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FOREWORD

This memorandum addresses a basic function of aircraft (as well as marine, missile and satellite)
surveillance and navigation systems analyses — quantifying the geometric relationship of two or
more |locations relative to each other and to a spherical earth. Here, geometry simply means
distances (ranges) and angles. Applications that fit well with the methods presented herein
include (a) planning a vehicle sroute; (b) determining the coverage region of aradar or radio
navigation installation; or (c) calculating a vehicle's position from slant-ranges, spherical-ranges,
slant- or spherical-range differences, azimuth/elevation angles and/or atitude.

The approach advocated is that, to ssimplify and clarify the analysis process, the three-dimen-
siona problemsinherent in navigation and surveillance analyses should, to the extent possible,
be re-cast as the most appropriate set/sequence of sub-problems/formulations:

= Vertical-Plane Formulation (two-dimensional (2D) problem illustrated in top right
panel on cover) — Considers the vertical plane containing two problem-specific
locations and the center of the earth, and utilizes plane trigonometry as the primary
anaysis method; provides a closed-form solution.

= Spherical-Surface Formulation (2D problem illustrated in bottom left panel on
cover) — Considers two or three problem-specific locations on the surface of a
spherical earth; utilizes spherical trigonometry as the primary analysis method;
provides a closed-form solution.

= Three-Dimensional Vector Formulation — Utilizes 3D Cartesian vector frame-
work; best-suited to situations involving four or more problem-specific points and
dant-range or slant-range difference measurements; provides a closed-form solution.

» Linearized L east-Squares | terative Formulation — When warranted by the distan-
cesinvolved, the accuracy required, and/or the need to incorporate empirical data, the
|east-squares iterative method is employed based on an ellipsoidal earth model.

These techniques are applied to a series of increasing complex situations, starting with those
having two problem-specific points, then extending to those involving three or more problem-
specific points (e.g., two or more sensor stations and an aircraft). Closed-form (non-iterative)
solutions are presented for determining an aircraft’s position based on virtually every possible
combination of ranges, pseudoranges, azimuth or elevation angles and altitude measurements.

The Gauss-Newton Linearized Least-Squares (LLS) iterative methodology is employed to
address the most complex situations. These include any combination of the following circum-
stances: more measurements than unknown variables, measurement equations are too complex to
be analytically inverted (including those for an ellipsoidal-shaped earth), or empirical datais
utilized in the solution. Also, the capability of the LLS methodology to provide an estimate of
the accuracy of any solution to the measurement equations is presented.
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1. INTRODUCTION

1.1 Overview of Methodologies and Their Applications

This memorandum addresses a fundamental function in surveillance and navigation analysis —
quantifying the geometry of two or more |ocations relative to each other and to a spherical earth.
Here, “geometry” refersto: (a) points (idealized locations); (b) paths between points; and (c) dis-
tances and angles that quantify paths. Points represent locations of either vehicles or naviga-
tion/surveillance sensors. Paths constitute trajectories followed by vehicles or sensor signals.
Distances are the lengths of paths/trgjectories that are either straight lines or follow the earth’s
surface. Angles between paths may be measured on a plane or a spherical surface.

1.1.1 Overview of Methodologies

The approach that may first come to mind when addressing such asituationisto treat it asa
three-dimensional problem and employ vector analysis. However, the approach recommended
herein isthat, to simplify and clarify the analysis process, three-dimensional problems should be
re-cast, whenever possible, as two separate two-dimensional problems:

= Vertical Plane Formulation (Section 1.2 and Chapter 3)° — This formulation
considers the vertical plane containing two problem-specific locations and the center
of the earth. Problem-specific locations are unconstrained vertically, except that at
least one atitude must be known. Plane trigonometry is the natural analysis tool when
altitudes, elevation angles and slant-ranges are involved. Conversely, latitude and
longitude coordinates are not utilized, which isalimitation.

= Spherical Surface Formulation (Section 1.3, Chapter 4) — This formulation —
which is sometimes called great-circle navigation — considers two or more problem-
specific locations on the surface of a spherical earth. Spherical trigonometry isthe
natural analysis tool when the earth’ s curvature must be considered. Latitudes and
longitudes, as well as spherical ranges (distances along the earth’ s surface) and
azimuth angles with respect to north or between two paths, are inherent to this
formulation. A limitation is that altitudes cannot be accounted for.

These two-dimensional analyses can generally be performed in the above sequence, with the
result that the limitations of each are overcome. Thisformulation is preferable to one-3D vector
formulation because it provides better insight into the solution — which reduces computational
errors and improves the analyst’ s understanding of the results.

For historical and practical reasons', in this document when there are two problem-specific
locations of interest, they are often labeled U (for user) and S (for satellite). However, these are

* Document organizational terminology: 1. Chapter; 1.1 Section; 1.1.1 Subsection.

T Historical: these notes were begun about 20 years ago, for a project involving satellites. Practical: the Microsoft
Word equation editor does not have a global change capability.
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only labels, and have no relevance to application of the analysis. Generally, for surveillance
applications, one location will be associated with a sensor and the other will be associated with a
vehicle— e.g., aground-based radar and an aircraft. For navigation applications, the two
locations may be those of a sensor and a vehicle or the beginning and ending points of atravel
segment — e.g., an aircraft and a runway threshold.

Chapter 5 is devoted to the 3D-vector solution approach, which islargely an alternative to the
two-2D approach outlined above that is better suited to some problems. Typically, these involve:
(1) three or more problem-specific points that must be considered simultaneously (rather than
sequentially, which alow one vertical planeto be considered at one time); and (2) only slant-
range-type measurements are involved (true slant-ranges, slant-range differences and/or atitude).
Conversdly, the vector methodology does not handle spherical ranges or azimuth angles as well
as the spherical surface formulation.

1.1.2 Overview of Application of Methodologies

Chapters 6 and 7 apply the analysis methodol ogies described in Chapter 3-5 to situations
involving three or more problem-specific points (e.g., two, three or four sensors and an aircraft).
Chapter 6 addresses sensors that measure slant- or spherical-range and azimuth angles. These
problems are addressed using a sequence of vertical planes combined with the spherical surface
formulation.

Chapter 7 addresses sensor systems that measure slant- or spherical range differences. When
addressed algebraically, these problems require consideration of all measurements simul-
taneoudly; thus, the vector methodology is employed. Some two-dimensional specia cases have
geometry based solutions which do not require the vector approach.

The situations addressed in Chapters 3 through 7 share important characteristics including:

(1) there are the same number of measurements as unknown quantities, and (2) a spherical earth
model is used. These enable closed-form solutions to be found. Closed-form solutions are
valuable for system planning, as they can be analyzed without collecting measurements. More-
over, they are often sufficiently accurate that they can be used operationally.

Chapter 8 departs from both of the conditions listed immediately above and addresses problems
that may involve more measurements than unknown variables and which do not necessarily have
invertible measurement equations. This relaxation of assumptions enables addressing situations
involving, e.g., redundant measurements, non-ideal sensors and/or an ellipsoidal earth. The
“cost” of this generality is that the solution methodology is numerical and iterative, rather than a
set of closed-form expressions.
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1.2 Vertical Plane Formulation

Figure 1 depicts a vertical-plane involving: an earth-based

user U; asatellite S above a spherical earth; the satellite
nadir (or sub-point) N; and the center of the earth O. Points
U and S (or N) are problem-specific; O isnot. All four
locations are in the plane of the paper. Points O, N and S
form a straight line. These points have no specia
relationship with the earth's spin axis. Since a*“ snapshot”
anaysisisinvolved, no assumptions are made regarding the
satellite’ s trajectory.

n2-a-60

In Figure 1, three linear distances are of interest:
» Re Earthradius (length of OU and ON)
= h Satelite altitude above the earth (length of NS)
» d User-satellite slant range (length of US).

And two angles are of interest:

» ¢ Satellite eevation angle relative to the user's Figurel Vertical Plane
horizon (may be positive or negative) Containing Points U, O, N and S

= 0 Geocentric angle between the user and satellite
nadir (is always positive).

The earth radius Re is always assumed to be known.

There are four variables associated with this formulation: h, d, & and 8. Any two must be known,
and the remaining two can be found. Thus, there are six possible groupings. Subsection 2.3.1
shows how to relax the restriction of U being on the earth’ s surface, to its having a known
atitude. Chapter 3 details the full set of 12 possible equations for this formulation.

Of these four variables, the geocentric angle @ (which is equivalent to distance along the earth’s
surface, or spherical-range) is also avariable in the spherical surface formulation. It serves as the
link for relating the two formulations — i.e., for transferring a solution to the vertical plane
formulation into the spherical surface formulation (Subsection 4.1.3 elaborates on this topic).
The other three variables (h, d and «) are related to the atitude of S above the earth’ s surface
and have no role in the spherical surface formulation.

1.3 Spherical Surface Formulation

The spherical surface formulation is an application of spherical trigonometry. Thisformulation is
almost perfectly matched to marine surface navigation, and was devel oped by the ancients partly
for that purpose. It can be used for many aviation navigation and surveillance situations by

-3
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combining it with the vertical plane formulation.

The left-hand side of Figure 2 depicts the earth’s familiar latitude/longitude grid. The right-hand
side shows two problem-specific points U and S on the earth’ s surface and the seven variables
involved in a two-location problem on a sphere:

» thelatitude/longitude, respectively, of U (Lu, Au) and of S (Ls, 4s)

= the geocentric angle 8 between U and S; and

= theazimuth angles wsu and wus of the great circle arc connecting U and S.

North North

|

/ |

/ |
F .
/ \Wm Wyss (negative

|
mls shown)

" Figure 2 Spherical Surface Containing Points U and S

Generdly, four of these seven variables must be known; from those, the other three can be
computed. Even this simple problem involves 35 possible groupings of known / unknown
variables. By taking advantage of symmetries, these can be reduced to 16 unique, solvable
mathematical problems (Subsection 4.1.8) —still a significant number. Thus, in contrast with the
exhaustive approach taken vertical plane formulation, a more selective approach is adopted for
the spherical-earth formulation. Attention is limited to the variable groupings of highest interest,
and aroadmap is provided for the remaining cases.

“Geodesy is the science concerned with the exact positioning of points on the surface of the
Earth” (Ref. 1). In geodesy, analyses involving two groupings of known/unknown variables
occur so frequently that they have been named:

= Direct (or first) problem* of geodesy: (a) Given the coordinates (Lu, Au) of U, the
geocentric angle # between U and S, and azimuth angle wsu of agreat circle path
starting at U and ending at S; (b) Find the coordinates (Ls, 4s) of the end point S and the
path azimuth angle at the end point yuys.

= Indirect (or second, or inverse) problem of geodesy: (a) Given the coordinates, (Lu, Au)
and (Ls, 4s), of two pointsU and S, (b) Find the geocentric angle # connecting U and S,
and the azimuth angles (relative to north), wu;s and wsu, of the path at each end.

* Note the academic/mathematical use of the word “problem” in the narrow sense of specific groupings of known
and unknown variables. This document also uses “problem” in the broader sense of a situation to be analyzed.

-4-
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In both Chapter 4 (spherical surface formulation) and Chapter 5 (vector formulation), solution
eguations are provided for the direct and indirect problems of geodesy, and variations thereon
that have relevant applications. Many of the three-point problems addressed in Chapter 6 use the
Direct or Indirect problem as step in the solution algorithm.

1.4 Applicability and Limitations of Analysis

With afew exceptions, the methodology presented herein generally reflects conditions and

assumptions appropriate to aircraft navigation and surveillance, including:

= Earth Curvature Must Be Consider ed — With the exception of aircraft on the
surface of an airport, the curvature of the earth is afundamental aspect of aircraft
navigation and surveillance anaysis.

= Three-Dimensions Frequently Must Be Considered — Some essential operations,
such as aircraft approach, require that lateral/longitudinal position and altitude all be
considered, necessitating a three-dimensional analysis methodology.

= Horizontal Position and Altitude Decoupled at L ong Ranges — Generally,
scenarios requiring simultaneous consideration of three dimensions involve aircraft-
sensor ranges of less than 250 miles, the maximum “visible” distance of aircraft at
40,000 feet of atitude.

= Altitude Measurement Always Available — Aircraft of interest provide barometric
atimeter information that can be adjusted to provide elevation above sealevel.

The analysis a'so embodies the following assumptions/limitations:

= Static Scenarios— Scenarios analyzed are “snapshots’ — i.e., motion of an aircraft
or other vehicleis not explicitly involved. Sequence of locations are considered, but
the notions of velocity or time as mechanisms for relating those locations are not
utilized.

= Great Circle Vehicle Paths — Vehicle trgectories are dways great circles. That is,
they lie in avertical plane that contains the center of the earth.

= Geometrically Simple Radio Wave Propagation Paths— Radio waves between
transmitters and receiversliein avertical plane that contains the center of the earth.
Two path geometries are considered: (a) line-of-sight, or Euclidean straight lines; and
(b) following the curvature of the earth.

= Terrain/Obstacles Ignored — Except for the earth itself, obstacles such as hills/
mountains or man-made structures that could block the signal path between two
locations (e.g., asensor and avehicle) are not addressed.

One might ask: Why focus on a spherical earth model, when an ellipsoidal model is more
accurate? Therationaleis:

= |nsight/Confidence — When the number of measurementsis equal to the number of
unknown quantities, a spherical earth-model usually has a closed-form solution that is
understandable geometrically. Conversely, an ellipsoidal model never has a closed
form solution; the analyst must initialize, utilize and trust a numerical solution.

-5
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= Error Often Insignificant — While an elipsoidal model more accurately describes
the earth’ s shape, quantitatively the earth is“99.7% round”. The so-called ellipticity
error resulting from employing the spherical-earth approximation is often acceptably
small (Subsections 2.2.2, 4.8.7, 8.4.4 and 8.4.6).

Engineering analyses methods have been characterized thusly: “There are exact solutions to
approximate problems, and approximate solutions to exact problems. But there are no exact
solutions to exact problems” .8 The techniques described herein, with the exception of Chapter 8,
are exact solutions to approximate problems. They enable use of closed-form solutions that are
valuable in multiple engineering activities. The spherical-earth approximation is often made in
authoritative documents that address similar applications (e.g., Refs. 1, 2 and 3). When an
ellipsoidal-earth model is required and iterative numerical technique must be employed, the
spherical-earth solution provides an excellent initial value for the iteration process.

1.5 Outline of this Document

Chapter 1 (this one) describes the basic problems to be addressed, and outlines the approach
recommended for their solution. Chapter 2 is mathematical in nature, and isincluded to make
this document more self-contai ned.

Chapters 3 through 8 are synopsized in Section 1.1. Table 1 isahigh-level roadmap of location
of the topics addressed.

Table1l Topic Locations by Problem Geometry

qsion Two Dimensions Three Dimensions
Shape
= Plane Trigonometry (vertical plane) — = Vector Analysis — Chapter 5; Section 7.2
Spherical Chapter 3 * Plane & Spherical Trigonometry —
Earth = Spherical Trigonometry (spherical Chapters 6 & 7
surface) — Chapter 4 * Linear Least Squares — Chapter 8
Ellipsoidal | Vincenty's Algorithm — Subsection 2.2.3 | = Vector Analysis — Chapter 5; Section 7.2
Earth = Linear Least Squares — Chapter 8 = Linear Least Squares — Chapter 8

Toillustrate application of the analysis techniques described herein, example applications are
presented at the ends of several chapters that address:

= Air Traffic Control (ATC) radar coverage (Example 1)

= Precision approach procedure design (Example 2)

= Satellite visibility of/from the Earth (Example 3)

=  Great-circle flight route between Boston and Tokyo (Example 4)

= ATC radar display coordinate transformations (Example 5)

= Single VOR/DME station RNAYV fix (Example 6)

§ Conveyed by Prof. Donald Catlin (Univ. of Mass. Amherst, Mathematics Dept.), who attributed it to Prof. Lotfi
Zadeh (Univ. of Calif. Berkley, Electrical Engineering Dept.).
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= Ground path dlipticity error for selected airport pairs (Example 7)

=  Systemsthat utilize measurements of slant-ranges or their difference in two
dimensions (Examples 8 and 9)

= Systemsthat utilize measurements of spherical-range differences— asingle Loran
chain involving three stations (Example 10); and two chains involving four stations
(Example 11)

= A Wide AreaMultilateration (WAM) system using slant-range differences and
altitude measurements (Example 12).

Relevant, specialized topics are presented in an Appendix (Chapter 9).
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2. MATHEMATICS AND PHYSICS BASICS

2.1 Exact and Approximate Solutions to Common Equations

2.1.1 The Law of Sines for Plane Triangles

For future reference, the law of sines applied to the plane triangle UOS in Figure 1 yields

sin(@): sin[g+ aj: sin[z-a-ej

Eql
d R.+h R
Eq 1 reducesto
sin(6) _ cos(a)_ cos(a+6) £q2
d R.+h R,
In EQ 2, the | eft-center equality,
(R,+ h)sin(p)= d cos(a) Eq3
relates all five quantities of interest in asimple way.
The left-right equality in Eq 2 is equivalent to
R.sin() = dcos(a +6) Eq 4
This expression relates one side variable, d, and the two angle variables, « and 6.
Similarly, the center-right equality in Eq 1 is equivaent to
R coda) = (R +h)coda +6) Eq5

This expression relates one side variable, h, and the two angle variables, a and 6.

2.1.2 The Law of Cosines for Plane Triangles

For future reference, the law of cosinesis applied to the plane triangle UOS in Figure 1. When

theangleat O isused, theresult is

d*=R*+(R +hf’ —2R (R, +h)cod0) Eq6
When the law of cosinesis applied using the angle at U, theresult is
(&+h)2:&2+d2—2&dcos(%+aj Eq7

-8
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Each of these equations relates the two side variables, d and h, and one angle variable. Eq 6
involves @ and Eq 7 involves a.

2.1.3 Solution of a Quadratic Equation

In some instances, a quadratic equation similar to the following must be solved

AC+Bx+C=0 Eq8
The algebraic solution is
-B+./B?-4AC
X = Eg9
2A

We cannot have imaginary roots, so BZ > 4AC. In many instances, (a) the positive root is sought
(since lengths cannot be negative), and (b) B2 > |4AC]|. For these situations:

o B++/B2-4AC

2A
X:E(ED—}DZJriD?’— S pay I ps_ 2l pelge , p=—C  Eq10
2Al2 8 16 128 256 1024 B*
C 4AC
X—>—-— as —0
B 2

2.1.4 Computing Inverse Trigonometric Functions

Intrinsic to navigation analysis is the cal culation of angles using an inverse trigonometric
function. In performing such calculations, two concerns should be borne in mind: (1) numerical
ill-conditioning and (2) ambiguous solutions. These conditions generally do not arise simultan-
eously. Numerical ill-conditioning occurs near sine or cosine function values of +1, which
correspond to unique angles. Ambiguous solutions generally arise when the approximate value
of the angle is not known. The equations provided in the following chapters attempt to address
these concerns, but every situation may not be anticipated.

Concerning numerical ill-conditioning: Both the sine and cosine functions have angular
arguments for which the function’s (a) value is near +1, and (b) derivativeis zero — see Figure
3. Changes in the angular arguments result in significantly smaller changes in the trigonometric
function value, which may be subject to truncation or roundoff. Accurately computing the
angular argument from the trigonometric function often requires increased precision.
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Table 2 below illustrates this concern for the geocentric
angle computed from the arc cosine function. If five decimal
digits are used for angles and trigonometric functions, the
minimum detectable cosine function change corresponds to
distances between 10 NM and 30 NM. A remedy isto
employ the sine or tangent function rather than the cosine
function. Unlike the cosine function, the sine and tangent
functions (a) increase monotonically from azero value for a
zero angle, and (b) have a positive derivative value near zero
angle. In Table 2, the last column indicates that for distances
up to approximately 70 NM, the tangent function has a
minimum of atwo decimal place numerical advantage over
the cosine function. The same behavior occurs for the sine

function near ©/2.

Figure 3 Principal Vaues of
arcsin and arccos Functions

Table2 Geocentric Angle 8 and Its Cosine and Tangent Functions, near # =0

0 (rad) 0 (deg) (Rl\fMt? cos(h) 1-cos(0) tan(0) i[i:no(gz 0/)
0.00000 0.000 0.000 | 1.00000| 0.00000 | 0.00000 —
0.00001 0.001 0.034 | 1.00000| 0.00000| 0.00001| 2.0E+05
0.00003 0.002 0.103| 1.00000 | 0.00000| 0.00003| 6.7E+04
0.00010 0.006 0.344 | 1.00000| 0.00000| 0.00010| 2.0E+04
0.00030 0.017 1.031| 1.00000| 0.00000| 0.00030| 6.7E+03
0.00100 0.057 3.438 | 1.00000 | 0.00000| 0.00100 | 2.0E+03
0.00300 0.172 10.313 | 1.00000 | 0.00000 | 0.00300| 6.7E+02
0.01000 0.573 34.378 | 0.99995| 0.00005| 0.01000 | 2.0E+02
0.03000 1.719 | 103.134 | 0.99955| 0.00045| 0.03001 | 6.7E+01
0.10000 5.730 | 343.780 | 0.99500 | 0.00500 | 0.10033 | 2.0E+01

Given cos(0) = f(other variables) where

Invoke cos(0) =1-2s nz(%j

Thus sin(%j = %1/1— f
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A method for recasting an ill-conditioned equation for cos(#), which dates to the middle of the
first millennium, is shown in Eq 11 below.

Eq 11

To be effective, the quantity under the radical in Eq 11 must be further manipulated to eliminate
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the subtraction of nearly equal quantities. For example, acommon situation is finding one side,
say 6a, of aright spherical triangle, given the hypotenuse #c and the other side 0s.

Op= arccos{ COS(OC)}
cos(6g)
Eq 12
= 2arcsin sin(3(6c +65))sin( (6c —0s)) a
cos(6;)

Concerning ambiguous solutions: Trigonometric functions are periodic, so inverse trigonometric
functions can result in multiple angles. To address thisissue: (a) when making a computation,
take account of the expected range of values for the angle involved — e.g., elevation angle a
varies between +r/2, so the arc sine or arc tangent functions are preferable to the arc cosine;

(b) utilize half-angle formulas when possible, since they double the range of angles that can be
computed uniquely; and (c) when possible, use afour-quadrant (two argument) arc tangent
function.

2.1.5 Expansions of arcsin, arccos and arctan for Small Angles

In the analysis that follows, a common situation is the need to compute the inverse of atrigo-
nometric function for an argument such that the resulting angle will be closeto 0 — e.g.,
0 = arcsin(x), @ = arccos(1 - x) or @ = arctan(x), where x is close to 0.

First, it iswell known (Ref. 4) that

arcsin(x)=x+1x3+ix5+ix7+etc. Eq 13
6 40 112

A Taylor series expansion of arccos(1 - x) is not available, due to its lacking a derivative at x = 0.
However, more general power series (often called Frobenius) expansions are available; thus,
utilizing Eq 11 and Eq 13:

3 5 7
arccos(1- x) = 2arcsi \/g _J2x2 +£ X2+ 32 X2+ 52 X2 +etc. Eq 14
2 12 160 896

Lastly, from Ref. 4.

arctan( x):x—%x3+%x5—%x7+etc. Eq 15

-11-
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2.1.6 Secant Method for Root Finding

When finding an unknown quantity, one certainly prefers to have an expression (or sequence of
expressions) whereby the unknown is a dependent variable and the known quantities are
independent variables. (Developing such equations is the focus of this document.) However,
situations inevitably arise whereby the available expressions contain the unknown quantity as an
independent variable. If the expression(s) involved are too complicated to be manipulated into
the desired form (“inverted”), recourse is often made to a numerical root-finding technique.

The most widely-known root-finding technique is “Newton’s” or the “Newton-Raphson” method
(Ref. 5). Newton's method performs well for most functions, but has the significant disadvantage
that it requires a derivative with respect to the variable being sought. Often the derivativeis
difficult/tedious to compute ana ytically and to program in a computer. Thus, in applied work,
interest is frequently limited to derivative-free root-finding technigques. Such techniques were
first investigated by the ancients, including the Babylonians and Egyptians.

There are several alternative root-finder (or “solver”) algorithms available. Implementations of
some are found in mathematical software packages. The Secant method is among the simplest
and oldest algorithms. Assuming that we seek avalue of x that satisfies f(x) = 0, the Secant
method of solution for xis

Xn — Xna Xn — Xna

Xp = X, — F(X =X, ——
n+1 n ( n) f(Xn)— f(Xn_l) n 1 f(xn—l) Eq 16

(%)

The secant method is afinite difference version of Newton's method; in effect, it uses the
previous two points to estimate the function’ s derivative.

After initialization, both Newton’s method and the Secant method converge in one step if the
function fislinear. In general, convergenceis governed by the behavior of thefirst and second
derivatives of f. Functions that have a constant or continuously increasing (or decreasing)
derivative are most amenable to aroot finder. Many surveillance and navigation problemsfit this
description. Functions that have a derivative of zero or an inflection point (second derivativeis
zero) at or near the root being sought can flummox aroot finder. For functions that are amenable
to aroot finder, Newton's method convergence is order 2 (i.e., the error for iteration nis
proportional to the square of the error for iteration n-1), while the Secant method convergenceis
order 1.6.

An example involving a*“root-finder friendly” function is determining the square root of 2 —
i.e., f(X) = x2 — 2. Table 3 shows the results of applying Newton’s method and the Secant method,
beginning from the same points.

-12-
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Table3 Comparison of Newton's and Secant Methods for Finding the Square Root of 2

lteration. n _ Newton’'s Methoq _ Secant Method'

' Variable, xn Function, f(X,) Variable, xn Function, f(X,)
1 1.0000000000 -1.0000000000 1.0000000000 -1.0000000000
2 1.5000000000 0.2500000000 1.5000000000 0.2500000000
3 1.4166666667 0.0069444444 1.4000000000 -0.0400000000
4 1.4142156863 0.0000060073 1.4137931034 -0.0011890606
5 1.4142135624 0.0000000000 1.4142156863 0.0000060073
6 — — 1.4142135621 -0.0000000009
7 — — 1.4142135624 0.0000000000

2.1.7 Surface Area on a Sphere

The surface area of the sphere with radius Re is 41 (Re)%. The surface area enclosed by acircle on
the surface of that sphereis

A=27(R,)?[1- cos(h)] Eq 17

Here 0 is the half-angle of the cone, with apex at the center of the sphere, whose intersection
with the surface forms the circle under discussion. Using Figure 1, the cone would be formed by
rotating sector ONU about line ON.

2.2 Shape of the Earth

2.2.1 WGS-84 Ellipsoid Parameters

While use of a spherical earth model is basic to much of the analysis herein, the most-accepted
model for the shape of the earth is an oblate spheroid (ellipse rotated about its minor axis). The
term ‘dlipticity error’ is used for differences between distances or angles found using a spherical
earth model and the same quantities found using an ellipsoidal model.

The World Geodetic Survey 1984 (WGS-84) model parameter are the ellipsoid’ s semi-major

axis, a, and the flattening f. Their numerical values are
= a=6,378,137m (WGS-84)
= f=1/298.257,223,563 (WGS-84)

Flattening of the ellipsoid is defined by Eq 18, where b is the semi-minor axis.

_a-b
a

f Eq 18

In computations, the square of the eccentricity € is frequently used in lieu of the flattening.

a’-b’

a2

&= 2f —f2=1f(2- 1)

Eq 19
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Although the earth’ s shape is not a sphere — it is nearly so. A useful “rule of thumb” isthat the
ellipticity error in the computed length of a path is 0.3%. The basis of this estimate is that the
earth’ sflattening is approximately 0.003353, or 0.34%. Subsection 4.8.7 contains examples of
the ellipticity error in computing the ranges between selected airports.

In the U.S., the foot is the most common unit of distance. As aresult of the International Y ard
and Pound Agreement of July 1959, the international foot is defined to be exactly 0.3048 meter.
Thus

= a=20,925,646.3ft (WGS-84)

» b=(1-f)a=6,356,752.3 m = 20,855,486.6 ft (WGS-84)

» €=0.006,694,379,990,14 (WGS-84)

In marine and aviation applications, the nautical mile (NM) is often used as the unit of distance.
The international nautical mile was defined by the First International Extraordinary Hydro-
graphic Conference in Monaco (1929) as exactly 1,852 meters. This definition was adopted by
the United States in 1954. The international nautical mile definition, combined with the
definition for the foot cited above, result in there being 6,076.1155 feet in one nautical mile.

2.2.2 Radii of Curvature in the Meridian and the Prime Vertical

To approximate the ellipsoidal earth at alocation on its surface by a sphere, two radii of curva
ture (RoCs) are commonly defined — the RoC in the meridian (north-south orientation), Rns, and
the RoC in the prime vertical (east-west orientation), Rew (Ref. 6). These RoCs lie in orthogonal
planes that include the normal (perpendicular line) to the surface of the ellipse. Their values are a
function of the geodetic latitude L of the location involved — see Appendix (Section 9.3). Their
analytic expressions are shown in Eq 20 and they are plotted in Figure 4.

) a(l_eZ) B a2 b2
el @ (L1 [ o (1) b s (L

: Eq 20
R(L) = ———2 k

[l—ezsinZ(L)]l/Z - [a2 COSZ(L)+bZSin2(L)]1/2

The Rns RoC in Eq 20 can vary more widely than the rule of thumb for lipticity error. Figure 4
below shows that while Rey does change by about 0.34% between the Equator and a Pole, Rns
changes by dlightly over 1%. Excursions of the radius of curvature from a reasonabl e average
value will usualy be greater, on a percentage basis, than the ellipticity error in a path length.

The RoC in an arbitrary vertical plane that includes the normal to the ellipse and makes azimuth
angle w with north is given by (Ref. 6)
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Figure4 Ellipsoidal Earth’s Radii of Curvature, Normalized to the Semi-Major Axis

1

" 0 (y) L Sn’(v) Eq 21
R Ra

R,

The average of R, over 0 < i <27 (at a given latitude) is the Gaussian radius of curvature Rg
a@-f)
=/ = Eq 22

In some applications, agloba approximation to Re (independent of latitude) may be sufficient —
e.g., the arithmetic mean of the three semi-axes of the ellipsoid

I:ga\,arithmeeln :%(a—i_a—i_b):(l_% f)a Eq 23

Thus
"  Reg arith mean = 6,371,008.8 m = 20,902,259.7 ft (WGS-84)

When analyzing procedures for the FAA and other U.S. Government agencies with an aviation
mission, the value of Re to be used is defined in Ref. 2:
» Re=20,890,537ft (U.S. TERPS)

An earth-centered, earth-fixed (ECEF) Cartesian coordinate frame for an ellipsoidal model of the
earth is defined in the Appendix (Section 9.3).
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2.2.3 Methods for Addressing an Ellipsoidal Earth

During approximately the past half-century, there has been a resurgence of interest in ellipsoidal
earth models. Reasons for thisinterest include: (1) wide availability of machine-based compu-
tational capabilities, (2) deployment of accurate long-range radionavigation systems, and (3)
development of long-range, unmanned weapons systems. Much of the recent work derives from
two volumes by Helmert™ which were published in the 1880s (Ref. 7) and translated into
English (Ref. 8) in the 1960s.

Andoyer-Lambert For mula— The Andoyer-Lambert formula (approximation) results from
expansion of the geodesic (shortest) arc length between two points on areference ellipsoid to
first-order in the flattening (Ref. 9). This approximation was widely used in conjunction with
both the Loran-C (Ref. 10) and Omega (Ref. 11) radionavigation systems. Accuracy for the
Andoyer-Lambert formulais 10 m for distances up to 6,000 miles (Ref. 10).

Vincenty’s Method — During the early 1970s, Vincenty'" revisited the issue of geodesics on an
ellipsoid, and programmed a version of earlier agorithms (including Helmert's) on a calculator.
To accommodate the computing technology at that time, Vincenty’s primary concern was
minimizing the program’s memory consumption. Accordingly, he developed iterative al gorithms
for both the direct and indirect problems of geodesy (Ref. 12).

Dueto its ease of coding, Vincenty’s agorithms are now the most widely used method for
computing geodesics on an ellipsoidal earth. Their accuracy is quoted as less than one milli-
meter, which has been independently validated by comparison with numerical integration of the
differential equations governing geodesic arcs on an ellipsoid (Ref. 13).

Sodano’s M ethod — In a series of papers published between 1958 and 1968, Sodano™
described non-iterative approximate solutions to the direct and indirect problems of geodesy
based on expansion of the arc length between two points to higher orders in the eccentricity
(Refs. 14, 15 and 16). Quoting Ref. 14: “The accuracy of geodetic distances computed through
the €, &, €® order for very long geodesicsis within afew meters, centimeters and tenth of
millimeters respectively. Azimuths are good to tenth, thousandths and hundreds thousandths of a
second. Further improvement of results occurs for shorter lines’.

™ Friedrich Robert Helmert (July 31, 1843 — June 15, 1917) was born in Freiberg, Kingdom of Saxony (now
Germany). According to Wikipedia, histexts “laid the foundations of modern geodesy”.

T Thaddeus Vincenty worked at the U.S. Defense Mapping Agency Aerospace Center, Geodetic Survey Squadron,
Warren Air Force Base, in Wyoming.

# Emanuel Sodano worked at the U.S. Army Map Service and the Army Geodesy, Intelligence and Mapping
Research and Development Agency.
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2.3 Accounting for User Altitude

The equations devel oped in Chapters 3 generally assume that the user’ s location U is on the
earth’s surface. The primary exception are the examples, which do take account of the user’s
elevation above the earth’ s surface. Subsection 2.3.1 shows how to modify the equationsin
Chapter 3 to account of a non-zero, known user elevation/dtitude, and Subsection 2.3.2 shows
how to select the user altitude to ensure an unblocked line-of-sight to a satellite at agiven
distance or dtitude. Background/tutorial information on different meanings of ‘atitude’ is
provided the Appendix, Subsection 9.1.1.

2.3.1 Accounting for Known User Altitude

In most situations of interest, there is no concern about the line-of-sight (LOS) between the User
U (generally a sensor) and the Satellite (or aircraft) S being blocked by the earth’s curvature.
Thisisthe situation depicted in Figure 1. A method for determining the minimum elevation
angle for which thereis no LOS blockage is shown in Subsection 2.3.2.

When the user altitude hy is known and the LOS between U and S is unblocked, the equations
presented in Chapters 3 and thereafter can be used with these simple substitutions to account for

anon-zero user atitude;
. Re — Re + hU, and
* h — hs—hy (where hsisthe satellite's atitude).

2.3.2 Conditions for Unblocked Line-of-Sight

Conditions for which the LOS between two points is unblocked by the earth can be determined
using Figure 5, which shows the LOS connecting the User U and Satellite S having a point of
tangency T with the earth’ s surface.

Below, Eqg 24 (which utilizes Eq 14) appliesto a situation where the user atitude hy and satellite
altitude hs are known and the geocentric angle @ is unknown. Altitudes hy and hs can be traded
off — i.e., one can be increased and the other decreased — without changing é.

HU:arcco{ Re J:Zarcsin( LJ
R.+h | 2(R.+hy)

03=arcco{ R j=2arcsin( Lj Eq 24
Re+hs 2(R, +hg)
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o negative

. as shown
0 negative

as shown

Figure5 Problem Geometry for LOS Tangent to the Earth’s Surface

When 8y, 0s, hy and hs are known, the variables d, ay and as, can be found from

d=R.tan(6, ) + R.tan(6s)

aU:—arcco{ Re J:—Zarcsin( /LJ
Re +hy 2(R.+hy) Eq 25

aS:—arcco{ Re J:—Zarcsin( L]
2(Re + hs)

+
Re +hg
While Eq 24 and Eq 25 reflect the common situation where the el evationg/altitudes for both
points (typicaly, the sensor and aircraft) are fixed, the known and unknown quantities vary with
the application. A different situation isthe siting an ATC radar, where hs (minimum required
coverage dtitude) and @ = Ay + s (distance between the location where the radar isto be

installed and the outer boundary of the coverage region) are known. Then hy isfound using Eq
26, and d, au and as, can be found from Eq 25.

QS:arcco{ Re J:Zarcsin( L]
Re +Ns | 2(R. +hs)

6, =6 -0 Eq 26
(1 C2sn?(6y). (1, 5, .
y —(COS(QU)—lJRE—W;J)RE—(E(%) ray @) e R
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In addition to the above geometric considerations, the analyst should be aware that radar signa
propagation paths, such as US in Figure 5, are subject to bending caused by changes in atmos-
pheric density with altitude. A simple, commonly used method for modeling this phenomenon is
discussed in Subsection 3.6.1.

-19-



DOT Volpe Center

3. TWO-POINT / VERTICAL-PLANE PROBLEM FORMULATION

3.1 Mathematical Problem and Solution Taxonomy

3.1.1 Mathematical Formulation

In mathematical terms, the basic objective of this chapter isto analyze the plane triangle UOS in
Figure 1. Asaplanetriangle, it isfully described by its three sides and three interior angles (or
guantities having a one-to-one relationship with these six quantities). However, since the interior
angles of a plane triangle (quantified in radians) must sum to 7, interest can be limited to two
interior angles (or their one-to-one equivaents). Thus, any three of the five quantitiesRe, h, d, a,
and @ can be selected independently (noting that at least one quantity will be aside), and the
other two quantities will be uniquely determined. In thisanalysis,

» Theangle having its vertex at the satellite S has a secondary role and is treated as a
dependent variable.

» Theearth's radius Re is assumed to be a known parameter, rather than avariable.

Conseguently, one purpose of this memorandum is to provide solutions for two of the four
variables (h, d, , #) as afunction of any two of the remaining variables (and the known
parameter Re). Each group of three variablesis related by one equation (provided in the next
section) — thus atotal of four equations mathematically define the geometric problem illustrated
by Figure 1. Two equations (Eq 4 and Eq 5) are derived from the law of sines and involve two
angle variables and one side variable. Two other equations (Eq 6 and Eq 7) are derived from the
law of cosines and involve two side variables and one angle variable.

The equations in this chapter can be easily modified to account for the user having a known, non-
zero atitude above the surface of the earth using the method described in Subsection 2.3.1.

3.1.2 Taxonomy of Solution Approaches

The preceding formulation — calculating one variable as a function of any two (of three
possible) other variables — resultsin atotal of 12 solutions. These solutions can be broken down

into the following taxonomy, in approximate increasing order of complexity

= 2anglevariables and 1 distance variable involved; the distance variable is unknown
— solution is based on the law of sines, and the most computationally complex
operation isdivision — 2 cases

= 2 anglevariables and 1 distance variable involved; an angle variable is the unknown
— solution is based on the law of sines, and the most computationally complex
operation is an inverse trigonometric function — 4 cases

= 1 anglevariable and 2 distance variables involved; the angle variable is the unknown
— solution is based on law of cosines, and the most computationally complex
operation is an inverse trigonometric function — 2 cases
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= 1 anglevariable and 2 distance variables involved; the side opposite the angleis the
unknown — solution is based on law of cosines, and the most computationally
complex operation is a square root — 2 cases

= 1 anglevariable and 2 distance variables involved; the distance variable adjacent to
the angleis the unknown — solution is based on law of cosines, and the most
computationally complex operation is solving a quadratic equation — 2 cases.

There are (usually more cumbersome) alternatives to the solution approaches outlined above.
Thefirst case addressed below, finding 8 from h and «, is an example.

3.1.3 Detailed Geometry

Figure 6 below is amore detailed depiction of the vertical-plane problem geometry shown in
Figure 1. For each of the vertices of triangle OUS alineis constructed that intersects the oppo-
site side (or an extension thereof) in aright angle. (These are the same lines that are created in
some proofs of the law of sines and law of cosines.) These intersection points are labeled A, B
and C. Because triangle OUS is oblique, intersections points B and C are outside the perimeter
of OUS. Each of the constructed lines results in the creation of two right triangles with the right
angleat A, B or C (for example, line OC creates right triangles OCU and OCS). Figure 6 also
introduces the chord UN, which is an example of the role of half-angles. Color-coded distances
(violet) and angles (blue) associated with these new lines and points are also shown.

Figure 6 Detailed Geometry for Vertical Plane Formulation
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3.2 Computing Geocentric Angle

3.2.1 Altitude and Elevation Angle Known — Basic Method

Manipulating Eq 5 yields

_ R,
0=-a +arccos( R+h cos(a)J

. 1 1

sin’l Za [+=h Eq 27
Ra{al

R.+h

=—q+2arcsn

Referring to Figure 6, the first line in Eq 27 can also be derived from the right triangle AUS,
where the length of the adjacent sideis Re sin(#) and the length of the hypotenuseis
(Reth) sin(@) / cos(a).

The expressions on the right-hand sides of two linesin Eq 27 are analytically equivalent;
however, the second is numerically better-conditioned when @ is small.

Using Eq 14, thefirst linein Eq 27 can be approximated by

% %
9——a+\/_[ a’+ h —ia“j +£[ R a’+ h J
2(Re+h) Re+h 24 12 | 2(R,+h) R +h

h %
to O(«®) and (—J

Eq 28
R,

When a = 0 (satellite/aircraft is on user's horizon), # achieves its maximum value for avisible
target, which is given by

0 max vis = arcCOS R, =2arcsin 2 for a=0 Eq 29
R+ +

Since the interior angles of a planar triangle sum to =, it follows from Figure 1 that

— aresin| e
KUSO_arcsn(ReJrhcos(a)J Eq 30

In the satellite field, it is sometimes said that angle USO accounts for the parallax caused by the
satellite not being infinitely distant from the earth. The limiting values for angle USO are:
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ZUS0 - 0, h>>R,

Eq 31
4USO—>%—0¢, h<<R, a

3.2.2 Altitude and Elevation Angle Known — Alternative Method

An aternative expression for the geocentric angle can be found by starting with Eq 7 (which
involves d, h and &), then using Eq 4 to introduce # and eliminate d. Theresult is

Roh] o)+ R (Ren) e lan)- b 2R p]- o Eq 32

cos(t )

Thisisaquadratic equation in sin(#). Its solution is given by

0 = arcsin(x)
« = -B+B? - 4AC
2A
A{Re + hT Eq 33
coq a)
B=2R (R +h)tan(a)
C=-h(h+2R)

3.2.3 Altitude and Slant Range Known

From Eq 6, the geocentric angle is given by

_ 1d-h d+h :
0 = arccog 1- — = 2arcsn
2 R R+h

2
zi 1—(Dj ziﬂl—l(hjjzi for h<<d<<R,
RV \d R 2.d R

N
o
]
2|2
o
713
5|
N—

Eq 34

Using Figure 6, the first expression on the right-hand side of thefirst line of Eq 34 can also be
derived by applying Pythagoras' s theorem to right triangle UAS. The second expression on the
first lineis numerically better-conditioned when @ is small, and is preferred in such situations.

