized per configuration / customer basis, provided they do not violate any MOPS requirements.)
Building Labels	--
Other	
Astronautics Location: Milwaukee, WI

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>Traffic Display Range</th>
<th>Traffic Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ADS-B: 127</td>
<td>Minimum: 750 ft.</td>
<td>Symbol Type</td>
</tr>
<tr>
<td>- TIS:</td>
<td>Maximum: 300 NM</td>
<td>Description</td>
</tr>
<tr>
<td>- TIS-B: 127</td>
<td>Default: Configurable (typically 1500ft half scale / 3000ft full scale)</td>
<td>Data Source</td>
</tr>
<tr>
<td>- TAS:</td>
<td></td>
<td>Image</td>
</tr>
</tbody>
</table>

Traffic Display Range

- **Minimum:** 750 ft.
- **Maximum:** 300 NM
- **Default:** Configurable (typically 1500ft half scale / 3000ft full scale)

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne, Non-Directional</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B, TCAS</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Non-Directional</td>
<td>Proximate</td>
<td>ADS-B, TIS-B, TCAS</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Non-Directional</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Directional, High Accuracy</td>
<td>Proximate</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Directional, High Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Directional, High Accuracy</td>
<td>Proximate</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Directional, High Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, High Accuracy Coupled</td>
<td>Proximate</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Non-Directional, Low Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Non-Directional, Low Accuracy</td>
<td>Proximate</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Airborne, Non-Directional, Low Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B, TIS-B</td>
<td>![Image]</td>
</tr>
<tr>
<td>Astronautics</td>
<td>Location: Milwaukee, WI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne, Non-Directional, Low Accuracy Highlighted</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional</td>
<td>Non-Threat</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Directional, High Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Directional, High Accuracy</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Directional, High Accuracy Highlighted</td>
<td>Non-Threat</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Directional, High Accuracy Highlighted</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional, Low Accuracy</td>
<td>Non-Threat</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional, Low Accuracy</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional, Low Accuracy Highlighted</td>
<td>Non-Threat</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground, Non-Directional, Low Accuracy Highlighted</td>
<td>Proximate</td>
<td>ADS-B TIS-B</td>
<td></td>
</tr>
<tr>
<td>Airport Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing Indicator</td>
<td>Where own-ship should be to achieve desired spacing; Perpendicular to track line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge Waypoint on HSI</td>
<td></td>
<td>KPHX KSDF</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>Aircraft ID, Direction, and Speed (ITP traffic symbol on vertical view)</td>
<td>MODES05 10NM 30KT</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>Blocking Reference (ITP traffic symbol on vertical view)</td>
<td>MODES05 BLOCK 10NM 20KT</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
<td>✗</td>
</tr>
<tr>
<td>Altitude</td>
<td>✗</td>
</tr>
<tr>
<td>Actual</td>
<td>✗</td>
</tr>
<tr>
<td>Relative</td>
<td>✗</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
</tr>
<tr>
<td>Astronautics</td>
<td>Location: Milwaukee, WI</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>□ Ground speed</td>
<td></td>
</tr>
<tr>
<td>□ Vertical direction/speed</td>
<td></td>
</tr>
<tr>
<td>☑ Above/Below 500’ (climb/descent arrows)</td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td></td>
</tr>
<tr>
<td>□ Horizontal velocity vector</td>
<td></td>
</tr>
<tr>
<td>□ Invalid/Unavailable data</td>
<td></td>
</tr>
<tr>
<td>□ Traffic category</td>
<td></td>
</tr>
<tr>
<td>□ Monitored by TCAS</td>
<td></td>
</tr>
<tr>
<td>☑ Other: On the ITP HSI, ITP blocking traffic will be indicated:</td>
<td></td>
</tr>
<tr>
<td>+20</td>
<td></td>
</tr>
<tr>
<td>![BLOCK ACA929]</td>
<td></td>
</tr>
</tbody>
</table>
Aviation Communication & Surveillance Systems (ACSS)

| Product(s) | SafeRoute™ (software suite):
| | Universal Cockpit Display of Traffic Information (U-CDTI)
| | U-CDTI option 1: Cockpit Display of Traffic Information (CDTI)
| | U-CDTI option 2: Surface Area Movement Management (SAMM)
| | U-CDTI option 3: CDTI Assisted Visual Separation (CAVS)
| | U-CDTI option 4: Merging and Spacing (M&S)
| | U-CDTI option 5: In-Trail Procedures (ITP)

| Website(s) |
| | www.acss.com

Product Overview(s)

L-3 Communications and Aviation Communication & Surveillance Systems (ACSS) provide the following SafeRoute™ Software applications:

- **Surface Area Movement Management:** SAMM is designed to deliver critical situational awareness information to the pilot by tracking vehicle operating in the terminal, taxi, and runway areas in relationship to own-ship position.
- **CDTI/Moving Map:** Enables the display of airport surface moving maps with own-ship position. When coupled with the SafeRoute-SAMM software, this application will also display the position of other traffic operating up to 1,500 feet in the terminal area.
- **CDTI Assisted Visual Separation:** CAVS allow flight crew to continue visual approach procedures with the use of an electronic display if visual contact with traffic-to-follow is lost.
- **Merging & Spacing:** M&S makes use of onboard aircraft surveillance to ensure more consistent aircraft spacing and efficient intervals while increasing the capacity and safety within the terminal airspace.
- **In-Trail Procedures:** ITP uses ADS-B to improve situational awareness and increase the efficiency and safety of flight level changes during oceanic or non-radar flight operations. These applications (less the Airport Moving Map) require a certified Operating System.

Image courtesy of ACSS®
Installed CDTI Manufacturers

Aviation Communication & Surveillance Systems (ACSS)
Location: Phoenix, AZ

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
</tr>
</thead>
</table>
| ✅ FAA | Certification Office: Los Angeles ACO
| □ EASA |
| □ Other |

<table>
<thead>
<tr>
<th>TC/STC</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ TC</td>
</tr>
</tbody>
</table>
| ✅ STC | Aircraft: B757, B767

<table>
<thead>
<tr>
<th>TSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>✅ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>✅ TSO-C147, TAS Airborne Equipment</td>
</tr>
<tr>
<td>✅ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>✅ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>✅ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>✅ TSO-C195a, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA Regulatory and Guidance Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>✅ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>✅ AC 20-172A, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td>✅ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>✅ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C for Class 3 and D for Class 2)</td>
</tr>
<tr>
<td>✅ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>✅ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>✅ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: C)</td>
</tr>
<tr>
<td>✅ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>✅ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>✅ RTCA DO-272C, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>✅ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>✅ RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Communication & Surveillance Systems (ACSS)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
</tr>
<tr>
<td>Display Size</td>
</tr>
<tr>
<td>Display Resolution</td>
</tr>
<tr>
<td>Brightness</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Buttons</td>
</tr>
<tr>
<td>Keyboard (e.g., USB, Bluetooth)</td>
</tr>
<tr>
<td>Mouse/cursor</td>
</tr>
<tr>
<td>Stylus</td>
</tr>
<tr>
<td>Touch Screen</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Capabilities</td>
</tr>
<tr>
<td>Operating System</td>
</tr>
<tr>
<td>Decluttering</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>• ALL button turns off; TRAFFIC FID, NAV and VECTORS</td>
</tr>
<tr>
<td>• UNSELECT TGT button cancels the selection (highlight) of the currently active aircraft. No traffic will be selected and the traffic information block in the lower right corner of the CDTI will be blank. Coupled traffic is unaffected.</td>
</tr>
<tr>
<td>• NO GND TFC button removes the display of all ground traffic (when below 1500 ft RA).</td>
</tr>
<tr>
<td>• ALL GND TFC button displays all ground traffic (when below 1500 ft RA).</td>
</tr>
<tr>
<td>Panning</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No: SafeRoute does not support panning</td>
</tr>
<tr>
<td>Autozoom</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Manual zooming</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Indications and Alerts</td>
</tr>
<tr>
<td>ACSS demoed incursion alerting as part of an FAA – US airways A330 program for demonstration purposes only. ACSS has not developed a certified incursion and alerting function to date.</td>
</tr>
</tbody>
</table>
The Runway Awareness application is designed to provide the flight crew with take-off or landing runway situational awareness relative to ownship position. The flight crew will be able to enter the runway identifier into the device, resulting in colored highlights of the desired runway.

Image courtesy of ACSS®

Noteworthy Features and Applications

Airport Information Elements Depicted

- Geo-referenced
- Database driven
Installed CDTI Manufacturers

Aviation Communication & Surveillance Systems (ACSS)

Location: Phoenix, AZ

![Image courtesy of ACSS®](image)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td></td>
</tr>
<tr>
<td>Runways</td>
<td>Light grey with white border</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White dash</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Blue text in black text box</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Medium grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Blue text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Yellow lines</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Black</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Black</td>
</tr>
<tr>
<td>Buildings</td>
<td>Brown cross-thatched with brown border</td>
</tr>
<tr>
<td>Building Labels</td>
<td>--</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Symbols

Ground caution and warning symbols are not currently in use, and were part of an incursion alerting demonstration. ACSS has not developed a certified incursion and alerting function to date.

<table>
<thead>
<tr>
<th>Icon Type</th>
<th>Normal (Situational Awareness)</th>
<th>Caution</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other Traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCAS Traffic (TCAS-Only Tracks)</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne non-directional (ADS-B or TIS-B Tracks)</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne Directional High Accuracy</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne Directional High Accuracy Selected</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne Directional High Accuracy Coupled</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne Directional Low Accuracy (ADS-B, TIS-B)</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Airborne Directional Low Accuracy (ADS-B, TIS-B) Selected</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Ground Non-Directional</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Ground Directional High Accuracy</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Ground Directional High Accuracy Selected</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Ground Directional Low Accuracy</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
<tr>
<td>Ground Directional Low Accuracy Selected</td>
<td>⬤</td>
<td>⬤</td>
<td>🟠</td>
</tr>
</tbody>
</table>

Image courtesy of ACSS®
<table>
<thead>
<tr>
<th>Traffic Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source and Targets Displayed</td>
<td>We display a total of 90 targets, with the intent of being able to display a minimum 30 airborne targets and 30 ground targets.</td>
</tr>
<tr>
<td>☒ ADS-B:</td>
<td></td>
</tr>
<tr>
<td>☐ TIS:</td>
<td></td>
</tr>
<tr>
<td>☒ TIS-B:</td>
<td></td>
</tr>
<tr>
<td>☒ TAS:</td>
<td></td>
</tr>
<tr>
<td>Traffic Display Range</td>
<td>Minimum: 1500 ft</td>
</tr>
<tr>
<td></td>
<td>Maximum: 300NM</td>
</tr>
<tr>
<td></td>
<td>Default: 10NM</td>
</tr>
<tr>
<td>Traffic Symbol Data Tag Information</td>
<td></td>
</tr>
<tr>
<td>Data Tag Information</td>
<td></td>
</tr>
<tr>
<td>☒ Flight ID</td>
<td></td>
</tr>
<tr>
<td>☐ Altitude</td>
<td></td>
</tr>
<tr>
<td>☒ Actual</td>
<td></td>
</tr>
<tr>
<td>☒ Relative</td>
<td></td>
</tr>
<tr>
<td>☐ Geometric</td>
<td></td>
</tr>
<tr>
<td>☐ Ground speed</td>
<td></td>
</tr>
<tr>
<td>☒ Vertical direction/speed</td>
<td></td>
</tr>
<tr>
<td>☐ Above/Below 500’ (climb/descent arrows)</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
<tr>
<td>☐ Horizontal velocity vector</td>
<td></td>
</tr>
<tr>
<td>☐ Invalid/Unavailable data</td>
<td></td>
</tr>
<tr>
<td>☐ Traffic category</td>
<td></td>
</tr>
<tr>
<td>☒ Monitored by TCAS</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
<tr>
<td>The Boeing Company</td>
<td>Location: Chicago, IL</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| **Product(s)** | 787 Display and Crew Alerting System (DCA) and Integrated Surveillance System (ISS)
 747-8 Integrated Display System (IDS) |
| **Website(s)** | • http://www.boeing.com |
| **Product Overview(s)** | Boeing 787 offers Airport Map as part of the Display and Crew Alerting System, which displays an airport map as an underlay on the Navigation Display. In Map mode, the airport map is displayed in a track-up orientation and rotates and translates based on ownship movement. In Plan mode, the airport map is displayed in a north-up orientation and can be panned using the cursor control device. The airport map is driven by a standard ARINC 816 database. In both ND modes, the airport map is displayed at ranges of 5nm or less (down to 0.5nm), with increasing information at each of the lower ranges such as taxiway, building, and gate identifiers. The ownship position displayed is adjusted to the pilot eye reference point.
Boeing 747-8 offers Airport Map as part of the Integrated Display System, with the same capabilities described above for the 787. The 747-8 also offers a 0.25nm range.
Boeing 787 also offers ADS-B In applications Airborne CDTI (AIRB), Visual Separation on Approach (VSA), and In-Trail Procedure (ITP). Traffic tools are provided via the Navigation Display and the INFO multi-function display format. The ADS-B IN applications offer additional detailed information on surrounding airborne traffic, such as flight identification number, traffic ground speed, track, and aircraft category. They support traffic acquisition and tracking, extend the range of traffic reception, and enhance terminal area traffic data.
ADS-B In traffic symbols are integrated with TCAS traffic symbols and shown on the navigation display and MiniMap. Additional traffic details are made available in a traffic list and on the ITP graphical display. For the ITP, graphical displays present surrounding traffic at other altitudes and determine which altitudes may be available to occupy using special ITP climb or descent separation minimums. The ITP function is fully integrated with the communications management function, and automatically constructs a data link message that can be sent to air traffic control to request the desired available cruise altitude. ITP provides the crew with information that enables more fuel-efficient and comfortable cruise segments. |
The Boeing Company

Location: Chicago, IL

787 ITP and Traffic List formats

787 CDTI display on ND

747-8 Airport Map on ND

787 Airport Map

Images Courtesy of Boeing

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>Certification Office: Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ FAA</td>
<td></td>
</tr>
<tr>
<td>✔ EASA</td>
<td></td>
</tr>
<tr>
<td>✔ Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>Aircraft: 787, 747-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ TC</td>
<td></td>
</tr>
<tr>
<td>✔ STC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C147, TAS Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
<td></td>
</tr>
<tr>
<td>☒ TSO-C195a, Avionics Supporting ADS-B ASA</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
<tr>
<td>The Boeing Company</td>
<td>Location: Chicago, IL</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
<td></td>
</tr>
<tr>
<td>☒ AC 20-172A, Airworthiness Approval for ADS-B In Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>☐ AC 25-11B, Electronic Flight Deck Displays</td>
<td></td>
</tr>
<tr>
<td>☐ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
</tbody>
</table>

Industry Documents	
☑ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment	
☑ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: (not provided)	
☑ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment	
☑ RTCA DO-200A, Standards for Processing Aeronautical Data	
☑ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: (not provided)	
☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps	
☑ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B	
☐ RTCA DO-272B, User Requirements for Aerodrome Mapping Information	
☐ RTCA DO-282B, MOPS for UAT ADS-B	
☑ RTCA DO-317A, MOPS for ASA System	
☐ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT	
☑ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application	
☐ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA	
☑ Other:	
RTCA DO-312, Safety, Performance and Interoperability requirements Document for the In-Trail procedure in Oceanic airspace (ATSA-ITP) Application	
RTCA DO-319 (AIRB)	
RTCA DO-219, Datalink (CPDLC) MOPS	
ARINC 718A-4, Mode S/Extended interface functions	
ARINC 768 Supplement 1, Integrated Surveillance Systems	
ARINC 816, Embedded Interchange Format for Airport Mapping Database	
☐ Other	

| **Other** | FAA In-Trail Procedure (ITP) Policy Memo, May 10, 2010 |

| **Hardware** | |
| **Hardware Platform(s)** | Navigation Display (MFD format on main flight deck displays), INFO (MFD format on main flight deck displays) |
The Boeing Company

Location: Chicago, IL

Display Size
- 787: 6”x9” or 12.1”x9”
- 747-8: 6.6”x6.6”

Display Resolution
- 787: 1400x1050
- 747-8: 784x784

Brightness
- Enhanced for use in all lighting conditions

Controls
- Buttons
- Keyboard (e.g., USB, Bluetooth)
- Mouse/cursor
- Stylus
- Touch Screen
- Other: Rotary cursor control knob

Capabilities

Operating System
- Custom: Displays: WindRiver VxWorks ARINC 653 Real-Time OS, ISS: Green Hills INTEGRITY®-178B Real-Time OS

Decluttering
- Yes: Airport Map features displays based on ND range, some airport map features removed when WXR selected, and ADS-B In traffic filtered near airport.
- No

Panning
- Yes: Airport Map can be panned in ND Plan mode
- No

Autozoom
- Yes
- No

Manual zooming
- Yes: Based on ND range; Airport Map displayed at ranges from 0.25nm to 5nm
- No

Indications and Alerts
- N/A

Taxi Route Guidance
- N/A

Noteworthy Features and Applications
- N/A

Airport Information Elements Depicted

Airport Moving Map Data Format
- Geo-referenced
- Database driven

Ownship
- Triangle with white border (MAP), Aircraft symbol with white border (PLAN)

Runways
- Light gray

CDTI and Airport Moving Map Industry Survey

Installed CDTI Manufacturers
<table>
<thead>
<tr>
<th>The Boeing Company</th>
<th>Location: Chicago, IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runway Centerlines</td>
<td>Dark gray (based on painted markings)</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>White text with black background and blue border</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Medium gray</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>No</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Cyan text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Amber line</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Dark gray</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Dark gray</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>No</td>
</tr>
<tr>
<td>Buildings</td>
<td>Cyan</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White text</td>
</tr>
<tr>
<td>Other</td>
<td>Deicing Areas, Parking Stands, Construction Areas, Helipads, Water 747-8 also displays Service Roads</td>
</tr>
</tbody>
</table>
The Boeing Company Location: Chicago, IL

Traffic Display

| Data Source and Targets Displayed | ADS-B: 30 (shared) | TIS: | TIS-B: 30 (shared) | TAS: 30 (shared) |

Traffic Display Range
- Minimum: 0.5nm
- Maximum: 1280nm
- Default: N/A

Traffic Symbols
(Thresholds that determine the threat level are based on current industry guidance.)

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne, Non-Directional RA</td>
<td>TCAS Only</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne, Non-Directional TA</td>
<td>TCAS Only</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne, Non-Directional Proximate</td>
<td>TCAS Only</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Other (Non-proximate)</td>
<td>TCAS Only</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional RA</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional ADS-B TA</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional Proximate</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional Other (Non-proximate)</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional Selected (VSA)</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne, Directional ITP Reference</td>
<td>ADS-B</td>
<td>ADS-B</td>
<td></td>
</tr>
</tbody>
</table>
The Boeing Company

Location: Chicago, IL

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
<td>✔</td>
</tr>
<tr>
<td>Altitude</td>
<td>✔</td>
</tr>
<tr>
<td>Actual</td>
<td>✔</td>
</tr>
<tr>
<td>Relative</td>
<td></td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
</tr>
<tr>
<td>Ground speed</td>
<td>✔</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
<td>✔</td>
</tr>
<tr>
<td>Above/Below 500’ (climb/descent arrows)</td>
<td></td>
</tr>
<tr>
<td>Other (please specify):</td>
<td></td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
<td></td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
<td></td>
</tr>
<tr>
<td>Traffic category - displayed on Traffic List page</td>
<td></td>
</tr>
<tr>
<td>Monitored by TCAS</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Dynon Avionics

Location: Woodinville, WA

| Product(s) |
|---------------------|---|
| SV-D1000 – SkyView 10” |
| SV-D1000T – SkyView 10” Touchscreen |
| SV-D700 – SkyView 7” |

| Website(s) |
|---------------------|---|
| www.dynonavionics.com |

Product Overview(s)

SkyView is an integrated glass cockpit system. It is configurable, and at a minimum, includes one of the above 3 display options and one or more of the modules below. A typical installation will include PFD, EMS, Map, and Autopilot functions.

- **SV-ADAHRS-200:** Provides airspeed, altitude, VSI, AoA, attitude, magnetic heading, etc.
- **SV-EMS-220:** Engine monitor with all primary engine instruments, fuel level, fuel computer, and electrical system monitoring.
- **SV-GPS-250:** 5 Hz WAAS GPS
- **SV-XPNDR-261:** TSO’d Mode-S Transponder with Extended Squitter (ADS-B OUT).
- **SV-COM-C25:** VHF band COM radio
- **SV-INTERCOM-2S:** Two place intercom
- **SV-BAT-320:** Lithium Ion back-up battery
- **Autopilot**

[Images courtesy of Dynon]

Approvals/Compliance

| Authority |
|-----------|---|
| [] FAA |
| [] EASA |
| [x] Other |

Our transponder is the only module with FAA and EASA approval. The rest of the system is unapproved and thus the system as a whole is for Experimental and Light Sport aircraft.

