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FOREWORD

This memorandum addresses a basic function of aircraft (as well as marine, missile and satellite)

surveillance and navigation systems analyses — quantifying the geometric relationship of two or

more locations relative to each other and to a spherical earth. Here, geometry simply means

distances (ranges) and angles. Applications that fit well with the methods presented herein

include (a) planning a vehicle’s route; (b) determining the coverage region of a radar or radio

navigation installation; or (c) calculating a vehicle’s position from slant-ranges, spherical-ranges,

slant- or spherical-range differences, azimuth/elevation angles and/or altitude.

The approach advocated is that, to simplify and clarify the analysis process, the three-dimen-

sional problems inherent in navigation and surveillance analyses should, to the extent possible,

be re-cast as the most appropriate set/sequence of sub-problems/formulations:

 Vertical-Plane Formulation (two-dimensional (2D) problem illustrated in top right
panel on cover) — Considers the vertical plane containing two problem-specific
locations and the center of the earth, and utilizes plane trigonometry as the primary
analysis method; provides a closed-form solution.

 Spherical-Surface Formulation (2D problem illustrated in bottom left panel on
cover) — Considers two or three problem-specific locations on the surface of a
spherical earth; utilizes spherical trigonometry as the primary analysis method;
provides a closed-form solution.

 Three-Dimensional Vector Formulation — Utilizes 3D Cartesian vector frame-
work; best-suited to situations involving four or more problem-specific points and
slant-range or slant-range difference measurements; provides a closed-form solution.

 Linearized Least-Squares Iterative Formulation — When warranted by the distan-
ces involved, the accuracy required, and/or the need to incorporate empirical data, the
least-squares iterative method is employed based on an ellipsoidal earth model.

These techniques are applied to a series of increasing complex situations, starting with those

having two problem-specific points, then extending to those involving three or more problem-

specific points (e.g., two or more sensor stations and an aircraft). Closed-form (non-iterative)

solutions are presented for determining an aircraft’s position based on virtually every possible

combination of ranges, pseudoranges, azimuth or elevation angles and altitude measurements.

The Gauss-Newton Linearized Least-Squares (LLS) iterative methodology is employed to

address the most complex situations. These include any combination of the following circum-

stances: more measurements than unknown variables, measurement equations are too complex to

be analytically inverted (including those for an ellipsoidal-shaped earth), or empirical data is

utilized in the solution. Also, the capability of the LLS methodology to provide an estimate of

the accuracy of any solution to the measurement equations is presented.
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1. INTRODUCTION

1.1 Overview of Methodologies and Their Applications

This memorandum addresses a fundamental function in surveillance and navigation analysis —

quantifying the geometry of two or more locations relative to each other and to a spherical earth.

Here, “geometry” refers to: (a) points (idealized locations); (b) paths between points; and (c) dis-

tances and angles that quantify paths. Points represent locations of either vehicles or naviga-

tion/surveillance sensors. Paths constitute trajectories followed by vehicles or sensor signals.

Distances are the lengths of paths/trajectories that are either straight lines or follow the earth’s

surface. Angles between paths may be measured on a plane or a spherical surface.

1.1.1 Overview of Methodologies

The approach that may first come to mind when addressing such a situation is to treat it as a

three-dimensional problem and employ vector analysis. However, the approach recommended

herein is that, to simplify and clarify the analysis process, three-dimensional problems should be

re-cast, whenever possible, as two separate two-dimensional problems:

 Vertical Plane Formulation (Section 1.2 and Chapter 3)* — This formulation
considers the vertical plane containing two problem-specific locations and the center
of the earth. Problem-specific locations are unconstrained vertically, except that at
least one altitude must be known. Plane trigonometry is the natural analysis tool when
altitudes, elevation angles and slant-ranges are involved. Conversely, latitude and
longitude coordinates are not utilized, which is a limitation.

 Spherical Surface Formulation (Section 1.3, Chapter 4) — This formulation —
which is sometimes called great-circle navigation — considers two or more problem-
specific locations on the surface of a spherical earth. Spherical trigonometry is the
natural analysis tool when the earth’s curvature must be considered. Latitudes and
longitudes, as well as spherical ranges (distances along the earth’s surface) and
azimuth angles with respect to north or between two paths, are inherent to this
formulation. A limitation is that altitudes cannot be accounted for.

These two-dimensional analyses can generally be performed in the above sequence, with the

result that the limitations of each are overcome. This formulation is preferable to one-3D vector

formulation because it provides better insight into the solution — which reduces computational

errors and improves the analyst’s understanding of the results.

For historical and practical reasons†, in this document when there are two problem-specific

locations of interest, they are often labeled U (for user) and S (for satellite). However, these are

* Document organizational terminology: 1. Chapter; 1.1 Section; 1.1.1 Subsection.
† Historical: these notes were begun about 20 years ago, for a project involving satellites. Practical: the Microsoft
Word equation editor does not have a global change capability.
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only labels, and have no relevance to application of the analysis. Generally, for surveillance

applications, one location will be associated with a sensor and the other will be associated with a

vehicle— e.g., a ground-based radar and an aircraft. For navigation applications, the two

locations may be those of a sensor and a vehicle or the beginning and ending points of a travel

segment — e.g., an aircraft and a runway threshold.

Chapter 5 is devoted to the 3D-vector solution approach, which is largely an alternative to the

two-2D approach outlined above that is better suited to some problems. Typically, these involve:

(1) three or more problem-specific points that must be considered simultaneously (rather than

sequentially, which allow one vertical plane to be considered at one time); and (2) only slant-

range-type measurements are involved (true slant-ranges, slant-range differences and/or altitude).

Conversely, the vector methodology does not handle spherical ranges or azimuth angles as well

as the spherical surface formulation.

1.1.2 Overview of Application of Methodologies

Chapters 6 and 7 apply the analysis methodologies described in Chapter 3-5 to situations

involving three or more problem-specific points (e.g., two, three or four sensors and an aircraft).

Chapter 6 addresses sensors that measure slant- or spherical-range and azimuth angles. These

problems are addressed using a sequence of vertical planes combined with the spherical surface

formulation.

Chapter 7 addresses sensor systems that measure slant- or spherical range differences. When

addressed algebraically, these problems require consideration of all measurements simul-

taneously; thus, the vector methodology is employed. Some two-dimensional special cases have

geometry based solutions which do not require the vector approach.

The situations addressed in Chapters 3 through 7 share important characteristics including:

(1) there are the same number of measurements as unknown quantities, and (2) a spherical earth

model is used. These enable closed-form solutions to be found. Closed-form solutions are

valuable for system planning, as they can be analyzed without collecting measurements. More-

over, they are often sufficiently accurate that they can be used operationally.

Chapter 8 departs from both of the conditions listed immediately above and addresses problems

that may involve more measurements than unknown variables and which do not necessarily have

invertible measurement equations. This relaxation of assumptions enables addressing situations

involving, e.g., redundant measurements, non-ideal sensors and/or an ellipsoidal earth. The

“cost” of this generality is that the solution methodology is numerical and iterative, rather than a

set of closed-form expressions.
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1.2 Vertical Plane Formulation

Figure 1 depicts a vertical-plane involving: an earth-based

user U; a satellite S above a spherical earth; the satellite

nadir (or sub-point) N; and the center of the earth O. Points

U and S (or N) are problem-specific; O is not. All four

locations are in the plane of the paper. Points O, N and S

form a straight line. These points have no special

relationship with the earth's spin axis. Since a “snapshot”

analysis is involved, no assumptions are made regarding the

satellite’s trajectory.

In Figure 1, three linear distances are of interest:

 Re Earth radius (length of OU and ON)

 h Satellite altitude above the earth (length of NS)

 d User-satellite slant range (length of US).

And two angles are of interest:

 α Satellite elevation angle relative to the user's
horizon (may be positive or negative)

 θ Geocentric angle between the user and satellite
nadir (is always positive).

The earth radius Re is always assumed to be known.

There are four variables associated with this formulation: h, d, α and θ. Any two must be known,

and the remaining two can be found. Thus, there are six possible groupings. Subsection 2.3.1

shows how to relax the restriction of U being on the earth’s surface, to its having a known

altitude. Chapter 3 details the full set of 12 possible equations for this formulation.

Of these four variables, the geocentric angle θ (which is equivalent to distance along the earth’s

surface, or spherical-range) is also a variable in the spherical surface formulation. It serves as the

link for relating the two formulations — i.e., for transferring a solution to the vertical plane

formulation into the spherical surface formulation (Subsection 4.1.3 elaborates on this topic).

The other three variables (h, d and α) are related to the altitude of S above the earth’s surface

and have no role in the spherical surface formulation.

1.3 Spherical Surface Formulation

The spherical surface formulation is an application of spherical trigonometry. This formulation is

almost perfectly matched to marine surface navigation, and was developed by the ancients partly

for that purpose. It can be used for many aviation navigation and surveillance situations by

Figure 1 Vertical Plane
Containing Points U, O, N and S
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combining it with the vertical plane formulation.

The left-hand side of Figure 2 depicts the earth’s familiar latitude/longitude grid. The right-hand

side shows two problem-specific points U and S on the earth’s surface and the seven variables

involved in a two-location problem on a sphere:

 the latitude/longitude, respectively, of U (LU, λU) and of S (LS, λS)

 the geocentric angle θ between U and S; and

 the azimuth angles ψS/U and ψU/S of the great circle arc connecting U and S.



 Figure 2 Spherical Surface Containing Points U and S

Generally, four of these seven variables must be known; from those, the other three can be

computed. Even this simple problem involves 35 possible groupings of known / unknown

variables. By taking advantage of symmetries, these can be reduced to 16 unique, solvable

mathematical problems (Subsection 4.1.8) —still a significant number. Thus, in contrast with the

exhaustive approach taken vertical plane formulation, a more selective approach is adopted for

the spherical-earth formulation. Attention is limited to the variable groupings of highest interest,

and a roadmap is provided for the remaining cases.

“Geodesy is the science concerned with the exact positioning of points on the surface of the

Earth” (Ref. 1). In geodesy, analyses involving two groupings of known/unknown variables

occur so frequently that they have been named:

 Direct (or first) problem‡ of geodesy: (a) Given the coordinates (LU, λU) of U, the
geocentric angle θ between U and S, and azimuth angle ψS/U of a great circle path
starting at U and ending at S; (b) Find the coordinates (LS, λS) of the end point S and the
path azimuth angle at the end point ψU/S.

 Indirect (or second, or inverse) problem of geodesy: (a) Given the coordinates, (LU, λU )
and (LS, λS), of two points U and S, (b) Find the geocentric angle θ connecting U and S,
and the azimuth angles (relative to north), ψU/S and ψS/U, of the path at each end.

‡ Note the academic/mathematical use of the word “problem” in the narrow sense of specific groupings of known
and unknown variables. This document also uses “problem” in the broader sense of a situation to be analyzed.
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In both Chapter 4 (spherical surface formulation) and Chapter 5 (vector formulation), solution

equations are provided for the direct and indirect problems of geodesy, and variations thereon

that have relevant applications. Many of the three-point problems addressed in Chapter 6 use the

Direct or Indirect problem as step in the solution algorithm.

1.4 Applicability and Limitations of Analysis

With a few exceptions, the methodology presented herein generally reflects conditions and

assumptions appropriate to aircraft navigation and surveillance, including:

 Earth Curvature Must Be Considered — With the exception of aircraft on the
surface of an airport, the curvature of the earth is a fundamental aspect of aircraft
navigation and surveillance analysis.

 Three-Dimensions Frequently Must Be Considered — Some essential operations,
such as aircraft approach, require that lateral/longitudinal position and altitude all be
considered, necessitating a three-dimensional analysis methodology.

 Horizontal Position and Altitude Decoupled at Long Ranges — Generally,
scenarios requiring simultaneous consideration of three dimensions involve aircraft-
sensor ranges of less than 250 miles, the maximum “visible” distance of aircraft at
40,000 feet of altitude.

 Altitude Measurement Always Available — Aircraft of interest provide barometric
altimeter information that can be adjusted to provide elevation above sea level.

The analysis also embodies the following assumptions/limitations:

 Static Scenarios — Scenarios analyzed are “snapshots” — i.e., motion of an aircraft
or other vehicle is not explicitly involved. Sequence of locations are considered, but
the notions of velocity or time as mechanisms for relating those locations are not
utilized.

 Great Circle Vehicle Paths — Vehicle trajectories are always great circles. That is,
they lie in a vertical plane that contains the center of the earth.

 Geometrically Simple Radio Wave Propagation Paths— Radio waves between
transmitters and receivers lie in a vertical plane that contains the center of the earth.
Two path geometries are considered: (a) line-of-sight, or Euclidean straight lines; and
(b) following the curvature of the earth.

 Terrain/Obstacles Ignored — Except for the earth itself, obstacles such as hills/
mountains or man-made structures that could block the signal path between two
locations (e.g., a sensor and a vehicle) are not addressed.

One might ask: Why focus on a spherical earth model, when an ellipsoidal model is more

accurate? The rationale is:

 Insight/Confidence — When the number of measurements is equal to the number of
unknown quantities, a spherical earth-model usually has a closed-form solution that is
understandable geometrically. Conversely, an ellipsoidal model never has a closed
form solution; the analyst must initialize, utilize and trust a numerical solution.
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 Error Often Insignificant — While an ellipsoidal model more accurately describes
the earth’s shape, quantitatively the earth is “99.7% round”. The so-called ellipticity
error resulting from employing the spherical-earth approximation is often acceptably
small (Subsections 2.2.2, 4.8.7, 8.4.4 and 8.4.6).

Engineering analyses methods have been characterized thusly: “There are exact solutions to

approximate problems, and approximate solutions to exact problems. But there are no exact

solutions to exact problems”.§ The techniques described herein, with the exception of Chapter 8,

are exact solutions to approximate problems. They enable use of closed-form solutions that are

valuable in multiple engineering activities. The spherical-earth approximation is often made in

authoritative documents that address similar applications (e.g., Refs. 1, 2 and 3). When an

ellipsoidal-earth model is required and iterative numerical technique must be employed, the

spherical-earth solution provides an excellent initial value for the iteration process.

1.5 Outline of this Document

Chapter 1 (this one) describes the basic problems to be addressed, and outlines the approach

recommended for their solution. Chapter 2 is mathematical in nature, and is included to make

this document more self-contained.

Chapters 3 through 8 are synopsized in Section 1.1. Table 1 is a high-level roadmap of location

of the topics addressed.

Table 1 Topic Locations by Problem Geometry

Dimension
Shape

Two Dimensions Three Dimensions

Spherical
Earth

 Plane Trigonometry (vertical plane) –
Chapter 3

 Spherical Trigonometry (spherical
surface) – Chapter 4

 Vector Analysis – Chapter 5; Section 7.2

 Plane & Spherical Trigonometry –
Chapters 6 & 7

 Linear Least Squares – Chapter 8

Ellipsoidal
Earth

 Vincenty's Algorithm – Subsection 2.2.3

 Linear Least Squares – Chapter 8

 Vector Analysis – Chapter 5; Section 7.2

 Linear Least Squares – Chapter 8

To illustrate application of the analysis techniques described herein, example applications are

presented at the ends of several chapters that address:

 Air Traffic Control (ATC) radar coverage (Example 1)

 Precision approach procedure design (Example 2)

 Satellite visibility of/from the Earth (Example 3)

 Great-circle flight route between Boston and Tokyo (Example 4)

 ATC radar display coordinate transformations (Example 5)

 Single VOR/DME station RNAV fix (Example 6)

§ Conveyed by Prof. Donald Catlin (Univ. of Mass. Amherst, Mathematics Dept.), who attributed it to Prof. Lotfi
Zadeh (Univ. of Calif. Berkley, Electrical Engineering Dept.).
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 Ground path ellipticity error for selected airport pairs (Example 7)

 Systems that utilize measurements of slant-ranges or their difference in two
dimensions (Examples 8 and 9)

 Systems that utilize measurements of spherical-range differences — a single Loran
chain involving three stations (Example 10); and two chains involving four stations
(Example 11)

 A Wide Area Multilateration (WAM) system using slant-range differences and
altitude measurements (Example 12).

Relevant, specialized topics are presented in an Appendix (Chapter 9).
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2. MATHEMATICS AND PHYSICS BASICS

2.1 Exact and Approximate Solutions to Common Equations

2.1.1 The Law of Sines for Plane Triangles

For future reference, the law of sines applied to the plane triangle UOS in Figure 1 yields
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Eq 1 reduces to

     
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 coscossin
Eq 2

In Eq 2, the left-center equality,

      cossin d=h+Re Eq 3

relates all five quantities of interest in a simple way.

The left-right equality in Eq 2 is equivalent to

    cossin d=Re Eq 4

This expression relates one side variable, d, and the two angle variables, α and θ.

Similarly, the center-right equality in Eq 1 is equivalent to

     cos)(cos hR=R ee Eq 5

This expression relates one side variable, h, and the two angle variables, α and θ.

2.1.2 The Law of Cosines for Plane Triangles

For future reference, the law of cosines is applied to the plane triangle UOS in Figure 1. When

the angle at O is used, the result is

     cos2
222 hRRhRRd eeee  Eq 6

When the law of cosines is applied using the angle at U, the result is
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Each of these equations relates the two side variables, d and h, and one angle variable. Eq 6
involves θ and Eq 7 involves α.

2.1.3 Solution of a Quadratic Equation

In some instances, a quadratic equation similar to the following must be solved

02 =CxBxA  Eq 8

The algebraic solution is

A2

CA4-BB-
=x

2
Eq 9

We cannot have imaginary roots, so B2 > 4AC. In many instances, (a) the positive root is sought

(since lengths cannot be negative), and (b) B2 > |4AC|. For these situations:
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2.1.4 Computing Inverse Trigonometric Functions

Intrinsic to navigation analysis is the calculation of angles using an inverse trigonometric

function. In performing such calculations, two concerns should be borne in mind: (1) numerical

ill-conditioning and (2) ambiguous solutions. These conditions generally do not arise simultan-

eously. Numerical ill-conditioning occurs near sine or cosine function values of ±1, which

correspond to unique angles. Ambiguous solutions generally arise when the approximate value

of the angle is not known. The equations provided in the following chapters attempt to address

these concerns, but every situation may not be anticipated.

Concerning numerical ill-conditioning: Both the sine and cosine functions have angular

arguments for which the function’s (a) value is near ±1, and (b) derivative is zero — see Figure

3. Changes in the angular arguments result in significantly smaller changes in the trigonometric

function value, which may be subject to truncation or roundoff. Accurately computing the

angular argument from the trigonometric function often requires increased precision.
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Table 2 below illustrates this concern for the geocentric

angle computed from the arc cosine function. If five decimal

digits are used for angles and trigonometric functions, the

minimum detectable cosine function change corresponds to

distances between 10 NM and 30 NM. A remedy is to

employ the sine or tangent function rather than the cosine

function. Unlike the cosine function, the sine and tangent

functions (a) increase monotonically from a zero value for a

zero angle, and (b) have a positive derivative value near zero

angle. In Table 2, the last column indicates that for distances

up to approximately 70 NM, the tangent function has a

minimum of a two decimal place numerical advantage over

the cosine function. The same behavior occurs for the sine

function near π/2. 

Table 2 Geocentric Angle θ and Its Cosine and Tangent Functions, near θ = 0

θ (rad) θ (deg)
Re*θ
(NM)

cos(θ) 1-cos(θ) tan(θ)
tan(θ) /

1-cos(θ)

0.00000 0.000 0.000 1.00000 0.00000 0.00000 —

0.00001 0.001 0.034 1.00000 0.00000 0.00001 2.0E+05

0.00003 0.002 0.103 1.00000 0.00000 0.00003 6.7E+04

0.00010 0.006 0.344 1.00000 0.00000 0.00010 2.0E+04

0.00030 0.017 1.031 1.00000 0.00000 0.00030 6.7E+03

0.00100 0.057 3.438 1.00000 0.00000 0.00100 2.0E+03

0.00300 0.172 10.313 1.00000 0.00000 0.00300 6.7E+02

0.01000 0.573 34.378 0.99995 0.00005 0.01000 2.0E+02

0.03000 1.719 103.134 0.99955 0.00045 0.03001 6.7E+01

0.10000 5.730 343.780 0.99500 0.00500 0.10033 2.0E+01

A method for recasting an ill-conditioned equation for cos(θ), which dates to the middle of the

first millennium, is shown in Eq 11 below.
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To be effective, the quantity under the radical in Eq 11 must be further manipulated to eliminate

Figure 3 Principal Values of
arcsin and arccos Functions
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the subtraction of nearly equal quantities. For example, a common situation is finding one side,

say θA, of a right spherical triangle, given the hypotenuse θC and the other side θB.
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Concerning ambiguous solutions: Trigonometric functions are periodic, so inverse trigonometric

functions can result in multiple angles. To address this issue: (a) when making a computation,

take account of the expected range of values for the angle involved — e.g., elevation angle α

varies between ±π/2, so the arc sine or arc tangent functions are preferable to the arc cosine;

(b) utilize half-angle formulas when possible, since they double the range of angles that can be

computed uniquely; and (c) when possible, use a four-quadrant (two argument) arc tangent

function.

2.1.5 Expansions of arcsin, arccos and arctan for Small Angles

In the analysis that follows, a common situation is the need to compute the inverse of a trigo-

nometric function for an argument such that the resulting angle will be close to 0 — e.g.,

θ = arcsin(x), θ = arccos(1 - x) or θ = arctan(x), where x is close to 0.

First, it is well known (Ref. 4) that
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A Taylor series expansion of arccos(1 - x) is not available, due to its lacking a derivative at x = 0.

However, more general power series (often called Frobenius) expansions are available; thus,

utilizing Eq 11 and Eq 13:
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Lastly, from Ref. 4:
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2.1.6 Secant Method for Root Finding

When finding an unknown quantity, one certainly prefers to have an expression (or sequence of

expressions) whereby the unknown is a dependent variable and the known quantities are

independent variables. (Developing such equations is the focus of this document.) However,

situations inevitably arise whereby the available expressions contain the unknown quantity as an

independent variable. If the expression(s) involved are too complicated to be manipulated into

the desired form (“inverted”), recourse is often made to a numerical root-finding technique.

The most widely-known root-finding technique is “Newton’s” or the “Newton-Raphson” method

(Ref. 5). Newton’s method performs well for most functions, but has the significant disadvantage

that it requires a derivative with respect to the variable being sought. Often the derivative is

difficult/tedious to compute analytically and to program in a computer. Thus, in applied work,

interest is frequently limited to derivative-free root-finding techniques. Such techniques were

first investigated by the ancients, including the Babylonians and Egyptians.

There are several alternative root-finder (or “solver”) algorithms available. Implementations of

some are found in mathematical software packages. The Secant method is among the simplest

and oldest algorithms. Assuming that we seek a value of x that satisfies f(x) = 0, the Secant

method of solution for x is
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Eq 16

The secant method is a finite difference version of Newton’s method; in effect, it uses the

previous two points to estimate the function’s derivative.