A common application of Eq 34 is converting a slant-range d (which isusually easier to meas-
ure) to a geocentric @ (which is generally more useful in geodetic navigation and surveillance
calculations). This conversion is termed the ‘ lant-range correction’ in radar applications. When
it is necessary to account for both the atitude hy of the user U and the atitude hs of the satellite
S, Eq 34 is modified using the technique described in Subsection 2.3.1, and becomes:
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_ |1 [d-(hs—hy)d+(hs—hy)
60 =2 =
arcsin (2\/ R+ R. + e Eq 35

3.2.4 Elevation Angle and Slant Range Known

Eq 4 can be written
R.sin(0) = dcoda)cos) —d sin(a)sin@) Eq 36

Thus

o- arctan(dLS(“)j

+dsin
R, (@) £ 37

_ %_arctan(ta”(“”%é(a)}

Theright-hand side of thefirst linein Eq 37 can also be derived from right triangle OBS in
Figure 6. The second lineis simply an alternative form, as the arc tangent function is not ill-
conditioned for any value of its argument.

3.3 Computing Elevation Angle

3.3.1 Altitude and Geocentric Angle Known

Manipulating Eq 5 yields

(R.+h)cos(@) - R, ) hcos(9)- 2R, sinz(ZOJ

(R, +h)sin(6) (R +h)sin(0) Eq 38
__h R,
"R cot(@)——than(%Qj

tan(a) =

The first expression on the right-hand side of Eq 38 can aso be derived from right triangle UBS
in Figure 6.

Specia / limiting cases of Eq 38 are

(x=—£9 for h=0
2
o— h 1 R ¢ a 6-0
R.+h6 R,+h2

Eq 39
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1 1
h:[cos(e)_jRe:tan(g)tan(Eije for a=0

Thefirst line in Eq 39 describes how the satellite/aircraft elevation angle decreases as the
satellite/aircraft moves away from the user along the surface of the earth. The last line gives the
altitude of the satellite/aircraft, as afunction of distance, when the satellite/aircraft is on the
horizon (ignoring refraction due to the earth’ s atmosphere).

3.3.2 Altitude and Slant Range Known

Manipulating Eq 7 yields

Eq 40
:l(h_(d-h)(d+h)j

d 2R,

Using Figure 6, the first line of Eq 40 can also be derived by applying Pythagoras's theorem to
theright triangle OB S, with the length of the sides being Ret+h (hypotenuse), Ret+d sin(e) and
d cos(a). In the second line, the term in large parentheses is the perpendicular height of the
satellite above the tangent plane at the user’ s location. It isinterpreted as the altitude of the
satellite minus aterm which corrects for the curvature of the earth.

3.3.3 Geocentric Angle and Slant Range Known

Manipulating Eq 4 yields

a=-0+ arcco:{% S r(@)j Eq 41

Eq 41 can aso be derived from right triangle AUS in Figure 6.

3.4 Computing Slant Range

3.4.1 Altitude and Geocentric Angle Known

From Eq 6, it follows that
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d =/ *+ 2R, (R + h)(L- cof0))

2 Eq 42
=2R, (1+£J 'n2(£0j+[LJ !
R 2 2R,

Thefirst linein Eq 42 can also be derived by applying Pythagoras's theorem to right triangle
AUS in Figure 6. The second lineis analytically equivaent to the first, but numerically better-
conditioned when @ is small, and thusis preferred in such situations.

As partia validation of Eq 42, when h and @ are set to zero separately, d is found to be equal to,
respectively, the length of the chord connecting U and S, 2R, sl H%Q) , and the altitude, h. The

partial derivatives of d with respect to # and h do not exist.

3.4.2 Altitude and Elevation Angle Known

Eq 7 can be written
d2+ 2R.dsin(e) - (h2+2R.h) = 0 Eq 43

Itssolutionis

d=-Rsirla)+y(RPsirt(e)+ 2hR+ 1 Eq 44

Referring to Figure 6, Eq 44 can be interpreted as length(CS)-length(CU), where length(CS) is
found by Pythagoras' s theorem applied to right triangle OCS.

The minimum and maximum values for the slant range d (requiring the satellite isvisible) are

dmin=h for o= ln
2 Eq 45

Ormax vis= \ I"|2+2Re h for a=0

Asthe satellite altitude approaches zero, the slant range converges as follows

h
d>—— h—0
_)sir(a) as — Eq 46

3.4.3 Geocentric Angle and Elevation Angle Known

Eq 5 can be written

I LON
d=R coda +6) =q 47

-26-




DOT Volpe Center

Eq 47 is amanipulation of the two expressions for the length of AU in Figure 6. Thisequation is
not ill-conditioned for any values of # and a.

3.5 Computing Altitude

3.5.1 Slant Range and Geocentric Angle Known

Eq 6 can be written as a quadratic equation in Ret+h. Its solution is

h=—Re(1-cos(0))+ /d? - R,*(L- cos?(6))
= 2R, sin (2 J \/dz R.,2sin2(p)

Eq 48

Referring to Figure 6, the first line in Eq 48 can be interpreted as length(AS)-length(AN), where
length(AS) isfound by Pythagoras' s theorem applied to right triangle AUS. The right-hand sides
of the two lines are analytically equivalent. However, the right-hand side of the second lineis
numerically better-conditioned when @ is small, and is preferred in such situations.

3.5.2 Slant Range and Elevation Angle Known

Rearranging Eq 7 yields
=—R +yR>*+d?+2R dsin(a)
2 3 : 2 Eq 49
LR [X XK B D) en xo208N@ A
2 8 16 128 256 R, R,

Referring to Figure 6, the first linein Eq 49 can be interpreted as length(OS)-length(ON), where
length(OS) isfound by Pythagoras's theorem applied to right triangle OBS.

Asthe satellite slant range approaches zero, the atitude converges as follows

h—dsifa) a d—0 Eq 50

3.5.3 Elevation Angle and Geocentric Angle Known

Manipulating Eq 5 yields

he cos(e) _1 Re:sin(a+§0)sin(§0)2Re
cos(a +6) cos(a +6) Eq 51
~(@+10)0R, a<<1& 6<<1

Eq 51 can aso be derived by manipulating the two expressions for the length of OC in Figure 6.
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Setting ¢ = 0in Eq 51 yields and expression (Eq 52) for the “height of the user’ s horizon™.
Sometimes Eq 52 is replaced by a modified version that attempts to account for refraction due to
variations in atmospheric density. Thistopic is partially addressed in the following section.

[ 1 _
hhoriz—[cos(e) 1]Re—tan(9)tan(29)|:\)e for =0 s

= 192+384+E96+e’[c. Re
2 24 720

3.6 Example Applications

Three exampl e applications are presented in this section, with the intent of providing a sense of
how the mathematical equations presented earlier in this chapter relate to real problems. The
examples are intended to illustrate that it is necessary to understand the application in order to
utilize the equations properly and to interpret the results. Also, these examples suggest that,
while providing useful information, the equations in this chapter cannot answer some relevant
guestion. For that reason, the same examples are re-visited at the end of Chapter 4.

3.6.1 Example 1: En Route Radar Coverage

Application Context — A frequent surveillance engineering task is predicting a radar
installation’s “coverage”. There are two common formulations: Calculate either the minimum
visible aircraft (@) Elevation MSL or HAT, for a known ground range (geocentric angle) from the
radar; or (b) Ground range (geocentric angle) from the radar, for aknown elevation MSL or
HAT.

For either case, the issues to be considered, and the approach taken herein, are:

= Terrain Effects— Asstated in Chapter 1, blockage of €l ectromagnetic waves by
hills/mountaing/structures is not addressed herein. These effects would be included in a
more thorough analysis, and are particularly important in mountainous areas. However,
terrain effects are handled numerically, rather than by an analytic model, and are thus
outside the scope of this memorandum. The earth surrounding the radar is assumed to be
smooth, although not necessarily at sealevel.

= Propagation Model — Asstated in Chapter 1, real sensors may not have the straight line
propagation paths. Relevant to radars: el ectromagnetic waves behave according to Snell’s
Law and refract towards the vertical as the atmospheric density increases with decreased
atitude. Refraction effects are most pronounced for long, predominantly horizontal paths
within the earth’ s atmosphere (such as occur for an en route radar). A widely used model
that approximates the effects of refraction and is compatible with the equations devel oped
earlier in this chapter is the “four-thirds earth” model (Refs. 17 and 18). According to
Ref. 17: “The 4/3 Earth radius rule of thumb is an average for the Earth's atmosphere
assuming it is reasonably homogenized, absent of temperature inversion layers or unusual
meteorological conditions.” Ref. 18 is an in-depth treatment of radar signal refraction.
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= Radar Antenna Height — Three values are used for the height of the radar antenna
phase center above the surrounding terrain, hy: 50 ft, representative of the antenna height
for aradar mounted on a tower; 500 ft, representative of the antenna height for aradar on
ahill top; and 5,000 ft, representative of the antenna height for a radar on a mountain top.

Based on these considerations, the two known/independent variables are taken to be:

(1) The satellite/aircraft elevation angle a (provided it is equal to or greater than the
minimum value for the associated antenna height hy); and

(2) Either

(a) The geocentric angle # between the radar and atarget aircraft (so the unknown/
dependent variable is the aircraft altitude hs above the terrain) — governed by Eq 51; or

(b) The aircraft atitude hs (so the unknown/dependent variable is the geocentric angle )
— governed by Eq 27.

Associating U with the radar antennalocation (because its elevation is known) and S with
possible aircraft locations, the resulting equations are shown in Eq 53 below. Substitutions are
made for the four-thirds earth model and to account for a non-zero user atitude (Subsection
2.3.1). Also included is the equation for the geocentric angle #u between the radar and the
location T where the signal path (for elevation angle amin) is tangent to the earth (Figure 5).

(@) he=h, +[J(M) —1J(§Re+m) for a>a.

cosla +§9

R.+h, Jsn?la )+ L(hs-h,) for ara.

4
(b)@:_gour%arcsin \/(3 o
3Rt hs Eq53

The results of exercising Eq 53 for case (a), when the geocentric angle is known, are shown in
Figure 7. The maximum range depicted, 250 NM, is the specified value for current en route ATC
radars (e.g., ARSR-4 and ATCBI-6). Curves are shown that correspond to the three radar HAT
values at the theoretical minimum elevation angle for which targets are visible (blue) and for

1 deg larger than the minimum elevation angle (violet). Aircraft whose range/HAT combinations
are above agiven curve are visible to the radar; otherwise they are said to be “below the radar
horizon”. If curvesfor the visibility of aircraft relative to mean sealevel (altitude MSL) are
needed, the elevation of theterrain is added to the HAT valuesin Figure 7.
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Sengitivity to radar antenna HAT — Increasing the height of the radar’ s antenna signif

icantly

decreases the minimum HAT at which aircraft are visible. In this example, raising the antenna
HAT from 50 to 5,000 feet decreases the visible aircraft HAT by aimost 21,000 feet — i.e., the
ratio is greater than 4:1. Thisleverage can be appreciated by examining Figure 5. Line US acts

likealever aam withitsfulcrum at T. Raising U lowers S, and since T is generally closer
than S, the change in the elevation of S isgreater thanitisin U.

toU

Sensitivity to antenna elevation angle — Increasing the elevation angle of aradar antenna
above the minimum required to avoid blockage of the signal by the earth has a significant

coverage penalty. At the radar’ s maximum range, a 1 degree increase in elevation angle

corresponds to an increase in the minimum HAT at which targets are visible of approximately

Aa + d= (1 deg)(r rad/180 deg)(250 NM)(6,076 f/NM) = 26,511 feet

aspect of aradar installation.

Eq 54
The resulting decrease in airspace under surveillance is more than is gained by raising the radar
HAT to 5,000 feet. Thus, aligning (often called “bore sighting”) the antennais an important
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Figure7 Aircraft Minimum Visible HAT vs. Range for Three Radar Antenna HAT Values

Cone of Silence— “Vishbility” is necessary for an aircraft to be detected by aradar. But it is not

sufficient. Energy transmitted by the radar must reach the aircraft; then, energy scattered
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(primary radar) or transmitted (secondary radar) by the aircraft must return to the radar at a
detectable level. When aradar performs well for most targets (the case here) and atarget is
visible, the determining factor for detectability is the antenna pattern. ATC radar antennas are
designed to have their gain concentrated near the horizon, where most aircraft are. Conversely,
ATC radars are not designed to detect aircraft amost directly above them (the “ cone of silence”).

A “rule of thumb” for detecting atarget by an ATC radar is that the target range be at |east twice
its height above the radar antenna— e.g., an aircraft at 10,000 ft above the antenna would not be
detected when less than 20,000 ft or 3.3 NM from the radar (Ref. 19). Figure 7 includes the pre-
dicted cone of silence for an ATC radar antenna on the surface; larger antenna HAT values will
result in slightly smaller cones of silence. Generally, the cone of silenceis an issue to be aware
of, but is not amajor concern.

Targets“Below” the Radar — While the cone of silenceisaconcern for aircraft nearly above
aradar, when aradar antennaisinstalled significantly higher than the local terrain level, a
similar issue arises for aircraft closeto but at lower atitudes than the antenna. Figure 8 depicts
the vertical plane (analogous to Figure 1) containing the radar antenna and the signal paths (for a

Vertical Plane Height from Radar (NM)

e Earth's Surface

— =50 foot High Antenna
= = =500 foot High Antenna
=— = 5,000 foot High Antenna

-10

0 50 100 150 200 250
Vertical Plane Range from Radar (NM)

Figure8 Aircraft Minimum Visible Altitude vs. Horizontal Range from Radar in
Vertical Plane Containing Radar and Aircraft
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4/3% earth model) that are unblocked by the earth for antenna heights of 50 ft, 500 ft and

5,000 ft above the earth. (Datafor these curves are the same as data for Figure 7.) The points of
tangency T with the earth’s surface for these signal paths are 8.7, 27.5 and 86.9 NM from the
radar U. Aircraft located between U and T and vertically below the paths shown are visible to the
radar (i.e., the propagation paths between those aircraft and the antenna are unblocked). Whether
the radar can detect them is mainly an issue of the antenna vertical pattern. Some radars are
designed with a*“look down” mode to detect such aircraft. Figure 7 and Figure 8 may understate
coverage for such targets.

Earth Model — For either the standard-size or 4/3" earth mode!, the minimum visible aircraft
altitudes are small at short ranges, and model differences are not important. However, the
minimum visible altitudes for the individual models, and their differences, are substantial at
longer ranges. For example, at a ground range of 250 NM, the predicted visible aircraft HAT for
a4/3" earth mode is less than that for a normal-size earth by between 13.4 kft (for aradar
antenna HAT of 50 ft) and 9.4 kft (for aradar antennaHAT of 5,000 ft).

3.6.2 Example 2: Aircraft Precision Approach Procedure

Design of a Precision Instrument Approach Procedure (IAP) is a straightforward application of
the analysesin this chapter. The RNAV (GPS) LPV approach to Kansas City International
Airport (MCI) runway 19L is selected as an example. The approach plate is shown as Figure 9.

Thefirst consideration is that, since the navigation fixes on the approach plate quantify vertical
height in terms of altitude MSL, the same quantity must be used for procedure design. Second,
the user location U is chosen as the point where aircraft crosses the runway threshold. The
elevation above MSL of U isthe sum of the elevation of the runway threshold (THRE = 978 ft)
and the threshold crossing height (TCH = 59 ft); thus, hy = 1,037 ft.

In terms of the four variables defined in Subsection 3.1.1, the elevation angle a is set equal to the
specified glide path angle — i.e., @ = 3.00 deg — and constitutes one independent variable. The
second independent variable describes movement along the approach route. Either @ or hs could
be used; in this example, @ is selected because it has fewer drawbacks. While its published
precision (0.1 NM) isless than desired, the limits of its precision are known. Conversely, only
lower bounds for hs are specified on the approach plate; the amount that each is below the glide
path angleis not known. (However, a positive, and one reason for selecting this exampleis that
there are six positions along the approach where the minimum altitude MSL is stated.)

For this set of variables — a and 8 known, and h unknown — Subsection 3.5.3 provides the sol-
ution (Eq 51). After substituting for a non-zero user atitude hy (Eq 35), the result is Eq 55.
Evaluating this equation (using the TERPS value for Re in Subsection 2.2.2) yields Table 4.

-32-



DOT Volpe Center

€102 d38 6l 03 €10Z DNV 22 ‘€-ON

KANSAS CITY, MISSOURI AL780 (FAA) 13066
WAAS Rwyldg 9500
CH 82108 A:';(‘JES THRE 978 RNAV (GPS) Y RWY ] 9L
W19A AptEler 1028 KANSAS CITY INTL (MCI)
W DME/DME RNP-0.3 NA. Simultaneous approach uuﬂmnzad with Rwy 19R. INAV procedure MISSED APPROACH:
NA during si For YNAY systems, INAV/VNAY | MALSR C!imh‘ fo 1500 then
NA below -20°C (-4°F} or above 54°C {130°F). For |nnpem||vaMAI.SR increase LPY Cat E = | dimbing left fun to
vlilblhly to RYR 4000, LNAV/VNAY and LNAY Cat E visibility o RVR 6000. Use of FDor AP ® T | 4000 direct ANX
providing RNAY ‘rack guic required during simul ' | VORTAC and hold.
ATIS KANSAS CITY APF CON |NTERNAT|ONA|.TUWER GND CON CINC DEL
128.375 120.95 318.1 128.2 254.25 121.8 135.7
Al1618 ST JOSEPH
Procedure NA for arrivals on STJ VORTAC St
airway radials 076 CW 203. 0
5
~—191°{3.1)
—191°{3.1}
1919 3.1}
261
1917 {1.3)
RRWIPL 25 4
[z1001
MISSED APCH FIX RwW19L: @
4NM
093],
NAK)?E‘Oﬁn"" ) EEV 1026 | [TRE 978
A e,
............. o
1500 | 4000 | ANX
\ A% oy GAYLY
FEIUR ROMNS ZASEO
*LNAY only UMREW 1% 6000
19NMio | L9
RWISL 2600 LT 5000
T Ao | 20
N, ewist %="[3000
., ~ GS 3.00°
™ | *1640| 2650 T
T NM (0.9 NM[~= 3 NM. —=fs- 1.3 NM =}~ 3.1 NM == 3.1 NM == 3.1 NM=|
CATEGORY A | B [ ¢ | D | E
LPY DA 1178/24 200 (200-)
V'NN‘:\‘(,/ DA 1364740 386 [400-%)
INAV MDA | 1360/24 382 {400-4) 1360/35 382 (400-%)
-1 HIRL cll Rwys
CIRCUNG | 1540-1 514(600-1) 5]45?6%‘1,’;,| 1580-2 554{6002) |TDZ/CLRwys IL, R, 19R and 15L
msgs ary, M?SOURI KANSAS CITY INTL (MCT)

hs = hy +(

smenveesw . RNAY (GPS) Y RWY 191
Figure9 Approach Plate: RNAV (GPS) for MCI Runway 19L

cos(c )
cos(a + 6

)—1](Re+hu)

NC-3, 22 AUG 2013 ta 18 SEP 2013

Eq 55

Table4 Specified and Computed Fix Altitudes for MCI Runway 19L LPV Approach

Fix Name UMREW | FELUR | REMNS | ZASBO | YOVNU | GAYLY

Dist. from Threshold, NM (Figure 9) 1.9 4.9 6.2 9.3 12.4 155
Min. Altitude, ft MSL (Figure 9) 1,640 2,600 3,000 4,000 5,000 6,000
Glide Path Altitude, ft MSL (Eq 55) 1,645 2,619 3,046 4,075 5,122 6,187

Because the computed valuesin the last row of Table 4 are dlightly larger than the published
minimum altitudes on the row above, it is reasonable to conclude that the AP design process
described in the subsection closely replicates FAA process.
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3.6.3 Example 3: Satellite Visibility of/ffrom Earth

A guestion that is readily addressed using the equationsin this chapter is: What fraction of the
earth’s surface can see (and be seen by) a satellite at atitude h? Clearly, h is one independent
variable in such an analysis. The other independent variable is taken to be the minimum
elevation angle a (often called the mask angle in this context) at which the satellite provides a
usable signal. The quality of signals received at low elevation angles can be degraded due to
multipath and attenuation by the atmosphere; and terrain blockage is an issue at low elevation
angles. The dependent variable is taken to be , the geocentric angle between the satellite nadir
N and the user U. For this set of variables, Subsection 3.2.1 provides the solution approach.

An issue is whether to use anormal-size or 4/3 earth model. Normal-size is selected, because
(unlike radar signals) satellite signals are outside of the earth’s atmosphere over most of their
propagation path. The earth’s atmosphere extends to an altitude of approximately 5 NM, while
satellite atitudes are at least severa hundred nautical miles.

The basic equation to be evaluated is thus taken from Eq 27. As away of visualizing the impact
of satellite altitude on visibility, amodified version of Eq 17 is used. The results of exercising
these equations are shown in Figure 10.
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Figure 10 Fraction of Earth Visible vs. Satellite Altitude
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4. TWO-POINT / SPHERICAL-SURFACE PROBLEM FORMULATION

4.1 Basics of Spherical Trigonometry

4.1.1 Basic Definitions

Spherical trigonometry deals with relationships among the sides
and angles of spherical triangles. Spherical triangles are defined by
three vertices (points A, B and C in Figure 11) on the surface of a
sphere and three arcs of great circles(a, b and ¢ in Figure 11),
termed sides, connecting the vertices. The angles at the vertices are
A, B and C, and the lengths of the sides are quantified by their
corresponding geocentric angles (a, b and ¢). In this memorandum,
the sphere always represents the earth.

. . . Figure1l Example
Spherical trigonometry originated over 2,000 years ago, largely Spherical Triangle

motivated by maritime navigation and understanding the relation-
ship of the earth to the “ heavenly bodies’. Early contributors were from Greece, Persia and
Arabia. The subject was completed by Europeans in the 18" and 19" centuries. Until the 1950s,
spherical trigonometry was a standard part of the mathematics curriculum in U.S. high schools
(Refs. 20 and 21).

4.1.2 Application to Navigation and Surveillance

In this memorandum, a distinction is made between “mathematical” and “navigation” spherical
triangles. The three vertices of a“mathematical” spherical triangle can be arbitrarily located on
the surface of asphere— i.e., al three points can be problem-specific. The sides and interior
angles are all positive numbersin the range (0, ). A “mathematical” spherical triangle does not
have an defined relationship with the sphere’ s latitude/longitude grid.

In contrast, “navigation” spherical triangles involve only two problem-specific locations,
typically labeled U and S in this chapter. The third vertex is chosen as the North Pole PS8,
enabling U and S to be related to the latitude/longitude grid. Six triangular elements (requiring
seven variables) define a“navigation” spherical triangle (Figure 12):

(& Angular lengths of sides PU and PS — complements of the latitudes of pointsU and S,
respectively;

(b) Angle at P — the difference in the longitude of the points U and S;
(c) Angular length of side US — the geocentric angle between points U and S; and

8 While the North Pole is used in deriving navigation equations, the resulting expressions are valid for pointsin the
southern hemisphere as well.
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(d) Angles at U and S — the azimuth angles of theleg
joining U and S with respect to north.

This chapter is devoted to two-point problems that can be
solved using navigation spherical triangles. Chapter 6
addresses situations involving three problem-specific points
that require mathematical spherical triangles.

l/).ﬂ' = LL’
Yam - Lg

4.1.3 Applicability to Two-2D Problem Formulation

Yuss
A drawback of spherical trigonometry isthat it not suited to
problems involving locations at finite distances above the

~Wsu (negative |as
shown)
/

earth’ s surface — i.e,, it does not “handle” altitude. How- Y Lo»20) {
ever, the vertical plane defined by two vertices of a spher- S (Lg, A)
ical triangle and the center of the sphere conform to the Figure 12 “Navigation”
assumptions employed in Chapter 3. Points directly above Spherical Triangle

the two verticesliein that plane aswell. Thus, for situations

involving two problem-specific points, plane and spherical trigonometry are complementary
techniques that can be employed for their analysis. Moreover, situations involving three
problem-specific points can be analyzed in the same way, so long as the altitude components can
be handled in a pairwise manner. Generaly, problems involving an aircraft and two navigation
or surveillance sensors satisfy this condition.

4.1.4 General Characteristics of Spherical Triangles

The interior angles of a spherical triangle do not necessarily sum to &, and right triangles do not
play as prominent arole as they do in plane trigonometry. Although Figure 11 and Figure 12
depicts al angles and sides as acute, angles and sides of mathematical spherical trianglesliein
the range (0, ). Anglesin navigation spherical triangles have awider range of values: latitude
variesover [-n/2, n/2], longitude varies over [-x, o], geocentric angles vary over (O, ) and
azimuths vary over [-r, «t]. Thus: latitudes are usually found with the arc sine function; longi-
tudes with the two-argument arc tangent; geocentric angles with the arc cosine; and azimuths
with the two-argument arc tangent. Difference between two longitudes or two azimuth angles
may need to be adjusted by +2x, so that the magnitude of the differenceislessthan or equal to =.

Two points on a sphere are diametrically opposite (antipodal) if the straight line connecting them
passes through the center of the sphere. Mathematically, U and S are antipodal when Ls=-Luy
and As = Au = . If that is the case, the geocentric angle between U and S is#t, and an infinite
number of great circle paths connect U and S. Many spherical trigonometry equations, and
particularly those for azimuth angles, are indeterminate for antipodal points.
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4.1.5 Resources on the Web

The internet has many useful resources concerning spherical trigonometry. Examples, in
approximate decreasing order of their complexity, are:

= |. Todhunter, Spherical Trigonometry, 5" Edition (Ref. 22) — Written by a British
academic. Has been cited as the definitive work on the subject. Later editions were
published but are not available without charge.

=  W.M. Smart and R.M. Green, Spherical Astronomy (Ref. 23) — Also written by a
British academics. Chapter 1 is devoted to spherical trigonometry. It has equations
and their derivations (including more complex and useful ones).

=  Wikipedia, Soherical Trigonometry (Ref. 24) — A fine collection of equations and
background information.

=  Wolfram MathWorld (Ref. 25) — Another good collection of equations

= Aviation Formulary (Ref. 26) — A website with equations similar to those in this
chapter, without derivations. It also offers an Excel spreadsheet with formulas as
macros.

= Spherical Trigonometry (Ref. 27) — An easily understood, unintimidating
introduction to the topic.

4.1.6 Key Formulas

In general, the labeling of the angles and sides of a spherical triangle is arbitrary. Thus, cyclic
substitutions—i.e., A — B, a — b, etc. — can be made to derive aternate versions of each
identity. In addition to the formulas displayed below, thereisarich set of other identities that can
be found in the literature.

Law of cosines for sides:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos( A) Eq 56

The right-hand side of this law contains two sides (here, b and ¢) and their included angle (A).
The left-hand side contains the third side (a), which is opposite to the included angle.

Primary applications: (1) finding the third side of atriangle, given two sides and their included
angle; and (2) finding any angle of atriangle (using cyclic substitution), given three sides.

Law of cosinesfor angles:
cos( A) = — cos(B) cos(C)+ sin(B)sin(C)cos( a) Eq 57

The right-hand side of this law contains two angles (here, B and C) and their included side (a).
The left-hand side contains the third angle (A), which is opposite to the included side.

Primary applications: (1) finding the third angle of atriangle, given the other two angles and
their included side; and (2) finding any side of atriangle (by cyclic substitution) from all three
angles.
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Law of sines:

sin@ _ sin) _ sin()

sn(d sn® snC) =458

Primary application: finding aside (or angle) of triangle, given the opposite angle (or side) and
another opposite side-angle pair. The ambiguity of the arc sine function can be a concern.

Analogue of law of cosinesfor sides:
sin(a) cos(B) = cos(b) sin(c) —sin(b) codc) cos(A)
sin(a) cos(C) = cos(c) sin(b) — sin(c) cogb) cos(A)
The right-hand sides of both lines of the above equation have the same sides and included angle
(and amost identical functions) as the right-hand side of the law of cosines for sides. However,

whereas the law of cosines for sides has cos(a) on the |eft-hand side, the analogue law has
sin(a) cos(B) or sin(a) cos(C), with B and C being the angles adjacent to side a.

Eq 59

Primary application: resolving ambiguities in situations where two sides and the included angle
areknown, and it is desired to find the other two angles directly from the known quantities.

Four-Part Cotangent Formula:

cos(a) cos(B) = sin(a) cot (c)—sin(B)cot (C) (cBaC)
cos(a) cos(C) = sin (a) cot (b)—sin (C)cot (B) (BaCh)

Eq 60

The six elements of atriangle may be written in cyclic order as (aCbAcB). The four-part
cotangent formula relates two sides and two angles forming four consecutive el ements around a
triangle. The side and angle at the ends of such a sequence appear once on each linein Eq 60, as
the argument of a cotangent function, whereas the middle elements appear twice on aline.

Primary applications: (1) given two angles (here, B and C) and their included side (a), find the
adjacent sides (b and c¢); and (2) Given two sides (c and a, or a and b) and their included angle (B
or C), find the adjacent angles (C and B).

With same known quantities as the two cosine laws, the four-part cotangent formula provides
solutions for the adjacent quantities that the cosine laws do not address. However, application
(2) can also be accomplished by a combination of the law of sines and the analogue law (see
solutions for longitude difference and azimuth angles below).

Napier's Anaogies:

cos; (a—b)

cos; (A-B) .
cos; (a-+h)

tant (A+B) = s
2(A+B) cosl (A+B)

cot;C  tang(a+h)= anzc Eq 61
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sin! (a—h)

sini(A-B
— A )tanl
sin;(a+h)

tanl A—-B) = e @07 C
2(A-B) sni(A+B) 2

cot;C  tang(a-b)=

Primary application: (1) given two sides (here, a and b) and their opposite angles (A and B), find
the remaining side (c) and remaining angle (C).

Same Affection for Sums/Difference of Opposite Sides/Angles:

Since all sides and angles of a“mathematical” spherical triangle arein (0, ), ¥2(A+B) and
YAa+b) are aswell. Ref. 22 demonstrates that these sums are less than/equal to/greater than Yar
synchronously. Also, ¥4(A-B) and %4(a-b) are both in (-¥4r, Yorr). Ref. 22 demonstrates that these
differences are less than/equal to/greater than 0 synchronously. Ref. 22 terms this characteristic
“having the same affection”.

Solving for Angles and Sides:

When solving for angles and sides after employing the above formulas, one must be aware of the
possibility of ambiguous solutions to inverse trigonometric functions. In the realm of spherical
trigonometry (versus navigation), where angles and sides are in the range (0, &), the arc sine
function and the law of sines are the primary source of concern, as two anglesin the range (0, )
can have the same sine value. However, some problems do have two solutions; in these cases,
neither result from the arc sine function is extraneous. Additional comments are provided
concerning specific problems and equations below.

4.1.7 Taxonomy of Mathematical Spherical Triangle Problems

A spherical triangle is defined by atotal of six quantities. The case of five given (known)
elementsistrivial, requiring only asingle application of either cosine law or the sine law. For
four given elements there is one non-trivial case. For three given elements there are six cases.
Each of the seven casesisillustrated in Figure 13 and enumerated below (Ref. 28), along with a
solution approach. For some cases, others solutions may exist (Ref. 22).

(1) Three sides known — Eq 56, three times

(2) Two sides and the included angle known — Eq 56 for a, Eq 58 and/or Eq 59 for B
and C

(3) Two sides and a non-included angle known — Eq 58 for C, then follow case 7

(4) Two angles and the included side known — Eq 57 for A, then Eq 58 or Eq 60 b and ¢
(5) Two angles and a non-included side known — Eq 58 for b, then follow case 7

(6) Three angles known — Eq 57, three times

(7) Two sides and their opposite angles known — Eq 61 for A and a.
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Figure 13 Illustrating the Taxonomy of Spherical Triangle Problems

4.1.8 Taxonomy of Navigation Spherical Surface Problems

The spherical surface formulation introduced in Section 1.3 involves seven variables. For afull
solution to a given situation, four variables must be known, from which the remaining three can
be found. Thus, 35 mathematical problems and 105 solution equations could be involved.
However, the spherical surface formulation is symmetricin U and S; interchanging U and S only
flipsthe left and right sides in Figure 12 but does not change the underlying problem. Of the 35
possible mathematical problems, three are self-symmetric (the mathematical problem does not
changeif U and S are interchanged) and 16 have symmetric versions — see Table 5. Table 5
notes the 3 of 19 problems summarized (and 5 of the full 35) do not involve either longitude
being known; thus the solution can only yield alongitude difference rather than an actual
longitude. Table 5 also references the corresponding spherical triangle case (Subsection 4.1.7)
and the cases that are addressed in the remainder of this chapter. All seven spherical triangle
cases presented in Subsection 4.1.7 occur in Table 5

Table5 Taxonomy of Navigation Spherical Surface Problems

Czse Lu Au wsu Ls 4s wus 6 | SP* S | Noi Cgrses Comment
1 X X X X X 2 Section 4.2
2 X X X X X 3 Section 4.6
3 X X X X X 3 Similar to #2
4 X X X X X 1
5 X X X X X 4 Section 4.3.4
6 X X X X X 5
7 X X X X X 3
8 X X X X X 5
9 X X X X X 2 Section 4.3
10 X X X X X 3 Section 4.4
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Czse Lu A wsu Ls 4s wus| @ SPl | S  Noi Cgls-eS Comment
11 X X X X X X 7
12 X X X X X X 1,2, + | Over-specified
13 X X X X X 5 Similar to #8
14 X X X X X 2 Similar to #9
15 X X X X X 3
16 X X X X X X 2,4, + | Over-specified
17 X X X X X 6
18 X X X X X 5
19 X X X X X 4

1 Symmetric Problem exists
2 Self-Symmetric problem
3 Spherical Triangle Case (Subsection 4.1.7)

4.2 The Indirect Problem of Geodesy

North

Theindirect problem of geodesy is stated in Section 1.3 4 North
and isillustrated in Figure 14. The known elements (and ;f ||||
their symbols/values) are sides PU (Y%= - Lu) and PS / R "|
(i - Ls) and the included angle UPS (is - Au). In the s s 2| negatve
taxonomy of spherical triangles of Subsection 4.1.7, this ULerie) g3 fis shown)
problem falls under Case (2). "

S (Ls, 4s)

4.2.1 Computing the Geocentric Angle

Figure 14 Indirect Problem

Finding the geocentric angle between two locations on a of Geodesy

spherical earth is fundamental question, and apparently
was a motivating factor in the creation of spherical trigonometry during the first millennium
AD.”™ Referring to Figure 12, the distance @ between U and S is readily derived from the law of
cosines for sides (Eq 56), treating the leg connecting U and S as the unknown quantity

cos(@)= codLy, )cos(Lg)cos(4, - Ag)+ sin(Ly, )sin(Ls) Eq 62

The right-hand side of Eq 62 should evaluate to avaluein [-1, 1]; & can then be found uniquely
in [0, w]. Eq 62 was used by maritime navigators centuries ago, when precision was limited (their
“tools” were paper-and-pencil and rudimentary trigonometry tables). It was found that Eq 62 is
numerically ill-conditioned for small values of @ (Subsection 2.1.4) and alternatives were sought.

" When used at sea, presumably, a ship’s navigator first estimated the vessel’ s latitude/longitude from celestial
sightings, and then computed the distance to the destination and the course to follow.

-4]1-



DOT Volpe Center

To improve computational accuracy when the geocentric angle
issmall, over 1,000 years ago (Ref. 29) mathematicians defined
the versine (in Latin, sinus versus) function as (Figure 15)

vergo) =1-cos(f) = 2sin’ (gj Eq 63

In early terminology, the familiar sine function was called sinus
rectus, or vertical sine. Tables for the versine or the haversine

(half of versine), and their inverses, date to the fourth century.

_ _ _ _ Figure 15 Sine, cosine and
Using the haversine function, the geocentric angle can be found versine. and the unit circle

from what is sometimes called termed the “ haversine formula’

hav(6) = hav(Ls — L, ) + codLs )cod Ly, Jhav(is — A, ) Eq 64

This historically significant formula eliminates the ill-conditioning of Eq 62 for small geocentric
angles, and requires only afew calculations.

Without explicitly utilizing the versine or haversine (which are less needed today, due to the
availability of modern computational capabilities), an analytically equivalent version of the
haversine formulais

sin(%jz\/sinz(l‘ 2LUJ+ cos(LS)cos(LU)sm( S )’UJ Eq 65

The right-hand side of Eq 65 should evaluate to avaluein [0, 1]; € can then be found uniquely in
[0, w]. The small latitude and longitude differences that occur when U and S are close only
involve the sine function. This expression is reminiscent of Pythagoras's formulafor the
hypotenuse of a planetriangle. In fact, it reduces to Pythagoras' s formula when the two points
are close together and close to the equator.

A drawback of Eq 65 (although far less of an issue than the problem it solves) isthat it’s numer-
ical ill-conditioned for angles near the antipodal point. One solution isto use the original
equation (Eq 62) in these situations. Another is to use the following:

co{%) =\/cosz( Ls ; Ly j cos(Lg) cos(Ly, ) sin (/13 4 J

\/co{ ts— by j— ycos(Lg) cos(ly,) sin(/18 ;AU j\/co{%JJr ycos(Lg) cos(Ly ) sin(/13 ;)U J

Eq 66

2
The previous two equations can be combined to create aform that is not ill-conditioned for any
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value of @ when executing an inverse trigonometric function

oy \/sinz[l's;l'uj+ cos(Ls) cos(LU)sinz[ls_zﬂuj

tan(j -
2 - - _ _
\/COS(LSLU) - qJcos(Lg) cos(Ly,) sin(M)\/co{LSLUj + 4/cos(Lg) cos(Ly ) sin( sy )
2 2

2 2

Eq 67

Remarks: (a) All of the equations in this subsection for @ are unchanged if U and S areinter-
changed; (b) When the three points P, U and S are aligned (so the triangle PUS is degenerate),
the equations remain valid; and (¢) An expression for sin(#) (vice that for sin(*2) in Eq 65) can
be derived by vector analysis techniques, and is presented in Section 5.2 (Eq 121).

4.2.2 Computing the Azimuth Angles of the Connecting Arc

Having solved for the geocentric angle, the remaining “part” of the indirect problem of geodesy
isfinding the azimuth angles at U and S of the great circle arc connecting these two points. This
determination is slightly complicated by the fact that azimuth angles can vary over the range

[-mt, ], so that a two-argument arc tangent function must be used.

First, the spherical trigonometry law of sines (Eq 58), applied to theanglesat P and at U yields
coslLs) sSin(ds - 4y)

sinfsy) = Sn@) Eq 68
Second, the analogue to the law of cosines for sides (Eq 59) yields
in(L —cos(Lg)s As —
costrey ) = SMLs)oosly) coz_(ng)sn(Lu)cos( s= M) £q 60
Thus
_ cos(Ls)sin(4s — 4y )
BWsiv) = e costLy) — cos(Le) Sn(Ly ) cosls — ) Eq 70

Observe that, while Eq 68 and Eq 69 depend upon the geocentric angle @ (which isnot a“given”
for the indirect problem), the solution (Eq 70) for wsu only depends upon the latitudes and
longitudes of the great circle arc end points, which are “givens’. Thus, the solution for wyu does
not “daisy chain” from the solution for 6.

The spherical trigonometry method is symmetric with respect to the user and satellite, so

coslLy,)Sn(ly — )
sin(Ly ) coslLs) — coslLy, )sin(Ls) cos(y — 4s)

tanfyy/s) = Eq 71
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As mentioned previously, in navigation analysesit is useful to employ azimuths in the range
[-m, ], where negative values denote angles west of north. In some expositions, the azimuth
angle at the second point is taken to be the angle the path would take if it were to continue —
i.e., implicitly or explicitly, the first point is taken as the origin and the second as the destination
of atrgectory. However, herein, the two points are on an equal basis and the azimuth angle at
the second point is that for the great circle path toward the first point. Eq 70 and Eq 71 reflect
these points of view.

Remark: When the three points P, U and S are aligned (so the triangle PUS is degenerate), the
equationsin this subsection remain valid.

4.3 The Direct Problem of Geodesy

The direct problem of geodesy is stated in Section 1.3 and is North North
illustrated in Figure 16. The known elements (and their
symbols/values) are sides PU (Y%= - Lu) and US (6), and
their included angle PUS (wsu). In the taxonomy of Sub-
section 4.1.7, this problem falls under case (2).

|
|I .

7s 2l(negative
js shown)

The coordinates Ly and Ay and the azimuth angle ysu
define agreat circle. The direct problem of geodesy can be S (Lg?,4¢?)
j[houqht of as determining the coordinates of location which Figure 16 Direct Problem
isagiven distance # from U. Closely related problems are of Geodesy

the subjects of Sections 4.4, 4.5 and 4.6.

4.3.1 Computing the Satellite Latitude

Applying the spherical law of cosines for sides, where the unknown isthe side PS, yields

sin(Lg) = sin(Ly, ) cos(6) + cos(Ly, ) sin(6) cos(y's,y ) Eq 72

Note that latitude angles are restricted to the range [-nt/2, 7/2], so in this context, the principal
value of the arc sine function always yields the correct solution.

4.3.2 Computing the Satellite Longitude

Finding the satellite longitude 4s is more complex, as longitude angles are in the range [-=, 7).
First, apply the spherical law of sinesto theangelsat P and U

sin(/ls—ﬂu):sin(e)% £q73
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Then apply the analogue to the law of cosines for sides

cos(g - 2, ) = LX) c00) - j:s((LES))s:n(e) cos(ysyy ) £q74

Thus the satellite longitude can be found from

sin@)sin(ys,y)
cos(ly ) cos@) —sin(Ly, )sin@) coslys, )

tan(As —Ay) = Eq75

The right-hand side of the above equation only depends upon “given” quantities for the direct
problem, and not on the solution for Ls. After employing atwo-argument arc tangent function,
the solution will yield avalue of As— Au intherange [-x, @] . If thisis added to a value of Ay (also
in the range [-=, «t]), the result will be in the range [-2r, 2x]. Adjustments of +2x must then be
made to obtain avalue of Asintherange (-nr, tf] — e.g., (1) If As< 0, then As=4s+ 2x; (2) If
As>m, then As = is—2x.