<p>| TC/STC |

|--------|---|
| [] TC |

| [] STC |</p>
<table>
<thead>
<tr>
<th>Dynon Avionics</th>
<th>Location: Woodinville, WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C112c, ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C147a, TAS Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
<td></td>
</tr>
<tr>
<td>✅ TSO-C195b, Avionics Supporting ADS-B ASA</td>
<td></td>
</tr>
<tr>
<td>☑ Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA Regulatory and Guidance Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>☑ AC 25-11B, Electronic Flight Deck Displays</td>
<td></td>
</tr>
<tr>
<td>☑ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
<td></td>
</tr>
<tr>
<td>☑ Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry Documents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-178, Software Considerations in Airborne Systems and Equipment Certification</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-200B, Standards for Processing Aeronautical Data</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-282B, MOPS for UAT ADS-B</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-317A, MOPS for ASA System</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
<td></td>
</tr>
<tr>
<td>☑ Other</td>
<td></td>
</tr>
</tbody>
</table>

| Other | |

<table>
<thead>
<tr>
<th>Hardware</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Platform(s)</td>
<td>MFD</td>
</tr>
<tr>
<td>Display Size</td>
<td>10” and 7” models.</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>1024 x 600 (10”)</td>
</tr>
<tr>
<td></td>
<td>800 x 480 (7”)</td>
</tr>
<tr>
<td>Brightness</td>
<td>Screens are matte finish and high brightness for sunlight-readability. A brightness sensor automatically dims the screens for night flying. Manual dim control is also available.</td>
</tr>
<tr>
<td>Controls</td>
<td>Location: Woodinville, WA</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Buttons</td>
<td></td>
</tr>
<tr>
<td>□ Keyboard (e.g., USB, Bluetooth)</td>
<td></td>
</tr>
<tr>
<td>□ Mouse/cursor</td>
<td></td>
</tr>
<tr>
<td>□ Stylus</td>
<td></td>
</tr>
<tr>
<td>□ Touch Screen</td>
<td></td>
</tr>
<tr>
<td>□ Other: 2 Joysticks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capabilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Linux</td>
</tr>
<tr>
<td>Decluttering</td>
<td>Yes</td>
</tr>
<tr>
<td>Map: Various map informational items (such as Distance to Waypoint, Vertical Speed Required) can be decluttered by the pilot. Traffic targets can be displayed either: always, never, or only when alerting. PFD: Traffic targets can be displayed either: always, never, or only when alerting. The HSI can be toggled to display a G-meter. EMS: Engine instruments can be turned on or off by the installer, but are not able to be decluttered by pilot.</td>
<td>No</td>
</tr>
<tr>
<td>Panning</td>
<td>Yes</td>
</tr>
<tr>
<td>Autozoom</td>
<td>No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>Yes</td>
</tr>
<tr>
<td>Indications and Alerts</td>
<td>None.</td>
</tr>
<tr>
<td>Taxi Route Guidance</td>
<td>None.</td>
</tr>
<tr>
<td>Noteworthy Features and Applications</td>
<td>Terrain, weather, TFRs, METAR/TAF/Winds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airport Moving Map Information Elements Depicted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport Moving Map Data Format</td>
<td>Geo-referenced - SkyView supports both raster and vector data</td>
</tr>
<tr>
<td>□ Database driven</td>
<td></td>
</tr>
<tr>
<td>When a chart is not geo-referenced, the following icon is shown at the bottom right of the chart page:</td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td>Magenta airplane on the ground. Grey airplane when airborne.</td>
</tr>
<tr>
<td>Runways</td>
<td>Black</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>--</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>--</td>
</tr>
<tr>
<td>Buildings</td>
<td>Black</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Other</td>
<td>Magenta line depicts ground track</td>
</tr>
<tr>
<td>Dynon Avionics</td>
<td>Location: Woodinville, WA</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ ADS-B: All traffic within 15 NM and +/- 5000 ft</td>
<td>Traffic receiver status is displayed in the lower right of the display, for example:</td>
</tr>
<tr>
<td>✔️ TIS: 8 highest priority targets</td>
<td>![Traffic Symbol]</td>
</tr>
<tr>
<td>✔️ TIS-B: All traffic within 15 NM and +/- 5000 ft</td>
<td></td>
</tr>
<tr>
<td>☑️ TAS:</td>
<td></td>
</tr>
</tbody>
</table>

Only one device can provide traffic information to SkyView at a time. If there is more than one device, traffic sources are prioritized based on the completeness of the traffic portrait they provide:

1. SV-ADSB-470 with a full traffic portrait (ADS-B OK): Full traffic means that you have an ADS-B ground station reporting, and that ground station is receiving radar traffic.
2. TIS transponder from SV-XPNDR-26X / Garmin GTX 330 (when in an active TIS coverage area).
3. Flarm device.
4. Zaon device.
5. SV-ADSB-470 with an incomplete traffic portrait (ADS-B NO RADAR): SkyView will announce “Partial” traffic when it has ADS-B reception capability, but that ADS-B reception does not include either ADS-B ground station coverage or radar targets included within those ground-based ADS-B traffic reports. Therefore, the ADS-B ground station is not able to convey a full traffic picture and cannot make you aware of all possible detectable traffic.

Traffic Display Range

<table>
<thead>
<tr>
<th>Traffic Display Range</th>
<th>Minimum: All zoom levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum: All zoom levels</td>
</tr>
<tr>
<td></td>
<td>Default: All zoom levels</td>
</tr>
</tbody>
</table>

Traffic Symbols

Traffic displayed on the PFD page can be configured to include just Traffic Advisories (TA), all targets, or no targets. See the SkyView System Installation Guide for information on how to configure how traffic is displayed.

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity advisory</td>
<td>Within 5 NM & 1200 ft. vertical</td>
<td>ADS-B</td>
<td>![Proximity Symbol]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS</td>
<td></td>
</tr>
<tr>
<td>Non-threat</td>
<td>Outside 5 NM & 1200 ft. vertical</td>
<td>ADS-B</td>
<td>![Non-threat Symbol]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS</td>
<td></td>
</tr>
<tr>
<td>Dynon Avionics</td>
<td>Location: Woodinville, WA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Traffic advisory | Within .25 miles & 30 seconds (20 seconds if target is not reporting altitude). Targets display a number within the circle to indicate how far away the target is (in miles, nautical miles, or kilometers, depending on your system setup) from ownship. | ADS-B
TIS-B
TIS |
| Traffic advisory off screen | Within .25 miles & 30 seconds (20 seconds if target is not reporting altitude). | ADS-B
TIS-B
TIS |

Traffic Symbol Data Tag Information

- **Flight ID** (for ADS-B OUT traffic only, when equipped with Dynon’s ADS-B receiver)
- **Altitude**
 - □ Actual
 - ✔ Relative
 - □ Geometric
- □ Ground speed
- **Vertical direction/speed**
 - ✔ Above/Below 500’ (climb/descent arrows)
 - □ Other
- **Horizontal velocity vector**
- □ Invalid/Unavailable data
- □ Traffic category
- □ Monitored by TCAS
- □ Other
<table>
<thead>
<tr>
<th>Garmin</th>
<th>Location: Olathe, KS</th>
</tr>
</thead>
</table>
| **Product(s)** | Apps: Garmin Pilot® (available for iOS and Android), SafeTaxi® (available on Garmin Pilot, certified and portable avionics)
Certified Avionics: G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series
Portable GPS: Aera 5XX series, Aera 7XX series, GPSMAP 49X series, GPSMAP 6XX series
Sport/Experimental Avionics: G3X, G3X-Touch |
| **Website(s)** | - www.garmin.com
| **Product Overview(s)** | SafeTaxi® provides ownship position on database-driven airport diagrams. SafeTaxi® is offered as a function on Garmin's portable and integrated glass cockpit systems (e.g., G600, G950, and G1000). Two electronic chart functions are also offered. ChartView® provides access to geo-referenced airport charts and instrument approach plates provided by Jeppesen. FliteCharts® provides an electronic version of government approach charts and airport diagrams, Departure Procedures (DP), and Standard Terminal Arrival Routes (STARS); approach charts are geo-referenced and therefore can show ownship.
Garmin Pilot®: Mapping and weather information available worldwide. 3D Vision and SVX displays the surrounding terrain, obstacles, airport environment and more. Navigate with HSI, optional attitude information from the GDL 39 3D and georeferenced charts for the U.S., Europe and Canada. SafeTaxi® and FliteCharts® are available via optional subscription. View aviation weather while using the Internet and while in-flight with optional U.S. datalinks. File, amend and close flight plans in the U.S.
Certified Avionics, Portable GPS, Sport/Experimental Avionics: Provide various PFD and MFD function, depending on the product. Provide CDTI function for legacy traffic awareness products, portable and certified ADS-B In, SafeTaxi®, ChartView®, and FliteCharts®, and Moving Map. See individual product descriptions for supported features. |
Garmin

Location: Olathe, KS

Various images are available for Garmin Products upon further request.

![Garmin Map Image](image_url)

Images courtesy of Garmin

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>TC/STC</th>
<th>TSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>TC</td>
<td>Applicable to G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series only</td>
</tr>
<tr>
<td>EASA</td>
<td>Aircraft: Various with G950 and G1/2/3/5000 integrated flight decks. Wichita Aircraft Certification Office</td>
<td>TSO-C112/c/d, ATCRBS/Mode S Airborne Equipment (G 950, G1000 and GTN 6XX/7XX series only)</td>
</tr>
<tr>
<td>Other: ANAC, TCCA</td>
<td>Aircraft: Various with all certified avionics. Various ACOs.</td>
<td>TSO-C113, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>FAA Certification Office: Various</td>
<td>TSO-C147, TAS Airborne Equipment</td>
<td>TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>EASA</td>
<td>STC</td>
<td>TSO-C165, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>Other: ANAC, TCCA</td>
<td>Aircraft: Various with all certified avionics. Various ACOs.</td>
<td>TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>FAA Certification Office: Various</td>
<td>TSO-C195a, Avionics Supporting ADS-B ASA (excluding GMX 200)</td>
<td>TSO-C195a, Avionics Supporting ADS-B ASA (excluding GMX 200)</td>
</tr>
<tr>
<td>EASA</td>
<td>Other: Various including TSO-C2d, TSO-C3d, TSO-C4c, TSO-C6d, TSO-C8d, TSO-C10b, TSO-C34e, TSO-C36e, TSO-C40c, TSO-C41d, TSO-C43c, TSO-C52b, TSO-C63c, TSO-C87, TSO-C151b (See individual product installation manuals)</td>
<td></td>
</tr>
<tr>
<td>Garmin</td>
<td>Location: Olathe, KS</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applicable to G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications (excluding GMX 200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ Other: AC 20-151A, various others.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA Regulatory and Guidance Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable to G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series only</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-160D/E/F, Environmental Conditions and Test Procedures for Airborne Equipment (G2000, G3000 and G5000 version E; GTN 6XX/7XX version F; all others version D)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C/D)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-181C/D/E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: various)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-272, User Requirements for Aerodrome Mapping Information</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-282B, MOPS for UAT ADS-B</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-317A, MOPS for ASA System</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
<td></td>
</tr>
<tr>
<td>☑ Other: various</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry Documents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable to G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series only</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-160D/E/F, Environmental Conditions and Test Procedures for Airborne Equipment (G2000, G3000 and G5000 version E; GTN 6XX/7XX version F; all others version D)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C/D)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-181C/D/E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: various)</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-272, User Requirements for Aerodrome Mapping Information</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-282B, MOPS for UAT ADS-B</td>
<td></td>
</tr>
<tr>
<td>☑ RTCA DO-317A, MOPS for ASA System</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
<td></td>
</tr>
<tr>
<td>☑ Other: various</td>
<td></td>
</tr>
</tbody>
</table>

| Other | |
Garmin
Location: Olathe, KS

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>G500/600 - Dual panel (Dual G500/G600 installations possible)</td>
<td></td>
</tr>
<tr>
<td>G1000/950 - Dual or triple panel</td>
<td></td>
</tr>
<tr>
<td>G2000 - Dual panel</td>
<td></td>
</tr>
<tr>
<td>G3000 - Triple panel</td>
<td></td>
</tr>
<tr>
<td>G5000 - Triple or Quad</td>
<td></td>
</tr>
<tr>
<td>GTN, GMX 200 – single (although dual installations are not uncommon)</td>
<td></td>
</tr>
<tr>
<td>G3X – single, dual, or triple</td>
<td></td>
</tr>
<tr>
<td>Portable GPS - single</td>
<td></td>
</tr>
</tbody>
</table>

Display Size

<table>
<thead>
<tr>
<th>Display Size</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>G500/600 - 6.5” diagonal (each panel)</td>
<td></td>
</tr>
<tr>
<td>G1000/950 - 10”, 12”, 15” options</td>
<td></td>
</tr>
<tr>
<td>G2000/3000/5000 - 12” or 14” display</td>
<td></td>
</tr>
<tr>
<td>GTN 650 – 4.9” diagonal</td>
<td></td>
</tr>
<tr>
<td>GTN 700 – 6.9” diagonal</td>
<td></td>
</tr>
<tr>
<td>GMX 200 – 6.5” diagonal</td>
<td></td>
</tr>
<tr>
<td>G3X (GDU 370) – 7” high portrait</td>
<td></td>
</tr>
<tr>
<td>G3X Touch (GDU 450) – 7” wide landscape</td>
<td></td>
</tr>
<tr>
<td>G3X Touch (460) – 12.7” diagonal</td>
<td></td>
</tr>
<tr>
<td>Portable GPS - various</td>
<td></td>
</tr>
</tbody>
</table>

Display Resolution

<table>
<thead>
<tr>
<th>Display Resolution</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>G500/600 - 640 x 480</td>
<td></td>
</tr>
<tr>
<td>G950/1000/2000/3000/5000 – various</td>
<td></td>
</tr>
<tr>
<td>GTN 650 – 600 x 266</td>
<td></td>
</tr>
<tr>
<td>GTN 750 – 600 x 708</td>
<td></td>
</tr>
<tr>
<td>GMX 200: 640 x 480</td>
<td></td>
</tr>
<tr>
<td>G3X (GDU 370) – 480 x 800</td>
<td></td>
</tr>
<tr>
<td>G3X Touch (GDU 450) – 800 x 480</td>
<td></td>
</tr>
<tr>
<td>G3X Touch (GDU 460) – 1280 x 768</td>
<td></td>
</tr>
<tr>
<td>Portable GPS - various</td>
<td></td>
</tr>
</tbody>
</table>

Brightness

All Garmin Products designed for sunlight readable. G500/G600 and specific versions of GTN 650 and GTN 750 are night vision goggle compatible. G950/1000/2000/3000/5000 can be made NVG with external modification.

Controls

- Buttons
- Keyboard (optional for G950 and G1000)
- Mouse/cursor
- Stylus
- Touch Screen (G3X Touch, GTN, G2000, 3000, 5000)
- Other: Joystick for map panning/zooming and display zooming (e.g. CDTI)
Garmin

Location: Olathe, KS

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Garmin Pilot® is compatible with various Android and iOS versions depending on version of Garmin Pilot® and version of device. Certified, Portable GPS, and Sport/Experimental Avionics use a Garmin-proprietary operating system.</td>
</tr>
</tbody>
</table>
| **Decluttering** | ☑ Yes
☑ No
De-cluttering is tied to map range/scale so that features are removed as the map is zoomed out and added as the map is zoomed in. On more advanced certified avionics, some decluttering behavior is configurable. |
| **Panning** | ☑ Yes
☑ No |
| **Autozoom** | ☑ Yes
☑ No
Varies with product. Generally, with a valid flight plan, the Auto Zoom feature will automatically change the Map page range depending on the distance to the next waypoint in the flight plan. If enabled, it will also automatically zoom to the SafeTaxi zoom range when the aircraft is on the ground. Autozoom is configurable. |
| **Manual zooming** | ☑ Yes: pilot selectable via knob, rocker key or joystick.
☑ No |
| **Indications and Alerts** | Alerts for TAS/TCAS I/TCAS II are as defined for their respective TSOs.
Garmin ADS-B in implements alerting for ADS-B/TIS-B targets when TAS/TCAS tracking is not available. A Traffic Alert pop-up is displayed when alerts are enabled, the aircraft is flying above 40 kts, and the display is not on the Traffic Page. When Audio alerts are enabled a ‘Traffic’ voice alert is also issued.
The GDL 39 and GDL 88 devices automatically adjust their Traffic Alert (TA) sensitivity level to reduce the likelihood of nuisance TAs during various phases of flight. TAs are issued for traffic when they are predicted to be within a specified volume of airspace around your aircraft in a specified amount of time. The protected volume and time interval varies based on the current geodetic altitude and groundspeed. Thus, the protected volume of airspace increases with altitude and ground speed:

<table>
<thead>
<tr>
<th>Altitude (Geodetic)</th>
<th>Look Ahead Time (sec.)</th>
<th>Vertical Separation (ft.)</th>
<th>Horizontal Separation (nm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 5,000</td>
<td>30</td>
<td>+/-850</td>
<td>.35</td>
</tr>
<tr>
<td>5,000-10,000</td>
<td>40</td>
<td>+/-850</td>
<td>.55</td>
</tr>
<tr>
<td>10,000-20,000</td>
<td>45</td>
<td>+/-850</td>
<td>.80</td>
</tr>
<tr>
<td>20,000-42,000</td>
<td>48</td>
<td>+/-850</td>
<td>1.10</td>
</tr>
<tr>
<td>Above 42,000</td>
<td>48</td>
<td>+/-1,200</td>
<td>1.10</td>
</tr>
<tr>
<td>Taxi Route Guidance</td>
<td>Taxi information as described is not provided.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTTI and Airport Moving Map Industry Survey
Installed CDTI Manufacturers
<table>
<thead>
<tr>
<th>Garmin</th>
<th>Location: Olathe, KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noteworthy Features and Applications</td>
<td>SafeTaxi® includes depiction of “hot spots” which define an area that has a history or potential for airport surface incidents. Additionally, FBO locations are identified at most airports. No other noteworthy features or applications can be released.</td>
</tr>
<tr>
<td>Airport Information Elements Depicted</td>
<td>(Images courtesy of Garmin)</td>
</tr>
</tbody>
</table>
| **Airport Moving Map Data Format** | ✗ Geo-referenced (raster)
☐ Database driven |
<p>| Ownship | Airplane or helicopter icon, blue or grey (depiction depends on display and installation) |
| Runways | White |
| Runway Centerlines | Black dotted lines |
| Runway Labels | Black text in white text boxes |
| Taxiways | Grey |
| Taxiway Centerlines | -- |
| Taxiway Labels | White text in black text boxes |
| Hold Lines | -Dark grey |
| Non-movement Areas | Varies, depending on type, but generally, black, or “background color”, as in, “nothing here”. |</p>
<table>
<thead>
<tr>
<th>Garmin</th>
<th>Location: Olathe, KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Generally, if the grass is somewhere the airplane is not supposed to be, it will be black (background color) – See response above for non-movement areas. For cases where turf (or gravel) is used for a specific purpose, white with grey hashing denotes such an area, and an area label is provided.</td>
</tr>
<tr>
<td>Buildings</td>
<td>White and Dark Grey</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White text in black boxes</td>
</tr>
<tr>
<td>Other</td>
<td>Hot spots circled in red</td>
</tr>
<tr>
<td>Airport Beacons</td>
<td>Airport Beacons depicted as a white star</td>
</tr>
</tbody>
</table>

Traffic Display

Data Source and Targets Displayed
- **ADS-B**: ADS-B Receive device (e.g. GDL 39, GDL 88, GTS 8XX) (max 75 targets)
- **TIS**: GTX 33x Mode S transponder devices (max 8 targets)
- **TIS-B**: GDL 39 and GDL 88 ADS-B In receivers (max 75 targets)
- **TAS**: GTS 800, 820, and 825 are certified to TAS TSO, GTS 825, 855 certified to TCAS I, GTS 8000 to TCAS II. 3rd party TAS/TCAS devices also supported (max 75 targets)

Traffic Display Range
- Maximum, minimum and default range may vary with product. Generally, the Range Rings are centered on your present position and can be configured Off, or as 2/3 Rings. When configured for 2 Rings the range can be set to AUTO, 5/10, 10/20, or 15/30. When configured for 3 Rings the range can be set to AUTO, 5/10/20, 10/20/40, or 15/30/60. When AUTO is selected the Range Rings will dynamically change from as little as 200FT to as much as 1200NM based on the current map range.
<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-threat, non-directional airborne traffic</td>
<td>Traffic outside 6 nautical miles and 1,200’</td>
<td>TAS, TCAS, or ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional airborne traffic with track vector</td>
<td>Traffic outside 6 nautical miles and 1,200’</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional airborne Proximity Advisory (PA)</td>
<td>Traffic within 6 nautical miles and +/- 1,200’</td>
<td>TAS, TCAS, or ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional airborne Proximity Advisory (PA) with track vector (points in the direction of the aircraft track)</td>
<td>Traffic within 6 nautical miles and +/- 1,200’</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional airborne Traffic Advisory (TA)</td>
<td>See parameters under “Indications and Alerts”</td>
<td>TAS, TCAS, or ADS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional off-scale airborne Traffic Advisory (TA). Displayed at outer range ring at proper bearing.</td>
<td>See parameters under “Indications and Alerts”</td>
<td>TAS, TCAS, or ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional airborne Traffic Advisory (TA) with track vector. Points in the direction of the aircraft track.</td>
<td>See parameters under “Indications and Alerts”</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional off-scale airborne Traffic Advisory (TA). Points in the direction of the aircraft track.</td>
<td>See parameters under “Indications and Alerts”</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Ground traffic without directional information.</td>
<td></td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional surface traffic.</td>
<td></td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional non-aircraft ground traffic.</td>
<td></td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Directional non-aircraft ground traffic.</td>
<td></td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Selected Traffic</td>
<td>Garmin Pilot®: Green brackets indicate traffic is selected on</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other displays: ‘Callout’ wedge points to source of selected traffic information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garmin</td>
<td>Location: Olathe, KS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIS Traffic Advisory (TA)</td>
<td>See parameters under “Indications and Alerts”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIS Other Traffic</td>
<td>Traffic outside 6 nautical miles and 1,200’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Flight ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✗ Altitude</td>
<td>✗ Actual (available when TCAS II installed with G950, G1000, G2000, G3000, G5000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Relative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Geometric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Ground speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Vertical direction/speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Above/Below 500’ (climb/descent arrows)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Horizontal velocity vector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Invalid/Unavailable data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Traffic category</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Monitored by TCAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✗ Other: When selected, closure rate, track angle, and ground speed are displayed</td>
<td></td>
</tr>
</tbody>
</table>
GENESYS Aerosystems

Location: Mineral Wells, TX, USA

| Product(s) | 3D Synthetic Vision EFIS
| IDU III, IDU-680 and 450 |
| Website(s) | http://genesys-aerosystems.com/

Product Overview(s)

The MFD can be configured by the pilot as a reversionary PFD or navigation display at the touch of a button. The MFD can further be configured as a moving map, electronic HSI, a dedicated traffic display, a dedicated weather display, a dedicated Datalink display, or a dedicated video display.

