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ABSTRACT 
Seven-wire strands are commonly used in pretensioned 

concrete ties, but its bonding mechanism with concrete needs 
further examination to provide a better understanding of some 
concrete tie failure modes.  As a key component in the finite 
element (FE) analysis of concrete crossties, macro-scale or 
phenomenological FE bond models are developed for seven-
wire strands in this paper.  The strand-concrete interfaces are 
homogenized with a thin layer of cohesive elements applied 
between the strand and concrete elements.  Further, the 
cohesive elements are assigned traction-displacement 
constitutive or bond relations that are defined in terms of 
normal and shear stresses versus interfacial dilation and slip.  
The bond relations are developed within an elasto-plastic 
framework that characterizes the adhesive, frictional and/or 
dilatational bonding mechanisms in the interface.  The yield 
functions and plastic flow rules specific for the seven-wire 
strands are presented.  The bond parameters are calibrated from 
untensioned pullout tests and pretensioned prism tests 
conducted on concrete specimens.  The bond models are then 
verified with (1) the surface strain data measured on actual 
concrete crossties made at a tie manufacturing plant, and (2) the 
force-displacement relation obtained in a center negative 
moment test conducted also on concrete crossties. 

 
INTRODUCTION 

Concrete ties are made by embedding prestressing steel 
reinforcements in concrete.  The interaction between steel 
reinforcements and concrete, commonly referred to as bond, 
affects several important aspects of concrete crosstie 
performance, including the transfer length needed to transfer 
the prestress forces from the reinforcements to the concrete, the 

bursting/splitting propensity of concrete due to pretension 
release in the reinforcements, and the ultimate flexural moment 
capacity prior to failure.  Bond modeling is a key component in 
the finite element (FE) analysis of concrete crossties.  One 
objective of Volpe Center’s ties and fasteners research, 
sponsored by the Federal Railroad Administration, is to develop 
realistic concrete tie models, including FE bond models for 
various reinforcement interfaces, and apply the models in 
predicting and evaluating the concrete tie performance. 

Concrete ties are a promising alternative to wood ties used 
in railroad tracks.  However, concrete ties have displayed 
multiple failure modes in the field, such as chemical 
degradation, prestress cracks, flexural cracks, rail seat 
deterioration, freeze-thaw cracks and shoulder/fastener wear or 
fatigue, and these failures have led to premature replacement of 
track components and sometimes derailment accidents [1].  
Two of these failure modes are illustrated in Figures 1 and 2.  
Figure 1 shows a widespread horizontal cracking pattern 
observed in concrete ties installed during the 1994-98 period on 
the Northeast Corridor [2].  Figure 2 shows multiple center 
negative cracks observed on concrete ties retrieved from the 
site of the July 18, 2013, CSX freight train derailment accident 
in Bronx, New York [3-4].  While these failures can occur in 
concrete ties with other types of reinforcements, the concrete 
ties in these two particular cases have seven-wire strands as 
reinforcements.  This indicates a need to further examine the 
bond behavior of the seven-wire strands. 

This paper develops macro-scale or phenomenological 
bond models for seven-wire strands commonly used in 
pretensioned concrete ties.  The basic bond mechanisms of 
these strands include adhesion and friction.  In addition, the 
natural spiral surfaces of the strands interlock with the 
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matching inner surfaces of the concrete.  When the strand and 
concrete surfaces slip relative to each other as the pretension in 
the strands is released, normal dilation (or dilatation) occurs on 
the strand-concrete interfaces as a result of (1) Hoyer effect, 
and (2) mismatched steel and concrete surfaces.  The interfacial 
dilation provides additional bonding between the steel strands 
and the concrete. 

This paper first describes the elasto-plastic bond modeling 
approach adopted in this study.  The governing equations, 
solution approaches and yield functions/plastic flow rules 
specific for the bond of seven-wire strands are presented.  The 
calibration of the bond parameters is then carried out based on 
untensioned pullout tests and pretensioned prism tests 
conducted on concrete specimens at the Kansas State 
University (KSU).  The bond models developed in this study 
are then verified with the surface strain data measured on actual 
concrete crossties made at a tie manufacturing plant as well as 
the force-displacement relation obtained in a center negative 
moment test.   

 

 
Figure 1: Horizontal cracks observed in concrete ties on the 

Northeast Corridor [2]. 

 
Figure 2: Center negative cracks on concrete ties retrieved 

from the site of the July 18, 2013, CSX freight train 
derailment accident in Bronx, New York. 