4.3.3 Computing the Azimuth of the Connecting Path at the Satellite

After Ls and 4s have been found, the direct problem solution can be completed by finding the
azimuth of the great circle arc at the satellite’ s location, wuss. using Eq 71. An aternative,
preferred approach that does not daisy chain solutionsisto first apply the law of sines,

- cos(Ly ) sin(ys,u)
sin =—
(wyss) cos(Le) Eq 76
A minus sign isintroduced in the above equation to cause the two azimuth angles to have
opposite signs.
Then apply the analogue to the law of cosines for sides
sin(lLy, )sin(®) — cos(Ly, ) cos(B) cosfy's )
co =
Sy /s) cos(L) Eq 77
Thus
—Co sin
i <) = sily) sinfsy) £q 78

sin(Ly ) sin@) — cos(Ly ) cosP) cosy s )

Eq 71 and Eq 78 have identical computational burdens.

4.3.4 Applications

Two applications of the equationsin this Section to ‘real world’ problems are
» Finding intermediate points on the trgjectory from U to S (using Eq 72 and Eq 75) by
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replacing @ by f-0/N, wheref ¢ [0, 1] (a similar functionality that applies to the vector
approach is described in subsection 5.3.2)

= Determining the location of an aircraft S from the location of and range/bearing
measurements for aVOR/DME ground station U (Subsection 4.8.6).

4.4 A Modified Direct Problem: Path Azimuth at Satellite Known

In this modification to the direct problem of geodesy, the azimuth angle wus of the path at S
connecting U and S is known, and the azimuth angle wsu of the path at S is unknown (the
opposite of the assumptions for these quantities in unmodified problem). In taxonomy of
spherical triangles in Subsection 4.1.7, this problem falls under case (3). In terms of the naviga-
tion triangle UPS, the known elements (and symbols) are sides UP (%ax - Lu) and US (6) and
angle USP (wurs).

4.4.1 Computing the Satellite Longitude

The approach begins by applying the law of sinesto triangle UPS

) = SO) SNy )

sin(Ag cos(Ly)

Eq 79

In computing As from Eq 79, two solutions are possible — one correct and one ambiguous. One
satisfies |Ag — Ay| < m/2 and the other satisfies /2 < [As — Ay| < m. In aviation applications,
the second will be “on the other side of the world” and not consistent with the range of available.
It isdiscarded. It may be necessary to adjust As to avaluein the range [-=, «].

4.4.2 Computing the Satellite Latitude

The satellite latitude Ls is found from Napier's Analogies (Eq 61), using the solutions for s
obtained from Eq 79

B COS%(‘//U/SJF)“S_/IU)
- COS%(‘//U/S_}“S—"AU)
zgn%(l//ws"‘ls_/lu)

Sin%(V/U/S_/IS_"/IU)

tanl(ﬂ— LS)

tang (% - Ly +0)
Eq 80

tan(5-L, -0)

The two expressions in Eq 80 are mathematically equivalent, but one may be preferred
numerically in some situations.

4.4.3 Computing the Azimuth of the Connecting Arc at the User

There are multiple ways to find the azimuth angle wsu. Napier's Analogies (Eq 61) is used
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because it raises the possibility of using the four-quadrant arc tangent function.

cosi(0-Z+Ly)
cosi(0+%-Ly)
_sin;(0-5+Ly)

sin2(0+Z-L)

tandyg,, = tans (As —As+wy s)

Eq 81

tan%(/ls —As=Wus)

4.4.4 Application

An application of the equations in this Section is finding the aircraft’ s position using an on-board
radar to measure the slant-range and azimuth angle to alocation with known coordinates.
Accurate determination of the geocentric angle @ from the slant-range d requires taking into
account the known altitude/elevation of the aircraft and target ground site relative to sealevel.
Thisis done using Eq 34, modified as described in Subsection 2.3.1.

0 :2arcsin[£\/d_(hs_h’)d+(h3_h))J Eq 82

2\ R+h R.+hs

4.5 A Modified Direct Problem: Satellite Longitude Known

In this modification to the direct problem, the longitude of S, 4s, is known, and the geocentric
angle, 8, between U and S is unknown (the opposite of the assumptions for these quantitiesin
unmodified problem). In taxonomy of spherical trianglesin Subsection 4.1.7, this problem falls
under case (4). The known elements (and dimensions) are angles UPS (4s - Au) and SUP (wsu)
and their included side UP (Yam - Lu).

In the development below, it is assumed that As # Au, asin that case thereis either no solution
(wsu #0 and wgu # ) or an infinite number of solutions. With this assumption, the problem is
well-posed, because every non-meridian great circle crosses every line of longitude exactly once.

4.5.1 Computing the Satellite Latitude

The latitude Lsis found from the four-part cotangent formula (Eq 60)

sin(Ly ) cos (As — Ay )+ sin(Ag = Ay )cot(y gy )

tan(Lg) = cos(Ly)
U

Eq 83

In computing Ls from Eq 83, observe that, using the arc tangent function, it can be
unambiguously found in [-7t/2, @/2].
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4.5.2 Computing the Geocentric Angle

The geocentric angle @ is found from the four-part cotangent formula (Eq 60)

cot(6) = sin(Ly ) cos(ys,y)+Sn(wg,y)cot(ls —Ay)

cos(Ly ) Eq 84

In computing @ from Eq 84, observe that, using the arc cotangent function, it can be
unambiguously found in [0, nt].

4 .5.3 Computing the Azimuth of the Connecting Arc at the Satellite

The azimuth angle yuss is found from the law of cosines for angles (Eq 57)

cos(yy ;s)= — COS(w sy ) COS(Ag — Ay )+ Sin(w g,y ) Sin(As — 4y )sin(Ly)  Eq8s

In computing wuis from Eq 85, observe that, using the arc cosine function, it can be unambig-
uously found in either [0, =] or [-&t, O]. The former is employed when S iswest of U; the latter is
employed when S is east of U.

4.6 A Modified Direct Problem: Satellite Latitude Known

In this modification to the direct problem, the latitude of S, Ls, is known, and the geocentric
angle, 0, between U and S is unknown (the opposite of the assumptions for these quantitiesin
unmodified problem). In the taxonomy of spherical triangle problems (Subsection 4.1.7), this
situation fallsinto case (3). The known elements (and their dimensions) are sides PU (Y4r-Lu)
and PS (Y;n-Ls) and adjacent angle PUS (wsw).

In the devel opment below, it is assumed that wsu # 0 and wsu # 7. If this assumption is not true,
the problem either has no solution (either Lu < Lsand wsu =z or Ls < Ly and wsu = 0) or the
solution can be found trivialy. Every great circle, except a meridian, has a maximum latitude
Lmax and minimum latitude -L max. The |Lmax| associated with ysu for a situation may be less than
the value selected for |Ls| for that situation (Subsection 4.6.1), in which case there is no solution
(problem not well posed).

4.6.1 Computing the Azimuth of the Connecting Arc at the Satellite

The approach begins by applying the law of sines to finding wu/s

cos(Ly ) sinfys;y)
cos(Ls)

snyys) =- Eq 86
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Consistent with the convention used herein, aminus sign is introduced on the right-hand side of
the above equation, causing the two azimuth angles to have opposite signs. By assumption, the
right-hand side of Eq 86 is not zero.

The absolute value of the right-hand side of Eq 86 can be: () greater than unity (in which case
thereisno solution, as |Ls| > Lmax); (b) equal to unity (in which case thereis one solution, as

|Ls| = Lmax); and (c) less than unity (in which case there are two solutions, as |Ls| < Lmax). If (a) is
true, the problem isill posed and there's nothing more to be done. If (b) istrue, refer to Section
4.7.1f (c) istrue, label the solutions wu/s1 and wuss2 and proceed.

4.6.2 Computing the Satellite Longitude

The longitude 4s is found using one of Napier's Analogies (Eq 61) and the solution for ysu
found above with Eq 86

cos (L, ~ Ls)
sinl(Ly +Lo)

tan3 (Asj —Ay) = cot (Ws/u —Vurs;i) Eq 87

The discussion in Subsection 4.1.6 concerning sums and differences of sides and angles having
the “same affection” is relevant here, but requires interpretation as a navigation (vice mathe-
matical) spherical triangle isinvolved. Here, the cosine function is always positive and sine and
cotangent functions change sign together. Thus, in computing 4s; (i = 1, 2) using the arc tangent
function: (a) if U iswest of S, the right-hand side is always positive and each solution can be
unambiguously found in (Au, Au+n); (b) if S iswest of U, the right-hand side is aways negative
and each solution can be unambiguously found in (4u - 7, 4u).

Eq 87 isindeterminate when Ly = -L s (the sine term and the cotangent term are both zero). In
this case, an alternate equation can be used:

sind(Ly ~Lg)
cos3 (L +Le)

tan3 (As; —Ay) = cotZ (Wsu +Vurs;i) Eq 88

Eq 88 isindeterminate when Ly = Ls (the sine term is zero and the cotangent term is infinite).

4.6.3 Computing the Geocentric Angle

The geocentric angle @ is aso found from Napier's Analogies (Eq 61) using the solutions for
wsu (Eq 86)
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1
cosl - -
anlo - 052 Wsiu —wurs,i) cotL (L + Lg) £q 80

2Yi 1
cos; (Ws/u +Vusii)

Here, the cosine function in the numerator and the cotangent function change signs together.
Consequently, the right-hand side from Eq 89 is always positive. Thus, in computing i (i = 1, 2)
using the arc tangent function, each solution can be unambiguously found in (O, ).

Eq 89 isindeterminate when Ly = -L s (the cosine term in the numerator is zero and the cotangent
termisinfinite). In this case, an alternate equation can be used:

sing (Wsju —Vus;)
sin% Wsiu +Vursi)

tan3 6 = tanz (Ly —Ls) Eq 90

Eq 90 isindeterminate when Ly = Ls.

4.7 Latitude Extremes of a Great Circle

A special case of Clairaut’s equation’ appliesto full great circles (circling the earth), and can
be simply derived using the law of sines applied to the angles at two end points of a navigation
leg— U and S, in this case. If both azimuth angles are treated as positive

cos (Ly )sin (¥ s,y )= cos(Lg)sin(wy /s) Eq 91

Using the trigonometric identity sin(y) = sin(r—y) yields

cos (L)sin(y )=C Eq 92

Thus all pointson agiven great circle have the same value, C, for the product cos(L) sin(y).
Clearly, |C| < 1 and is positive for eastward routes and negative for westward routes. Satisfying
Eq 92 isanecessary, but not sufficient, condition for the path to be agreat circle— e.g., a
counterexample is a constant-latitude route.

A common application of Eq 92 is finding the northern- and southern-most latitudes of afull
great circle (termed verticesin Ref. 1). At avertex, sin(y) = +1, so

coS(Limay) =|coslLy )sinlysy | =G Eq 93

At the two points displaced by +r/2 from avertex, the great circle crosses the equator. At those
points, sin(y) = C, s0 |y| = /2 — Lmax.

T Alexis Claude de Clairaut (or Clairault) (1713 —1765) was a prominent French mathematician, astronomer and
geophysicist.
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The great circle liesin a plane containing the locations U and S and center of the earth O. Lmax IS
the angle between the great circle plane and the equatorial plane, and |C| is the cosine of that
angle. It follows from Eq 68 that

_|cos(Ly) cos(Ls) sin(is — Ay))|
COS(Lax) —| Sn©) | Eq 94

Eq 94 enables L max to be found from the coordinates of U and S and the distance between them.
Clearly, the latitude of the Southern Hemisphere vertex is Lmin = -Lmax

The longitude Amax corresponding to Lmax can be found using equations from Section 4.6. At
Lmax, the path azimuth y is +a/2. If that point isthought of as S, the sign of what would be wu/s
is the opposite of the sign of wsu. Thus from Eq 88

01
sins(Ly — Lmax) ( T
2 max) | .1
cots| wsuy _Sgn(‘//S/U)_j Eq 95
cos;(Ly +Lmax)  ° 2

tan%()*max A ):

Amin Will occur at Amax = 7. EQ 95 is derived from the solution to the direct problem of geodesy.
An alternate expression for Amax, derived by vector analysis and based on the indirect problem of
geodesy, is presented in Chapter 5 (Eq 133).

As stated in Section 4.6, not all great circle routes connecting U and S or pass through L max, Amax
or its Southern Hemisphere equivaent. Stated informally, to pass through L max, Amax — OF -L max,
A(-Lmax) — aroute between U and S must have enough of a change in longitude to bend towards
apole. Mathematically, aroute will pass through Lmax, Amax if the azimuth anglesat U and S are
both acute

|V/S/U|<% and |‘//U/S|<% Eq 96

In this situation, the route will achieve larger latitude (pass closer to the North Pole) than either
U or S. Alternatively both azimuth angles may be obtuse

V4 T
wsul>5 and g > Eq 97
2 2
In this case, the route will pass closer to the South Pole than either U or S.

4.8 Example Applications

The example applications presented at the end of Chapter 3 are extended in the first three sub-
sections below, to demonstrate the capabilities of spherical trigonometry to provide more
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complete solutions to relevant technical problems. Three application examples are added —
concerning planning aflight route, the display processing of radar measurements and
determining an aircraft’s latitude/longitude from a VOR/DME station.

4.8.1 Example 1, Continued: En Route Radar Coverage

Predictions of radar visibility of aircraft as afunction of the aircraft’ s range and atitude, like
those in Subsection 3.6.1, are useful. However, for a specific radar installation, a more valuable
analysis product is a depiction of the radar’ s altitude coverage overlaid on amap. As an example,
the ARSR-4/ATCBI-6 installation at North Truro, MA (FAA symbol: QEA) is selected. Its
coordinates are Ly = 42.034531 deg and Ay = -70.054272 deg, and its antenna elevation is

hy = 224 ft MSL. It is assumed that the terrain elevation in the coverage areais 0 ft MSL, which
is correct for the nearby ocean and optimistic (in terms of coverage) for the nearby land.

The sequence of calculationsis as follows:
= Using Eq 53 (third line), the radar’ s minimum usable elevation angle is found to be
dmin = -0.230 d%
= Aircraft atitudes hs of 3,000 ft, 10,000 ft and 25,000 ft MSL are selected for the
contours to be depicted.

= Using Eq 53 (second line), the geocentric angles @ corresponding to the sel ected
altitudes are found; the associated ground ranges are 85.7 NM, 141.2 NM and
212.6 NM, respectively.

= Using Eq 53 (first line), the minimum visible aircraft atitude at the maximum ground
range (250 NM) is found to be hs = 35,590 ft.

= For each contour, using special cases of Eq 65, four (Ls, As) points on the contour —
those at the same latitude or the same longitude as the radar — are found as follows:

(1

sm(zej
LS:LU AS:)LU—ZarCSinm

sin(;ej Eq 98
LS:LU A’S://LU +2ar03|nm

Ls=Ly -0  As=4
Ls=Ly +6 As =4y
= With agraphics program, the remaining points for each contour are found by
“interpolation” using acircle/ellipse.
An aternative to steps 5 and 6 isto compute four sets of points (one for each contour) using Eq
65, by assuming values for Ls, and solving for 4s.
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The result of carrying out steps 1-6 for the North Truro radar system is shown in Figure 17. The
significance of the contour valuesisthat: (a) Inside a contour, al aircraft having altitudes greater
than the contour value are visible to the radar (and aircraft closer to the radar are visible at lower
altitudes); and (b) Outside the contour, al aircraft having altitudes less than the contour value are
not visible to the radar.

Figure 17 Aircraft Altitude Visibility Contours for the North Truro, MA, Radar System

Consistency Check — The primary purposes of QEA are (1) surveillance of higher atitude
airspace, for use by ARTCC controllers; and (2) surveillance of much of the New England off
shore airspace, for use by the Department of Defense (DoD). A third purpose is backup
surveillance of the Boston TRACON airspace; horizontally, this airspace is acircle centered on
Logan Airport with aradius of 60 NM. Boston TRACON controllers have stated that they
consider QEA coverage to extend upward from an atitude of 3,000 ft MSL. Figure 17 is
consistent with that statement.
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Cone of Silence — Asdiscussed in Subsection 3.6.1, ATC radars usually have a cone of silence
directly above the antenna; targets within the relatively small cone of silence cannot be detected.
Following the usual practice, contours for QEA’s cone of silence are not shown in Figure 17.

The U.S. has an extensive ATC radar infrastructure. Generally, one radar station’s cone of
silence will be within the coverage area of one or more other radar stations. In the case of QEA,
the Boston ARTCC also receives feeds from: the Nantucket, MA, terminal radar (46.5 NM from
QEA, at essentially sealevel), which covers QEA’ s cone of silence down to approximately

500 ft MSL; and the Cummington, MA, en route radar (132.1 NM from QEA, at an elevation of
2,000 ft MSL) which covers QEA’s cone of silence down to approximately 5,000 ft MSL.

4.8.2 Example 2, Continued: Aircraft Precision Approach Procedure

Subsection 3.6.2 illustrates computation of the flight profile (altitude vs. distance from threshold)
for an Aircraft Precision Approach procedure. However, for the procedure to be used
operationally, the coordinates of the fixes are needed by ATC personnel. Computing them isa
straightforward application of spherical geometry.

The sequence of calculationsis asfollows:

= Using the website AirNav (Ref. 30), the latitudes and longitudes of the ends of KM CI
runway 19L / 1R are obtained.

= Associating U with the 1R end and S with the 19L end of the runway, the azimuth of
the approach course in the direction away the 19R end is computed, using Eq 70, to
be wsu = 12.89 deg

= Associating U with the 19R end of the runway and S with the fix locations, the
coordinates of the fixes are found using Eq 72 and Eq 75.

The results of carrying out steps 1-3 are shown in Table 6.

Table6 Computed Fix Coordinates for MCl Runway 19L LPV Approach

Fix Name UMREW | FELUR REMNS ZASBO YOVNU GAYLY
Range from Threshold, NM 1.9 4.9 6.2 9.3 12.4 155
Latitude, deg 39.337737| 39.386470| 39.407586| 39.457940  39.508292| 39.558642
Longitude, deg -94.692345|-94.677907|-94.671645|-94.656696|-94.641725|-94.626732

4.8.3 Example 3, Continued: Satellite Visibility of/from Earth

Extending the analysis in Subsection 3.6.3 to calculating the latitude/longitude coordinates of the
footprint of a geostationary satellite is a good example of the application of the equationsin this
chapter. Geostationary satellites have circular orbits. They are positioned directly above the
earth’s equator, and their altitude is selected so that their orbital speed matches the earth’s
rotation rate. Thus, from the earth, they appear to be stationary. Many communications satellites,
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including those used for television, are geostationary.

The Wide Area Augmentation System (WAAS) satellites (which augment the Global Positioning
System (GPS)) are chosen for this example. The FAA operates three geostationary WAAS
satellites (Ref. 31) in order to satisfy the needs of the most demanding civil aviation operations
or functions— e.g., guidance for low-visibility approaches or along narrow, obstacle-
constrained routes. The parameters used in this calculation are:

= Altitude, h = 35,786,000 m = 19,323 NM

= Mask angle, @ =5 deg

= Radiusof the earth, Re = 6,378,137 m = 3,444 NM (WGS-84 equatorial radius)

Substituting these values into Eq 27 yields § = 76.3 deg. Thus the user’ s position U can be up to
76.3 deg (in terms of the geocentric angle) away from the satellite nadir N and satellite will be
visible. Since geostationary satellites are directly above the equator, the maximum user latitudes
with visibility are £76.3 deg if the user is a the same longitude as the satellite. Similarly, if the
user is on the equator, the longitude extremes at which the satelliteis visible are +76.3 deg from
the satellite longitude.

Obtaining the coordinates of perimeter of the visible region (satellite footprint) involves solving
the following modified version of Eq 65:
sinz(aj - sinz(l'uj
2 2

cos(Ly )

Ay =Ag T 2arcsin

Eq 99

A set valuesisassumed for Ly intheinterval [-6, 6], and the corresponding two sets of values
for Au are computed (which are symmetrically located about 4s). The WAAS satellite |abels and
longitudes are: AMR, -98 deg; CRE, -107.3 deg; and CRW, -133 deg. When these calculations
are carried out, the resulting footprints are depicted in Figure 18 below. To provide context, the
locations of afew airports are also shown in Figure 18. As a check on the calculations herein,
Ref. 31 has apage, “WAAS GEO Footprint”, that is very similar to Figure 18.

4.8.4 Example 4: Great Circle Flight Route

For many reasons — e.g., siting of ground-based communications, navigation and surveillance
equipment; estimation of fuel consumption; positioning of search and rescue assets; and analysis
of over-flight routes — thereis aneed to calculate great circle paths between any two places on
the earth. Such calculations are a straightforward application of the equations presented earlier in
this chapter. The basic approach is: first solve the indirect problem of geodesy (Section 4.2), so
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that geocentric angle (length) and the azimuth of the path starting point are known; then divide
the path into equal-length segments and solve the direct problem of geodesy (Section 4.3) for

each segment, starting at one end of the path and progressing to the other.
N90
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&)}
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-

O ————P—® 4 0
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Figure 18 WAAS Satellite Visibility Contours for 5 deg Mask Angle

Theresult of carrying out these steps for the route between Boston Logan (BOS) and Tokyo
Narita (NRT) airportsis shown in Figure 19. In addition to showing the flight path for a spherical
earth model (green curve), Figure 19 also shows the great circle path for an ellipsoidal earth
model using Vincenty’s algorithm (Subsection 2.2.3). For the scales and line thickness
employed, the only perceptible separation between these curvesis at the highest latitudes, where
the ellipsoidal-model path isamaximum of 0.06 deg higher in latitude.

For the great circle/spherical earth route; the azimuth angle at BOS is 334.8 (-25.2) deg, the
azimuth angle at NRT is 22.8 deg, and the geocentric angleis 8 = 1.689 rad, or 53.8% of x rad
(7 rad being the longest possible great circle route). The computed distance (using the earth
radius defined following Eq 23) is 5,810.4 NM, while the distance computed using Vincenty’s
algorithm is 5,823.5 NM. Thus, in this case, the ellipticity error in the path length is 0.2%.
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Figure 19 Mercator-like Depiction of Latitude/L ongitude Coordinates for Great Circle
and Rhumb Line Paths Connecting BOS and NRT

Thetrgjectory’ s northern-most latitude is N71.7 deg (Eq 94), which occurs at alongitude of
W143.42 deg. If the earth were sliced in half by a plane passing through BOS, NRT and the
earth’s center, the plane would make an angle of 71.7 deg with the plane of the equator and
would intersect the equator at W53.42 deg and E126.58 deg. Equations from Section 4.6 predict
that the trajectory crosses the Arctic Circle (N67 deg latitude) at longitudes of W104.7 deg and
E177.9 deg. The trgjectory iswithin the Arctic Circle for 29.2% of its length, although in Figure
19 it appearsto be alarger fraction because the convergence of longitude lines at the Pole is not
depicted.

Figure 19 also shows the course from BOS to NRT for the rhumb line (constant azimuth angle)
method often used for marine navigation (Section 9.3). The azimuth angle for arhumb line from
BOSto NRT is266.7 (-93.3) deg. The rhumb line path is 19% or 1,106.7 NM longer than the
great circle route calculated using Vincenty’ s algorithm.

The BOS-NRT city pair has al three factors that favor great circle navigation over rhumb line
navigation: widely separated origin and destination, essentially co-latitude origin and destination,
and the end points are at mid-latitudes. A contrasting route is Boston (BOS) - Buenos Aires
(EZE). It has aroughly similar length, but is oriented north-south. For BOS-EZE the rhumb line
path is 0.007% (0.3 NM) longer than the great circle path.

Figure 20 depicts a polar view of the great circle and rhumb line routes. For this perspective,
(a) the great circle route is almost a straight line while the rhumb line route is circular, and
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(b) the difference in the lengths of the pathsis obvious. Contrasting Figure 19 and Figure 20
illustrates value of matching the charting technique to the method for defining a route. Figure 19
is similar to aMercator projection™, with both having the property that rhumb lines are straight;
and Figure 20 similar to a gnomonic projectionssS, which has the property that great circles are
depicted as straight lines. It has been stated that Mercator projections were the preferred maps for
maritime navigation, while gnomonic projections are the preferred maps for aircraft navigation.

E150/ .- AR E30

\ A\ / \\ jl\ /.
VTN \ | #==-Great Circle Royte
N s // - \\\ / .
> = = Rhumb Line Rgute

Figure 20 Polar View of BOS-NRT Great Circle and Rhumb Line Routes

4.8.5 Example 5: Radar Display Coordinate Transformations

In this subsection, an ATC radar is associated with the user U and an aircraft under surveillance
with the satellite S. The radar’ s installation information will include:

Lu — Radar latitude

Ju — Radar longitude

hu — Radar antenna elevation above sealevel

For each scan (antennarevolution), a secondary surveillance radar provides three quantities
concerning an aircraft:

#* For atrue Mercator projection, the distance between equal latitude increments i ncreases towards the poles.
888 For atrue gnomonic projection, the distance between equal |atitude increments increases toward the equator.
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wgu — Aircraft azimuth relative to North (from antenna direction)
d — Slant range between the aircraft and the radar (determined from interrogation-reply time)
hs — Aircraft barometric elevation above sea level (reported by transponder)

Some long-range radars may correct for propagation phenomena (e.g., refraction), but those

capabilities are not addressed here.

Thefirst goal in ATC radar display isto accurately
depict the horizontal separation between aircraft pairs.
When two aircraft are only separated verticaly (i.e., are
at the same latitude and longitude) then their screen
icons should overlay each other — or at least be closein
comparison to the minimum allowable separation. Figure
21 shows the effect of directly displaying the slant range
of two aircraft with only vertical separation (although it
exaggerates the effect). Without altitude or elevation
angle information, this may be the best that can be done
— e.g., for two aircraft without Mode C altitude-
reporting capability. Partly for this reason, operating in
busy airspace typically requires Mode C capability.

Figure 21 Effect of Displaying a
Target’s Slant Range

Generdly, the display processing methodology depends upon the radar’ s maximum range. Two

situations are addressed.

Tangent Plane Display — This method displays targets on a plane that is tangent to the earth at
the radar’ s latitude/longitude and sea level. Locations on the plane can be computed in Cartesian
(east/north) or polar (range/azimuth) coordinates. The steps in the calculation are:

» Theaircraft elevation angle, «, isfound using Eq 40, modified to account for the

radar antenna elevation:

a = arcsin
[ 2d (R, + hy)

(hg — hy)? + Z(hs—hu)(ReJrhU)—dZ]

Eq 100

= Theaircraft range aong the tangent plane, TPRng, isfound (sometimes called the

slant-range correction)
TPRng = dcos (a)

Eq 101

= If needed, TPRNg can be resolved into east and north components

TPEast=TPRngsin(ys,y)
TPNorth=TPRng cos(y g, )

Eq 102

If the earth were flat, this method would be error-free; however, it does not fully account for the
curvature of the spherical earth. Figure 22 shows the slant range correction error (differencein
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Figure 22 Slant-Range Correction Error for Tangent Plane Terminal Radar Display

computed TPRng values for two aircraft at the same latitude/longitude but different altitudes) for
ranges/altitudes characteristic of aterminal arearadar. The maximum error is approximately

250 ft. This value should be contrasted with the terminal area separation standard of 3 NM. Thus
the maximum display processing error is less than 1.5% of the relevant standard, which is
acceptable for engineering work.

L atitude/L ongitude Display — Because errors for atangent plane display increase with the
ranges and altitude differences of targets, en route radars use a more accurate method that fully
accounts for the earth’ s curvature.
= Thetarget’s geocentric angle relative to the radar is found using Eq 35
» Thetarget’slatitude/longitude are found from Eq 72 and Eq 75
» Thetarget’slatitude and longitude are converted to the coordinates of amap
projection (e.g., Lambert conformal conic) for display to a controller.

En route radar coverage areawill include multiple airports, and possibly several mgjor ones. It's
advantageous to display targets relative to the airport locations.

4.8.6 Example 6: Single-Station VOR / DME RNAV Fix

A single VOR/DME station S provides an aircraft A with its azimuth angle wa/s (VOR function)
and slant range distance dsa (DME function) relative to the station. For *area navigation’

-60-



DOT Volpe Center

(RNAYV), it may be necessary to use those measurements to determine the aircraft’ s latitude and
longitude A (La, 44). The aircraft’ s altitude ha is assumed known, as are the station coordinates
(Ls, 4s) and DME antenna altitude hs.

Thefirst step isto convert the slant range dsa to the geocentric angle @sa utilizing Eq 35.

The aircraft’ s latitude and longitude are then found from Eq 72 and Eq 75, repeated here using
the current notation:
L= arcsin(sin(Ls) cos(0s,) + cos(Ls) Sin(0,) cos(y /)

i i Eqg 103
/IA: /IS + al’Ctal'{ sr](HSA) sn (WA/S) J q

cos(Ls) cos(0gs) —SiN(Ls) SiN(Osa) COS(w /5)

Finally, the azimuth angle of the station relative to the aircraft is found from

—CoS(Lg)SiN 5/s)
sin(Lg)sin(@sy) — cos(Ls) cos(@s) cosy o, s)

tan(ys;a) = Eq 104

Remarks:

= Except for notation, the processing stepsin this subsection are identical to those used
for aradar latitude/longitude display in Subsection 4.8.5.

= Whilethe slant-range correction of is usually considered a necessary step in en route
radar processing, the slant-range correction is often not performed in navigation
applications (as the distances and need for accuracy are both generaly less, and many
procedures are specified in terms of a DME reading). The approximation employed is
Osa =~ dsa / Re.

= Chapter 6 addresses computing fixes using measurements from the three possible
combinations of two separate VOR and/or DME stations—i.e., VOR/VOR,
DME/DME and VOR/DME. Chapter 7 address computing fixes using measurements
from three DME stations.

4.8.7 Example 7: Path-Length Ellipticity Error for Selected Airport Pairs

Asapartia check on the accuracy of the spherical earth approximation, a set of fourteen airports
were selected. This set is intended to be representative of current aviation activity. However, in
terms of frequency of operations, they over-emphasize longer routes (and some are too long for
commercial transport aircraft at thistime). The result isatotal of 91 possible paths between
airport pairs. For each pair, estimates of the length of the paths are computed for:

a) WGS-84 dllipsoida earth model utilizing Vincenty’ s algorithm cited in Subsection 2.2.3
(whichistreated as a“black box” herein), and

b) Spherical approximation of the earth utilizing the radius immediately following Eq 23
and Eq 67.
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The airports are partitioned into two groups of seven each — CONUS (Table 7) and Inter-
national (Table 8). The CONUS group essentially spans the CONUS land area and includes
paths of various lengths and orientations. The International group, which includes oneeachin
Alaska and Hawaii, provides additional pairs with greater separation but also with varying
orientations. The longest path is HNL-JNB (10, 365 NM). As a point of interest, the current
longest scheduled commercial flight routeis 8,285 NM, between Newark and Singapore.

Table7 CONUS Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Gen. Edward Lawrence Logan International (BOS) 42.3629722 | -71.0064167 | Boston, MA
Ronald Reagan Washington National (DCA) 38.8522 -77.0378 Washington, DC
O'Hare International (ORD) 41.9786 -87.9047 Chicago, IL
Miami International (MIA) 25.7933 -80.2906 Miami, FL
San Diego International (SAN) 32.7336 -117.1897 | San Diego, CA
Dallas/Fort Worth International (DFW) 32.8969 -97.0381 Dallas/Fort Worth, TX
Seattle—Tacoma International (SEA) 47.4489 -122.3094 | Seattle, WA

Table8 International Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Wiley Post—Will Rogers Memorial (BRW) 71.2848889 | -156.7685833 | Barrow, Alaska
Honolulu International (HNL) 21.318681 -157.9224287 | Honolulu, Hawaii
London Heathrow (LHR) 51.4775 -0.4614 London, England
Narita International (NRT) 35.7647 140.3864 Tokyo, Japan
Ministro Pistarini International (EZE) -34.8222 -58.5358 Buenos Aires, Argentina
Oliver Reginald Tambo International (JNB) -26.1392 28.246 Johannesburg, South Africa
Sydney (SYD) -33.946111 151.177222 Sydney, Australia

Figure 23 is a histogram of the path length differences for the 91 paths analyzed using the
methods labeled @) and b) above. Over 90% (all but eight) of the paths have éllipticity errors less
than the “rule of thumb” of 0.3%, and none have errors greater that 0.5%. The average of the
absolute values of the dlipticity errorsis 0.17%. For the paths within CONUS, the maximum

elipticity error is 0.27%.
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Figure 23 Histogram of Ellipticity Errorsfor Spherical-Earth Length of 91 Selected Paths

For some applications, a spherical model for the earth may not be sufficiently accurate. In some
circumstances, sufficient improvement can be obtained by tailoring the radius of curvature to the
path(s) involved — i.e., taking account of their latitude and azimuth angle, and possibly using
multiple points to compute an average radius of curvature. However, there are limits to such an
approach, as the radius of curvature generally cannot account for differencesin the path itself. In
high-accuracy applications, it is generally preferable to use an ellipsoidal earth model, possibly
in conjunction with aleast-squares solution technique such as that discussed in Chapter 8.
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5. TWO-POINT / 3D-VECTOR PROBLEM FORMULATION

Section 5.1 provides definitions of the vectors and coordinate frames needed to analyze the
geometry of user and aircraft or satellite relative to a spherical earth. Section 5.2 addresses the
indirect problem of geodesy, and provides vector versions of the key equationsin Section 4.2.
Section 5.3 returnsto the indirect problem, and demonstrate that for some combinations of
known and unknown variables, vector analysis provides an alternative method of deriving
solutions found in Chapter 4. Similarly, Section 5.4 demonstrates that vector analysis provides an
alternative method of deriving certain solutions found in Chapter 3. Lastly, Section 5.5 addresses
the direct problem of geodesy, and shows that, to a significant extent, the equationsin Section
4.3 can be found by vector analysis aswell.

A list of software packages which generally utilize the vector approach can be found at Ref. 32.

5.1 Vector and Coordinate Frame Definitions

5.1.1 Earth-Centered Earth-Fixed (ECEF) Coordinate Frame

The coordinates of the locations of interest on the earth’ s surface are:
= User position: latitude Lu, longitude Ay and altitude hu
= Satellite position: latitude Ls, longitude As and altitude hs

Define the earth-centered earth-fixed (ECEF) coordinate frame e by (see Figure 24, where the
figureseg isourL):

= x-axis: liesin the plane of the equator and points toward Greenwich meridian

= y-axis: completesthe right-hand orthogonal system

= z-axis. liesalong the earth's spin axis.

Thelocation of the user and satellite in the e-frame are

roUx 100 cod Ly, ) cos(iy)
rou =| TSy |=16u(Re +hy) =[1Buy | (Re+hy) = codly, ) sin(ay) |(Re + ) Eq 105
_rgu,z_ _1%U,z_ Sm(LU )
and
[Ssx 15sx codLs) coslis)
ros=|Ssy |=10s(Re +hs) =| 1sy [(Re +hs)=| codLs) sin(is) | (Re+hs)  Eq106
e e sin(Lg)
| OS,Z_ _108,2_
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Here 1°%u and 1°os are unit vectors associated with rou and r ®os, respectively.

Given r®ou, the user’ s latitude, longitude and atitude can be found (respectively) from

e

fou 2

2 2
\/(rgu,x) +(rgU,y)
Ay = arctan(r&,‘y , rS“U’X)

hy =102 + (1 ) 2 +(1&u )2 ~Re

Ly, =arctan

Eq 107

Similarly, given, ros, the satellite’ s latitude, longitude and altitude can be found (respectively)
from

r.e re
Lg = arctan ;)S,z _ | = arcsin L'Zh
\/(rcgs,x) +(Ss,y) Re +

Ag = arctan(rSS,y , rgslx)

h = (1502 + (1s) 2+ (1s.2)? ~ Re

Eq 108

Mike1025

Figure 24 Vector Technique Coordinate Frames of Interest

5.1.2 Local-Level Coordinate Frame at User’s Position

Define alocal-level coordinate frame u corresponding to the user's position
=  e-axispoint east
= n-axis points north
= u-axispointsup (away from earth's center).
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The direction cosine matrix which rotates the e-frame into the u-frameis

Ce = TTy(-Ly) T3(Ay)

where Ti(&) denotes the rotation matrix about axisi by angle&.

T,(8)

1 0 0
= |0 cosl¢) sin¢)

0 -sin(¢) coslé)

cos¢) 0 -sin(g)

T,(&) = 0 1 o©

sin(¢) 0 cos¢)
cos¢) sin(¢) 0

T5(£) = [-sin(¢) coslg) O

0 0 1

and T denotes the axis-permutation matrix

Thus

cl =

010
T=(0 0 1
100

~sin(Zy) cos(/y) 0
sin(-Ly)cos(4y) sin(-Ly)sin(iy)  cos(-Ly)
cos(-Ly)cos(y) cos(-Ly)sin(Ay) —sin(-Ly)

5.1.3 User and Satellite Positions in User’s Local-Level Frame

The positions of the user and satellite in the u-frame are, respectively

and

e
'ou x lou,e

u _ ~uf € _| U -
rou=Ce|fouy | =|Toun |~ |O|Re

e u
fou,z f'ou,u 1

Eq 109

Eq 110

Eq 111

Eq 112

Eq 113

e
osx

e
losz

u
ose

u
losu

cos(Ls) sin(As— Au)

ros=Cé | rGsy | =|fosn |= | —Cos(Ls)sin(Ly ) cos(is— Ay) + sin(Ls)cos(Ly)

cos(Lg)cos(Ly)co(As—Ay ) + sin(Lg)sin(Ly)

(Re+h) Eq114
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Thus, using Eq 113 and Eq 114, the vector from U to S is

- (R Mely Jsnlis )
s =ros —rou =|Msn |=| -(Re+h)cos(Lg)sin(Ls)cos(is - 4y )+ (Re+ h)sin(Ls)cos(Ly ) | Eq 115
Usu | | (R, + h)cos(Ls)cos(Ly )cos(ts - Ay )* (R + )sin(Ls)sin(Ly )- Re

The horizonta and vertical components of r'us can be expressed as

o noriz =y (o) + (s f =(Re+ ) sino)
rLilJS,vert = rLilJS,u = (Re + h) COS(Q) - Re

Eq 116

Eq 116 can be found from Figure 1 by inspection. It can also be derived analytically from Eq 115
using Eq 62.

Two angles associated with rYus are of interest

» wgu — The azimuth angle of the horizontal component of rYus, measured clockwise
from north

» ¢ —Theelevation angle of rYus, measured from the horizontal plane

vsiw = actan(ise isn) Eq 117
o =arct sy Eq 118
\/(rLlJJS,e)Z + (rLlJJS,n)Z

The two-argument arc tangent function is used in Eq 117 because azimuth angles lie in the range

(-, m].

The Euclidean length d of rtusisaso of interest

d= \/("L?S,e)2 + (rLflJS,n)2 + (rLElJS,u)2 Eq 119

5.2 The Indirect Problem of Geodesy

5.2.1 Geocentric Angle from Latitudes and Longitudes, by Vector Dot Product

The vectors r®ou and r fos meet at the earth’ s center, in geocentric angle #. The dot product of
these vectors, normalized by the product of their lengths, yields
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lgu b leOS :1'eOU ,xl-eOS,x + lgu ,ylgs,y + lgu ,zlgs,z
= cos (L )cos(Lg)cos(Ay - Ag)+ sin (Ly )sin(Lg) Eq 120
= cos ()

Eq 120 demonstrates that if one forms the vector dot product indicated on the first line, the result
will be the same as if one performed the scalar operations indicated on the second line, which in
turnis equal to the equation for cos(#) found by spherical trigonometry (Eq 62).

5.2.2 Geocentric Angle from Latitudes and Longitudes, by Vector Cross Product

The cross product of vectorsr€ou and r fos, normalized by the product of their lengths, yields
another expression for the geocentric angle:

sin(9) = 1oy x Los

:JCOSZ (Ly)sin?(Ls) + cos’(Lg) sin’(Ly, ) + cos’ (L, ) cos*(Lg) sin*(As — 4,) -+ EA 12l

. —2cos(L,, ) sin(L, ) cos(Ly) sin(Lg) cos(As — A,)

Sinced liesin [0, ], solving Eq 121 for # using the arc sine function yields both the correct
angle and an ambiguous solution. Another source of information, such as Eq 120, al'so must be
used.

5.2.3 Path Azimuth Angles, from Latitudes and Longitudes

By substituting two elements of r“us from Eq 115 into Eq 117, wsu isfound to be equa to

cos(Ls) sin(2s- Au)
sin(Ls)cos(Ly )- cos(Ls)sin(Ly ) cos(is - u)

Wsiy = actan (rijS,e ’rLElJS,n): arctan ( J Eq 122

Eq 122 demonstrates that if one computes wsu using the arc tangent function with two elements
of the vector rYus as arguments, the result will be the same as if one computed ywsu using the arc
tangent indicated on the right-hand side. The latter is equal to the equation for wsu found by
spherical trigonometry (Eq 70).

The labeling of the points U and S in Eq 122 can be reversed, yielding

cos(Ly) sin(iy - As) J Eq 123

= arctan
vuis (s'nm,>cos<Ls>-cos(m)sa'n(m)cos(au 19)

While the arguments on right-hand sides of Eq 122 and Eq 123 are shown (for convenience) as
ratios, the azimuth angles should be computed using a two-argument arc tangent function.
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Eq 123 is derived by vector analysis (rather than by spherical trigonometry). However, it not a
vector equation per se— i.e,, it does not make use of vectors or the components of vectors. The
vector equation for wuisis

Wy s = arctan(ré‘ule ,rSSUJ,) Eq 124

Vector rssy isfound from
13y =y —r3s=CelrSy ~rés) Eq 125
where r®ou and r fos are given by Eq 105 and Eq 106, respectively, and (interpreting Eq 112)
—sin(1g) cos(g) 0
Ce = | sin(-Lg)cos(As) sin(-Lg)sin(4s) cos(-Ls) Eq 126
cos(-Lg) cos(As) cos(-Lg)sin(ds) —sin(-Ls)

5.3 Corollaries of the Indirect Problem Solution

5.3.1 Intermediate Points between U and S: Dividing the Chord

Route planning generally requires that a set of intermediate path points between U and S be
found. Any linear combination of 1%ou and 1%s will be orthogonal to the vector 1%u x 1°s, and
thus will liein the plane defined by OUS. Conversely, every point in the plane OUS can be
expressed as alinear combination of 1%ou and 1°os.