Approvals/Compliance

| Authority |
| □ FAA
| ✔ EASA
| □ Other |

| TC/STC |
| □ TC
| ✔ STC |

| EFIS Model | STC |
| IDU III | [Part 23, Class I/II/III (page 1)](#)
| [Part 23, Class I/II/III (Page 2)](#)
| [Part 23, Class I/II/III (Page 3)](#) |
IDU III	[Part 23, Class III/IV](#)
IDU III	Citation 501
IDU III	Bell 204, 205, 210

Images courtesy of GENESYS Aerosystems
GENESYS Aerosystems

Location: Mineral Wells, TX, USA

<table>
<thead>
<tr>
<th>Component</th>
<th>FAA TSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDU III</td>
<td>TSO-C112c, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>IDU III</td>
<td>TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td>IDU</td>
<td>TSO-C2d, TSO-C4c, TSO-C6e, TSO-C8e, TSO-C10b, TSO-C34e, TSO-C35d, TSO-C36e, TSO-C40c, TSO-C41d, TSO-C52b, TSO-C63c, TSO-C87, TSO-C110a, TSO-C113, TSO-C118, TSO-C146c (Class Gamma III), TSO-C147, TSO-C151b, TSO-C194</td>
</tr>
<tr>
<td>ADAHRS Module</td>
<td>TSO-C4c, TSO-C6e, TSO-C106</td>
</tr>
<tr>
<td>MSU Module</td>
<td>TSO-C6d</td>
</tr>
<tr>
<td>OAT probe</td>
<td>TSO-C106</td>
</tr>
<tr>
<td>GPS/SBAS Receiver/Antenna</td>
<td>TSO-C145c, TSO-C190</td>
</tr>
<tr>
<td>Weather Radar Module</td>
<td>TSO-C63c</td>
</tr>
<tr>
<td>ARINC Expansion</td>
<td>TSO-C113</td>
</tr>
</tbody>
</table>

FAA Regulatory and Guidance Material

- **AC 20-159a**, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
- **AC 20-165A**, Airworthiness Approval of ADS-B Out Systems
- **AC 20-172B**, Airworthiness Approval for ADS-B In Systems and Applications
- **AC 25-11B**, Electronic Flight Deck Displays
- **AC 120-76C**, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags
- **Other**: AC20-129, AC20-131A, AC23.1311-1B, AC25-15, AC90-80B
GENESYS Aerosystems

Location: Mineral Wells, TX, USA

<table>
<thead>
<tr>
<th>Industry Documents</th>
<th>RTCA/DO-143</th>
<th>Minimum Operational Performance Standards for Airborne Radio Marker Receiving Equipment Operating on 75 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTCA/DO-155</td>
<td>Minimum Performance Standards - Airborne Low-Range Radio Altimeters</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-160(D-F)</td>
<td>Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-161A</td>
<td>Minimum Performance Standards - Airborne Ground Proximity Warning Equipment</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-178B</td>
<td>Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-179</td>
<td>Minimum Operational Performance Standards for Automatic Direction Finding (ADF) Equipment</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-189</td>
<td>Minimum Operational Performance Standards for Airborne Distance Measuring Equipment (DME) Operating within the Radio Frequency Range of 960-1215 MHz</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-191</td>
<td>Minimum Operational Performance Standards for Airborne Thunderstorm Detection Equipment</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-192</td>
<td>Minimum Operational Performance Standards for Airborne ILS Glide Slope Receiving Equipment Operating within the Radio Frequency Range of 328.6-335.4 MHz</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-196</td>
<td>Minimum Operational Performance Standards for Airborne VOR Receiving Equipment Operating within the Radio Frequency Range of 108-117.95 MHz</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-197A</td>
<td>Minimum Operational Performance Standards for An Active Traffic Alert and Collision Avoidance System I</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-200A</td>
<td>Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td></td>
<td>RTCA/DO-229D</td>
<td>Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment</td>
</tr>
<tr>
<td>GENESYS Aerosystems</td>
<td>Location: Mineral Wells, TX, USA</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>RTCA/DO-257A</td>
<td>Minimum Operational Performance Standards for the Depiction of Navigational Information on Electronic Maps</td>
<td></td>
</tr>
<tr>
<td>RTCA/DO-267A</td>
<td>Minimum Aviation System Performance Standards (MASPS) for Flight Information Services-Broadcast (FIS-B) Data Link</td>
<td></td>
</tr>
<tr>
<td>RTCA/DO-309</td>
<td>Minimum Operational Performance Standards (MOPS) for Helicopter Terrain Awareness and Warning System (HTAWS) Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>SAE AR4102-7</td>
<td>Electronic Displays</td>
<td></td>
</tr>
<tr>
<td>SAE AS392C</td>
<td>Altimeter, Pressure Actuated Sensitive Type</td>
<td></td>
</tr>
<tr>
<td>SAE AS396B</td>
<td>Bank and Pitch Instruments (Indicating Stabilized Type)</td>
<td></td>
</tr>
<tr>
<td>SAE AS407C</td>
<td>Fuel Flowmeters</td>
<td></td>
</tr>
<tr>
<td>SAE AS8002A</td>
<td>Air Data Computer - Minimum Performance Standard</td>
<td></td>
</tr>
<tr>
<td>SAE AS8007</td>
<td>Over Speed Warning Instruments</td>
<td></td>
</tr>
<tr>
<td>SAE AS8008</td>
<td>Flight Director Equipment</td>
<td></td>
</tr>
<tr>
<td>SAE AS8013A</td>
<td>Minimum Performance Standard for Direction Instrument, Magnetic (Gyroscopically Stabilized)</td>
<td></td>
</tr>
<tr>
<td>SAE AS8016A</td>
<td>Vertical Velocity Instrument (Rate-of-Climb)</td>
<td></td>
</tr>
<tr>
<td>SAE AS8018A</td>
<td>Minimum Performance Standard for Mach Meters</td>
<td></td>
</tr>
<tr>
<td>SAE AS8019A</td>
<td>Airspeed Instruments</td>
<td></td>
</tr>
<tr>
<td>SAE AS8034</td>
<td>Minimum Performance Standard for airborne multipurpose electronic displays</td>
<td></td>
</tr>
<tr>
<td>AFFTC-TIH-99-01</td>
<td>Aircraft Performance Flight Testing</td>
<td></td>
</tr>
<tr>
<td>ARINC 424-19</td>
<td>Navigation System Data Base</td>
<td></td>
</tr>
<tr>
<td>ARINC 429-16</td>
<td>Mark 33 Digital Information Transfer System (DITS)</td>
<td></td>
</tr>
<tr>
<td>ARINC 706-4</td>
<td>Mark 5 Subsonic Air Data System</td>
<td></td>
</tr>
<tr>
<td>ARINC 735A-1</td>
<td>Traffic Alert and Collision Avoidance System</td>
<td></td>
</tr>
<tr>
<td>EIA-232D</td>
<td>Interface between Data Terminal Equipment and Data</td>
<td></td>
</tr>
<tr>
<td>EIA-422A</td>
<td>Electrical Characteristics of Balanced Voltage Digital Interface Circuits</td>
<td></td>
</tr>
<tr>
<td>FAAAC20-129</td>
<td>Airworthiness Approval of Vertical Navigation (VNAV) Systems for use in the U.S. National Airspace System (NAS) and Canada</td>
<td></td>
</tr>
<tr>
<td>FAAAC20-131A</td>
<td>Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS-II) and Mode S Transponders</td>
<td></td>
</tr>
<tr>
<td>FAAAC23.1311-1B</td>
<td>Installation of Electronic Display in Part 23 Airplanes</td>
<td></td>
</tr>
<tr>
<td>FAA AIM</td>
<td>Aeronautical Information Manual</td>
<td></td>
</tr>
<tr>
<td>FAA Notice 8110.60</td>
<td>GPS as a primary Means of Navigation for Oceanic/Remote Operations</td>
<td></td>
</tr>
<tr>
<td>FAA Policy Memorandum</td>
<td>ANM-100 Policy Memorandum, “Low and High Speed Awareness Cues for Linear Tape Airspeed Displays,” September 11, 1996</td>
<td></td>
</tr>
<tr>
<td>FAA Order 8150.1B</td>
<td>Technical Standard Order Procedures</td>
<td></td>
</tr>
<tr>
<td>MIL-HDBK-217</td>
<td>Reliability Prediction of Electronic Equipment</td>
<td></td>
</tr>
<tr>
<td>MIL-STD-1787C</td>
<td>Aircraft Display Symbology</td>
<td></td>
</tr>
<tr>
<td>NMEA-0183</td>
<td>National Marine Electronics Association Interface Standard 0183</td>
<td></td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>MFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Size</td>
<td>IDU-III and 450: 4” x 5” glass displays</td>
</tr>
<tr>
<td></td>
<td>IDU-680: 6” x 8” glass displays</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>640 x 480 pixel resolution and 256 colors</td>
</tr>
<tr>
<td>Brightness</td>
<td>Full-color, hi-res, sunlight-readable (1,000 nit) LCD screen with fully-adjustable brightness</td>
</tr>
</tbody>
</table>
GENESYS Aerosystems

Location: Mineral Wells, TX, USA

<table>
<thead>
<tr>
<th>Controls</th>
<th>The IDU-III and IDU-450 EFIS displays each have 8 buttons, 2 control knobs. The IDU-680 EFIS display has 16 buttons and 4 control knobs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☑ Buttons
☑ Keyboard (e.g., USB, Bluetooth)
☑ Mouse/cursor
☐ Stylus
☐ Touch Screen
☒ Other: rotary input selectors</td>
</tr>
</tbody>
</table>

Capabilities

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Microsoft Windows – used for engineering simulators and updating databases
Custom: Bare metal (proprietary) – IDU software is written directly to the microprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decluttering</td>
<td>☑ Yes: Decluttering features are available on all EFIS displays in the PFD or MFD configuration. The IDU-680 also decluttering options on the Primary Flight Instruments (PFI) and Navigational Display (ND)</td>
</tr>
<tr>
<td></td>
<td>☐ No</td>
</tr>
<tr>
<td>Panning</td>
<td>☑ Yes: When PAN MODE has been enabled, North, South, East and West tiles appear on the perimeter of the map. Pressing one of these direction buttons down will scroll smoothly across the map.</td>
</tr>
<tr>
<td></td>
<td>☐ No</td>
</tr>
<tr>
<td>Autozoom</td>
<td>☐ Yes
☒ No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>☑ Yes: IDU-II and 450 - The right hand knob will zoom in/out on the map display.
IDU-680 - Encoders #1 and 2 will change the range of the map. #1 encoder for the bottom display and #2 encoder for the top display when applicable.</td>
</tr>
<tr>
<td></td>
<td>☐ No</td>
</tr>
</tbody>
</table>
Indications and Alerts

The EFIS includes an integrated Warning, Caution and Advisory system that monitors a wide variety of parameters and provides auditory annunciations for conditions that demand pilot awareness. Auditory annunciations take the form of either a voice warning or Alert tone.

Annunciations are grouped into three categories: warning, caution, and advisory. Warnings are accompanied by a red flag and repeat until acknowledged by the pilot (by pushing the EFIS MUTE button on yoke or panel) or the condition is corrected. Cautions are accompanied by a yellow flag and are annunciated once. Advisories are accompanied by a blue flag or no flag, depending on condition, and are indicated by either a voice annunciation or a chime.

Annunciation volume is based on level of threat and audio is silenced immediately upon pressing the EFIS MUTE button. Overall volume can be adjusted during installation.

CWA Flags are stacked in chronological order with warnings displayed on top, followed by cautions and then advisories.

Pilot Actions:
- Red: Immediate Pilot Action Required
- Yellow: Pilot Attention Required
- Blue: Advisory Only

Taxi Route Guidance

Not Available

Noteworthy Features and Applications

The 3D Synthetic Vision EFIS from Genesys Aerosystems integrates a number of features:

- 3D Synthetic Vision
- Highway-In-The-Sky (HITS) navigation
- Geo-referenced Hover Vector
- TAWS / Helicopter TAWS (HTAWS)
- Graphical Flight Management System (FMS)
- And much more

The 3D Synthetic Vision EFIS from Genesys Aerosystems is an integrated Electronic Flight Instrument System that is STC’d in four-classes of aircraft—Part 23, Part 25, Part 27, and Part 29—available as factory-standard on a production helicopter.

- Full-color, hi-res, sunlight-readable (minimum 1,000 nit) LCD screen with fully-adjustable brightness
- Dual, redundant backlight
- Input: AHRS, ADC, GPS receiver (all included)
- Integral HTAWS and FMS
- DO-178B, Level-A Software
- NVIS-A and NVIS-B Night Vision Goggle compatibility
- Digital flight performance recording of last five flights
- Redundant display/sensor architecture
- RNP 0.3/BRNAV/PRNAV-compliant
- Engine display and master caution system options
- Certified with most existing autopilots
- -55°C to +75°C operating range
- Non-ITAR
GENESYS Aerosystems

Location: Mineral Wells, TX, USA

Traffic Display

Data Source and Targets Displayed

The IDU’s themselves do not have integrated traffic receivers and the data source will depend on which traffic system has been installed and providing traffic data to the IDU. (TCAS, ADS-B, etc)

- ADS-B:
- TIS:
- TIS-B:
- TAS:

Available traffic protocols:

TCAD/TAS (RS-232) – Ryan/Avidyne TAS computer
ARINC735A (TAS/TCAS-I) – L-3 (Goodrich) Skywatch®, Skywatch® HP, or ARINC-429 TCAS computer
TIS-B – Garmin GDL-90 UAT
ARINC735A (TCAS-II) – TCAS-II interface

Traffic Display Range

Minimum: 2NM
Maximum: 6NM
Default: 6NM

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Traffic</td>
<td>OT is defined as traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.</td>
<td>TCAS-I, TCAS II, TAS and TIS-A</td>
<td></td>
</tr>
<tr>
<td>Proximate Advisory</td>
<td>PA is defined as traffic that is within 6 NM and ±1200 feet from ownship that is not an RA or TA.</td>
<td>TCAS-I, TCAS II, TAS and TIS-A</td>
<td></td>
</tr>
<tr>
<td>Traffic Advisory</td>
<td>TA is defined as traffic having a dangerous closest point of approach as defined by internal traffic sensor logic.</td>
<td>TCAS-I, TCAS II, TAS and TIS-A</td>
<td> (Flashing)</td>
</tr>
<tr>
<td>Resolution Advisory</td>
<td>RA is defined as traffic having a dangerous closest point of approach and that generates climb or descent commands as defined by internal TCAS-II sensor logic.</td>
<td>TCAS-I, TCAS II, TAS and TIS-A</td>
<td> (Flashing)</td>
</tr>
<tr>
<td>Directional, high data quality, other traffic</td>
<td>Directional traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>GENESYS Aerosystems</td>
<td>Location: Mineral Wells, TX, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional, high data quality, proximate</td>
<td>Directional traffic that is within 6 NM and ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Directional, high data quality, TA</td>
<td>Directional traffic having a dangerous closest point of approach as defined by internal traffic sensor logic.</td>
<td>ADS-B and TIS-B (Flashing)</td>
<td></td>
</tr>
<tr>
<td>Non-directional, high data quality, other traffic</td>
<td>Non-directional traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional, high data quality, proximate</td>
<td>Non-directional traffic that is within 6 NM and ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional, high data quality, TA</td>
<td>Non-directional traffic having a dangerous closest point of approach as defined by internal traffic sensor logic.</td>
<td>ADS-B and TIS-B (Flashing)</td>
<td></td>
</tr>
<tr>
<td>Directional, low data quality, other traffic</td>
<td>Directional traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Directional, low data quality, proximate</td>
<td>Directional traffic that is within 6 NM and ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Directional, low data quality, TA</td>
<td>Directional traffic having a dangerous closest point of approach as defined by internal traffic sensor logic.</td>
<td>ADS-B and TIS-B (Flashing)</td>
<td></td>
</tr>
<tr>
<td>Non-directional, low data quality, other traffic</td>
<td>Non-directional traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional, low data quality, proximate</td>
<td>Non-directional traffic that is within 6 NM and ±1200 feet from ownship that is not an RA or TA.</td>
<td>ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>Non-directional, low data quality, TA</td>
<td>Non-directional traffic having a dangerous closest point of approach as defined by internal traffic sensor logic.</td>
<td>ADS-B and TIS-B (Flashing)</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>Relative</td>
</tr>
<tr>
<td>Geometric</td>
</tr>
<tr>
<td>Ground speed</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
</tr>
<tr>
<td>Above/Below 500' (climb/descent arrows)</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
</tr>
<tr>
<td>Traffic category</td>
</tr>
<tr>
<td>Monitored by TCAS</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Image courtesy of GENESYS Aerosystems
Honeywell

Location: Phoenix, AZ

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Honeywell 2D Airport Moving Map, Honeywell CDTI SURF, Honeywell 3D Airport Moving Map, Honeywell CDTI AIR-B and VSA</th>
</tr>
</thead>
</table>
| Website(s) | • www.honeywell.com

Product Overview(s)

Honeywell CDTI AIR-B integrates ADS-B In traffic information on the INAV Navigation Display and through dedicated interactive traffic window. Honeywell CDTI VSA supports enhanced visual separation on approach through selection and highlighting of traffic to follow. Honeywell 2D Airport Moving Map, Honeywell CDTI SURF and Honeywell 3D Airport Moving Map aid the pilot in orientation and positional awareness of ownship on the airport surface and with respect to other aircraft and ground vehicles. 2D Airport Map is a database-driven interactive moving map with north-up and track-up modes presented on the INAV® Navigation Display. CDTI SURF displays aircraft and ground vehicle traffic in the context of the 2D Map. 3D Airport Moving Map provides a complementary tactical view of the airport environment, via egocentric and exocentric modes, on the PFD.

Images courtesy of Honeywell

Approvals/Compliance

- FAA (in progress)
- EASA (in progress)
- Other
Honeywell

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>Location: Phoenix, AZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>STC</td>
</tr>
</tbody>
</table>

TSO

- Applies to all except 3d Airport Moving Map
- TSO-C112e, ATCRBS/Mode S Airborne Equipment
- TSO-C113a, Airborne Multipurpose Electronic Displays
- TSO-C147, TAS Airborne Equipment
- TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
- TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft
- TSO-C166b, Extended Squitter ADS-B and Traffic Information
- TSO-C195a, Avionics Supporting ADS-B ASA
- Other

FAA Regulatory and Guidance Material

- AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems (2D Airport Moving Map only)
- AC 20-165A, Airworthiness Approval of ADS-B Out Systems
- AC 20-172A, Airworthiness Approval for ADS-B In Systems and Applications (AIR-B, VSA, CDTI SURF only)
- AC 25-11B, Electronic Flight Deck Displays (AIR-B, VSA, CDTI SURF only)
- AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags
- Other

Industry Documents

- RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment
- RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C)
- RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment
- RTCA DO-200A, Standards for Processing Aeronautical Data (2D and 3D Airport Moving Map only)
- RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
- RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps (2D Airport Moving Map only)
- RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
- RTCA DO-272B, User Requirements for Aerodrome Mapping Information (2D and 3D Airport Moving Map only)
- RTCA DO-282B, MOPS for UAT ADS-B
- RTCA DO-317A, MOPS for ASA System (AIR-B, VSA, CDTI SURF only)
- RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT
- RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application (CDTI SURF only)
- RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA
- Other: DO-289, DO-338, DO-243, DO-259 (AIR-B, VSA, CDTI SURF only)
 - DO-319 (AIR-B only), DO-314 (VSA only)

Other
Honeywell

Location: Phoenix, AZ

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Airport Map and CDTI SURF are displayed on Honeywell Primus Epic MFDs. 3D Airport Moving Map is displayed on Honeywell Primus Epic PFDs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available on all Epic Displays, including: DU-1080 (10.4" diagonal 800x600), KDU-1080 (10.4" diagonal), DU-1200 (12.1" diagonal), DU-1310-2 (14.1" diagonal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU-1080 (800x600, IPS wide viewing angle, smart display), KDU-1080 (1024x768, IPS), DU-1200 (1024x768, IPS), DU-1310-2 (1400x1050, SMVA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>See above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controls</th>
</tr>
</thead>
</table>
| ✔ Buttons
☐ Keyboard (e.g., USB, Bluetooth)
✔ Mouse/cursor
☐ Stylus
✔ Touch Screen
☐ Other: Concentric knob and joystick knob |

Capabilities

<table>
<thead>
<tr>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom DEOS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decluttering</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Yes: A mix of pilot selectable and automated decluttering (based upon range scale) which includes removal of traffic trend lines, data tag information and non-proximate traffic (by altitude and threat level) on CDTI AIR-B & SURF. Exocentric view on 3D AMM declutters some aircraft state data from the PFD that is not required for surface operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panning</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Yes: Panning of 2D Airport map on ground and airborne map in flight consistent with INAV display.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autozoom</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Yes: Configurable upon takeoff and landing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manual zooming</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Yes: Multiple ranges including 5 range settings below 1NM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indications and Alerts</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxi Route Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route guidance is not provided, although 2D and 3D AMM be used to confirm the route along the way.</td>
</tr>
<tr>
<td>Honeywell</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Noteworthy Features and Applications</td>
</tr>
<tr>
<td>Airport Information Elements Depicted</td>
</tr>
<tr>
<td>Airport Moving Map Data Format</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ownship</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Runways</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Honeywell</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Runway Centerlines</td>
</tr>
<tr>
<td>Runway Labels</td>
</tr>
</tbody>
</table>
Honeywell

Location: Phoenix, AZ

<table>
<thead>
<tr>
<th>Taxiways</th>
<th>Grey</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxiway Centerlines</th>
<th>Yellow line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell</td>
<td>Location: Phoenix, AZ</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Grey text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Yellow line</td>
</tr>
<tr>
<td>Honeywell</td>
<td>Location: Phoenix, AZ</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td></td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Light grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Green</td>
</tr>
<tr>
<td>Buildings</td>
<td>Brown</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White text</td>
</tr>
</tbody>
</table>
Traffic Display

Data Source and Targets Displayed
- ☑ ADS-B: Included in and may fill the traffic display buffer of 127 targets
- ☑ TIS-B: Included in and may fill the traffic display buffer of 127 targets
- ☑ TIS:
- ☑ TAS:

Note: Traffic displays can overlay all EGPWS visuals.