 
 

ELASTOPLASTIC BOND MODELING APPROACH 
The commercial FE analysis software Abaqus is employed 

in this study [5].  The concrete material is modeled with 
concrete damaged plasticity, and the modeling framework and 
model parameter calibration are described in detail in previous 
publications [6-7].  The elasto-plastic bond model development 
in this paper follows the general plasticity theory and FE 
procedure described by Zienkiewicz and Taylor [8].  User 
subroutines were written for both axisymmetric and 3D 
cohesive elements in Abaqus, but only the 3D governing 
equations, similar to the theoretical basis for frictional contact 
developed by Michalowski and Mroz [9], are presented here.  
The same modeling framework was previously employed in the 
development of a bond model for smooth wires [10]. 

Governing Equations 
Figure 3 shows the local coordinate system defined for a 

3D cohesive element [5].  It includes a normal (or thickness) 
direction and two shear directions, depicted by unit vectors n, s 
and t, respectively.  The traction-displacement constitutive 
relation type is adopted.  The interface stress tensor  includes 
a normal component  and two shear components 1 and 2, 

 
tsnσ 21    (1) 

 
The magnitude of the total shear stress is 
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The interface displacement tensor u includes dilation un 

and slips ut1 and ut2 
 

tsnu t21tn uuu   (3) 

 
which can be decomposed into elastic and plastic components 

 
plel uuu   (4) 

 
The magnitude of the total plastic slip is written as 
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Elasticity of the interface material indicates 
 

 pleele uuDuDσ   (6) 

 
where eD  is the elastic matrix with the unit force/length3.  
Assuming decoupled elastic normal-shear behavior, we have 

eD  in the following matrix form 
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Figure 3: Local coordinate system (n, s, t) for a 3D cohesive 

element [5]. 
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where the normal ( e

nnD ) and shear elastic stiffness ( e

nsD , e

ntD ) 

are the only non-trivial components.  Isotropy in the shear plane 
would further imply e

nt

e

ns DD  . 

For elastic loading and unloading, the yield function F 
satisfies F<0.  When plastic loading occurs, the stress stays on 
the yield surface: 

 
F=0 (8) 

 
The plastic flow rate can be calculated from the plastic 
potential Q as follows  
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where dupl is the rate of the plastic interface displacement, and 
d is a proportionality constant.  Eq. (9) implies an associated 
flow rule when Q=F and a non-associated flow rule when Q≠F. 

This paper develops two elasto-plastic bond models, one 
considers friction only, and the other considers adhesive, 
frictional and dilatational mechanisms.  Table 1 defines yield 
functions, plastic potentials, adhesion, and plastic flow rules for 
the two models and summarizes the constants or parameters 
needed to completely define the material models. 

Here a form of the adhesive strength a depending linearly 

on the total plastic slip pl

tu  is chosen, with a0 being the initial 

adhesive strength and pl

tcu  the plastic slip amount at which 

adhesion is first broken completely.  Figure 4 shows the plot of 
a as a function of pl

tu . 

The frictional mechanism is characterized with the friction 
angle , or the coefficient of friction tan.  The dilatational 
effect is accounted for by a dilatational factor tan, which 
measures the interface’s plastic dilation rate as a proportion of 
the plastic slip rate, 
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Figure 5 shows the yield surfaces and the plastic flow 

rule.  The plastic flow vectors for a non-dilatational interface 
are assumed to be parallel to the –axis, whereas the plastic 
flow vectors for a dilatational interface are assumed to form a 
dilatational angle  with the –axis. 

Local Iteration 
At the element level, updated stress  is sought with given 

initial stress 0, initial displacement u0 and incremental 
displacement du.  This can be achieved by solving the 
following equation involving the residual function R, 

 
R=0 (11) 

 
 

Table 1. Definition of elasto-plastic bond models for seven-
wire strands. 

 Frictional model 
Adhesive, frictional and 
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Figure 4: Adhesive strength as a function of plastic slip. 
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Figure 5: Yield surfaces and plastic flow rule. 

which can be defined according to the plastic loading condition 
Eq. (8) and the plastic flow rules.  For the frictional model, the 
residual function is defined as 
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For the adhesive, frictional and dilatational model, the residual 
function is defined as 
 




















pl

n2

pl

t2

pl

n1

pl

t1

ddtan

ddtan

uu

uu

F


R  (13) 

 

The plastic displacement rate pldu  in Eqs. (12-13) can be 
calculated from the rate form of the elasticity equation Eq. (6) 
 

σCuu ddd epl   (14) 
 
where Ce is the elastic compliance matrix  
 

1ee  DC  (15) 
 
Eq. (11) is solved by applying the Newton-Raphson 

method and performing the following substitutive iterations at 
the element material level until convergence is achieved, 
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where the subscripts “i” and “i+1” indicate the iteration 
sequence numbers.  Convergence is considered to be achieved 
when the norm of the vector R is sufficiently small. 