A simple way to define a point along the arc between U and S isto choose a point along the
chord rfus between U and S then normalize it to unit length. Let f € [0, 1] be the fractional
distance of point X from U to S along the chord r€us. Thus,

rC()eX,x (1_ f)lgu,x +f lng
Fox =lou + f(lgs _:-I'(SDU)Z (- )15y + flos =| Moxy | =| @~ f)1ouy + f 13y Eq 127
I’(gx,z (l_ f)lgu,z +f 1(%32

Then
re
Ly = arctan SX'Z -
\/(rgx,x) + (rSX,y) Eq 128
Ay = ar(:tz;\n(r(‘;(,y , rgxyx)
and
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cos(Ly )cos(1x)
16x =| cos(Lx )sin(2x) Eq 129
sin(Ly )

Equally-spaced points along the chord r€us will not correspond to equally-spaced points along
the arc connecting U and S. However, the midpoint of r€s will correspond to the midpoint of arc
US, and agrid of N = 2" equal-length arc segments can be generated by iteration.

5.3.2 Intermediate Points between U and S: Dividing the Arc

It's desirable to be able to find the coordinates of an arbitrary point along the arc between U and
S. Toward that end, let f € [0, 1] be the fractional distance of point X from U to S along the arc
US of length 8. The unit vector 1°ox can be expressed as

Lox =cos(f0)loy + Sm(m) (;ou 108) 1oy :sn[s(_lnze‘;)@] l%UJrﬂﬂan(fee)) Los

Snl-f)0]..  sn(f6) e

" sn(@)  oux*t gy oSk

g - Eq 130
e 1-1)0] . f0) e
7|t |7 Sm[S|(-n((9)) ]1°U'y+ss'nrf(e))103y

oxz S0 1)) | Sn(10)

sn@) Y% sin)

Eq 128 can be used to find the coordinates Lx and Ax. These equations (Eq 130 and Eq 128)
provide essentially the same functionality for the vector technique that can be achieved with
spherical trigonometry using Eq 72 and Eq 75.

5.3.3 Latitude Extremes of a Great Circle

| am not aware of avector form of Clairaut’s equation as used herein (Eq 92), or in general.
However, the most useful application of Clairaut’ s equation, determining the vertices (northern-
and southern-most latitudes of a great circle, isreadily found by vector analysis. The cross
product of unit vectors 1°ou (Eq 105) and 1°s (Eqg 106) is normal to the plane of the great circle
containing U and S. In this subsection, it is assumed that U iswest of S, so that U x S points
toward the northern hemisphere.
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- e e e e
?_gu % l_gs 3 1oy ,yIOS,z -1lou ,zlos,y
15y % 15s y = =| Lou,,16s x ~1ou x10s2
_(1'OU X 1'05 z 1'OU ,x:l'OS,y _1'OU ,y:_l'OS,x Eq 131

[ cos(Ly )sin(Ls) sin(4y ) - sin(Ly, ) cos(Ls) Sin(4s)
= | sin(Ly ) cos{Lg) cos(4s) — cos(Ly, )sin(Ls) cos( )
cos(Ly ) cos(Lg) Sin(4s — Ay )

e e
1oy x1os =

When 1%u x 1%s is adjusted to unit length of sin(@) (Eq 121), its z-component is equal to the
cosine of the latitude of the highest (and lowest) point on the great circle that includes the route
in question (projection of a unit vector onto the earth’s spin axis). Thus,

cos(L) = |cos(Lyy ) cos(Ls) sin(As — Ay))|
| sin(9)

Eq 132

Then Lmin = -Lmax. Eq 132 isidentical to Eq 94, demonstrating that manipulating the components
of 1%u and 1°os yields the same result that Clairaut’s equation does.

The longitude where the highest/lowest | atitudes are achieved can be found from the x- and y-
components of vector 1°u x 1°s (from Eq 131).

(;%u x l‘és)y ] _ arctan[sin(LU )cos(Lg) cos(As) —cos(Ly, )sin(Lg) cos(4, )

Amin = arctan - - : .
{ ou X 1¢ cog(Ly )sin(Ls) sin(4y ) —sin(Ly ) cos(Ls) sin(4s)

] Eq 133
1ou x1os )y

Then Amax = Amin = . Not all great circle routes between two points on the earth’ s surface will
contain avertex. Criteriafor when aroute will include a vertex are given in Section 4.3.4.

5.3.4 Locus of Points on a Great Circle

From Eq 105, it follows that any point X on the earth has the e-frame coordinates r ox

r(gx,x l(e)X,x COS(LX ) COS()LX )
Fox = oxy |= Lox Re = 1oxy | Re =| cos(Ly) sin(Ax) | Re Eq 134
r(gx,z l(GDX,z Si n( LX )

Here Lx and Ax are the latitude and longitude of X, respectively. In order for X to be on the great
circlecontaining U and S, the vector r®ox must be orthogonal to the vector 1°ou x 1°0s — that is,
the dot product of these two vectors must be zero. One can then solve for Lx in terms of Ax and
the coordinates of U and S.
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(18, x 155, costi) + (18, x 155, 5inC2x)

Loy——
tan(Ly ) (l%u x16s )z

Eq 135

Solving for Ax in terms of Lx and the coordinates of U and S is more complicated. Thisisa
consequence of the fact that while every great circle crosses every line of longitude exactly once,
agreat circlemay cross aline of latitude zero, one or two times. Section 4.6 addresses thisissue
using spherical trigonometry.

5.4 Computing Satellite Elevation Angle and Slant Range

Section 5.2 shows that, if the latitude/longitude of locations U and S on the surface are known,
the vector method can be used to find the three angles 6, wsu and wus. However, the equations
in Section 5.2 do not include h, d or a. (al of which are related to the height of the aircraft/
satellite above the earth’ s surface). The two subsections immediately below show that if h and @
are known, then d and a can be found by the vector method. Moreover, the expressions that are
derived are identical to those found in Chapter 3 using the coordinate-free method.

The four other possible equations associated with an aircraft or satellite above the earth when the
geocentric angle is known — finding h or d from « and @, and finding h or & from d and § — are
not pursued. For these variable combinations, the solutions for the unknown variables will
involve manipulation of the scalar components of rYus. That being the case, one may as well
utilize the scalar equations derived in Chapter 3.

5.4.1 Solution for Elevation Angle from Altitude and Geocentric Angle

Asshown in Eq 118 the satellite elevation angle can be found from the components of r“us.
Using Eq 116, Eq 118 can be expanded as

. 2 1
tan(a)= (Re + h)Cos(Q) -R, _ h cos(0) — 2R, sin (ZQJ
(Re +h)sin(6) (R, + h)sin(6)

The right-hand side of Eq 136 isidentical to the first line of Eq 38, demonstrating that manipul a-
ting the components of r“us can yield the same value for a as the scalar methodology used in
Chapter 3.

Eq 136

5.4.2 Solution for Slant Range from Altitude and Geocentric Angle

The user-satellite slant range can be found by substituting both lines of Eq 116 into Eq 119,
yielding:
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d =\/h2+4Re(Re+h)sin2(%9j Eq 137

Eq 137 isidentical to the second line of Eq 42. This demonstrates that applying Pythagoras's
theorem to the components of r'us (Eq 119) yields the same value for d as the scalar
methodology used in Chapter 3.

5.5 The Direct Problem of Geodesy

The approach used to finding Ls and As isto form r s and utilize its components. Then, wus can
be addressed utilizing Ls and/or Zs.

Given Ly, 4u, € and wsu, N is constrained but S is not. Consequently, form right triangle OUS
with right angle at U and sides Re, d and hypotenuse (Re + h), where
d = R, tan()

R Eq 138
Reth= cos(0)

Then rUusis given by
s, | [E@)sinws,y)

rus =|sn |= | tan(8) cos(y s,y ) |Re Eq 139
rljJSu 0

Utilizing Eq 105 and Eq 112 yields

rng
ros=rou+ros="rou+ (Cg) rus = r(Sesy
rSSz

cos(Ly ) cos{y ) - sin(4y ) tan(0) sin(y sy ) + Sin(—Ly ) cos( Ay, ) tan(0) cos(y s, )

=| cos(Ly ) sin(4y )+ cos(Ay ) tan(0) sin(y sy ) + Sin(-Ly ) sin(4y ) tan(0) cos(y s, ) | Re
sin(Ly ) + cos(~Ly ) tan(6) cos(y sy )

Eq 140

From Eq 108 and Eq 140 it follows that

Ls = arcsin(sin(Ly, ) cos(8) + cos(Ly, ) Sin() cos(y s )

cos(LU)s‘n(zu)+cos(xu)tan(e)sin(wS,u)—s'n(LU)sin(ﬂu)tan(e)cos(wS,u)j Eq 141
cos(Ly ) cos(iy ) - sin(Ay ) tan(8) sin(y sy ) — sin(Ly ) cos(Ay ) tan() cos(y s,y )

Ag = arctan(

While the right-hand side of the second line of Eq 141 involves aratio, As should be computed
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using atwo-argument arc tangent function. Eq 141 can be used to find a set of equally-spaced
points on the trgectory from U to S by replacing € by k-6/N and letting k = 1,..,N.

Once Ls and 4s have been found, yus can be computed using Eq 123.

It's of interest to compare the equations in this section to those for the same/similar quantities
developed using spherical trigonometry in Section 4.3. First, the expressionsin Eq 141 for Ls
and s only involve known quantities— i.e., there is no “daisy chaining” of the solution for one
unknown quantity to determine the other. The equationsfor Lsin Eq 141 and Eq 72 are identical.
A differenceisthat Eq 141 isasolution for s while Eq 75 is a solution for s — Au; thus, the
right-hand sides of these equations are necessarily different. In terms of the azimuth angle wurs,
Eq 123 in this chapter daisy chains from the solutionsfor Ls and 4sin Eq 141, while EQ 78 in
Chapter 5 does not involving daisy chaining of solutions.
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6. AIRCRAFT POSITION FROM TWO RANGE AND/OR AZIMUTH
MEASUREMENTS (TRIGONOMETRIC FORMULATIONS)

6.1 General Considerations

6.1.1 Problems Addressed

This chapter combines the formulations of Chapter 3 (involving plane trigonometry applied to a
vertical-plane) and Chapter 4 (involving spherical trigonometry applied to the earth’ s surface).
Whereas both of those formulations are limited to two problem-specific points, this chapter
addresses situations involving three problem-specific points embedded in three dimensions.
Relevant applications include aircraft navigation (specifically, Area Navigation, or RNAV) and
aircraft surveillance (specifically, sensor fusion).

For this methodology, typically, one point corresponds to the aircraft (having an unknown
latitude/longitude but known altitude), and the other two points correspond to sensor stations
having fully-known locations. Each sensor station provides a scalar measurement that describes a
geometric Surface-Of-Position (SOP) on which the aircraft lies. The solution for the aircraft
position is the intersection of three SOPs. When attention is limited to the earth’ s surface, 3D
SOPs reduce to 2D Lines-Of-Position (LOPs).”""

Before circa 1950 (when synchronization of ground stations, and thus pseudorange measure-
ments, became possible — see Chapter 7), the most common sensor systems measured
(@) Slant-range d — line-of-sight distance between a sensor station and the aircraft

(b) Spherical-range Re # — distance along the earth’ s surface between a sensor’ s and the
aircraft’s ground points

(c) Azimuth was—angle of the great circle path from the sensor station to the aircraft
(d) Azimuth wga —angle of the great circle path from the aircraft to the sensor station
(e) Altitude ha — height of the aircraft above the mean sealevel.

Slant-range measurements provide an SOP in the form of a sphere centered on the station.
Spherical-range measurements provide an SOP in the form of a cone with apex at the earth’s
center and axis intersecting a known point on the surface. Azimuth measurements provide an
SOP in the form of avertical plane that passes through the sensor, the aircraft and the earth’s
center. A barometric atimeter provides an SOP in the form of a sphere that’s concentric with the
earth.

The most common civil aviation slant-range and azimuth sensors are

" The concept of LOPs was discovered by Thomas Hubbard Sumner, a U.S. Navy officer, in 1837. Sumner was
born in Boston in1807, and graduated from Harvard University. In recognition of his achievements, two Navy
survey ships were named the USS Sumner; also, the crater Sumner on the Moon is named after him.
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= Slant-range between aircraft and station
— Navigation: Distance Measuring Equipment (DME)
— Surveillance: Secondary Surveillance Radar (SSR)

= Spherical-range between aircraft and station
— Navigation: Star fix
= Azimuth angle from the station to the aircraft
— Navigation: VHF Omnidirectional Range (VOR)
— Navigation: Instrument Landing System (ILS) Localizer
— Surveillance: Secondary Surveillance Radar (SSR)

= Azimuth angle from the aircraft to the station
— Navigation: Non-Directional Beacon (NDB)
— Navigation: Aircraft-based radar

This chapter addresses calculation of aircraft latitude and longitude from measurements of
altitude in combination with those for slant-range and/or azimuth. However, in Sections 6.4 and
6.5, the dant-range measurements are converted to spherical-ranges at the start of each calcu-
lation; thus the material can be utilized for spherical-range measurements as well.

This chapter does not consider errors in the computed coordinates that result from measurement
errors. That topic is addressed in Chapter 8. Also, there are several iterative methods for
computing latitude and longitude from measurements of slant-range and/or azimuth on an
ellipsoidal earth (e.g., Refs. 11 and 33). Those calculations can be initialized using solutions
found using the approaches described in this chapter.

6.1.2 Geometric Concerns

The geometric relationship of two sensors and an aircraft is an important aspect of these analysis.
Situations where the aircraft is directly above a ground station are excluded for several reasons:
ground station antenna patterns are generally not designed to irradiate directly above the station;
and the azimuth angle to an aircraft is undefined when an aircraft is above an azimuth
determination station. Moreover, when an aircraft is directly above a ground station, that
situation intrinsically constitutes afix.

Restricting attention to the surface of the earth, when two measurements are available, several
unfavorable geometries can occur. Figure 25 depicts examples involving aircraft A and stations
U and S. Panel (a): Due to measurement errors, it is possible that the measurements are incon-
sistent and a solution does not exist. Panel (b): When the SOPs for two sensors overlap, only a
partial position solution exists. Panel (c): When the two SOPs are tangent, measurement errors
can cause the computed position error to increase significantly along the direction of the two
LOPs. Pand (d): Multiple solutions occur when the LOPs intersect at more than one point.
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U (Ly,40)

(b) LOPs Overlap (Infinity of Solution)

Ngrth

U (Le,4p) U (Lys40)
() LOPs Tangent (Double Solution) (d) LOPS Intersect Twice (Two Solutions)

Figure 25 Possible Geometric Relationships involving an Aircraft and Two Ground Stations

6.1.3 Rationale for Two-Station Area Navigation (RNAV)

None of the geometric issuesillustrated in Figure 25 arises when the slant-range and azimuth
sensors are collocated. Since combined VOR/DME stations are prevalent in the NAS, the
guestion naturally arises. Why not only use asingle VOR/DME station to determine avehicle's
latitude and longitude (as is described in Subsection 4.8.6)? There are several reasonsto utilize
navigation fixes from two separate stations:

(2) Increased accuracy: When an aircraft is more than afew of milesfrom aVOR/DME
station, the DM E measurement is more accurate than the VOR measurement. Moreover,
the difference increases with distance from the station. Thus utilizing two DME stations
isgenerally preferable for RNAV

(2) Contingency/backup: When one of the functions of a VOR/DME station is out of service,
utilizing a second station may allow aflight to continue when otherwise it could not.
More broadly, RNAV using VOR/DME stationsiis likely to become the backup to GPS
for en route and terminal area navigation.

(3) Advanced avionics: Aircraft with advanced navigation systems (navigation radios and
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flight computers) are capable of utilizing measurements from multiple stations, whereas
older and/or |ess sophisticated avionics cannot.

Standards for aircraft RNAV systems based on DME/DME measurements, but permitting VOR
measurements, are presented in Ref. 34.

Items (1) and (2) pertain to SSR surveillance as well. The FAA isnow incorporating ‘ sensor
fusion’ into its Automation (surveillance processing) systems to take advantage of these benefits.

6.1.4 Chapter Overview

Immediately following this introductory section, Section 6.2 analyzes the problem of a great
circleand apoint that is not necessarily on the great circle. The next three sections address
situations involving two stations providing slant-range and/or azimuth measurements which are
used (with aircraft altimeter information) to determine the aircraft location: Section 6.3, azimuth/
azimuth; Section 6.4, range/range; and Section 6.5, range/azimuth. Lastly, Section 6.6 addresses
using a range measurement to crosscheck the altitude of an aircraft flying an approach procedure.

The solutions in Sections 6.3 - 6.5 follow acommon pattern: (a) When a slant-range measure-
ment d isinvolved, Eq 35 is used to obtain the corresponding geocentric angle 8. This reduces
the problem to one of spherical trigonometry. (b) The parameters for the baseline joining the
sensor stations are found as solutions to the indirect problem of geodesy (Section 4.2). (c) The
possibility that the problem isill-posed is investigated (e.g., Figure 25(a)). (d) The case
(Subsection 4.1.7) of the mathematical spherical triangle comprised of the two stations and the
aircraft isidentified, and the corresponding solution is found. (d) Parameters for the mathe-
matical triangle are used to determine the aircraft |atitude/l ongitude coordinates.

6.2 Relationship between a Point and a Great Circle

6.2.1 Problem Statement

Often there is a need to find the relationship between a discrete point on the earth’s surface and a
great circle path. A possible scenario is shown in Figure 26: A vessel V intends to transit a great
circle path from location U (coordinates (Lu, 4u)) to location S (coordinates (Ls, 4s)), with
departure azimuth angle wsu. However, whilein en route, the crew determines that, due to
currents and/or the lack of navigation equipment/ skills, the actual vessel locationis (Lv, Av),
which may not be on the intended path.

For such a scenario, the coordinates of U, V and S are all known. Thus, for triangle UVS, the
side lengths and side azimuth angles can all be found from solutions to the Indirect Problem of
Geodesy (Section 4.2).
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In addition to the sides of UVS, the quantities of interest
can include the coordinates of the nearest point X (Lx, 4x)
on the intended path, the distance #vx from the vessal to
the nearest point on the intended path, the projection of the
distance traveled onto the intended path dux and the off-
path angle . Aviation applications of this methodol ogy,
involving the vertical dimension aswell asthe earth’s
surface, are discussed in Sections 6.5 and 6.6.

6.2.2 Problem Solution

Solution to this problem is afive-step process. The first
step isto apply the Indirect Problem of Geodesy (Section

S (Ls, 4g)

Figure 26 Vessel V and Intended
Great Circle Path US

4.2) to the great circle path UV, thus finding the azimuth

angle wvu and the distance Guyv. The fact that the vessel’ s actual track over the earth may not
have been the great circle path UV is not relevant — only the end points are.

Because (a) the great circle through U and S encircles the earth and the vehicle may have

traveled “in the wrong direction”, and (b) azimuth (bearing) angles can vary over (-, x|, the

angle g between US and UV is computed in the range [0, 7] using

p = min{|‘//5/u Wyl Wsiu —wviu 27 W siu — Wi _27T|} Eq 142

When g =0, the vessdl isin fact on the intended path.

The third step addresses the mathematical spherical triangle UVX, wherethe angleat X isa
right-angle. The law of sines (Eq 58) yields the off-course distance évx in the range [0, 7/2]

B = arcsin[sin(d,, )sin(p)]

Eq 143

Again considering triangle UV X, the projection of the distance traveled onto the intended path
Oux isfound from the law of cosines for sides (Eq 56) and optionally Eq 12

0 = arccos
o Los( Oy )

cos( Oyy )} — 2arcsin {\/Sin(%(euv + ngs)():ngé(guv ~0x))
\x

Eq 144

Finally, the coordinates (Lx, Ax) are found as a solution to the Direct Problem of Geodesy

(Section 4.3) based on knowledge of (Lu, 4u), Oux and wsu.
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6.3 Position Solution for Two Azimuth Measurements

Here, the assumption is that the latitude/longitude coordinates of two stations, U (Lu, 4u) and

S (Ls, 4s) are known, as are their azimuth (or bearing) angles, wau and wass, to athird (aircraft)
location A. The solution for the coordinates of A and related parameters follows the pattern
described in Subsection 6.1.4.

6.3.1 Step 1: Solve the Navigation Spherical Triangle PUS

This step is astraightforward application of the Indirect Problem of Geodesy. Section 4.2 is used
to find the geocentric angle dus between U and S (Eq 65) and the azimuth angles wsu and wuis
(Eq 70 and Eq 71) of the great circle path between the stations.

6.3.2 Step 2: Determine if the Problem is Well-Posed

The problem must be physically and mathematically well posed. In terms of a spherical earth,
two radials define two great circles which intersect at two antipodal points. The interior angles of
triangle USA at U and S, both in (0, ), are given in the following equations.

By =min {|‘//5/U _l//A/U|’ |V/S/u ~—VYau +27T|’ |l//S/u ~—Yauu _277|}

_ Eq 145
Ps=min {|WU /s _WA/S|’ |Wu /s~ ¥Yaist 27T|’ |Wu 1s~Vais —27T| }
For two intersections to occur, all of the following must be true:
= Solution Existence: The radials must point to the same side of the station baseline
US. One and only one of the following conditions must be true:
— wau =wgu + pu and yas = wuis—fs
— wau = wgu — puand wais = wuis + fs
= Solution Existence: It must betruethat 0 < |fu| + |fs| < =. Otherwise, the two
intersections will either be equidistant (both at a geocentric angle of /2 from the
midpoint of the station baseline) or the closer intersection will be on the opposite side
of the station baseline of that intended.

= Partia Solution: A cannot be found uniquely if it is on the station baseline US or its
extensions, as the radials then do not have a single intersection. If both gy = 0 and
Pu =0, then A ison the baseline between the stations; if fu =0 and fs=m, then A is
on the baseline extension from S; if fu == and fs =0, then A is on the baseline
extension from U.

If any of these conditionsis not satisfied, then the problem isill posed and does not have avalid
solution.

6.3.3 Step 3: Solve the Mathematical Spherical Triangle USA

The third step isto solve the “mathematical” spherical triangle (Subsection 4.1.2) USA. This
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situation falls under Case (4) in the spherical triangle taxonomy of Subsection 4.1.7 — two
angles and the included side are known.

The unknown angle at which the two radialsintersect at A is given by the law of cosines for

angles (Eq 57)

cos (B,) = — cos(B, ) cos(Bs) + sin(y )sin(Bs ) cos(6ys) Eq 146

In computing fa from Eq 146, observe that, using the arc cosine function, it can be unambig-
uously found in [0, x].

The unknown sides (geocentric angles) Aua and #sa are found from the four-part cotangent
formula (Eq 60)

cos(0ys) cos(By ) +sin(B, ) cot(Bs)

cot(Bya) = SnLo)
g Eq 147
cot(0,) = S0X0us) COS(Bs) + Sin(Bs) cot(f )
SL\ sSn(0,e)

In computing Aua and Osa from Eq 147, observe that, using the arc cotangent function, they can
be unambiguously found in [0, x]. Also, observe that fa, Bua and Osa are found without daisy-
chaining from one solution to another.

6.3.4 Step 4: Find the Coordinates/Path Azimuths for A

With @ua or sa known, the latitude/longitude of A can be found from either the spherical
triangle PUA or from triangle PSA. Thisis an application of the direct problem of geodesy
(Section 4.3). The latitude can be found from either of these equations

sin (L) = sin(Ly ) cos(ya) + €o8( Ly ) Sin(Oua) €os (¥ a0 )

. . . Eq 148
sin (L) = sin(Lg) cos(0s,) + cos( Ls) SiN(0ss) €05 (w o/s)
And the longitude can be found from either of these equations
tan (A — 4y ) = Sln(eux_x)s'n(l//_A/u)
cos(Ly, ) cos(6y,) —sin(Ly, ) sin(G,,) cos (WA/U ) Eq 149

) SiN(0sa) SN (¥ a/s)
S

tan ()‘A - = cos( LS) COS(HSA) —sin( LS) S n(QSA) cos (l// A/ S)

After employing atwo-argument arc tangent function, the solutions will yield values of Aa—Au
and Ja—Asintherange[-m, 7).
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Lastly, it may be of interest to know the azimuths of the pathsto U and S from A.

tan(l//U/A) — _COS(LU) Sir.I(lr//A/U)
sin(Ly ) sin(6y,) — cos(Ly ) cos(ya) COS(Y Ay ) Eq 150
tan(l/ls/ A) - _COS(LS) SIn(lr//A/S)

Sin(Ls)sin(0s,) — €os(Lg) coS(0sa) COS(Y o/ 5)

After employing atwo-argument arc tangent function, the solutions will yield values of yua and
yga intherange [-w, 7].

6.3.5 Remarks

Solving the two-bearing (or VOR-V OR cross-fix) problem can be done using only spherical

trigonometry, and does not require aircraft altitude. It is the only formulation in this chapter with
that characteristic. If interest is limited to coordinates La and A4, then Eq 146 and Eq 150 are not
needed, and only one line from each of Eq 147, Eq 148 and Eq 149 is needed. However, thereis

value to the added information.

» Thecrossing angle of the radials fa (Eq 146) provides information about the accuracy
of the solutions for La and Aa. Some have suggested that the fix should only be used
when 30° < fia < 150°. This would exclude locations near the baseline (including the
extended baseline) and at large distances from both stations.

* Thedistances to the stations fua and @sa (Eq 147) can provide information about the
strength and visibility of the stations' signals at the aircraft.

»  Theazimuth angles yua and ysa (Eq 150) may be useful for steering.

The solution process involves a potential total of 15 navigation variables (latitudes, longitudes,
azimuth angles and geocentric angles). Of these, 6 are known at the start of the calculation.

A problem closely-related to the subject of this section is determining an aircraft’s position from
the coordinates of two stations U and S and measurements of the angles wua and wsa from the
aircraft to those stations. In aviation (or marine applications), the stations would typically be
non-directional beacons or possibly commercial broadcast transmitters.

The information available for this related problem is mathematically insufficient for the direct
use of spherical trigonometry — for triangle USA, only two quantities (the side 6us and the
opposite angle Ba are known. However, aviable approach isto set wau = wua £ and wass =
wsa £ T — in each case, retaining the value in [-n. m]. Then carry out the calculations described
in Subsections 6.3.1 to 6.3.4 above. If the computed value of wua and/or wsa are significantly
different than the measured values for these quantities — bearing in mind that azimuth measure-
ments from moving vehicle are error-prone — adjust the estimates of ywau and wa/s and repeat
the calculations.
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6.4 Position Solution for Two Slant Range Measurements

Here, the assumption is that the latitude/l ongitude/altitudes of stations U (Lu, 4u, hu) and

S (Ls, 4s, hs) are known, as are the dlant ranges, dua and dsa, to the aircraft location A, about
which only its dtitude ha is known. Following a preliminary step (Subsection 6.4.1), the solution
for the latitude and longitude of A and related parameters is afour-step process, like that in
Section 6.3.

6.4.1 Step 0: Convert Slant-Ranges to Spherical-Ranges/Geocentric Angles

Accurate calculation of the geocentric angles #sa and fua takes account of the altitude/elevation
of the aircraft and ground station above sealevel. Thisis done using Eq 35, applied separately to
each aircraft-station pair. Once the geocentric angles are found, the problem reduces to one of
pure spherical trigonometry.

6.4.2 Step 1: Solve the Navigation Spherical Triangle PUS

Thisisan application of the Indirect Problem of Geodesy. The approach in Section 4.2 is
employed to find the geocentric angle #us between the stations U and S (Eq 65) and the azimuth
angles wsu and ywuss (Eq 70 and Eq 71) of the path (baseline) joining the stations.

6.4.3 Step 2: Determine if the Problem is Well-Posed

The problem must be mathematically well posed for a solution to exist. Ranges (geocentric
angles) from two stations define small circles on the surface which can intersect at zero, one or
two points. If either of the following conditions is true, then the problem isill posed and does not

have avalid solution.

= If Gua + Osa < Ous, then the circle radii are too small (relative to the distance between
their centers) to intersect.

= If |Qua - Osa| > Bus, then one circle encloses the other and they do not intersect.

If either Bua + Osa = Bus Or [Qua - Osa| = Bus then the circles are tangent and thereis only one
solution, which lies on the baseline connecting U and S, or its extension as agreat circle (see
Subsection 6.4.6). Otherwise, there are two solutions, located symmetrically relative to the
baseline US. Additional (“side”’) information must be used to choose between the two solutions
(Subsection 6.4.6).

There is no partial solution case for this sensor combination. However, the one-solution case
involves high sensitivity to measurement errors for the direction orthogonal to the baseline.
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6.4.4 Step 3: Solve the Mathematical Spherical Triangle USA

Thethird step is to solve the mathematical spherical triangle (Subsection 4.1.2) USA. This
situation falls under Case (1) in the taxonomy of Subsection 4.1.7 — all three sides are known.
Denote the (positive) interior angles of USA by fu, fs and fa. They can be found by applying
the law of cosines (Eq 56) three times:

CoS(0sa) — COS(Gy5) COS(Oy)

R ST (N
_ Cos(0ya) — cos(6y5) COS(Osa)

cos(fBs) = Sin(G,2)SN(0<s) Eq 151
_ €03(6s) — cos(6) COS(On)

OB = T GGy sin(0s0)

In computing fu, fs and Ba from Eq 151, observe that, using the arc cosine function, the angles
can be unambiguously found in (O, x). Also, fu, s and pa are found without daisy-chaining from
one solution to another.

6.4.5 Step 4: Find the Coordinates/Path Azimuths for A

With gu and fs known, azimuth angles yau and wass can be determined to within an ambiguity.
The ambiguity arises because it is not known whether to add or subtract fu from wsu (fs from
wurs, respectively) to form ywau (wass). One and only one of the following is correct:

»  wau = wau + fuand yais = wuis—fs

" wau = wsu —fuand was = wuss + fs.

The ambiguity may be resolvable from the azimuth angles wau and wass (because the vehicle
operator often knows, approximately, wua and/or wsa). Alternatively, two solutions can be
found for the coordinates of A and the azimuths of the paths from A, and the ambiguity resolved
subsequently. In either case, the calculations set forth in Subsection 6.3.4 are performed last —
specifically, Eq 148 for the aircraft’ latitude La, Eq 149 for the aircraft’ s longitude 4a, and Eq
150 for the azimuth angles wua and wsa of the stations relative to the aircraft.

6.4.6 Remarks

This section could also be entitled “ Position Solution for Two Geocentric Angle M easurements”’,
since thefirst step in the solution is to convert the convert the slant ranges to geocentric angles.

Concerning resolution of the two-solution ambiguity:

= Theambiguity can often be resolved from knowledge of the station locations and the
approximate route from the departure point. Using dead reckoning from either the
departure point or a previous fix, the vehicle operator may know the side of the
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station baseline on which the vehicleis currently located.

= |f either station provides azimuth (in addition to range) information, that may be used
to resolve the ambiguity.

To elaborate and provide context:

= Theanglefrom the aircraft to the stations, fa, provides information about the
accuracy of the solutionsfor La and 4a. Some have recommended that the fix only be
accepted when 30° < ffa < 150°. This would exclude locations near the baseline
between stations (including its extensions) and at |arge distances from both stations.

= The solution presented above involves atotal of 21 navigation variables (latitudes,
longitudes, atitudes, azimuth angles, geocentric angles and slant ranges). Of these, 9
are known at the start of the calculation.

= The solution involves calculating parameters that may not be needed in al situations.

=  The most commonly used method of celestial navigation, the "Altitude-1ntercept
Method," also involves the intersection of two small circles. A sextant is used to
measure the angle between the horizon and each celestial body, which defines a small
circle centered on celestial body’ s sub-point (nadir).

6.5 Position Solution for a Slant Range and an Azimuth Measurement

Here, the known quantities are: the coordinates of DME station D (Lp, 4p, hp) and VOR station
V (Lv, 4v); the aircraft A measured slant range to D dpa and azimuth angle from V yan; and the
measured aircraft altitude ha. The quantities sought are the coordinates of A (La, 44) and the
parameters for paths AD and AV (similar thosein Sections 6.2 - 6.4).

6.5.1 Step 0: Convert Slant-Range to Spherical-Range/Geocentric Angle

Convert the slant range dpa to the geocentric angle #pa using Eq 35, in the same manner as
discussed in Subsection 6.4.1.

6.5.2 Step 1: Solve the Navigation Spherical Triangle PDV

Apply the Indirect Problem of geodesy (Section 4.2) to find the geocentric angle #pv between
stations D and V (Eq 65) and the azimuth angles wp and wvip (EQ 70 and Eq 71) for the
baseline joining the stations.

6.5.3 Step 2: Determine if the Problem is Well-Posed

In determining if the problem is well-posed, the first consideration is the magnitude of the
measured geocentric angle between the aircraft A and station D, @pa, relative to the known
geocentric angle between the stations D and V, #pv. There are three cases:

= Interior: If Opv < Opa, then V iswithin the perimeter of the circle of possible aircraft
locations centered on D; there is one and only one intersection/solution
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= Perimeter: If @pv = Opa, then V is on the perimeter of the circle centered on D; there can
be zero or one solution

= Exterior: If @pa < Opv, then V is outside the perimeter of the circle centered on D; there
can be zero, one or two solutions.

To further explore the scenario geometry, define the angle at V, pv, between the great circle arcs
to the aircraft A and the DME station D, in the range 0 < v <m, by

Py = min{|l//A/v ~Von| Wan —Von +27) [Wan —Won —27f|} Eq 152

For the Perimeter case, there is a valid solution only if 0 < v < n/2. Otherwise, the problem is
ill-posed and no solution exists.

For the Exterior case (0pa < Opv), define the critical value for fv, 0 < fv crit < /2, by

. _sin(0p,)
sin(By qit) = Wo:jj) Eq 153

Eqg 153 isthe law of sines applied to triangle DVA when g isaright angle. Three situations can
occur: (a) when pv.qit < Bv, the problem isill-posed and there is no solution; (b) when v crit = Bv,
there isasingle solution; and (c) when fv < fv it there are two possible solutions.

There is no partial solution case for this sensor combination. However, the single-solution case
involves high sensitivity to measurement errors for the direction along the radial from V.

6.5.4 Step 3: Solve the Mathematical Spherical Triangle DVA

When at |least one solution exists, the third step is to solve the mathematical spherical triangle
(Subsection 4.1.2) DVA. This problem falls under Case (3) in the taxonomy of Subsection 4.1.7
— two sides, #pv and dpa, and an adjacent (not included) angle pv are known.

First, theinterior angle at A, fa, isfound using the law of sines

Sin(ﬂv)sm(gov)j

Sin(@pa)

Ba = arcsin( Eq 154

Consistent with Subsection 6.5.3, for a well-posed problem the quantity within the large
parentheses in Eq 154 will have avaluein [0, 1]. Thus two angles will be found in [0, r] except
when the right-hand side is unity, in which situation fa = /2 and fv = v crit. For the Interior
case, thevaluefor fa in [0, 7t/2) is correct, and the value in (w/2, =] is extraneous (a mathe-
matical artifact which is discarded). For the Exterior case, either value for fa may be correct (the
situation is ambiguous); these values are labeled a1 and a2, and both are retained. The value of
Paisindicative of the solution accuracy (Subsection 6.5.6).
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The angles b1 and fp 2 corresponding to angles fa,1 and Ba 2 are found using either of the
following expressions from Napier's Anaogies (Eq 61)

tanl By, = COS% (Opv —Opa)
)|
2 cos (6py +0p,)

_ Sin%(QDV —6pp)
Sin%(QDV +6pa)

cot5(Bai +Bv)
Eq 155

COt%(ﬁA,i -Bv)

The discussion in Subsection 4.1.6 concerning sums and differences of sides and angles having
the “same affection” isrelevant here. As a consequence, both expressions on the right-hand side
of Eq 155 are positive. Thus, in computing fo; (i = 1, 2) from either line using the arc tangent
function, each solution can be unambiguously found in (0, ). The second lineis preferred, asit
cannot be indeterminate. Thereis asmall possibility that first line can, by the two sums of angles
equaling /2, resulting in the trigonometric functions of the sums both equaling zero.

The distance va,i can be found from either of the following expressions. Asisthe case for Eq
155, both expressions on the right-hand side of Eq 156 are positive. Thus, in computing fva,

(i =1, 2) from either line using the arc tangent function, each solution can be unambiguously
found in (O, z). Thefirst lineisusualy preferred, asit cannot be indeterminate. Thereisa
possibility that second line can, by the two differences equaling 0, resulting in the trigonometric
functions equaling zero.

L cosi(Ba+A)
20 = st (Bas = R
_sin (B +A)
SNL(Bas—Ay)

tan% (Opy +0pa)
Eq 156

tan%(eov —6pp)

6.5.5 Step 4: Find the Coordinates/Path Azimuths for X

One and only one of the following conditionsis true:

* wap = v + o and wan = wonv —fv
*  wap = v — fo and wan = wov + Pv.

Since both wan and wpv are now known, the correct line can be selected, yielding wap. Then
the calculations set forth in Subsection 6.3.4 involving spherical triangles PDA and PVA can be
performed — specifically, Eq 148 for the aircraft’ latitude La, EQ 149 for the aircraft’ s longitude
Ja, and Eq 150 for the azimuth angles wp/a and yv/a of the stations relative to the aircraft.
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6.5.6 Remarks

Concerning resolution of the two-solution ambiguity:

= Theambiguity can often be resolved from knowledge of the station locations and the
approximate route from the departure point. Using dead reckoning, the vehicle
operator may know the approximate distance to the VOR station.

= |f the DME station provides azimuth (in addition to range) information, that may be
used to resolve the ambiguity.

To elaborate and provide context:

= Theanglefrom the aircraft to the stations, #a, provides information about the
accuracy of the solutionsfor La and 4a. Some have recommended that the fix only be
accepted when 0° < fa < 60° or 120° < fa < 180°. This would exclude locations
where the lines-of-sight to the stations are close to being orthogonal.

= The solution presented above involves atotal of 18 navigation variables (latitudes,
longitudes, atitudes, azimuth angles, geocentric angles and slant ranges). Of these, 8
are known at the start of the calculation.

= The solution involves calculating parameters that may not be needed in all situations.

= Theaircraft-DME station geocentric angle can be approximated — e.g., by dpa / Re
— but Eq 35 provides a more accurate solution.

= The solution method described in this section uses Napier’s Analogies. An aternative
solution method can be based on the equations in Section 6.2. This method is
employed in Section 6.6 to address a mathematically similar problem.

6.6 Crosscheck of Continuous Descent Approach Altitude

6.6.1 Application Context

FAA Advisory Circular AC 120-108 (Ref. 35) recommends and provides guidance for
employing the Continuous Descent Final Approach (CDFA) technique, as an alternative to the
Step Down technique, when conducting a Non-Precision Approach (NPA) procedure: T
= “Thegoal of implementing CDFA isto incorporate the safety benefits derived from
flying a continuous descent in a stabilized manner as a standard practice on an NPA.

= “CDFA startsfrom an atitude/height at or above the Final Approach Fix (FAF) and
proceeds to an atitude/height approximately 50 feet (15 meters) above the landing
runway threshold or to a point where the flare maneuver should begin for the type of
aircraft being flown.”

Simultaneous with publication of AC 120-108, the FAA began including CDFA Vertical
Descent Angles (VDAS) on approach plates for NPAs. Figure 27, depicting part of the approach

11T CDFAs were not prohibited prior to publication of AC 120-108. However, the FAA did not recommend them
nor provide information concerning their use. Some air carriers required utilization of CDFAs and supplied their
flight crews with supplementary information on the company’s approach plates.
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plate for the LOC IAP to runway 35 at Norwood Memoria Airport (KOWD), is an example. ™

3000 o
TN M towp B wibin TONM
BOsR240 | \ 770"\
mm@ 50° 2100
OWD  HOWD ) =
| Sl
‘5"-. | = 2870 m
580 a0
— 17 M 26N
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CIRCLING 600-1 551 (600-1) 6571% _3{4%] 65170{70602-2)

NORWOOD, MASSACHUSETTS

Figure 27 Portion of LOC IAP to KOWD Runway 35

When executing a CDFA in accordance with the LOC IAP to runway 35 at KOWD, upon
passing the FAF (as determined either by a marker beacon receiver or a DME interrogator) at or
above 1,400 ft MSL, the aircraft would descend to 580 ft MSL by following a CDFA with a
VDA of 2.87 deg. Upon reaching 580 ft MSL, the aircraft should not descend further unless/until
thefix DIKEY isidentified utilizing a DME interrogator. I1f/when that occurs, the aircraft would
be permitted to descend to 500 ft MSL — but no lower. If the airport environment is identified at
that point, avisual landing could be performed; if not, a missed approach is recommended.

6.6.2 Altitude vs. DME Information for the Pilot

Employing the CDFA technique does not require additional equipment on the aircraft or on the
ground — i.e., other than that required for the step down technique. Specifically, the avionics
required for VNAV guidance specified in Advisory Circulars AC 90-105 (Ref. 36) and AC 20-
138C (Ref. 37) are not required. However, if available, use of VNAYV isrecommended.

If VNAV avionics are not available, the pilot calcul ates a planned descent rate utilizing atablein
AC 120-108, based on the charted VDA and planned ground speed. When executing a CDFA
without VNAYV, instrumentation errors in measuring airspeed and descent rate, variability in the
headwind, the lack of a guidance display and other factors, will cause the aircraft’ s altitude flown
to belesswell controlled than it isfor aVNAV operation. The contributions of some of error

#H Effective dates; May 1, 2014 — May 29, 2014
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mechanisms accumulate, causing the difference between the altitude flown and the altitude
desired to increase with time.

The safety aspect of an aircraft being at the incorrect altitude while performing a CDFA NPA is
addressed by requiring the aircraft to remain above the Minimum Descent Altitude (MDA) aong
the entire approach track. However, a case has been made for the pilot having areadily available
method for comparing the aircraft’s measured atitude with the planned altitude on an amost
continuous basis, particularly when VNAYV is not used (Ref. 38). A technique adopted by some
airlines has been to include atable of DME distance versus planned barometric altitude for each
CDFA approach plate for an airport with a DME ground station. Generating such atableisthe
subject of this section. This analysis can also be used to determine the parameters of an approach
fix defined by aircraft altitude or distance to a DME ground station.