After initialization, both Newton’s method and the Secant method converge in one step if the

function f is linear. In general, convergence is governed by the behavior of the first and second

derivatives of f. Functions that have a constant or continuously increasing (or decreasing)

derivative are most amenable to a root finder. Many surveillance and navigation problems fit this

description. Functions that have a derivative of zero or an inflection point (second derivative is

zero) at or near the root being sought can flummox a root finder. For functions that are amenable

to a root finder, Newton’s method convergence is order 2 (i.e., the error for iteration n is

proportional to the square of the error for iteration n-1), while the Secant method convergence is

order 1.6.

An example involving a “root-finder friendly” function is determining the square root of 2 —

i.e., f(x) = x2 – 2. Table 3 shows the results of applying Newton’s method and the Secant method,

beginning from the same points.
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Table 3 Comparison of Newton’s and Secant Methods for Finding the Square Root of 2

Iteration, n
Newton’s Method Secant Method

Variable, xn Function, f(xn) Variable, xn Function, f(xn)

1 1.0000000000 -1.0000000000 1.0000000000 -1.0000000000
2 1.5000000000 0.2500000000 1.5000000000 0.2500000000
3 1.4166666667 0.0069444444 1.4000000000 -0.0400000000
4 1.4142156863 0.0000060073 1.4137931034 -0.0011890606
5 1.4142135624 0.0000000000 1.4142156863 0.0000060073
6 — — 1.4142135621 -0.0000000009
7 — — 1.4142135624 0.0000000000

2.1.7 Surface Area on a Sphere

The surface area of the sphere with radius Re is 4π (Re)2. The surface area enclosed by a circle on

the surface of that sphere is

)]cos(1[)(2 2   eRA Eq 17

Here θ is the half-angle of the cone, with apex at the center of the sphere, whose intersection

with the surface forms the circle under discussion. Using Figure 1, the cone would be formed by

rotating sector ONU about line ON.

2.2 Shape of the Earth

2.2.1 WGS-84 Ellipsoid Parameters

While use of a spherical earth model is basic to much of the analysis herein, the most-accepted

model for the shape of the earth is an oblate spheroid (ellipse rotated about its minor axis). The

term ‘ellipticity error’ is used for differences between distances or angles found using a spherical

earth model and the same quantities found using an ellipsoidal model.

The World Geodetic Survey 1984 (WGS-84) model parameter are the ellipsoid’s semi-major

axis, a, and the flattening f. Their numerical values are

 a ≡ 6,378,137 m   (WGS-84) 

 f ≡ 1 / 298.257,223,563   (WGS-84) 

Flattening of the ellipsoid is defined by Eq 18, where b is the semi-minor axis.

a
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 Eq 18

In computations, the square of the eccentricity e2 is frequently used in lieu of the flattening.
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Although the earth’s shape is not a sphere — it is nearly so. A useful “rule of thumb” is that the

ellipticity error in the computed length of a path is 0.3%. The basis of this estimate is that the

earth’s flattening is approximately 0.003353, or 0.34%. Subsection 4.8.7 contains examples of

the ellipticity error in computing the ranges between selected airports.

In the U.S., the foot is the most common unit of distance. As a result of the International Yard

and Pound Agreement of July 1959, the international foot is defined to be exactly 0.3048 meter.

Thus

 a = 20,925,646.3 ft (WGS-84)

 b = (1 – f) a = 6,356,752.3 m = 20,855,486.6 ft (WGS-84)

 e2 = 0.006,694,379,990,14 (WGS-84)

In marine and aviation applications, the nautical mile (NM) is often used as the unit of distance.

The international nautical mile was defined by the First International Extraordinary Hydro-

graphic Conference in Monaco (1929) as exactly 1,852 meters. This definition was adopted by

the United States in 1954. The international nautical mile definition, combined with the

definition for the foot cited above, result in there being 6,076.1155 feet in one nautical mile.

2.2.2 Radii of Curvature in the Meridian and the Prime Vertical

To approximate the ellipsoidal earth at a location on its surface by a sphere, two radii of curva-

ture (RoCs) are commonly defined — the RoC in the meridian (north-south orientation), Rns, and

the RoC in the prime vertical (east-west orientation), Rew (Ref. 6). These RoCs lie in orthogonal

planes that include the normal (perpendicular line) to the surface of the ellipse. Their values are a

function of the geodetic latitude L of the location involved — see Appendix (Section 9.3). Their

analytic expressions are shown in Eq 20 and they are plotted in Figure 4.
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Eq 20

The Rns RoC in Eq 20 can vary more widely than the rule of thumb for ellipticity error. Figure 4

below shows that while Rew does change by about 0.34% between the Equator and a Pole, Rns

changes by slightly over 1%. Excursions of the radius of curvature from a reasonable average

value will usually be greater, on a percentage basis, than the ellipticity error in a path length.

The RoC in an arbitrary vertical plane that includes the normal to the ellipse and makes azimuth

angle ψ with north is given by (Ref. 6)
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Figure 4 Ellipsoidal Earth’s Radii of Curvature, Normalized to the Semi-Major Axis
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Eq 21

The average of Rψ over 0 ≤ ψ ≤ 2π (at a given latitude) is the Gaussian radius of curvature RG

)(sin1

)1(
22 Le
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In some applications, a global approximation to Re (independent of latitude) may be sufficient —

e.g., the arithmetic mean of the three semi-axes of the ellipsoid
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, Eq 23

Thus

 Re, arith mean = 6,371,008.8 m = 20,902,259.7 ft (WGS-84)

When analyzing procedures for the FAA and other U.S. Government agencies with an aviation

mission, the value of Re to be used is defined in Ref. 2:

 Re = 20,890,537 ft (U.S. TERPS)

An earth-centered, earth-fixed (ECEF) Cartesian coordinate frame for an ellipsoidal model of the

earth is defined in the Appendix (Section 9.3).
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2.2.3 Methods for Addressing an Ellipsoidal Earth

During approximately the past half-century, there has been a resurgence of interest in ellipsoidal

earth models. Reasons for this interest include: (1) wide availability of machine-based compu-

tational capabilities, (2) deployment of accurate long-range radionavigation systems, and (3)

development of long-range, unmanned weapons systems. Much of the recent work derives from

two volumes by Helmert** which were published in the 1880s (Ref. 7) and translated into

English (Ref. 8) in the 1960s.

Andoyer-Lambert Formula — The Andoyer-Lambert formula (approximation) results from

expansion of the geodesic (shortest) arc length between two points on a reference ellipsoid to

first-order in the flattening (Ref. 9). This approximation was widely used in conjunction with

both the Loran-C (Ref. 10) and Omega (Ref. 11) radionavigation systems. Accuracy for the

Andoyer-Lambert formula is 10 m for distances up to 6,000 miles (Ref. 10).

Vincenty’s Method — During the early 1970s, Vincenty†† revisited the issue of geodesics on an

ellipsoid, and programmed a version of earlier algorithms (including Helmert’s) on a calculator.

To accommodate the computing technology at that time, Vincenty’s primary concern was

minimizing the program’s memory consumption. Accordingly, he developed iterative algorithms

for both the direct and indirect problems of geodesy (Ref. 12).

Due to its ease of coding, Vincenty’s algorithms are now the most widely used method for

computing geodesics on an ellipsoidal earth. Their accuracy is quoted as less than one milli-

meter, which has been independently validated by comparison with numerical integration of the

differential equations governing geodesic arcs on an ellipsoid (Ref. 13).

Sodano’s Method — In a series of papers published between 1958 and 1968, Sodano‡‡

described non-iterative approximate solutions to the direct and indirect problems of geodesy

based on expansion of the arc length between two points to higher orders in the eccentricity

(Refs. 14, 15 and 16). Quoting Ref. 14: “The accuracy of geodetic distances computed through

the e2, e4, e6 order for very long geodesics is within a few meters, centimeters and tenth of

millimeters respectively. Azimuths are good to tenth, thousandths and hundreds thousandths of a

second. Further improvement of results occurs for shorter lines”.

** Friedrich Robert Helmert (July 31, 1843 – June 15, 1917) was born in Freiberg, Kingdom of Saxony (now
Germany). According to Wikipedia, his texts “laid the foundations of modern geodesy”.
†† Thaddeus Vincenty worked at the U.S. Defense Mapping Agency Aerospace Center, Geodetic Survey Squadron,
Warren Air Force Base, in Wyoming.
‡‡ Emanuel Sodano worked at the U.S. Army Map Service and the Army Geodesy, Intelligence and Mapping
Research and Development Agency.



DOT Volpe Center

-17-

2.3 Accounting for User Altitude

The equations developed in Chapters 3 generally assume that the user’s location U is on the

earth’s surface. The primary exception are the examples, which do take account of the user’s

elevation above the earth’s surface. Subsection 2.3.1 shows how to modify the equations in

Chapter 3 to account of a non-zero, known user elevation/altitude, and Subsection 2.3.2 shows

how to select the user altitude to ensure an unblocked line-of-sight to a satellite at a given

distance or altitude. Background/tutorial information on different meanings of ‘altitude’ is

provided the Appendix, Subsection 9.1.1.

2.3.1 Accounting for Known User Altitude

In most situations of interest, there is no concern about the line-of-sight (LOS) between the User

U (generally a sensor) and the Satellite (or aircraft) S being blocked by the earth’s curvature.

This is the situation depicted in Figure 1. A method for determining the minimum elevation

angle for which there is no LOS blockage is shown in Subsection 2.3.2.

When the user altitude hU is known and the LOS between U and S is unblocked, the equations

presented in Chapters 3 and thereafter can be used with these simple substitutions to account for

a non-zero user altitude:

 Re → Re + hU, and

 h → hS – hU (where hS is the satellite's altitude).

2.3.2 Conditions for Unblocked Line-of-Sight

Conditions for which the LOS between two points is unblocked by the earth can be determined

using Figure 5, which shows the LOS connecting the User U and Satellite S having a point of

tangency T with the earth’s surface.

Below, Eq 24 (which utilizes Eq 14) applies to a situation where the user altitude hU and satellite

altitude hS are known and the geocentric angle θ is unknown. Altitudes hU and hS can be traded

off — i.e., one can be increased and the other decreased — without changing θ.
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When θU, θS, hU and hS are known, the variables d, αU and αS, can be found from
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While Eq 24 and Eq 25 reflect the common situation where the elevations/altitudes for both

points (typically, the sensor and aircraft) are fixed, the known and unknown quantities vary with

the application. A different situation is the siting an ATC radar, where hS (minimum required

coverage altitude) and θ = θU + θS (distance between the location where the radar is to be

installed and the outer boundary of the coverage region) are known. Then hU is found using Eq

26, and d, αU and αS, can be found from Eq 25.
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Figure 5 Problem Geometry for LOS Tangent to the Earth’s Surface
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In addition to the above geometric considerations, the analyst should be aware that radar signal

propagation paths, such as US in Figure 5, are subject to bending caused by changes in atmos-

pheric density with altitude. A simple, commonly used method for modeling this phenomenon is

discussed in Subsection 3.6.1.
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3. TWO-POINT / VERTICAL-PLANE PROBLEM FORMULATION

3.1 Mathematical Problem and Solution Taxonomy

3.1.1 Mathematical Formulation

In mathematical terms, the basic objective of this chapter is to analyze the plane triangle UOS in

Figure 1. As a plane triangle, it is fully described by its three sides and three interior angles (or

quantities having a one-to-one relationship with these six quantities). However, since the interior

angles of a plane triangle (quantified in radians) must sum to π, interest can be limited to two 

interior angles (or their one-to-one equivalents). Thus, any three of the five quantities Re, h, d, α,

and θ can be selected independently (noting that at least one quantity will be a side), and the

other two quantities will be uniquely determined. In this analysis,

 The angle having its vertex at the satellite S has a secondary role and is treated as a
dependent variable.

 The earth's radius Re is assumed to be a known parameter, rather than a variable.

Consequently, one purpose of this memorandum is to provide solutions for two of the four

variables (h, d, α, θ) as a function of any two of the remaining variables (and the known

parameter Re). Each group of three variables is related by one equation (provided in the next

section) — thus a total of four equations mathematically define the geometric problem illustrated

by Figure 1. Two equations (Eq 4 and Eq 5) are derived from the law of sines and involve two

angle variables and one side variable. Two other equations (Eq 6 and Eq 7) are derived from the

law of cosines and involve two side variables and one angle variable.

The equations in this chapter can be easily modified to account for the user having a known, non-

zero altitude above the surface of the earth using the method described in Subsection 2.3.1.

3.1.2 Taxonomy of Solution Approaches

The preceding formulation — calculating one variable as a function of any two (of three

possible) other variables — results in a total of 12 solutions. These solutions can be broken down

into the following taxonomy, in approximate increasing order of complexity

 2 angle variables and 1 distance variable involved; the distance variable is unknown
— solution is based on the law of sines, and the most computationally complex
operation is division — 2 cases

 2 angle variables and 1 distance variable involved; an angle variable is the unknown
— solution is based on the law of sines, and the most computationally complex
operation is an inverse trigonometric function — 4 cases

 1 angle variable and 2 distance variables involved; the angle variable is the unknown
— solution is based on law of cosines, and the most computationally complex
operation is an inverse trigonometric function — 2 cases
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 1 angle variable and 2 distance variables involved; the side opposite the angle is the
unknown — solution is based on law of cosines, and the most computationally
complex operation is a square root — 2 cases

 1 angle variable and 2 distance variables involved; the distance variable adjacent to
the angle is the unknown — solution is based on law of cosines, and the most
computationally complex operation is solving a quadratic equation — 2 cases.

There are (usually more cumbersome) alternatives to the solution approaches outlined above.

The first case addressed below, finding θ from h and α, is an example.

3.1.3 Detailed Geometry

Figure 6 below is a more detailed depiction of the vertical-plane problem geometry shown in

Figure 1. For each of the vertices of triangle OUS a line is constructed that intersects the oppo-

site side (or an extension thereof) in a right angle. (These are the same lines that are created in

some proofs of the law of sines and law of cosines.) These intersection points are labeled A, B

and C. Because triangle OUS is oblique, intersections points B and C are outside the perimeter

of OUS. Each of the constructed lines results in the creation of two right triangles with the right

angle at A, B or C (for example, line OC creates right triangles OCU and OCS). Figure 6 also

introduces the chord UN, which is an example of the role of half-angles. Color-coded distances

(violet) and angles (blue) associated with these new lines and points are also shown.

Figure 6 Detailed Geometry for Vertical Plane Formulation
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3.2 Computing Geocentric Angle

3.2.1 Altitude and Elevation Angle Known – Basic Method

Manipulating Eq 5 yields
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Referring to Figure 6, the first line in Eq 27 can also be derived from the right triangle AUS,

where the length of the adjacent side is Re sin(θ) and the length of the hypotenuse is

(Re+h) sin(θ) / cos(α).

The expressions on the right-hand sides of two lines in Eq 27 are analytically equivalent;

however, the second is numerically better-conditioned when θ is small.

Using Eq 14, the first line in Eq 27 can be approximated by
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When α = 0 (satellite/aircraft is on user's horizon), θ achieves its maximum value for a visible

target, which is given by
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Since the interior angles of a planar triangle sum to π, it follows from Figure 1 that
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In the satellite field, it is sometimes said that angle USO accounts for the parallax caused by the

satellite not being infinitely distant from the earth. The limiting values for angle USO are:
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3.2.2 Altitude and Elevation Angle Known – Alternative Method

An alternative expression for the geocentric angle can be found by starting with Eq 7 (which

involves d, h and α), then using Eq 4 to introduce θ and eliminate d. The result is
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This is a quadratic equation in sin(θ). Its solution is given by
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3.2.3 Altitude and Slant Range Known

From Eq 6, the geocentric angle is given by
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Eq 34

Using Figure 6, the first expression on the right-hand side of the first line of Eq 34 can also be

derived by applying Pythagoras’s theorem to right triangle UAS. The second expression on the

first line is numerically better-conditioned when θ is small, and is preferred in such situations.

A common application of Eq 34 is converting a slant-range d (which is usually easier to meas-

ure) to a geocentric θ (which is generally more useful in geodetic navigation and surveillance

calculations). This conversion is termed the ‘slant-range correction’ in radar applications. When

it is necessary to account for both the altitude hU of the user U and the altitude hS of the satellite

S, Eq 34 is modified using the technique described in Subsection 2.3.1, and becomes:
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3.2.4 Elevation Angle and Slant Range Known

Eq 4 can be written
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The right-hand side of the first line in Eq 37 can also be derived from right triangle OBS in

Figure 6. The second line is simply an alternative form, as the arc tangent function is not ill-

conditioned for any value of its argument.

3.3 Computing Elevation Angle

3.3.1 Altitude and Geocentric Angle Known

Manipulating Eq 5 yields
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The first expression on the right-hand side of Eq 38 can also be derived from right triangle UBS

in Figure 6.

Special / limiting cases of Eq 38 are
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The first line in Eq 39 describes how the satellite/aircraft elevation angle decreases as the

satellite/aircraft moves away from the user along the surface of the earth. The last line gives the

altitude of the satellite/aircraft, as a function of distance, when the satellite/aircraft is on the

horizon (ignoring refraction due to the earth’s atmosphere).

3.3.2 Altitude and Slant Range Known

Manipulating Eq 7 yields
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Using Figure 6, the first line of Eq 40 can also be derived by applying Pythagoras’s theorem to

the right triangle OBS, with the length of the sides being Re+h (hypotenuse), Re+d sin(α) and

d cos(α). In the second line, the term in large parentheses is the perpendicular height of the

satellite above the tangent plane at the user’s location. It is interpreted as the altitude of the

satellite minus a term which corrects for the curvature of the earth.

3.3.3 Geocentric Angle and Slant Range Known

Manipulating Eq 4 yields
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Eq 41 can also be derived from right triangle AUS in Figure 6.

3.4 Computing Slant Range

3.4.1 Altitude and Geocentric Angle Known

From Eq 6, it follows that
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The first line in Eq 42 can also be derived by applying Pythagoras’s theorem to right triangle

AUS in Figure 6. The second line is analytically equivalent to the first, but numerically better-

conditioned when θ is small, and thus is preferred in such situations.

As partial validation of Eq 42, when h and θ are set to zero separately, d is found to be equal to,

respectively, the length of the chord connecting U and S, )sin(2 2
1 eR , and the altitude, h. The

partial derivatives of d with respect to θ and h do not exist.

3.4.2 Altitude and Elevation Angle Known

Eq 7 can be written

    0=hR2hdR2+d e
2

e
2 sin Eq 43

Its solution is

      h+Rh2+R+R-=d 2
e

2
ee  sinsin 2 Eq 44

Referring to Figure 6, Eq 44 can be interpreted as length(CS)-length(CU), where length(CS) is

found by Pythagoras’s theorem applied to right triangle OCS.

The minimum and maximum values for the slant range d (requiring the satellite is visible) are

0=hR2+h=d

=h=d

e
2

vis 



for

for

max

min
2

1

Eq 45

As the satellite altitude approaches zero, the slant range converges as follows

 
0as

sin
 h

h
d


Eq 46

3.4.3 Geocentric Angle and Elevation Angle Known

Eq 5 can be written

 
 

Rd e







cos

sin
Eq 47
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Eq 47 is a manipulation of the two expressions for the length of AU in Figure 6. This equation is

not ill-conditioned for any values of θ and α.

3.5 Computing Altitude

3.5.1 Slant Range and Geocentric Angle Known

Eq 6 can be written as a quadratic equation in Re+h. Its solution is

   

 



2222

222

sinsin2

)(cos1)cos(1

2

1
ee

ee

RdR

Rd+Rh













Eq 48

Referring to Figure 6, the first line in Eq 48 can be interpreted as length(AS)-length(AN), where

length(AS) is found by Pythagoras’s theorem applied to right triangle AUS. The right-hand sides

of the two lines are analytically equivalent. However, the right-hand side of the second line is

numerically better-conditioned when θ is small, and is preferred in such situations.

3.5.2 Slant Range and Elevation Angle Known

Rearranging Eq 7 yields

 

1
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whenetc.
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25432
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xxxxx
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

Eq 49

Referring to Figure 6, the first line in Eq 49 can be interpreted as length(OS)-length(ON), where

length(OS) is found by Pythagoras’s theorem applied to right triangle OBS.

As the satellite slant range approaches zero, the altitude converges as follows

  0assin  ddh  Eq 50

3.5.3 Elevation Angle and Geocentric Angle Known

Manipulating Eq 5 yields
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Eq 51

Eq 51 can also be derived by manipulating the two expressions for the length of OC in Figure 6.
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Setting α = 0 in Eq 51 yields and expression (Eq 52) for the “height of the user’s horizon”.

Sometimes Eq 52 is replaced by a modified version that attempts to account for refraction due to

variations in atmospheric density. This topic is partially addressed in the following section.
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

Eq 52

3.6 Example Applications

Three example applications are presented in this section, with the intent of providing a sense of

how the mathematical equations presented earlier in this chapter relate to real problems. The

examples are intended to illustrate that it is necessary to understand the application in order to

utilize the equations properly and to interpret the results. Also, these examples suggest that,

while providing useful information, the equations in this chapter cannot answer some relevant

question. For that reason, the same examples are re-visited at the end of Chapter 4.

3.6.1 Example 1: En Route Radar Coverage

Application Context — A frequent surveillance engineering task is predicting a radar

installation’s “coverage”. There are two common formulations: Calculate either the minimum

visible aircraft (a) Elevation MSL or HAT, for a known ground range (geocentric angle) from the

radar; or (b) Ground range (geocentric angle) from the radar, for a known elevation MSL or

HAT.

For either case, the issues to be considered, and the approach taken herein, are:

 Terrain Effects — As stated in Chapter 1, blockage of electromagnetic waves by
hills/mountains/structures is not addressed herein. These effects would be included in a
more thorough analysis, and are particularly important in mountainous areas. However,
terrain effects are handled numerically, rather than by an analytic model, and are thus
outside the scope of this memorandum. The earth surrounding the radar is assumed to be
smooth, although not necessarily at sea level.

 Propagation Model — As stated in Chapter 1, real sensors may not have the straight line
propagation paths. Relevant to radars: electromagnetic waves behave according to Snell’s
Law and refract towards the vertical as the atmospheric density increases with decreased
altitude. Refraction effects are most pronounced for long, predominantly horizontal paths
within the earth’s atmosphere (such as occur for an en route radar). A widely used model
that approximates the effects of refraction and is compatible with the equations developed
earlier in this chapter is the “four-thirds earth” model (Refs. 17 and 18). According to
Ref. 17: “The 4/3 Earth radius rule of thumb is an average for the Earth's atmosphere
assuming it is reasonably homogenized, absent of temperature inversion layers or unusual
meteorological conditions.” Ref. 18 is an in-depth treatment of radar signal refraction.
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 Radar Antenna Height — Three values are used for the height of the radar antenna
phase center above the surrounding terrain, hU: 50 ft, representative of the antenna height
for a radar mounted on a tower; 500 ft, representative of the antenna height for a radar on
a hill top; and 5,000 ft, representative of the antenna height for a radar on a mountain top.