Global Stiffness Matrix 
In incremental FE analyses, the user material’s Jacobian 

matrix Dep is sought to determine the stress increment d in 
terms of the displacement increment du, 

 
uDσ dd ep  (17) 

 
This element stiffness matrix is passed on to assemble the 
stiffness matrix used in the global iterations and therefore also 
referred to as the global stiffness matrix of the element. 

By enforcing the consistency condition for plastic loading 
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Dep can be obtained as follows with nonzero adhesive strength 
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When the adhesive strength has reached zero, Eq. (19) is 
simplified as 
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CALIBRATION OF BOND MODEL PARAMETERS 

KSU conducted untensioned pullout tests and 
pretensioned concrete prism tests to evaluate the bonding 
quality of different reinforcements including both wires and 
strands [11-12].  We have employed the data involving the 
seven-wire strands from these tests to calibrate our bond model 
parameters listed in Table 1. 

Figure 6 shows the setup of the untensioned pullout test 
that we simulated.  A seven-wire steel strand with a nominal 
diameter of 3/8 in. (9.525 mm) is embedded in a concrete 
matrix with a 4 in. (101.6 mm) embedment length and a 4 in. 
(101.6 mm) bond breaking length.  The steel tube encasing the 
concrete specimen has an inner diameter of 4 in. (101.6 mm).  
The pullout force and the displacements at the unloaded and 
loaded ends of the steel strand were recorded.  Axisymmetric 
models were developed to simulate the pullout tests. 

Figure 7 shows the cross section of the concrete prism 
used in the pretensioned concrete prism test.  There are four 
seven-wire strands embedded in the concrete matrix.  The prism 
measures 5.5 in. (139.7 mm) on each side of its cross section 
and 69 in. (1.75 m) in length, and every two strands are spaced 
2 in. (50.8 mm) apart.  The strands in the concrete prisms were 
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pretensioned to 17,415 pound force (77,466 N), equivalent to a 
nominal initial tensile stress of 157,678 psi (1,087.2 MPa).  
Once the concrete reached a desired compressive strength, the 
pretension was released with the strands cut at the prism ends.  
There were three concrete release strengths: 3,500, 4,500 and 
6,000 psi (24.1, 31.0 and 41.4 MPa).  Concrete surface strains 
were then measured for each prism and used to calculate the 
transfer length.  In modeling, quarter symmetry in the cross 
section and half symmetry over the length were assumed, 
resulting in one-eighth of the prism being modeled. 

The bond parameters are determined and shown in Table 2 
for the frictional and the adhesive/frictional/dilatational bond 
models.  For the frictional model, a high normal elastic stiffness 

e

nnD  was chosen to ensure no penetration of the interface, a 

moderate shear elastic stiffness was chosen to ensure good 
convergence, and a coefficient of friction (tan) of 0.45 was 
adopted based on the average coefficient of friction measured 
between machined mild steel and concrete for normal stresses 
between 1 and 68,000 psi (6.9 kPa and 468.8 MPa) [13].   

For the adhesive, frictional and dilatational model, the 
normal and shear elastic stiffness parameters were assumed to 
be the same as those in the frictional model.  The remaining 
parameters were calibrated from the KSU pullout and prism 
tests.  Table 3 shows the concrete and steel material parameters 
used in the simulations of these tests.  In the bond parameter 
calibration, only the data corresponding to the concrete release 
strength of 6,000 psi (41.4 MPa) was considered in the 
simulations of the prism tests. 

 

 
Figure 6: Illustration of the un-tensioned pullout test 

conducted on a concrete specimen embedded with a seven-
wire strand. 

 
Figure 7: Illustration of the cross section of a pretensioned 

concrete prism with seven-wire strands. 

Table 2. Calibrated bond model parameters. 

 Frictional model 
Adhesive, frictional 

and dilatational 
model 

e

nnD  92,630,000 lbf/in3 92,630,000 lbf/in3 
(25,144.1 N/mm3) (25,144.1 N/mm3) 

)( e

nt

e

ns DD  385,958 lbf/in3 385,958 lbf/in3 
(104.8 N/mm3) (104.8 N/mm3) 

tan 0.45 0.3 

0a   
600 psi 

(4.14 MPa) 

 in pl

tcu
 

 
0.08 in. 