Equations used to generate a DME distance — planned barometric altitude table must reflect the
geometry of the DME ground station location relative to the approach ground track. Two types

of DME stations are discussed:

= “ILSDME" — The DME ground station antenna s located close to the centerline of
arunway equipped with an ILS localizersss8 (regardless of whether an ILS glide slope
system is present). These DME stations are generally low-powered and are only
approved for use as an aid for approaches to the associated runway. On approach
plates and other FAA documentation, ILS DMEs are designed with an “1-" prefix —
e.g., I-OWD in Figure 27.

= “Airport DME” — The DME ground station is generally on the airport, but it is not
associated with arunway.”™™" These DMESs generally have signal strengths sufficient
to serve aircraft approaching all airport runway ends as well as in the surrounding
airspace within aradius of at least 50 NM.

6.6.3 “ILS DME" Scenario

This scenario involves a straight-in CDFA at descent angle ' to a runway with aDME ground
station close to the runway centerline. Three locations, all on the same great circle, are involved.
From the pilot’ s perspective, they are, in order: the aircraft, A (more precisely, its DME
interrogator antenna); the runway threshold, R (more precisaly, the threshold crossing location);
and the DME ground station, D (more precisely, its antenna). In this analysis h denotes altitude
above MSL, @ denotes a geocentric angle and d denotes a slant range.

8588 For some runways, the “ILS” DME ground station antenna is collocated with a Localizer antenna, and may be
aligned with the centerline. It may serve both ends of the runway. For some other runways, the DME ground station
antenna is between the ends of runway, as close to the centerline as possible, and serves both ends of the runway.
***** If it's off the airport, the “ Airport” DME ground station antenna should be close to the runway centerline and
either in front of or behind the aircraft throughout the approach.

-90-



DOT Volpe Center

The analysisis straightforward if the aircraft altitude ha taken as the independent variable. From
Section 9.2 (Eq 343) the geocentric angle ra between the aircraft and the threshold is

log R+h,
 (R+hg Eq 157

T tan(a)

The geocentric angle between the runway threshold and the DME é#ro is known from the runway
geometry and the approach plate. Reportedly, for some U.S. ILS DME installations, #rp should
be set to zero, because the fixed DME ground station delay (which is transparent to the pilot) is
adjusted so that the aircraft DME reads zero at the runway threshold. Thisis not the case for the
procedure shown in Figure 27, nor for others examined at random.

Thus the geocentric angle between the aircraft and the DME ground station @pa is

The“+” sign appliesif the DME is past the threshold and the “-" sign appliesif the DME
antanna is before the threshold.

Lastly, the slant range between the aircraft and the DME ground station dpa is found from
Subsection 3.4.1 (Eq 42).

dps = \/4(Re+hD)(Re+hA)sinz(%QDAj+(hA—hD)2 Eq 159

Remarks

= The solution for this scenario does not involve latitude or longitude coordinates —
only altitudes and distances between the aircraft and destination runway.

= When generating atable for crosschecking aircraft altimeter readings against desired
altitudes corresponding to DME readings, usually one would prefer to specify the
slant range dpa as a*nice number” (e.g., 3.0 NM) and determine the associated
desired dtitude ha. Thisis the inverse of the mathematically simpler solution
approach described in this subsection. However, it can readily be achieved by “wrap-
ping an iteration (e.g., Secant) method” around the equations of this subsection.

6.6.4 “Airport DME” Scenario

The“Airport DME” scenario isageneralization of the“ILS DME” scenario. The differenceis
that the aircraft location, runway threshold and DME location are not modeled as lying on the
same great circle. Such situations can occur because (a) more often, the “Airport DME” is not
located close to the destination runway centerline; and/or (b) less often, the approach courseis
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not aligned with the runway centerline (in which North
case avirtua threshold may be used in the analysis). /‘
In either situation, Eq 157 and Eq 159 remain valid;

however, an aternative is needed for Eq 158.

The footprint on the earth’ s surface for this scenario
is shown in Figure 28. In addition to the locations of
the aircraft A, runway threshold R and DME ground
station D, the figure shows the location X of the
point on the approach course that is closest to the
DME ground station. It is assumed that the
coordinates of the threshold R (L, 4r, hr) and the
DME station D (Lp, 4p, hp) are known, as are the
azimuth angle war of the approach course and the

aircraft altitude ha. Figure 28 Relationship between
Aircraft A, Runway R and DME D
In the case of an Airport DME, the simplest choice

mathematically for the independent variable is the spherical range (angular distance aong the
ground) @pa between the aircraft and the DME antenna. When generating a table for operation
use, one would generally prefer to perform altitude checks at defined DME readings. Or,
conversely, one could perform DME checks at defined altitude readings. Tables for either of
these options can be generated by iterating on Steps 1-9 in the following procedure.

Step O (executed once): Apply the Direct Problem of Geodesy to the path RD to find the distance
Oro and azimuth angle yosr.

Step 1: Select Opa: A possible valuefor @pa is
0., = kspeC|f|ed dpa
Re

Step 2: The angle fr between RD and RA is computed in the range [0, ] using Eq 161. The
cases of fr =0, fr=n/2 and Br = m are handled separately below.

, k=1 Eq 160

Br = min{|WA/R_WD/R|’ W AR —Voir+ 27, |‘/’A/R—WD/R—27T|} Eq 161

Step 3: When gr is not 0, /2 or w, consider the spherical triangle RXD, wherethe angleat X isa
right angle. The law of sines (Eq 58) yields the distance #px.

Opx =arcsin[ sin(0xp) Sin(35) | Eq 162
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While the arcsin function can have two solutions for #px in [0, 7], because #px < Orp, Only the
smaller value will be consistent with signal coverage of a DME station.

Step 4: The angular distance #rx is found from the law of cosinesfor sides (Eq 56)

M} o arcsin wsﬂn(é(% +0ox ))sin (5 (0ro — Oox ))J

Eqg 163
cos( Opy ) cos( Opy ) a

Orx = arccos{

Step 5: Consider the mathematical spherical triangle AXD The distance éxa isfound from

SinlL(Ga + 60y ))Sin(E (05, — 6
QMZHCCOS{M}:ZHCQH J (2( oa+0ox)) (2( ) Eq 164
cos(Opx ) cos(0py )
Step 6: The distance ra isfound from

The plus sign is used when the DME ground station D lies between the runway threshold R and
the aircraft A. Otherwise, the minus sign is used. The absolute value function is needed when the
DME station D is behind the aircraft.

Step 7: To monitor the accuracy of the solution, the angle #a isfound from Eq 166. Thistopicis
addressed in Subsection 6.6.5.

Eq 166

ﬂA:angnFn(er)}

sin@p,)

Step 8: For an aircraft flying a CDFA with descent angle o', its planned altitude ha for the
location involved is

ha = (R, +hg) exp[fea tan(e)] - R, Eq 167

Step 9: Eq 159 is employed to find the aircraft-DME ground station slant range doa for the
location and planned altitude involved.

Given the computed values for dpa and ha, the value for @pa can be adjusted and Steps 1-9
repeated until a specified value of dpa or ha is achieved.

If the aircraft location is to be designated as afix, then the latitude and longitude coordinates of
the fix (La, 4a) are found as solutions to the Direct Problem of Geodesy (Section 4.3).
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Two specia cases must be considered. If fr =0 or wr, the DME ground station D lies on the great
circle path containing the aircraft A and runway threshold R. In this case, Eq 162 through Eq 165
are replaced by

Ora =|6pa £ Orp| Eq 168

The plus sign is used when the DME ground station D lies between the runway threshold R and
the aircraft A. Otherwise, the minus sign is used.

If fr = n/2 the DME station is abeam the runway threshold and the spherical triangle ARD has a
right angle at R. In this case, Eq 162 through Eq 165 are replaced by

coS(6pa) }
coS(Orp )

Ora = @rccos { Eq 169

6.6.5 Remarks

For the problem formulation addressed in Subsection 6.6.4, in the mgjority of situations: (a) the
aircraft-DME station distance is many times the aircraft altitude; and (b) high computational
accuracy is not needed, since measurement errors are always present. In these situations, the
aircraft-DME station ground range #pa computed using Eq 160 with k = 1 results in sufficiently
accurate values of the aircraft’s altitude ha and coordinates (La, 4a). In such situations, the
computed slant-range doa (Eq 159) is not needed.

Two caveats are pertinent to the computations described in Subsection 6.6.4. First, in order to
choose the proper sign in Eq 165 or Eq 168, the location on the approach course closest to the
DME station in relation to the runway threshold and aircraft’ s position must be approximately
known. The value of gr aidsin this choice — if fr > n/2 the DME station is “past” the runway
threshold and aminus sign is used; thisis usually the case. However, if fr < /2, two solutions
are possible — corresponding to the DME being “before” the aircraft (and, in most situations, on
the airport) or “behind” the aircraft (and, in most situations, off the airport). The correct sign
should not change over the entire approach. 7

Related to this caveat is the fact that the angle fa at the aircraft between the lines-of-sight to the
runway threshold and the DME station influences the accuracy of the crosscheck on aircraft
altitude. In Subsection 6.5.6, it’s noted some have recommended that a DME-VOR fix only be

accepted when 0° < fa < 60° or 120° < fa < 180°. A similar rationale applies to this application

Tt This mathematical ambiguity is a manifestation of the physical fact that the locus of points at a given range
from a DME station can intersect a great circle path at two points. When the DME station is beyond the runway
threshold, only one intersection is meaningful.

-94-



DOT Volpe Center

(0° < pa < 60° applies when the DME station is ahead of the aircraft and 120° < fa < 180° when
it is behind). Such alimitation on A would restrict use of this technique to portion of an NPA
procedures where the DME is never abeam, or nearly abeam, the aircraft. Thusthe signin Eq
165 or Eqg 168 would not change over an NPA segment where this technique is used.

The second caveat isthat it is possible for to specify an aircraft-DME station slant range dpa that
is less than the minimum possible slant range dox. Virtually always, this can be prevented by
ensuring that @pa (from Eq 160) exceeds the value of #px (from Eq 162, which does not require
knowledge of the aircraft location).

Although the case for doing so is not as strong asit isfor aNPA, the technique in this section
can aso be used to crosscheck aircraft altitude during an ILS or LPV approach with glide path
angle a. Detecting capture of afalse glide slope signal is perhaps the most compelling such
reason (Ref. 39). To do so requires substituting for the two equations in this section that describe
the vertical path. In place of Eq 157, the following (from Eq 27) would be used

(Re+hg)sin?(a )+ (hy-hg)

Opa = —o +2arcsin \/

Eql/
R+ e aLo
And in place of Eq 167, the following (from Eq 51) would be used
h=h+L(“)—1(R+h) Eq171
AT TR cos(a + Ogy) ¢ R d
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7. AIRCRAFT POSITION FROM PSEUDORANGE MEASUREMENTS

7.1 Overview of Pseudoranges

7.1.1 Concept

Pseudoranges are measurements of the range (distance) between an aircraft and a set of
ground™** stations whereby all ranges are offset by the same unknown amount. This generally
occurs when (a) there is a one-way transmission of energy (either from the aircraft to the ground
stations [surveillance] or from the ground stations to the aircraft [navigation]), and (b) the ground
stations have clocks that are synchronized but the aircraft does not. Use of pseudoranges,
whereby the useful information is the difference between measured signal arrival times, has
several advantages over true ranges,; however, it does require deployment of an additional ground
station. Pseudoranges became viable during the twentieth century, with development of

technol ogies to synchronize widely separated ground stations, and is often the concept chosen for
new system developments — e.g., GPS, Galileo and aircraft multilateration (surface and
airborne).

The range involved in a pseudorange system can be either the geometric line-of-sight slant-range
or the spherical-range (equivaently, the geocentric angle) between the aircraft and ground
station. Currently deployed systems that employ pseudo slant-range measurements include
aircraft multilateration (surveillance) and GPS (navigation). Low-frequency radionavigation
systems provide pseudo spherical-range measurements based on ground-wave propagation.
Examples (and their approximate station separations) are/were: Decca (100 NM), Loran-C (500-
1,000 NM) and Omega (thousands of miles). All U.S. spherical-range systems are now decom-
missioned; however, systems are in operation in other parts of the world (Ref. 40).

When true ranges are involved and when the altitudes of the station and aircraft are known,
conversion between slant- and spherical-ranges is straightforward (in either direction). For
example, Eq 34 and Eq 42 demonstrate this conversion when one of the altitudesis zero, and
Subsection 2.3.1 shows how to utilize two known, non-zero atitudes. Consequently, except for
minor details, only one algorithm is needed to compute an aircraft’ s position from multiple slant-
or spherical-range measurements.

However, the converse situation pertains when pseudorange measurements are involved. One
cannot readily convert between pseudo slant-ranges and pseudo spherical-ranges. As aresult,
separate algorithms are required for each measurement type.

HEH | this terminology, navigation and surveillance satellites are “ground” stations, asthey are external to the
aircraft of interest and their locations are assumed to be known.
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7.1.2 Pseudorange Lines-of-Position (LOPs) and Fix Geometry

One pseudorange station has no functional value. A pair of pseudorange stations measure the
range difference from the stations to the aircraft (equivalent to the hyperboloid of revolution on
which the aircraft islocated). In atwo-dimensional context, the hyperbola LOPs are shown in
Figure 29(a).

Lines of equal
time difference

LOP

(a) Two-Station LOPs (b) Three Station Fix Geometry
Figure 29 Hyperbolic System Two-Dimensiona Geometry

Hyperbolic LOPs are different from LOPs for either a true range-measuring sensor (concentric
circles) or an angle-measuring sensor (radial straight lines). However, hyperbolic LOPs are
closer in appearance/significance to those for an angle-measuring sensor. Specifically, LOPs for
one angle station and a pair of pseudorange stations both: (a) emanate from the area when the
station(s) are located and “radiate” outward; and (b) separate increasing with distance from the
station(s). Conversely, a pseudorange station pair differs from a single-angle station in that its
LOPs are curved and its effective coverage areais limited to approximately +60 deg from the
perpendicular bisector of the station baseline — i.e., provides coverage of only approximately %
of afull circle, while one angle station provides useful information for afull circle.

Two pseudorange sensor pairs can be combined to obtain a position fix — e.g., Figure 29(b).
Only one additional station is needed, as a station can be shared between pairs. To obtain an
accurate measurement (e.g., LOP crossing angles between 30 deg and 150 deg), the angle
between the two baselines joining station baselines should have a similar magnitude.

7.1.3 Algorithm Taxonomy

Generdly, different algorithms are required for (a) different range measurement types (slant
versus spherical and pseudo versus true) and (b) different analysis frameworks (two-dimensions
versus three, Cartesian coordinates versus spherical) — see Table 9. Slant-range measurements
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Table9 Sourcesfor Range-Type Algorithms and Example Applications

easurements True Pseudo Pseudo
Dimensions Slant-Ranges Slant-Ranges Spherical-Ranges
Unknown Fang (Ref. 42) Razin (Ref. 43)
Two (Subsection 7.9.1) (Section 7.6) (Section 7.7-7.8)
(Flatland or Sphere) DME/.DME Airport multilateration Loran-C, Omega
approximation
Three Unl_<nown . Banc_roft (Ref. 41)
(Physical Reality) (Section 6..4 ) (Sections 7.2-7.4) N/A
DME/DME/Altimeter GPS, WAM

*The algorithm for true spherical-ranges is embedded in this description.

(pseudo and true) are naturally addressed using Cartesian coordinates, while spherical-range
measurements are naturally addressed using spherical coordinates.

The general three-dimensional / pseudo slant-range solution was derived by Bancroft in the
1980s, for application to GPS (Ref. 41 and Section 7.2). Bancroft’s published algorithm applies
to four stations that (a) measure pseudo slant-ranges, and (b) are synchronized to asingle time
standard. Bancroft’s algorithm is derived using linear algebra, and solves for the time offset as
well as the aircraft location. Bancroft’ s agorithm can be extended in several ways— e.g., to
combinations of pseudo and true slant-range measurements, and to multiple synchronized clock
groups. Sections 7.3 - 7.5 address three extensions relevant to aviation.

Prior to the publication of Bancroft’s paper, individual algorithms were developed for special-
ized situations. These agorithms were derived based on geometry, and do not solve for the
unknown time offset between the aircraft and ground station clocks. Fang' s algorithm (Ref, 42
and Section 7.6) for aircraft and stations restricted to a plane, and Razin’ s algorithm (Ref, 43 and
Section 7.7) for aircraft and stations restricted to the earth’ s surface, are representative examples.
Section 7.8 extends Razin’ s algorithm to two separatel y-synchronized pairs of stations.

The algorithms presented in this chapter share several features with those presented in Chapter 6:
(a) the earth is assumed to be a perfect sphere (except when the smpler Flatland assumption is
used); (b) the number of measurements is the same as the number of unknown variables; and

(c) the effects of measurement errors on the resulting position solutions are not considered.
Chapter 8 addresses relaxation of all of these restrictions.

7.2 Solution for Pseudo Slant-Ranges/Cartesian Coordinates (Bancroft)

7.2.1 Background / Problem Formulation

Background — While this document emphasizes navigation/surveillance with respect to a
spherical earth, situations involving a Cartesian or rectangular coordinate framework are of

-908-



DOT Volpe Center

interest (e.g., Chapter 5) for several reasons. (1) slant-range and pseudo slant-range measure-
ments are more compatible with the rectangular framework than the spherical; (2) many persons
find the Cartesian framework more intuitive, so it can be used to gain insights into situations
where a spherical framework is more convenient for obtaining numerical results; and (3) a
Cartesian framework is often required when the earth’s ellipticity must be taken into account.

For emphasis, it’s noted that this section addresses a situation involving four pseudo slant-range
(i.e., homogeneous) measurements. Bancroft’s algorithm can be extended situations involving
only true slant-range measurements (including aircraft altitude), or a combination of pseudo and
true slant-range measurements — Sections 7.3 and 7.4, respectively. Bancroft’ s algorithm can
also be employed in situations involving multiple clock synchronization groups — Section 7.5.

Coordinate Frame — Thefirst step isthe selection of an analysisorigin. The analysisorigin
must beis different from the location of any station, and must satisfy other conditions discussed
below. Aswill become evident, the Bancroft method is an elegant application of the cosine law
of plane trigonometry, and involves triangles with vertices at the analysis origin (known), the
station location (known) and the aircraft location (unknown). The side connecting the analysis
origin and the aircraft is common to al triangles, and is found first. The other two sides of each
triangle then follow readily.

For most problems, the Earth-Centered, Earth-Fixed (ECEF, Subsection 5.1.1) isagood choice.
In ECEF coordinates, the physical stations are located at

x| | cos(L;) cos(4;)
ri =]y’ |=| cos(y)sin(%) | (R.+h) 1=1234 Eq 172
z sin(L;)
Here, Li, 4i and h; denote the latitude, longitude and atitude (respectively) of stationi.
Using similar notation, the (unknown) coordinates of the aircraft are

s
ro=xe vy 2] Eq 173

For convenience, since quadratic quantities will be involved, use of the superscript e on r and
r{ and their componentsiis discontinued until the end of this section.

The aircraft-station pseudo slant-range measurements satisfy an equation of the form

(XA_Xi)2 +(Ya— yi)2 +(ZA_Zi)2 = (ct; _C'[A)2
((x0)2 + (Ya) 2+ (2a)? = (cta)? - ()2 + ()% + ()7 = (ct;)? ) =+ Eq 174
---2xixA+yiyA+zizA—cztitA) i=1234
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Here t, denotes the unknown time of transmission by the aircraft and t; the measured time of
reception by ground stationii.

In vector-matrix notation, the second lines of Eq 174 thru Eq 197 can be combined as

2Bs, =A1+b Eq 175

r
§AE|:_Aj|:[XA Ya  Za CtA]T

X Y 4 —chy
B_|X Y2 Z -~
X3 Y3 Zz3 —Clg
Xo Yo 2 —CY

A =(Sp:Sp) = (Xa)? + (Ya)? +(2a)? - (ctp)?
1=[1 1 1 1

(%)% + () +(@)° - (ct)’
b= 00)*+(¥2)* +(22)* — (ct,)?
06)% +(¥a) +(2)* — (cty)?
(%) +(¥a)* +(20)* — (cty)?

Eq 175 relates sa to its Lorentzian norm A.

7.2.2 Problem Solution

Matrix B is nonsingular when (and only when) its rows are linearly independent. Assuming that
to be true, the formal solution for sais

SA=2AB1+1B7b Eq 176

Eq 176 can be written as

Sy=AU+V Eq 177

u=5B"1=u, u, u, u
—1ig1y—
v=3B b_[vx vy Y, vtr

The Lorentzian norm / of sa in Eq 177 can be found by (@) left-multiplying both sides of the
equation by the diagona matrix with diagonal elements (1,1,1,-1), then (b) left-multiplying both
sides by the transpose of Eq 177. Upon collecting like terms, the result is
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al’+BAL+y=0 Eq 178

2
y

B =2Uu,v)-1=2u,v, +2uyV, +2uU,V, — 2uV; -1

2

o =(u,u)=uZ +u+u-u

2

2 2

y ={V,V) =VZ +V

Usually, Eq 178 has two real roots

2, =21(—ﬁ+x/ﬂ2—4a7)
f‘ Eq 179
A =2a(—ﬁ—\/ﬁ2—4a7)
Thus there are two possible solutions for the aircraft state sa
Xa($)
_ _ | Ya(®) __[LA(i)}
Sp(f)=A,u+v= =
Sa(f)=4,u+Vv 7. (%) Cto(+) Eq 180
Cta(t)

One of the two solutionsiis correct; the other may be either
=  Ambiguous — mathematically and physically possible, but not correct.

= Extraneous — mathematically but not physically possible, introduced by analytic
mani pul ations.

The penultimate step is determining the two possible sets of aircraft latitude/longitude/altitude
coordinates. Reintroducing the superscript e to denote coordinate frames

2% ()
Sz +(yaf

7a(®) = arctan(y5(+) , x5 (£))

h@ = (e@f + (@ f +(Zof -r

LA(£) = arctan

Eq 181

In Eq 180 and Eq 181, asingle sign, + or -, must be used consistently. The final step is selecting
between the two possible solutions.

7.2.3 Remarks

Coordinate Frames — Cartesian coordinate frame employed for Bancroft’s algorithm can be
related to either a spherical or ellipsoidal earth model. Compatibility with an ellipsoidal earthis
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an advantage when the sensor-aircraft ranges are several hundred miles or more.

If a spherical-earth model underlies the Cartesian frame, then aircraft atitude can be used as a
measurement without additional considerations. If an ellipsoidal earth model underliesthe
Cartesian frame, then obtaining the maximum benefit from aircraft altitude may require iteration.

Invertibility of Matrix B — General, physically meaningful conditions for the invertibility of
the 4x4 matrix B (Eq 175) are not obvious. However, when only slant-range and altitude
measurements are involved, B reduces to a 3x3 matrix containing the components of the three
origin-to-station vectors. Thisis awell-known situation, and yields the requirements that the
analysis origin cannot (a) lie in the plane containing the three stations, or (b) lie along any
baseline connecting two stations (or the extensions past the stations). With three physical slant-
range stations, selecting the origin to be below the plane of the stations, and with its latitude/
longitude near the middle of the triangle formed by the stations, appears to be a good choice. For
the situation involving two physical stations and an altitude measurement, the analysis origin
should be well removed from the baseline connecting the stations (and its extensions).

When only dlant-range and altitude measurements are involved, matrix B isindependent of the
measurements. It is possible to compute the inverse once and utilize it for several sets of
measurements. However, for pseudo slant-range measurements, matrix B does depend on
measured times-of-arrival of signals at the pseudo slant-range stations. If a sequence of
measurements are collected over time, matrix B and its inverse must be recomputed for each set
of measurements.

Number / Types of Solutions— Solution possibilities for Eq 178 are (bearing in mind that not
all problems have al solution types):

() No red roots: Mathematically, [32 <4ay; geometrically, the LOPS'SOPs do not
intersect; practically, this situation is generally the result of measurement error

(b) Onereal singleroot: Mathematically, « =0; geometrically, the LOPs cannot all be closed
curves/surfaces (e.g., circles); physically, the problem must involve pseudoranges, so that
the LOPS/SOPs have two branches, one pair crosses and the other pair does not;
practically, thisisarare situation

(c) A real double root: Mathematically, [32 =4ay; geometrically, two or more of the SOPs

are tangent, and in athree dimensional problem, the other SOP passes through the point
of tangency; practically, thisisarare situation

(d) Two redl roots: Mathematically, 4ay < 2 physically, the LOPS/SOPs intersect at two
distinct points; practically, thisisthe most common situation, and is discussed below.

Elaborating on case (d): When two real solutions occur, one solution is correct and the other is
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either ambiguous or extraneous. An ambiguous solution satisfies the measurement equations;
additional information is required to determine which solution is correct. When only real slant-
range measurements are involved, only an ambiguous solution will occur. An extraneous
solution does not satisfy measurement equations. When only pseudo slant-range measurements
are involved, an either an ambiguous or an extraneous solution may occur. One method of
detection is to substitute the solutions into the measurement equations.

When pseudo slant-range measurements are involved, an ambiguous or extraneous solution can
arise from the squaring of the time differencesin Eq 174, as squaring destroys the sign of the
time differencest; - ta. When there is an extraneous solution, the solution for the aircraft time of
transmission ta can be used to detect it — the correct value for ta being less than min(ty, t2) and
the extraneous value being greater than max(ts, t2). Generally, for pseudo slant-range systems,
ambiguous solutions only occur when the aircraft is near an extended baseline connecting two
stations; when the measurement geometry is more favorable (i.e., at locations where the system
intended to be used), only detectable extraneous solutions occur (Ref. 44).

Relationship to Traditional Solutions— Bancroft’s agorithm isreadily programmed, but is
not conducive to devel oping analytic expressions for the aircraft’ s position as a function of the
measurements. Thus, when available, traditional solutions to problemsinvolving real and pseudo
slant-ranges (e.g., three of the four problem cases shown in Table 9) — which are analytically
equivalent to Bancroft’s— remain valuable, particularly during the planning and design stages
of aproject.

Other Comments

= Bancroft noted that his agorithm “performs better than an iterative solution in regions
of poor GDOP”. The most common Gauss-Newton iterative, linearized |east-squares
solution method is addressed in Chapter 8.

= Bancroft’s solution has been extended to situations involving more measurements
than unknown variables (Ref. 45). Those equations are not employed herein, as the
linearized least squares method addressed in Chapter 8 is preferred (Ref. 46).

= Alternative solutions to the four-pseudo slant-range problem were published after
Bancroft’s paper (e.g., Ref. 47).

= There are scenarios where Bancroft’ s algorithm can used in lieu of other solution
methods. An exampleistwo real slant-range and one altimeter measurement; the
alternative solution method is described in Section 6.4.

7.3 Solution for Slant-Ranges/Cartesian Coordinates (Bancroft Extensions)

7.3.1 Background / Motivation

Bancroft’s algorithm (Section 7.2) was derived for four pseudo slant-range measurements. Its
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extension to three true slant-range measurements, or to two true slant-range measurements and
an altitude measurement, is the topic of this Section. Bancroft’s algorithm can also be extended
to situations involving a combination of pseudo slant-range and true slant-range measurements;
however, the analysisis more complex; Sections 7.4 and 0 address two relevant situations.

7.3.2 Three Slant-Range Measurements

The situation involving three true slant-range measurements is similar to the topic of Section 7.2
(involving four pseudo slant-range measurements); thus, only the differences will be pointed out.

In this case, the dlant-range measurement between the aircraft A and ground station i is
(Xa=%)? +(Ya—¥)*+(z4—2)* =dj} =123 Eq 182
(602 + () + 27+ (06 + (1)7 + ()~ 02 )= 2Ax X0+ Yi Ya + 2 2,)

As a consequence of omitting the time component, the Lorentzian norm is replaced by the
Euclidean norm

A=Al )= (X)) + (Ya) +(2a)? Eq 183

Also, matrix B and vectors b and 1 become

X Y 74
X3 Y3 43
00)*+(1)* +(2)* ~ (dia)? i
b=| (%)% +(¥)* +(22)* — (d;p)° l—[l] Eq 185
(%)% +(¥5)” + (z)” — (d3a)? 1
With these substitutions, Eq 175 becomes (with sa is replaced by ra)
2Br ,=Al+b Eq 186

The solution then proceeds asin Section 7.2 using three-element vectors in place of four-element
vectors (i.e., without involving transmission time).

Remarks:
=  Two-dimensional application of this subsection is presented in Subsection 7.9.1.

= Subsection 7.2.3 addresses the invertibility of matrix B.
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7.3.3 Two Slant-Ranges and an Altitude Measurement

Bancroft’s algorithm can also be applied to situations involving two slant-range measurements
and a measurement of aircraft atitude, as (for a spherical-earth formulation) an atitude
measurement can be converted to a slant-range from the center of the earth. However, when
altitude is used as the third measurement, an extra step isinvolved in the solution. For the
Bancroft B matrix (e.g., Eq 184) to be inverted, the analysis origin must be is different from the
location of any station. Thus, an analysis origin offset from the center of the earth must be used.

One possible analysis origin, in ECEF coordinates, is of the form

X5 | [cos(L,) cos(4,)
ro=|VYs|=|cos(L,) sin(4,) | kR, Eq 187
z sin(L,)

Here L, and 4, are the latitude and longitude of an arbitrary point not on the baseline connecting

the stations and k is a number dlightly lessthan 1 — e.g., 0.97.

In ECEF coordinates, the physical stations locations are given by Eq 172, with i=1,2. The
associated measurements equations are given by Eq 182, with i=1,2.

The aircraft altitude h, measurement equation is
(Xa)? +(Ya)? +(2a)? = (R, +hy)? Eq 188
The altitude measurement “station” is the earth’ s center, with ECEF coordinates given by:

rs=[0 o of Eq 189

Bancroft’s algorithm is then applied using offset station coordinates

X | I%| [ X% |A
Are=ri—ro=|y°|-| Yo |=| YT - Ve |=| AV i=123 Eq 190
Z| |»] 2% A%
Matrix B and vector b are
A, Ay, Az
AX; AY; Az,
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(AX1)2 + (AY1)2 + (Azl)z - (dlA)2
b=| (%)% +(AY,)*+(AZ,)* — (dy)° Eq 192
(Ax3)2 + (AY3)2 + (Azs)z -(R+ hA)2

The aircraft’ s location is found relative to the analysis origin
T
arg=[axs ayy azg] Eq 193

The solution for Ary is then converted to ECEF coordinates using Eq 190, which in turnis used
to find the aircraft latitude and longitude using Eq 181.

The solution method described in this subsection is an alternative to that in Section 6.4.

7.4 Solution for Three Pseudo Slant-Ranges and an Altitude Measurement

7.4.1 Introduction

In terms of system functionality, this section is closely related to Sections 7.6 and 7.7. Each
section addresses the determination of an aircraft’ s location based on the time difference of
arrival of signals at/from atriad of stations. The difference is the anaysis framework: whereas
the following two sections assume that the aircraft is restricted to aflat earth (Section 7.6) or that
its altitude does not affect the pseudo spherical-range measurements (Section 7.7), this section
considers a spherical earth and al three dimensions.

A modified version of Bancroft’s algorithm is employed for this task. Three scalar equations
describe the pseudorange measurements by the multilateration ground stations, and one equation
describes the atitude measurement. As often occurs when more than one measurement type are
utilized, the resulting expressions are more complex than are the expressions for a homogeneous
set of measurements.

7.4.2 Problem Formulation

The three physical ground stations have the known locations latitude Li, longitude 4i, and altitude
hi, wherei =1, 2 or 3. In ECEF coordinates, their locations are

% cos(L;) cos(4;)
r®=|ye|=| cos(y)sin(x) [(Ro+h) =123 Eq 194
z° sin(L;)

The unknown ECEF coordinates of the aircraft are

-106-



DOT Volpe Center

.
rh=be ve 2 £q 195
For convenience, since quadratic quantities will be involved, use of the superscript e on rf and

r{ and their componentsiis discontinued until the end of this section.

The aircraft-station pseudo slant-range measurements satisfy equations of the form

()2 +(ya)? + (20)2 = () J+ (%) + (1) + ()2 - (c4,)?) =

Eq 196
---2(xixA+yi yA+zizA—c2titA) =123

Here t, denotes the unknown time of transmission by the aircraft and t; the measured time of
reception by ground stationii.
The aircraft altitude h, measurement equation is

(XA)2+(yA)2+(ZA)2 :(Re+hA)2 Eq 197

In vector-matrix notation, Eq 196 and Eq 197 can be written as

2Br o =b+(R,+h, )?1+2c%tt, —c?1(t, ) Eq 198
X Y 74
B=1X Y, 7
X3 Y3 Z3
(%)% + () +(@)° - ()’ 1 t,
b=| (%)% +(¥2)* +(z)* - (ct,) 1=1 t=|t,
06)7 + (¥5)* +(2)* — (ct)? g ty
7.4.3 Problem Solution
Inverting matrix B and solving Eq 198 for r, yields
ra=U+viy +w(t, )’ Eq 199
u=1Bb+(R+h)?1)  v=cBt  w=-icB1

Taking the Euclidian norm of r, in Eq 199 and using Eq 197 yields a quartic equationin t,

a,(ty) +as(ty)’ +a,(ty)f +atr+a,=0 Eq 200
a,=W'w 8;=2vV'W a,=2u0"w+v'v
a=2u"v a,=u'u—(R,+h,)?
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When t, isfound as aroot of Eq 200 (see Remarks below), r§ follows from Eq 199. Then the
aircraft latitude La and longitude A4 are given by Eq 181.

7.4.4 Remarks

Fang's algorithm (Section 7.6) considers the situation of three pseudo slant-range stationsin a
Cartesian plane. The simplicity of that situation enables development of insights into the three-
station pseudorange problem which are | ess apparent in a spherical context. However, the
behavior of the solutions are qualitatively similar — particularly, the occurrence of areadily-
identified extraneous sol ution when the aircraft in the service area and the the occurrence of a
unresolvable ambiguous solution when the aircraft is near a baseline extension.

Thereis an algebraic formulafor the roots of a quartic polynomial equation such as Eq 200. Thus
the algorithm presented herein can be classified as non-iterative. The Matlab routine ‘roots
implements a version of the quartic formula; in limited testing, it performed reliably (Example
12, Subsection 7.9.5). During those tests, for aircraft locations in the service area, the correct root
of Eq 200 was obvious based on physical considerations.

7.5 Solution for Two Pairs of Pseudo Slant-Ranges and Altitude

7.5.1 Introduction

In terms of the functionality of the system involved, this section is most closely related to Sec-
tion 7.4. Each addresses the determination of an aircraft’s location based on of time-difference-
of-arrival measurements of slant-range signals for a set of ground stations, plus knowledge of the
aircraft’ s altitude. However, whereas the preceding section assumes three ground stations with
synchronized clocks, this section assumes two pairs of ground stations with the clocks for each
pair being separately synchronized. This section is also related to Section 7.8, which addresses
the determination of an aircraft’ s location based on time-difference-of-arrival measurements of
spherical-range signals for two pairs of separately synchronized ground stations.

Unsynchronized s ant-range differences can arise if one were to combine measurements from
two separate navigation systems — e.g., GPS and Galileo. In the context of multilateration, it
could arise as the result of afailurein the ground station synchronization network or inten-
tionally, as an aspect of the system design. Loran-C ‘cross-chaining’ involves similar
assumptions concerning station time synchronization.

7.5.2 Problem Formulation

One ground station pair islabeled R and S; the other islabeled U and V. The ground stations
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have the known locations latitude L, longitude 4i, and altitude hi, wherei =R, S, U or V. In
ECEF coordinates, their locations are

X | [cos(L;)cos(4)
ri=|yf|=| cos(Ly) sin(4) [ (R.+h) i=RSU,V Eq 201
z sin(L;)

The altitude measurement “ station”, labeled H, is the earth’ s center, with ECEF coordinates
given by:
rp=[0 o of Eq 202

The unknown ECEF coordinates of the aircraft labeled A, are
= vz Eq 203

Since dtitude will be utilized as a measurement — rather than as a constraint, asin Section 7.4
— an analysis origin offset from the earth’ s center must be used. One possible origin, in ECEF
coordinates, is of theform

x| [cos(L,) cos(k,)
ro=|VYs|=|cos(L,) sin(4,) | kR, Eq 204
z sin(L,)

Here L, and 4, are the latitude and longitude of an arbitrary point not on the baseline connecting
the stations and k is a number dlightly lessthan 1 — e.g., 0.97. Bancroft’s algorithm is then
applied using offset station coordinates

X || % | [ X% | [A
Al =re—ro =y =y | =| Yo - Y |=| AY® i=RSU,V,H Eq 205
Z] |&] 3% |47

Thusthe aircraft’s location is first found relative to the analysis origin
T
e e e e e e
Afp=Tpa—Ty= [AXA Ay, Az, Eq 206

For convenience, since quadratic quantities will be involved, use of the superscript e on r§ and
1 and their components is discontinued until the end of this section. Also, without |oss of
generality, the description will use the terminology of a multilateration system.

For stations R and S, the aircraft-station pseudo slant-range measurements satisfy
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((A%a)2 + (Ay )2 +(AZa)? — (Cts)? )+ ((A%)2 + (Ay))2 + (AZ)? = (ct,)?) =+~

Eq 207
---Z(Axi AXp +AY; AYp +AZ AZA—CZtitRS) i=RS

Similarly, for stations U and V, the aircraft-station pseudo slant-range measurements satisfy

((A%2)2 + (Aya)? +(AZ0)? = (Ctuy )2 J+ (A% )2 + (Ay)? + (AZ)? = (ct,)2) =+

Eq 208
---Z(Axi AXp + Ay, Ay, +AZ AZy —Ct, tuv) i=UV

Here tzs denotes the unknown time of transmission by the aircraft based on the clock for stations
R and S. Similarly t;,, denotes the unknown time of transmission by the aircraft based on the
clock for stations U and V. Also, t; the measured time of reception by ground station i based on
its clock group.

The aircraft altitude h, measurement equation is

(%07 + () + (A2 (4% ) + (A ) + (82 Y2~ (Ro +he)?) =

Eq 209
A%y AXp + Ay AV +AZ, AZ,)

7.5.3 Problem Solution

The solution approach isto: (1) consider station pair R and S, in conjunction with “station” H,
and find arelationship between the aircraft time of transmission trs and the square of the distance
between the analysis origin and the aircraft 4; (2) consider station pair U and V in conjunction
with H, and find arelationship between tyy and 4; and (3) consider both pairs of stations and find
an additional relationship between trs and A (and/or between tuy and /). Combining the relation-
shipsfound in (1) and (3) (or (2) and (3)) resultsin a quartic polynomial in trs (and/or tuv) for
which a closed-form solution exists. All other results then follow readily.

Analysis of StationsR and S— First selecting stations R and S and the altitude measurement
for analysis, Eq 207 and Eq 209 can be written as

2B g Al p = Dpg + 415 + 2%t gotps — C71,t A Eq 210
Arp | [Axq Ayr  Azg
Brs =| Ars |=| AXs  Ays Az
Arl | A%y Ayy Az,

(AXR)Z + (AYR)2 + (AZR)Z - (CtR)2
brs = (Axs)2 + (AYS)Z + (Azs)2 - (Cts)z
(Axy )2 +(Ayy )2 +(Az, )2 —(Re+ hA)2
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A= (AXA)2 + (AYA)2 + (AZA)Z
L= 10  L=f 10 te=ftx ts O

Inverting matrix Brs yields

Al 5 =Cpg +dpeA +Erstrs +rsths Eq 211
CRS:%BEébRS dRs:%Bﬁlsls
20— 2,-
€rs =C BRlstRs fRS:_%C BRls 1,

Taking the Euclidian norm of Ar, in Eq 211 and collecting terms yields

4 3 2
Ags,a0trs T 8rs 30lrs T @grs 20trs + Ars10trs + 8rs00 212

2 2
ot +8pg eA” + 8rs 014 + Ars 21trRsA T Ars11trsA =0

T T T T
Ars 40 = frsfrs 8rs 30 = 2€rsfrs Ags 20 = 2Crsfrs + E€rsERs
T T T
Ars 10 = 2Crs€rs Ars00 = CrsCrs Ars02 = drsdrs
T T T
Ags01 = 2CrsURrs —1 Ags 21 = 2dgsfrs Ars11 = 20Rs€rs

The above steps transform a situation (Eq 210) involving four unknown variable and three scalar
equationsinto involving: (a) one scalar polynomial equation (Eq 212) relating two unknown
variables (trs and 1), and (b) avector equation (Eq 211) for finding the unknown aircraft
coordinates from trs and 4.

Analysis of StationsU and V — Analysisfor stations U and V isidentical (except for subscripts
designating stations) to that for stations R and S. Thus Eq 208 and Eqg 209 can be written as

Ar) | [ax, Ay, Az
Buv =| Ary [=| Ax, Ay, Az
Ar}, AXy Ay, Az,

(A%)? +(Ayy)* +(Azy)* = (cty)?
buv =| (&%) + (A )? +(Az,)* - (ct,)?
(Axy )2 +(Ayy )2 +(Az, )2 - (R + hA)2
A= (AXA)2 + (AYA)2 + (AZA)Z

L=p 10 L=p 10  ty=l & Of
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Inverting matrix Buy yields

Cyv = % Buv buy dyy = % Buv 15
€uv = CZB(J%/ tuy fuy = _%CZB[&/ 1,

Taking the Euclidian norm of Ar, in Eq 214 and collecting terms yields

4 3 2
ayy 40tuv +auv sotuv T 8uy 20t0v +8uv 10tuv +8uv 00

. . Eq 215
e+ agy A" +ayy mA +8yy 21tov A +ayy aatuy 4 =0
ayy.40 = fov fuv Buv.20 = 280y fuv 8y 20 = 260y fuy +elv euy
Byv 10 = 2C0v v 3yv,00 = v Cuv ayy 02 = Ay duy
ayy 01 = 2Cy dyy —1 By, 21 = 2d0y fuy By 11 = 2d}y €Ly

The above steps result in one scalar polynomial equation (Eq 215) relating two unknown
variables (tuv and 7).