Based on these considerations, the two known/independent variables are taken to be:

(1) The satellite/aircraft elevation angle α (provided it is equal to or greater than the
minimum value for the associated antenna height hU); and

(2) Either

(a) The geocentric angle θ between the radar and a target aircraft (so the unknown/
dependent variable is the aircraft altitude hS above the terrain) — governed by Eq 51; or

(b) The aircraft altitude hS (so the unknown/dependent variable is the geocentric angle θ)
— governed by Eq 27.

Associating U with the radar antenna location (because its elevation is known) and S with

possible aircraft locations, the resulting equations are shown in Eq 53 below. Substitutions are

made for the four-thirds earth model and to account for a non-zero user altitude (Subsection

2.3.1). Also included is the equation for the geocentric angle θU between the radar and the

location T where the signal path (for elevation angle αmin) is tangent to the earth (Figure 5).
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Eq 53

The results of exercising Eq 53 for case (a), when the geocentric angle is known, are shown in

Figure 7. The maximum range depicted, 250 NM, is the specified value for current en route ATC

radars (e.g., ARSR-4 and ATCBI-6). Curves are shown that correspond to the three radar HAT

values at the theoretical minimum elevation angle for which targets are visible (blue) and for

1 deg larger than the minimum elevation angle (violet). Aircraft whose range/HAT combinations

are above a given curve are visible to the radar; otherwise they are said to be “below the radar

horizon”. If curves for the visibility of aircraft relative to mean sea level (altitude MSL) are

needed, the elevation of the terrain is added to the HAT values in Figure 7.
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Sensitivity to radar antenna HAT — Increasing the height of the radar’s antenna significantly

decreases the minimum HAT at which aircraft are visible. In this example, raising the antenna

HAT from 50 to 5,000 feet decreases the visible aircraft HAT by almost 21,000 feet — i.e., the

ratio is greater than 4:1. This leverage can be appreciated by examining Figure 5. Line US acts

like a lever arm with its fulcrum at T. Raising U lowers S, and since T is generally closer to U

than S, the change in the elevation of S is greater than it is in U.

Sensitivity to antenna elevation angle — Increasing the elevation angle of a radar antenna

above the minimum required to avoid blockage of the signal by the earth has a significant

coverage penalty. At the radar’s maximum range, a 1 degree increase in elevation angle

corresponds to an increase in the minimum HAT at which targets are visible of approximately

Δα  d = (1 deg)(π rad/180 deg)(250 NM)(6,076 ft/NM) = 26,511 feet Eq 54

The resulting decrease in airspace under surveillance is more than is gained by raising the radar

HAT to 5,000 feet. Thus, aligning (often called “bore sighting”) the antenna is an important

aspect of a radar installation.

Figure 7 Aircraft Minimum Visible HAT vs. Range for Three Radar Antenna HAT Values
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(primary radar) or transmitted (secondary radar) by the aircraft must return to the radar at a

detectable level. When a radar performs well for most targets (the case here) and a target is

visible, the determining factor for detectability is the antenna pattern. ATC radar antennas are

designed to have their gain concentrated near the horizon, where most aircraft are. Conversely,

ATC radars are not designed to detect aircraft almost directly above them (the “cone of silence”).

A “rule of thumb” for detecting a target by an ATC radar is that the target range be at least twice

its height above the radar antenna — e.g., an aircraft at 10,000 ft above the antenna would not be

detected when less than 20,000 ft or 3.3 NM from the radar (Ref. 19). Figure 7 includes the pre-

dicted cone of silence for an ATC radar antenna on the surface; larger antenna HAT values will

result in slightly smaller cones of silence. Generally, the cone of silence is an issue to be aware

of, but is not a major concern.

Targets “Below” the Radar — While the cone of silence is a concern for aircraft nearly above

a radar, when a radar antenna is installed significantly higher than the local terrain level, a

similar issue arises for aircraft close to but at lower altitudes than the antenna. Figure 8 depicts

the vertical plane (analogous to Figure 1) containing the radar antenna and the signal paths (for a

Figure 8 Aircraft Minimum Visible Altitude vs. Horizontal Range from Radar in
Vertical Plane Containing Radar and Aircraft
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4/3rds earth model) that are unblocked by the earth for antenna heights of 50 ft, 500 ft and

5,000 ft above the earth. (Data for these curves are the same as data for Figure 7.) The points of

tangency T with the earth’s surface for these signal paths are 8.7, 27.5 and 86.9 NM from the

radar U. Aircraft located between U and T and vertically below the paths shown are visible to the

radar (i.e., the propagation paths between those aircraft and the antenna are unblocked). Whether

the radar can detect them is mainly an issue of the antenna vertical pattern. Some radars are

designed with a “look down” mode to detect such aircraft. Figure 7 and Figure 8 may understate

coverage for such targets.

Earth Model — For either the standard-size or 4/3rds earth model, the minimum visible aircraft

altitudes are small at short ranges, and model differences are not important. However, the

minimum visible altitudes for the individual models, and their differences, are substantial at

longer ranges. For example, at a ground range of 250 NM, the predicted visible aircraft HAT for

a 4/3rds earth model is less than that for a normal-size earth by between 13.4 kft (for a radar

antenna HAT of 50 ft) and 9.4 kft (for a radar antenna HAT of 5,000 ft).

3.6.2 Example 2: Aircraft Precision Approach Procedure

Design of a Precision Instrument Approach Procedure (IAP) is a straightforward application of

the analyses in this chapter. The RNAV (GPS) LPV approach to Kansas City International

Airport (MCI) runway 19L is selected as an example. The approach plate is shown as Figure 9.

The first consideration is that, since the navigation fixes on the approach plate quantify vertical

height in terms of altitude MSL, the same quantity must be used for procedure design. Second,

the user location U is chosen as the point where aircraft crosses the runway threshold. The

elevation above MSL of U is the sum of the elevation of the runway threshold (THRE = 978 ft)

and the threshold crossing height (TCH = 59 ft); thus, hU = 1,037 ft.

In terms of the four variables defined in Subsection 3.1.1, the elevation angle α is set equal to the

specified glide path angle — i.e., α = 3.00 deg — and constitutes one independent variable. The

second independent variable describes movement along the approach route. Either θ or hS could

be used; in this example, θ is selected because it has fewer drawbacks. While its published

precision (0.1 NM) is less than desired, the limits of its precision are known. Conversely, only

lower bounds for hS are specified on the approach plate; the amount that each is below the glide

path angle is not known. (However, a positive, and one reason for selecting this example is that

there are six positions along the approach where the minimum altitude MSL is stated.)

For this set of variables — α and θ known, and h unknown — Subsection 3.5.3 provides the sol-

ution (Eq 51). After substituting for a non-zero user altitude hU (Eq 35), the result is Eq 55.

Evaluating this equation (using the TERPS value for Re in Subsection 2.2.2) yields Table 4.
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Table 4 Specified and Computed Fix Altitudes for MCI Runway 19L LPV Approach

Fix Name UMREW FELUR REMNS ZASBO YOVNU GAYLY

Dist. from Threshold, NM (Figure 9) 1.9 4.9 6.2 9.3 12.4 15.5

Min. Altitude, ft MSL (Figure 9) 1,640 2,600 3,000 4,000 5,000 6,000

Glide Path Altitude, ft MSL (Eq 55) 1,645 2,619 3,046 4,075 5,122 6,187

Because the computed values in the last row of Table 4 are slightly larger than the published

minimum altitudes on the row above, it is reasonable to conclude that the IAP design process

described in the subsection closely replicates FAA process.

Figure 9 Approach Plate: RNAV (GPS) for MCI Runway 19L
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3.6.3 Example 3: Satellite Visibility of/from Earth

A question that is readily addressed using the equations in this chapter is: What fraction of the

earth’s surface can see (and be seen by) a satellite at altitude h? Clearly, h is one independent

variable in such an analysis. The other independent variable is taken to be the minimum

elevation angle α (often called the mask angle in this context) at which the satellite provides a

usable signal. The quality of signals received at low elevation angles can be degraded due to

multipath and attenuation by the atmosphere; and terrain blockage is an issue at low elevation

angles. The dependent variable is taken to be θ, the geocentric angle between the satellite nadir

N and the user U. For this set of variables, Subsection 3.2.1 provides the solution approach.

An issue is whether to use a normal-size or 4/3 earth model. Normal-size is selected, because

(unlike radar signals) satellite signals are outside of the earth’s atmosphere over most of their

propagation path. The earth’s atmosphere extends to an altitude of approximately 5 NM, while

satellite altitudes are at least several hundred nautical miles.

The basic equation to be evaluated is thus taken from Eq 27. As a way of visualizing the impact

of satellite altitude on visibility, a modified version of Eq 17 is used. The results of exercising

these equations are shown in Figure 10.

Figure 10 Fraction of Earth Visible vs. Satellite Altitude
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4. TWO-POINT / SPHERICAL-SURFACE PROBLEM FORMULATION

4.1 Basics of Spherical Trigonometry

4.1.1 Basic Definitions

Spherical trigonometry deals with relationships among the sides

and angles of spherical triangles. Spherical triangles are defined by

three vertices (points A, B and C in Figure 11) on the surface of a

sphere and three arcs of great circles (a, b and c in Figure 11),

termed sides, connecting the vertices. The angles at the vertices are

A, B and C, and the lengths of the sides are quantified by their

corresponding geocentric angles (a, b and c). In this memorandum,

the sphere always represents the earth.

Spherical trigonometry originated over 2,000 years ago, largely

motivated by maritime navigation and understanding the relation-

ship of the earth to the “heavenly bodies”. Early contributors were from Greece, Persia and

Arabia. The subject was completed by Europeans in the 18th and 19th centuries. Until the 1950s,

spherical trigonometry was a standard part of the mathematics curriculum in U.S. high schools

(Refs. 20 and 21).

4.1.2 Application to Navigation and Surveillance

In this memorandum, a distinction is made between “mathematical” and “navigation” spherical

triangles. The three vertices of a “mathematical” spherical triangle can be arbitrarily located on

the surface of a sphere — i.e., all three points can be problem-specific. The sides and interior

angles are all positive numbers in the range (0, π). A “mathematical” spherical triangle does not

have an defined relationship with the sphere’s latitude/longitude grid.

In contrast, “navigation” spherical triangles involve only two problem-specific locations,

typically labeled U and S in this chapter. The third vertex is chosen as the North Pole P§§,

enabling U and S to be related to the latitude/longitude grid. Six triangular elements (requiring

seven variables) define a “navigation” spherical triangle (Figure 12):

(a) Angular lengths of sides PU and PS — complements of the latitudes of points U and S,
respectively;

(b) Angle at P — the difference in the longitude of the points U and S;

(c) Angular length of side US — the geocentric angle between points U and S; and

§§ While the North Pole is used in deriving navigation equations, the resulting expressions are valid for points in the
southern hemisphere as well.

Figure 11 Example
Spherical Triangle
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(d) Angles at U and S — the azimuth angles of the leg
joining U and S with respect to north.

This chapter is devoted to two-point problems that can be

solved using navigation spherical triangles. Chapter 6

addresses situations involving three problem-specific points

that require mathematical spherical triangles.

4.1.3 Applicability to Two-2D Problem Formulation

A drawback of spherical trigonometry is that it not suited to

problems involving locations at finite distances above the

earth’s surface — i.e., it does not “handle” altitude. How-

ever, the vertical plane defined by two vertices of a spher-

ical triangle and the center of the sphere conform to the

assumptions employed in Chapter 3. Points directly above

the two vertices lie in that plane as well. Thus, for situations

involving two problem-specific points, plane and spherical trigonometry are complementary

techniques that can be employed for their analysis. Moreover, situations involving three

problem-specific points can be analyzed in the same way, so long as the altitude components can

be handled in a pairwise manner. Generally, problems involving an aircraft and two navigation

or surveillance sensors satisfy this condition.

4.1.4 General Characteristics of Spherical Triangles

The interior angles of a spherical triangle do not necessarily sum to π, and right triangles do not

play as prominent a role as they do in plane trigonometry. Although Figure 11 and Figure 12

depicts all angles and sides as acute, angles and sides of mathematical spherical triangles lie in

the range (0, π). Angles in navigation spherical triangles have a wider range of values: latitude

varies over [-π/2, π/2], longitude varies over [-π, π], geocentric angles vary over (0, π) and

azimuths vary over [-π, π]. Thus: latitudes are usually found with the arc sine function; longi-

tudes with the two-argument arc tangent; geocentric angles with the arc cosine; and azimuths

with the two-argument arc tangent. Difference between two longitudes or two azimuth angles

may need to be adjusted by ±2π, so that the magnitude of the difference is less than or equal to π.

Two points on a sphere are diametrically opposite (antipodal) if the straight line connecting them

passes through the center of the sphere. Mathematically, U and S are antipodal when LS = -LU

and λS = λU ± π. If that is the case, the geocentric angle between U and S is π, and an infinite

number of great circle paths connect U and S. Many spherical trigonometry equations, and

particularly those for azimuth angles, are indeterminate for antipodal points.

Figure 12 “Navigation”
Spherical Triangle
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4.1.5 Resources on the Web

The internet has many useful resources concerning spherical trigonometry. Examples, in

approximate decreasing order of their complexity, are:

 I. Todhunter, Spherical Trigonometry, 5th Edition (Ref. 22) — Written by a British
academic. Has been cited as the definitive work on the subject. Later editions were
published but are not available without charge.

 W.M. Smart and R.M. Green, Spherical Astronomy (Ref. 23) — Also written by a
British academics. Chapter 1 is devoted to spherical trigonometry. It has equations
and their derivations (including more complex and useful ones).

 Wikipedia, Spherical Trigonometry (Ref. 24) — A fine collection of equations and
background information.

 Wolfram MathWorld (Ref. 25) — Another good collection of equations

 Aviation Formulary (Ref. 26) — A website with equations similar to those in this
chapter, without derivations. It also offers an Excel spreadsheet with formulas as
macros.

 Spherical Trigonometry (Ref. 27) — An easily understood, unintimidating
introduction to the topic.

4.1.6 Key Formulas

In general, the labeling of the angles and sides of a spherical triangle is arbitrary. Thus, cyclic

substitutions — i.e., A → B, a → b, etc. — can be made to derive alternate versions of each

identity. In addition to the formulas displayed below, there is a rich set of other identities that can

be found in the literature.

Law of cosines for sides:

    )cos()sin()sin(cos)(coscos Acbcb=a  Eq 56

The right-hand side of this law contains two sides (here, b and c) and their included angle (A).

The left-hand side contains the third side (a), which is opposite to the included angle.

Primary applications: (1) finding the third side of a triangle, given two sides and their included

angle; and (2) finding any angle of a triangle (using cyclic substitution), given three sides.

Law of cosines for angles:

        )cos(sinsincoscos)cos( aCBCB=A  Eq 57

The right-hand side of this law contains two angles (here, B and C) and their included side (a).

The left-hand side contains the third angle (A), which is opposite to the included side.

Primary applications: (1) finding the third angle of a triangle, given the other two angles and

their included side; and (2) finding any side of a triangle (by cyclic substitution) from all three

angles.
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Law of sines:
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 Eq 58

Primary application: finding a side (or angle) of triangle, given the opposite angle (or side) and

another opposite side-angle pair. The ambiguity of the arc sine function can be a concern.

Analogue of law of cosines for sides:

   
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Abcbc=Ca

Acbcb=Ba




Eq 59

The right-hand sides of both lines of the above equation have the same sides and included angle

(and almost identical functions) as the right-hand side of the law of cosines for sides. However,

whereas the law of cosines for sides has cos(a) on the left-hand side, the analogue law has

sin(a) cos(B) or sin(a) cos(C), with B and C being the angles adjacent to side a.

Primary application: resolving ambiguities in situations where two sides and the included angle

are known, and it is desired to find the other two angles directly from the known quantities.

Four-Part Cotangent Formula:

       
        )(cotsincot)(sincos)cos(

)(cotsincot)(sincos)cos(
BaCbBCba=Ca
cBaCCBca=Ba




Eq 60

The six elements of a triangle may be written in cyclic order as (aCbAcB). The four-part

cotangent formula relates two sides and two angles forming four consecutive elements around a

triangle. The side and angle at the ends of such a sequence appear once on each line in Eq 60, as

the argument of a cotangent function, whereas the middle elements appear twice on a line.

Primary applications: (1) given two angles (here, B and C) and their included side (a), find the

adjacent sides (b and c); and (2) Given two sides (c and a, or a and b) and their included angle (B

or C), find the adjacent angles (C and B).

With same known quantities as the two cosine laws, the four-part cotangent formula provides

solutions for the adjacent quantities that the cosine laws do not address. However, application

(2) can also be accomplished by a combination of the law of sines and the analogue law (see

solutions for longitude difference and azimuth angles below).

Napier’s Analogies:

c
BA

BA
baC

ba

ba
BA

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 tan

)(cos

)(cos
)(tancot

)(cos

)(cos
)(tan









 Eq 61
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c
BA

BA
baC

ba

ba
BA

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 tan

)(sin

)(sin
)(tancot

)(sin

)(sin
)(tan











Primary application: (1) given two sides (here, a and b) and their opposite angles (A and B), find

the remaining side (c) and remaining angle (C).

Same Affection for Sums/Difference of Opposite Sides/Angles:

Since all sides and angles of a “mathematical” spherical triangle are in (0, π), ½(A+B) and

½(a+b) are as well. Ref. 22 demonstrates that these sums are less than/equal to/greater than ½π

synchronously. Also, ½(A-B) and ½(a-b) are both in (-½π, ½π). Ref. 22 demonstrates that these

differences are less than/equal to/greater than 0 synchronously. Ref. 22 terms this characteristic

“having the same affection”.

Solving for Angles and Sides:

When solving for angles and sides after employing the above formulas, one must be aware of the

possibility of ambiguous solutions to inverse trigonometric functions. In the realm of spherical

trigonometry (versus navigation), where angles and sides are in the range (0, π), the arc sine

function and the law of sines are the primary source of concern, as two angles in the range (0, π)

can have the same sine value. However, some problems do have two solutions; in these cases,

neither result from the arc sine function is extraneous. Additional comments are provided

concerning specific problems and equations below.

4.1.7 Taxonomy of Mathematical Spherical Triangle Problems

A spherical triangle is defined by a total of six quantities. The case of five given (known)

elements is trivial, requiring only a single application of either cosine law or the sine law. For

four given elements there is one non-trivial case. For three given elements there are six cases.

Each of the seven cases is illustrated in Figure 13 and enumerated below (Ref. 28), along with a

solution approach. For some cases, others solutions may exist (Ref. 22).

(1) Three sides known — Eq 56, three times

(2) Two sides and the included angle known — Eq 56 for a, Eq 58 and/or Eq 59 for B
and C

(3) Two sides and a non-included angle known — Eq 58 for C, then follow case 7

(4) Two angles and the included side known — Eq 57 for A, then Eq 58 or Eq 60 b and c

(5) Two angles and a non-included side known — Eq 58 for b, then follow case 7

(6) Three angles known — Eq 57, three times

(7) Two sides and their opposite angles known — Eq 61 for A and a.
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Figure 13 Illustrating the Taxonomy of Spherical Triangle Problems

4.1.8 Taxonomy of Navigation Spherical Surface Problems

The spherical surface formulation introduced in Section 1.3 involves seven variables. For a full

solution to a given situation, four variables must be known, from which the remaining three can

be found. Thus, 35 mathematical problems and 105 solution equations could be involved.

However, the spherical surface formulation is symmetric in U and S; interchanging U and S only

flips the left and right sides in Figure 12 but does not change the underlying problem. Of the 35

possible mathematical problems, three are self-symmetric (the mathematical problem does not

change if U and S are interchanged) and 16 have symmetric versions — see Table 5. Table 5

notes the 3 of 19 problems summarized (and 5 of the full 35) do not involve either longitude

being known; thus the solution can only yield a longitude difference rather than an actual

longitude. Table 5 also references the corresponding spherical triangle case (Subsection 4.1.7)

and the cases that are addressed in the remainder of this chapter. All seven spherical triangle

cases presented in Subsection 4.1.7 occur in Table 5

Table 5 Taxonomy of Navigation Spherical Surface Problems

Case
# LU λU ψS/U LS λS ψU/S θ SP1 SS2 No λ

ST
Case3 Comment

1 X X X X X 2 Section 4.2

2 X X X X X 3 Section 4.6

3 X X X X X 3 Similar to #2

4 X X X X X 1

5 X X X X X 4 Section 4.3.4

6 X X X X X 5

7 X X X X X 3

8 X X X X X 5

9 X X X X X 2 Section 4.3

10 X X X X X 3 Section 4.4
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Case
# LU λU ψS/U LS λS ψU/S θ SP1 SS2 No λ

ST
Case3 Comment

11 X X X X X X 7

12 X X X X X X 1, 2, + Over-specified

13 X X X X X 5 Similar to #8

14 X X X X X 2 Similar to #9

15 X X X X X 3

16 X X X X X X 2, 4, + Over-specified

17 X X X X X 6

18 X X X X X 5

19 X X X X X 4

1 Symmetric Problem exists
2 Self-Symmetric problem
3 Spherical Triangle Case (Subsection 4.1.7)

4.2 The Indirect Problem of Geodesy

The indirect problem of geodesy is stated in Section 1.3

and is illustrated in Figure 14. The known elements (and

their symbols/values) are sides PU (½π - LU) and PS

(½π - LS) and the included angle UPS (λS - λU). In the

taxonomy of spherical triangles of Subsection 4.1.7, this

problem falls under Case (2).

4.2.1 Computing the Geocentric Angle

Finding the geocentric angle between two locations on a

spherical earth is fundamental question, and apparently

was a motivating factor in the creation of spherical trigonometry during the first millennium

AD.*** Referring to Figure 12, the distance θ between U and S is readily derived from the law of

cosines for sides (Eq 56), treating the leg connecting U and S as the unknown quantity

           SUSUSU LL+-LL= sinsincoscoscoscos  Eq 62

The right-hand side of Eq 62 should evaluate to a value in [-1, 1]; θ can then be found uniquely

in [0, π]. Eq 62 was used by maritime navigators centuries ago, when precision was limited (their 

“tools” were paper-and-pencil and rudimentary trigonometry tables). It was found that Eq 62 is

numerically ill-conditioned for small values of θ (Subsection 2.1.4) and alternatives were sought.

*** When used at sea, presumably, a ship’s navigator first estimated the vessel’s latitude/longitude from celestial
sightings, and then computed the distance to the destination and the course to follow.