(2.03 mm) 
tan  0.0036 

 
Table 3. Concrete and steel material parameters used in 

simulations for bond parameter calibration. 
Concrete 

Steel 
Nominal strength fc

6,000 psi 
(41.4 MPa) 

Young’s modulus E
4,028 ksi Young’s 

modulus 
30,000 ksi

(27.8 GPa) (206.8 GPa)

Tensile strength 0t 478.8 psi Yield 
strength 

270,600 psi
(3.3 MPa) (1,865.7 MPa)

Compressive 
strength cu  

5977.8 psi 
  

(41.2 MPa) 

 
Figure 8 shows the pullout force-unloaded end 

displacement plots for test versus FE results.  The test data were 
averaged over the data of six specimens. 

Figure 9 compares the concrete surface strain profile 
predicted by FE modeling versus measurements made in the 
prism tests.  The average of six test measurements is shown in 
Figure 9.  The test measurements are consistently higher than 
the unadjusted FE predictions.  It was reported that for logistic 
reasons, concrete strains could not be measured at the same 
time the strand pretension was released, and the time lapse 
between the two events led to considerable concrete creep by 
the time of the strain measurement.  A method to account for 
the added strains due to creep was therefore needed so that 
meaningful comparisons can be made between the test data and 
the simulation results. 
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Figure 8: Pullout force-unloaded end displacement curves: 

test versus FE results (1 lbf = 4.448 N, 1 in. = 25.4 mm). 

 
Figure 9: Measured versus FE predicted surface strain 

profile in the concrete prism (1 in. = 25.4 mm). 

Bazant and Baweja postulated that for a constant uniaxial 
stress  within the service range and applied at age t′, the strain 
 at age t can be written as [14] 

 
       tTtttJt   sh,  (21) 

 
where J is the compliance function, sh the shrinkage strain,  
the thermal expansion coefficient, and T the temperature 
change.  The compliance function can be further expressed in 
elastic and creep terms as 
 
       0d0 ,,,1, tttCttCtEttJ   (22) 

 
where  tE   is the modulus of elasticity at loading age t′, 

 ttC ,0  is the basic creep compliance, and  0d ,, tttC   is the 

creep compliance due to simultaneous drying.  Assuming only 
the basic creep mechanism is in effect, we rewrite Eq. (21) as 
 
     ttCtEt  ,0  (23) 

 
If we further assume that at age t′ 

 
   ttE    (24) 

 
then we can obtain an estimate of  ttC ,0  as follows, 
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In our analyses, we substituted (t) for the average 

maximum test measurement and (t′) for the average maximum 
FE prediction to obtain an estimation of C0.  Figure 9 shows 
both the original FE predicted strains and the same strains 
adjusted with creep strains based on an estimated C0=0.14 
microstrain/psi (20.3 microstrain/MPa). 
 
VERIFICATION WITH TEST DATA 

The FE bond models developed in this paper were verified 
with two sets of test data on concrete ties made with seven-wire 
strands, (1) concrete surface strain data obtained on actual 
pretension released concrete crossties made in a plant, and (2) 
force-displacement relation obtained from a center negative 
moment test. 

Surface Strain Measurement on Concrete Crossties 
Concrete crossties were made at a plant with over a dozen 

prestressing wires or strands [15].  Both Whittemore gauge and 
Laser Speckle Imaging (LSI) methods were applied to obtain 
strain data on the concrete surfaces.  FE simulations of the 
pretension release in the seven-wire strands were conducted.  
Again the measured concrete surface strains had significant 
creep components, and the creep compliance parameters C0 
were estimated according to Eq. (25) to be 0.17 and 0.096 
microstrain/psi (24.7 and 13.9 microstrain/MPa) for 
Whittemore gauge and LSI measured data, respectively.  Then 
an inverse operation to Eq. (23) was conducted to remove the 
creep strains from the test data, 
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The adjusted test data are then compared in Figure 10 

with the FE predicted strains using the adhesive, frictional and 
dilatational bond model.  This allows all three sets of results to 
be compared directly.  The averages of the multiple 
measurement data obtained under each measuring method are 
shown in Figure 10.  The FE analysis used the concrete and 
steel material properties in Table 3 and the calibrated bond 
model parameters in Table 2.  The FE results appear to fall 
within the scattering of the experimental data obtained from the 
two strain measuring methods.  It is further noted that the 
average concrete release strength of the concrete ties made with 
the seven-wire strands in the plant was 5,277 psi (36.4 MPa), 
lower than the 6,000 psi (41.4 MPa) concrete release strength 
employed in the bond model development and application. 
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Figure 10: Adjusted Whittemore gauge and LSI 

measurements versus FE prediction of the surface strain 
profile of plant made concrete crossties (1 in. = 25.4 mm). 