Analysisfor Both Station Pairs— Both Eq 212 and Eq 215 are relationships between an
aircraft time-of-transmission, trs or tuy, and the square of the distance between the analysis
origin and the aircraft 1. Thus a second relationship between the same two quantities is needed.
To that end, observe that the right-hand sides of Eq 211 and Eq 214 are equal. Thus, multiplying
both by Buv and equating them yields

2 2 2 2

Thethird line of Eq 216 relates trs and 1 as follows:

A= ﬁRs,thzes + Brsitrs + Brso Eq 217
RS2=7 . T . RS1= 7 T,
%_AEHdRS %_AEHdRS
T 1 T 2
Al Crs _E(A[HALH —(R.+hy) )
ﬂRs,o = 1 T
5—Ardges

Using Eq 217 to replace A in Eq 212 yields

4 3 2
Qs alrs + Arsalrs + Ars 2lrs T Arsilrs + Arso =0 Eq 218

_ 2
(ps4 = 8rs0 T 8rs 02 Brs2

ORrs3 = Ars30 T 28rs02Brs 2 Brst T Brs218rs1 T Brs118Rs 2
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2
Qrs2 = Ars 20t 28gs 02 Brs 2 Brso T Ars,02 Brs1 T 3rs,01Brs.2 + rs 21 Brso + 8rs11Brs1
Qrs1 = 8Rs10 1 8rs118rs0 +Brs01Prs1 T 28rs02Prs0Prs1

_ 2
Qrs0 = Ars,00 T Ars,01Brs 0 T 8rs 02 Brs0

As noted in Subsection 7.4.4, a closed-form solution is available for quartic polynomials such as
Eq 218. After finding the solution for trs, it is substituted into Eq 217 to obtain A. Then trsand 4
are substituted into Eq 211 to find Ar,. Next, rf isfound fromrf = Ar, + 5. Finally, the
aircraft latitude and longitude are found from Eq 181.

7.5.4 Remarks

The computation of the solution for Ar, described above does not utilize either Eq 214 or Eq
215. However, if tuv is needed, then Eq 214 and Eq 215 are both used. (When 4 is known, Eq
215 reduces to a quartic polynomial in tuy.) One reason for computing tuy is to determine the
offset between the clocks for the two station pairs.

7.6 Solution for Three Pseudo Slant-Range Stations in Flatland (Fang)

7.6.1 Problem Statement

Flatland is a useful construct for developing a conceptual understanding of a situation. Moreover,
Flatland can be a useful approximation for physical problems involving limited geographical
areas — e.g., the surface of an airport.

Assume that an aircraft in Flatland is within the coverage region
of amultilateration surveillance system that has three stations —
M, U and V — with known coordinates (see figure). The
stations have synchronized clocks, and each station measures
the time-of-arrival at itslocation — tu, tu and tv, respectively — VA

of the same aircraft transmission. (An equivalent situation can (&42,84D)

be posed as a navigation problem, whereby the times-of- M U
transmission of three ground stations are synchronized.) The (0,0) (J_ 0) >S
unknown variables to be found are the aircraft coordinates &a

and {a. The time of the aircraft’s transmission ta can also be found.

V.
(Ve V)

This formulation can be considered to be a simplified version of multilateration surveillance of
an airport surface. Qualitatively, the results are similar to those for the two-dimensional,
spherical earth pseudorange problem addressed in Section 7.7.
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7.6.2 General Solution

The solution that follows utilizes the traditional (non-Bancroft) approach as described in Ref. 42.
The expressions found in this way are the same as those that would be found using Bancroft’'s
algorithm, but fewer algebraic manipulations are needed. Implicit in this development is that:

|Ady, | <U [Adyy | <V
Adyy :C(tM -1y ): dya —dya Adyy :C(tM _tv): dya — Oya

The approach begins with formulation of the pseudo slant-range differences. Taking M as the
common station, these are

Adyy =3 +C2 —(En-U P+ 2
Adyy :\/§§+§/§_\/(§A_V§)2+(§A_Vg)2

In Eq 220: (a) each equation describes a hyperbola, and (b) the left-hand side of each of equation
can be either positive or negative. The solution is the intersection of a specific branch of each

Eq 219

Eq 220

hyperbola. After re-arranging, then squaring, each equation in Eq 220, theresult is

U?-2U¢&, - Adfy =—2Adyy EA+CA

Eq 221
VZ—Z\/@A_Z\/;&:A_Adl\ZAV =—2Ad)y, éi"‘(;i
InEq 221, V2 = V¢ + V7. Dividing one equation by the other, and re-arranging, yields
Ca=Cép+D Eq 222
A \Y
2 2 2
p= V" _Aduw _AdyyAdyy [ J j 1|V, #0 Ady, %0

The condition Vz # 0 is equivalent to requiring that the stations not form astraight line, and the
condition Ad,,; # 0 isequivalent to requiring that the aircraft not be on the perpendicul ar
bisector of the baseline MU. These special cases are addressed in Subsection 7.6.3.

Eq 222 definesalinein the ¢ — ¢ plane which contains the aircraft location. Using this equation
to substitute for ¢, in the first equation in Eq 221, then squaring and collecting like terms, yields:

EEA+FE,+G=0 V,#0  Ady, #0 Eq 223
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2
E-1-| Y +C?  Ady, %0
Ad

U

MU

2
F=2CD+U [ J ~1|  Ady, #0

2
2 2

G—DZ—AﬁW{(A; J —q Adyy #0

MU

Thus the general solution of the “three pseudo slant-range system in Flatland” problem can be
reduced to:

= Solvethe quadratic equation that isfirst line of Eq 223 to obtain (usually) two candidate
valuesfor &,

= Substitute the two candidate values for ¢, into thefirst line of Eq 222 to find the
corresponding valuesfor {4

= Attempt to determine which candidate solution-pair (¢4, {4) is correct by substituting
each into Eq 220.

The sguaring steps in the solution process can generate a second candidate solution that
corresponds to pseudo slant-range differences of —d,,; and —d . (i.e., the negation of the
measured slant-range differences, with both having the same sign). When asign reversal is
involved, the incorrect candidate solution can be detected by substituting the two candidates into
the original equations to be solved (Eq 220).

If needed, the time of the aircraft’ s transmission can be found from the correct solution using

1 5 2

C

7.6.3 Solution Cases

As noted in conjunction with Bancroft’ s algorithm (Subsection 7.2.3), solutions to a quadratic
eguation such as Eq 223 can be grouped into categories. Six possibilities relevant to this situation
are explored in this subsection. The first four are “special cases’ resulting from arrangements of
the aircraft and stations and corresponding to linesin the ¢ — ¢ plane. The other two possibilities
are “general cases’ and correspond to areas of the & — ¢ plane.

Stations Form a Straight Line— If the station locations form a straight line, the solution to Eq
221 is (in order):
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. (V2Ady,, —U ?Adyy J+ Adyy, Adyy (Ady, —Adyy )
A 2(U Ad,,, —VAdy,, )

CA:iJ(UZ—ZUéA—AdaU)Z_ﬁ

Eq 225

4nd5,
Thisisageometrical specia case of the problem formulation, rather than a mathematical special

case of Eq 223.

Aircraft Equidistant from Stations M and U — Eq 222 and Eq 223 fail when an aircraft is
equi-distant to stations M and U. When this occurs, Eq 221 reduces to

5A=% HC2+JC,+K=0 Eq 226
H =4Adg, —4V/

J=av, (V2 -V.U -ad2, )

K =AdZ,U? - (V2 -V.U - Ad2, f

Two double-specia cases of Eq 226 are of interest. When an aircraft is equidistant between both
station pairs MU and MV, the quadratic equation has a double root and the aircraft location is:

£, =2 VoW Eq 227
AT A~ 2V§ q
When H is zero, the quadratic equation is degenerate and Eq 226 has a single root at:
U U™V, ViU -v,)
Sa=— Ca= - Eq 228
2 . U-v.) 4y,

Double Root — Aircraft on a Baseline Extension — When an aircraft is at a station or on a
baseline extension, the associated slant-range difference is the same for any position on that
extension and is equal in magnitude to the baseline length. In the double special case where the
three stations form a straight line and the aircraft is on an extension of that baseline, then

Adyy = +U and Ady,y = £V, with the same sign applying to both measurements. Thus the
expression for &, in Eq225issingular.

For the more usual two-dimensional station geometry, assume that the aircraft ison the &-axisto
the left of M. Then Ad,,; = —U, so the discriminant for Eq 223 is zero, indicating the occur-
rence of a double-root. The aircraft position is given by
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D VZ-Ad?,

¢a=0 Eq 229

The expression for the location of the aircraft relative to the nearest station (i.e., £, in Eq 229)
does not depend upon the length of that baseline.

The solution in Eq 229 depends on both conditions |Ad ;| = U and |Ad,yy| < V being valid. If
either is violated due to measurement errors, the solution will change in character — either it
may not exist (the discriminant is negative) or the double root may divide into two single roots
(the discriminant is positive). For thisreason, it is sometimes said that locations on the baseline
extensions are unstable. Also, while Eq 229 is derived for only one of six baseline extensions, by
transforming the coordinate axes and the slant-range differences, it can be applied to any
baseline extension.

Single Root — Degener ate Quadratic — While Eq 223 is nominally a quadratic function of &,
it reduces to alinear function of ¢, when E = 0O, or when

VZAdg, +U2dg, —2UV.Ady, Ady, ~UAVZ =0 Eq 230

Eq 230 isanalyticaly intractable, asit involves all three possible products of the three radicalsin
Eq 220; thus, repeated isolating and squaring will result in a 8" order polynomial. However, Eq
230 can be readily solved numerically — e.g., using the secant method (Subsection 2.1.6). The
result of such a calculation, for stations that form an equilateral triangle with unit baselines, is
shown as the green curves in Figure 30. Geometrically, the single-solution case occurs when the
two hyperbola have asymptotes that are parallel to each other.

Theloci of single-root solutions (three green curves in Figure 30) partition the ¢ — ¢ planeinto
four regions. From numerical trials, it has been found that in the two-root case, both solutions are
always located in the same region (Ref. 44). When the aircraft is near this boundary, the
incorrect solution is very distant from the correct solution

For the square area shown in Figure 30 (3 x 3 Base Line Units[BLUSg]), the ‘ extraneous’ region
1S 62.5% of the total area, and each of the three ‘ambiguous’ regionsis 12.5%. If attention is
limited to an areaof 1.5 x 1.5 BLUs (which better resembles one of operational interest), the
‘extraneous’ region is 79.8% of the total and each of the three ‘ambiguous’ regionsis 6.7%.

Two Roots— Different Branches — This situation occurs when the aircraft isin the larger,
‘extraneous solution’ area of the ¢ — ¢ planein Figure 30. An algebraic indicator of this situation
isthat E in Eq 223 is negative. Geometrically, each solution is formed by the intersection of
hyperbola branches which are distinct from those which form the other solution (Figure 31(a)).
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Figure 30 Solution Regions for Three Pseudo Slant-Range Stations in Flatland

Thefilled circle corresponds to the correct slant-range differences, and the unfilled circle to their
sign-reversed versions. Thus the correct solution can be identified.

Two Roots — Same Branches — This situation occurs when the aircraft isin one of the three
rounded-V -shaped ‘ ambiguous solution’ areasin Figure 30. An algebraic indicator of this
situation isthat E in Eq 223 is positive. Both solutions are formed by intersections of the
branches of the hyperbolas which correspond to the correct slant-range differences (Figure
31(b)). Thus, the correct solution cannot be identified without additional information.

7.6.4 Remarks

Service Area — Every navigation or surveillance system is intended to provide servicein a
defined area or volume. Generally, in the service area/volume, the measurement geometry (e.g.,
crossing angles of LOPs) is satisfactory, and the signal-to-noise ratio is adequate. For athree-
station pseudorange system with equal baselines, the service areais approximately a circle with
its center at the mid-point of the station locations and radius equal to one-half the baseline length
(Figure 30). Thisincludes aimost all on the triangle connecting the stations, plusthreecircle
segments adjacent to the baselines. The maximum “bulge” outward from each baseline is 21% of
abaseline length. Subsection 8.4.2 provides additional information about pseudo slant-range
systems' service areas.
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(a) Different Branches (Extraneous Soln.) (b) Same Branches (Ambiguous Soln.)
Figure 31 Types of Solutions for Three Pseudo Slant-Range Stations

Contribution of Derivation — The development in Subsection 7.6.2 is the | east-complicated
derivation of a solution to the ‘three pseudo slant-rangesin Flatland’ problem. This solution only
requires finding the roots of a quadratic equation in one position coordinate. Also, it provides
insight into the effects of the geometry on the solution. In contrast, Bancroft’s algorithm requires
solution of a quadratic equation in a quadratic quantity — the Lorentzian norm of the aircraft
location. A third derivation takes a coordinate-free approach and only utilizes distances and
angles (Ref. 48). It does not provide as much insight.

Keysto Derivation — A key step in Fang’ s derivation is dividing the two equations in Eq 221.
If, instead, one were to square the two equations separately to eliminate the radicals, the result
would be two fourth-order polynomial equations. Geometrically, two families of hyperbolas, one
associated with each baseline, intersect at up to four points and thus may require a fourth-order
polynomial for computing all the intersections. Fang' s derivation takes advantage of the fact that
the two dlant-range differences have one station in common. A similar step occursin the
derivation of Razin’s algorithm for a spherical earth.

Numerical Results— When numerical results are needed, Bancroft’s algorithm may be
preferable to implementing Eq 222 and Eq 223. One reason is that, if vector-matrix softwareis
available, the coding task issimpler. A second is that Bancroft’s algorithm places all the stations
on an equal footing, while Fang's algorithm makes MU the primary baseline. A consequence is
that the solution code must handle Ad,,; = 0 asaspecial case. Another may be that the solution
IS more sensitive to measurement errorsin Ad,,y.
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Two Station Pairs— One could define a hyperbolic system involving four stations comprised
of two separately synchronized pairs of stations (similar to Loran-C cross-chaining). A deriva-
tion similar to the above would require two squaring operations to remove all radicals, which
would result in afourth-order polynomial.

Application to Ellipsoid L OPs — Reference 42 makes the point that — with some sign
reversals — the equations of this section would apply equally well to measurements of the two
sums of the slant-ranges for three ground stations to an aircraft. While not commonly
implemented (e.g., by a multi-static radar), it is a point worth noting.

Relationship to Classic Hyperbola Parameter s — Figure 32 shows the classic form of a
hyperbola which satisfies the equation

2 2

X y

2 2 1 Eq 231
a’ b?

This classic hyperbola can be easily related to the

hyperbola described by thefirst line of Eq 220.

Equating the distances between the vertices and

the foci of the two hyperbolas, respectively,

yields:

Eq 232

Fi 2 ClassicH I
2JaZ b2 =U igure 32 Classic Hyperbola

Thus the tangent of the acute angle that an asymptote makes with the baselineis:

b 2
_:\/( U j 1 Eq 233
a Adyy

The quantity under the radical in Eq 233 is fundamental to this formulation, and also appearsin
the expressions for D (Eq 222) and E, F and G (Eq 223).

Insight into More Complex Situations — The problems addressed in this section, three-
pseudorange-stations-in-Flatland, is a ssimplified version of the problems addressed in Sec-
tions 7.4 and 7.7. Qualitatively, the solutions behave similarly.
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7.7 Solution for Three Pseudo Spherical-Range Stations (Razin)

7.7.1 Problem Formulation

Pseudo (or differences in) spherical-ranges are the basis upon which several radionavigation
systems have been devel oped, most prominently Loran-C. Spherical ranging systems are
intended for use on or near the earth’ s surface; altitude has no rolein their concepts or solutions.
The Loran community developed an advanced concept involving user-carriage of an atomic
standard, enabling measurement of spherical-ranges (vice differences). Such measurements can
be handled by the method described in Section 6.4 and are not addressed here.

Figure 33 illustrates a basic scenario using North X
4

Loran-C station labels: M at |atitude/longitude
(Lwm, Am) isthe master station, and X (Lx, 4x)
and Y (Lv, Ay) are secondary stations whose
transmissions are synchronized with those from
M. The coordinates of al stations are known.
The assumption isthat aircraft A is employing
the system for navigation, and wishes to deter-
mineits latitude and longitude (L a, 4a).

Two time-difference-of-arrival (TDOA) meas-
urements available from the station’ s transmis-

sions; these are grouped as “M minus X” and “M | Figure 33 Pseudo Spherical-Range Scenario
Involving Stations M, X and Y and Aircraft A

and Y”. The TDOASs are equivalent to two
spherical-range differences with constrained magnitudes:

A9M><A = HMA_QXA |A9M><A| < QMX

Eq 234
A9|\/|YA = QMA_QYA |A9MYA| < QMY

7.7.2 Problem Solution

Figure 33 depicts two mathematical spherical triangles MXA and MY A with common side MA.
The goal in analyzing these triangles is to find &wa and either Bx or By, as having these quantities
reduces the task to solution of the Direct Problem of Geodesy. As occurs for position determin-
ation based of two real slant-range measurements (Section 6.4) — which devolvesinto position
determination based of two real circular-range measurements — multiple solutions can occur.

Step 0: Solve the Indirect Problem of Geodesy (Section 4.2) for the paths MX and MY, yielding
the geocentric angles Ovx and Ovy and the azimuth angles yxm and yym.
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Step 1: Form the difference of the azimuth angles wxm and yyw, yielding the angle # between
great circlearcs MX and MY satisfying0< g <n

B = mir(|l//Y/M ~Wximb Wi —Wxim + 27 Wi —Wxim _27T|) Eq 235

To establish the sign conventions, assume that the vehicle is within the V-shaped region with
sides MX and MY. Then both #x and fy are positive as shown. The following is always true:

B = Bx + By Eq 236

Step 2: Solve Eq 234 for #xa and Ova, then take the cosine of both sides, yielding:
C0S(Oya) = €OS(Opya)COS(AByxa) + SIN(Bya)SiN(AOyya)

: : Eq 237
c0S(6ya) = ©08(Oya)COS(Abyya) + SIN(Oyya)SiN(AOys) q

Step 3: Apply the spherical triangle law of cosines for sides (Eq 56) to MXA and MYA, yielding:

coS(0xa ) = c0S(Oya )COS(Ox ) + SIN(Oia)Sin(Byx ) cos(Bx )

. . Eq 238
cos(Oy, ) = cos(Oya ) cos(Oyy ) + Sin(Oya )S' n (QMY ) cos(By ) q

Step 4: The first and second lines, respectively, of Eq 237 and Eq 238 are equated, eliminating
Oxa and Ova. Then solving for Oua yidds:
cos (yx ) oS (A Oy )
ten (B ) = — x s
" SN (AByxa ) — SN (O ) cos (Bx )

an(0,,,) = cos (Oyy ) - cos(AeMYA)
MAT sin (AByya )—sin (Byy ) cos (

Eq 239

By)

Step 5: Equate the two expressions for va in Eq 239 and eliminate #y using Eq 236, yielding:
COS(Ox )~ COS(AOyxa) CoS(Bpy )~ COS(ABy,)

s n(AQMXA) = n(emx) Cos(ﬁx ) s n(AQMYA) —S n(QMY) Cos(ﬁ - Bx ) =420
Step 6: Re-write Eq 240 as:
BCCOS(ﬁX) + Bssm(ﬁx) =C
B =s n(QMx) [COS(QMY) —CoS(Abyya)l - S n(QMY)[COS(QMX ) - COS(AQMXA)] Cos(ﬁ) Eq 241
B, =—Sin(Oyy)[cod0x ) — Cos(Abyxall SiN(B)
C=s n(AQMXA)[COS(HMY) - COS(AQMYA)] - s n(AQMYA)[COiHMX )- COS(AHMXA)]
Step 7: Re-write Eq 241 as.
B Cos(ﬂx -y)=C
Eq 242

B,=\(B)+(B) y=actan(B,B)
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The four-quadrant arc tangent function isused in Eq 242.

Step 8: Find px using Eq 243.
By = arctan(B,,B.) +arcco{§] = arctan(B,,B.) + ArcCo{é] Eq 243

In Eq 243, ArcCos denotes the principal value of the arccos function — i.e., the value in the

range [0, «]. Thus, in general, two solutions are possible.
Step 9: For both possible solutions, find &uma using the first line of Eq 239.

Step 10: For both possible solutions, find the aircraft’ s latitude and longitude (L a, 44) asa
solution to the Direct Problem of Geodesy, given the latitude/longitude (Lwm, Am), the geocentric
angle Oua and the azimuth angle wam = wxm + fx.

Step 11: For both possible solutions, the geocentric angles #xa and #va are found from the aircraft
and station latitudes and longitudes as solutions to the indirect problem of geodesy.

Step 12: For both possible solutions, substitute the angles Owva, fxa and @va in the right-hand side
of Eq 234. Compare the resulting spherical range difference to the measured values for these
guantities. Discard a possible solution when agreement does not occur.

7.7.3 Types of Solutions

No Solution — Measurement errors can cause one of the inequalitiesin Eq 234 to be violated.
That, in turn, can cause the argument of the arc cosine function in Eq 243 to be greater than one
in magnitude, in which case a solution does not exist.

Double-Root Solution — If the aircraft is on a baseline extension, including at a station, then Eq
240 becomes indeterminate and the equations immediately before it must be used. For example,
assume the aircraft is on the extension of MX, closer to X. Then 6,,4 = A8y x4, and equating the
first two lines of Eq 237 and Eq 238 yields fix = 0, hence fiy = . Thus, since 0 < # < =, there is a
single solution for Owa given by the second line of Eq 239.

Single Solution — In Eq 243, if B, = C then the ArcCosterm is zero and there is only one
solution for px. The locus of latitudes/|ongitudes for which B,,, = C can be found numerically.

Two Solutions: Ambiguous vs. Extraneous — In most instances, two candidate solutions are
found by the method described in Subsection 7.7.2. Oneis always correct. The other is either:
(a) extraneous, corresponding to the negation of the measured spherical-range differences (thus
will be detected in Step 12); or (b) ambiguous, also corresponding to the measured spherical-
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range differences, and thus not resolvable without additional information.

The intended service areafor a pseudorange system is, approximately, the region within the
perimeter of the polygon enclosing the stations (but not close to a station) or the border area
outside the perimeter but near the bisector of the baseline joining the closest two stations. In the
service area, one candidate solution is extraneous and corresponds to the “+” sign in Eq 243,

while the correct solution corresponds to the “—" sign. Example 10 in Subsection 7.9.3 illustrates
where both ambiguous and extraneous sol utions occur.

7.7.4 Remarks

System Applications — The primary examples of long-range pseudo spherical-range systems
are Loran-C and Omega. For their combinations of system characteristics (Iong-ranges between
stations and aircraft, low-frequency radio waves and ground propagation paths), processing steps
in addition to those described in Subsection 7.7.2 were generally needed to achieve the systems
potential accuracies.

Accuracy Enhancements — Two areas have been addressed to improve the accuracy of low-

frequency spherical-range difference systems:

= Earth Geometry — For distances of more than afew hundred miles, the elipticity
error incurred by using a spherical-earth model is usually unacceptably large. One
approach is to employ approximations to an ellipsoid (Refs. 10-12 and 14-16) which
are not amenable to closed-form solution. These can be utilized in an iterative
solution technique that isinitialized with the solution obtained from Razin's
algorithm (see Chapter 8). A second approach isto tailor the spherical-earth model to
the service areainvolved (Refs. 43 and 49).

= Radiowave Propagation — Low-frequency electromagnetic ground waves cannot be
assumed to travel with constant speed, since their propagation depends upon the
conductivity of the ground over which they travel. Modeling and measurements have
both been used to address this issue. The resulting adjustments are easily incorporated
in the pseudo spherical-range difference measurements.

Validation — Reference 49 contains the findings of a comparison, using Loran-C measure-
ments, of Razin’s algorithm and the semi-official, iterative algorithm published by the Radio
Technical Commission for Maritime Services (RTCM) (Ref. 50). Differences between the
computed latitude/l ongitude coordinates for the two algorithms are between 3 ft and 5 ft.

Similarity to Flatland Solution — Although the analysis formulations are different (rectangular
versus spherical), the qualitative characteristics of the solutions for the Flatland/Fang and
spherical-earth/Razin algorithms are qualitatively virtually the same. Both have two solutions
with the incorrect one being detectable (i.e., extraneous) in the useful service areafor a system,
but not detectable (i.e., ambiguous) between and near the baseline extensions for the stations.
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7.8 Solution for Two Pairs of Stations Measuring Pseudo Spherical-Ranges

7.8.1 Problem Formulation

This section addresses a problem that is close to the topic of the previous section: determining an
aircraft’ s position from two spherical-range difference measurements. However, in this section,
the measurements are obtained from four stations comprising two distinct pairs, rather than from
three stations comprising two pairs having a common station. It is also close to the topic of
Section 7.5, which addresses two pairs of stations that measure pseudo slant-ranges.

Figure 34 illustrates the scenario using Loran-C-like station labels. Station M at |atitude/lon-
gitude (Lwm, Am) isamaster station, and station X (Lx, Ax) is an associated secondary station.
Similarly, station N (Ln, 4n) isthe master for a separate set of stations (chain), and station

Y (Lv, 4v) isan associated secondary. The transmissions of each master-secondary pair are
synchronized, but not with those of the other pair.

North X
I(LXoZAJ

(Ly, Zy)

Figure 34 Pseudo Spherical-Range Measurement Scenario
Involving Two Station Pairs and Aircraft

The assumption isthat aircraft A is employing this set of stations for navigation. The aircraft’s
first priority isto determine its latitude/longitude (L a, 2a) coordinates. A second priority isto
determine the spherical-range to and azimuth angle toward each of the four stations.

Two time-difference-of-arrival (TDOA) measurements are available from the station’ s transmis-
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sions; these follow the convention “M minus X” and “N minus Y”. These TDOAs are equivalent
to two spherical-range differences. These are, together with the limitations on their magnitudes:

AByxa=6Oun—0ya  [AByxd <Oux

Eq 244
AHNYA = QNA - QYA |A0NYAJ < QNY

7.8.2 Problem Solution

Figure 34 depicts three mathematical spherical triangles: MXA, NYA and MNA. The god in
analyzing these trianglesis to find values for the two spherical-range/bearing pairs Oma and fx
and éna and By. Knowing these quantities reduces the task of finding (L, 4a) to asolution of the
Direct Problem of Geodesy. Asin other multi-dimensional problems, multiple solutions for

(LA, 2a) may occur; when they do, the validity of each must be checked.

The immediate goal isto find Bx, as the quantities fwva, Ona and By follow readily.

Step 0: Solve the Indirect Problem of Geodesy for three paths between stations:
=  MX (master and associated secondary): Provides Ovx and wxm
= NY (master and associated secondary): Provides Ony and wyin

=  MN (two master stations): Provides Oun, wwn and ynm

Define the positive angles between the path MN and, respectively, the paths MX and NY

¥m =min{|‘//N/M Vx| [Wnm —Wxim + 27 W —wxim — 27| }

. Eq 245
VN = m'n{|‘//Y/N Wl Wyin =W+ 27) Wy e~ — 27| A

Formally define Bx as the angle XMA, measured clockwise from XM. Similarly, define By as the
angle YNA, measured counter-clockwise from YN.

Step 1: Solve Eq 244 for 6xa and 6va, then take the cosine of both sides, yielding:

COS(GXA) = COS(QMA)COS(AQMXA) +9 n(GMA)Si n(AGMXA)

. . Eq 246
COS(QYA) = COS(QNA)COS‘(A QNYA)+ S n(QNA)Sl n(A QNYA) A

Step 2: Apply the spherical law of cosines for sidesto triangles MXA and NYA, yielding:

COiHXA) = COS(HMA)COiHMx )+ s n(HMA)Si n(HMX )COS(ﬁ X )

cod6,, ) = cos(,,, )cod 8y, )+ sin(6,,)sin(6,, )cos 3, ) Eq 247

Step 3: Thefirst lines of Eq 246 and Eq 247 are equated, eliminating @xa. Then solving for the
master station-aircraft distance yields #ma as a function of gx and known quantities
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c0s(0),y ) — coS(AOys ) J
0,,, = arctan | — MX 7 MXA Eq 248
e (S'n(AQMXA)_Sn(QMX )COS(ﬂX) a

In Eq 248, the single-argument arc tangent function should be used.

Step 4: Consider spherical triangle MNA. The four-part cotangent formulayields an expression
for v as an explicit function of fx and quantities that are either known or are functions of fx:

) ) Qn(WM“ﬂx)
By = ¥n arCtan{Sin (B ) €Ot (Byya ) — COS(Byyy ) €OS (1 — B )J e

In EQ 249, the two-argument arc tangent function should be used.

Step 5: The second lines of Eq 246 and Eq 247 are equated, eliminating #va. Then solving for the
master station-aircraft distance yields Ona as afunction of #y and known quantities

cos(6,y, )— cos(A0,) J
6,, = arctan | — nY NYA Eq 250
" [Sn(AeNYA)_Sln(eNY )COS(ﬂY) q

In Eq 250, the single-argument arc tangent function should be used.

Step 6: The value of fx sought isaroot of the following equation (application of the Law of
Sines to spherical triangle MNA)

Sin(l//M - Bx ) _ Sin(l//N _,BY)
Sin(Oa) Sin(Gya)

By substituting and re-substituting Eq 248, Eq 249 and Eq 250 into Eq 251, the result would be
an explicit function of gx and known quantities. Thereis no point in doing so, however, since the
expression would be too complex to be solved analytically for fx. Instead, aroot finding
technique (such as the secant method) can used to find one or more values for fx.

Eq 251

Step 7: For each candidate solution for g, find the corresponding value for #ma using Eq 248.

Step 8: For each candidate solution pair for bearing fx and range @wa, find the aircraft’ s latitude
and longitude (L a, 4a) as a solution to the Direct Problem of Geodesy.

Step 9: If multiple solutions to Eq 251 occur, for each solution set, find the geocentric angles fxa
and fya from the aircraft and station coordinates as solutions to the Indirect Problem of Geodesy.

Step 10: For each solution set, substitute the angles Owva, Oxa and Ona, Ova in the right-hand side
of Eq 244. Compare the resulting spherical range difference to the measured values for these
quantities. Discard a candidate solution when agreement does not occur.
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7.8.3 Remarks

= Anobvious application of thisagorithmisto Loran-C “cross-chaining” — finding pos-
ition solutions using TDOA measurements from two separate chains. Loran-C cross-
chaining can involve three stations, with one station being dual-rated. However, in terms
of the position-solution agorithm, three-station cross-chaining is no different than three
stations from a single chain. This section addresses the more-complex situation involving
two pairs of stations, one pair from each chain.

= Sequences of equations other than those in Subsection 7.8.2 can be used arrive a a
function of gx (only) whose root is to be found. The solution sequence presented herein
follows Razin (Ref. 43) and appears to yield satisfactory results (Subsection 7.9.4).

=  When aclosed-form solution to a problem does not exist, reducing the solution to finding
the root of a scalar equation over a pre-defined range of valuesis the next best option.

7.9 Example Applications

Example applications are presented in this section, with the intent of providing a sense of how
the equations presented earlier in this chapter might be utilized.

7.9.1 Example 8: Slant-Range Measurement System in Flatland

Problem Statement — Consider the simplest application of Bancroft’s algorithm — finding the
intersections of two circlesin aplane. Stated as a navigation problem, an aviator in Flatland
measures his’her slant-range to two stations — say, d, 4 to station S1 having known coordinates,
and d, 4 to station Sz aso having known coordinates. This formulation can be considered to be a
simplified version of the problem of computing a DME/DME/altitude fix (Section 6.4).

Thefirst step toward a solution is selecting the coordinate frame. y

Because Bancroft’ s algorithm involves cal cul ating a matrix :: A
inverse, the origin cannot be in-line with the two stations S, (0{¥5\2) (x,2,7.4?)
(Subsection 7.2.3). A good choice is to place each station on one .

axis, equidistant from the origin (illustrated at the right). A

normalized distance scale is chosen such that the separation — s

between the stations is one unit — i.e., distances are quantified (0,0) S, (%\2,0)
in Base Line Units (BLUS).

Solution — Carrying out the steps indicated in Subsections 7.2.1 and 7.2.2 yields

1J2 0 4 V2 0
B:{ 0 %\/E} B _{O \/E} Eq 252
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(Xz) + (Y2) _d22A

el

|:(X1) +(yy)* —dis } {“dﬂ Eq 253

Eq 254
V_|:V:| 1B_1b \/_ \/Edle l\/z %_dJéZA
AL 1\/— 1\/—dzA ? 3—03a
P+ pA+y=0
a=(u,u)y=u;+u; =1 -
B =2(u,v)-1=2uv, +2u,v, —-1=1-dj -df, -1= —(de + de) a
Y :<M,M>=V$+V)2/ :%(%_dle)2+%(%—d22A)2
Disc = B2 —4ay = (a2 +d2 f -2(3-d2 f-2(2-d2,
, Eq 256
= 2(d2 + d2,)- (a2 - d2, f -1
Thus

The two possible solutions for the aircraft location are

o R HE e b

2

Types of and Conditions on Solutions— Insight into the solution can be obtained by
examining the sum and difference of the slant-ranges. Thus let

Eq 259
dip=3(2d +Ad) dyp=3(2d - Ad) A
Upon substituting into Eq 256, the discriminant Disc can be written as
Disc = 2 - day = ((3d ~1)1- (Ad ) Eq 260

The four types of possible solutions for the norm 4 are enumerated in Subsection 7.2.3. It follows
from Eq 255 that, since « = 1, asingle real root cannot occur. Geometrically, this is because two
circlesin aplane must cross at two points, be tangent at a point, or not cross.

-129-



DOT Volpe Center

The other three solution types can occur, depending upon the value of the discriminant. For redl
roots to occur, both of the following conditions must be true:

2d > 1 Ad| <1 Eq 261

Since the two stations are separated by one BLU, Eq 261 “says’ that (a) the sum of the rangesto
the stations must be at least equal to the separation between the stations, and (b) the absolute
value of the difference between the ranges to the stations must be no more than the separation
between the stations. Based on geometric reasoning, when Xd is unity, the aircraft must be on the
baseline separating the stations, and when |Ad| is unity the aircraft must be on an extension of
the baseline. Similar conditions are derived in Subsection 6.4.3 for the analogous problem
involving a spherical earth.

Aircraft locations along the baseline connecting the stations and its extensions are unstable
because small measurement errors can change the character of the solution — to a situation
where a solution does not exist or to one where there are two separate candidate solutions.

It follows from Eq 257 and Eq 260 that

2, = %((Zd)z +(ad)) + %\/((Zd)z ~1)i- (adY) Eq 262

Either solution to Eq 262 (and to Eq 257 as well) may be correct. Of course, only one solution is

actually equal to the vehicle strue position — the other
solution is ambiguous. Two slant ranges do not provide
enough information to make a decision.

“Natural” Coordinate System — Whilethe (x, y) frameis
compatible with Bancroft’s algorithm, it is not the natural
frame for this problem. Thus, consider the (&, {) frame
(Figure 35) which is generated by rotating the (x, y) frame
counter clockwise by 45 deg, then offsetting it by one-half a
BLU to theright. The result is that (a) both stations lie on the
C-axis, and (b) the &-axis is the perpendicular bisector of the
baseline connecting the stations. The solutions for the aircraft

Fi T t-R
location can be expressed in the (&, ) frame as: lgure 35 Two Slant-Range

Stations and Aircraft in Flatland

|:§A:|:1 i\/Z(de+d22A)— (dle—dzzA)Z_l Eq 263
CA 2 d12A _dZZA
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This solution can also be written as

FA} _1= \/ ((Zd)z —1)(1_ (Ad)z) Eq 264

Cal 2 >d Ad

Let a breve diacritic mark above a normalized quantity denote its un-normalized version; thus,
eg., § = B¢ and { = B{, where B is the baseline length. The un-normalized version Eq 264 then

]

Geometry-Based Derivation — Thereis an older, more direct, geometry-based derivation of Eq

263. Referring to Figure 35, the two slant-ranges satisfy Pythagoras' theorem:
dlezéi"‘(gA"‘%)z
Eq 266
d22A=§§\+(§A_%)2

Compl eting the squares and subtracting the second equation from the first in Eq 266 yields
Ca :%(dle_dzzA) Eq 267
Lastly, substituting for {a in the first equation in Eq 266 yields
Sa= i\/d12A - (% (dle - dgA)"‘ %)2

— 1323+ 02,)- (07, - 02, f -1

Eq 268

Remarks

» Inthe absence of sant-range measurement errors that cause one or both of the
inequalities of Eq 261 to be violated, there are no aircraft positions where either linein
Eq 263 fails— i.e., the equations do not have any singularities.

= [f the aircraft position is on the (-axis — either on the baseline connecting the stations or
on an extension — the discriminant (Eq 256 and Eq 260) is zero and Eq 255 has an
unstable double root. This different than the situation for three pseudorange stationsin a
plane (Section 7.7); there, only positions on the baseline extensions are unstable.

= [f the aircraft is not on the (-axis, then Eq 255 has two separate real roots that correspond
to the actual and ambiguous aircraft locations.

= The correct and ambiguous solutions are symmetrically located with respect to the {-axis
but cannot be distinguished based on two slant-range measurements.
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= Movement of the aircraft with a component toward or away from the {-axis is a method
for determining the correct solution.

= The effect of measurement errors on the solution depends strongly on the location of the
aircraft. Thisisthe topic of Subsection 8.4.1.

»  Thetwo-ranging-stations-in-Flatland problem is a simplified version of the DME/DME/
Altitude problem addressed in Section 6.4. Qualitatively, the solutions behave similarly.

7.9.2 Example 9: Three Pseudo Slant-Range Stations in Flatland

This subsection presents examples of results obtained using Fang' s algorithm described in Sec-
tion 7.3 for finding the two-dimensional position of an aircraft from three pseudo slant-range
measurements. Figure 36 depicts three such stations, labeled M, U and V. The three green curves
partition the space into four regions that contain the incorrect (ambiguous or extraneous) solution
when the correct solution isin the same region (Figure 30).

The thicker, solid blue and red lines with filled symbols at their ends represent hypothetical
aircraft flight tracks. The thinner dashed blue and red lines with unfilled symbols at their ends
depict the incorrect solutions yielded by the algorithm for the hypothetical tracks of the same
color. An asterisk marks the center of each hypothetical or incorrect track.

The blue track corresponding to the correct solution iswell within the service area, asisits
corresponding incorrect track (which isin approximately the opposite direction, and is slightly
curved). In the ‘extraneous’ region, the correct solution can be identified by inspection. For

Figure 36 Three Pseudo Slant-Range Stations in Flatland and Two Aircraft Tracks
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example, thefilled blue circle is equidistant from M and U and furthest from V. In contrast, its
counterpart, the unfilled blue circle, is equidistant from M and U and closest to V (i.e., the order
isreversed). Similar statements can be made about every point in this region. Calculations revea
that the magnitudes of the slant-range differences are the same for the correct and incorrect
solutions; however, their signs are reversed.

In contrast to the blue track, the red track corresponding to the incorrect solution transitions from
the ‘extraneous’ region to the ‘ambiguous’ region. Starting from the circle symbols the correct
solution moves directly “north” in a straight line, while the incorrect solution moves largely
“south” in adightly curved path. Asthe aircraft approaches and crosses the transition between
the regions, the incorrect solution moves at a high rate to the “south” then reappears at the far
“north” and again moves at a high rate to the “south”. Asthe aircraft moves away from the
transition curve, the incorrect solution moves close to the correct solution.

7.9.3 Example 10: Three Pseudo Spherical-Range Stations

This subsection presents an example application of Razin’s algorithm (Section 7.7) utilizing
three pseudo spherical-range navigation stations in the U.S. Northeast Loran-C chain (Ref. 51).
In Figure 37: M represents the master station at Seneca, NY'; W represents the secondary station
at Caribou, ME; and X represents the secondary station at Nantucket, MA. For a spherical-earth
formulation, the baselines and their extensions for these stations are great circles.

Figure 37 Position Solutions for Triad of Stations from the Northeast U.S. Loran-C Chain
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Fourteen airport locations were selected, and spherical-range differences for the station pairs M-
W and M-X were calculated using a spherical-earth model. The methodology of Section 7.7 was
used to find solutions for the airport locations from the range differences. Green (“—" solution)
and red (“+” solution) icons of the same shapes represent the algorithm’ s solutions for the same
airport. Blue-colored symbols depict the actual airport locations, and overprint the correct
solution (in all cases, they agree to machine precision).

Six airports arein the service areafor these stations: Reagan National, VA (DCA); LaGuardia,
NY (LGA); Boston, MA (BOS); Portland, ME (PWM); Bangor, ME (BGR); and Halifax, Nova
Scotia (YHZ). A blue line represents a hypothetical flight path connecting these airports. A
thinner red line connects the incorrect “+” solutions.

For airportsin the service area, the incorrect solutions can be detected by inspection. For
example, DCA isclosest to station M and furthest from W. However, its extraneous version is
closest to W and furthest from M. More generally, for locationsin the service area, the range
differences for an extraneous solution will be negative versions of the range differences for the
correct solution. Another method for detecting the correct solution is to examine the flight path.
In this case, the incorrect “flight path” is, overall, in the opposite direction of the correct track.

Eight other airports are al so depicted by blue symbols: Pittsburgh, PA (PIT); Cleveland, OH
(CLE); Columbus, OH (CMH); Indianapoalis, IN (IND); Milwaukee, W1 (MKE); Buffalo, NY
(BUF); Goose Bay, Labrador (YYR); and Bermuda (BDA). These airports are all outside the
nominal service areafor the stations, and arein or near the three regions bounded by baseline
extensions. The incorrect solutions, which may be either the “—" or “+” solution of Eq 243, are
all ambiguous — i.e., the range differences calculated from the correct and incorrect airport
locations are identical.

This exampleis revisited in Subsection 8.4.4, which addresses the effect of mis-modeling the
earth as asphere (i.e, the dlipticity error), and presents a solution.

7.9.4 Example 11: Two Pairs of Pseudo Spherical-Range Stations

This subsection presents an example of the solution algorithm for two pairs of pseudo spherical-
range navigation stations described in Section 7.8. Figure 38 depicts the master station at Seneca,
NY for the U.S. Northeast Loran-C chain and a secondary station at Nantucket, MA. It also
depicts the master station for the U.S. Great Lakes Loran-C chain at Dana, IN, and a secondary
station at Malone, FL.