Traffic Display Range
- **Minimum:** Minimum limit of display (varies by application)
- **Maximum:** Maximum limit of display (varies by application)
- **Default:** (varies by application)

Traffic Symbols
Thresholds for alerts vary by a number of factors including: target heading relative to own aircraft heading, vertical speeds, etc.

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-directional Airborne Resolution Advisory Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directional Airborne Traffic Advisory Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directional Airborne Proximate Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directional Airborne Non-Proximate Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Airborne Resolution Advisory Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell</td>
<td>Location: Phoenix, AZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Airborne Traffic Advisory Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Airborne Proximate Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Airborne Non-Proximate Traffic</td>
<td>TCAS, ADS-B, TIS-B, ADS-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directional Surface Aircraft Traffic</td>
<td>ADS-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directional Surface Vehicle Traffic</td>
<td>ADS-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Surface Aircraft Traffic</td>
<td>ADS-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directional Surface Vehicle Traffic</td>
<td>ADS-B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

- Flight ID
- Altitude
 - Actual Note: Via a pilot selectable momentary display
 - Relative
 - Geometric
- Ground speed (Application specific)
- Vertical direction/speed
 - Above/Below 500' (climb/descent arrows)
 - Other: Vertical Speed available (Application specific)
- Horizontal velocity vector
- Invalid/Unavailable data (Application specific)
- Traffic category (Application specific)
- Monitored by TCAS
- Other: Range, Bearing, Closure Rate and Ground Track

Note: CDTI can present Flight ID, relative altitude, vertical direction climb/descent arrows, and up to two other application specific data items for airborne traffic. For CDTI AIR-B, SURF and VSA, data tags provide Flight ID, category and ground speed and a horizontal velocity vector may also be provided.
L-3 Communications

Location: New York, NY

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Lynx NGT-9000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Website(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.l-3com.com</td>
</tr>
<tr>
<td>https://www.l-3avionics.com/media/8455/lynx_ngt-9000_pg.pdf</td>
</tr>
</tbody>
</table>

Product Overview(s)

Lynx NGT-9000 is a 1090 ES Transponder which also provides a display of ADS-B traffic (ADS-B, ADS-R and TIS-B) with option for the L-3 Active Traffic enablement (TAS). This blends ADS-B with active traffic data, providing an uninterrupted display of aircraft equipped with Mode A, C and S transponders. The system also receives FIS-B data and graphically depicts weather as well as textual weather products.

![Lynx NGT-9000 Display](image)

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ FAA Certification Office: LA ACO</td>
</tr>
<tr>
<td>☐ EASA</td>
</tr>
<tr>
<td>☐ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ TC Aircraft:</td>
</tr>
<tr>
<td>☑ STC Aircraft: Many. AMLSTC received.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ TSO-C112d, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>☑ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>☑ TSO-C147, TAS Airborne Equipment</td>
</tr>
<tr>
<td>☑ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>☐ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>☑ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>☑ TSO-C195a, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td>☑ Other: TSO-C145c, TSO-C157a</td>
</tr>
<tr>
<td>L-3 Communications</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
</tr>
<tr>
<td>AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>✔ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>✔ AC 20-172A, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td>AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Industry Documents</td>
</tr>
<tr>
<td>✔ RTCA DO-160D, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>✔ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C)</td>
</tr>
<tr>
<td>✔ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>✔ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>✔ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: not provided)</td>
</tr>
<tr>
<td>✔ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>✔ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>✔ RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>✔ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>✔ RTCA DO-317B, MOPS for ASA System</td>
</tr>
<tr>
<td>✔ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>✔ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td>✔ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td>Other: DO-229D, DO-267A</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
</tr>
<tr>
<td>Display Size</td>
</tr>
<tr>
<td>Display Resolution</td>
</tr>
<tr>
<td>Brightness</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>L-3 Communications</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
</tbody>
</table>

Capabilities

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Windows and Linux operating system may execute the maintenance application necessary for installation and configuration.</td>
</tr>
<tr>
<td>Decluttering</td>
<td>☑ Yes: Vertical display mode (above, below, normal, unrestricted) No</td>
</tr>
<tr>
<td>Panning</td>
<td>☑ Yes No</td>
</tr>
<tr>
<td>Autozoom</td>
<td>☑ Yes No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>☑ Yes: NGT-9000 range settings: 0.5 nm, 1 nm, 2 nm, 6 nm, 12 nm, 24 nm, 40 nm No</td>
</tr>
</tbody>
</table>

Indications and Alerts

The traffic symbols indicate the approximate range, relative bearing, and relative altitude of intruder aircraft. Traffic data with directional data for intruder aircraft are shown as arrowheads. Traffic data without directional data for intruder aircraft are shown as diamonds. TAS functionality also has aural TA warnings (“traffic, traffic”) that are annunciated over the cockpit speaker or headset. Extended call-outs including the clock position, relative attitude and range (10 o’clock, low, 5 miles) are a configurable option selected at the time of installation. Traffic alerts which occur when the traffic display is not visible will automatically switch to the traffic display.
L-3 Communications
Location: New York, NY

<table>
<thead>
<tr>
<th>NO.</th>
<th>OWN SHIP ALT</th>
<th>OWN SHIP GND SPEED</th>
<th>OTHER AIRCRAFT IS DETECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Below 2000 ft AGL</td>
<td></td>
<td>Within a 0.2 nmi horizontal radius and a +/- 600 ft relative altitude.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Within 15-20 sec of CPA *</td>
</tr>
<tr>
<td>3</td>
<td>Above 2000 ft AGL</td>
<td></td>
<td>Within a 0.55 nmi horizontal radius and a +/- 800 ft relative altitude.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Within 20-30 sec of CPA *</td>
</tr>
<tr>
<td>5</td>
<td>Has invalid AGL Altitude</td>
<td>Available and ≥ to 120 knots</td>
<td>Within a 0.55 nmi horizontal radius and a +/- 800 ft relative altitude.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Within 20-30 sec of CPA *</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Available and < 120 knots</td>
<td>Within a 0.2 nmi horizontal radius and a +/- 600 ft relative altitude.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Within 15-20 sec of CPA *</td>
</tr>
</tbody>
</table>

* CPA means Closest Point of Approach
** Ground speed is not available whenever your GPS navigation information is not available.

Image courtesy of L-3 Communications

Taxi Route Guidance

Noteworthy Features and Applications

Traffic is selectable on the screen and an info box opened to show basic aircraft information including groundspeed.

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>ADS-B</th>
<th>TIS</th>
<th>TIS-B</th>
<th>TAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays 10 highest priority aircraft (aircraft tracked by multiple sources are correlated and displayed as 1 target)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Traffic Display Range | Minimum: 0.5 nm
Maximum: 40 nm
Default: 2 nm |
Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td>White triangle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Directional TA</td>
<td>Aircraft detected that meet the criteria stated above, under Indications and Alerts.</td>
<td>ADS-B, ADS-R, TIS-B Correlated with TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne Directional PA</td>
<td>Aircraft detected within 6 nm and 1,200 feet from ownship. May be white or cyan.</td>
<td>ADS-B, ADS-R, TIS-B (may be correlated with TAS)</td>
<td></td>
</tr>
<tr>
<td>Airborne Directional OT</td>
<td>Aircraft that has been detected within the selected display range and vertical display mode, but which has not generated a TA or a PA. May be white or cyan.</td>
<td>ADS-B, ADS-R, TIS-B (may be correlated with TAS)</td>
<td></td>
</tr>
<tr>
<td>Airborne Non-directional TA</td>
<td>Aircraft detected that meet the criteria stated above, under Indications and Alerts.</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne Non-directional PA</td>
<td>Aircraft detected within 6 nm and 1,200 feet from ownship. May be white or cyan.</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Airborne Non-directional OT</td>
<td>Aircraft that has been detected within the selected display range and vertical display mode, but which has not generated a TA or a PA. May be white or cyan.</td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>On Ground Directional OT</td>
<td>On ground directional aircraft that has been detected within the selected display range.</td>
<td>ADS-B, ADS-R, TIS-B</td>
<td></td>
</tr>
<tr>
<td>Ground Vehicle Directional</td>
<td>Directional ground vehicle that has been detected within the selected display range.</td>
<td>ADS-B, ADS-R, TIS-B</td>
<td></td>
</tr>
<tr>
<td>On Ground Non-directional OT</td>
<td>On ground non-directional aircraft that has been detected within the selected display range.</td>
<td>ADS-B, ADS-R, TIS-B</td>
<td></td>
</tr>
<tr>
<td>L-3 Communications</td>
<td>Location: New York, NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Vehicle Non-directional</td>
<td>Non-directional ground vehicle that has been detected within the selected display range.</td>
<td>ADS-B, ADS-R, TIS-B</td>
<td></td>
</tr>
<tr>
<td>Off-Scale TA</td>
<td>TA detected beyond the current display range. The symbol is displayed at a position along the outer range ring that indicates the relative bearing of the intruder aircraft.</td>
<td>ADS-B, ADS-R, TIS-B, TAS</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

- Flight ID
- Altitude
 - Actual
 - Relative (in hundreds of feet)
 - Geometric
- Ground speed
- Vertical direction/speed
 - Above/Below 500’ (climb/descent arrows)
 - Other (please specify):
- Horizontal velocity vector
- Invalid/Unavailable data
- Traffic category
- Monitored by TCAS
- Other
<table>
<thead>
<tr>
<th>Rockwell Collins, Inc.</th>
<th>Location: Cedar Rapids, IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td>Pro Line Fusion® Integrated Avionics System</td>
</tr>
</tbody>
</table>
| **Website(s)** | - www.rockwellcollins.com

Product Overview(s)

The Pro Line Fusion® Integrated Avionics System provides optional surface management system (airport moving map) and real-time airborne traffic information capabilities. The system provides automated checks and aural advisories to the flight crew, and adds a visual overlay that highlights the target runway on the airport chart display. Fusion also supports runway safety awareness by displaying aircraft position during taxi. Should an unsafe takeoff or landing operation occur, aural alerts “not a runway” and other visual alerts provide additional situational awareness.

![Images courtesy of Rockwell Collins](image1.jpg)

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>FAACertification Office: Wichita</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASA</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>TC Aircraft: Embraer Legacy 450 and 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC</td>
<td>Aircraft:</td>
</tr>
</tbody>
</table>

| TSO | TSO-C112e, ATCRBS/Mode S Airborne Equipment
 - TSO-C113a, Airborne Multipurpose Electronic Displays
 - TSO-C147, TAS Airborne Equipment
 - TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
 - TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft
 - TSO-C166b, Extended Squitter ADS-B and Traffic Information
 - TSO-C195a, Avionics Supporting ADS-B ASA
 - Other |
<table>
<thead>
<tr>
<th>Rockwell Collins, Inc.</th>
<th>Location: Cedar Rapids, IA</th>
</tr>
</thead>
</table>

FAA Regulatory and Guidance Material

- AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
- AC 20-165A, Airworthiness Approval of ADS-B Out Systems
- AC 20-172A, Airworthiness Approval for ADS-B In Systems and Applications
- AC 25-11B, Electronic Flight Deck Displays
- AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags
- Other

Industry Documents

- ✔️ RTCA DO-160E, Environmental Conditions and Test Procedures for Airborne Equipment
- ✔️ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: Not provided)
- ✔️ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment
- ✔️ DO-200A, Standards for Processing Aeronautical Data
- ✔️ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
- ✔️ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps
- ✔️ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
- ✔️ DO-272C, User Requirements for Aerodrome Mapping Information
- ✔️ RTCA DO-282B, MOPS for UAT ADS-B
- RTCA DO-317A, MOPS for ASA System
- RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT
- RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application
- RTCA DO·323, Safety, Performance and Interoperability Requirements Document for SURF IA
- Other

Other

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>MFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Size</td>
<td>15” LCD</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>1050x1400</td>
</tr>
<tr>
<td>Brightness</td>
<td>None</td>
</tr>
</tbody>
</table>

Controls

- Buttons
- External Keyboard (e.g., USB, Bluetooth)
- ✔️ Mouse/cursor
- Stylus
- Touch Screen
- ✔️ Other: Knob

Capabilities

Operating System

LynxOS-178
<table>
<thead>
<tr>
<th>Rockwell Collins, Inc.</th>
<th>Location: Cedar Rapids, IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decluttering</td>
<td></td>
</tr>
<tr>
<td>Yes: Automatic label/feature de-clutter, range based</td>
<td>No</td>
</tr>
<tr>
<td>Panning</td>
<td></td>
</tr>
<tr>
<td>Yes: Integrated with MFW Nav Map – cursor controller</td>
<td>No</td>
</tr>
<tr>
<td>Autozoom</td>
<td></td>
</tr>
<tr>
<td>No: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td></td>
</tr>
<tr>
<td>Yes: Knob based</td>
<td>No</td>
</tr>
</tbody>
</table>

Indications and Alerts
- Indications for the following are found in the airport information block in the upper left of the map:
 - Hot Spot Data availability for the airport displayed
 - Non-WGS 84 compliance of the source data for the airport displayed
 - Runways Only status (no ARINC 816 data available for the displayed airport, ARINC 424 only)
- Indications for the following are found in the map message field in the lower center of the map:
 - **Loading Airport** - airport data is being processed and the map cannot yet be displayed
 - **Off Airport Map** - the map is panned such that no airport data is shown
 - **Map Position Fault** - GPS data does not support accurate display of ownship
 - **Airport Map Fault** - AMM function is faulted
- Takeoff and landing alerts are intended to alert the crew of potential runway errors - eg. beginning a takeoff or aligned to land on a surface that's not a runway (eg. taxiway), or beginning a takeoff or aligned to land on the incorrect runway (i.e. a runway other than the one selected in the FMS flight plan).

Taxi Route Guidance
- Taxi surfaces and labels are displayed along with ownship representation.

Noteworthy Features and Applications
- ADS-B In capability is expected in the near future.

Airport Information Elements Depicted

Airport Moving Map Data Format
- Specify whether the airport moving map application is a geo-referenced electronic chart or database-driven display:
 - Geo-referenced
 - Database driven
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td>Yes; white airplane icon with error representation based on GPS inputs.</td>
</tr>
<tr>
<td>Runways</td>
<td>Dark grey with white border. Generated from ARINC 816 or ARINC 424 data, includes magenta highlighting of origin/destination runways based on Flight Management System data (integrated).</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White dashed. Generated from ARINC 816 or ARINC 424 data.</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Blue text on black background with blue dashed border. Generated from ARINC 816 or ARINC 424 data, dynamic symbols that park at the screen edge and travel along the runway as the map is panned (with a runway moving off screen).</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Light grey. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>Yellow lines. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>White text. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Yellow lines. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Black. Generated from ARINC 816 data</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Dark grey. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Rockwell Collins, Inc.</td>
<td>Location: Cedar Rapids, IA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>Medium grey. Generated from ARINC 816 data.</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White text. Generated from ARINC 816 data</td>
</tr>
<tr>
<td>Other</td>
<td>Generated from ARINC 816 data: Graphical Hot Spots, Construction areas, helipads, windsocks, airport reference point, water, de-icing areas. Generated from ARINC 816 or ARINC 424 data: Airport information: ICAO, field elevation</td>
</tr>
</tbody>
</table>

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ ADS-B</td>
</tr>
<tr>
<td>□ TIS</td>
</tr>
<tr>
<td>□ TIS-B</td>
</tr>
<tr>
<td>□ TAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traffic Display Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Default</td>
</tr>
</tbody>
</table>

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Traffic</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Traffic (Selected)</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Traffic</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Traffic</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Traffic</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Traffic</td>
<td>TCAS II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Flight ID</td>
<td></td>
</tr>
<tr>
<td>✗ Altitude</td>
<td></td>
</tr>
<tr>
<td>□ Actual</td>
<td></td>
</tr>
<tr>
<td>✗ Relative</td>
<td></td>
</tr>
<tr>
<td>□ Geometric</td>
<td></td>
</tr>
<tr>
<td>□ Ground speed</td>
<td></td>
</tr>
<tr>
<td>✗ Vertical direction/speed</td>
<td></td>
</tr>
<tr>
<td>✗ Above/Below 500' (climb/descent arrows)</td>
<td></td>
</tr>
<tr>
<td>□ Other:</td>
<td></td>
</tr>
<tr>
<td>□ Horizontal velocity vector</td>
<td></td>
</tr>
<tr>
<td>□ Invalid/Unavailable data</td>
<td></td>
</tr>
<tr>
<td>□ Traffic category</td>
<td></td>
</tr>
<tr>
<td>□ Monitored by TCAS (or TAS overlay/blending)</td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Portable CDTI Manufacturers

This section includes surveys for manufacturers with portable CDTI products. These products may also provide airport moving map functionality, or in a few cases, may provide a separate airport moving map application that does not depict traffic information. All information was provided by the manufacturers and has not been verified with the FAA. Per AC 120-76C, a CDTI is not considered an EFB function, and portable CDTIs can not be authorized for use.

<table>
<thead>
<tr>
<th>Advanced Flight Systems, Inc. (AFS)</th>
<th>Location: Canby, OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td>AFS-5400, 5500, 5600, 5800</td>
</tr>
</tbody>
</table>
| **Website(s)** | ![Website Links](https://www.advanced-flight-systems.com/)
| | ![Website Links](https://www.advanced-flight-systems.com/EFIS_Literature_2014_web.pdf)
| **Product Overview(s)** | The AFS 5000-series can display traffic when connected to a NavWorx ADS600-B, Garmin GTX-330, or Zaon XRX receiver, and is available in several display sizes. All models are high resolution LED backlit screens that provide high intensity brightness during the day, and a very low intensity brightness at night. All 5000 Series displays can optionally be equipped with a touch screen. Synthetic Vision is a standard feature on the AF-5000 Series. |
| **Images courtesy of AFS** | ![Image 1](image1.png) ![Image 2](image2.png) |
| **Approvals/Compliance** | ![Approval Checkboxes](image3.png) |
| **Authority** | FAA, EASA, Other |
| **TC/STC** | TC Aircraft, STC Aircraft: |
Advanced Flight Systems, Inc. (AFS)

Location: Canby, OR

| TSO | - TSO-C112e, ATCRBS/Mode S Airborne Equipment
- TSO-C113a, Airborne Multipurpose Electronic Displays
- TSO-C147a, TAS Airborne Equipment
- TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
- TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)
- TSO-C166b, Extended Squitter ADS-B and Traffic Information
- TSO-C195b, Avionics Supporting ADS-B ASA
- Other |
| FAA Regulatory and Guidance Material | - AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
- AC 20-165A, Airworthiness Approval of ADS-B Out Systems
- AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications
- AC 25-11B, Electronic Flight Deck Displays
- AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags
- Other |
| Industry Documents | - RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment
- RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification
- RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment
- RTCA DO-200B, Standards for Processing Aeronautical Data
- RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
- RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps
- RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
- RTCA DO-272D, User Requirements for Aerodrome Mapping Information
- RTCA DO-282B, MOPS for UAT ADS-B
- RTCA DO-317A, MOPS for ASA System
- RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT
- RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application
- RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA
- Other |
| Other | |

Hardware

| Hardware Platform(s) | PFD and MFD |
| Display Size | 8.4" (AFS-5400, 5500)
10.4" (AFS-5600)
12.1" (AFS-5800) |
Advanced Flight Systems, Inc. (AFS)

Location: Canby, OR

<table>
<thead>
<tr>
<th>Display Resolution</th>
<th>1024 x 768</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>Enhanced to 1000 nits for direct sunlight.</td>
</tr>
</tbody>
</table>

Controls

- Buttons
- Keyboard (e.g., USB, Bluetooth)
- Mouse/cursor
- Stylus
- Touch Screen
- Other: Joystick

Capabilities

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decluttering</td>
<td>Yes: Depending on zoom level</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Panning</td>
<td>Yes: Using joystick or touch screen</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Autozoom</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>Yes: Using joystick or touch screen</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Indications and Alerts</td>
<td>We have an alert area on the screen for messages and audio warnings:</td>
</tr>
<tr>
<td></td>
<td>- Landing gear warning system</td>
</tr>
<tr>
<td></td>
<td>- TAWS</td>
</tr>
<tr>
<td>Taxi Route Guidance</td>
<td>None</td>
</tr>
</tbody>
</table>

Noteworthy Features and Applications

Airport Moving Map Information Elements Depicted

<table>
<thead>
<tr>
<th>Airport Moving Map Data Format</th>
<th>Geo-referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Database driven</td>
</tr>
</tbody>
</table>
Advanced Flight Systems, Inc. (AFS)

Location: Canby, OR

Portable CDTI Manufacturers

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Yellow airplane icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways</td>
<td>Black</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Taxiways</td>
<td>White with black border</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>--</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>--</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>White with black border (labeled)</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>--</td>
</tr>
<tr>
<td>Buildings</td>
<td>Numbers (white text on a black circle) correspond to map legend</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Numbers (white text on a black circle) correspond to map legend</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Display

Data Source and Targets Displayed

- We display the closest 32 targets.
 - ADS-B
 - TIS
 - TIS-B
 - TAS

Images courtesy of AFS
Advanced Flight Systems, Inc. (AFS) Location: Canby, OR

Traffic Display Range
- Minimum: 0 NM
- Maximum: 26 NM
- Default: Last range setting

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Traffic</td>
<td>Greater than 7000ft relative altitude and greater than 7nm range</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Proximity Traffic</td>
<td>Within 1200ft relative altitude and less than 6nm range</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAS</td>
<td></td>
</tr>
<tr>
<td>Traffic Advisory</td>
<td>Within 1200ft relative altitude and less than 3 nm range</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAS</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

- **Flight ID**
- **Altitude**
 - □ Actual
 - ☒ Relative
 - □ Geometric
- □ Ground speed
- □ Vertical direction/speed
 - ☒ Above/Below 500’ (climb/descent arrows)
 - □ Other (please specify):
 - ☒ Horizontal velocity vector
 - □ Invalid/Unavailable data
 - □ Traffic category
 - □ Monitored by TCAS
 - □ Other
AvMap

<table>
<thead>
<tr>
<th>Location: Falmouth, MA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>EKP, EKP IV & EKPIV pro</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Website(s)</th>
<th>www.avmap.us</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://avmap.us/products/aero/ekp_iv-4/introduction</td>
</tr>
<tr>
<td></td>
<td>http://avionics.avmap.it/en/products/ekp-v/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Overview(s)</th>
</tr>
</thead>
</table>

AvMap EKP IV, IV Pro and EKP V are aeronautical navigators that feature a 7” color LCD display, which utilize a memory card preloaded with software and maps. Each unit can operate in portrait and landscape mode. Traffic awareness (Mode C) is supported when connected to ZOAN XRX receiver. ADS-B traffic is in development.