Center Negative Moment Test on Concrete Crossties 
The American Railway Engineering and Maintenance-of-

Way Association (AREMA) manual specifies a center negative 
moment test for monoblock concrete ties [16].  A diagram of 
the test is reproduced in Figure 11 for a 102 in. (2.59 m) tie.  In 
this test, a concrete tie is placed upside down with its rail seats 
resting on two rubber supports, each being 30 in. (762 mm) 
away from the tie center.  The tie bottom is then loaded by a 
force P over a 6 in. (152.4 mm) length at the center until P 
meets a specified pass/fail criterion. 

Five concrete ties were retrieved at the derailment site of 
the July 18, 2013 accident in Bronx, New York, and one unused 
concrete tie manufactured in the same time period as the five 
used ties was also obtained.  All six ties were tested under the 
AREMA test condition described above, but the test procedure 
was changed so that the ties were loaded to complete failure 
[17].  The evolution of the load and the rail seat displacement 
relative to the tie center was recorded in the test.  Upon 
completion of the modified center negative moment test, two 
concrete samples were drilled from each tie, and standard 
material tests were conducted on the samples.  Table 4 shows 
the average concrete material parameters obtained in the 
material tests on the samples from the unused tie. 

 

 
Figure 11: AREMA center negative moment test 

specification for monoblock concrete ties [16], reproduced 
for a 102 in. (2.59 m) tie (1 in. = 25.4 mm). 

 
Table 4. Average concrete material parameters for the 
unused concrete tie subjected to the modified AREMA 

center negative moment test. 

Density 
Elastic 

modulus 
Poisson’s 

ratio 
Split tensile 

strength 
Compressive 

Strength 
140.5 lb/ft3 4,941.0 ksi

0.202 
1,012.5 psi 10,138.5 psi

(2,251 kg/m3) (34.1 GPa) (6.98 MPa) (69.9 MPa)
 
FE simulations of the modified AREMA center negative 

moment test were conducted to evaluate the ultimate center 
negative moment capacity of the concrete ties involved in the 
July 18, 2013 accident in Bronx, New York.  The frictional 
bond model was applied in the preliminary analyses [18], and 
this paper further employed the adhesive, frictional and 
dilatational bond model in the analyses of the unused tie.  
Parameters in Table 4 and Table 2 were employed for the 
concrete and bond models, respectively.  The force-relative rail 
seat displacement relations obtained from the simulations are 
compared with the test data in Figure 12. 

While the test data corresponds to one single test 
conducted on one unused concrete tie and thus does not display 
any experimental variability, the simulation results using either 
bond model appear to match fairly closely with the test data.  
The predicted failure loads (maximum load) by the frictional 
model and the adhesive/frictional/dilatational model are within 
4.9% and 11.3%, respectively, of the failure load observed in 
the test.  The predicted relative rail seat displacements at failure 
tend to be lower than the corresponding test data, and it is 
postulated that this could be related to the concrete material 
characterization.  A stronger bond is presented in the adhesive, 
frictional and dilatational model than in the frictional model.  
While the stronger bond does not appear to affect the elastic 
portion of the force-displacement response, it does result in a 
higher failure load.  
 

 
Figure 12: Force-relative rail seat displacement relations 

obtained from the modified AREMA center negative 
moment test versus FE simulations using two bond models 

(1 kip = 4.448 kN, 1 in. = 25.4 mm). 
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SUMMARY AND CONCLUSIONS 
Elasto-plastic bond models were developed for the 

interface between the seven-wire prestressing strands and 
concrete in the railroad concrete tie application.  A frictional 
bond model and an adhesive, frictional and dilatational bond 
model are presented in this paper.  The bond parameters for the 
adhesive, frictional and dilatational model were calibrated from 
laboratory strand pullout and pretensioned prism tests 
conducted on concrete specimens embedded with seven-wire 
strands.  The bond models were then verified with two 
independent sets of test data: (1) the concrete surface strain 
profile measured on actual concrete ties made in a plant, and 
(2) the force-relative rail seat displacement relation obtained in 
a modified AREMA center negative moment test.  With 
appropriate creep strain adjustments, the surface strain profile 
predicted by the FE method using the adhesive, frictional and 
dilatational bond model falls within the scattering of the 
experimental measurements.  The force-relative rail seat 
displacement relations predicted by the FE method using both 
bond models agree reasonably well with the data from the 
modified AREMA center negative moment test.  The stronger 
bond depicted by the adhesive, frictional and dilatational bond 
model does not appear to affect the elastic portion of the force- 
displacement relation, but it predicts an ultimate failure load 
17% higher than the FE prediction using the friction only bond 
model. 
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