Figure 38 also shows seven airports which represent possible locations of aircraft employing
these stations for navigation: LaGuardia, NY (LGA); Elizabeth City, NC (ECG); Charleston, SC
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Figure 38 Two Pairs of Loran-C Stations and Seven Airport Locations

(CHYS); Charleston, WV (CRW); Atlanta, GA (ATL); Nashville, TN (BNA); and St. Louis, MO
(STL). All of the airports locations are within the expected service area for such a navigation
system.

The solution algorithm presented in Section 7.8 is straightforward except for the process of
finding values for fx that are roots of Eq 251. Thus the primary issue explored is the behavior of
Eq 251 as afunction of fix — i.e., with Oua, Ona and By determined from px. (Here, fx isthe
angle, measured clockwise, from (a) the baseline from Senecato Nantucket to (b) agreat circle
path from Senecato the aircraft.)

Figure 39 shows the difference between the | eft- and right-hand sides of Eq 251 as a function of
assumed values for fx in therange (Y, — m) < fx < Y. Each of the seven possible aircraft
locations are considered for the half-sphere on the southeast side of the great circle path through
Dana and Seneca. The curvesfor six of the seven airports (all except STL) have the same basic
shape — a“sideways S’. Most important is that each curvein Figure 39, including that for STL,
has only one root, so ambiguous and extraneous solutions do not occur for locations in the area
of interest. If the roots for fx shown in Figure 39 are substituted into Steps 7-10 of the algorithm
in Section 7.8, the origina aircraft locations resullt.
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A plot similar to Figure 39 was generated for the area on the northwest side of the great circle
path through Dana and Seneca. Four of the airports of interest (LGA, ECG, CRW and BNA) had
asingle extraneous solution in thisarea. CHS and ATL did not have a second solution, and STL
has two additional solutions.

Figure 39 Example 11: Sensitivity of Law-of-Sines Difference to Trial Values of fx

This exampleisre-visited in Subsection 8.4.5.

7.9.5 Example 12: Wide Area Multilateration (WAM)

As an example of the solution technique presented in Section 7.4, aWAM system is postul ated
which has ground stations at three airports. Boston, MA (BOS); Manchester, NH (MHT); and
Hartford, CT (BDL) — see Figure 40. An aircraft at an atitude of 25,000 ft over-fliesfive
airportsin the system’s service area: Westfield-Barnes Regional, MA (BAF); Dillant-Hopkins,
Keene NH (EEN); Fitchburg Municipal, MA (FIT); Lawrence Municipa, MA (LWM); and
Hanscom Field, Bedford MA (BED). To provideinsight into the algorithm’ s behavior outside
the service area, solutions are found for three possible aircraft locations outside the service area
and near extended baselines: Barnstable Municipal, MA (HY A); Stewart International, NY
(SWF); and Portland International, ME (PWM).

Interest in the algorithm of Section 7.4 centers on the solution to Eq 200 for the aircraft time of
transmission t4. In this example, the times of reception at the ground stations t; were shifted by
the same amount, so that the earliest occurred at t; = 0. Asaresult, the correct value for t, must
be negative. The four roots of Eq 200 were found using the Matlab routine ‘roots' . These were
multiplied by the speed of light, ¢, converting their units to nautical miles. Thus, the correct

-136-



DOT Volpe Center

Figure40 Three-Station WAM System and Example Flight Track

solution is the negative of the slant-range between the aircraft and the nearest ground station.
Since the reception range of aWAM ground station is similar to that of an en route SSR (Figure
7), ranges beyond a few hundred nautical miles are not feasible.

The calculated roots (potential valuesfor t,) are displayed in Table 10. Positive roots cannot be
correct, nor can complex roots. Thus, for each airport, only the two negative roots are possible
solutions. For the five airportsin the WAM system’ s service area, the negative root nearer to
zero is clearly the correct choice. (The magnitude of other negative root is approximately an
earth-radius.) In fact, the negated values of the cal culated correct roots were equal to the slant-
ranges used to generate the simulated measurements, to machine precision. For the three airport
locations outside the service area, either negative root could be correct. Similar situations,
involving extraneous and ambiguous solutions, occur in Examples 9 and 10.
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Table 10 Rootsfor Aircraft Transmission Time, in NM, for Example 12

Aircraft Root 1 Root 2 Root 3 Root 4
Location Real Imag Real Imag Real Imag Real Imag
BAF -4,002.6 0.0 -13.3 0.0 82.8 0.0 4,066.4 0.0
EEN -4,748.8 0.0 -36.9 0.0 78.9 0.0 4,795.0 0.0
FIT -6,361.5 0.0 -27.0 0.0 58.9 0.0 6,397.5 0.0
LWM -4,022.4 0.0 -19.0 0.0 74.1 0.0 4,094.9 0.0
BED -4,771.9 0.0 -15.1 0.0 86.0 0.0 4,812.5 0.0
HYA -52.1 0.0 -29.5 0.0 106.1 -3,508.9 106.1 3,508.9
SWF -68.7 0.0 -35.6 0.0 1356  -1,072.8 135.6 1,072.8
PWM -177.1 0.0 -65.3 0.0 211.6 -1,053.7 211.6 1,053.7

This exampleisre-visited in Subsection 8.4.6, where an ellipsoidal earth model is considered.
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8. LINEARIZED LEAST-SQUARES (LLS) METHOD (GAUSS-NEWTON)

8.1 General LLS Method

8.1.1 Background / Context

Thisfinal chapter is afundamental departure from the foregoing chaptersin several aspects.

Situations addressed in Chapters 3-7 explicitly or implicitly assume that

= There are exactly as many measurements (equations) as there are unknown variables
—i.e, thereis no role for redundant measurements

= The available measurements can be described by simple equations that can be
inverted to find the aircraft’ s coordinates or other unknown quantities of interest —
i.e., thereisno role for complex expressions, recursive a gorithms or tabular data.

One implication of the second item is that the problem setting must be a spherical earth or (less
commonly) atwo- or three-dimensional rectangular Cartesian frame.

This chapter removes the above restrictions, enabling more genera situations to be addressed.
Simply put, Chapters 3-7 provide exact solutions to approximate problems, while this chapter
provides approximate solutions to exact problems.

A cost of this generality is that the solution techniques are iterative/numerical rather than analytic
and closed-form. Thisresultsin alossinsight into problems. For example, an iterative method
does not reveal how many solutions may exist, or their nature (extraneous, ambiguous, etc.).
Moreover, iterative techniques require that an initial value be provided. Thus there are useful
roles for both analytic and iterative techniques.

The form of the iterative equations depends upon the sensors involved and the coordinate system
employed. There are two basic alternatives. When a spherical or ellipsoidal earth model is
employed, the unknown aircraft position variables will generally beits latitude La and longitude
Ja, and possibly altitude ha. When an earth-fixed rectangular coordinate system is used, the
unknown aircraft position variables will beits Cartesian xa, ya and za components. (Appendix
Section 9.3 shows how to convert between these formulations.) When pseudorange measure-
ments are involved, the time of transmission by the aircraft ta (surveillance) or ground stationsts
(navigation) may also be an unknown variable.

In terms of mathematical techniques, the Linear Least Squares (LLS) technical utilizes vectors
and matrices. In contrast, Chapters 3-4 and 6-7 rely on multiple scalar equations.

8.1.2 Linearized Least Squares Problem and Solution

In this section, a spherical/ellipsoidal coordinate system is used, but the basic technique aso
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appliesto arectangular coordinate system. It is assumed that there are measurements z, available
(combinations of slant-ranges, angles, etc.) of the unknown variables of the form

Z =27 +V, i=1---,m E0 269
q
z = fi(La,Aa,hasty) = fi(X)
X= [LA An D tx]T Eq 270

Here: (a) x denotes the vector of unknown variables; (b) misthe number of measurements
(which must be at least equal to the number of unknown variables); (c) vi is the measurement
error that isinevitably present; and (d) tx is either ta or ts. The vector of measurement errorsis
characterized by a zero mean and known covariance matrix (Subsection 8.1.3).

Often Eq 269 is termed the scalar measurement model. In Eq 269, the measurement function
fi(La, A4, hy, ty) isknown but need not be invertible; it can be any combination of analytic
expressions, recursive algorithms and tables that, when the variables (L4, 14, hy, ty) are known,
yieldsavauefor z; (Subsection 8.1.4).

Each unknown variable is expressed as the sum of an “initial” estimate for the iteration step
involved, denoted by an overbar, and a perturbation term. For the first iteration step, the initial
estimate must be provided by an external source; for subsequent steps, theinitial estimate isthe
updated value for the previous step.

X =X+ 8x
- — — _.T Eq 271
i = [LA AA h'A tx] 8X = [SLA 5/1A 6hA 6tx]T
The scalar measurement Z, can thus be replaced by the first-order (or linearized) scalar
measurement
5z =7 — (L, Aa,Natx) i=1...,m
. . . . Eq 272
M s Tsa s st a
oL OAn oh, OAt

In Eq 272, all partial derivatives are evaluated at the initial estimates for the unknown variables.

In Eq 272, the quantity 8z; = Z, — f;(La, A4, ha, ty) is often called the measurement residual. An
abnormally large measurement residual can be the basis for rejecting a measurement as
anomalous. A scalar cost function C that quantifies the measurement residuasis:

C=6z"Wéz Eq 273
8Z - i - f(ZA,/TA, EAJEX)
oz=[zoz,]  Z=[f-Z]  f=[nt,]  F
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Here, W is an anal yst-defined positive-definite, symmetric (and often diagonal) matrix that
weights the measurement equations. A method for selecting W is given in Subsection 8.1.3.

The full set of equations for the linearize measurement model (Eq 272) can be written as

B 521 ] i afl 6f1 6f1 afl B Vl ]
: oL, oA, oh, oty |Otal | :
] 3 : ;| S2al, | -
I LN A
: afm afm afm afm 5tx
10Zm| | 0Ly A, Oh, Oty | | Vin |

Denoting the matrix of partial derivatives as J (for Jacobian), Eq 275 can be written as the
linearized matrix measurement model

0z=Jox+V Eq 276
| of, of, of, of | (v, ]
oL, 04, oh, Oty

[}
1l
<
Il

of  of  of, of,
oL, 04, oh, oty Vi,

In general, matrix J is non-square and cannot be inverted. The standard approach isto compute
ox as the value that minimizes the weighted sum of the squared residuals after being adjusted by
an estimate for 8x. Thus, denoting C as the cost function to be minimized:

C=(6z-J8x)" W(8z—Jdx)=6z" Wz - 26x" JTW bz +6x" IT W Jdx Eq 277
The value 8x that minimizes C in Eq 277 is
%= (0TW I T wsz Eq 278

Existence of the matrix inverse indicated in Eq 278 requires that J be of full rank, i.e., to have
linearly independent columns. For the situation where the number of measurementsis the same
as the number of unknown variables, Eq 278 reducesto Eq 279 below. In this situation, thereis
no role for aweighting matrix W.

ok = J oz Eq 279

Given the solution for 8%, the unknown variables are updated in accordance with
X = Xx+ 6% Eq 280
ZA=ZA+6ZA /TA=AA+62A EA=EA+SEA fxzfx‘l‘(SfX
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Combining Eq 280, Eq 279 and Eq 274 yields

=X+ Iz - f®)] Eq 281

This (Eq 281) is the multi-dimensional Newton-Raphson formulafor solving Z = f(x) by
iteration. It applies when the number of equationsis equal to the number of unknown variables
— acommon situation in navigation.

Combining Eq 280, Eq 278 and Eq 274 yields

=X +("WIHITW[z - X)) Eq 282

This (Eq 281) isthe Gauss formulafor solving Z = f(x) by iteration, and applies when the
number of equations exceeds the number of unknown variables.

In contrast to Eq 281 and Eq 282, in the vector/matrix notation employed in this chapter, the
solution methods of Chapters 3-7 can be written asx = f~1(Z). By taking advantage of the
structure of specific problems, the measurement equations involved can be inverted.

For &% given by Eq 278, C (Eq 277) evaluates to

A

C=SZT(W—WJ(JTWJ)_lJTW)62=C—AC Eq 283

C can beinterpreted as the difference between C (the weighted sum of the squared measurement
residuals for Z — f(x) and AC (the estimated amount that the residua would be reduced after
using 8x to adjust the unknown variables). By employing a matrix inequality, it can be shown
(Ref. 52) that C must be non-negative. When the number of equationsis equal to the number of
unknowns (and noting that J must be invertible in that situation), C is equal to zero.

A convergence check is performed at the end of each iteration step. This involves comparing the
updated value of each unknown variable with itsinitial estimate. If the measurement equations
(Eqg 269) are linear functions of the unknown variables, then only one iteration is needed. How-
ever, when the measurements are nonlinear functions of the unknown variables, at least two
iterations should be performed — the last step confirming that the changes in the values of the
variables sought are negligible.

The value of the cost function (Eq 273) is usually monitored for each iteration. Temporarily
using an additional subscript to denote the iteration number, the cost function for the next
iteration (say Cn+1) will be different than the value of Eq 283 for the current iteration (say Cn).
The latter can be regarded as a prediction of the former based on first-order perturbations.

If convergenceis not achieved in an iteration step, the updated value for each unknown variable
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becomes theinitial estimate for that variable in the next step:
Lans1 = Lan Mans1 = ZA,n hans1 = EA,n txn+1 = txn Eq 284

The solution process (Eq 271 - Eq 283) is then repeated.

8.1.3 Solution Properties

Here Eq 278 defines 6x, and is the formal solution to the Normal Equation (Eq 285).

(07w 3)ox =37 W sz £q 285
Numerical methods for solving the Normal Equation are available that are more stable than
directly computing the inverse of the matrix on the left-hand side of Eq 285. Perhaps the best
approach isto not compute that matrix, and to perform orthogonal decomposition on W* J,
where W% W*: =W (i.e., utilize the antecedent of the normal equations, similar to Eq 276). This

can be accomplished in some mathematical software packages using the *\' operator. In the
syntax of such packages, 86X is computed using

8% =(W*2J)\ (W**52) Eq 286
Returning to conventional notation, if Eq 276 is substituted into Eq 278, theresult is
sx=dx+(0TWa)aTwy Eq 287

Thus, in the context of the linearized measurement model, 6x from Eq 278 is an unbiased
estimate of 6x and is corrupted only by measurement errors. The covariance matrix of the
estimation error for the unknown variablesis

E(o% - ax)(6% —x) =(aTwa)aTWRwW (3w a)* Eq 288
Here, R isthe measurement error covariance matrix:
E(v)=0 E(va ): R Eq 289

It can be shown that (Ref. 52) that the estimation error covariance (Eq 288) has the following
lower bound

E(5% - ax)(6% —ox) = (3TW I UTWRW I(0TW ) = (3TR 1) Eq 290

It can further shown that the lower bound is only achieved when W = R™L. For this reason, the
weight matrix is often chosen to be the inverse of the measurement error covariance matrix.

When the number of measurements and unknown variables are equal, W is the identify matrix
and Eq 290 becomes
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E(ox - ax)(@% —ox)' = (3TI)ITRIQTI) = (0TR 1Y) Eq 291

For the situation (often-assumed for convenience) when the measurement errors are independent
and have a common variance o245, both Eq 290 (provided that W = R™) and Eq 291 reduce to

E(6% — x)(6% — ox)| = 02 (37 3)" Eq 292

An dternate to Eq 283 for computing C is
C=(6z-J8%) Wédz=52"Wdz-8%" JTW 6z Eq 293

Thisistrue because

(6z-J8%)" WJIsx =0 Eq 294

8.1.4 Advantages of the LLS Technigue

Uses All M easurements — One reason for employing the LLS technique isto be able to utilize
more measurements than there are unknown variables. Using redundant equations enables some
averaging of measurement errors and often eliminates the ambi guous/extraneous sol utions that
can occur with the minimum required number of equations.

Utilizes Uninvertible M easurement Equations— While all of the measurement equations in
Chapters 3-7 are anaytically invertible (i.e., expressions exist for the unknown variables as
functions of the measurements), invertibility is not always possible. Thus, another motivation for
utilizing the LLS approach is its capability to utilize measurement equations that cannot be
inverted. Such situations generally arise because an expression that accurately characterizes a
measurement is too complex to be inverted.

Utilizes Non-Equation “ M easurement Equations’ — In most applications, the measurement
equations (symbolized by f;(L4, A4, hya, tx) in EQ 269) isthe most accurate available repre-
sentation of the quantities which are measured. Since invertibility isnot required, the
“measurement equations’ need not be equationsin the analytic sense. Rather, what is needed isa
process to compute the measured quantities (e.g., ranges and/or angles) as a function of the
independent variables (e.g., Ly, A4, hy and ty). A combination of analytic expressions, recursive
algorithms (such as Vincenty’s) and table lookup have been used as “ measurement equations”.

Approximate Jacobians Useful — Because the LLS solution technique is recursive, the
elements of the Jacobian matrix (J in Eq 276) need not be precisely equal to the partial
derivatives of the measurement equations (which may not even have derivatives). This situation
is analogous to the secant method for finding the root of a scalar equation using approximations
to the derivative of the equation (Subsection 2.1.6). In navigation and surveillance applications,
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an obvious source of such approximations is the spherical earth model (Subsection 8.3.2).

Provides Accuracy Estimates— An important feature of the LLS technique isthat it provides
estimates of the accuracy of a solution to the measurement equations. Characterizations for both
the measurement residuals (Eq 273) and the navigation variables (Eq 288 — Eq 292) are
available, including for the situation where the number of measurements and unknown variables
are equal. With an equal number of measurements and variables, a closed-form solution can be
obtained (Chapters 3-7) and the solution error can be estimated separately (Eq 288 - Eq 292).

Role of Accuracy Estimates — Estimating position error statistics from station locations and
measurement error statistics is often used in planning studies — e.g., to determine the stations
should be placed for a proposed system. Since measurement error statistics are approximate and
virtually never regarded as having the same level of precision as a position solution, character-
izing the earth as an ellipsoid is usually not necessary.

Useful Optimization Criterion — The LLS technique employs an optimization criterion that
has proven to be useful in awide variety of application areas for over 200 years. Focusing on
navigation, Ref. 46 contains a case study of several solution techniques; its conclusion isthat the
linearized |east-squares technique aways yields a “good”, and often the “best”, solution.

Proven in Navigation Applications — Several important navigation systems have been
deployed with the assumption that user’s would use the LLS technique or an evolved form of it
(e.g., Kalman Filter) to convert a set of measurements to | atitude/l ongitude coordinates.
Prominent examples are Loran-C, Omega and GPS.”

8.1.5 Remarks

Historical Credit — Ascribing the LLS technique to Gauss and Newton is established usage, if
not completely accurate historically. While the least-squares technique is usually credited to Carl
Friedrich Gauss, a case has been made for Adrien-Marie Legendre. Isaac Newton is often
credited with the technique for iterative solution of an equation whereby the value of the
independent variable is changed by the ratio of value of the dependent variable to its derivative.
Joseph Raphson frequently shares credit.

Dilution of Precision (DoP) — When the measurement errors for individual stations are
independent and have a common variance, then the estimate of the accuracy for navigation
variablesin Eq 292 is the product of: (a) afactor, (J7 J)1, that depends only on the geometry of

* These systems now (or did) involve station-vehicle separations of up to twelve thousand nautical miles. To achieve
achieve useful accuracies over such distances, the ellipticity of the earth is/'was characterized in the measurement
equations.
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the aircraft and the stations; and (b) afactor, o245, that depends only on the electronic systems
involved (including their installations). Often only the geometric factor is analyzed, and various
Dilution of Precision (DoP) metrics are defined for the elements of (J7 J)* — see Subsections
8.25,84.1,84.2,84.4and 8.4.5.

Jacobian Rank — The necessity that the Jacobian matrix J be of full rank is an observability
requirement. Essentially, in order for an unknown variable to be determined, a change from the
assumed initial value must cause a unigue signature in the available measurements.

Initial Estimate — The first iteration step requires that initial estimates be provided for the
guantities sought. Potential sources for the initial estimates are: (1) a solution based on an
assumed spherical-earth; (2) a previous estimate, possibly updated by changes from the previous
solution (obtained from, e.g., a“tracker” or dead-reckoning system); and (3) user-provided.

Qualitative Characteristics— While the LLS technique has been applied to many fields,
gualitative conclusions drawn in one field may not be valid in another. Much of the modern LLS
literature involves its application to model parameter identification. Often parameter identi-
fication can be characterized as fitting an equation with afew unknown parameters and
heuristically chosen functions to many (hundreds or even thousands) measurements (e.g.,

Ref. 53). While this literature is mathematically relevant, judgment must be exercised before
adopting qualitative conclusions to navigation and surveillance applications.

In contrast to parameter identification, navigation/surveillance applications usualy involve:

(a) at most, only afew more measurements than unknown variables;” (b) a scientific basis for the
functions being fitted; and (c) reasonably good initial values for the unknown variables. These
factors reduce the likelihood that a solution will yield alocal (rather than a global) minimum and
largely eliminate concerns about computational resources.

Geometric Interpretation — A geometric interpretation of Eq 294 is that the measurement
residual after correction by 6x is orthogonal to the estimate of the perturbation of the unknown
variables. Informally, the interpretation is that — within the limitations of linear perturbation
models — the estimate 6x embodies al the information available from the measurements.

Probabilistic Inter pretation — Although not done herein, probability distributions can be
assigned to the measurement errors. This enables determination of additional statistical quantities
— e.g., confidence bounds on the unknown variables. Such analyses are most meaningful when
there are many more measurements than there are unknown variables.

" Generally, the cost of providing an additional real-time navigation or surveillance measurement is the cost of a
ground station (real estate, equipment, installation and maintenance). Thisis usually significantly more than the cost
of an additional parameter identification measurement (e.g., that of extending a data collection period).
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Numerical Examples — Examples 10 (Subsection 8.4.4) and 12 (Subsection 8.4.6) illustrate the
convergence of the LLS iterative method for ellipsoidal earth measurements and spheroidal
Jacobian elements. In these examples, the iteration processisinitialized by the solution for a
spherical earth, and four or fewer iterations are needed to reduce the residual aircraft location
error to less than the error in the location of the ground stations involved.

8.2 Solution Employing Cartesian Coordinates

8.2.1 Introduction

Application of the linearized |east-squares technique described in Section 8.1 only requires
specification of the measurement equations (Eq 269) and the weight matrix (Eq 273). Moreover,
the latter is not needed if the number of measurements and unknown variables are equal. Among
the most common |east-sgquares applications are those involving ‘ range-type’ measurements of
the distance between an aircraft and a known location. These include:

= Actual dant-range measurements of the distance between an aircraft and a station —
such as aradar or a DME transponder. Usually, these involve transmission and
reception of signals by both the station and the aircraft (two-way ranging).

= Pseudo slant-range measurements of the distance, plus an offset common to all
stations, between an aircraft and one of set of stations with synchronized clocks —
such as amultilateration remote unit or GPS satellite. Usually, these involve
transmission of signals by one entity and reception by the other (one-way ranging).

= Altitude measurements of the distance between an aircraft and the center of the earth
— usually performed by a barometric atimeter (see Appendix Section 9.1).

Range-type measurements can be processed/analyzed using any rectangular coordinate frame,
since the form of Pythagoras' s equation isthe samein all frames. Thus the choice generaly
depends upon the application. One option, suitable for small areas, isalocal tangent plane frame
(Subsection 5.1.2). For larger areas, the earth-centered earth-fixed (ECEF) frame e introduced in
Section 5.1.1 ismore suitable, and is used in this section. If station S is haslatitude Ls, longi-
tude As and atitude hs, its ECEF coordinates are

cogLs)cos(is) Xs
rg =] cosLs)sn(is) | (Ro+hs) = ys Eq 295
sin(Ls) Zg

Assuming that the aircraft A is has unknown latitude L, unknown longitude 4a and unknown
altitude ha, then its unknown ECEF coordinates are
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COS(LA)COS(/IA) Xa
re=| cogLa)sin(za) | (Ri+ha) = ya Eq 296
sin(L,) z,

A caveat concerning notation: In this section, z denotes one axis in the ECEF system, whilein
Section 8.1, z denotes a generic measurement. Hopefully, thiswill not cause confusion.

8.2.2 Measurement Equations

Range M easurement — The non-linear scalar measurement model, corresponding to Eq 269,
for the dlant range d:i between ranging station Syi and aircraft A is

~

dri = dri +Vii
dri = \/(XA = X )2 + (yA ~ Yii )2 + (ZA — 4 )2

Eq 297

Here, x,;, vy, z,; are the ECEF coordinates of Syi. The partial derivatives of drj with respect to
the unknown aircraft position variables (corresponding to the partial derivativesin Eq 272) are

0dyi _ Xa— X 0di _ YA~ Yii 0dyi _ Zp— 7, Eq 298
8XA dri aYA dri 82A dri

The measurement residual, corresponding to the left-hand side of Eq 272, is
6dri = Jri - ari = ari - \/(XA = X )2 + (yA — Yii )2 + (iA A )2 Eq 299

Here d,; denotes the output of ranging instrument/system (e.g., DME) i and X4, ¥4, Z, areinitial
estimates for the unknown variables, which be computed from initial estimate of latitude,
longitude and altitude using Eq 296.

Pseudo Slant-Range M easurement — The non-linear scalar measurement model,
corresponding to Eq 269, for the pseudo slant-range ppi between station Sy and aircraft A is

5pi = Ppi T Vpi

Pp = \/(XA — Xpi )2 + (YA — Yo )2 + (ZA — 2y )2 + Cty

Eq 300

Here, x,,;, vpi, z,; are the ECEF coordinates of Syi and ¢ is the known speed of propagation.

The partial derivatives of ppi with respect to the unknown variables (corresponding to the partial
derivativesin Eq 272) are

op,, _ Xa— Xy OP i _ YA~ Yo Py _Za" %y 0Py =c Eq 301

O0Xp dp N d i 0z, d i Oty
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In Eq 301, dyi is given by

d, :\/(xA—xpi +(yA— yloi)2+(zA—zpi Eq 302

The measurement residual, corresponding to the left-hand side of Eq 272, is

Sp=p-P=P _\/<>_(A‘Xpi)2+(VA_ypi)2+(2A_Zpi)2 ~cix Eq 303

Here p; denotes the output of pseudo slant-range station i (e.g., multilateration system Remote
Unit) and At istheinitial estimates for the unknown clock synchronization difference.

Altitude M easurement — Let ra be the distance from the aircraft A to the earth’s center. Then
the non-linear scalar measurement model, corresponding to Eq 269, for an atimeter measure-
ment is

ra=Re+hy = \/(XA)2 +(yaf +(za)

The partial derivatives of ra with respect to the unknown variables (corresponding to the partial
derivativesin Eq 272) are

Eq 304

or X or or z
A _ Xa IA _Ya Ta _2a Eq 305
OXp Ty OYp Ia 0Zy I'p
The measurement residual, corresponding to the left-hand side of Eq 272, is
5rA=ﬁA_ﬁA=ﬁA+ Re_\/(XA)Z“L(VA)Z"‘(ZA)2 Eq 306

Here h, denotes the altimetry system outpui.

Rather than treat the altimeter output as a measurement (asis donein this subsection), it isalso
possible to treat it as a constraint, asis done in Subsection 8.2.4.

Weight Matrix / Measurement Error Covariance — The weight matrix W (which is not
needed when the number of measurements and unknown variables are equal) is selected —
usually asthe inverse of measurement error covariance R. The latter is usually chosen asa
diagona matrix whose elements are the measurement error variances (i.e., the measurement
errors are assumed to be uncorrel ated).

deiag[afl...aﬁl...c;;t] Eq 307

8.2.3 Solution Process

The vector of measurement residuals (e.g., left-hand side of Eq 275) is assembled, one element
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per measurement, from Eq 299, Eq 303 and Eq 306. The Jacobian matrix J (asin Eq 275) is
assembled, one row per measurement, from Eq 298, Eq 301 and Eq 305. Except for notation, the
iteration processisidentical to that described in Subsection 8.1.2. For each iteration, the initial
estimates of the unknown variable x4, ¥4, Z4 and ty (if applicable) are employed to generate
updated estimates £, §4, 2, and &, (if applicable) using Eq 278. The process is terminated when
the change between the initial and updated estimates are insignificant.

When the iteration process has converged, the values for 24, 9,4, 2, and £ (if applicable) during
the last iteration are employed to determine the aircraft latitude, longitude and altitude using Eq
181.

8.2.4 Altitude Constraint

Rationale — In aviation applications, it’'s often the case that altimeter reading, which may or
may not be considered to be error-free, cannot be improved upon by slant-range and pseudo
slant-range measurements whose signal paths are essentially parallé to the earth’s surface.
Mathematically, altimeter information constitutes a constraint rather than a measurement. The
linearized measurement model corresponding to Eq 272 then is

c’SrA=Q6XA+£5yA+ﬂ52A+VaJt =0 Eq 308
'a 'a 'a

This equation can be solved for any one of the three unknown position variablesin terms of the
other two. Upon selecting, 6z, asthe variable to be found in terms of the other two position
coordinates, Eq 308 can be re-written as

ﬁchA +£5yA + Vg

r X r
5zp=——4 ZAA Z—Z—A5XA_¥5yA_—AVa|t Eq 309
A A A A
Ia

Slant-Range and Pseudo Slant-Range M easurements — By substituting for §z, using Eq 309,
the number of unknown variable is reduced by one, and the analysis can be re-cast in terms of the
remaining unknown variables. The linearized measurement models then become

- - Z,—2Z, T
od,; = od, OXp+ od, OYatVy _A—ZdI_AValt
s 2l di 2z Eq 310
op op ., zZ. —7Z.
6Py =%5XA+%5yA+C5A'[+Vpi——A o fa it
XA Ya pi Z,

In Eq 310, the partial derivatives of dri and ppi with respect to the two remaining unknown
position variables are
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adri — Xp — X _ Zp — %y ﬁ
aXA dri dri Zp
appi _ Xp — Xpi _ Zp— Zpi ﬁ
OXp dp dy  Za

adri — YA~ Vi _ ZpN — & h
ayA dri dri ZA
Eq 311
appi _ yA_ypi _ ZA_Zpih a
ayA dpi dpi ZA

The re-cast problem thus involves a Jacobian matrix having dimensions mx2 or mx3, where the
first dimension, m, isthe total number of slant-range and pseudo slant-range measurements, and
the second dimension is the number of remaining unknown variables. The measurement
residuals are computed as in Eq 299 and Eq 303.

Measurement Error Covariance — Assuming that the altimeter error is not neglected, the re-
cast problem aso involves a different measurement error covariance matrix. It has larger
diagonal terms and off-diagonal terms, and is afunction of both the aircraft’s and station’s
position. If the dant-range, pseudo slant-range and altimeter errors are assumed to be
uncorrelated, then the re-cast measurement error covariance matrix is:

Grzl 0

0 Grzz
R = :

0 0

Iphn—%41Zp— %

2
AT
drl drl dr2

2
[ZA_ ZrZJ
dr2

In— 21 Zpn— 2
drl dr2

Zpn—Z1 %0 ;. Zp—Z, lp"Ip

drl dpl dr2 dpl

i, d Eq 312

Solution Process — The iterative process for finding the unknown variablesis similar to that
described in the first paragraph of Subsection 8.2.3. A differenceisthat, at each iteration, the

value of §Z, isupdated using

625 = _¥5RA _£5§/A

Zp

Eq 313

Z
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When the iteration process has converged, the values for 24, 9,4, 2, and £y, (if applicable) from
the last iteration are employed to determine the aircraft latitude and longitude using Eq 181.

8.2.5 Dilution of Precision (DoP)

When the measurement are al the same type — e.g., lant-ranges or pseudo slant-ranges —
frequently it’s assumed that the measurement errors are independent and have the same variance,
02 .qs- Then the estimation error covariance for the unknown variables (Eq 292) is the product of
02 0qs and aterm (37 J)* that depends only on the measurement geometry.

Since, the formulation in this section utilizes the ECEF frame, in some instances it’s convenient
to rotate the Dilution of Precision (DoP) matrix (J7 J) into the local-level frame at the estimated
aircraft location using an expanded version of the direction cosine matrix of Eq 112:

—sin(4,) cos(i,) 0 0]
sin( -L,)cos(4,) sin(-L,)sin( cos(-L,) O
C = (—La)cos(i,) (—La)sin(4,) (—La) Eq 314
cos( —L,)cos(i,) cos(-L,)sin(i,) -sin(-L,) O
0 0 0 1

Thus the DoP matrix in the east-north-up frame at the estimated aircraft location is

M My, M, My
Me My My My

M =C(J73)'cT = Eq 315
Me My My My
m,, m,, M, M

Ate Atn AtAt

The fourth row and column of C and M are not present when pseudo slant-range measurements
are not involved. Various DoP quantities are computed from M, including Horizontal Dilution of
Precision (HDoP), Vertica Dilution of Precision (VDoP), Time Dilution of Precision (TDoP)
and Geometric Dilution of Precision (GDoP):

HDoP = ./m_ +m_ VDoP = m,,
Eq 316
TDoP = mAtAt GDoP = \/mee + mnn + muu + mAtAt q

8.2.6 Remarks

Multilateration Application — An airport surface is a small enough region that the earth can be
treated as flat within its perimeter, and a tangent plane coordinate system can be used. Also,
aircraft on the surface can be assumed to be at the same altitude. Thus the multilateration pseudo
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slant-range equations can be processed with two position variables. If low-altitude aircraft are
involved, altitude information provided by aircraft can be employed for the vertical dimension,
and combined with the multilateration horizontal solution.

GPS Application — GPSis ‘at the other end’ of the size scale from airport multilateration. The
“ground stations” are satellites in orbit approximately 10,900 NM above the surface — about
three times the radius of the earth. At this scale, and using only pseudo slant-range measure-
ments, the ECEF frame is the natural setting.

Solution Option — When a set of pseudo slant-range measurements (Eq 300) is being
processed, a solution method is to subtract one pseudo slant-range from the others. Analytically,
this reduces the number of measurement equations by one, eliminates A¢ as an unknown variable
and increases the measurement error per equation. The hyperbolic geometry associated with
range differences can provide insights into regions where a set of stations provides (and does not
provide) effective measurements (e.g., Section 7.3). However, this solution method is not
preferred for numerical results; knowing the clock offset and associated TDoP may be useful in
some situations, and the additional computational cost isinsignificant.

8.3 Solution Employing Spherical Coordinates (Latitude/Longitude/Altitude)

8.3.1 Introduction / Rationale

As shown in Chapter 7, Cartesian coordinates and range-type measurements result in simple
measurement equations. However, in the context of much of aircraft navigation — involving
station-aircraft distances of hundreds of miles— ECEF coordinates have important limitations:

= |In contrast with range-type measurements, ECEF coordinates do not handle angul ar
measurements well — e.g., the aircraft azimuth or geocentric angle from a station

= Each of the unknown ECEF variables x,, y4, z4 1safunction of the aircraft latitude,
longitude and altitude, complicating the placing of restrictions on the latter, more natural
set of unknown variables.

A second reason to utilize spherical coordinatesin an LLS solution is noted in Subsection 8.1.4,
under the title “ Approximate Jacobians Useful”. Accurate solutions can be readily found when
the Jacobian matrix elements are approximations (rather than exactly equal) to derivatives of the
measurement equation. Thisis particularly important when the measurements pertain to an
ellipsoidal earth; then Jacobian elements for a spherical earth are usually satisfactory.

In this section, it is assumed that station S is has known latitude Ls, longitude 4s and altitude hs.
It issimilarly assumed that the aircraft A is has unknown latitude La and longitude 44 and
possibly unknown altitude ha. It is further assumed that initial estimates for the unknown aircraft
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coordinates L, A4, h, and the time of transmission £y by A or S (if applicable) are available.

8.3.2 Measurement Equations

Slant Range M easurement — The slant range between station S and aircraft A can be
expressed in terms of La, 4a and ha by substituting Eq 65 into Eq 159. Thus the nonlinear slant
range measurement model is:

aAs = das +Vis
dps = 4(R +ha YR+ hs)sin?(2 0,6 )+ (h — hs)? Eq 317

= \/4(Re +ha (R + hs)[smz(%(LA - Ls))"‘ cos(L,) cos(Ls) Sinz(%(/lA _/15))]"‘ (hy—hs)?

Here d,s denotes the error-corrupted measurement, d ¢ denotes the error-free slant range and vis
denotes the additive measurement error.

The partial derivatives of daswith respect to the unknown aircraft position variables
(corresponding to the partial derivativesin Eq 272) are

0dps _ (Re + ha )R +hs)

[sin(L,— L) 2sin(L,) cos(Lg) sin2(2 (2, - 25))]

0dns _ (Re + haXRe + hs)cos( L) cos(Lg) sin(, —A4s) Eq 318
OAn das

s _ 2Reths)lgna((L, — 1))+ cos(Ly) cos(Le) Sn?(2(ha - 26 )]+ ~L- (s o)
ahA dAS dAS

The measurement residual, corresponding to the left-hand side of Eq 272, is

Here d,s denotes the output of aranging system (e.g., DME) and d s denotes the initial estimate
for d,s, computed from Eq 317 using the initial values of the unknown variables Ly, A4, h,.

Pseudo Slant-Range M easur ement — The pseudo slant-range between station S and aircraft A
can be expressed in terms of La, 4a and ha by modifying Eq 317 to include the clock
synchronization offset At. Thus the nonlinear slant range measurement model is:

Pas = Pas tVps

Eq 320
Pas =dast+Cly

Here p 45 denotes the error-corrupted measurement, p,s denotes the error-free pseudo slant-range
and vps denotes the measurement error.

The partial derivatives of p,s With respect to the unknown variables (corresponding to the partial
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derivativesin Eq 272) are
0P as _ 0d s OPps _ 0dps OPas _ Odpg 0P as

oL, oL, oA, 04, oh,  oh, o, Eq321
The measurement residual, corresponding to the left-hand side of Eq 272, is
SPas = Pas — Pas Eq 322

Here p 45 denotes the output of a pseudorange station and p 4 denotes theinitial estimate for p,s,
computed from Eq 320 using the initial values of the unknown variables L, A4, h, and At.

Altitude M easurement — The measurement model for the altitude of the aircraft A issimply:

~

ha = ha +Vy, Eq 323

Here h, denotes the error-corrupted measurement, h, denotes the error-free atitude and Var
denotes the measurement error.

The partial derivatives of h, with respect to the unknown variables (corresponding to the partial
derivativesin Eq 272) are
I _g M _g O _q Eq 324
oL, OAn oh,

The measurement residual, corresponding to the left-hand side of Eq 272, is

Here h, denotes the output of a pseuodrange station and h, denotes the initial estimate for h,.

Azimuth M easurement — The azimuth angle wass of the aircraft A with respect to station S is
expressed in terms of La and Aa by Eq 71. Thus the nonlinear measurement model is:

Vais = Yais Vs

cos(L,)sin(A, — Ag) J Eq 326

Vais= arCtan(Si n(L,)cos(Lg) —cos(L,) sin(Lg) cos(A, — As)

Here v,,s denotes the angle measurement error.

The partial derivatives of yas 0 with respect to the unknown aircraft position variables (corres-
ponding to the partial derivativesin Eq 272) are
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Was __ Sin(L ) Sin(4, — As)Den|tan(y »/s)]
oLy (Numtan(y us)]) +(Den[tan(y o))’
(cos(L,) cos(Ls) + sin(L ,) Sin(Lg) cos(4, — As) INum[tan(y ,/s)]
(Num[tan(y »/s)])° + (Den[tan(y /s)])?
OV /s cos(L 5) cos(A, —lS)Den[tan(q/A,S)]

= Eq 327
Oka  (Numltan(y »/5)])" +(Denltan(y »/s)])° |
,,,,,, _ co3(L)sin(Ls)sin(A, —As)Num[tan(y »/s)]
(Numltan(y »,s)])” + (Den[tan(y ;)]
aV/A/S =0
ohy
In Eq 327:
Num{tan(y »,s)] = cos(L,)Sin(A, —4s) Eq 328
Denftan(y 5, s)]1=sin(L4) cos(Ls) — cos(L o) sin(Ls) cos(A, — As)
The measurement residual, corresponding to the left-hand side of Eq 272, is
MWpys=Vns— Vns Eq 329

Here, /s denotes the output of an azimuth measurement system (e.g., VOR) and Yu /s denotes
theinitial estimate for 14,5, computed from Eq 326 using the initial values of the unknown

variablesL, and 4.

Geocentric Angle M easurement — The geocentric angle (or spherical range) between station S
and aircraft A can be expressed in terms of La and 4a using Eq 65. Thus the nonlinear slant range
measurement model is:

Ops = Oas + Vs

Eq 330
0, = 2arcsin(\/sin2(%(LA—LS))+ cos( L ) cos( LS)sinz(%(/lA—/IS))) q

Here 8,5 denotes the error-corrupted measurement, 8,5 denotes the error-free geocentric angle
and vgs denotes the measurement error.

The partial derivatives of 6, with respect to the unknown aircraft position variables
(corresponding to the partial derivativesin Eq 272) are

00ps _ . 1 [sin(LA— Ls)— 2sin(L,) COS(Ls)SinZ(%()“A_)“S))]
oL, SiN(Oxs) Eq 331
00ps 1 !

cos(L ) cos(Lg) Sin(A, — Ag)
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The measurement residual, corresponding to the left-hand side of Eq 272, is

Here 8,5 denotes the output of a measurement system and 8, denotes the initial estimate for
6,5, computed from Eq 330 using the initial values of the unknown variables L, and 4,.

8.3.3 Dilution of Precision (DoP)

The concept of Dilution of Precision (DoP) applies to the spherical-earth framework as well asto
the Cartesian/rectangul ar framework. Thus, the discussion in Subsection 8.2.5 isrelevant here as
well.

A minor difference in the spherical-earth framework is that the horizontal variables are taken to
bedL, and cos(L,)81,, to maintain consistency in horizontal distance changes for different
azimuth angles. To accommodate this adjustment, in the Jacobian matrix employed for DoP
calculations, partial derivations with respect to A4 are divided by cos(L,) — e.g.,

DB becomes 1

o, codL,) o,

Eq 333

Here 0sa denotes the geocentric angle between station S and aircraft A. Examples in Subsection
8.4.4 and 8.4.5 reflect this change.