AvMap EKP V is a multifunctional display, made for panel-mounting and portable use, with 7” display, removable battery, built-in GPS receiver, operative in portrait and landscape mode, and preloaded with software and maps.

![Images courtesy of AvMap](image-url)

<table>
<thead>
<tr>
<th>Approvals/Compliance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ FAA</td>
</tr>
<tr>
<td>□ EASA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ TC</td>
</tr>
<tr>
<td>□ STC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>□ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>AvMap</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
</tr>
<tr>
<td>- AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>- AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>- AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>- AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td>- AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags</td>
</tr>
<tr>
<td>- Other</td>
</tr>
<tr>
<td>Industry Documents</td>
</tr>
<tr>
<td>- RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>- RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td>- RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>- RTCA DO-200B, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>- RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td>- RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>- RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>- RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>- RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>- RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td>- RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>- RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td>- RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td>- Other</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
</tbody>
</table>
| **Hardware Platform(s)** | EKP IV & EKPIV PRO: MFD
EKPV: MFD | |
| **Display Size** | 7” | |
| **Display Resolution** | EKPIV & EKPV PRO: 800 x 480
EKPV: 800 x 480 (600 cd/m2) | |
| **Brightness** | EKPIV & EKPV PRO: 800 x 480, LCD TFT, display colors 64k
EKPV: 800 x 480 (600 cd/m2), LCD TFT, display colors 64k | |
| **Controls** | ✔ Buttons
☐ Keyboard
✔ Mouse/cursor Joystick
☐ Stylus
☐ Touch Screen
✔ Other: Joystick |
<table>
<thead>
<tr>
<th>AvMap</th>
<th>Location: Falmouth, MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities</td>
<td></td>
</tr>
</tbody>
</table>
| **Operating System** | - Microsoft Windows (EKP V)
- Linux
- Android
- iOS
- Custom: AvMap operating System (EKP IV & EKP IV PRO) |
| **Decluttering** | - Yes: The user may select which objects are shown on the map and which are hidden.
- No |
| **Panning** | - Yes: When using the Joystick, the cursor will appear on the map (PAN mode).
- No |
| **Autozoom** | - Yes
- No |
| **Manual zooming** | - Yes
- No |
| **Indications and Alerts** | TAWS: Color depiction on the map. Alarm message pop-up with audio BEEP when Aircraft is entering the alarm zone (alarm zone customizable in 500 ft or 1000 ft).
Airspace ahead alarm: Alarm message pop-up with audio BEEP when Aircraft is entering an airspace zone that is selected by the pilot to avoid or to be alarmed for (Pilot may select which airspaces to be alarmed for and may select at what distance or time he wants to be alarmed).
Collision Avoidance / Traffic alarm: connecting the EKP products to ZAON PCAS XRX collision avoidance system (mode C receiver), the EKP products show the relative traffic of airplanes around your position. Position, altitude and direction of the airplanes is shown, and are indicated by colors indicating whether an aircraft is in a dangerous position or not. |
| **Taxi Route Guidance** | - EKP IV & EKP IV PRO: No Taxi route Guidance
- EKP V: Airport Diagram (image) is Geo-referenced. You will see your aircraft position on top of the airport diagram. No specific taxi route guidance. |
| **Noteworthy Features and Applications** | - EKP IV includes Jeppesen's database with ICAO airports, airfields and heliports. The EKP IV main features are: full flight planning capability, land elevation, trip computer, integration with other onboard navigation systems (autopilot, GPS, external antenna, Low Airways, TAWS, Collision Avoidance interface) and full NAVDATA page.
- EKP IV Pro functions include Search And Rescue (SAR) Patterns and Detailed additional Street map for address search with POI database.
- The EKP V features flight planning capability, Low Airways, TAWS, NAVDATA page, airspace alarm, SAR, Integration with other onboard navigation systems: autopilot, CAS, EFIS, XM Weather, NMEA out, video camera, import custom maps.
- ADS-B traffic in development. |
| **Airport Moving Map Information Elements Depicted** | - Geo-referenced (Vector)
- Database driven |

CDTI and Airport Moving Map Industry Survey
Portable CDTI Manufacturers
<table>
<thead>
<tr>
<th>AvMap</th>
<th>Location: Falmouth, MA</th>
</tr>
</thead>
</table>

![Map Image](Image courtesy of AvMap)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td>White, black or magenta airplane icon</td>
</tr>
<tr>
<td>Runways</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White dash</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>White numbers on runway and white textbox with blue text</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Tan</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Blue text and black textbox with yellow text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Yellow</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Green</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Light grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>--</td>
</tr>
<tr>
<td>Buildings</td>
<td>Blue</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Blue Text</td>
</tr>
<tr>
<td>Other</td>
<td>PAPI lights</td>
</tr>
</tbody>
</table>

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>Traffic Display Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ ADS-B:</td>
<td>Minimum: 1 NM</td>
</tr>
<tr>
<td>□ TIS:</td>
<td>Maximum: 6 NM</td>
</tr>
<tr>
<td>□ TIS-B:</td>
<td>Default: 6 NM</td>
</tr>
<tr>
<td>□ TAS:</td>
<td></td>
</tr>
<tr>
<td>Mode C: (ZOAN PCAS XRX)</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Symbols

![Image of AvMap traffic symbols](image_url)

Mode C traffic in the upper right corner of the display

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode C traffic</td>
<td>Mode C</td>
<td>See image above</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>Relative</td>
</tr>
<tr>
<td>Geometric</td>
</tr>
<tr>
<td>Ground speed</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
</tr>
<tr>
<td>Above/Below 500' (climb/descent arrows)</td>
</tr>
<tr>
<td>Other :</td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
</tr>
<tr>
<td>Traffic category</td>
</tr>
<tr>
<td>Monitored by TCAS</td>
</tr>
<tr>
<td>Other :</td>
</tr>
<tr>
<td>FlightPrep, Inc.</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>
| **Product(s)** | ChartCase Professional applications
| | ChartBook-3 EFB, Helm X650 |
| **Website(s)** | www.flightprep.com

Product Overview(s)

The ChartBook-3 EFB is a portable tablet computer that may be secured on a yoke mount or kneeboard. The Helm X650 is a portable EFB with built-in GPS and clip-in panel mount. Both portable EFBS have touch screen capability, and come with FlightPrep's ChartCase Professional software package. ChartCase Professional™ is moving map software that provides a surface application using geo-referenced electronic charts. Ownship position from GPS data can be presented on these charts. In addition to the airport diagrams, ChartCase Professional™ includes all Sectional Charts, WAC Charts, High/Low Enroute Charts, Instrument Procedures, Airport Diagrams, TAC and vector charts for the U.S. The software can be used on most Windows-based computers.

Images courtesy of FlightPrep, Inc.

Approvals/Compliance

| Authority | FAA (approval)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EASA</td>
<td>Other</td>
</tr>
</tbody>
</table>

| TC/STC | TC
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STC</td>
<td></td>
</tr>
<tr>
<td>FlightPrep, Inc.</td>
<td>Location: Aurora, Oregon</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TSO</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
<td></td>
</tr>
<tr>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td></td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td></td>
</tr>
<tr>
<td>□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
<td></td>
</tr>
<tr>
<td>□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
<td></td>
</tr>
<tr>
<td>□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
<td></td>
</tr>
<tr>
<td>✔ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
<td></td>
</tr>
<tr>
<td>✔ Other: AC 91-78, Order 8900.1, Electronic Flight Bag Operational Authorization Process</td>
<td></td>
</tr>
<tr>
<td>Industry Documents</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>✔ RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification (Software Level: E)</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-200B, Standards for Processing Aeronautical Data</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-282B, MOPS for UAT ADS-B</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-317A, MOPS for ASA System</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
<td></td>
</tr>
<tr>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>FAA Notice N8900.17</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>ChartBook and Windows-based devices.</th>
</tr>
</thead>
</table>
| **Display Size** | Chartbook: 8.1”
Helm: 5” by 6” |
| **Display Resolution** | Chartbook: 1280 x 800
Helm: 640 x 800 |
<table>
<thead>
<tr>
<th>FlightPrep, Inc.</th>
<th>Location: Aurora, Oregon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>ChartBook: Approx. 300 nits, Flight Definition Outdoor Viewable Display</td>
</tr>
<tr>
<td></td>
<td>Helm: 1000 nits LED Backlight Fully Dimmable</td>
</tr>
<tr>
<td>Controls</td>
<td>• Buttons</td>
</tr>
<tr>
<td></td>
<td>• External Keyboard (e.g., USB, Bluetooth)</td>
</tr>
<tr>
<td></td>
<td>• Mouse/cursor</td>
</tr>
<tr>
<td></td>
<td>• Stylus</td>
</tr>
<tr>
<td></td>
<td>• Touch Screen</td>
</tr>
<tr>
<td></td>
<td>• Other</td>
</tr>
<tr>
<td>Capabilities</td>
<td>ChartBook – Microsoft Windows 8</td>
</tr>
<tr>
<td></td>
<td>Helm - Microsoft Windows XP</td>
</tr>
<tr>
<td></td>
<td>ChartCase - Microsoft Windows XP Tablet/Pro/Home/Media Service Pack 2 or newer</td>
</tr>
<tr>
<td>Operating System</td>
<td>FlightPrep, Inc. provides custom software that works on most Windows-based PC’s, Data Updates available in annual or 1 time downloads from FlightPrep:</td>
</tr>
<tr>
<td></td>
<td>• Annual Subscriptions – updated every 28 days (IFR Current Update)</td>
</tr>
<tr>
<td></td>
<td>• 1 Time data updates (also available in the form of 4 week subscriptions)</td>
</tr>
<tr>
<td>Decluttering</td>
<td>• Yes: Not available on raster charts; available on vector-based charts</td>
</tr>
<tr>
<td></td>
<td>• No</td>
</tr>
<tr>
<td>Panning</td>
<td>• Yes</td>
</tr>
<tr>
<td></td>
<td>• No</td>
</tr>
<tr>
<td>Autozoom</td>
<td>• Yes</td>
</tr>
<tr>
<td></td>
<td>• No</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>• Yes</td>
</tr>
<tr>
<td></td>
<td>• No</td>
</tr>
<tr>
<td>Indications and Alerts</td>
<td>When traffic is detected a banner will be displayed across the top of screen. This banner will be on any screen even though traffic will only overlay the Vector Map. The red banner will indicate that traffic has been detected.</td>
</tr>
<tr>
<td></td>
<td>Traffic Detected</td>
</tr>
<tr>
<td></td>
<td>When traffic is within 2 NM and less than ± 1000 ft. the banner will change to...</td>
</tr>
<tr>
<td></td>
<td>Traffic Advisory – Monitor Closure Rate</td>
</tr>
<tr>
<td></td>
<td>When traffic is within 0.7 NM and less than ± 700 ft. the banner will change to...</td>
</tr>
<tr>
<td></td>
<td>TRAFFIC ALERT! OBTAIN VISUAL CONTACT!</td>
</tr>
<tr>
<td>Traffic symbols also indicate traffic:</td>
<td>Traffic Advisory white diamond display for threats more than 2NM away</td>
</tr>
<tr>
<td></td>
<td>Alerts black diamond display for those between 2NM to 0.7NM</td>
</tr>
<tr>
<td></td>
<td>Alert yellow circles for threats closer than 0.7NM</td>
</tr>
<tr>
<td>Taxi Route Guidance</td>
<td>None</td>
</tr>
<tr>
<td>FlightPrep, Inc.</td>
<td>Location: Aurora, Oregon</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Noteworthy Features and Applications</td>
<td>In-Cockpit Baron Weather, HITS (Highway in the sky) Synthetic Vision, Terrain Awareness Warning System (TAWS), Virtual Instrument Tape Overlay, User Defined Checklists, Chart, Plate Trip Kit, and Flight log printing.</td>
</tr>
<tr>
<td>Airport Moving Map Information Elements Depicted</td>
<td></td>
</tr>
</tbody>
</table>
| **Airport Moving Map Data Format** | ✅ Geo-referenced
☐ Database driven |
| **Ownship** | A variety of icons are available to depict position. There is also the ability to adjust the transparency of the icon and to make it completely invisible for a moving map without ownship position. |
| **Runways** | Black |
| **Runway Centerlines** | -- |
| **Runway Labels** | Black |
| **Taxiways** | Grey |
| **Taxiway Centerlines** | -- |
| **Taxiway Labels** | Black |
| **Hold Lines** | -- |
| **Non-movement Areas** | White |
| **Ramp Areas** | Grey |
| **Grassy Areas** | White |
| **Buildings** | Black |
| **Building Labels** | Black |
| **Other** | |
| **Traffic Display** | |
| **Data Source and Targets Displayed** | ☐ ADS-B:
✅ TIS:
☐ TIS-B:
☐ TAS: |
| **Traffic Display Range** | Identify minimum, maximum and default traffic display range:
Minimum: 50’
Maximum: 5-6 NM
Default: Default threshold defined above and not user selectable or scalable |
FlightPrep, Inc.
Location: Aurora, Oregon

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Proximate traffic</td>
<td>Traffic detected</td>
<td>TIS</td>
<td>![Diamond Icon]</td>
</tr>
<tr>
<td>Traffic advisory (Proximate traffic)</td>
<td>< 2 NM and ± 1000 ft.</td>
<td>TIS</td>
<td>![Diamond Icon]</td>
</tr>
<tr>
<td>Traffic alert</td>
<td>< 0.7 NM and ± 700 ft.</td>
<td>TIS</td>
<td>![Yellow Circle Icon]</td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

- **Data Tag Information**
 - Flight ID
 - Altitude
 - Actual
 - Relative
 - Geometric
 - Ground speed
 - Vertical direction/speed
 - Above/Below 500’ (climb/descent arrows)
 - Other
 - Horizontal velocity vector
 - Invalid/Unavailable data
 - Traffic category
 - Monitored by TCAS
 - Other (please specify):
ForeFlight, LLC

Location: Austin, TX

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>ForeFlight Mobile</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Website(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.foreflight.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Overview(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForeFlight Mobile is an Apple iPad application for pilots providing weather, charts, flight planning, filing and briefing, documents and en route navigation.</td>
</tr>
</tbody>
</table>

Images courtesy of ForeFlight, LLC

<table>
<thead>
<tr>
<th>Approvals/Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
</tr>
<tr>
<td>✓ FAA (approval)</td>
</tr>
<tr>
<td>□ EASA</td>
</tr>
<tr>
<td>✓ Other: NavCanada</td>
</tr>
<tr>
<td>TC/STC</td>
</tr>
<tr>
<td>□ TC Aircraft:</td>
</tr>
<tr>
<td>□ STC Aircraft:</td>
</tr>
<tr>
<td>TSO</td>
</tr>
<tr>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td>□ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
</tr>
<tr>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>ForeFlight, LLC</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
</tr>
<tr>
<td>□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td>□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td>□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td>□ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>Industry Documents</td>
</tr>
<tr>
<td>□ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td>□ RTCA DO-178C Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td>□ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td>□ RTCA DO-200B, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td>□ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td>□ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td>□ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td>□ RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td>□ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td>□ RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
</tr>
<tr>
<td>Display Size</td>
</tr>
<tr>
<td>Display Resolution</td>
</tr>
<tr>
<td>Brightness</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>□ Buttons</td>
</tr>
<tr>
<td>□ Keyboard (e.g., USB, Bluetooth)</td>
</tr>
<tr>
<td>□ Mouse/cursor</td>
</tr>
<tr>
<td>□ Stylus</td>
</tr>
<tr>
<td>□ Touch Screen</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>Capabilities</td>
</tr>
<tr>
<td>Operating System</td>
</tr>
<tr>
<td>ForeFlight, LLC</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
</tbody>
</table>
| **Decluttering** | • Yes
 □ No
Filter traffic setting hides traffic that is more than 15NM away from your current GPS location and/or more than 3,500' above or below your current altitude. As you zoom out on the Map the inner rings and scale markers automatically hide to declutter the view. |
| **Panning** | • Yes: Drag your finger on the map to slide it to a new region.
 □ No |
| **Autozoom** | □ Yes
 □ No |
| **Manual zooming** | • Yes
 □ No
Use two fingers in a pinch or expand gesture to change the zoom scale of the map. You can also double tap the map to zoom in one level or tap once with two fingers at the same time to zoom out one level. Anytime you display a new route on the map the zoom level and region shown will auto-adjust to bring your route into view. |
| **Indications and Alerts** | Traffic Advisory:
A visual alert will pop up if your aircraft is moving at over 40kts and an ADS-B traffic target comes within 1NM horizontally and +/- 1,200' of your aircraft's position. The traffic alert includes “clock” direction and relative altitude information to help you locate the target. The pop-up will display on any ForeFlight screen, unless another application is being viewed, or the display is in sleep mode. Auditory alerts are not currently available.
Runway Proximity Advisor™:
A visual and audio alert system triggers when you taxi near or onto a runway. This system uses GPS and geographic runway safety areas to alert pilots as they approach or enter a runway environment. The system runs automatically in the background, regardless of which part of the app is currently visible, but ForeFlight Mobile must be running and visible on the iPad. As you near the runway the system will provide an “Approaching” alert. Upon entering the runway itself, the system will provide an “Entered” alert. The system will speak the name of the runway for each alert. If the aircraft is not clearly at one particular end of the runway, the system will alert with both runway end names. For instance, it will say “02-20” instead of just “02”.
To receive audio alerts in your headset, use a bluetooth-capable headset and connect it to the iPad. If you are using a vibration-capable device, like the iPhone, the device will vibrate when audio alerts are given. Alerts may be manually disabled, and are automatically disabled when the aircraft is stopped or traveling faster than 40kts.
Advisory pop-ups will display on any screen in ForeFlight Mobile. However, if ForeFlight Mobile is not displayed on the screen, pop-ups will not be shown; for example, while viewing another app, or the iPad or iPhone is sleeping. |
<p>| Taxi Route Guidance | Shows NOTAMs and provides annotation capability. Pilots may their draw taxi route on the map using their finger. |</p>
<table>
<thead>
<tr>
<th>ForeFlight, LLC</th>
<th>Location: Austin, TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noteworthy Features and Applications</td>
<td>Cockpit sharing, live flight tracking links, route editor, documents</td>
</tr>
<tr>
<td>Airport Moving Map Information Elements Depicted</td>
<td>Specify whether the following functions are supported and if so, how the information is depicted. Please provide an image of each element, or one image depicting multiple elements.</td>
</tr>
<tr>
<td>Airport Moving Map Data Format</td>
<td>Geo-referenced (FAA, NavCanada and ForeFlight)</td>
</tr>
<tr>
<td>Ownship</td>
<td>![Blue aircraft icon]</td>
</tr>
<tr>
<td>Runways</td>
<td>Black</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>--</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Green (ForeFlight charts only)</td>
</tr>
<tr>
<td>Buildings</td>
<td>Black</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Other</td>
<td>--</td>
</tr>
<tr>
<td>Traffic Display</td>
<td></td>
</tr>
<tr>
<td>Data Source and Targets Displayed</td>
<td>ForeFlight Mobile supports the Appareo Stratus ADS-B receivers. Number of targets depends on the receiver.</td>
</tr>
<tr>
<td></td>
<td>✔ ADS-B</td>
</tr>
<tr>
<td></td>
<td>□ TIS</td>
</tr>
<tr>
<td></td>
<td>✔ TIS-B</td>
</tr>
<tr>
<td></td>
<td>□ TAS</td>
</tr>
<tr>
<td>Traffic Display Range</td>
<td>Three concentric rings are displayed with markers around the aircraft's current position. Based on ADS-B Network.</td>
</tr>
<tr>
<td>Minimum:</td>
<td>5 NM</td>
</tr>
<tr>
<td>Maximum:</td>
<td>100 NM</td>
</tr>
<tr>
<td>Default:</td>
<td>N/A</td>
</tr>
<tr>
<td>Symbol Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ground, Directional</td>
<td>Moving targets are arrowhead shaped, pointing in the direction of travel. Ground targets are brown.</td>
</tr>
<tr>
<td>Airborne, Non-directional</td>
<td>Stationary targets, or those without direction or speed information, are diamond shaped. Airborne targets are cyan.</td>
</tr>
<tr>
<td>Airborne, Directional with TrafficTrend™</td>
<td>TrafficTrend™ vector is projected out of the front of the arrowhead to indicate the relative speed of the target (longer vector = faster speed).</td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
<td>✅ Flight ID</td>
</tr>
<tr>
<td>Altitude</td>
<td>✅ Altitude</td>
</tr>
<tr>
<td>Actual</td>
<td>✅ Actual</td>
</tr>
<tr>
<td>Relative (in 100’s of feet)</td>
<td>✅ Relative (in 100’s of feet)</td>
</tr>
<tr>
<td>Geometric</td>
<td>✅ Geometric (relative altitudes are based on the Stratus’ geometric/GPS altitude)</td>
</tr>
<tr>
<td>Ground speed</td>
<td>☐ Ground speed</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
<td>☑ Vertical direction/speed</td>
</tr>
<tr>
<td>Above/Below 500’ (climb/descent arrows)</td>
<td>☐ Above/Below 500’ (climb/descent arrows)</td>
</tr>
<tr>
<td>Other:</td>
<td>☑ Other:</td>
</tr>
<tr>
<td>If the target is climbing or descending at 500 ft/min or greater, a vertical arrow indicating the climb or descent is shown to the right of the target.</td>
<td></td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
<td>☐ Horizontal velocity vector</td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
<td>☐ Invalid/Unavailable data</td>
</tr>
<tr>
<td>Traffic category</td>
<td>☐ Traffic category</td>
</tr>
<tr>
<td>Monitored by TCAS</td>
<td>☐ Monitored by TCAS</td>
</tr>
<tr>
<td>Other:</td>
<td>☑ Other:</td>
</tr>
<tr>
<td>TrafficTrend™ vector is projected out of the front of the arrowhead to indicate the relative speed of the target (longer vector = faster speed).</td>
<td></td>
</tr>
<tr>
<td>You can tap on any target to display a pop-up with additional information, which can include target tail or flight number, heading, speed, and whether the information was broadcast via 978UAT or 1090ES.</td>
<td></td>
</tr>
</tbody>
</table>
SkyVision

Location: Asheboro, NC

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Xtreme Vision™</th>
</tr>
</thead>
</table>
| Website(s) | • www.skyvisionxtreme.com

Product Overview(s)

Xtreme Vision™ is an application designed to provide up-to-date ADS-B data, augment traffic and weather avoidance strategies. Xtreme Vision™ interfaces with several of the portable receivers, as well as the NavWorx certified transceivers.