Figure 14 Indirect Problem
of Geodesy
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To improve computational accuracy when the geocentric angle

is small, over 1,000 years ago (Ref. 29) mathematicians defined

the versine (in Latin, sinus versus) function as (Figure 15)











2
sin2)cos(1)(vers 2 

 Eq 63

In early terminology, the familiar sine function was called sinus

rectus, or vertical sine. Tables for the versine or the haversine

(half of versine), and their inverses, date to the fourth century.

Using the haversine function, the geocentric angle can be found

from what is sometimes called termed the “haversine formula”

         USUSUS LLLL   havcoscoshavhav Eq 64

This historically significant formula eliminates the ill-conditioning of Eq 62 for small geocentric

angles, and requires only a few calculations.

Without explicitly utilizing the versine or haversine (which are less needed today, due to the

availability of modern computational capabilities), an analytically equivalent version of the

haversine formula is








 








 










2
sin)cos()cos(

2
sin

2
sin 22 US

US
US LL

LL 
Eq 65

The right-hand side of Eq 65 should evaluate to a value in [0, 1]; θ can then be found uniquely in

[0, π]. The small latitude and longitude differences that occur when U and S are close only

involve the sine function. This expression is reminiscent of Pythagoras’s formula for the

hypotenuse of a plane triangle. In fact, it reduces to Pythagoras’s formula when the two points

are close together and close to the equator.

A drawback of Eq 65 (although far less of an issue than the problem it solves) is that it’s numer-

ical ill-conditioned for angles near the antipodal point. One solution is to use the original

equation (Eq 62) in these situations. Another is to use the following:









































 








 


















2
sin)cos()cos(

2
cos

2
sin)cos()cos(

2
cos

2
sin)cos()cos(

2
cos

2
cos 22

US
US

USUS
US

US

US
US

US

LL
LL

LL
LL

LL
LL





Eq 66

The previous two equations can be combined to create a form that is not ill-conditioned for any

Figure 15 Sine, cosine and
versine, and the unit circle
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value of θ when executing an inverse trigonometric function






















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
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


 








 


















2
sin)cos()cos(

2
cos

2
sin)cos()cos(

2
cos

2
sin)cos()cos(

2
sin

2
tan

22

US
US

USUS
US

US

US
US

US

LL
LL

LL
LL

LL
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




Eq 67

Remarks: (a) All of the equations in this subsection for θ are unchanged if U and S are inter-

changed; (b) When the three points P, U and S are aligned (so the triangle PUS is degenerate),

the equations remain valid; and (c) An expression for sin(θ) (vice that for sin(½θ) in Eq 65) can

be derived by vector analysis techniques, and is presented in Section 5.2 (Eq 121).

4.2.2 Computing the Azimuth Angles of the Connecting Arc

Having solved for the geocentric angle, the remaining “part” of the indirect problem of geodesy

is finding the azimuth angles at U and S of the great circle arc connecting these two points. This

determination is slightly complicated by the fact that azimuth angles can vary over the range

[-π, π], so that a two-argument arc tangent function must be used. 

First, the spherical trigonometry law of sines (Eq 58), applied to the angles at P and at U yields

)sin(

)sin()cos(
)sin( /




 USS

US
L

=


Eq 68

Second, the analogue to the law of cosines for sides (Eq 59) yields

)sin(

)cos()sin()cos()cos()sin(
)cos( /




 USUSUS

US
LLLL

=


Eq 69

Thus

)cos()sin()cos()cos()sin(

)sin()cos(
)tan( /

USUSUS

USS
US

LLLL

L
=









Eq 70

Observe that, while Eq 68 and Eq 69 depend upon the geocentric angle θ (which is not a “given”

for the indirect problem), the solution (Eq 70) for ψS/U only depends upon the latitudes and

longitudes of the great circle arc end points, which are “givens”. Thus, the solution for ψS/U does

not “daisy chain” from the solution for θ.

The spherical trigonometry method is symmetric with respect to the user and satellite, so

)cos()sin()cos()cos()sin(

)sin()cos(
)tan( /

SUSUSU

SUU
SU

LLLL

L
=









Eq 71
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As mentioned previously, in navigation analyses it is useful to employ azimuths in the range

[-π, π], where negative values denote angles west of north. In some expositions, the azimuth

angle at the second point is taken to be the angle the path would take if it were to continue —

i.e., implicitly or explicitly, the first point is taken as the origin and the second as the destination

of a trajectory. However, herein, the two points are on an equal basis and the azimuth angle at

the second point is that for the great circle path toward the first point. Eq 70 and Eq 71 reflect

these points of view.

Remark: When the three points P, U and S are aligned (so the triangle PUS is degenerate), the

equations in this subsection remain valid.

4.3 The Direct Problem of Geodesy

The direct problem of geodesy is stated in Section 1.3 and is

illustrated in Figure 16. The known elements (and their

symbols/values) are sides PU (½π - LU) and US (θ), and

their included angle PUS (ψS/U). In the taxonomy of Sub-

section 4.1.7, this problem falls under case (2).

The coordinates LU and λU and the azimuth angle ψS/U

define a great circle. The direct problem of geodesy can be

thought of as determining the coordinates of location which

is a given distance θ from U. Closely related problems are

the subjects of Sections 4.4, 4.5 and 4.6.

4.3.1 Computing the Satellite Latitude

Applying the spherical law of cosines for sides, where the unknown is the side PS, yields

   USUUS LL=L /cos)sin()cos()cos()sin(sin   Eq 72

Note that latitude angles are restricted to the range [-π/2, π/2], so in this context, the principal

value of the arc sine function always yields the correct solution.

4.3.2 Computing the Satellite Longitude

Finding the satellite longitude λS is more complex, as longitude angles are in the range [-π, π].

First, apply the spherical law of sines to the angels at P and U

     
 L

=
S

US
US

cos

sin
sinsin /

  Eq 73

Figure 16 Direct Problem
of Geodesy
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Then apply the analogue to the law of cosines for sides

   
 L

LL
=

S

USUU
US

cos

cos)sin()sin()cos()cos(
cos /




 Eq 74

Thus the satellite longitude can be found from

   
 LL

=
USUU

US
US

/

/

cos)sin()sin()cos()cos(

sin)sin(
tan







 Eq 75

The right-hand side of the above equation only depends upon “given” quantities for the direct

problem, and not on the solution for LS. After employing a two-argument arc tangent function,

the solution will yield a value of λS – λU in the range [-π, π]. If this is added to a value of λU (also

in the range [-π, π]), the result will be in the range [-2π, 2π]. Adjustments of ±2π must then be

made to obtain a value of λS in the range (-π, π] — e.g., (1) If λS < 0, then λS = λS + 2π; (2) If

λS > π, then λS = λS – 2π.

4.3.3 Computing the Azimuth of the Connecting Path at the Satellite

After LS and λS have been found, the direct problem solution can be completed by finding the

azimuth of the great circle arc at the satellite’s location, ψU/S. using Eq 71. An alternative,

preferred approach that does not daisy chain solutions is to first apply the law of sines,

)cos(

)sin()cos(
)sin( /

/
S

USU
SU

L

L
=


  Eq 76

A minus sign is introduced in the above equation to cause the two azimuth angles to have

opposite signs.

Then apply the analogue to the law of cosines for sides

)cos(

)cos()cos()cos()sin()sin(
)cos( /

/
S

USUU
SU

L

LL
=





Eq 77

Thus

)cos()cos()cos()sin()sin(

)sin()cos(
)tan(

/

/
/

USUU

USU
SU

LL

L
=









Eq 78

Eq 71 and Eq 78 have identical computational burdens.

4.3.4 Applications

Two applications of the equations in this Section to ‘real world’ problems are

 Finding intermediate points on the trajectory from U to S (using Eq 72 and Eq 75) by
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replacing θ by f•θ/N, where f ε [0, 1] (a similar functionality that applies to the vector 
approach is described in subsection 5.3.2)

 Determining the location of an aircraft S from the location of and range/bearing
measurements for a VOR/DME ground station U (Subsection 4.8.6).

4.4 A Modified Direct Problem: Path Azimuth at Satellite Known

In this modification to the direct problem of geodesy, the azimuth angle ψU/S of the path at S

connecting U and S is known, and the azimuth angle ψS/U of the path at S is unknown (the

opposite of the assumptions for these quantities in unmodified problem). In taxonomy of

spherical triangles in Subsection 4.1.7, this problem falls under case (3). In terms of the naviga-

tion triangle UPS, the known elements (and symbols) are sides UP (½π - LU) and US (θ) and

angle USP (ψU/S).

4.4.1 Computing the Satellite Longitude

The approach begins by applying the law of sines to triangle UPS

)cos(

)sin()sin(
)sin( /

U

SU
US

L
=


  Eq 79

In computing λS from Eq 79, two solutions are possible — one correct and one ambiguous. One

satisfies | � � − � � | ≤ � 2⁄ and the other satisfies � 2⁄ ≤ | � � − � � | ≤ � . In aviation applications,

the second will be “on the other side of the world” and not consistent with the range of available.

It is discarded. It may be necessary to adjust λS to a value in the range [-π, π].

4.4.2 Computing the Satellite Latitude

The satellite latitude LS is found from Napier’s Analogies (Eq 61), using the solutions for λS

obtained from Eq 79

 
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









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USSU
S
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Eq 80

The two expressions in Eq 80 are mathematically equivalent, but one may be preferred

numerically in some situations.

4.4.3 Computing the Azimuth of the Connecting Arc at the User

There are multiple ways to find the azimuth angle ψS/U. Napier’s Analogies (Eq 61) is used
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because it raises the possibility of using the four-quadrant arc tangent function.
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Eq 81

4.4.4 Application

An application of the equations in this Section is finding the aircraft’s position using an on-board

radar to measure the slant-range and azimuth angle to a location with known coordinates.

Accurate determination of the geocentric angle θ from the slant-range d requires taking into

account the known altitude/elevation of the aircraft and target ground site relative to sea level.

This is done using Eq 34, modified as described in Subsection 2.3.1.













 


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US
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US
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hR

hh-d
=

)()(

2

1
arcsin2 Eq 82

4.5 A Modified Direct Problem: Satellite Longitude Known

In this modification to the direct problem, the longitude of S, λS, is known, and the geocentric

angle, θ, between U and S is unknown (the opposite of the assumptions for these quantities in

unmodified problem). In taxonomy of spherical triangles in Subsection 4.1.7, this problem falls

under case (4). The known elements (and dimensions) are angles UPS (λS - λU) and SUP (ψS/U)

and their included side UP (½π - LU).

In the development below, it is assumed that λS ≠ λU, as in that case there is either no solution

(ψS/U ≠ 0 and ψS/U ≠ π) or an infinite number of solutions. With this assumption, the problem is

well-posed, because every non-meridian great circle crosses every line of longitude exactly once.

4.5.1 Computing the Satellite Latitude

The latitude LS is found from the four-part cotangent formula (Eq 60)

   
)cos(

)cot(sincos)sin(
)tan( /

U

USUSUSU
S

L

L
=L

 
Eq 83

In computing LS from Eq 83, observe that, using the arc tangent function, it can be

unambiguously found in [-π/2, π/2].
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4.5.2 Computing the Geocentric Angle

The geocentric angle θ is found from the four-part cotangent formula (Eq 60)

)cos(

)cot()sin()(cos)sin(
)cot( //

U

USUSUSU

L

L
=





Eq 84

In computing θ from Eq 84, observe that, using the arc cotangent function, it can be

unambiguously found in [0, π].

4.5.3 Computing the Azimuth of the Connecting Arc at the Satellite

The azimuth angle ψU/S is found from the law of cosines for angles (Eq 57)

    )sin(sin)sin(cos)cos()cos( /// UUSUSUSUSSU L=   Eq 85

In computing ψU/S from Eq 85, observe that, using the arc cosine function, it can be unambig-

uously found in either [0, π] or [-π, 0]. The former is employed when S is west of U; the latter is

employed when S is east of U.

4.6 A Modified Direct Problem: Satellite Latitude Known

In this modification to the direct problem, the latitude of S, LS, is known, and the geocentric

angle, θ, between U and S is unknown (the opposite of the assumptions for these quantities in

unmodified problem). In the taxonomy of spherical triangle problems (Subsection 4.1.7), this

situation falls into case (3). The known elements (and their dimensions) are sides PU (½π-LU)

and PS (½π-LS) and adjacent angle PUS (ψS/U).

In the development below, it is assumed that ψS/U ≠ 0 and ψS/U ≠ π. If this assumption is not true,

the problem either has no solution (either LU < LS and ψS/U = π or LS < LU and ψS/U = 0) or the

solution can be found trivially. Every great circle, except a meridian, has a maximum latitude

Lmax and minimum latitude -Lmax. The |Lmax| associated with ψS/U for a situation may be less than

the value selected for |LS| for that situation (Subsection 4.6.1), in which case there is no solution

(problem not well posed).

4.6.1 Computing the Azimuth of the Connecting Arc at the Satellite

The approach begins by applying the law of sines to finding ψU/S

)cos(

)sin()cos(
)sin( /

/
S

USU
SU

L

L
=


  Eq 86
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Consistent with the convention used herein, a minus sign is introduced on the right-hand side of

the above equation, causing the two azimuth angles to have opposite signs. By assumption, the

right-hand side of Eq 86 is not zero.

The absolute value of the right-hand side of Eq 86 can be: (a) greater than unity (in which case

there is no solution, as |LS| > Lmax); (b) equal to unity (in which case there is one solution, as

|LS| = Lmax); and (c) less than unity (in which case there are two solutions, as |LS| < Lmax). If (a) is

true, the problem is ill posed and there’s nothing more to be done. If (b) is true, refer to Section

4.7. If (c) is true, label the solutions ψU/S,1 and ψU/S,2 and proceed.

4.6.2 Computing the Satellite Longitude

The longitude λS is found using one of Napier’s Analogies (Eq 61) and the solution for ψS/U

found above with Eq 86

)(cot
)(sin

)(cos
)(tan ,//2

1

2
1
2
1

2
1

iSUUS
SU

SU
US,i

LL
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 




 Eq 87

The discussion in Subsection 4.1.6 concerning sums and differences of sides and angles having

the “same affection” is relevant here, but requires interpretation as a navigation (vice mathe-

matical) spherical triangle is involved. Here, the cosine function is always positive and sine and

cotangent functions change sign together. Thus, in computing λS,i (i = 1, 2) using the arc tangent

function: (a) if U is west of S, the right-hand side is always positive and each solution can be

unambiguously found in (λU, λU+π); (b) if S is west of U, the right-hand side is always negative

and each solution can be unambiguously found in (λU - π, λU).

Eq 87 is indeterminate when LU = -LS (the sine term and the cotangent term are both zero). In

this case, an alternate equation can be used:
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


 Eq 88

Eq 88 is indeterminate when LU = LS (the sine term is zero and the cotangent term is infinite).

4.6.3 Computing the Geocentric Angle

The geocentric angle θ is also found from Napier’s Analogies (Eq 61) using the solutions for

ψS/U (Eq 86)
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Here, the cosine function in the numerator and the cotangent function change signs together.

Consequently, the right-hand side from Eq 89 is always positive. Thus, in computing θi (i = 1, 2)

using the arc tangent function, each solution can be unambiguously found in (0, π).

Eq 89 is indeterminate when LU = -LS (the cosine term in the numerator is zero and the cotangent

term is infinite). In this case, an alternate equation can be used:
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 Eq 90

Eq 90 is indeterminate when LU = LS.

4.7 Latitude Extremes of a Great Circle

A special case of Clairaut’s equation††† applies to full great circles (circling the earth), and can

be simply derived using the law of sines applied to the angles at two end points of a navigation

leg — U and S, in this case. If both azimuth angles are treated as positive

       SUSUSU L=L // sincossincos  Eq 91

Using the trigonometric identity sin(ψ) = sin(π–ψ) yields

    C=L sincos Eq 92

Thus all points on a given great circle have the same value, C, for the product cos(L) sin(ψ).

Clearly, |C| ≤ 1 and is positive for eastward routes and negative for westward routes. Satisfying 

Eq 92 is a necessary, but not sufficient, condition for the path to be a great circle — e.g., a

counterexample is a constant-latitude route.

A common application of Eq 92 is finding the northern- and southern-most latitudes of a full

great circle (termed vertices in Ref. 1). At a vertex, sin(ψ) = ±1, so

    C=LL USU /max sincos)cos(  Eq 93

At the two points displaced by ±π/2 from a vertex, the great circle crosses the equator. At those

points, sin(ψ) = C, so |ψ| = π/2 – Lmax.

††† Alexis Claude de Clairaut (or Clairault) (1713 –1765) was a prominent French mathematician, astronomer and
geophysicist.
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The great circle lies in a plane containing the locations U and S and center of the earth O. Lmax is

the angle between the great circle plane and the equatorial plane, and |C| is the cosine of that

angle. It follows from Eq 68 that

)sin(

)sin()cos()cos(
)cos( max



 USSU LL
L


 Eq 94

Eq 94 enables Lmax to be found from the coordinates of U and S and the distance between them.

Clearly, the latitude of the Southern Hemisphere vertex is Lmin = -Lmax

The longitude λmax corresponding to Lmax can be found using equations from Section 4.6. At

Lmax, the path azimuth  is ±π/2. If that point is thought of as S, the sign of what would be U/S

is the opposite of the sign of S/U. Thus from Eq 88
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λmin will occur at λmax ± π. Eq 95 is derived from the solution to the direct problem of geodesy.

An alternate expression for λmax, derived by vector analysis and based on the indirect problem of

geodesy, is presented in Chapter 5 (Eq 133).

As stated in Section 4.6, not all great circle routes connecting U and S or pass through Lmax, λmax

or its Southern Hemisphere equivalent. Stated informally, to pass through Lmax, λmax — or -Lmax,

λ(-Lmax) — a route between U and S must have enough of a change in longitude to bend towards

a pole. Mathematically, a route will pass through Lmax, λmax if the azimuth angles at U and S are

both acute

2
and

2
//





  SUUS Eq 96

In this situation, the route will achieve larger latitude (pass closer to the North Pole) than either

U or S. Alternatively both azimuth angles may be obtuse

2
and

2
//





  SUUS Eq 97

In this case, the route will pass closer to the South Pole than either U or S.

4.8 Example Applications

The example applications presented at the end of Chapter 3 are extended in the first three sub-

sections below, to demonstrate the capabilities of spherical trigonometry to provide more
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complete solutions to relevant technical problems. Three application examples are added —

concerning planning a flight route, the display processing of radar measurements and

determining an aircraft’s latitude/longitude from a VOR/DME station.

4.8.1 Example 1, Continued: En Route Radar Coverage

Predictions of radar visibility of aircraft as a function of the aircraft’s range and altitude, like

those in Subsection 3.6.1, are useful. However, for a specific radar installation, a more valuable

analysis product is a depiction of the radar’s altitude coverage overlaid on a map. As an example,

the ARSR-4/ATCBI-6 installation at North Truro, MA (FAA symbol: QEA) is selected. Its

coordinates are LU = 42.034531 deg and λU = -70.054272 deg, and its antenna elevation is

hU = 224 ft MSL. It is assumed that the terrain elevation in the coverage area is 0 ft MSL, which

is correct for the nearby ocean and optimistic (in terms of coverage) for the nearby land.

The sequence of calculations is as follows:

 Using Eq 53 (third line), the radar’s minimum usable elevation angle is found to be
αmin = -0.230 deg

 Aircraft altitudes hS of 3,000 ft, 10,000 ft and 25,000 ft MSL are selected for the
contours to be depicted.

 Using Eq 53 (second line), the geocentric angles θ corresponding to the selected
altitudes are found; the associated ground ranges are 85.7 NM, 141.2 NM and
212.6 NM, respectively.

 Using Eq 53 (first line), the minimum visible aircraft altitude at the maximum ground
range (250 NM) is found to be hS = 35,590 ft.

 For each contour, using special cases of Eq 65, four (LS, λS) points on the contour —
those at the same latitude or the same longitude as the radar — are found as follows:
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Eq 98

 With a graphics program, the remaining points for each contour are found by
“interpolation” using a circle/ellipse.

An alternative to steps 5 and 6 is to compute four sets of points (one for each contour) using Eq

65, by assuming values for LS, and solving for λS.
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The result of carrying out steps 1-6 for the North Truro radar system is shown in Figure 17. The

significance of the contour values is that: (a) Inside a contour, all aircraft having altitudes greater

than the contour value are visible to the radar (and aircraft closer to the radar are visible at lower

altitudes); and (b) Outside the contour, all aircraft having altitudes less than the contour value are

not visible to the radar.

Figure 17 Aircraft Altitude Visibility Contours for the North Truro, MA, Radar System

Consistency Check — The primary purposes of QEA are (1) surveillance of higher altitude

airspace, for use by ARTCC controllers; and (2) surveillance of much of the New England off

shore airspace, for use by the Department of Defense (DoD). A third purpose is backup

surveillance of the Boston TRACON airspace; horizontally, this airspace is a circle centered on

Logan Airport with a radius of 60 NM. Boston TRACON controllers have stated that they

consider QEA coverage to extend upward from an altitude of 3,000 ft MSL. Figure 17 is

consistent with that statement.
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Cone of Silence — As discussed in Subsection 3.6.1, ATC radars usually have a cone of silence

directly above the antenna; targets within the relatively small cone of silence cannot be detected.

Following the usual practice, contours for QEA’s cone of silence are not shown in Figure 17.

The U.S. has an extensive ATC radar infrastructure. Generally, one radar station’s cone of

silence will be within the coverage area of one or more other radar stations. In the case of QEA,

the Boston ARTCC also receives feeds from: the Nantucket, MA, terminal radar (46.5 NM from

QEA, at essentially sea level), which covers QEA’s cone of silence down to approximately

500 ft MSL; and the Cummington, MA, en route radar (132.1 NM from QEA, at an elevation of

2,000 ft MSL) which covers QEA’s cone of silence down to approximately 5,000 ft MSL.

4.8.2 Example 2, Continued: Aircraft Precision Approach Procedure

Subsection 3.6.2 illustrates computation of the flight profile (altitude vs. distance from threshold)

for an Aircraft Precision Approach procedure. However, for the procedure to be used

operationally, the coordinates of the fixes are needed by ATC personnel. Computing them is a

straightforward application of spherical geometry.

The sequence of calculations is as follows:

 Using the website AirNav (Ref. 30), the latitudes and longitudes of the ends of KMCI
runway 19L / 1R are obtained.

 Associating U with the 1R end and S with the 19L end of the runway, the azimuth of
the approach course in the direction away the 19R end is computed, using Eq 70, to
be ψS/U = 12.89 deg

 Associating U with the 19R end of the runway and S with the fix locations, the
coordinates of the fixes are found using Eq 72 and Eq 75.

The results of carrying out steps 1-3 are shown in Table 6.