8.3.4 Remarks

The measurement residuals vector (e.g., left-hand side of Eq 275) is assembled, one element per
measurement, from Eq 319, Eq 322, Eq 325, Eq 329 and Eq 332. The Jacobian matrix J (alsoin
Eq 275) is assembled, one row per measurement, from Eq 318, Eq 321, Eq 324, Eq 327 and Eq
331. Theiteration process for determining a solution is identical to that described in Subsection
8.1.2. For each iteration, the initial estimates of the unknown variables L, A4, h, and At (if
applicable) are employed to generate updated estimates L,, A4, h, and At (if applicable) using Eq
278, which becomethe initial estimates for the next iteration. The process is terminated when the
change between the initial and updated estimates are insignificant.

Advantages of using L4, 14, h, and ty (if applicable) as the unknown variables include:

= Almost any form of measurement equation can be accommodated, including some that
are not compatible with Cartesian coordinates:

(1) Those extending the spherical earth model in order to better represent the ellipsoidal
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shape of the earth;
(2) Measurements of the aircraft azimuth relative to a station; and
(3) Measurements of the geocentric angle between the aircraft and a station

= Any oneor more of thevariables L4, A4, h, and ty (if applicable), but typically h,, can be
constrained to itsinitial value by omitting its perturbed value from the variables to be
estimated

Historically, sextants provided geocentric angle measurements to the nadir of a star. During the
twentieth century, Loran-C, Omega, Decca and other radionavigation systems provided
measurements of the geocentric angle between a user and their low-frequency transmitters.

8.4 Example Applications

8.4.1 Example 8 Continued: Slant-Range Measurement Systems in Flatland

This subsection continues the analysis, begun in Subsection 7.9.1, of asurveillance or navigation
system operating in Flatland. The systems employs ground stations which can be used to
measure the slant-range to an aircraft. The stations are separated by one Base Line Unit (BLU).
The analysisin this subsection is focused on Horizontal Dilution of Precision (HDoP), a measure
of system accuracy. The methodology employed is described in Subsection 8.2.5, and utilizes the
partial derivativesin Eq 298 (without the z-component). Upon carrying out the straightforward
calculations involved, the HDoP contours are shown in Figure 41.

In Figure 41, the left-hand side pertains to a two-station configuration, and the right-hand side to
three stations. The cal culations employed assumed each station’s signal could be received up to
3.5BLUsinrange. The HDoPs for both configurations are symmetrical about avertical axis, and
thus can be truncated to the “west”.

Considering the two-station configuration, there is strong directionality to the HDoP pattern.
Coverage is best perpendicular to the baseline, and non-existent along the baseline extensions
(where the solution is unstable). Using HDoP equal to five as a criterion, the service area can be
approximated by a7 BLU x 1 BLU “north-south” rectangle bordered by four right triangles with
sides of 3BLU and 1 BLU. Thus the service area can be approximated by:

(7x1)+4x (¥2x3x1)=13BLU?

The three-station configuration eliminates the unstable solutions present in the two-station case.
As aresult, the service area (maximum HDoP equal to five) isroughly circular. There is some
directionality (partly due to the assumed range limitation) but it is not pronounced. Thus the
service area is approximately 7 3.5 BLU x 3.5 BLU = 36 BLU?.

Subsection 8.4.3 contains a more detailed analysis of service areas.
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(a) Two Stations (b) Three Stations
Figure 41 HDoP Contours for Slant-Range Measurement Systemsin Flatland

8.4.2 Example 9 Continued: Pseudo Slant-Range Measurement Systems in Flatland

This subsection continues the analysis, begun in Subsection 7.3, of a surveillance or navigation
system operating in Flatland. The system employs ground stations which are used to measure the
pseudo slant-range to an aircraft, and are separated by one Base Line Unit (BLU). This sub-
section is focused on Horizontal Dilution of Precision (HDoP), a measure of accuracy. The
methodology employed is described in Subsection 8.2.5, and utilizes the partial derivativesin Eq
301 without the z-component. Upon carrying out the straightforward cal culations involved, the
HDoP contours are shown in Figure 43.

In Figure 43, the left-hand side pertains to a three-station equilateral triangle configuration, and
the right-hand side to four stations arranged in a square. The cal culations assume that each
station’s signal can be received up to 3.5 BLUs in range. HDoPs for both configurations are
symmetrical about avertical axis, and thus can be truncated “to the west”. Two facts concerning
Figure 43 are immediately evident
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(a) Three-Station Equilateral Triangle

(b) Four-Station Square

Figure 43 HDoP Contours for Pseudo Slant-Range M easurement Systems in Flatland

= Coverage of anetwork of pseudo slant-range ground stations does not extend much past
the perimeter polygon formed by connecting the stations

= Within the perimeter polygon, pseudo slant-range systems HDoPs are comparable to

those of a system that measures slant ranges.

Asisthe case for dant-range systems, using a
redundant ground station eliminates unstable solutions
— inthis case, along the baseline extensions for a
station triad. A redundant station also provides a small
increase in the service area— approximately from a
circle of radius of %2BLU to acircle of radius %2 BLU.

An alternative four-station configuration, more suited to
situations when as much coverage as possible is sought,
is the four-station Wye configuration (Figure 42). In
this case, a BLU isthe distance from the center station
(which served as the Master in certain radionavigation
systems) to each of the three outlying, secondary
stations.
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8.4.3 Interpretation: Pseudo vs. Real Slant-Range Systems

Service Area Comparison — Figure 44 is a quantitative comparison of the service areas for the
five system configurations addressed in Subsections 8.4.1 and 0, assuming a common baseline
length. Figure 44 indicates that a navigation or surveillance system utilizing real slant-range
measurements will have a substantially larger (e.g., ten times) service area than one

utilizing pseudo slant-range measurements, assuming that common station baseline lengths are
used. However, having equal or comparable baselines for different systemsis only a convenience
for analysis purposes, and is not a constraint.

Siting Flexibility — A more meaningful conclusion that can be drawn from this analysisis that
real dant-range systems have greater station siting flexibility. Pseudo slant-range systems must
have station locations that almost surround the service area, while rea dant-range systems do
not. To address this limitation, pseudo slant-range systems have been built with extremely long
baselines. The ultimate system in this regard is GPS, which has its stations on satellites, resulting
in stations separated by on the order of 20,000 NM.

GPS Service Area— Interestingly, GPS users on or near the earth’ s surface are outside the
perimeter of the polygonal surfaces formed by the stationsin use. Instead, GPS users are in the
“border area’ adjacent to and near the center of the baselines connecting the satellites with the
lowest elevation angles (Figure 30 shows the Flatland equivalent).

Geometry Advantage of Range M easur ements — Figure 45 helps explain why HDoPs for
pseudo slant-range systems degrade much more rapidly with distance from the stations than do
HDoPsfor real dant-range systems. The figure shows two stations and the circular LOPs they

Figure 44 Service Area with HDOP < Max. HDOP for Five System Concepts
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would generateif the stations were used for real slant-range measurements. The LOP crossing
angles starts at zero on the baseline, where the
solution is unstable. Moving perpendicular to
the baseline, the crossing angle becomes useful
within perhaps one-eighth of the baseline
length, and remains useful to about 3.5
baseline lengths (outside of the limits of the
figure) where the crossing angle becomes too
shallow. An important aspect of thisfigureis
that the separation between LOPs for each
station remains constant with distance from the
station.

Figure 45 also shows afamily of LOPsfor a
pair pseudo slant-range stations. If therewere ~ Figure45 LOPsfor Slant-Rang and Pseudo
two pairs of stations, degradation in their Slant-Range Systems

crossing angles with distance from the stations

would be evident (e.g., Figure 29). However, a second source of accuracy degradation is
involved for pseudo slant-range systems: the LOPs become further apart with distance from the
stations, much as the LOPs for an angle measurement system. This divergence of the LOPs
limits the service area of a pseudo slant-range system to, roughly, the region surrounded by the
stations.

8.4.4 Example 10 Continued: Three Pseudo Spherical-Range Stations

I ntroduction — This subsection continues the example, begun in Subsection 7.9.3, of an aircraft
that utilizes three stations in the U.S. Northeast Loran-C chain (M at Seneca, NY; W at Caribou,
ME; and X at Nantucket, MA) for navigation. Two topics are addressed which are relevant to the
material in this chapter: Horizontal Dilution of Precision (HDoP) and accounting for the earth’s
ellipticity using the Gauss-Newton LLS technique.

HDoP Contours— While more commonly used for rectangular geometries (e.g., Subsections
8.4.1-8.4.3), Horizontal Dilution of Precision (HDoP) is also applicable to spherical geometries
— see Subsections 8.2.5 and 8.3.3. Here, the modified Jacobian matrix is

00 Oy 1 (80, 0O
oL, oL, cos(LA)( o0, a/IAj
00, 0y 1 (80, 00,
oL, dL, cos(LA)( o, a/IAj

Eq 334

JDop=
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HDoP isthen given by

-1

HDOP:\/(‘]EOP ‘]DOP) B

+ (J [T>0P Jpop )
1

Eq 335
22

Results of this calculation are shown in Figure 46. Thisfigure is qualitatively similar to Figure
43(a), which applies to atwo-dimensional Cartesian setting. The information in Subsection 7.6.3
concerning extraneous and ambiguous solutions is relevant here as well.

Figure 46 HDOP Contoursfor a Triad of Pseudo Spherical-Range Stations

Need to Consider Ellipsoidal Earth —If the earth were a sphere, Razin’s algorithm (Sec-

tion 7.7) could be used without modification. However, the earth is better modeled as an
ellipsoid of revolution (Section 2.2). Since errors resulting from modeling the earth as a sphere
(ellipticity error) tend to increase with distance, they can become important for accurate, long-
range systems. For example, consider four airport locations. LaGuardia, NY (LGA); Boston, MA
(BOS); Portland, ME (PWM); and Bangor, ME (BGR). The path lengths between the three
ground stations and these airports vary from 81.0 NM (X and BOS) to 444.3 NM (W and LGA);
the average is 233.5 NM. Based on (a) the distances involved, (b) the “rule of thumb” for the
spherical earth approximation that the distance error is roughly 0.3% of the distance, and (c) the
Coast Guard’s Loran-C accuracy goa of 0.25 NM, the effect of mis-modeling the earth’s
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geometry should be addressed.

Table 11 shows the position error resulting from applying Razin’s algorithm to range-differences
generated using Vincenty’ s algorithm (Subsection 2.2.3), rather than those for a spherical earth
(as assumed by the algorithm). The ellipticity error values, between 0.38 NM and 1.13 NM, are

consistent with the 0.3% of distance “rule of thumb”.

Table 11 Example of Ellipticity Errorsfor Razin’s Algorithm

Fi True Lati- Lat Error* | True Longi- Lon Error* Distance
tude (deg) (deg) tude (deg) (deg) Error (NM)
LGA 40.7772500 -0.0062000 | -73.8726111 0.0011000 0.38
BOS 42.3629418 -0.0006300 | -71.0063931 -0.0102000 0.45
PWM 43.6456435 0.0036400 | -70.3086164 -0.0148100 0.68
BGR 44.8074444 0.0061100 | -68.8281389 -0.0250500 1.13

* True minus estimated coordinate value

Application of LLS — The LLS technique is used to improve the solution accuracy of Razin's
algorithm. Following Subsection 8.1.2, each spherical-range difference measurement is com-
puted using Vincenty’s algorithm” for the distance s(S,A) along the surface of the ellipsoid
between astation S at (Ls, As) and aircraft A at (La, 4a). Thefirst line of Eq 269 becomes

z =sM,A - W, A
2 =9M,A - IX,A)

The measurement equation for each spherical-range difference also employs Vincenty's
agorithm. However, the aircraft location replaced by the current estimate A of its location. Thus
the second line of Eq 269 becomes
LMW, X, A) =s(M,A) —s(w,A)
(MW, X,A) =s(M,A) —s(X,A)

Eq 336

Eq 337

The Jacobian (Eq 276) is composed of the partia derivatives of the measurements with respect to
the unknown variables — La and A in this case. However, it is not necessary that the elements
of the Jacobian used in computations be exact derivatives of the measurement equation. Because
the LLS technique is recursive, approximations of the derivatives are sufficient (Subsec-

tion 8.1.4). Thisisfortuitous, because Vincenty’s techniqueis not an equation in the analytic
sense, but arecursive procedure; expressions for its derivatives cannot be computed easily.

In place of the derivatives with respect to La and Aa of the distance along the surface of an ellipse
for Vincenty’s algorithm, scaled derivatives of the geocentric angle #sa are used. Thus, the

" Selection of Vincenty’s algorithm was based on the availability of validated computer code. Other methods could
have been used.
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Jacobian is computed using Eq 331

(S A _
oL, i

004,
oL,

00
oA

(S A _

oA i

Eq 338

Any reasonable value for Re can be used; here the value following Eq 23 is employed.

The LLS processisinitialized using values for L, and 1, found using Razin’ s algorithm for a
spherical earth. The perturbation corrections 61, and 51, are found using Eq 279, since aweight
matrix W is not used in the absence of redundant measurements.

Calculation of Results— Carrying out the LLS process for five iterations yields a sequence of
increasingly accurate position estimates for four airport locations. The associated residual errors
are shown in Table 12. Convergence of the LLS techniqueisrapid in this situation. Each of the
first four iterations reduces the error by a minimum factor of 76; the average latitude or longitude
error reduction by one iteration is afactor of 539. The fifth iteration appears to approach the
limits of machine precision (calcul ations were done in double precision).

Table 12 Gauss-Newton Residual Error for Spherical-Range Difference M easurements

Iter- LaGuardia (LGA) Boston (BOS)

ation Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)
0 -0.006,204,297,044,61 | 0.001,098,559,038,59 | -0.000,627,450,377,91 | -0.010,195,811,988,10
1 -0.000,020,505,170,77 | -0.000,001,816,926,14 | -0.000,008,177,955,56 | 0.000,045,180,746,10
2 -0.000,000,027,423,43 | 0.000,000,018,116,62 | -0.000,000,014,339,68 | -0.000,000,157,274,01
3 -0.000,000,000,083,93 | -0.000,000,000,062,20 | -0.000,000,000,032,53 | 0.000,000,000,565,15
4 0.000,000,000,000,01 | 0.000,000,000,000,29 | -0.000,000,000,000,04 @ -0.000,000,000,002,02
5 0.000,000,000,000,01 | -0.000,000,000,000,01 | 0.000,000,000,000,01 | 0.000,000,000,000,03

Iter- Portland (PWM) Bangor (BGR)

ation Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)
0 0.003,642,517,508,14 | -0.014,811,819,575,26 | 0.006,109,544,331,55 | -0.025,054,253,476,51
1 0.000,001,297,312,66 | 0.000,072,399,332,72 | 0.000,018,565,242,40 | 0.000,160,340,474,51
2 -0.000,000,016,162,69 | -0.000,000,244,802,54 | -0.000,000,084,834,17 | -0.000,000,437,980,97
3 0.000,000,000,041,82 | 0.000,000,000,817,39 | 0.000,000,000,213,29 | 0.000,000,001,148,99
4 -0.000,000,000,000,15 | -0.000,000,000,002,72 | -0.000,000,000,000,57 | -0.000,000,000,003,05
5 0.000,000,000,000,01 | 0.000,000,000,000,04 | -0.000,000,000,000,01 | 0.000,000,000,000,00

* True minus estimated coordinate value

Useful Solution Precision — Aside from demonstrations of the LLS technique (such asthis), in
practice, when applied to Loran-C measurements, one or two iterations would generaly be
sufficient. Even with error-free measurements (e.g., as can be assumed during system analyses),
there usually is no point in computing an aircraft’s position to greater precision than that to
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which the ground stations are known. Loran-C station locations are known to 0.001 arc second,
or approximately 0.1 ft, or 0.000,000,3 deg (Ref. 51), which is achieved with two iterationsin
the calculations employed here. For real-time operational use, if one optimistically takes the
Loran-C measurement accuracy to be 10 ft (it is often quoted as “ 100 ft or better”), then
computing the aircraft location to a precision of 0.000,03 deg would be sufficient.

Related Work — Razin’'s paper (Ref. 43) recognized the need to modify a solution to the ‘two
spherical-range difference’ problem based on an assumed spherical earth, and contained a
technique to do so. References 48 and 49 did aswell. This solution is closest to that in Ref. 48.

8.4.5 Example 11 Continued: Two Pairs of Pseudo Spherical-Range Stations

This subsection is a continuation of the example, begun in Subsection 7.9.4, concerning two
distinct pairs of pseudo spherical-range navigation stations. For such a configuration, the solution
algorithm for a spherical earth is described in Section 7.8. The elipticity error inherent in a
solution that assumes a spherica earth can be corrected by the Gauss-Jordan LL S technique
demonstrated in Subsection 8.4.4. However, that topic is not pursued here.

Since two distinct pairs of stationsis not as common as atriad of stations, Horizontal Dilution of
Precision (HDoP) is utilized to obtain insight into this configuration’s performance. The
Jacobian matrix and HDoP expressions follow directly from Eq 334 and Eq 335, respectively.
Figure 47 depicts HDoP contours for the four stations and seven airport shown in Figure 38. For
all airports depicted, HDoP is 10 or less. As expected, the solution becomes unstable along the
extensions for the baselines connecting a station pair (Seneca-Nantucket and Dana-Malone).
However, the solution is not unstable along the extensions for the paths connecting stations from
different chains. For this example, there is aregion where HDoP exceeds 50 close to the Dana-
Seneca path, as the hyperbolic LOPs for the two chains are nearly parallel in this area.

As noted earlier, navigation and surveillance systems are devel oped/deployed to provide service
in adefined area. In the case of the U.S. East Coast Loran-C Chain, the station at Carolina
Beach, NC, was intended to support service in much of the U.S.Southeast. However, stations are
occasionally be out-of-service. In such a circumstance, cross-chaining was an advanced
capability that enabled operations to continue during a station outage (for appropriately equipped
aircraft).
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Figure 47 HDoP Contours for Two Pairs of Pseudo Spherical-Range Stations

A second advanced capability (relative to traditional Loran-C) was employing redundant stations
to improve measurement geometry. The Dana station was in fact dual-rated: it was the master for
the Great Lakes Chain and a secondary for the East Coast Chain. Figure 48 depicts the HDoP
contours when measurements by the Seneca-Dana pair are used with those for the Seneca-
Nantucket and Dana-Malone pairs. HDoPs adjacent to the Seneca-Dana baseline are improved
markedly (e.g., six of the seven airports shown have HDoPs |less than two), while HDoPs for the
area further to the southeast are only marginally improved.

The geographic size of service areas involved in Figure 47 and Figure 48 are quite large. For the
two figures, HDoP is 5 or less for approximately 798,493 (Figure 47) and 1,165,883 (Figure 48)
sguare nautical miles, respectively. The major reason for large coveragesis use of long baselines:
for Dana-Malone, approximately 544 NM; and for Seneca-Dana, approximately 510 NM.
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Figure 48 HDoP Contoursfor Three Pairs of Pseudo Spherical-Range Stations

8.4.6 Example 12 Continued: Wide Area Multilateration (WAM)

I ntroduction — This subsection continues the example, begun in Subsection 7.9.5, of aWAM
system that utilizes aircraft atitude reports and pseudo slant-range measurements at ground sites
on three airports: Boston, MA (BOS); Manchester, NH (MHT); and Hartford, CT (BDL). The
analysisin Subsection 7.9.5 assumes a spherical earth; this subsection accounts for the earth’s
élipticity using the Gauss-Newton LLS technique.

Equations Employed — Following Subsection 8.1.2, each slant-range difference measurement
is computed using Appendix Section 9.3 (particularly Eq 350) for the slant-range d(S,A)
between a station S at coordinates (Ls, 4s,hs) and aircraft A at coordinates (La,Za,ha). Thefirst
line of Eq 269 thus becomes

z, =d(BOS A) — d(MHT, A)

7, = d(MHT, A) — d(BDL, A) =q339

The measurement equation for each slant-range difference also employs Eq 350. However, the
aircraft location replaced by the current estimate A of its location. Thus the second line of Eq
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269 becomes

f1(BOS, MHT,BDL,A) = d(B0S,A) — d(MHT, A)
fo(BOS, MHT,BDL,A) = d(MHT, A) — d(BDL, A)

Eq 340

The Jacobian (Eq 276) is composed of the partial derivatives of the measurements with respect to
the unknown variables— La and Aa in this case. It is not necessary that the el ements of the
Jacobian used in LLS computations be exact derivatives of the measurement equation. Because
the LLS technique is recursive, approximations of the derivatives are sufficient. Thus, the
derivatives of dlant-range with respect to La and 4a are computed using the corresponding
expressions for a spherical earth model (Eq 318).

The LLS processisinitialized using values for L, and 1, found using the spherical earth model
(Section 7.4 and Subsection 7.9.5). The perturbation corrections 5L, and §1, are found using Eq
279, since aweight matrix W is not used in the absence of redundant measurements.

Results— Carrying out the LLS process for five iterations for four airport locations yields a
sequence of increasingly accurate position estimates. Their residual errors are shown in Table 13.
“Iteration 0" corresponds to the solution based on a spherical-earth model, which is used to
initialize the iteration — the table provides its elipticity error. For these four locations, the
average dlipticity error is 1,204 ft; the maximum (for BAF) is 2,122 ft.

Table 13 Gauss-Newton Residual Error for WAM Slant-Range Difference Measurements

Iter- Westfield-Barnes Regional (BAF) Dillant-Hopkins, Keene (EEN)

ation Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)
0 -0.001,301,968,265,58 | 0.007,647,699,521,99 | -0.001,104,331,349,71 | 0.003,587,102,019,89
1 -0.000,023,346,121,51 | -0.000,083,388,490,38 | 0.000,003,508,767,16 | -0.000,020,825,500,81
2 0.000,000,023,629,92 | 0.000,000,077,274,69 | -0.000,000,013,518,20 | 0.000,000,091,899,49
3 -0.000,000,000,019,79 | -0.000,000,000,082,41 | 0.000,000,000,068,21 | -0.000,000,000,412,05
4 0.000,000,000,000,03 | 0.000,000,000,000,08 | -0.000,000,000,000,27 | 0.000,000,000,001,82
5 0.000,000,000,000,01 | 0.000,000,000,000,00 | 0.000,000,000,000,00 | -0.000,000,000,000,01

Iter- Lawrence Municipal (LWM) Hanscom Field, Bedford (BED)

ation Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)
0 -0.001,215,745,248,65 | -0.003,554,998,523,51 | -0.001,341,677,997,11 | -0.001,310,031,212,80
1 0.000,003,288,339,05 | 0.000,029,318,295,92 | -0.000,003,587,543,95 | 0.000,008,337,514,17
2 0.000,000,018,603,13 | -0.000,000,113,464,86 | -0.000,000,004,694,52 | -0.000,000,028,663,83
3 0.000,000,000,023,39 | 0.000,000,000,519,98 | -0.000,000,000,019,15 | 0.000,000,000,097,83
4 0.000,000,000,000,22 | -0.000,000,000,002,11 | -0.000,000,000,000,02 | -0.000,000,000,000,33
5 0.000,000,000,000,00 | 0.000,000,000,000,01 | -0.000,000,000,000,01 | 0.000,000,000,000,00

* True minus estimated coordinate value
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In this example, convergence of the LLS technique is rapid. Each of thefirst four iteration steps
reduces the error by a minimum factor of 50; the average latitude or longitude error reduction by
oneiteration is afactor of 426. The fifth iteration appears to approach the limits of machine
precision. This performance is consistent with that for pseudo spherical-range measurements
addressed in Subsection 8.4.4.

Two iterations would be sufficient for virtually all real-world applications, as the survey error of
most locations, including those of airports, exceeds 107 deg.
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9. APPENDIX: RELATED SPECIALIZED TOPICS

9.1 Aircraft Altitude and Air Data Systems

9.1.1 Meanings of “Altitude”

This memorandum is primarily mathematical, and — except for application examples — the
equations involve only one notion of altitude: geometric height above an assumed perfectly
spherical earth, measured along aradial from the earth’s center. However, when interpreting the
results of calculations for applications, the analyst must be aware that there are multiple
meanings of altitude. The differing meanings are of concern in aviation, because aircraft

(@) utilize barometric altimeters, but (b) must also main a vertical geometric distance above
terrain. Figure 49 illustrates several notions of vertical distance above the earth, or “altitude”:

Figure 49 Different Notions of Altitude

= Height — or, better, Height Above Terrain (HAT) — isthe vertical distance between
an aircraft (or the top of astructure on the ground) and the terrain beneath it

= Altitude — or, better, Altitude MSL (above Mean Sea Level) — isthe vertica
distance between an aircraft and mean sealevel. Generally, aircraft use atitude MSL
interminal areas/at low altitudes. To do so, the aircraft’s altimeter is adjusted for the
current local MSL pressure by applying the “QNH” correctiont, which is broadcast
by alocal airport.

= Hight Level — Vertical distance between an aircraft and the point below where the
sea-level standard day pressure occurs (29.92 inches of mercury). Inthe U.S,, flight

T QNH is not an acronym. It is one of a collection of standardized three-letter message encodings, all of which start
with the letter "Q". They were initially developed for commercial radiotelegraph communication, and were later
adopted by other radio services, especially amateur radio. Although created when radio used Morse code exclu-
sively, Q-codes continued to be employed after the introduction of voice transmissions.
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levels are used above the transition altitude of 18,000 ft.*
= Elevation — Height of the terrain above MSL.

These definitions are reasonably standard, but are not universally used. Documents related to
aircraft procedures are particularly carefully to adhere to these definitions.

9.1.2 Aircraft Pitot-Static System

Aircraft certified under Federal Aviation Regulations® Parts 91, 121 and 135 are required to be
equipped with a pitot-static system. A pitot-static system utilizes the static air pressure (collected
at the static port), and the dynamic pressure due to the motion of the aircraft through the air
(collected by the pitot tube) — illustrated in Figure 50, from Ref. 54. These combined pressures
are utilized to provide the pilot with three indicators critical to operation of the aircraft:

= Airspeed indicator (ASl)

= Altimeter

=  Vertical speed indicator (VSI).

Figure50 Basic Aircraft Pitot-Static System

* The figure, from Wikipedia, was drawn from a European perspective. It has (a) alower transition altitude, and
(b) the QNH quantified in hectopascals (hPa) rather than inches of mercury.

§ The Federal Aviation Regulations, or FARs, are rules governing all aviation activitiesin the United States. The
FARs are part of Title 14 of the Code of Federal Regulations (CFR).
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9.1.3 Barometric Altimeter Temperature Sensitivity

The basic design of aircraft barometric altimeters does not provide a means for compensating for
deviations from the assumed standard day sealevel temperature of 15 °C (59 °F)"". Such a
deviation results in an uncompensated altitude error that: (a) is the same for al aircraft at the
same altitude, and (b) does not fluctuate. Temperatures that are less than the standard 15 °C
cause the altimetry system to report a higher atitude than is true. Conversely, temperatures that
are greater than the standard cause the atimetry system to report alower atitude thanistrue
(Figure51).

WARM STANDARD COLD

Indicated A Indicated Indicated
Altitude Altitude b Altitude

PNy aniL
apgy ani|

epmnly ensy

v \d

Figure51 Effect of Non-Standard MSL Temperature on Barometric Altimeter Indication

Altitude errors due to uncompensated temperature deviations from the standard value are a
particular concern for low-altitude operations. The amount is quantified by the ICAO Cold
Temperature Error Table, which is reproduced in Ref. 55.

9.1.4 Vertical Speed Indicator Temperature Sensitivity

The Vertical Speed Indicator is subject to the same temperature sensitivity as the barometric
altimeter. Most pertinent to VNAV approaches: Ref. 36 cautions: “Because of the pronounced
effect of nonstandard temperature on baro-VNAYV operations, VNAV approaches will contain a
temperature restriction below which use of the approach is not authorized.” For example, the
RNAYV (GPS) approach plate for Logan Internationa Airport (BOS) runway 04R that was valid
for 07 Feb 2013 to 07 March 2013 had this statement: “Uncompensated Baro-VNAYV systems,
LNAV/VNAV NA [Not Available] below -13 °C (9 °F) or above 43 °C (109 °F)”.™

" The correction applied by apilot in aterminal area, utilizing Automatic Terminal Information Service (ATIS) or
Automated Weather Observation System (AWOS) information, only accounts for atmospheric deviations from the
standard day pressure at sealevel.

" The low-temperature restriction ensures that the actual vertical path flown is obstacle-free. The high-temperature
restriction reduces the likelihood that at Decision Height, the aircraft will be above the minimum ceiling and/or have
to execute a significant vertical flight correction.
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The International Civil Aviation Organization (ICAQO) has estimated the impact of temperature
on VNAYV approaches, and devel oped the following table (Ref. 56):

Table 14 Effect of Uncompensated Airport Temperature on VNAYV Glide Path Angle

Airport Actual Glide

Temperature Path Angle
+30 °C (+86 °F) 3.2 deg
+15 °C (+59 °F) 3.0 deg
0 °C (+32 °F) 2.8 deg
-15 °C (+5 °F) 2.7 deg
-31 °C (-24 °F) 2.5 deg

For airport at MSL and a charted 3 deg glide path angle

Temperature compensation of the VNAV system is offered on many full-sized transport aircraft
and some smaller aircraft, but is not often found in aircraft currently operating.

9.2 VNAV Constant Descent Angle Trajectory

9.2.1 Derivation of Equations

Barometric Vertica NAVigation (Baro VNAV) creates a descent path that is, absent instru-
mentation errors and incorrect assumptions, similar to, but sightly different from, an ILS glide
slope. Whereas ILS navigation involves flying a constant vertical angle a with respect to the
plane of the runway, VNAYV involves flying a constant vertical descent angle &’ with respect to
the horizontal plane at the current aircraft location, and is defined by

~ _ Vvertical speed

tan(a
ground speed

Eq 341

Generdly, vertical speed is derived from the aircraft’ s pitot-static system, and ground speed is
found from one of (a) the combination of airspeed and headwind, (b) a GPS receiver, or (c) range
measurements to a DME ground station on the airport.
Employing the notation of Chapters 1-3, the differential equation governing avertical trgjectory
involving a constant vertical descent angle &’ with respect to the local horizontal planeis
dh=tan(a') (R, + h)do
dh Eq 342

Ran tan(c.') O

Integrating both sides of Eq 342 from the surface of the earth to altitude h yields the expression
for the geocentric angle 6
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o R +h
IR Eq 343

T tan(a)

The natural logarithm is employed in Eq 343. This equation can be manipulated to find the
atitude and descent angle as a function of the other two variables.

h=R, (exp[tan(a’)]-1) = RO tan(a’) + 1R, 0% tan?(a') + etc. Eq 344
h
Iog(ReJr ] ) .
tan(a') = R = h __h 5+ h 5 T etc. £q 345
0 OR 20R’ 30K

The correspondence between the preceding three equations for aVNAV approach and those for
an ILS glide slope approach are: geocentric angle, Eq 343 <> Eq 27; altitude, Eq 344 <> Eq 51;
vertical angle, Eq 345 < Eq 38.

9.2.2 Typical Vertical Profiles

Figure 52 isaplot of aircraft atitude above MSL versus distance along the curved earth’s
surface from the runway threshold for (a) baro-VNAV guidance with a descent angle of

3.00 deg, (b) ILS guidance with a glide path angle of 3.00 deg, and (c) ILS guidance with aglide
path angle of 2.90 deg. At the threshold, the baro-VNAV and ILS 3.00 deg curves coincide; at 5-
7 NM from the threshold, the baro-VNAYV curveis about halfway between the two curves for
ILS guidance; at 14 NM, the baro-VNAV and ILS 2.90 deg curves essentially over lay each
other.

9.2.3 Remarks

= References 2 and 3 require the use of Eq 343 to Eq 345 in the design of VNAV
approach procedures.

= Requirements for aircraft implementation of VNAV are found in FAA Advisory
Circulars AC 90-105 (Ref. 36) and AC 20-138C (Ref. 37). These documents specify
the use of aflight director and vertical deviation indicator (VDI) and assume the use
of aflight management system.
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Figure 52 Aircraft Elevation vs. Distance along Ground, for Three Guidance Schemes

9.3 Ellipsoidal Earth Model and ECEF Coordinate Frame

This section presents coordinate frames and transformations associated with an ellipsoidal model
for the earth. It draws on Section 2.2 (concerning ellipsoidal earth parameters) and Section 5.1
(concerning coordinate frames and transformations associated with a spherical earth model). In
this document, the primary use of amodel for an ellipsoidal relates to Chapter 8 — formulating
anaytic models for slant-range and slant-range difference measurements.

Asin Section 5.1, the éllipsoidal earth-centered earth-fixed (ECEF) frame e is defined by:
=  Xx%axis. liesinthe plane of the equator and points toward the Greenwich meridian
= yeaxis: completes the right-hand orthogonal system
= Z-axis. liesalong the earth's spin axis.

For these axis, the elipsoid model for the earth’s surfaceis

(x9?  (y9)?  (2%?
2 + i~ + o =1 Eq 346

Asin Section 2.2, in this section, a denotes the earth’ s equatorial radius and b its polar radius.
The WGS-84 values for a and b are given in Section 2.2. Figure 24, depicting a spherical earth
— with dlight flattening at the poles— isrelevant here, as well.

Figure 53 is depicts an ellipsoidal model of the earth, employing a plane passing through the spin
axis. The coordinate quantities of greatest interest are:
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Figure 53 Ellipsoidal Earth Model for a Plane through the Spin Axis

= Geodetic latitude L (denoted by ¢ in Figure 53) — the angle that a normal to the
ellipsoid surface makes with the plane of the equator. Geodetic latitude is generally
used for navigation and surveying; other measures of latitude are used in
mathematical analyses.

= Ellipsoid longitude 4 — sometimes termed terrestrial longitude. Longitude for an
ellipsoid earth model is conceptually the same as longitude for a spherical model.

= Severa definitions of atitude are used. Height above the geoid, an equipotential
gravitational surface that approximates mean sealevel, is useful for some aspects of
navigation. Height above the reference ellipsoid is more convenient for analysis. The
two heights are related by the undulation of the geoid, which is published in the form
of tables and/or formulas.

A user’s height above the ellipsoid hu giip, height above the geoid hu gesid and undul ation of the
geoid at the user’slocation Aheg (Lu, Au) arerelated by

rb,dlip:rb,gmid+Ar]&g(LU’ﬂ'U) Eq 347

Undulation of the geoid is usually computed as a harmonic expansion in latitude and longitude
that’ s fit to measurements. Reference 57 is a source of data concerning undulation of the geoid
relative to the WGS-84 reference ellipsoid. The order of the expansion used in Ref. 57 exceeds
2,000, which results in aresolution of 1 arc min. For the CONUS, the geoid is generally below
the surface of the WGS-84 ellipsoid — more in the East and less in the West. For locations of
interest — e.g., navigation and surveillance ground stations, runways, monuments, etc. —
coordinates are generally provided in geodetic latitude and terrestrial longitude relative to the
WGS-84 ellipsoid; their elevation is usually stated in relative to mean sealevel.

To approximate an ellipsoidal earth at alocation on its surface by a sphere, two radii of curvature
(RoCs) are commonly defined —the RoC in the meridian (north-south orientation), Rns, and the
RoC in the prime vertical (east-west orientation), Rew. These are given in Subsection 2.2.2 (Eq
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20). The value for Rew is repeated here, asit is needed below; again, € denotes the earth’s
eccentricity.

a
[1-e?sin?(L)]Y2

Rew = Eq 348
Given auser’ s geodetic latitude Ly, terrestrial longitude Ay and height above the ellipsoid hy, the
|location of the user U relative to the earth’s center O in the e-frameis

roux | [ (R +My)cos(Ly)cos(ay)
rou = |fouy | = (RewJFhJ)COS(LUfSin(;LU) Eq 349
ron. | L [Ral-€2)hy Jsin(Ly)

It isevident from Eq 349 that Rew is the distance along the normal between the ellipsoid surface
and the earth’s spin axis, while Rew (1 - €) is the distance between the dllipsoid surface and the
equatoria plane.

Given the components of ru and those of ground station r €os, the slant-range between the user
and station is

2 2
e e e e e e
dys = \/(Lou X [os,x) + (Lou v [os,y) + (Lou 27 [os,z)

Conversdly, given the components of r®ou, the user’s latitude, longitude and altitude can be
found. User longitude is given by

§ Eq 350

Ay = arctan (Lgu,y , ;gu,x) Eq 351

The expressions for user latitude Ly and elevation above the elipsoid hy arein Eq 349 are not
analytically invertible due to the presence of Rew. Thus an iterative solution is required. The three
components of Eq 349 can be combined to eliminate elevation hy, yielding

e 2 e 2
\/(Eou,x) +(Touy)” rou.

cos(L, ) sin(L,

e Raby) Eq 352

The geodetic latitude Ly can be found from Eq 352 iteration, using the geocentric latitude as the
initial value

e
;
Ly init = arct - ‘S“’Z — Eq 353
\/(Eou,x) +(ou y)

Then hy can be found from

9-8



DOT Volpe Center

e

_ Touz (12
= ] (1- € Ruu(Le) £q 354

In the methodol ogy exposed herein, Eq 351 - Eq 354 are virtually never needed. When an
ellipsoid earth model is employed in determining aircraft location, latitude, longitude and atitude
are found by an iterative solution of the measurement equations (Subsection 8.1.2).

9.4 Rhumb Line Navigation

9.4.1 Background

The defining characteristic of rhumb*™ line navigation is that the planned track over the ground
has a constant azimuth angle with respect to North at each location along the track. That is,

w = arctan(dA cos(L),dL)= constant Eq 355

An example rhumb line course is shown to the right. Mathematically,
such courses are |loxodromes; they spiral toward, but do not reach, a
pole. (The exception is a constant-1atitude course; these are often
treated separately.)

Rhumb line navigation has been used by mariners for hundreds of

years.58 An advantage was that rhumb lines simplified the helms-

man’s task in an erawhen only the most rudimentary tools were

available. Even when a great circle route was being implemented, the path was approximated by
a series of waypoints and rhumb line navigation was employed between waypoints.

Another important advantage of rhumb line navigation is that, for a Mercator projection, arhumb
line courseisastraight line on achart. This greatly simplifies the planning process, and likely
contributed to the popularity of the Mercator projection.

Today, great circle navigation has largely replace rhumb line navigation, particularly for
aviation, since it provides shorter paths and air routes are less restricted than marine routes.
Rhumb line navigation is still in use for applications lacking a flight computer (or the
equivaent).

Three factors cause great circle and rhumb routes to be dissimilar and favor great circle
navigation:

# The word "rhumb” may come from Spanish/Portuguese rumbo/rumo, meaning course or direction (Wikipedia).

88 Rhumb lines were first discussed by the Portuguese mathematician Pedro Nunesin 1537, in (translated) Treatise
in Defense of the Marine Chart (Wikipedia).
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= Path length: The origin and destination (or end points of a navigation leg) are far
apart (e.g., thousands of miles)

= Starting location: Route leg starts at mid- and/or high-latitude, and

= End location/route direction: The end point is at mid- and/or high-latitude on the
same side of the equator.

Numerical examplesillustrating the importance of these points are presented in Subsection 4.8.4.

Consistent with the intent of this document, the equations presented below are for rhumb line
navigation with respect to a spherical earth (Refs. 26 and 58). M ore accurate equations applic-
ableto an ellipsoida earth may be found in Ref. 59.

9.4.2 Solution of the Indirect Problem

The indirect problem of geodesy / navigation is defined in Section 1.3 and its solution for great
circle navigation is given in Section 4.2. Here the known quantities are the | atitude/l ongitude of
the starting point U (Lu, Au) and end point S (Ls, 4s). The quantities to be found are the distance
D between U and S; and the azimuth angles ysu at U and yuis at S of the trajectory connecting
UandS.

If Eq 355 is rewritten with the latitude-related quantities on one side and the longitude related
guantities on the other, then integrated from U to S, theresult is

wgu =arctan(As - Ay, logltan(3 Ls + Z)] - log[tan(3 Ly, +2)]) Eq 356

The natural logarithm is used in Eq 356.

Since a constant azimuth angle isinvolved, it follows that

wy s =arctan(Ay —As, log[tanG Ly +2)]-log[tanG Ls + Z)]=y sy £7 Eq 357

Once the azimuth angle wsu is known, the distance D between U and S can be found using

_ el n l-ls o
REICOS(V/S/U) I:\)ECOS(V/S/U) ReCOS(WU/S) e s*h =458

This equation fails for constant latitude paths, and must be replaced by

D =R, cos(Lg) = R.cos(Ly,) when Ls=Ly Eq 359

An equation for the distance D between U and S that does not daisy-chain on the solution for
wsu can be developed using the analyses associated with the Mercator projection. The results of
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that analysis are quoted here. Define the stretched latitude difference by
ALjs =log[tané Ls +Z)] - log[tan@ L, +%)] Eq 360

Also, for convenience, let
ALUS:LS_LU and AAUS:/IS_AU Eq361

Then the rhumb line distance D is given by

3 2 (Alyg)® 2
D =R.,[(ALys) +— (Ays) when Ls = Ly Eq 362
(Als)
With these definitions,
YV siu = arctan (Aius, AL[,_JS) Eq363

9.4.3 Solution of the Direct Problem

The direct problem of geodesy / navigation is defined in Section 1.3 and its solution for great
circle navigation is given in Section 4.3. Here the known quantities are: the latitude/longitude,
(Lu, Au), of the starting point U; the distance, D, between U and S; and the azimuth angle at U,
wsu, Of the trgjectory connecting U and S. The quantities to be found are the | atitude/longitude
(Ls, 4s), of theend point S.

From Eq 358 it follows that

D
Ls=Ly + (g) cos(y sy ) Eq 364

| am not aware of a solution for As that does not utilize the solution for Ls. One option isto
manipulate Eq 363 to obtain

tan(zLs +7%)

ﬁ When WS/U * iz Eq 365
tan(G Ly +%) 2

As =Ny +tan(l/’3/u)|0{

Substituting Eq 364 into Eq 365 yields the alternative form

D). tan(;Ls+7%) T
Ac =X +| — |sin log —2 > 4% 1/(Le — L, when #+—  [EQ366
s =My [Rej (WS/U)|: g(tan(%LU +%) (Ls-Ly) Vsiu 5 q

When Ly isequal to Ls, then
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As = A, "‘(MJ:}U _,_(M Eq 367

Rocos(Ly) Recos(Ls)j when - Vs =

T
2
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