![Image courtesy of SkyVision](image.png)

Approvals/Compliance

None – Portable Display – Uses Certified UAT Transceivers or Portable ADS-B Receivers

<table>
<thead>
<tr>
<th>Authority</th>
<th>None – Portable Display – Uses Certified UAT Transceivers or Portable ADS-B Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>☐</td>
</tr>
<tr>
<td>EASA</td>
<td>☐</td>
</tr>
<tr>
<td>Other</td>
<td>☐</td>
</tr>
</tbody>
</table>

| TC/STC | ☐ TC
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ STC</td>
</tr>
<tr>
<td>SkyVision</td>
<td>Location: Asheboro, NC</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>TSO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td></td>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td></td>
<td>□ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
<tr>
<td>Industry Documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-200B, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-272D, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td></td>
<td>☑ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td></td>
<td>☑ Other: RTCA-DO-267B</td>
</tr>
<tr>
<td>Other</td>
<td>GDL-90 Public Documents</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>XtremeVision™ 3D ADS-B Display System or iPad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Size</td>
<td>8” or 9” iPad</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>1280 x 800</td>
</tr>
<tr>
<td>Brightness</td>
<td>Adaptive brightness</td>
</tr>
<tr>
<td>SkyVision</td>
<td>Location: Asheboro, NC</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| **Controls** | ☑ Buttons
| | ☑ Keyboard
| | ☑ Mouse/cursor
| | ☑ Stylus
| | ☑ Touch Screen
| | ☑ Other: Can use any input device compatible with display |
| **Capabilities** | |
| **Operating System** | Microsoft Windows, iOS |
| **Decluttering** | ☑ Yes: Airport identifiers decluttered based on zoom range
| | ☑ No |
| **Panning** | ☑ Yes: Touch point centers screen
| | ☑ No |
| **Autozoom** | ☑ Yes
| | ☑ No |
| **Manual zooming** | ☑ Yes: Buttons or Pinch
| | ☑ No |
| **Indications and Alerts** | Visual and aural warnings and alerts are supported. Warning distance default is 9,000 ft (shown in yellow), and alert distance default is 6,000 ft (shown in red). Both distance and color are user adjustable. Aural warnings and alerts may also be turned on or off. Trajectory lines for ownship and other traffic. |
| **Taxi Route Guidance** | N/A |
| **Noteworthy Features and Applications** | Adding Collision Avoidance warnings based on projected 3D space in X time. Adding vector generated map with terrain and obstacles. |
| **Traffic Display** | |
| **Data Source and Targets Displayed** | ☑ ADS-B: 32
| | ☑ TIS:
| | ☑ TIS-B: 32
| | ☑ TAS: We show up 32 traffic targets based on the range selected. Typically we are receiving multiple ground stations and therefore we can show more than most and at a greater range. We do not differentiate between TIS and ADS-B in regards to showing traffic. ADS-B traffic will have the A/C "N" number whereas TIS traffic does not have that information available. |
| **Traffic Display Range** | Minimum: None
| | Maximum: 100 nm
| | Default: 20 nm |
SkyVision
Location: Asheboro, NC

Traffic Symbols

<table>
<thead>
<tr>
<th>Ownership (airborne)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shown as A/C symbol. Default is dark green - user adjustable.</td>
</tr>
</tbody>
</table>

Aircraft up to 12,500 lbs & Aircraft not equipped with ADS-B:

Aircraft above 12,500 lbs:

Rotorcraft:

Airships:

Aircraft with no directional information:

Ground Vehicles:

Image courtesy of SkyVision

Above characters apply only to ADS-B traffic. All TIS-B traffic travelling slower than 210kts will be displayed as small aircraft character (first image shown above). TIS-B traffic travelling faster than 210kts will be shown as the large aircraft character (second image shown above).
SkyVision

Location: Asheboro, NC

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Flight ID – If ADS-B</td>
</tr>
<tr>
<td>✗ Altitude</td>
</tr>
<tr>
<td>□ Actual</td>
</tr>
<tr>
<td>✗ Relative - to ownship +/-</td>
</tr>
<tr>
<td>□ Geometric</td>
</tr>
<tr>
<td>✗ Ground speed – shown in Kts</td>
</tr>
<tr>
<td>✗ Vertical direction/speed</td>
</tr>
<tr>
<td>✗ Above/Below 500’ (climb/descent arrows) – Actual</td>
</tr>
<tr>
<td>differential and climb /descent arrows</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
<tr>
<td>✗ Invalid/Unavailable data – X on screen for no UAT,</td>
</tr>
<tr>
<td>text indicator if no ground station</td>
</tr>
<tr>
<td>✗ Traffic category – TIS based on speed, ADS-B based on</td>
</tr>
<tr>
<td>symbol</td>
</tr>
<tr>
<td>□ Monitored by TCAS</td>
</tr>
<tr>
<td>□ Other</td>
</tr>
</tbody>
</table>

Portable receivers do not provide a way to get pressure altitude input, and the FAA data provided via the ground stations for traffic is pressure altitude (what is reported to them via altitude encoders input to the aircraft transponders). Therefore, altitude differential shown is the difference between geometric (GPS) for ownship and pressure altitude for the ground station TIS reported traffic. We connect to certified UAT’S which provide altitude encoder pressure altitude which eliminates this potentially dangerous problem. In addition, we calculate the pressure altitude for TIS traffic by using the barometric pressure of the closest weather reporting station and therefore have a more valid altitude differential for traffic.
X-Avionics, LLC

Location: Columbia, SC

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Xavion</th>
</tr>
</thead>
</table>
| Website(s) | • http://xavion.com

Product Overview(s)

Running on your iPad or iPhone, Xavion provides synthetic vision, GPS navigation, instrument backups, ADS-B weather and traffic, weight & balance checks, and estimate fuel burn and time to your destination at various altitudes.

![Image courtesy of X-Avionics, LLC](image.png)

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>FAA</th>
<th>EASA</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC/STC</td>
<td>TC</td>
<td>STC</td>
<td></td>
</tr>
</tbody>
</table>
| TSO | TSO-C112e, ATCRBS/Mode S Airborne Equipment
TSO-C113a, Airborne Multipurpose Electronic Displays
TSO-C147a, TAS Airborne Equipment
TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz
TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)
TSO-C166b, Extended Squitter ADS-B and Traffic Information
TSO-C195b, Avionics Supporting ADS-B ASA
Other |
<table>
<thead>
<tr>
<th>X-Avionics, LLC</th>
<th>Location: Columbia, SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
<td></td>
</tr>
<tr>
<td>☑ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>☑ AC 25-11B, Electronic Flight Deck Displays</td>
<td></td>
</tr>
<tr>
<td>☑ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
<td></td>
</tr>
<tr>
<td>☑ Other</td>
<td></td>
</tr>
</tbody>
</table>

Industry Documents	
☑ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment	
☑ RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification	
☑ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment	
☑ RTCA DO-200B, Standards for Processing Aeronautical Data	
☑ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware	
☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps	
☑ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B	
☑ RTCA DO-272D, User Requirements for Aerodrome Mapping Information	
☑ RTCA DO-282B, MOPS for UAT ADS-B	
☑ RTCA DO-317A, MOPS for ASA System	
☑ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT	
☑ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application	
☑ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA	
☑ Other	

| **Other** | |

Hardware	
Hardware Platform(s)	iPad, iPhone, iPad Mini
Display Size	Depends on hardware platform.
Display Resolution	1024 x 768
Brightness	Uses high-contrast colors.

Controls	
☑ Buttons	
☑ Keyboard (e.g., USB, Bluetooth)	
☑ Mouse/cursor	
☑ Stylus	
☑ Touch Screen	
☑ Other	

| **Capabilities** | |

<p>| Operating System | iOS (7 or later) |</p>
<table>
<thead>
<tr>
<th>X-Avionics, LLC</th>
<th>Location: Columbia, SC</th>
</tr>
</thead>
</table>
| **Decluttering** | ☑ Yes
☑ No |
| Obstacles, navaids, airports, and winds aloft data are removed as the user zooms out in order, such that elements do not overlap. |
| **Panning** | ☑ Yes (please describe): |
| ☑ No |
| Drag with your fingers to slide about. Also, in normal mode (if you have not dragged with your fingers) the map follows the airplane like any aviation moving map. This may be switched to an apple maps for iPhone convention when you drag the touch screen with your fingers. Touch a button to go back to aviation standard (follow the airplane) when desired. |
| **Autozoom** | ☑ Yes: Touch a button to autozoom on the glade range or flight path. |
| ☑ No |
| **Manual zooming** | ☑ Yes: Two-finger pinch to zoom as well, just like apple maps. |
| ☑ No |
| **Indications and Alerts** | Describe when and how indicators and alerts are depicted and inhibited: |
| "Weight Check" (if over-weight)
"Gear Warning" (at reasonable altitudes)
"Take-Off rwy len" (based on GPS and airport database and weather input)
"Downwind T-O/land" (based on GPS and airport database and weather input)
"Unusual Attitude"
"Angle of Attack"
"NEXRAD proximity" (based on GPS and weather input)
"Terrain Collision"
"Traffic Collision"
"800, 400, 200 ft" (based on GPS and TCAS and terrain database input) |
| **Taxi Route Guidance** | None. |
| **Noteworthy Features and Applications** | This app constantly plans for power-off approaches to every airport in gliding range and shows you those approaches as 3-d hoops that you can fly though in order to guide you down to safety after an engine failure, if there are any airports within gliding range. |
| **Traffic Display** | ☑ ADS-B: Currently up to 10 targets, but could be increased in the future. |
| ☑ TIS:
☑ TIS-B:
☑ TAS: |
<table>
<thead>
<tr>
<th>X-Avionics, LLC</th>
<th>Location: Columbia, SC</th>
</tr>
</thead>
</table>
| **Traffic Display Range** | Minimum: 8 nautical miles
Maximum: 8 nautical miles
Default: 8 nautical miles |
| **Traffic Symbols** | | | |
| **Symbol Type** | **Description** | **Data Source** | **Image** |
| Ownership (airborne) | | | |
| Traffic | Any airplane within 8 nm and 1,000 ft vertically | ADS-B | ![Traffic Symbol] |
| **Traffic Symbol Data Tag Information** | |
| **Data Tag Information** | ☐ Flight ID
☐ Altitude
☐ Actual
☐ Relative (in hundreds of feet)
☐ Geometric
☐ Ground speed
☐ Vertical direction/speed
☐ Above/Below 500’ (climb/descent arrows)
☐ Other
☐ Horizontal velocity vector
☐ Invalid/Unavailable data
☐ Traffic category
☐ Monitored by TCAS
☐ Other |
5. Airport Moving Map Only Manufacturers

This section includes manufacturers with only airport moving map products that currently do not depict traffic information. The information was provided by the manufacturers and has not been verified with the FAA.

<table>
<thead>
<tr>
<th>Jeppeesen (Product 1 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td>Jeppeesen Airport Moving Map software and database for Boeing Class 3 EFB systems</td>
</tr>
</tbody>
</table>
| **Website(s)** | • www.jeppeesen.com
• [ww1.jeppeesen.com/industry-solutions/aviation/commercial/airport-moving-map.jsp%3Bjsessionid=9KNyM2JpdDqCqDmhlpssNMxkph9zqbrt4JpMdCKGLrjv9NDsDN8sxi-240844396](http://www.jeppeesen.com/industry-solutions/aviation/commercial/airport-moving-map.jsp%3Bjsessionid=9KNyM2JpdDqCqDmhlpssNMxkph9zqbrt4JpMdCKGLrjv9NDsDN8sxi-240844396) |

Product Overview(s)

Jeppeesen Airport Moving Map (AMM) for EFB renders high-resolution Jeppeesen airport database maps, including runways, taxiways, ramps, structures, and movement control features. With GPS, the application depicts ownship position in both north-up and track-up (moving map) orientation. Jeppeesen provides airport databases through subscription. Airport Moving Map is part of a suite of Jeppeesen applications offered for EFBs. The AMM entered service on Boeing Class 3 EFB in 2003.

Jeppeesen Airport Moving Map is designed to provide supplemental position awareness during taxi operations. It is a supplement to Jeppeesen electronic charting solutions available for EFB.

Note: as now allowed by AC 120-76C, Jeppeesen no longer manufactures AMM under a TSOA.

Images courtesy of Jeppeesen

Approvals/Compliance

- FAA
- EASA
- Other

Aircraft Evaluation Group: Seattle, WA, USA
Ops Group: Cologne, Germany
Jeppesen (Product 1 of 3)

Location: Englewood, CO

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>Applicable to hardware only, which is not supplied by Jeppesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ TC</td>
<td>Aircraft: multiple</td>
</tr>
<tr>
<td>☑ STC</td>
<td>Aircraft: multiple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSO</th>
<th>AMM is now approved/authorized as Type B EFB functionality. No TSOA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ TSO-C112c, ATCRBS/Mode S Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C147a, TAS Airborne Equipment</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
<td></td>
</tr>
<tr>
<td>☐ TSO-C195b, Avionics Supporting ADS-B ASA</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA Regulatory and Guidance Material</th>
<th>AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td></td>
<td>AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td></td>
<td>AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td></td>
<td>☑ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags</td>
</tr>
<tr>
<td></td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry Documents</th>
<th>☐ RTCA DO-160F, Environmental Conditions and Test Procedures for Airborne Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>☑ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td></td>
<td>☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps (as modified by AC 120-76C).</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td></td>
<td>☑ RTCA DO-272, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td></td>
<td>☐ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td></td>
<td>☐ Other</td>
</tr>
</tbody>
</table>

<p>| Other | Jeppesen AMM technologies are addressed in various Operational Suitability reports (including EASA equivalent), and in FSB reports generated during an Operator’s 8900.1 EFB Authorization process. |</p>
<table>
<thead>
<tr>
<th>Jeppesen (Product 1 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
<td>Boeing Class 3 (“Installed”) EFB</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>Varies by platform. 1024 x 768 minimum.</td>
</tr>
<tr>
<td>Brightness</td>
<td>Ability to control brightness provided. Separate Day and Night modes not supported on Class 3 (“Installed”), per Boeing specification.</td>
</tr>
</tbody>
</table>
| **Controls** | Buttons
☑️ Keyboard (e.g., USB, Bluetooth)
☐ Mouse/cursor
☐ Stylus
☑️ Touch Screen
☐ Other: Cursor Control Device (CCD) |
| **Capabilities** | |
| **Operating System** | Microsoft Windows |
| **Decluttering** | ☑ Yes
☐ No
Labels are always presented in read-right manner and are automatically de-cluttered to prevent label collisions and overprints. Appropriate label detail is provided at each zoom level, for example, runway identifiers and key taxiway identifiers are always shown. As the AMM is zoomed in, additional labels are added, showing more detail such as concourse and gate identifiers. |
| **Panning** | ☑ Yes
☐ No
Panning is supported when displaying the map in north-up orientation via touch screen. |
| **Autozoom** | ☐ Yes
☐ No |
| **Manual zooming** | ☑ Yes
☐ No
Zooming is accomplished via dedicated physical buttons on the display bezel. |
<p>| Indications and Alerts | Airport Moving Map is designed to provide supplemental position information on EFBs. Constant ownship position updating while on the ground at an airport in the database, as long as healthy position data is received from the system. Spotter will be removed and an onscreen notice will be presented to the user if position data becomes unavailable or if accuracy requirements are not met. Out-of-date AMM databases will result in a warning to the user via the EFB fault reporting system. |
| Taxi Route Guidance | Taxi guidance is not supported on this platform. User is provided graphical display of ownship position on the airport surface for SA only. |
| Noteworthy Features and Applications | |</p>
<table>
<thead>
<tr>
<th>Jeppeesen (Product 1 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
</table>

Airport Information Elements Depicted

| Airport Moving Map Data Format | ✗ Geo-referenced
<table>
<thead>
<tr>
<th></th>
<th>✗ Database driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td></td>
</tr>
<tr>
<td>Runways</td>
<td>Light Grey - All runway markings visible from the satellite are depicted in white to match real-world paint markings.</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White runway paint markings, including runway centerlines, are depicted as seen in the real world.</td>
</tr>
</tbody>
</table>
| Runway Labels | Runway identifier, blue text in blue oval with black background. For runways visible in the view, the runway labels are always displayed at view edge, regardless of zoom and pan setting.
 | Closed runways are labeled with Amber text in Amber oval with black background. An Amber X marks the runways and runway labels.
 | Closed Displaced Runway Threshold: Same fill color as the runway, but with Amber outline and Amber X marks on both ends of the Displaced Threshold. |
| Taxiways | Dark grey |
| Taxiway Centerlines | Not shown |
| Taxiway Labels | White characters |
| Hold Lines | Amber to match the paint as seen in the real world (as allowed by DO-257) |
| Non-movement Areas | Dirt and grass areas are shown in black. Blast pads and overrun areas shown in light grey. |
| Ramp Areas | Light grey |
| Grassy Areas | Black |
| Buildings | Blue |
| Building Labels | White text |
| Other | Closed Ramp, Taxiway, Parking Stand areas: Black fill with red outline.
 | Areas Under Construction: Bounded by a red border.
 | Other vertical structures such as trees are shown in blue just like buildings.
 | Hotspots are shown with amber outline.
<pre><code> | Airport Beacons are shown as a green star within a green circle on black background. |
</code></pre>
<table>
<thead>
<tr>
<th>Jeppesen (Product 2 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td>Jeppesen FliteDeck Pro 7.X, AMM Module</td>
</tr>
<tr>
<td>Website(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product Overview(s)

Jeppesen’s AMM uses high-resolution airport-data to render data-driven, vector-based, airport maps. The AMM application helps orient the flight crew to the aircraft’s position on the ground relative to runways, taxiways, and airport structures. The AMM’s primary objective is to help operators establish and maintain positional awareness to improve safety and operational efficiency margins, and reduce flight crew workload.