Table 6 Computed Fix Coordinates for MCI Runway 19L LPV Approach

Fix Name UMREW FELUR REMNS ZASBO YOVNU GAYLY

Range from Threshold, NM 1.9 4.9 6.2 9.3 12.4 15.5

Latitude, deg 39.337737 39.386470 39.407586 39.457940 39.508292 39.558642

Longitude, deg -94.692345 -94.677907 -94.671645 -94.656696 -94.641725 -94.626732

4.8.3 Example 3, Continued: Satellite Visibility of/from Earth

Extending the analysis in Subsection 3.6.3 to calculating the latitude/longitude coordinates of the

footprint of a geostationary satellite is a good example of the application of the equations in this

chapter. Geostationary satellites have circular orbits. They are positioned directly above the

earth’s equator, and their altitude is selected so that their orbital speed matches the earth’s

rotation rate. Thus, from the earth, they appear to be stationary. Many communications satellites,
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including those used for television, are geostationary.

The Wide Area Augmentation System (WAAS) satellites (which augment the Global Positioning

System (GPS)) are chosen for this example. The FAA operates three geostationary WAAS

satellites (Ref. 31) in order to satisfy the needs of the most demanding civil aviation operations

or functions — e.g., guidance for low-visibility approaches or along narrow, obstacle-

constrained routes. The parameters used in this calculation are:

 Altitude, h = 35,786,000 m = 19,323 NM

 Mask angle, α = 5 deg

 Radius of the earth, Re = 6,378,137 m = 3,444 NM (WGS-84 equatorial radius)

Substituting these values into Eq 27 yields θ = 76.3 deg. Thus the user’s position U can be up to

76.3 deg (in terms of the geocentric angle) away from the satellite nadir N and satellite will be

visible. Since geostationary satellites are directly above the equator, the maximum user latitudes

with visibility are ±76.3 deg if the user is at the same longitude as the satellite. Similarly, if the

user is on the equator, the longitude extremes at which the satellite is visible are ±76.3 deg from

the satellite longitude.

Obtaining the coordinates of perimeter of the visible region (satellite footprint) involves solving

the following modified version of Eq 65:
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A set values is assumed for LU in the interval [-θ, θ], and the corresponding two sets of values

for λU are computed (which are symmetrically located about λS). The WAAS satellite labels and

longitudes are: AMR, -98 deg; CRE, -107.3 deg; and CRW, -133 deg. When these calculations

are carried out, the resulting footprints are depicted in Figure 18 below. To provide context, the

locations of a few airports are also shown in Figure 18. As a check on the calculations herein,

Ref. 31 has a page, “WAAS GEO Footprint”, that is very similar to Figure 18.

4.8.4 Example 4: Great Circle Flight Route

For many reasons — e.g., siting of ground-based communications, navigation and surveillance

equipment; estimation of fuel consumption; positioning of search and rescue assets; and analysis

of over-flight routes — there is a need to calculate great circle paths between any two places on

the earth. Such calculations are a straightforward application of the equations presented earlier in

this chapter. The basic approach is: first solve the indirect problem of geodesy (Section 4.2), so
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that geocentric angle (length) and the azimuth of the path starting point are known; then divide

the path into equal-length segments and solve the direct problem of geodesy (Section 4.3) for

each segment, starting at one end of the path and progressing to the other.

The result of carrying out these steps for the route between Boston Logan (BOS) and Tokyo

Narita (NRT) airports is shown in Figure 19. In addition to showing the flight path for a spherical

earth model (green curve), Figure 19 also shows the great circle path for an ellipsoidal earth

model using Vincenty’s algorithm (Subsection 2.2.3). For the scales and line thickness

employed, the only perceptible separation between these curves is at the highest latitudes, where

the ellipsoidal-model path is a maximum of 0.06 deg higher in latitude.

For the great circle/spherical earth route; the azimuth angle at BOS is 334.8 (-25.2) deg, the

azimuth angle at NRT is 22.8 deg, and the geocentric angle is θ = 1.689 rad, or 53.8% of π rad

(π rad being the longest possible great circle route). The computed distance (using the earth

radius defined following Eq 23) is 5,810.4 NM, while the distance computed using Vincenty’s

algorithm is 5,823.5 NM. Thus, in this case, the ellipticity error in the path length is 0.2%.

Figure 18 WAAS Satellite Visibility Contours for 5 deg Mask Angle
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The trajectory’s northern-most latitude is N71.7 deg (Eq 94), which occurs at a longitude of

W143.42 deg. If the earth were sliced in half by a plane passing through BOS, NRT and the

earth’s center, the plane would make an angle of 71.7 deg with the plane of the equator and

would intersect the equator at W53.42 deg and E126.58 deg. Equations from Section 4.6 predict

that the trajectory crosses the Arctic Circle (N67 deg latitude) at longitudes of W104.7 deg and

E177.9 deg. The trajectory is within the Arctic Circle for 29.2% of its length, although in Figure

19 it appears to be a larger fraction because the convergence of longitude lines at the Pole is not

depicted.

Figure 19 also shows the course from BOS to NRT for the rhumb line (constant azimuth angle)

method often used for marine navigation (Section 9.3). The azimuth angle for a rhumb line from

BOS to NRT is 266.7 (-93.3) deg. The rhumb line path is 19% or 1,106.7 NM longer than the

great circle route calculated using Vincenty’s algorithm.

The BOS-NRT city pair has all three factors that favor great circle navigation over rhumb line

navigation: widely separated origin and destination, essentially co-latitude origin and destination,

and the end points are at mid-latitudes. A contrasting route is Boston (BOS) - Buenos Aires

(EZE). It has a roughly similar length, but is oriented north-south. For BOS-EZE the rhumb line

path is 0.007% (0.3 NM) longer than the great circle path.

Figure 20 depicts a polar view of the great circle and rhumb line routes. For this perspective,

(a) the great circle route is almost a straight line while the rhumb line route is circular, and

Figure 19 Mercator-like Depiction of Latitude/Longitude Coordinates for Great Circle
and Rhumb Line Paths Connecting BOS and NRT
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(b) the difference in the lengths of the paths is obvious. Contrasting Figure 19 and Figure 20

illustrates value of matching the charting technique to the method for defining a route. Figure 19

is similar to a Mercator projection‡‡‡, with both having the property that rhumb lines are straight;

and Figure 20 similar to a gnomonic projection§§§, which has the property that great circles are

depicted as straight lines. It has been stated that Mercator projections were the preferred maps for

maritime navigation, while gnomonic projections are the preferred maps for aircraft navigation.

Figure 20 Polar View of BOS-NRT Great Circle and Rhumb Line Routes

4.8.5 Example 5: Radar Display Coordinate Transformations

In this subsection, an ATC radar is associated with the user U and an aircraft under surveillance

with the satellite S. The radar’s installation information will include:

LU – Radar latitude

λU – Radar longitude

hU – Radar antenna elevation above sea level

For each scan (antenna revolution), a secondary surveillance radar provides three quantities

concerning an aircraft:

‡‡‡ For a true Mercator projection, the distance between equal latitude increments increases towards the poles.
§§§ For a true gnomonic projection, the distance between equal latitude increments increases toward the equator.
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ψS/U – Aircraft azimuth relative to North (from antenna direction)

d – Slant range between the aircraft and the radar (determined from interrogation-reply time)

hS – Aircraft barometric elevation above sea level (reported by transponder)

Some long-range radars may correct for propagation phenomena (e.g., refraction), but those

capabilities are not addressed here.

The first goal in ATC radar display is to accurately

depict the horizontal separation between aircraft pairs.

When two aircraft are only separated vertically (i.e., are

at the same latitude and longitude) then their screen

icons should overlay each other — or at least be close in

comparison to the minimum allowable separation. Figure

21 shows the effect of directly displaying the slant range

of two aircraft with only vertical separation (although it

exaggerates the effect). Without altitude or elevation

angle information, this may be the best that can be done

— e.g., for two aircraft without Mode C altitude-

reporting capability. Partly for this reason, operating in

busy airspace typically requires Mode C capability.

Generally, the display processing methodology depends upon the radar’s maximum range. Two

situations are addressed.

Tangent Plane Display — This method displays targets on a plane that is tangent to the earth at

the radar’s latitude/longitude and sea level. Locations on the plane can be computed in Cartesian

(east/north) or polar (range/azimuth) coordinates. The steps in the calculation are:

 The aircraft elevation angle, α, is found using Eq 40, modified to account for the
radar antenna elevation:
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 The aircraft range along the tangent plane, TPRng, is found (sometimes called the
slant-range correction)

)(cos dTPRng  Eq 101

 If needed, TPRng can be resolved into east and north components
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Eq 102

If the earth were flat, this method would be error-free; however, it does not fully account for the

curvature of the spherical earth. Figure 22 shows the slant range correction error (difference in

Figure 21 Effect of Displaying a
Target’s Slant Range
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computed TPRng values for two aircraft at the same latitude/longitude but different altitudes) for

ranges/altitudes characteristic of a terminal area radar. The maximum error is approximately

250 ft. This value should be contrasted with the terminal area separation standard of 3 NM. Thus

the maximum display processing error is less than 1.5% of the relevant standard, which is

acceptable for engineering work.

Latitude/Longitude Display — Because errors for a tangent plane display increase with the

ranges and altitude differences of targets, en route radars use a more accurate method that fully

accounts for the earth’s curvature.

 The target’s geocentric angle relative to the radar is found using Eq 35

 The target’s latitude/longitude are found from Eq 72 and Eq 75

 The target’s latitude and longitude are converted to the coordinates of a map
projection (e.g., Lambert conformal conic) for display to a controller.

En route radar coverage area will include multiple airports, and possibly several major ones. It’s

advantageous to display targets relative to the airport locations.

4.8.6 Example 6: Single-Station VOR / DME RNAV Fix

A single VOR/DME station S provides an aircraft A with its azimuth angle ψA/S (VOR function)

and slant range distance dSA (DME function) relative to the station. For ‘area navigation’

Figure 22 Slant-Range Correction Error for Tangent Plane Terminal Radar Display
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(RNAV), it may be necessary to use those measurements to determine the aircraft’s latitude and

longitude A (LA, λA). The aircraft’s altitude hA is assumed known, as are the station coordinates

(LS, λS) and DME antenna altitude hS.

The first step is to convert the slant range dSA to the geocentric angle θSA utilizing Eq 35.

The aircraft’s latitude and longitude are then found from Eq 72 and Eq 75, repeated here using

the current notation:
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Finally, the azimuth angle of the station relative to the aircraft is found from
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
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Remarks:

 Except for notation, the processing steps in this subsection are identical to those used
for a radar latitude/longitude display in Subsection 4.8.5.

 While the slant-range correction of is usually considered a necessary step in en route
radar processing, the slant-range correction is often not performed in navigation
applications (as the distances and need for accuracy are both generally less, and many
procedures are specified in terms of a DME reading). The approximation employed is
θSA ≈ dSA / Re.

 Chapter 6 addresses computing fixes using measurements from the three possible
combinations of two separate VOR and/or DME stations — i.e., VOR/VOR,
DME/DME and VOR/DME. Chapter 7 address computing fixes using measurements
from three DME stations.

4.8.7 Example 7: Path-Length Ellipticity Error for Selected Airport Pairs

As a partial check on the accuracy of the spherical earth approximation, a set of fourteen airports

were selected. This set is intended to be representative of current aviation activity. However, in

terms of frequency of operations, they over-emphasize longer routes (and some are too long for

commercial transport aircraft at this time). The result is a total of 91 possible paths between

airport pairs. For each pair, estimates of the length of the paths are computed for:

a) WGS-84 ellipsoidal earth model utilizing Vincenty’s algorithm cited in Subsection 2.2.3
(which is treated as a “black box” herein), and

b) Spherical approximation of the earth utilizing the radius immediately following Eq 23
and Eq 67.
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The airports are partitioned into two groups of seven each — CONUS (Table 7) and Inter-

national (Table 8). The CONUS group essentially spans the CONUS land area and includes

paths of various lengths and orientations. The International group, which includes one each in

Alaska and Hawaii, provides additional pairs with greater separation but also with varying

orientations. The longest path is HNL-JNB (10, 365 NM). As a point of interest, the current

longest scheduled commercial flight route is 8,285 NM, between Newark and Singapore.

Table 7 CONUS Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served

Gen. Edward Lawrence Logan International (BOS) 42.3629722 -71.0064167 Boston, MA

Ronald Reagan Washington National (DCA) 38.8522 -77.0378 Washington, DC

O'Hare International (ORD) 41.9786 -87.9047 Chicago, IL

Miami International (MIA) 25.7933 -80.2906 Miami, FL

San Diego International (SAN) 32.7336 -117.1897 San Diego, CA

Dallas/Fort Worth International (DFW) 32.8969 -97.0381 Dallas/Fort Worth, TX

Seattle–Tacoma International (SEA) 47.4489 -122.3094 Seattle, WA

Table 8 International Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served

Wiley Post–Will Rogers Memorial (BRW) 71.2848889 -156.7685833 Barrow, Alaska

Honolulu International (HNL) 21.318681 -157.9224287 Honolulu, Hawaii

London Heathrow (LHR) 51.4775 -0.4614 London, England

Narita International (NRT) 35.7647 140.3864 Tokyo, Japan

Ministro Pistarini International (EZE) -34.8222 -58.5358 Buenos Aires, Argentina

Oliver Reginald Tambo International (JNB) -26.1392 28.246 Johannesburg, South Africa

Sydney (SYD) -33.946111 151.177222 Sydney, Australia

Figure 23 is a histogram of the path length differences for the 91 paths analyzed using the

methods labeled a) and b) above. Over 90% (all but eight) of the paths have ellipticity errors less

than the “rule of thumb” of 0.3%, and none have errors greater that 0.5%. The average of the

absolute values of the ellipticity errors is 0.17%. For the paths within CONUS, the maximum

ellipticity error is 0.27%.
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For some applications, a spherical model for the earth may not be sufficiently accurate. In some

circumstances, sufficient improvement can be obtained by tailoring the radius of curvature to the

path(s) involved — i.e., taking account of their latitude and azimuth angle, and possibly using

multiple points to compute an average radius of curvature. However, there are limits to such an

approach, as the radius of curvature generally cannot account for differences in the path itself. In

high-accuracy applications, it is generally preferable to use an ellipsoidal earth model, possibly

in conjunction with a least-squares solution technique such as that discussed in Chapter 8.

Figure 23 Histogram of Ellipticity Errors for Spherical-Earth Length of 91 Selected Paths
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5. TWO-POINT / 3D-VECTOR PROBLEM FORMULATION

Section 5.1 provides definitions of the vectors and coordinate frames needed to analyze the

geometry of user and aircraft or satellite relative to a spherical earth. Section 5.2 addresses the

indirect problem of geodesy, and provides vector versions of the key equations in Section 4.2.

Section 5.3 returns to the indirect problem, and demonstrate that for some combinations of

known and unknown variables, vector analysis provides an alternative method of deriving

solutions found in Chapter 4. Similarly, Section 5.4 demonstrates that vector analysis provides an

alternative method of deriving certain solutions found in Chapter 3. Lastly, Section 5.5 addresses

the direct problem of geodesy, and shows that, to a significant extent, the equations in Section

4.3 can be found by vector analysis as well.

A list of software packages which generally utilize the vector approach can be found at Ref. 32.

5.1 Vector and Coordinate Frame Definitions

5.1.1 Earth-Centered Earth-Fixed (ECEF) Coordinate Frame

The coordinates of the locations of interest on the earth’s surface are:

 User position: latitude LU, longitude λU and altitude hU

 Satellite position: latitude LS, longitude λS and altitude hS

Define the earth-centered earth-fixed (ECEF) coordinate frame e by (see Figure 24, where the

figure’s φ is our L):

 x-axis: lies in the plane of the equator and points toward Greenwich meridian

 y-axis: completes the right-hand orthogonal system

 z-axis: lies along the earth's spin axis.

The location of the user and satellite in the e-frame are
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Here 1e
OU and 1e

OS are unit vectors associated with re
OU and re

OS, respectively.

Given re
OU, the user’s latitude, longitude and altitude can be found (respectively) from
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Similarly, given, re
OS, the satellite’s latitude, longitude and altitude can be found (respectively)

from
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Figure 24 Vector Technique Coordinate Frames of Interest

5.1.2 Local-Level Coordinate Frame at User’s Position

Define a local-level coordinate frame u corresponding to the user's position

 e-axis point east

 n-axis points north

 u-axis points up (away from earth's center).

Mike1025
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The direction cosine matrix which rotates the e-frame into the u-frame is
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u
e TTTC  Eq 109

where Ti(ξ) denotes the rotation matrix about axis i by angle ξ.
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and T denotes the axis-permutation matrix
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5.1.3 User and Satellite Positions in User’s Local-Level Frame

The positions of the user and satellite in the u-frame are, respectively
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Thus, using Eq 113 and Eq 114, the vector from U to S is

     

             

              



































eUSeUSUSe

USeUSSSe

USUe

u
US,u

u
US,n

u
US,e

R-LLh+R+-LLh+R

LLh+R+-LLh+R-

-Lh+R

=

r

r

r

sinsincoscoscos

cossincossincos

sincos







u
OU

u
OS

u
US rrr Eq 115

The horizontal and vertical components of ru
US can be expressed as
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Eq 116 can be found from Figure 1 by inspection. It can also be derived analytically from Eq 115

using Eq 62.

Two angles associated with ru
US are of interest

 ψS/U – The azimuth angle of the horizontal component of ru
US, measured clockwise

from north

 α – The elevation angle of ru
US, measured from the horizontal plane
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The two-argument arc tangent function is used in Eq 117 because azimuth angles lie in the range

(-π, π]. 

The Euclidean length d of ru
US is also of interest
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5.2 The Indirect Problem of Geodesy

5.2.1 Geocentric Angle from Latitudes and Longitudes, by Vector Dot Product

The vectors re
OU and re

OS meet at the earth’s center, in geocentric angle θ. The dot product of

these vectors, normalized by the product of their lengths, yields
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Eq 120 demonstrates that if one forms the vector dot product indicated on the first line, the result

will be the same as if one performed the scalar operations indicated on the second line, which in

turn is equal to the equation for cos(θ) found by spherical trigonometry (Eq 62).

5.2.2 Geocentric Angle from Latitudes and Longitudes, by Vector Cross Product

The cross product of vectors re
OU and re

OS, normalized by the product of their lengths, yields

another expression for the geocentric angle:
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Since θ lies in [0, π], solving Eq 121 for θ using the arc sine function yields both the correct

angle and an ambiguous solution. Another source of information, such as Eq 120, also must be

used.

5.2.3 Path Azimuth Angles, from Latitudes and Longitudes

By substituting two elements of ru
US from Eq 115 into Eq 117, ψS/U is found to be equal to
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Eq 122 demonstrates that if one computes ψS/U using the arc tangent function with two elements

of the vector ru
US as arguments, the result will be the same as if one computed ψS/U using the arc

tangent indicated on the right-hand side. The latter is equal to the equation for ψS/U found by

spherical trigonometry (Eq 70).

The labeling of the points U and S in Eq 122 can be reversed, yielding
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While the arguments on right-hand sides of Eq 122 and Eq 123 are shown (for convenience) as

ratios, the azimuth angles should be computed using a two-argument arc tangent function.
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Eq 123 is derived by vector analysis (rather than by spherical trigonometry). However, it not a

vector equation per se — i.e., it does not make use of vectors or the components of vectors. The

vector equation for ψU/S is
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5.3 Corollaries of the Indirect Problem Solution

5.3.1 Intermediate Points between U and S: Dividing the Chord

Route planning generally requires that a set of intermediate path points between U and S be

found. Any linear combination of 1e
OU and 1e

OS will be orthogonal to the vector 1e
OU x 1e

OS, and

thus will lie in the plane defined by OUS. Conversely, every point in the plane OUS can be

expressed as a linear combination of 1e
OU and 1e

OS.

A simple way to define a point along the arc between U and S is to choose a point along the

chord re
US between U and S then normalize it to unit length. Let f ε [0, 1] be the fractional 

distance of point X from U to S along the chord re
US. Thus,
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and
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Equally-spaced points along the chord re
US will not correspond to equally-spaced points along

the arc connecting U and S. However, the midpoint of re
US will correspond to the midpoint of arc

US, and a grid of N = 2n equal-length arc segments can be generated by iteration.

5.3.2 Intermediate Points between U and S: Dividing the Arc

It’s desirable to be able to find the coordinates of an arbitrary point along the arc between U and

S. Toward that end, let f ε [0, 1] be the fractional distance of point X from U to S along the arc

US of length θ. The unit vector 1e
OX can be expressed as
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Eq 128 can be used to find the coordinates LX and λX. These equations (Eq 130 and Eq 128)

provide essentially the same functionality for the vector technique that can be achieved with

spherical trigonometry using Eq 72 and Eq 75.

5.3.3 Latitude Extremes of a Great Circle

I am not aware of a vector form of Clairaut’s equation as used herein (Eq 92), or in general.

However, the most useful application of Clairaut’s equation, determining the vertices (northern-

and southern-most latitudes of a great circle, is readily found by vector analysis. The cross

product of unit vectors 1e
OU (Eq 105) and 1e

OS (Eq 106) is normal to the plane of the great circle

containing U and S. In this subsection, it is assumed that U is west of S, so that U × S points

toward the northern hemisphere.
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When 1e
OU x 1e

OS is adjusted to unit length of sin(θ) (Eq 121), its z-component is equal to the

cosine of the latitude of the highest (and lowest) point on the great circle that includes the route

in question (projection of a unit vector onto the earth’s spin axis). Thus,
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 Eq 132

Then Lmin = -Lmax. Eq 132 is identical to Eq 94, demonstrating that manipulating the components

of 1e
OU and 1e

OS yields the same result that Clairaut’s equation does.

The longitude where the highest/lowest latitudes are achieved can be found from the x- and y-

components of vector 1e
OU x 1e

OS (from Eq 131).
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Then λmax = λmin ± π. Not all great circle routes between two points on the earth’s surface will

contain a vertex. Criteria for when a route will include a vertex are given in Section 4.3.4.

5.3.4 Locus of Points on a Great Circle

From Eq 105, it follows that any point X on the earth has the e-frame coordinates re
OX
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Here LX and λX are the latitude and longitude of X, respectively. In order for X to be on the great

circle containing U and S, the vector re
OX must be orthogonal to the vector 1e

OU x 1e
OS — that is,

the dot product of these two vectors must be zero. One can then solve for LX in terms of λX and

the coordinates of U and S.
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Solving for λX in terms of LX and the coordinates of U and S is more complicated. This is a

consequence of the fact that while every great circle crosses every line of longitude exactly once,

a great circle may cross a line of latitude zero, one or two times. Section 4.6 addresses this issue

using spherical trigonometry.

5.4 Computing Satellite Elevation Angle and Slant Range

Section 5.2 shows that, if the latitude/longitude of locations U and S on the surface are known,

the vector method can be used to find the three angles θ, ψS/U and ψU/S. However, the equations

in Section 5.2 do not include h, d or α. (all of which are related to the height of the aircraft/

satellite above the earth’s surface). The two subsections immediately below show that if h and θ

are known, then d and α can be found by the vector method. Moreover, the expressions that are

derived are identical to those found in Chapter 3 using the coordinate-free method.