<table>
<thead>
<tr>
<th>Approvals/Compliance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>FAA Certification Office: Seattle</td>
</tr>
<tr>
<td></td>
<td>EASA</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>TC/STC</td>
<td>TC</td>
</tr>
<tr>
<td></td>
<td>STC</td>
</tr>
</tbody>
</table>
Jeppesen (Product 2 of 3)

Location: Englewood, CO

<table>
<thead>
<tr>
<th>TSO</th>
<th>AMM is now approved/authorized as Type B EFB functionality. No TSOA.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- TSO-C112c, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>- TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td></td>
<td>- TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>- TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td></td>
<td>- TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
</tr>
<tr>
<td></td>
<td>- TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td></td>
<td>- TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td></td>
<td>- Other</td>
</tr>
</tbody>
</table>

FAA Regulatory and Guidance Material	AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
	AC 20-165A, Airworthiness Approval of ADS-B Out Systems
	AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications
	AC 25-11B, Electronic Flight Deck Displays
	✅ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags
	- Other

Industry Documents	RTCA DO-160F, Environmental Conditions and Test Procedures for Airborne Equipment
	RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification
	RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment
	✅ RTCA DO-200A, Standards for Processing Aeronautical Data
	RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
	✅ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps
	RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
	✅ RTCA DO-272, User Requirements for Aerodrome Mapping Information
	RTCA DO-282B, MOPS for UAT ADS-B
	RTCA DO-317A, MOPS for ASA System
	RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT
	RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application
	RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA
	- Other

| **Other** | Letter of Operational Suitability from FAA AEG |

<table>
<thead>
<tr>
<th>Hardware</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>Various, this software is designed to run on a variety of COTs devices.</th>
</tr>
</thead>
</table>

<p>| Display Size | Various, this software is designed to run on a variety of COTs devices. |</p>
<table>
<thead>
<tr>
<th>Jeppesen (Product 2 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Resolution</td>
<td>Various, this software is designed to run on a variety of COTs devices at any resolution above the minimum of 1024x768.</td>
</tr>
<tr>
<td>Brightness</td>
<td>Various, this software is designed to run on a variety of COTs devices.</td>
</tr>
</tbody>
</table>
| **Controls** | - Buttons
- Keyboard (e.g., USB, Bluetooth)
- Mouse/cursor
- Stylus
- Touch Screen
- Other |
| **Capabilities** | |
| **Operating System** | Microsoft Windows |
| **Decluttering** | ☑ Yes (please describe):
No
Labels are always presented in read-right manner and are automatically de-cluttered to prevent label collisions and overprints. Appropriate label detail is provided at each zoom level, for example, runway identifiers and key taxiway identifiers are always shown. As the AMM is zoomed in, additional labels are added, showing more detail such as concourse and gate identifiers. Runway markings are never decluttered and will dynamically move to always be in view. Depending on selected zoom level, ramp, taxiway, parking stand/gate, and building names/labels may be removed for decluttering purposes. |
| **Panning** | ☑ Yes
No |
| **Autozoom** | ☑ Yes
No |
| **Manual zooming** | ☑ Yes
No |
| **Indications and Alerts** | Airport Moving Map is designed to provide supplemental position information on EFBs. Constant ownship position updating while on the ground at an airport in the database, as long as healthy position data is received from the system. Spotter will be removed and an onscreen notice will be presented to the user if position data becomes unavailable or if accuracy requirements are not met. Out-of-date AMM databases will result in a warning to the user via the EFB fault reporting system. |
| **Taxi Route Guidance** | Taxi routes can be entered in two ways. 1) The user may use his finger to highlight the planned route. 2) The scratchpad can be used to enter a textual description of the route. |
| **Noteworthy Features and Applications** | |
| **Airport Information Elements Depicted** | |
| **Airport Moving Map Data Format** | ☑ Geo-referenced
☒ Database driven |
Jeppesen (Product 2 of 3)
Location: Englewood, CO

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Magenta triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways</td>
<td>Light Grey - All runway markings visible from the satellite are depicted in white to match real-world paint markings.</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White runway paint markings, including runway centerlines, are depicted as seen in the real world.</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Blue text in blue oval with black background. For runways visible in the view, the runway labels are always displayed at view edge, regardless of zoom and pan setting. Closed Runways are labeled with Amber text in Amber oval with black background. An Amber X marks the runways and runway labels. Closed Displayed Runway Threshold: Same fill color as the runway, but with Amber outline and Amber X marks on both ends of the Displaced Threshold.</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>Not shown</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>White characters</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Amber</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Dirt and grass areas are shown in black. Blast pads and overrun areas shown in light grey.</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Black</td>
</tr>
<tr>
<td>Buildings</td>
<td>Blue</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White text</td>
</tr>
<tr>
<td>Other</td>
<td>Closed Ramp, Taxiway, Parking Stand areas: Black fill with red outline. Areas Under Construction: Bounded by a red border. Other vertical structures such as trees are shown in blue just like buildings. Airport Beacons are shown as a green star within a green circle on black background.</td>
</tr>
<tr>
<td>Jeppesen (Product 3 of 3)</td>
<td>Location: Englewood, CO</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Product(s)</td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile Solutions</td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck</td>
<td></td>
</tr>
<tr>
<td>Jeppesen FliteDeck Pro</td>
<td></td>
</tr>
<tr>
<td>Jeppesen Mobile FliteDeck VFR</td>
<td></td>
</tr>
<tr>
<td>JeppView Solutions</td>
<td></td>
</tr>
<tr>
<td>JeppView FliteDeck</td>
<td></td>
</tr>
<tr>
<td>JeppView MFD</td>
<td></td>
</tr>
</tbody>
</table>

Aviation data provided by Jeppesen for applications developed by Avionics vendors.

<table>
<thead>
<tr>
<th>Website(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• www.jeppesen.com</td>
</tr>
<tr>
<td>• Jeppesen Mobile Solutions</td>
</tr>
<tr>
<td>• JeppView</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Overview(s)</th>
</tr>
</thead>
</table>

AMM using pre-composed charts:
- Jeppesen Mobile FliteDeck – an iOS application for use on iPad.
- Jeppesen FliteDeck Pro – an application for iOS and Windows 8 that is available for the Commercial Air Carrier and Military markets only.
- JeppView FliteDeck – a Windows application for use in-flight, marketed to the Business and General aviation markets. This application has been nearly replaced at the customer level by Jeppesen Mobile FliteDeck since 2011 though it is still available as an option with a JeppView subscription.

AMM dynamically rendered:
- Jeppesen Mobile FliteDeck VFR – an iOS application for use on iPad targeted primarily to the General Aviation market. This application uses dynamic rendering of aeronautical data for airports and airspace.
Jeppesen (Product 3 of 3)

Location: Englewood, CO

Images courtesy of Jeppesen

Approvals/Compliance

<table>
<thead>
<tr>
<th>Authority</th>
<th>FAA</th>
<th>Certification Office: Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EASA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC/STC</th>
<th>TC</th>
<th>Aircraft:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STC</td>
<td>Aircraft:</td>
</tr>
</tbody>
</table>
Jeppesen (Product 3 of 3)

Location: Englewood, CO

<table>
<thead>
<tr>
<th>TSO</th>
<th>AMM is now approved/authorized as Type B EFB functionality. No TSOA.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ TSO-C112c, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-SHIP)</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
</tbody>
</table>

FAA Regulatory and Guidance Material	□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems
	□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems
	□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications
	□ AC 25-11B, Electronic Flight Deck Displays
	☑ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags
	□ Other

Industry Documents	□ RTCA DO-160G Environmental Conditions and Test Procedures for Airborne Equipment
	□ RTCA DO-178C Software Considerations in Airborne Systems and Equipment Certification
	□ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment
	☑ RTCA DO-200A, Standards for Processing Aeronautical Data
	□ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware
	☑ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps
	□ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B
	☑ RTCA DO-272, User Requirements for Aerodrome Mapping Information
	□ RTCA DO-282B, MOPS for UAT ADS-B
	□ RTCA DO-317A, MOPS for ASA System
	□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT
	□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application
	□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA
	□ Other

| Other | Jeppesen AMM technologies are addressed in various Operational Suitability reports (including EASA equivalent), and in FSB reports generated during an Operator’s 8900.1 EFB Authorization process. |

Hardware

<p>| Hardware Platform(s) | Various, software is designed to run on a variety of COTS devices. |</p>
<table>
<thead>
<tr>
<th>Jeppesen (Product 3 of 3)</th>
<th>Location: Englewood, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Size</td>
<td>Various, software is designed to run on a variety of COTS devices.</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>Various, software is designed to run on a variety of COTS devices.</td>
</tr>
<tr>
<td>Brightness</td>
<td>Various, software is designed to run on a variety of COTS devices. In addition, Day vs. Night Modes supported via software function.</td>
</tr>
</tbody>
</table>
| **Controls** | ☑ Buttons
☑ Keyboard (e.g., USB, Bluetooth)
☑ Mouse/cursor
☑ Stylus
☑ Touch Screen
☐ Other |
| **Capabilities** | |
| **Airport Moving Map** | Geo-referenced
Database driven (Mobile FliteDeck VFR only at this time) |
| **Data Format** | |
| **Operating System** | Microsoft Windows, iOS (version 6.0 or later) |
| **Decluttering** | ☑ Yes
☐ No
Labels are always presented in read-right manner and are automatically de-cluttered to prevent label collisions and overprints. Appropriate label detail is provided at each zoom level, for example, runway identifiers and key taxiway identifiers are always shown. As the AMM is zoomed in, additional labels are added, showing more detail such as concourse and gate identifiers. |
| **Panning** | ☑ Yes: Via touch screen or mouse depending on software variant
☐ No |
| **Autozoom** | ☑ Yes (Mobile FliteDeck VFR only a this time)
☐ No |
| **Manual zooming** | ☑ Yes: Via touch screen gesture, mouse, or GUI control, depending on software variant
☐ No |
| **Indications and Alerts** | Airport Moving Map is designed to provide supplemental position information on EFBs. Constant ownship position updating while on the ground at an airport in the database, as long as healthy position data is received from the system. Spotter will be removed and an onscreen notice will be presented to the user if position data becomes unavailable or if accuracy requirements are not met. Out-of-date AMM databases will result in a warning to the user via the EFB fault reporting system. |
| **Taxi Route Guidance** | The user may use his finger to highlight the planned route. |
| **Noteworthy Features and Applications** | Dynamically rendered enroute display enables customization of various data layers such as airports, airspace, NAVAIDs, waypoints and terrain. Own ship position supported on enroute display and pre-composed taxi charts which are compliant with AC 120-76C guidance. For Jeppesen Mobile FliteDeck own ship position on approach charts is also supported. |
Jeppesen (Product 3 of 3)

Location: Englewood, CO

Airport Information Elements Depicted

<table>
<thead>
<tr>
<th>Element</th>
<th>Depiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td>Jeppesen Mobile FliteDeck: Magenta chevron with circle of proximity</td>
</tr>
<tr>
<td></td>
<td>Jeppesen FliteDeck Pro: Magenta chevron with circle of proximity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jeppesen Mobile FliteDeck VFR: Blue aircraft icon</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>JeppView FliteDeck:</td>
<td>JeppView MFD: Varies depending on the manufacturer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Depiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways</td>
<td>Black</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>N/A</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Black</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>N/A</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Black</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>N/A</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>White</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>White</td>
</tr>
<tr>
<td>Buildings</td>
<td>Black</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Black text</td>
</tr>
<tr>
<td>Other</td>
<td>Various additional airport diagram markings and procedural notes.</td>
</tr>
</tbody>
</table>
Lufthansa Systems
Location: Frankfurt, Germany

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Lido/AMM Airport Moving Map</th>
</tr>
</thead>
</table>
| Website(s) | - www.LHsystems.com

Product Overview(s)

Lido Airport Moving Map (Lido/AMM) acts as a runway incursion prevention system as well as airport information system. It replaces the (paper/static) ground chart and shows a dynamic ground map using the Lido RouteManual charting standard. Ownship position (north up or Heading up) is superimposed on the map; the application is fully data driven and integrated into the Lido/eRouteManual electronic charting solution.

Advisory or alert messages are displayed on the Lido/AMM, when:
- Aircraft is approaching a runway safety area
- Aircraft is initiating a take-off roll
 - from a taxiway or
 - any non-anticipated departure runway

![Image courtesy of Lufthansa Systems](image.png)

Approvals/Compliance

| Authority | FAA in progress
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EASA</td>
<td></td>
</tr>
<tr>
<td>TC/STC</td>
<td>TC Aircraft:</td>
</tr>
<tr>
<td></td>
<td>STC Aircraft:</td>
</tr>
<tr>
<td>Source</td>
<td>Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lufthansa Systems</td>
<td>Location: Frankfurt, Germany</td>
</tr>
<tr>
<td>TSO</td>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td></td>
<td>✓ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position (Own-Ship)</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>□ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td></td>
<td>✓ AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td></td>
<td>✓ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Portable Electronic Flight Bags</td>
</tr>
<tr>
<td></td>
<td>✓ Other: Order 8900.1 (Vol. 4, Ch. 15, Section 1)</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>□ RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>✓ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: D)</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-181E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>✓ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware</td>
</tr>
<tr>
<td></td>
<td>✓ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
</tr>
<tr>
<td></td>
<td>✓ RTCA DO-272, User Requirements for Aerodrome Mapping Information</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-282B, MOPS for UAT ADS-B</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-317A, MOPS for ASA System</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
</tr>
<tr>
<td></td>
<td>□ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
</tr>
<tr>
<td></td>
<td>✓ Other: RTCA DO-291; ARINC 816</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
<td>Class 2 and Class 3 EFBs, tablet solution</td>
</tr>
<tr>
<td>Display Size</td>
<td>Normally 8 to 12 inches, no system limitation.</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>Minimum 768X1024 and portrait and 1024X786 landscape, no system limitation.</td>
</tr>
<tr>
<td>Brightness</td>
<td>To adjust to the lighting conditions on the flight deck, both Day and Night modes are available for user selection.</td>
</tr>
</tbody>
</table>
Lufthansa Systems

Location: Frankfurt, Germany

<table>
<thead>
<tr>
<th>Controls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Buttons</td>
<td></td>
</tr>
<tr>
<td>- Keyboard (e.g., USB, Bluetooth)</td>
<td></td>
</tr>
<tr>
<td>- Mouse/cursor</td>
<td></td>
</tr>
<tr>
<td>- Stylus</td>
<td></td>
</tr>
<tr>
<td>- Touch Screen</td>
<td></td>
</tr>
<tr>
<td>- Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capabilities</th>
<th></th>
</tr>
</thead>
</table>

Operating System

- Lido/eRouteManual 4.X and Lido/mPilot 2.X: Microsoft Windows, iOS

<table>
<thead>
<tr>
<th>Decluttering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Yes</td>
<td></td>
</tr>
<tr>
<td>- No</td>
<td></td>
</tr>
</tbody>
</table>

Zooming in further shows more detail, like taxiway lines, labels, etc.:
- Anticipated parking stand highlighted at all map scales (other parking stand labels only displayed at higher map scales)

![Map Image]

- One-touch to display all communication frequencies applicable at that airport

Pilot Annotations placed on the airport map as part of a placed pin can be selected to display edited text or are automatically displayed at higher map scales.

Panning

- Yes
- No

Plan mode (North-Up) and in Heading-Up (followed by automatic map-recentering to own-ship position).

Autozoom

- Yes
- No

- Aircraft ground speed dependent autozoom after landing, rejected take-off roll, approaching runway safety area, departure roll from taxiway or non-anticipated departure runway.
- Function to display current aircraft position and taxi destination (parking stand or anticipated departure runway) available for user selection.
<table>
<thead>
<tr>
<th>Lufthansa Systems</th>
<th>Location: Frankfurt, Germany</th>
</tr>
</thead>
</table>
| **Manual zooming** | ☑ Yes
<p>| | ☐ No |
| - Simple zooming in/out using pre-defined map scales are available |
| - Rectangle zooming-in capability for zooming in into an area on the map drawn by the user |
| - Zooming capability available in both North-Up and Heading-Up orientation modes. |
| Indications and Alerts | |
| Lido/AMM is seamlessly integrated within the Lido/eRouteManual Suite. Whenever Lido/AMM triggers to display a message (see messages below) then Lido/AMM will remove any chart currently displayed within the Lido/eRouteManual Suite to display Lido/AMM together with the advisory or warning message. |
| Runway Ahead Advisory | |
| Runway ahead advisory message appears when the aircraft is approaching the runway safety area (CAT I/CATII or CAT III holding line, whichever is closer to the applicable runway). |
| Take-Off from Taxiway Warning Message: | |
| Take-Off from Taxiway Warning Message is displayed when the aircraft appears to be departing from a taxiway (triggered by aircraft ground speed). |
| Take-Off from Non-Anticipated Departure Runway Warning Message | |
| “Confirm Runway” message is displayed when the aircraft appears to be departing from a non-anticipated departure runway. |
| On Runway Advisory Message: | |
| - “On RWY XX-YY” message appears in white when the aircraft is positioned on the runway and the aircraft heading is not aligned with runway heading. |
| - “On RWY XX” message appears in white when the aircraft is positioned on the runway and the aircraft heading is aligned with runway heading. |
| - “On RWY XX” message appears in green when the aircraft is positioned on the runway and the aircraft heading is aligned with anticipated departure runway heading. |
| All messages are inhibited during aircraft landing and runway backtracks until the aircraft has left the runway safety area. |</p>
<table>
<thead>
<tr>
<th>Lufthansa Systems</th>
<th>Location: Frankfurt, Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Airport Features:</td>
<td></td>
</tr>
<tr>
<td>- Airport features classified as closed throughout the AIRAC Cycle are depicted accordingly:</td>
<td></td>
</tr>
<tr>
<td>- Closed taxiways are marked by yellow crosses on the taxiway</td>
<td></td>
</tr>
<tr>
<td>- Temporarily closed runways are marked by yellow crosses on the runway</td>
<td></td>
</tr>
<tr>
<td>- In addition users can mark airport features (e.g. taxiway, runway, parking stand) as closed. Red crosses are placed on top of the corresponding airport feature label.</td>
<td></td>
</tr>
<tr>
<td>Pilot Annotations:</td>
<td></td>
</tr>
<tr>
<td>User can place pins or even add text to these pins on any arbitrary position on the airport map.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Limitations applicable to aircraft type:</td>
<td></td>
</tr>
<tr>
<td>Lido/AMM highlights in (salmon color) taxiways which are not suitable for the aircraft type due to the aircraft's physical dimension (fuselage length, wingspan, outer main gear width etc.).</td>
<td></td>
</tr>
<tr>
<td>Taxi Route Guidance</td>
<td></td>
</tr>
<tr>
<td>Taxi route guidance currently under development for a future release of Lido/AMM:</td>
<td></td>
</tr>
<tr>
<td>Colored line along taxi route. Route entered graphically and/or textually. Route could also be loaded from file (company routes) or any interface. NOTAMs to be interpreted and display, e.g., as restriction or closed taxiway.</td>
<td></td>
</tr>
<tr>
<td>Noteworthy Features and Applications</td>
<td></td>
</tr>
<tr>
<td>Lido/AMM is a fully data driven airport moving map application seamlessly integrated into the Lido/eRoute Manual Suite. All airport ground charting information (e.g. Low visibility procedures, Standard Taxi Routes etc.) will be incorporated into Lido/AMM.</td>
<td></td>
</tr>
<tr>
<td>Airport Moving Map Information Elements Depicted</td>
<td></td>
</tr>
<tr>
<td>Airport Moving Map Data Format</td>
<td></td>
</tr>
<tr>
<td>☑ Geo-referenced</td>
<td></td>
</tr>
<tr>
<td>☑ Database driven</td>
<td></td>
</tr>
<tr>
<td>Note: Lido/AMM consists of data driven referenced airport maps</td>
<td></td>
</tr>
<tr>
<td>Ownship</td>
<td></td>
</tr>
<tr>
<td>Orange chevron (look/color subject to change)</td>
<td></td>
</tr>
<tr>
<td>Lufthansa Systems</td>
<td>Location: Frankfurt, Germany</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Runways</td>
<td>Light grey</td>
</tr>
<tr>
<td></td>
<td>Night Mode:</td>
</tr>
<tr>
<td></td>
<td>Day Mode:</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White dashed line in both Day and Night modes</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Runway Designators are depicted with a white font on a blue background in both Day and Night modes. Runway designators are displayed even if only a fraction of the runway is displayed. The runway designator of the anticipated departure runway is depicted with a white font on a green background.</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Grey shape</td>
</tr>
<tr>
<td></td>
<td>Night mode:</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>Yellow line in both Day and Night modes</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>De-conflicted white horizontal text in both Day and Night modes</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Dashed yellow line</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Day mode (light grey):</td>
</tr>
<tr>
<td></td>
<td>Night mode (darker grey):</td>
</tr>
<tr>
<td>Lufthansa Systems</td>
<td>Location: Frankfurt, Germany</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Grey</td>
</tr>
<tr>
<td></td>
<td>Day mode:</td>
</tr>
<tr>
<td></td>
<td>Night mode:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Are not depicted</td>
</tr>
<tr>
<td>Buildings</td>
<td>Day Mode: black (see above)</td>
</tr>
<tr>
<td></td>
<td>Night mode: blue (see above)</td>
</tr>
<tr>
<td>Building Labels</td>
<td>Labels are always oriented in upright position and placed at best display real estate in real time for label de-confliction. Day Mode: black font on white background (see above) Night mode: white font on black background (see above)</td>
</tr>
<tr>
<td>Other</td>
<td>CAT I Holding Line label and line:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAT II/III holding line:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parking Stand labels: Oriented to the parking stand guidance line</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TerraVision Flight Deck Applications

Location: Petah Tikva, Israel

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>FollowTheGreen<sup>®</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Website(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• www.terravision.co.il</td>
</tr>
<tr>
<td></td>
<td>• www.terravision.co.il/flightdeck/FTG.aspx</td>
</tr>
</tbody>
</table>

Product Overview(s)

FollowTheGreen[®] is a database driven AMMD (Aerodrome Moving Map Display) software application that incorporates all standard requirements per RTCA DO-257A with overlay data management capabilities. FollowTheGreen[®] can be adapted to any portable EFB (Class 1 and Class 2) system.

Images courtesy of TerraVision Flight Deck Applications
<table>
<thead>
<tr>
<th>TerraVision Flight Deck Applications</th>
<th>Location: Petah Tikva, Israel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approvals/Compliance</td>
<td></td>
</tr>
<tr>
<td>Authority</td>
<td>✔ FAA (software authorization)</td>
</tr>
<tr>
<td></td>
<td>□ EASA</td>
</tr>
<tr>
<td></td>
<td>✔ Other: CAA</td>
</tr>
<tr>
<td>TC/STC</td>
<td>□ TC</td>
</tr>
<tr>
<td></td>
<td>□ STC</td>
</tr>
<tr>
<td>TSO</td>
<td>□ TSO-C112e, ATCRBS/Mode S Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C113a, Airborne Multipurpose Electronic Displays</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C147a, TAS Airborne Equipment</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C154c, UAT ADS-B Equipment Operating on Frequency of 978 MHz</td>
</tr>
<tr>
<td></td>
<td>✔ TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C166b, Extended Squitter ADS-B and Traffic Information</td>
</tr>
<tr>
<td></td>
<td>□ TSO-C195b, Avionics Supporting ADS-B ASA</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
<tr>
<td>FAA Regulatory and Guidance Material</td>
<td>✔ AC 20-159, Design and Productions Approval for Airport Moving Map Display Applications Intended for EFB Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-165A, Airworthiness Approval of ADS-B Out Systems</td>
</tr>
<tr>
<td></td>
<td>□ AC 20-172B, Airworthiness Approval for ADS-B In Systems and Applications</td>
</tr>
<tr>
<td></td>
<td>□ AC 25-11B, Electronic Flight Deck Displays</td>
</tr>
<tr>
<td></td>
<td>□ AC 120-76C, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags</td>
</tr>
<tr>
<td></td>
<td>□ Other</td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications</td>
<td>Location: Petah Tikva, Israel</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Industry Documents</td>
<td>Hardware</td>
</tr>
<tr>
<td>Applicable to G500, G600, G950, G1000, G2000, G3000, G5000, GMX 200, GTN 6XX/7XX series only</td>
<td>Hardware Platform(s) Any portable EFB platform.</td>
</tr>
<tr>
<td>✗ RTCA DO-160, various, Environmental Conditions and Test Procedures for Airborne Equipment</td>
<td>Display Resolution Can be adjusted according the HW and the airline spec.</td>
</tr>
<tr>
<td>✗ RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification (Software Level: C/D)</td>
<td>Brightness</td>
</tr>
<tr>
<td>✗ RTCA DO-181C/D/E, MOPS for ATCRBS/Mode S Airborne Equipment</td>
<td>✗ Buttons</td>
</tr>
<tr>
<td>✗ RTCA DO-200A, Standards for Processing Aeronautical Data</td>
<td>✗ Keyboard (e.g., USB, Bluetooth)</td>
</tr>
<tr>
<td>✗ RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware (System Development Assurance Level: various)</td>
<td>✗ Mouse/cursor</td>
</tr>
<tr>
<td>✗ RTCA DO-257A, MOPS for the Depiction of Navigation Information on Electronic Maps</td>
<td>✗ Stylus</td>
</tr>
<tr>
<td>✗ RTCA DO-260B, MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B</td>
<td>✗ Touch Screen</td>
</tr>
<tr>
<td>✗ RTCA DO-272, User Requirements for Aerodrome Mapping Information</td>
<td>✗ Other</td>
</tr>
<tr>
<td>✗ RTCA DO-282B, MOPS for UAT ADS-B</td>
<td>✗ Other : various</td>
</tr>
<tr>
<td>✗ RTCA DO-317A, MOPS for ASA System</td>
<td>Other</td>
</tr>
<tr>
<td>✗ RTCA DO-321, Safety, Performance and Interoperability Requirements Document for ADS-B-APT</td>
<td>ARINC Specification 816; The structure of the database allows continuous updates and modifications. TerraVision also provides certified AMDBs (Aerodrome Map Data Bases), compliant with accuracy and routine integrity guidelines as specified in RTCA DO-272A.</td>
</tr>
<tr>
<td>✗ RTCA DO-322, Safety, Performance and Interoperability Requirements Document for ATSA-SURF Application</td>
<td>Capabilities</td>
</tr>
<tr>
<td>✗ RTCA DO-323, Safety, Performance and Interoperability Requirements Document for SURF IA</td>
<td>Operating System Microsoft Windows, Linux</td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications</td>
<td>Location: Petah Tikva, Israel</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Decluttering</td>
<td>Yes: Map layers (i.e., geometric elements such as taxi element, runway markings and such) are de-cluttered according to zoom level automatically for cartographic readability. Information layers are divided into sub-categories; each sub-category may further divide into sub-layers; each sub-layer display is user selectable.</td>
</tr>
<tr>
<td>Panning</td>
<td>Yes: panning is possible by a key and panning on the touch-screen or by the mouse.</td>
</tr>
<tr>
<td>Autozoom</td>
<td>Yes: Zooming is capable by choosing + or - icons.</td>
</tr>
<tr>
<td>Manual zooming</td>
<td>Runway Incursion alert Upon crossing active runway a message “Entering active runway XX” is displayed and the map display is “blinking” between night and day modes (see two bottom images, p2). Runway incursion indication thresholds are based on distance between ownship to runway, the A/C speed and the geometric position between the aircraft vector (heading) and the runway. Selected parking stand Parking stand indication is based on user selection. Selected parking stand is highlighted in orange and cyan.</td>
</tr>
<tr>
<td>Indications and Alerts</td>
<td>Taxi Route Guidance User selectable information/data layers, customization per airline specific operational requirements, communication data, hot spots, RVR location, runway dimensions, NOTAMs, Manual Taxi route insertion, taxi information & limitations layers dynamically displayed according to aircraft type and actual position.</td>
</tr>
<tr>
<td>Taxiway Route Guidance</td>
<td>Noteworthy Features and Applications</td>
</tr>
<tr>
<td>Airport Moving Map Information Elements Depicted</td>
<td>Geo-referenced</td>
</tr>
<tr>
<td>Data Format</td>
<td>Database driven</td>
</tr>
<tr>
<td>Ownership</td>
<td>Green triangle; green circle at low speeds when heading information is unreliable</td>
</tr>
<tr>
<td>Runways</td>
<td>Light Grey and white text on black frame, with the RWY ID label which is always visible.</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>White text in dark grey text boxes</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>Yellow</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Yellow or red text in black text boxes for taxi notes or alerts. The actual taxiway ID in use is in green and located behind the A/C icon.</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>Tomato</td>
</tr>
<tr>
<td>Non-movement Areas</td>
<td>Black</td>
</tr>
<tr>
<td>TerraVision Flight Deck Applications</td>
<td>Location: Petah Tikva, Israel</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ramp Areas</td>
<td>Dark grey. Parking stands light grey</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Black</td>
</tr>
<tr>
<td>Buildings</td>
<td>Blue</td>
</tr>
<tr>
<td>Building Labels</td>
<td>White</td>
</tr>
<tr>
<td>Other</td>
<td>Runway markings: white</td>
</tr>
<tr>
<td></td>
<td>Closed RWY/Taxi: brown outline</td>
</tr>
<tr>
<td></td>
<td>Service roads: dark grey</td>
</tr>
<tr>
<td></td>
<td>Stand guidance line: yellow</td>
</tr>
<tr>
<td></td>
<td>Parking stand location: white</td>
</tr>
<tr>
<td></td>
<td>Runway exit line: white</td>
</tr>
<tr>
<td></td>
<td>Runway shoulders: brown</td>
</tr>
</tbody>
</table>
This page is left blank intentionally.
6. Research Organizations

This section includes two research organizations that developed CDTIs with airport moving map functionality. These research displays were developed for use in a simulator environment, and were not implemented commercially. All information was provided by the research organizations and has not been verified with the FAA.

<table>
<thead>
<tr>
<th>MITRE</th>
<th>Location: McLean, Virginia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product(s)</td>
<td>MITRE CAASD Cockpit Display of Traffic Information (CDTI) prototype</td>
</tr>
<tr>
<td>Website(s)</td>
<td>www.mitre.org</td>
</tr>
</tbody>
</table>

Product Overview(s)

MITRE’s CDTI is a prototype used for human-in-the-loop research and development and is highly configurable with an Airport Moving Map (AMM) that allows for the display of traffic information. Display colors and shapes vary between projects. The display of traffic can be based on a configurable target generator with specifiable position uncertainties. The information in this document describes capabilities that have been used in the past but are not necessarily all currently in use. The research is intended to support requirements development of RTCA special committee 186, Working Group 1 for cockpit based runway safety indications and alerting.

![Image courtesy of MITRE](image-url)

Hardware

<table>
<thead>
<tr>
<th>Hardware Platform(s)</th>
<th>Research display. Class 2 or 3 EFB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Size</td>
<td>Diagonal display is 11 inches.</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>1024 x 768</td>
</tr>
<tr>
<td>MITRE</td>
<td>Location: McLean, Virginia</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Brightness</td>
<td>None</td>
</tr>
</tbody>
</table>
| Controls | □ Buttons
 □ Keyboard
 □ Mouse/cursor
 □ Stylus
 ☑ Touch Screen
 □ Other |
| Capabilities | |
| Operating System | □ Microsoft Windows
 ☑ Linux
 □ Android
 □ iOS
 □ Custom |
| Decluttering | □ Yes
 ☑ No |
| Panning | ☑ Yes: Ownship can be positioned in lower third or center of display.
 □ No |
| Autozoom | □ Yes
 ☑ No |
| Manual zooming | ☑ Yes
 □ No |
| Indications and Alerts | Runway Safety Indications identify runway and traffic status as relevant to own-ship operations. Traffic, as viewed from ownship's current state is considered “relevant” if that traffic position, orientation, and movement could potentially lead to a runway incursion or collision within a foreseeable period of time. Indications are intended to identify normal operational conditions to the flight crew that are generally relevant for runway safety and could be a precursor to a runway safety hazard. Indications are not intended to attract pilot awareness.
 Runway Status indications are provided if ownship’s runway is not usable for taxi, takeoff or landing by ownship. Traffic indications are provided if the runway is currently usable by ownship but there could be a potential collision hazard in the immediate future. Indications are generally provided as a function of ownship position in relation to the runway.
 In contrast to indications, runway safety alerts are intended to help prevent potential collisions between two aircraft. Alerts are intended to attract pilot awareness. Alerts are provided as a function of position and closure rate between ownship and conflict traffic. Caution alerts are intended to provide immediate flight crew awareness for subsequent flight crew response. Warnings are intended to facilitate immediate flight crew awareness for immediate response. Specific alerting behavior depends on the scenarios and both levels of alerts may not be triggered in all situations. For situations when ownship is taxiing toward a runway entrance and traffic is approaching that intersection at high speed, an auditory message is presented such as: “Traffic Ahead.” Caution and warning alerts are presented with an auditory message, for example: “Traffic Ahead.” |
| Indications and Alerts | Blue-white outlined runway: indicates occupied runway with traffic that is relevant to ownship; the traffic aircraft is converging onto a common intersection
 Enlarged, filled-in chevron: indicates relevant traffic currently on a runway |
Flight identifier and ground speed: provides additional information about relevant traffic on a runway.

Runway status box: provides textual information regarding runway occupancy, e.g., “[Runway number] occupied”

For Cautions: Occupied runway and conflict traffic aircraft are drawn in yellow; yellow text in the runway status box provides alert message (“CAUTION TRAFFIC ON [Runway number]”)

For Alerts: Occupied runway and conflict traffic aircraft are drawn in red; red text in the runway status box provides alert message (“WARNING TRAFFIC ON [Runway number]”)

Images courtesy of MITRE

<table>
<thead>
<tr>
<th>Taxi Route Guidance</th>
<th>The research prototype does not provide route guidance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noteworthy Features and Applications</td>
<td></td>
</tr>
</tbody>
</table>

Airport Moving Map Information Elements Depicted

<table>
<thead>
<tr>
<th>Airport Moving Map Data Format</th>
<th>□ Geo-referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☑ Database driven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ownership</th>
<th>White unfilled triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways</td>
<td>Dark Grey</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>White</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>White</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Light grey</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>White text in a black text box</td>
</tr>
<tr>
<td>Hold Lines</td>
<td>--</td>
</tr>
</tbody>
</table>
Non-movement Areas
- Black

Ramp Areas
- Black

Grassy Areas
- Black

Buildings
- Blue

Building Labels
- --

Other

Traffic Display

Data Source and Targets Displayed
- ☒ ADS-B:
- □ TIS:
- □ TIS-B:
- □ TAS:

Simulated ADS-B surveillance with NACp encoding and commensurate position uncertainty can be displayed.

Traffic Display Range
- Minimum: .25 NM
- Maximum: 640 NM
- Default: None

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground aircraft traffic, directional, sufficient display accuracy</td>
<td>Ground aircraft traffic, directional, sufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Ground aircraft traffic, directional, insufficient display accuracy (“degraded”)</td>
<td>Ground aircraft traffic, directional, insufficient display accuracy (“degraded”)</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Ground aircraft traffic, non-directional: same for sufficient and insufficient display accuracy</td>
<td>Ground aircraft traffic, non-directional: same for sufficient and insufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne traffic, directional, sufficient display accuracy</td>
<td>Airborne traffic, directional, sufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne traffic, directional, insufficient display accuracy (“degraded”)</td>
<td>Airborne traffic, directional, insufficient display accuracy (“degraded”)</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>Airborne traffic, non-directional, same for sufficient and insufficient display accuracy</td>
<td>Airborne traffic, non-directional, same for sufficient and insufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>SURF IA traffic with Runway Status Indication</td>
<td>SURF IA traffic with Runway Status Indication</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>MITRE</td>
<td>Location: McLean, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURF IA traffic with Caution Alert</td>
<td>Ground aircraft traffic, directional, sufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
<tr>
<td>SURF IA traffic with Warning Alert</td>
<td>Ground aircraft traffic, directional, sufficient display accuracy</td>
<td>ADS-B</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Flight ID</td>
<td></td>
</tr>
<tr>
<td>✗ Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Actual</td>
</tr>
<tr>
<td></td>
<td>✗ Relative</td>
</tr>
<tr>
<td></td>
<td>□ Geometric</td>
</tr>
<tr>
<td>✗ Ground speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Vertical direction/speed</td>
</tr>
<tr>
<td></td>
<td>✗ Above/Below 500’ (climb/descent arrows)</td>
</tr>
<tr>
<td></td>
<td>□ Other:</td>
</tr>
<tr>
<td></td>
<td>□ Horizontal velocity vector</td>
</tr>
<tr>
<td></td>
<td>□ Invalid/Unavailable data</td>
</tr>
<tr>
<td></td>
<td>□ Traffic category</td>
</tr>
<tr>
<td></td>
<td>□ Monitored by TCAS</td>
</tr>
<tr>
<td></td>
<td>✗ Other: Off-scale indication</td>
</tr>
<tr>
<td>Product(s)</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Airport Moving Map (AMM) Displays used in NextGen Surface Trajectory-Based Operations (STBO) pilot-in-the-loop, simulation experiments:</td>
</tr>
<tr>
<td></td>
<td>1) Standard Display</td>
</tr>
<tr>
<td></td>
<td>2) 4-Dimensional Trajectory (4DT) ("Magic Carpet") Display</td>
</tr>
<tr>
<td>Website(s)</td>
<td>Lab Website:</td>
</tr>
<tr>
<td></td>
<td>• http://hsi.arc.nasa.gov/groups/HCSL/</td>
</tr>
<tr>
<td></td>
<td>The following research papers describe experiments which included the Standard AMM Display, as well as, some of its variations (e.g., preview modes, pending clearance information, and contingency hold lines):</td>
</tr>
<tr>
<td></td>
<td>• http://hsi.arc.nasa.gov/groups/HCSL/publications/AHFE_12_Bakowski_etal.pdf</td>
</tr>
<tr>
<td></td>
<td>• http://hsi.arc.nasa.gov/groups/HCSL/publications/Bakowski_Hooey_Foyle_Wolter_Cheng_DASC13.pdf</td>
</tr>
<tr>
<td></td>
<td>Research paper describing the 4DT ("Magic Carpet") Display to be published next year.</td>
</tr>
<tr>
<td>Product Overview(s)</td>
<td>Airport Moving Maps (AMM):</td>
</tr>
<tr>
<td></td>
<td>1) Standard Display. Depicts the:</td>
</tr>
<tr>
<td></td>
<td>• Ownship (white chevron)</td>
</tr>
<tr>
<td></td>
<td>• Traffic (with Call Signs) that falls within a 1,250 ft radius of the ownship</td>
</tr>
<tr>
<td></td>
<td>• Cleared-to-Taxi Route (magenta)</td>
</tr>
<tr>
<td></td>
<td>• Rotating Compass Bars (grey border of map)</td>
</tr>
<tr>
<td></td>
<td>• Digital Heading (top center)</td>
</tr>
<tr>
<td></td>
<td>• Text of the Cleared-to-Taxi Route (below map; current taxiway in white)</td>
</tr>
<tr>
<td></td>
<td>2) AMM: 4-Dimensional Trajectory (4DT) ("Magic Carpet") Display. Same as above, and:</td>
</tr>
<tr>
<td></td>
<td>• A band (the "Magic Carpet"), depicted in light pink, that moves along the taxi route according to the speed profile, and represents the allowable deviation, in seconds, from the speed profile. The 4DT image below, depicts a +/- 15 sec conformance window.</td>
</tr>
<tr>
<td></td>
<td>• 4DT Speed Profile information (on second line of text):</td>
</tr>
<tr>
<td></td>
<td>• Taxi Start Time (time at which the "Magic Carpet" begins moving along the taxi route)</td>
</tr>
<tr>
<td></td>
<td>• Profile Speed (speed at which the "Magic Carpet" travels along the taxi route)</td>
</tr>
<tr>
<td></td>
<td>• Queue Time (time at which the "Magic Carpet" will enter the Queue area)</td>
</tr>
<tr>
<td></td>
<td>• Current Ground Speed (upper left corner, "GS")</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Hardware Platform(s)</td>
<td>Dedicated display on the Flight Deck instrument panel of a B737 simulator.</td>
</tr>
<tr>
<td>Display Size</td>
<td>10" (diagonal)</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>750 x 900</td>
</tr>
<tr>
<td>Brightness</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| **Controls** | □ Buttons
□ Keyboard
□ Mouse/cursor
□ Stylus
□ Touch Screen
☑ Other: Zoom is controlled via the Nav Display zoom level knob on the MCP. |

<table>
<thead>
<tr>
<th>Capabilities</th>
</tr>
</thead>
</table>
| **Operating System** | □ Microsoft Windows
☑ Linux
□ Android
□ IOS
□ Custom |
| **Decluttering** | □ Yes
☑ No
Surface traffic is displayed on the map only when it falls within a 1,250 ft radius of the ownship. |
Panning
- Yes
- No

Autozoom
- Yes
- No

Manual zooming
- Yes
- No

Zoom levels available: four zoom levels in track-up perspective and one "birds-eye" overview. Selected via the Nav Display zoom level knob on the MCP.

Indications and Alerts
- Runways are displayed with a red border when occupied by an aircraft.

![Image courtesy of NASA Ames](image_url)

Taxi Route Guidance
As shown in the images above, the taxi route is depicted graphically as a magenta line, and in text format, below the map. In the text, the current taxiway is shown in white.

Noteworthy Features and Applications
The "Magic Carpet" display supports NextGen 4DT surface operations. As described above, a band (the "Magic Carpet"), depicted in light pink, moves along the taxi route according to the speed profile and represents the allowable along-track deviation, in seconds, from the defined speed profile.

Airport Moving Map Information Elements Depicted

<table>
<thead>
<tr>
<th>Airport Moving Map Data Format</th>
<th>Yes, depicted as a white chevron (shown in image above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownship</td>
<td>Yes, depicted as a white chevron (shown in image above)</td>
</tr>
<tr>
<td>Runways</td>
<td>Yes (grey; for example, see RWY 18L in "Standard Display" image above)</td>
</tr>
<tr>
<td>Runway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Runway Labels</td>
<td>Yes (white text; for example, see RWY 18L in "Standard Display" image above)</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Yes (black; see taxiways on above images)</td>
</tr>
<tr>
<td>Taxiway Centerlines</td>
<td>--</td>
</tr>
<tr>
<td>Taxiway Labels</td>
<td>Yes (white text; see taxiways on above images)</td>
</tr>
</tbody>
</table>
Hold Lines

No, airport surface hold lines (e.g., Runway, Ramp/AMA) are not represented on either AMM. (However, the display of hold lines on the AMM, prior to intersections, for Contingency Holds was explored in: http://hsi.arc.nasa.gov/groups/HCSL/publications/Bakowski_Hooey_Foyle_Wolter_Cheng_DASC13.pdf)

Non-movement Areas

<table>
<thead>
<tr>
<th>Area</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Areas</td>
<td>Yes</td>
</tr>
<tr>
<td>Grassy Areas</td>
<td>Yes</td>
</tr>
<tr>
<td>Buildings</td>
<td>Yes</td>
</tr>
<tr>
<td>Building Labels</td>
<td>--</td>
</tr>
<tr>
<td>Other</td>
<td>Departure spots visible in 4DT image above (yellow dots)</td>
</tr>
</tbody>
</table>

Traffic Display

<table>
<thead>
<tr>
<th>Data Source and Targets Displayed</th>
<th>n/a; Controlled experimentally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Display Range</td>
<td>Controlled experimentally: Traffic within a 1250 ft radius is displayed on the AMM.</td>
</tr>
</tbody>
</table>

Traffic Symbols

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Description</th>
<th>Data Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Aircraft</td>
<td>Traffic on the Surface (with Call Sign)</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Traffic Symbol Data Tag Information

<table>
<thead>
<tr>
<th>Data Tag Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight ID</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>Relative</td>
</tr>
<tr>
<td>Geometric</td>
</tr>
<tr>
<td>Ground speed</td>
</tr>
<tr>
<td>Vertical direction/speed</td>
</tr>
<tr>
<td>Above/Below 500’ (climb/descent arrows)</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Horizontal velocity vector</td>
</tr>
<tr>
<td>Invalid/Unavailable data</td>
</tr>
<tr>
<td>Traffic category</td>
</tr>
<tr>
<td>Monitored by TCAS</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
This page is left blank intentionally.
References

FEDERAL AVIATION ADMINISTRATION (FAA) PUBLICATIONS:

Advisory Circulars (ACs)

FAA Job Aids

Technical Standard Orders (TSOs)

RTCA, INC. DOCUMENTS:

SOCIETY OF AUTOMOTIVE ENGINEER (SAE) PUBLICATIONS:

OTHER PUBLICATIONS:

This page is left blank intentionally.
Appendix A: Additional CDTI and Airport Moving Map Publications

FEDERAL AVIATION ADMINISTRATION (FAA) PUBLICATIONS:

FAA Orders

RTCA, INC. DOCUMENTS:

SAE ARP 5365, Human Interface Criteria for Cockpit Display of Traffic Information. Available at: http://standards.sae.org/arp5365/