The four other possible equations associated with an aircraft or satellite above the earth when the

geocentric angle is known — finding h or d from α and θ, and finding h or α from d and θ — are

not pursued. For these variable combinations, the solutions for the unknown variables will

involve manipulation of the scalar components of ru
US. That being the case, one may as well

utilize the scalar equations derived in Chapter 3.

5.4.1 Solution for Elevation Angle from Altitude and Geocentric Angle

As shown in Eq 118 the satellite elevation angle can be found from the components of ru
US.

Using Eq 116, Eq 118 can be expanded as

   
    )sin(

sin2)cos(

)sin(

)cos(
tan

2

12










hR

Rh

hR

RhR

e

e

e

ee



















Eq 136

The right-hand side of Eq 136 is identical to the first line of Eq 38, demonstrating that manipula-

ting the components of ru
US can yield the same value for α as the scalar methodology used in

Chapter 3.

5.4.2 Solution for Slant Range from Altitude and Geocentric Angle

The user-satellite slant range can be found by substituting both lines of Eq 116 into Eq 119,

yielding:
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Eq 137 is identical to the second line of Eq 42. This demonstrates that applying Pythagoras’s

theorem to the components of ru
US (Eq 119) yields the same value for d as the scalar

methodology used in Chapter 3.

5.5 The Direct Problem of Geodesy

The approach used to finding LS and λS is to form re
OS and utilize its components. Then, ψU/S can

be addressed utilizing LS and/or λS.

Given LU, λU, θ and ψS/U, N is constrained but S is not. Consequently, form right triangle OUS

with right angle at U and sides Re, d and hypotenuse (Re + h), where
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Utilizing Eq 105 and Eq 112 yields
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From Eq 108 and Eq 140 it follows that
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While the right-hand side of the second line of Eq 141 involves a ratio, λS should be computed
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using a two-argument arc tangent function. Eq 141 can be used to find a set of equally-spaced

points on the trajectory from U to S by replacing θ by k•θ/N and letting k = 1,..,N.

Once LS and λS have been found, ψU/S can be computed using Eq 123.

It’s of interest to compare the equations in this section to those for the same/similar quantities

developed using spherical trigonometry in Section 4.3. First, the expressions in Eq 141 for LS

and λS only involve known quantities — i.e., there is no “daisy chaining” of the solution for one

unknown quantity to determine the other. The equations for LS in Eq 141 and Eq 72 are identical.

A difference is that Eq 141 is a solution for λS while Eq 75 is a solution for λS – λU; thus, the

right-hand sides of these equations are necessarily different. In terms of the azimuth angle ψU/S,

Eq 123 in this chapter daisy chains from the solutions for LS and λS in Eq 141, while Eq 78 in

Chapter 5 does not involving daisy chaining of solutions.
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6. AIRCRAFT POSITION FROM TWO RANGE AND/OR AZIMUTH
MEASUREMENTS (TRIGONOMETRIC FORMULATIONS)

6.1 General Considerations

6.1.1 Problems Addressed

This chapter combines the formulations of Chapter 3 (involving plane trigonometry applied to a

vertical-plane) and Chapter 4 (involving spherical trigonometry applied to the earth’s surface).

Whereas both of those formulations are limited to two problem-specific points, this chapter

addresses situations involving three problem-specific points embedded in three dimensions.

Relevant applications include aircraft navigation (specifically, Area Navigation, or RNAV) and

aircraft surveillance (specifically, sensor fusion).

For this methodology, typically, one point corresponds to the aircraft (having an unknown

latitude/longitude but known altitude), and the other two points correspond to sensor stations

having fully-known locations. Each sensor station provides a scalar measurement that describes a

geometric Surface-Of-Position (SOP) on which the aircraft lies. The solution for the aircraft

position is the intersection of three SOPs. When attention is limited to the earth’s surface, 3D

SOPs reduce to 2D Lines-Of-Position (LOPs).****

Before circa 1950 (when synchronization of ground stations, and thus pseudorange measure-

ments, became possible – see Chapter 7), the most common sensor systems measured

(a) Slant-range d – line-of-sight distance between a sensor station and the aircraft

(b) Spherical-range Re θ – distance along the earth’s surface between a sensor’s and the
aircraft’s ground points

(c) Azimuth ψA/S – angle of the great circle path from the sensor station to the aircraft

(d) Azimuth ψS/A – angle of the great circle path from the aircraft to the sensor station

(e) Altitude hA – height of the aircraft above the mean sea level.

Slant-range measurements provide an SOP in the form of a sphere centered on the station.

Spherical-range measurements provide an SOP in the form of a cone with apex at the earth’s

center and axis intersecting a known point on the surface. Azimuth measurements provide an

SOP in the form of a vertical plane that passes through the sensor, the aircraft and the earth’s

center. A barometric altimeter provides an SOP in the form of a sphere that’s concentric with the

earth.

The most common civil aviation slant-range and azimuth sensors are

**** The concept of LOPs was discovered by Thomas Hubbard Sumner, a U.S. Navy officer, in 1837. Sumner was
born in Boston in1807, and graduated from Harvard University. In recognition of his achievements, two Navy
survey ships were named the USS Sumner; also, the crater Sumner on the Moon is named after him.
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 Slant-range between aircraft and station
– Navigation: Distance Measuring Equipment (DME)
– Surveillance: Secondary Surveillance Radar (SSR)

 Spherical-range between aircraft and station
– Navigation: Star fix

 Azimuth angle from the station to the aircraft
– Navigation: VHF Omnidirectional Range (VOR)
– Navigation: Instrument Landing System (ILS) Localizer
– Surveillance: Secondary Surveillance Radar (SSR)

 Azimuth angle from the aircraft to the station
– Navigation: Non-Directional Beacon (NDB)
– Navigation: Aircraft-based radar

This chapter addresses calculation of aircraft latitude and longitude from measurements of

altitude in combination with those for slant-range and/or azimuth. However, in Sections 6.4 and

6.5, the slant-range measurements are converted to spherical-ranges at the start of each calcu-

lation; thus the material can be utilized for spherical-range measurements as well.

This chapter does not consider errors in the computed coordinates that result from measurement

errors. That topic is addressed in Chapter 8. Also, there are several iterative methods for

computing latitude and longitude from measurements of slant-range and/or azimuth on an

ellipsoidal earth (e.g., Refs. 11 and 33). Those calculations can be initialized using solutions

found using the approaches described in this chapter.

6.1.2 Geometric Concerns

The geometric relationship of two sensors and an aircraft is an important aspect of these analysis.

Situations where the aircraft is directly above a ground station are excluded for several reasons:

ground station antenna patterns are generally not designed to irradiate directly above the station;

and the azimuth angle to an aircraft is undefined when an aircraft is above an azimuth

determination station. Moreover, when an aircraft is directly above a ground station, that

situation intrinsically constitutes a fix.

Restricting attention to the surface of the earth, when two measurements are available, several

unfavorable geometries can occur. Figure 25 depicts examples involving aircraft A and stations

U and S. Panel (a): Due to measurement errors, it is possible that the measurements are incon-

sistent and a solution does not exist. Panel (b): When the SOPs for two sensors overlap, only a

partial position solution exists. Panel (c): When the two SOPs are tangent, measurement errors

can cause the computed position error to increase significantly along the direction of the two

LOPs. Panel (d): Multiple solutions occur when the LOPs intersect at more than one point.
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6.1.3 Rationale for Two-Station Area Navigation (RNAV)

None of the geometric issues illustrated in Figure 25 arises when the slant-range and azimuth

sensors are collocated. Since combined VOR/DME stations are prevalent in the NAS, the

question naturally arises: Why not only use a single VOR/DME station to determine a vehicle’s

latitude and longitude (as is described in Subsection 4.8.6)? There are several reasons to utilize

navigation fixes from two separate stations:

(1) Increased accuracy: When an aircraft is more than a few of miles from a VOR/DME
station, the DME measurement is more accurate than the VOR measurement. Moreover,
the difference increases with distance from the station. Thus utilizing two DME stations
is generally preferable for RNAV

(2) Contingency/backup: When one of the functions of a VOR/DME station is out of service,
utilizing a second station may allow a flight to continue when otherwise it could not.
More broadly, RNAV using VOR/DME stations is likely to become the backup to GPS
for en route and terminal area navigation.

(3) Advanced avionics: Aircraft with advanced navigation systems (navigation radios and

(a) LOPs Do Not Intersect (No Solution)
(b) LOPs Overlap (Infinity of Solution)

(c) LOPs Tangent (Double Solution) (d) LOPS Intersect Twice (Two Solutions)

Figure 25 Possible Geometric Relationships involving an Aircraft and Two Ground Stations
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flight computers) are capable of utilizing measurements from multiple stations, whereas
older and/or less sophisticated avionics cannot.

Standards for aircraft RNAV systems based on DME/DME measurements, but permitting VOR

measurements, are presented in Ref. 34.

Items (1) and (2) pertain to SSR surveillance as well. The FAA is now incorporating ‘sensor

fusion’ into its Automation (surveillance processing) systems to take advantage of these benefits.

6.1.4 Chapter Overview

Immediately following this introductory section, Section 6.2 analyzes the problem of a great

circle and a point that is not necessarily on the great circle. The next three sections address

situations involving two stations providing slant-range and/or azimuth measurements which are

used (with aircraft altimeter information) to determine the aircraft location: Section 6.3, azimuth/

azimuth; Section 6.4, range/range; and Section 6.5, range/azimuth. Lastly, Section 6.6 addresses

using a range measurement to crosscheck the altitude of an aircraft flying an approach procedure.

The solutions in Sections 6.3 - 6.5 follow a common pattern: (a) When a slant-range measure-

ment d is involved, Eq 35 is used to obtain the corresponding geocentric angle θ. This reduces

the problem to one of spherical trigonometry. (b) The parameters for the baseline joining the

sensor stations are found as solutions to the indirect problem of geodesy (Section 4.2). (c) The

possibility that the problem is ill-posed is investigated (e.g., Figure 25(a)). (d) The case

(Subsection 4.1.7) of the mathematical spherical triangle comprised of the two stations and the

aircraft is identified, and the corresponding solution is found. (d) Parameters for the mathe-

matical triangle are used to determine the aircraft latitude/longitude coordinates.

6.2 Relationship between a Point and a Great Circle

6.2.1 Problem Statement

Often there is a need to find the relationship between a discrete point on the earth’s surface and a

great circle path. A possible scenario is shown in Figure 26: A vessel V intends to transit a great

circle path from location U (coordinates (LU, λU)) to location S (coordinates (LS, λS)), with

departure azimuth angle ψS/U. However, while in en route, the crew determines that, due to

currents and/or the lack of navigation equipment/ skills, the actual vessel location is (LV, λV),

which may not be on the intended path.

For such a scenario, the coordinates of U, V and S are all known. Thus, for triangle UVS, the

side lengths and side azimuth angles can all be found from solutions to the Indirect Problem of

Geodesy (Section 4.2).
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In addition to the sides of UVS, the quantities of interest

can include the coordinates of the nearest point X (LX, λX)

on the intended path, the distance θVX from the vessel to

the nearest point on the intended path, the projection of the

distance traveled onto the intended path θUX and the off-

path angle β. Aviation applications of this methodology,

involving the vertical dimension as well as the earth’s

surface, are discussed in Sections 6.5 and 6.6.

6.2.2 Problem Solution

Solution to this problem is a five-step process. The first

step is to apply the Indirect Problem of Geodesy (Section

4.2) to the great circle path UV, thus finding the azimuth

angle ψV/U and the distance θUV. The fact that the vessel’s actual track over the earth may not

have been the great circle path UV is not relevant – only the end points are.

Because (a) the great circle through U and S encircles the earth and the vehicle may have

traveled “in the wrong direction”, and (b) azimuth (bearing) angles can vary over (–π, π], the 

angle β between US and UV is computed in the range [0, π] using 

  2,2,min //////  UVUSUVUSUVUS Eq 142

When β = 0, the vessel is in fact on the intended path.

The third step addresses the mathematical spherical triangle UVX, where the angle at X is a

right-angle. The law of sines (Eq 58) yields the off-course distance θVX in the range [0, π/2] 

 )sin()sin(arcsin  UVVX  Eq 143

Again considering triangle UVX, the projection of the distance traveled onto the intended path

θUX is found from the law of cosines for sides (Eq 56) and optionally Eq 12

     












 











)cos(

sinsin
arcsin2

)cos(

)cos(
arccos 2

1
2
1

VX

VXUVVXUV

VX

UV
UX








 Eq 144

Finally, the coordinates (LX, λX) are found as a solution to the Direct Problem of Geodesy

(Section 4.3) based on knowledge of (LU, λU), θUX and ψS/U.

Figure 26 Vessel V and Intended
Great Circle Path US
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6.3 Position Solution for Two Azimuth Measurements

Here, the assumption is that the latitude/longitude coordinates of two stations, U (LU, λU) and

S (LS, λS) are known, as are their azimuth (or bearing) angles, ψA/U and ψA/S, to a third (aircraft)

location A. The solution for the coordinates of A and related parameters follows the pattern

described in Subsection 6.1.4.

6.3.1 Step 1: Solve the Navigation Spherical Triangle PUS

This step is a straightforward application of the Indirect Problem of Geodesy. Section 4.2 is used

to find the geocentric angle θUS between U and S (Eq 65) and the azimuth angles ψS/U and ψU/S

(Eq 70 and Eq 71) of the great circle path between the stations.

6.3.2 Step 2: Determine if the Problem is Well-Posed

The problem must be physically and mathematically well posed. In terms of a spherical earth,

two radials define two great circles which intersect at two antipodal points. The interior angles of

triangle USA at U and S, both in (0, π), are given in the following equations.  

 
 



2,2,min

2,2,min

//////

//////





SASUSASUSASUS

UAUSUAUSUAUSU
Eq 145

For two intersections to occur, all of the following must be true:

 Solution Existence: The radials must point to the same side of the station baseline
US. One and only one of the following conditions must be true:

– ψA/U = ψS/U + βU and ψA/S = ψU/S – βS

– ψA/U = ψS/U – βU and ψA/S = ψU/S + βS

 Solution Existence: It must be true that 0 < |βU| + |βS| < π. Otherwise, the two
intersections will either be equidistant (both at a geocentric angle of π/2 from the
midpoint of the station baseline) or the closer intersection will be on the opposite side
of the station baseline of that intended.

 Partial Solution: A cannot be found uniquely if it is on the station baseline US or its
extensions, as the radials then do not have a single intersection. If both βU = 0 and
βU = 0, then A is on the baseline between the stations; if βU = 0 and βS = π, then A is
on the baseline extension from S; if βU = π and βS = 0, then A is on the baseline
extension from U.

If any of these conditions is not satisfied, then the problem is ill posed and does not have a valid

solution.

6.3.3 Step 3: Solve the Mathematical Spherical Triangle USA

The third step is to solve the “mathematical” spherical triangle (Subsection 4.1.2) USA. This
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situation falls under Case (4) in the spherical triangle taxonomy of Subsection 4.1.7 — two

angles and the included side are known.

The unknown angle at which the two radials intersect at A is given by the law of cosines for

angles (Eq 57)

          )cos(sinsincoscoscos USSUSUA =   Eq 146

In computing βA from Eq 146, observe that, using the arc cosine function, it can be unambig-

uously found in [0, π].

The unknown sides (geocentric angles) θUA and θSA are found from the four-part cotangent

formula (Eq 60)
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Eq 147

In computing θUA and θSA from Eq 147, observe that, using the arc cotangent function, they can

be unambiguously found in [0, π]. Also, observe that βA, θUA and θSA are found without daisy-

chaining from one solution to another.

6.3.4 Step 4: Find the Coordinates/Path Azimuths for A

With θUA or θSA known, the latitude/longitude of A can be found from either the spherical

triangle PUA or from triangle PSA. This is an application of the direct problem of geodesy

(Section 4.3). The latitude can be found from either of these equations
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Eq 148

And the longitude can be found from either of these equations
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Eq 149

After employing a two-argument arc tangent function, the solutions will yield values of λA – λU

and λA – λS in the range [-π, π].
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Lastly, it may be of interest to know the azimuths of the paths to U and S from A.
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Eq 150

After employing a two-argument arc tangent function, the solutions will yield values of U/A and

S/A in the range [-π, π].

6.3.5 Remarks

Solving the two-bearing (or VOR-VOR cross-fix) problem can be done using only spherical

trigonometry, and does not require aircraft altitude. It is the only formulation in this chapter with

that characteristic. If interest is limited to coordinates LA and λA, then Eq 146 and Eq 150 are not

needed, and only one line from each of Eq 147, Eq 148 and Eq 149 is needed. However, there is

value to the added information.

 The crossing angle of the radials βA (Eq 146) provides information about the accuracy
of the solutions for LA and λA. Some have suggested that the fix should only be used
when 30° ≤ βA ≤ 150°. This would exclude locations near the baseline (including the 
extended baseline) and at large distances from both stations.

 The distances to the stations θUA and θSA (Eq 147) can provide information about the
strength and visibility of the stations’ signals at the aircraft.

 The azimuth angles U/A and S/A (Eq 150) may be useful for steering.

The solution process involves a potential total of 15 navigation variables (latitudes, longitudes,

azimuth angles and geocentric angles). Of these, 6 are known at the start of the calculation.

A problem closely-related to the subject of this section is determining an aircraft’s position from

the coordinates of two stations U and S and measurements of the angles ψU/A and ψS/A from the

aircraft to those stations. In aviation (or marine applications), the stations would typically be

non-directional beacons or possibly commercial broadcast transmitters.

The information available for this related problem is mathematically insufficient for the direct

use of spherical trigonometry — for triangle USA, only two quantities (the side θUS and the

opposite angle βA are known. However, a viable approach is to set ψA/U = ψU/A ± π and ψA/S =

ψS/A ± π — in each case, retaining the value in [-π. π]. Then carry out the calculations described 

in Subsections 6.3.1 to 6.3.4 above. If the computed value of ψU/A and/or ψS/A are significantly

different than the measured values for these quantities — bearing in mind that azimuth measure-

ments from moving vehicle are error-prone — adjust the estimates of ψA/U and ψA/S and repeat

the calculations.
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6.4 Position Solution for Two Slant Range Measurements

Here, the assumption is that the latitude/longitude/altitudes of stations U (LU, λU, hU) and

S (LS, λS, hS) are known, as are the slant ranges, dUA and dSA, to the aircraft location A, about

which only its altitude hA is known. Following a preliminary step (Subsection 6.4.1), the solution

for the latitude and longitude of A and related parameters is a four-step process, like that in

Section 6.3.

6.4.1 Step 0: Convert Slant-Ranges to Spherical-Ranges/Geocentric Angles

Accurate calculation of the geocentric angles θSA and θUA takes account of the altitude/elevation

of the aircraft and ground station above sea level. This is done using Eq 35, applied separately to

each aircraft-station pair. Once the geocentric angles are found, the problem reduces to one of

pure spherical trigonometry.

6.4.2 Step 1: Solve the Navigation Spherical Triangle PUS

This is an application of the Indirect Problem of Geodesy. The approach in Section 4.2 is

employed to find the geocentric angle θUS between the stations U and S (Eq 65) and the azimuth

angles ψS/U and ψU/S (Eq 70 and Eq 71) of the path (baseline) joining the stations.

6.4.3 Step 2: Determine if the Problem is Well-Posed

The problem must be mathematically well posed for a solution to exist. Ranges (geocentric

angles) from two stations define small circles on the surface which can intersect at zero, one or

two points. If either of the following conditions is true, then the problem is ill posed and does not

have a valid solution.

 If θUA + θSA < θUS, then the circle radii are too small (relative to the distance between
their centers) to intersect.

 If |θUA - θSA| > θUS, then one circle encloses the other and they do not intersect.

If either θUA + θSA = θUS or |θUA - θSA| = θUS then the circles are tangent and there is only one

solution, which lies on the baseline connecting U and S, or its extension as a great circle (see

Subsection 6.4.6). Otherwise, there are two solutions, located symmetrically relative to the

baseline US. Additional (“side”) information must be used to choose between the two solutions

(Subsection 6.4.6).

There is no partial solution case for this sensor combination. However, the one-solution case

involves high sensitivity to measurement errors for the direction orthogonal to the baseline.
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6.4.4 Step 3: Solve the Mathematical Spherical Triangle USA

The third step is to solve the mathematical spherical triangle (Subsection 4.1.2) USA. This

situation falls under Case (1) in the taxonomy of Subsection 4.1.7 — all three sides are known.

Denote the (positive) interior angles of USA by βU, βS and βA. They can be found by applying

the law of cosines (Eq 56) three times:
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In computing βU, βS and βA from Eq 151, observe that, using the arc cosine function, the angles

can be unambiguously found in (0, π). Also, βU, βS and βA are found without daisy-chaining from

one solution to another.

6.4.5 Step 4: Find the Coordinates/Path Azimuths for A

With βU and βS known, azimuth angles ψA/U and ψA/S can be determined to within an ambiguity.

The ambiguity arises because it is not known whether to add or subtract βU from ψS/U (βS from

ψU/S, respectively) to form ψA/U (ψA/S). One and only one of the following is correct:

 ψA/U = ψS/U + βU and ψA/S = ψU/S – βS

 ψA/U = ψS/U – βU and ψA/S = ψU/S + βS.

The ambiguity may be resolvable from the azimuth angles ψA/U and ψA/S (because the vehicle

operator often knows, approximately, ψU/A and/or ψS/A). Alternatively, two solutions can be

found for the coordinates of A and the azimuths of the paths from A, and the ambiguity resolved

subsequently. In either case, the calculations set forth in Subsection 6.3.4 are performed last —

specifically, Eq 148 for the aircraft’ latitude LA, Eq 149 for the aircraft’s longitude λA, and Eq

150 for the azimuth angles ψU/A and ψS/A of the stations relative to the aircraft.

6.4.6 Remarks

This section could also be entitled “Position Solution for Two Geocentric Angle Measurements”,

since the first step in the solution is to convert the convert the slant ranges to geocentric angles.

Concerning resolution of the two-solution ambiguity:

 The ambiguity can often be resolved from knowledge of the station locations and the
approximate route from the departure point. Using dead reckoning from either the
departure point or a previous fix, the vehicle operator may know the side of the
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station baseline on which the vehicle is currently located.

 If either station provides azimuth (in addition to range) information, that may be used
to resolve the ambiguity.

To elaborate and provide context:

 The angle from the aircraft to the stations, βA, provides information about the
accuracy of the solutions for LA and λA. Some have recommended that the fix only be
accepted when 30° ≤ βA ≤ 150°. This would exclude locations near the baseline 
between stations (including its extensions) and at large distances from both stations.

 The solution presented above involves a total of 21 navigation variables (latitudes,
longitudes, altitudes, azimuth angles, geocentric angles and slant ranges). Of these, 9
are known at the start of the calculation.

 The solution involves calculating parameters that may not be needed in all situations.

 The most commonly used method of celestial navigation, the "Altitude-Intercept
Method," also involves the intersection of two small circles. A sextant is used to
measure the angle between the horizon and each celestial body, which defines a small
circle centered on celestial body’s sub-point (nadir).

6.5 Position Solution for a Slant Range and an Azimuth Measurement

Here, the known quantities are: the coordinates of DME station D (LD, λD, hD) and VOR station

V (LV, λV); the aircraft A measured slant range to D dDA and azimuth angle from V ψA/V; and the

measured aircraft altitude hA. The quantities sought are the coordinates of A (LA, λA) and the

parameters for paths AD and AV (similar those in Sections 6.2 - 6.4).

6.5.1 Step 0: Convert Slant-Range to Spherical-Range/Geocentric Angle

Convert the slant range dDA to the geocentric angle θDA using Eq 35, in the same manner as

discussed in Subsection 6.4.1.

6.5.2 Step 1: Solve the Navigation Spherical Triangle PDV

Apply the Indirect Problem of geodesy (Section 4.2) to find the geocentric angle θDV between

stations D and V (Eq 65) and the azimuth angles ψD/V and ψV/D (Eq 70 and Eq 71) for the

baseline joining the stations.

6.5.3 Step 2: Determine if the Problem is Well-Posed

In determining if the problem is well-posed, the first consideration is the magnitude of the

measured geocentric angle between the aircraft A and station D, θDA, relative to the known

geocentric angle between the stations D and V, θDV. There are three cases:

 Interior: If θDV < θDA, then V is within the perimeter of the circle of possible aircraft
locations centered on D; there is one and only one intersection/solution



DOT Volpe Center

-86-

 Perimeter: If θDV = θDA, then V is on the perimeter of the circle centered on D; there can
be zero or one solution

 Exterior: If θDA < θDV, then V is outside the perimeter of the circle centered on D; there
can be zero, one or two solutions.

To further explore the scenario geometry, define the angle at V, βV, between the great circle arcs

to the aircraft A and the DME station D, in the range 0 ≤ βV ≤ π, by 

  2,2,min //////  VDVAVDVAVDVAV Eq 152

For the Perimeter case, there is a valid solution only if 0 ≤ βV < π/2. Otherwise, the problem is 

ill-posed and no solution exists.

For the Exterior case (θDA < θDV), define the critical value for βV, 0 ≤ βV,crit < π/2, by 
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


 Eq 153

Eq 153 is the law of sines applied to triangle DVA when βA is a right angle. Three situations can

occur: (a) when βV,crit < βV, the problem is ill-posed and there is no solution; (b) when βV,crit = βV,

there is a single solution; and (c) when βV < βV,crit there are two possible solutions.

There is no partial solution case for this sensor combination. However, the single-solution case

involves high sensitivity to measurement errors for the direction along the radial from V.

6.5.4 Step 3: Solve the Mathematical Spherical Triangle DVA

When at least one solution exists, the third step is to solve the mathematical spherical triangle

(Subsection 4.1.2) DVA. This problem falls under Case (3) in the taxonomy of Subsection 4.1.7

— two sides, θDV and θDA, and an adjacent (not included) angle βV are known.

First, the interior angle at A, βA, is found using the law of sines
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 Eq 154

Consistent with Subsection 6.5.3, for a well-posed problem the quantity within the large

parentheses in Eq 154 will have a value in [0, 1]. Thus two angles will be found in [0, π] except

when the right-hand side is unity, in which situation βA = π/2 and βV = βV,crit. For the Interior

case, the value for βA in [0, π/2) is correct, and the value in (π/2, π] is extraneous (a mathe-

matical artifact which is discarded). For the Exterior case, either value for βA may be correct (the

situation is ambiguous); these values are labeled βA,1 and βA,2, and both are retained. The value of

βA is indicative of the solution accuracy (Subsection 6.5.6).
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The angles βD,1 and βD,2 corresponding to angles βA,1 and βA,2 are found using either of the

following expressions from Napier’s Analogies (Eq 61)
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Eq 155

The discussion in Subsection 4.1.6 concerning sums and differences of sides and angles having

the “same affection” is relevant here. As a consequence, both expressions on the right-hand side

of Eq 155 are positive. Thus, in computing βD,i (i = 1, 2) from either line using the arc tangent

function, each solution can be unambiguously found in (0, π). The second line is preferred, as it

cannot be indeterminate. There is a small possibility that first line can, by the two sums of angles

equaling π/2, resulting in the trigonometric functions of the sums both equaling zero.

The distance θVA,i can be found from either of the following expressions. As is the case for Eq

155, both expressions on the right-hand side of Eq 156 are positive. Thus, in computing θVA,i

(i = 1, 2) from either line using the arc tangent function, each solution can be unambiguously

found in (0, π). The first line is usually preferred, as it cannot be indeterminate. There is a

possibility that second line can, by the two differences equaling 0, resulting in the trigonometric

functions equaling zero.
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Eq 156

6.5.5 Step 4: Find the Coordinates/Path Azimuths for X

One and only one of the following conditions is true:

 ψA/D = ψV/D + βD and ψA/V = ψD/V – βV

 ψA/D = ψV/D – βD and ψA/V = ψD/V + βV.

Since both ψA/V and ψD/V are now known, the correct line can be selected, yielding ψA/D. Then

the calculations set forth in Subsection 6.3.4 involving spherical triangles PDA and PVA can be

performed — specifically, Eq 148 for the aircraft’ latitude LA, Eq 149 for the aircraft’s longitude

λA, and Eq 150 for the azimuth angles ψD/A and ψV/A of the stations relative to the aircraft.
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6.5.6 Remarks

Concerning resolution of the two-solution ambiguity:

 The ambiguity can often be resolved from knowledge of the station locations and the
approximate route from the departure point. Using dead reckoning, the vehicle
operator may know the approximate distance to the VOR station.

 If the DME station provides azimuth (in addition to range) information, that may be
used to resolve the ambiguity.

To elaborate and provide context:

 The angle from the aircraft to the stations, βA, provides information about the
accuracy of the solutions for LA and λA. Some have recommended that the fix only be
accepted when 0° ≤ βA ≤ 60° or  120° ≤ βA ≤ 180°. This would exclude locations 
where the lines-of-sight to the stations are close to being orthogonal.

 The solution presented above involves a total of 18 navigation variables (latitudes,
longitudes, altitudes, azimuth angles, geocentric angles and slant ranges). Of these, 8
are known at the start of the calculation.

 The solution involves calculating parameters that may not be needed in all situations.

 The aircraft-DME station geocentric angle can be approximated — e.g., by dDA / Re

— but Eq 35 provides a more accurate solution.

 The solution method described in this section uses Napier’s Analogies. An alternative
solution method can be based on the equations in Section 6.2. This method is
employed in Section 6.6 to address a mathematically similar problem.

6.6 Crosscheck of Continuous Descent Approach Altitude

6.6.1 Application Context

FAA Advisory Circular AC 120-108 (Ref. 35) recommends and provides guidance for

employing the Continuous Descent Final Approach (CDFA) technique, as an alternative to the

Step Down technique, when conducting a Non-Precision Approach (NPA) procedure:††††

 “The goal of implementing CDFA is to incorporate the safety benefits derived from
flying a continuous descent in a stabilized manner as a standard practice on an NPA.

 “CDFA starts from an altitude/height at or above the Final Approach Fix (FAF) and
proceeds to an altitude/height approximately 50 feet (15 meters) above the landing
runway threshold or to a point where the flare maneuver should begin for the type of
aircraft being flown.”

Simultaneous with publication of AC 120-108, the FAA began including CDFA Vertical

Descent Angles (VDAs) on approach plates for NPAs. Figure 27, depicting part of the approach

†††† CDFAs were not prohibited prior to publication of AC 120-108. However, the FAA did not recommend them
nor provide information concerning their use. Some air carriers required utilization of CDFAs and supplied their
flight crews with supplementary information on the company’s approach plates.
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plate for the LOC IAP to runway 35 at Norwood Memorial Airport (KOWD), is an example.‡‡‡‡

Figure 27 Portion of LOC IAP to KOWD Runway 35

When executing a CDFA in accordance with the LOC IAP to runway 35 at KOWD, upon

passing the FAF (as determined either by a marker beacon receiver or a DME interrogator) at or

above 1,400 ft MSL, the aircraft would descend to 580 ft MSL by following a CDFA with a

VDA of 2.87 deg. Upon reaching 580 ft MSL, the aircraft should not descend further unless/until

the fix DIKEY is identified utilizing a DME interrogator. If/when that occurs, the aircraft would

be permitted to descend to 500 ft MSL — but no lower. If the airport environment is identified at

that point, a visual landing could be performed; if not, a missed approach is recommended.

6.6.2 Altitude vs. DME Information for the Pilot

Employing the CDFA technique does not require additional equipment on the aircraft or on the

ground — i.e., other than that required for the step down technique. Specifically, the avionics

required for VNAV guidance specified in Advisory Circulars AC 90-105 (Ref. 36) and AC 20-

138C (Ref. 37) are not required. However, if available, use of VNAV is recommended.

If VNAV avionics are not available, the pilot calculates a planned descent rate utilizing a table in

AC 120-108, based on the charted VDA and planned ground speed. When executing a CDFA

without VNAV, instrumentation errors in measuring airspeed and descent rate, variability in the

headwind, the lack of a guidance display and other factors, will cause the aircraft’s altitude flown

to be less well controlled than it is for a VNAV operation. The contributions of some of error

‡‡‡‡ Effective dates: May 1, 2014 – May 29, 2014
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mechanisms accumulate, causing the difference between the altitude flown and the altitude

desired to increase with time.

The safety aspect of an aircraft being at the incorrect altitude while performing a CDFA NPA is

addressed by requiring the aircraft to remain above the Minimum Descent Altitude (MDA) along

the entire approach track. However, a case has been made for the pilot having a readily available

method for comparing the aircraft’s measured altitude with the planned altitude on an almost

continuous basis, particularly when VNAV is not used (Ref. 38). A technique adopted by some

airlines has been to include a table of DME distance versus planned barometric altitude for each

CDFA approach plate for an airport with a DME ground station. Generating such a table is the

subject of this section. This analysis can also be used to determine the parameters of an approach

fix defined by aircraft altitude or distance to a DME ground station.

Equations used to generate a DME distance – planned barometric altitude table must reflect the

geometry of the DME ground station location relative to the approach ground track. Two types

of DME stations are discussed:

 “ILS DME” — The DME ground station antenna is located close to the centerline of
a runway equipped with an ILS localizer§§§§ (regardless of whether an ILS glide slope
system is present). These DME stations are generally low-powered and are only
approved for use as an aid for approaches to the associated runway. On approach
plates and other FAA documentation, ILS DMEs are designed with an “I-” prefix —
e.g., I-OWD in Figure 27.

 “Airport DME” — The DME ground station is generally on the airport, but it is not
associated with a runway.***** These DMEs generally have signal strengths sufficient
to serve aircraft approaching all airport runway ends as well as in the surrounding
airspace within a radius of at least 50 NM.

6.6.3 “ILS DME” Scenario

This scenario involves a straight-in CDFA at descent angle αʹ to a runway with a DME ground

station close to the runway centerline. Three locations, all on the same great circle, are involved.

From the pilot’s perspective, they are, in order: the aircraft, A (more precisely, its DME

interrogator antenna); the runway threshold, R (more precisely, the threshold crossing location);

and the DME ground station, D (more precisely, its antenna). In this analysis h denotes altitude

above MSL, θ denotes a geocentric angle and d denotes a slant range.

§§§§ For some runways, the “ILS” DME ground station antenna is collocated with a Localizer antenna, and may be
aligned with the centerline. It may serve both ends of the runway. For some other runways, the DME ground station
antenna is between the ends of runway, as close to the centerline as possible, and serves both ends of the runway.
***** If it’s off the airport, the “Airport” DME ground station antenna should be close to the runway centerline and
either in front of or behind the aircraft throughout the approach.
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The analysis is straightforward if the aircraft altitude hA taken as the independent variable. From

Section 9.2 (Eq 343) the geocentric angle θRA between the aircraft and the threshold is

)tan(

log



















 Re

Ae

RA

hR

hR

Eq 157

The geocentric angle between the runway threshold and the DME θRD is known from the runway

geometry and the approach plate. Reportedly, for some U.S. ILS DME installations, θRD should

be set to zero, because the fixed DME ground station delay (which is transparent to the pilot) is

adjusted so that the aircraft DME reads zero at the runway threshold. This is not the case for the

procedure shown in Figure 27, nor for others examined at random.

Thus the geocentric angle between the aircraft and the DME ground station θDA is

RDRADA   Eq 158

The “+” sign applies if the DME is past the threshold and the “-” sign applies if the DME

antanna is before the threshold.

Lastly, the slant range between the aircraft and the DME ground station dDA is found from

Subsection 3.4.1 (Eq 42).

    22

2

1
sin4 DADAAeDeDA hhhRhR=d 








  Eq 159

Remarks

 The solution for this scenario does not involve latitude or longitude coordinates —
only altitudes and distances between the aircraft and destination runway.

 When generating a table for crosschecking aircraft altimeter readings against desired
altitudes corresponding to DME readings, usually one would prefer to specify the
slant range dDA as a “nice number” (e.g., 3.0 NM) and determine the associated
desired altitude hA. This is the inverse of the mathematically simpler solution
approach described in this subsection. However, it can readily be achieved by “wrap-
ping an iteration (e.g., Secant) method” around the equations of this subsection.

6.6.4 “Airport DME” Scenario

The “Airport DME” scenario is a generalization of the “ILS DME” scenario. The difference is

that the aircraft location, runway threshold and DME location are not modeled as lying on the

same great circle. Such situations can occur because (a) more often, the “Airport DME” is not

located close to the destination runway centerline; and/or (b) less often, the approach course is
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not aligned with the runway centerline (in which

case a virtual threshold may be used in the analysis).

In either situation, Eq 157 and Eq 159 remain valid;

however, an alternative is needed for Eq 158.

The footprint on the earth’s surface for this scenario

is shown in Figure 28. In addition to the locations of

the aircraft A, runway threshold R and DME ground

station D, the figure shows the location X of the

point on the approach course that is closest to the

DME ground station. It is assumed that the

coordinates of the threshold R (LR, λR, hR) and the

DME station D (LD, λD, hD) are known, as are the

azimuth angle ψA/R of the approach course and the

aircraft altitude hA.

In the case of an Airport DME, the simplest choice

mathematically for the independent variable is the spherical range (angular distance along the

ground) θDA between the aircraft and the DME antenna. When generating a table for operation

use, one would generally prefer to perform altitude checks at defined DME readings. Or,

conversely, one could perform DME checks at defined altitude readings. Tables for either of

these options can be generated by iterating on Steps 1-9 in the following procedure.

Step 0 (executed once): Apply the Direct Problem of Geodesy to the path RD to find the distance

θRD and azimuth angle ψD/R.

Step 1: Select θDA: A possible value for θDA is

1,
specified

 k
R

d
k

e

DA
DA Eq 160

Step 2: The angle βR between RD and RA is computed in the range [0, π] using Eq 161. The 

cases of βR = 0, βR = π/2 and βR = π are handled separately below. 

  2,2,min //////  RDRARDRARDRAR Eq 161

Step 3: When βR is not 0, π/2 or π, consider the spherical triangle RXD, where the angle at X is a

right angle. The law of sines (Eq 58) yields the distance θDX.

    RRDDX  sinsinarcsin Eq 162

Figure 28 Relationship between
Aircraft A, Runway R and DME D
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While the arcsin function can have two solutions for θDX in [0, π], because θDX < θRD, only the

smaller value will be consistent with signal coverage of a DME station.

Step 4: The angular distance θRX is found from the law of cosines for sides (Eq 56)
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Step 5: Consider the mathematical spherical triangle AXD The distance θXA is found from
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 Eq 164

Step 6: The distance θRA is found from

RXXARA   Eq 165

The plus sign is used when the DME ground station D lies between the runway threshold R and

the aircraft A. Otherwise, the minus sign is used. The absolute value function is needed when the

DME station D is behind the aircraft.

Step 7: To monitor the accuracy of the solution, the angle βA is found from Eq 166. This topic is

addressed in Subsection 6.6.5.











)sin(

)sin(
arcsin

DA

DX
A




 Eq 166

Step 8: For an aircraft flying a CDFA with descent angle αʹ, its planned altitude hA for the

location involved is

    eRAReA RhRh  )tan(exp  Eq 167

Step 9: Eq 159 is employed to find the aircraft-DME ground station slant range dDA for the

location and planned altitude involved.

Given the computed values for dDA and hA, the value for θDA can be adjusted and Steps 1-9

repeated until a specified value of dDA or hA is achieved.

If the aircraft location is to be designated as a fix, then the latitude and longitude coordinates of

the fix (LA, λA) are found as solutions to the Direct Problem of Geodesy (Section 4.3).
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Two special cases must be considered. If βR = 0 or π, the DME ground station D lies on the great

circle path containing the aircraft A and runway threshold R. In this case, Eq 162 through Eq 165

are replaced by

RDDARA   Eq 168

The plus sign is used when the DME ground station D lies between the runway threshold R and

the aircraft A. Otherwise, the minus sign is used.

If βR = π/2 the DME station is abeam the runway threshold and the spherical triangle ARD has a

right angle at R. In this case, Eq 162 through Eq 165 are replaced by











)cos(

)cos(
arccos

RD

DA
RA




 Eq 169

6.6.5 Remarks

For the problem formulation addressed in Subsection 6.6.4, in the majority of situations: (a) the

aircraft-DME station distance is many times the aircraft altitude; and (b) high computational

accuracy is not needed, since measurement errors are always present. In these situations, the

aircraft-DME station ground range θDA computed using Eq 160 with k = 1 results in sufficiently

accurate values of the aircraft’s altitude hA and coordinates (LA, λA). In such situations, the

computed slant-range dDA (Eq 159) is not needed.

Two caveats are pertinent to the computations described in Subsection 6.6.4. First, in order to

choose the proper sign in Eq 165 or Eq 168, the location on the approach course closest to the

DME station in relation to the runway threshold and aircraft’s position must be approximately

known. The value of βR aids in this choice — if βR > π/2 the DME station is “past” the runway 

threshold and a minus sign is used; this is usually the case. However, if βR < π/2, two solutions 

are possible — corresponding to the DME being “before” the aircraft (and, in most situations, on

the airport) or “behind” the aircraft (and, in most situations, off the airport). The correct sign

should not change over the entire approach.†††††

Related to this caveat is the fact that the angle βA at the aircraft between the lines-of-sight to the

runway threshold and the DME station influences the accuracy of the crosscheck on aircraft

altitude. In Subsection 6.5.6, it’s noted some have recommended that a DME-VOR fix only be

accepted when 0° ≤ βA ≤ 60° or 120° ≤ βA ≤ 180°. A similar rationale applies to this application 

††††† This mathematical ambiguity is a manifestation of the physical fact that the locus of points at a given range
from a DME station can intersect a great circle path at two points. When the DME station is beyond the runway
threshold, only one intersection is meaningful.
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(0° ≤ βA ≤ 60° applies when the DME station is ahead of the aircraft and 120° ≤ βA ≤ 180° when 

it is behind). Such a limitation on βA would restrict use of this technique to portion of an NPA

procedures where the DME is never abeam, or nearly abeam, the aircraft. Thus the sign in Eq

165 or Eq 168 would not change over an NPA segment where this technique is used.

The second caveat is that it is possible for to specify an aircraft-DME station slant range dDA that

is less than the minimum possible slant range dDX. Virtually always, this can be prevented by

ensuring that θDA (from Eq 160) exceeds the value of θDX (from Eq 162, which does not require

knowledge of the aircraft location).

Although the case for doing so is not as strong as it is for a NPA, the technique in this section

can also be used to crosscheck aircraft altitude during an ILS or LPV approach with glide path

angle α. Detecting capture of a false glide slope signal is perhaps the most compelling such

reason (Ref. 39). To do so requires substituting for the two equations in this section that describe

the vertical path. In place of Eq 157, the following (from Eq 27) would be used
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And in place of Eq 167, the following (from Eq 51) would be used
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7. AIRCRAFT POSITION FROM PSEUDORANGE MEASUREMENTS

7.1 Overview of Pseudoranges

7.1.1 Concept

Pseudoranges are measurements of the range (distance) between an aircraft and a set of

ground‡‡‡‡‡ stations whereby all ranges are offset by the same unknown amount. This generally

occurs when (a) there is a one-way transmission of energy (either from the aircraft to the ground

stations [surveillance] or from the ground stations to the aircraft [navigation]), and (b) the ground

stations have clocks that are synchronized but the aircraft does not. Use of pseudoranges,

whereby the useful information is the difference between measured signal arrival times, has

several advantages over true ranges; however, it does require deployment of an additional ground

station. Pseudoranges became viable during the twentieth century, with development of

technologies to synchronize widely separated ground stations, and is often the concept chosen for

new system developments — e.g., GPS, Galileo and aircraft multilateration (surface and

airborne).

The range involved in a pseudorange system can be either the geometric line-of-sight slant-range

or the spherical-range (equivalently, the geocentric angle) between the aircraft and ground

station. Currently deployed systems that employ pseudo slant-range measurements include

aircraft multilateration (surveillance) and GPS (navigation). Low-frequency radionavigation

systems provide pseudo spherical-range measurements based on ground-wave propagation.

Examples (and their approximate station separations) are/were: Decca (100 NM), Loran-C (500-

1,000 NM) and Omega (thousands of miles). All U.S. spherical-range systems are now decom-

missioned; however, systems are in operation in other parts of the world (Ref. 40).

When true ranges are involved and when the altitudes of the station and aircraft are known,

conversion between slant- and spherical-ranges is straightforward (in either direction). For

example, Eq 34 and Eq 42 demonstrate this conversion when one of the altitudes is zero, and

Subsection 2.3.1 shows how to utilize two known, non-zero altitudes. Consequently, except for

minor details, only one algorithm is needed to compute an aircraft’s position from multiple slant-

or spherical-range measurements.

However, the converse situation pertains when pseudorange measurements are involved. One

cannot readily convert between pseudo slant-ranges and pseudo spherical-ranges. As a result,

separate algorithms are required for each measurement type.

‡‡‡‡‡ In this terminology, navigation and surveillance satellites are “ground” stations, as they are external to the
aircraft of interest and their locations are assumed to be known.
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7.1.2 Pseudorange Lines-of-Position (LOPs) and Fix Geometry

One pseudorange station has no functional value. A pair of pseudorange stations measure the

range difference from the stations to the aircraft (equivalent to the hyperboloid of revolution on

which the aircraft is located). In a two-dimensional context, the hyperbola LOPs are shown in

Figure 29(a).

(a) Two-Station LOPs (b) Three Station Fix Geometry

Figure 29 Hyperbolic System Two-Dimensional Geometry

Hyperbolic LOPs are different from LOPs for either a true range-measuring sensor (concentric

circles) or an angle-measuring sensor (radial straight lines). However, hyperbolic LOPs are

closer in appearance/significance to those for an angle-measuring sensor. Specifically, LOPs for

one angle station and a pair of pseudorange stations both: (a) emanate from the area when the

station(s) are located and “radiate” outward; and (b) separate increasing with distance from the

station(s). Conversely, a pseudorange station pair differs from a single-angle station in that its

LOPs are curved and its effective coverage area is limited to approximately ±60 deg from the

perpendicular bisector of the station baseline — i.e., provides coverage of only approximately ⅔ 

of a full circle, while one angle station provides useful information for a full circle.

Two pseudorange sensor pairs can be combined to obtain a position fix — e.g., Figure 29(b).

Only one additional station is needed, as a station can be shared between pairs. To obtain an

accurate measurement (e.g., LOP crossing angles between 30 deg and 150 deg), the angle

between the two baselines joining station baselines should have a similar magnitude.

7.1.3 Algorithm Taxonomy

Generally, different algorithms are required for (a) different range measurement types (slant

versus spherical and pseudo versus true) and (b) different analysis frameworks (two-dimensions

versus three, Cartesian coordinates versus spherical) — see Table 9. Slant-range measurements
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(pseudo and true) are naturally addressed using Cartesian coordinates, while spherical-range

measurements are naturally addressed using spherical coordinates.

The general three-dimensional / pseudo slant-range solution was derived by Bancroft in the

1980s, for application to GPS (Ref. 41 and Section 7.2). Bancroft’s published algorithm applies

to four stations that (a) measure pseudo slant-ranges, and (b) are synchronized to a single time

standard. Bancroft’s algorithm is derived using linear algebra, and solves for the time offset as

well as the aircraft location. Bancroft’s algorithm can be extended in several ways — e.g., to

combinations of pseudo and true slant-range measurements, and to multiple synchronized clock

groups. Sections 7.3 - 7.5 address three extensions relevant to aviation.

Prior to the publication of Bancroft’s paper, individual algorithms were developed for special-

ized situations. These algorithms were derived based on geometry, and do not solve for the

unknown time offset between the aircraft and ground station clocks. Fang’s algorithm (Ref, 42

and Section 7.6) for aircraft and stations restricted to a plane, and Razin’s algorithm (Ref, 43 and

Section 7.7) for aircraft and stations restricted to the earth’s surface, are representative examples.

Section 7.8 extends Razin’s algorithm to two separately-synchronized pairs of stations.

The algorithms presented in this chapter share several features with those presented in Chapter 6:

(a) the earth is assumed to be a perfect sphere (except when the simpler Flatland assumption is

used); (b) the number of measurements is the same as the number of unknown variables; and

(c) the effects of measurement errors on the resulting position solutions are not considered.

Chapter 8 addresses relaxation of all of these restrictions.

7.2 Solution for Pseudo Slant-Ranges/Cartesian Coordinates (Bancroft)

7.2.1 Background / Problem Formulation

Background — While this document emphasizes navigation/surveillance with respect to a

spherical earth, situations involving a Cartesian or rectangular coordinate framework are of

Table 9 Sources for Range-Type Algorithms and Example Applications

Measurements
Dimensions

True
Slant-Ranges

Pseudo
Slant-Ranges

Pseudo
Spherical-Ranges

Two
(Flatland or Sphere)

Unknown
(Subsection 7.9.1)

Fang (Ref. 42)
(Section 7.6)

Razin (Ref. 43)
(Section 7.7-7.8)

DME/DME
approximation

Airport multilateration Loran-C, Omega

Three
(Physical Reality)

Unknown
(Section 6.4*)

Bancroft (Ref. 41)
(Sections 7.2-7.4) N/A

DME/DME/Altimeter GPS, WAM

*The algorithm for true spherical-ranges is embedded in this description.
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interest (e.g., Chapter 5) for several reasons: (1) slant-range and pseudo slant-range measure-

ments are more compatible with the rectangular framework than the spherical; (2) many persons

find the Cartesian framework more intuitive, so it can be used to gain insights into situations

where a spherical framework is more convenient for obtaining numerical results; and (3) a

Cartesian framework is often required when the earth’s ellipticity must be taken into account.

For emphasis, it’s noted that this section addresses a situation involving four pseudo slant-range

(i.e., homogeneous) measurements. Bancroft’s algorithm can be extended situations involving

only true slant-range measurements (including aircraft altitude), or a combination of pseudo and

true slant-range measurements — Sections 7.3 and 7.4, respectively. Bancroft’s algorithm can

also be employed in situations involving multiple clock synchronization groups — Section 7.5.

Coordinate Frame — The first step is the selection of an analysis origin. The analysis origin

must be is different from the location of any station, and must satisfy other conditions discussed

below. As will become evident, the Bancroft method is an elegant application of the cosine law

of plane trigonometry, and involves triangles with vertices at the analysis origin (known), the

station location (known) and the aircraft location (unknown). The side connecting the analysis

origin and the aircraft is common to all triangles, and is found first. The other two sides of each

triangle then follow readily.

For most problems, the Earth-Centered, Earth-Fixed (ECEF, Subsection 5.1.1) is a good choice.

In ECEF coordinates, the physical stations are located at
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Here, Li, λi and hi denote the latitude, longitude and altitude (respectively) of station i.

Using similar notation, the (unknown) coordinates of the aircraft are
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For convenience, since quadratic quantities will be involved, use of the superscript e on � �
� and

� �
� and their components is discontinued until the end of this section.

The aircraft-station pseudo slant-range measurements satisfy an equation of the form
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Here � � denotes the unknown time of transmission by the aircraft and � � the measured time of

reception by ground station i.

In vector-matrix notation, the second lines of Eq 174 thru Eq 197 can be combined as

b1sB A2 Eq 175
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Eq 175 relates sA to its Lorentzian norm λ.

7.2.2 Problem Solution

Matrix B is nonsingular when (and only when) its rows are linearly independent. Assuming that

to be true, the formal solution for sA is

bB1Bs 1
2
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2
1   A Eq 176

Eq 176 can be written as

vus A Eq 177
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The Lorentzian norm λ of sA in Eq 177 can be found by (a) left-multiplying both sides of the

equation by the diagonal matrix with diagonal elements (1,1,1,-1), then (b) left-multiplying both

sides by the transpose of Eq 177. Upon collecting like terms, the result is
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02   Eq 178
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Usually, Eq 178 has two real roots
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Thus there are two possible solutions for the aircraft state sA
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One of the two solutions is correct; the other may be either

 Ambiguous — mathematically and physically possible, but not correct.

 Extraneous — mathematically but not physically possible, introduced by analytic
manipulations.

The penultimate step is determining the two possible sets of aircraft latitude/longitude/altitude

coordinates. Reintroducing the superscript e to denote coordinate frames
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Eq 181

In Eq 180 and Eq 181, a single sign, + or -, must be used consistently. The final step is selecting

between the two possible solutions.

7.2.3 Remarks

Coordinate Frames — Cartesian coordinate frame employed for Bancroft’s algorithm can be

related to either a spherical or ellipsoidal earth model. Compatibility with an ellipsoidal earth is
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an advantage when the sensor-aircraft ranges are several hundred miles or more.

If a spherical-earth model underlies the Cartesian frame, then aircraft altitude can be used as a

measurement without additional considerations. If an ellipsoidal earth model underlies the

Cartesian frame, then obtaining the maximum benefit from aircraft altitude may require iteration.

Invertibility of Matrix B — General, physically meaningful conditions for the invertibility of

the 4x4 matrix B (Eq 175) are not obvious. However, when only slant-range and altitude

measurements are involved, B reduces to a 3x3 matrix containing the components of the three

origin-to-station vectors. This is a well-known situation, and yields the requirements that the

analysis origin cannot (a) lie in the plane containing the three stations, or (b) lie along any

baseline connecting two stations (or the extensions past the stations). With three physical slant-

range stations, selecting the origin to be below the plane of the stations, and with its latitude/

longitude near the middle of the triangle formed by the stations, appears to be a good choice. For

the situation involving two physical stations and an altitude measurement, the analysis origin

should be well removed from the baseline connecting the stations (and its extensions).

When only slant-range and altitude measurements are involved, matrix B is independent of the

measurements. It is possible to compute the inverse once and utilize it for several sets of

measurements. However, for pseudo slant-range measurements, matrix B does depend on

measured times-of-arrival of signals at the pseudo slant-range stations. If a sequence of

measurements are collected over time, matrix B and its inverse must be recomputed for each set

of measurements.

Number / Types of Solutions — Solution possibilities for Eq 178 are (bearing in mind that not

all problems have all solution types):

(a) No real roots: Mathematically,  42  ; geometrically, the LOPs/SOPs do not

intersect; practically, this situation is generally the result of measurement error

(b) One real single root: Mathematically, 0 ; geometrically, the LOPs cannot all be closed
curves/surfaces (e.g., circles); physically, the problem must involve pseudoranges, so that
the LOPs/SOPs have two branches, one pair crosses and the other pair does not;
practically, this is a rare situation

(c) A real double root: Mathematically,  42  ; geometrically, two or more of the SOPs

are tangent, and in a three dimensional problem, the other SOP passes through the point
of tangency; practically, this is a rare situation

(d) Two real roots: Mathematically,
24   ; physically, the LOPs/SOPs intersect at two

distinct points; practically, this is the most common situation, and is discussed below.

Elaborating on case (d): When two real solutions occur, one solution is correct and the other is
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either ambiguous or extraneous. An ambiguous solution satisfies the measurement equations;

additional information is required to determine which solution is correct. When only real slant-

range measurements are involved, only an ambiguous solution will occur. An extraneous

solution does not satisfy measurement equations. When only pseudo slant-range measurements

are involved, an either an ambiguous or an extraneous solution may occur. One method of

detection is to substitute the solutions into the measurement equations.

When pseudo slant-range measurements are involved, an ambiguous or extraneous solution can

arise from the squaring of the time differences in Eq 174, as squaring destroys the sign of the

time differences ti - tA. When there is an extraneous solution, the solution for the aircraft time of

transmission tA can be used to detect it — the correct value for tA being less than min(t1, t2) and

the extraneous value being greater than max(t1, t2). Generally, for pseudo slant-range systems,

ambiguous solutions only occur when the aircraft is near an extended baseline connecting two

stations; when the measurement geometry is more favorable (i.e., at locations where the system

intended to be used), only detectable extraneous solutions occur (Ref. 44).

Relationship to Traditional Solutions — Bancroft’s algorithm is readily programmed, but is

not conducive to developing analytic expressions for the aircraft’s position as a function of the

measurements. Thus, when available, traditional solutions to problems involving real and pseudo

slant-ranges (e.g., three of the four problem cases shown in Table 9) — which are analytically

equivalent to Bancroft’s — remain valuable, particularly during the planning and design stages

of a project.

Other Comments

 Bancroft noted that his algorithm “performs better than an iterative solution in regions
of poor GDOP”. The most common Gauss-Newton iterative, linearized least-squares
solution method is addressed in Chapter 8.

 Bancroft’s solution has been extended to situations involving more measurements
than unknown variables (Ref. 45). Those equations are not employed herein, as the
linearized least squares method addressed in Chapter 8 is preferred (Ref. 46).

 Alternative solutions to the four-pseudo slant-range problem were published after
Bancroft’s paper (e.g., Ref. 47).

 There are scenarios where Bancroft’s algorithm can used in lieu of other solution
methods. An example is two real slant-range and one altimeter measurement; the
alternative solution method is described in Section 6.4.

7.3 Solution for Slant-Ranges/Cartesian Coordinates (Bancroft Extensions)

7.3.1 Background / Motivation

Bancroft’s algorithm (Section 7.2) was derived for four pseudo slant-range measurements. Its
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extension to three true slant-range measurements, or to two true slant-range measurements and

an altitude measurement, is the topic of this Section. Bancroft’s algorithm can also be extended

to situations involving a combination of pseudo slant-range and true slant-range measurements;

however, the analysis is more complex; Sections 7.4 and 0 address two relevant situations.

7.3.2 Three Slant-Range Measurements

The situation involving three true slant-range measurements is similar to the topic of Section 7.2

(involving four pseudo slant-range measurements); thus, only the differences will be pointed out.

In this case, the slant-range measurement between the aircraft A and ground station i is
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Eq 182

As a consequence of omitting the time component, the Lorentzian norm is replaced by the

Euclidean norm
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Also, matrix B and vectors b and 1 become
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With these substitutions, Eq 175 becomes (with sA is replaced by rA)

b1rB  A2 Eq 186

The solution then proceeds as in Section 7.2 using three-element vectors in place of four-element

vectors (i.e., without involving transmission time).

Remarks:

 Two-dimensional application of this subsection is presented in Subsection 7.9.1.

 Subsection 7.2.3 addresses the invertibility of matrix B.
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7.3.3 Two Slant-Ranges and an Altitude Measurement

Bancroft’s algorithm can also be applied to situations involving two slant-range measurements

and a measurement of aircraft altitude, as (for a spherical-earth formulation) an altitude

measurement can be converted to a slant-range from the center of the earth. However, when

altitude is used as the third measurement, an extra step is involved in the solution. For the

Bancroft B matrix (e.g., Eq 184) to be inverted, the analysis origin must be is different from the

location of any station. Thus, an analysis origin offset from the center of the earth must be used.

One possible analysis origin, in ECEF coordinates, is of the form
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Here Lo and λo are the latitude and longitude of an arbitrary point not on the baseline connecting

the stations and k is a number slightly less than 1 — e.g., 0.97.

In ECEF coordinates, the physical stations locations are given by Eq 172, with i=1,2. The

associated measurements equations are given by Eq 182, with i=1,2.

The aircraft altitude ℎ� measurement equation is
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The altitude measurement “station” is the earth’s center, with ECEF coordinates given by:

 T0003 
er Eq 189

Bancroft’s algorithm is then applied using offset station coordinates
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Matrix B and vector b are
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The aircraft’s location is found relative to the analysis origin
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The solution for Δ� �
� is then converted to ECEF coordinates using Eq 190, which in turn is used

to find the aircraft latitude and longitude using Eq 181.

The solution method described in this subsection is an alternative to that in Section 6.4.

7.4 Solution for Three Pseudo Slant-Ranges and an Altitude Measurement

7.4.1 Introduction

In terms of system functionality, this section is closely related to Sections 7.6 and 7.7. Each

section addresses the determination of an aircraft’s location based on the time difference of

arrival of signals at/from a triad of stations. The difference is the analysis framework: whereas

the following two sections assume that the aircraft is restricted to a flat earth (Section 7.6) or that

its altitude does not affect the pseudo spherical-range measurements (Section 7.7), this section

considers a spherical earth and all three dimensions.

A modified version of Bancroft’s algorithm is employed for this task. Three scalar equations

describe the pseudorange measurements by the multilateration ground stations, and one equation

describes the altitude measurement. As often occurs when more than one measurement type are

utilized, the resulting expressions are more complex than are the expressions for a homogeneous

set of measurements.

7.4.2 Problem Formulation

The three physical ground stations have the known locations latitude Li, longitude λi, and altitude

hi, where i = 1, 2 or 3. In ECEF coordinates, their locations are
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The unknown ECEF coordinates of the aircraft are
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For convenience, since quadratic quantities will be involved, use of the superscript e on � �
� and

� �
� and their components is discontinued until the end of this section.

The aircraft-station pseudo slant-range measurements satisfy equations of the form
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Here � � denotes the unknown time of transmission by the aircraft and � � the measured time of

reception by ground station i.

The aircraft altitude ℎ� measurement equation is
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In vector-matrix notation, Eq 196 and Eq 197 can be written as
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7.4.3 Problem Solution

Inverting matrix B and solving Eq 198 for � � yields
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When � � is found as a root of Eq 200 (see Remarks below), � �
� follows from Eq 199. Then the

aircraft latitude LA and longitude λA are given by Eq 181.

7.4.4 Remarks

Fang’s algorithm (Section 7.6) considers the situation of three pseudo slant-range stations in a

Cartesian plane. The simplicity of that situation enables development of insights into the three-

station pseudorange problem which are less apparent in a spherical context. However, the

behavior of the solutions are qualitatively similar — particularly, the occurrence of a readily-

identified extraneous solution when the aircraft in the service area and the the occurrence of a

unresolvable ambiguous solution when the aircraft is near a baseline extension.

There is an algebraic formula for the roots of a quartic polynomial equation such as Eq 200. Thus

the algorithm presented herein can be classified as non-iterative. The Matlab routine ‘roots’

implements a version of the quartic formula; in limited testing, it performed reliably (Example

12, Subsection 7.9.5). During those tests, for aircraft locations in the service area, the correct root

of Eq 200 was obvious based on physical considerations.

7.5 Solution for Two Pairs of Pseudo Slant-Ranges and Altitude

7.5.1 Introduction

In terms of the functionality of the system involved, this section is most closely related to Sec-

tion 7.4. Each addresses the determination of an aircraft’s location based on of time-difference-

of-arrival measurements of slant-range signals for a set of ground stations, plus knowledge of the

aircraft’s altitude. However, whereas the preceding section assumes three ground stations with

synchronized clocks, this section assumes two pairs of ground stations with the clocks for each

pair being separately synchronized. This section is also related to Section 7.8, which addresses

the determination of an aircraft’s location based on time-difference-of-arrival measurements of

spherical-range signals for two pairs of separately synchronized ground stations.

Unsynchronized slant-range differences can arise if one were to combine measurements from

two separate navigation systems — e.g., GPS and Galileo. In the context of multilateration, it

could arise as the result of a failure in the ground station synchronization network or inten-

tionally, as an aspect of the system design. Loran-C ‘cross-chaining’ involves similar

assumptions concerning station time synchronization.

7.5.2 Problem Formulation

One ground station pair is labeled R and S; the other is labeled U and V. The ground stations
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have the known locations latitude Li, longitude λi, and altitude hi, where i = R, S, U or V. In

ECEF coordinates, their locations are

VUSRihR

L

L

L

z

y

x

ie

i

ii

ii

e
i

e
i

e
i

i ,,,)(

)sin(

)sin()cos(

)cos()cos(

































 


e

r Eq 201

The altitude measurement “station”, labeled H, is the earth’s center, with ECEF coordinates

given by:

 TH 000er Eq 202

The unknown ECEF coordinates of the aircraft labeled A, are
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Since altitude will be utilized as a measurement — rather than as a constraint, as in Section 7.4

— an analysis origin offset from the earth’s center must be used. One possible origin, in ECEF

coordinates, is of the form
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Here Lo and λo are the latitude and longitude of an arbitrary point not on the baseline connecting

the stations and k is a number slightly less than 1 — e.g., 0.97. Bancroft’s algorithm is then

applied using offset station coordinates
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Thus the aircraft’s location is first found relative to the analysis origin
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For convenience, since quadratic quantities will be involved, use of the superscript e on � �
� and

� �
� and their components is discontinued until the end of this section. Also, without loss of

generality, the description will use the terminology of a multilateration system.

For stations R and S, the aircraft-station pseudo slant-range measurements satisfy
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Similarly, for stations U and V, the aircraft-station pseudo slant-range measurements satisfy
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Here � � � denotes the unknown time of transmission by the aircraft based on the clock for stations

R and S. Similarly � � � denotes the unknown time of transmission by the aircraft based on the

clock for stations U and V. Also, � � the measured time of reception by ground station i based on

its clock group.

The aircraft altitude ℎ� measurement equation is

   
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zzyyxx

hRzyxzyx
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2
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


Eq 209

7.5.3 Problem Solution

The solution approach is to: (1) consider station pair R and S, in conjunction with “station” H,

and find a relationship between the aircraft time of transmission tRS and the square of the distance

between the analysis origin and the aircraft λ; (2) consider station pair U and V in conjunction

with H, and find a relationship between tUV and λ; and (3) consider both pairs of stations and find

an additional relationship between tRS and λ (and/or between tUV and λ). Combining the relation-

ships found in (1) and (3) (or (2) and (3)) results in a quartic polynomial in tRS (and/or tUV) for

which a closed-form solution exists. All other results then follow readily.

Analysis of Stations R and S — First selecting stations R and S and the altitude measurement

for analysis, Eq 207 and Eq 209 can be written as

2
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222 )()()( AAA zyx 

     TSRRS
TT

tt 0011111 23  t11

Inverting matrix BRS yields

2
RSRSRSRSRSRSA tt fedcr   Eq 211
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Taking the Euclidian norm of Δ� � in Eq 211 and collecting terms yields

011,
2
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2
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30,
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
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
Eq 212

RS
T
RSRSa ff40, RS

T
RSRSa fe230,  RS

T
RSRS

T
RSRSa eefc  220,

RS
T
RSRSa ec210,  RS

T
RSRSa cc00, RS

T
RSRSa dd02,

1201,  RS
T
RSRSa dc RS

T
RSRSa fd221,  RS

T
RSRSa ed211, 

The above steps transform a situation (Eq 210) involving four unknown variable and three scalar

equations into involving: (a) one scalar polynomial equation (Eq 212) relating two unknown

variables (tRS and λ), and (b) a vector equation (Eq 211) for finding the unknown aircraft

coordinates from tRS and λ.

Analysis of Stations U and V — Analysis for stations U and V is identical (except for subscripts

designating stations) to that for stations R and S. Thus Eq 208 and Eq 209 can be written as

2
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Inverting matrix BUV yields

2
UVUVUVUVUVUVA tt fedcr   Eq 214
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Taking the Euclidian norm of Δ� � in Eq 214 and collecting terms yields
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Eq 215
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UVUVa ff40, UV

T
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T
UVUV

T
UVUVa eefc  220,

UV
T
UVUVa ec210,  UV

T
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T
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1201,  UV
T
UVUVa dc UV

T
UVUVa fd221,  UV

T
UVUVa ed211, 

The above steps result in one scalar polynomial equation (Eq 215) relating two unknown

variables (tUV and λ).

Analysis for Both Station Pairs — Both Eq 212 and Eq 215 are relationships between an

aircraft time-of-transmission, tRS or tUV, and the square of the distance between the analysis

origin and the aircraft λ. Thus a second relationship between the same two quantities is needed.

To that end, observe that the right-hand sides of Eq 211 and Eq 214 are equal. Thus, multiplying

both by BUV and equating them yields
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The third line of Eq 216 relates tRS and λ as follows:
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Using Eq 217 to replace λ in Eq 212 yields

00,1,
2

2,
3

3,
4

4,  RSRSRSRSRSRSRSRSRS tttt  Eq 218

2
2,02,40,4, RSRSRSRS aa  

2,11,1,21,1,2,02,30,3, 2 RSRSRSRSRSRSRSRSRS aaaa  



DOT Volpe Center

-113-

1,11,0,21,2,01,
2

1,02,0,2,02,20,2, 2 RSRSRSRSRSRSRSRSRSRSRSRSRS aaaaaa  

1,0,02,1,01,0,11,10,1, 2 RSRSRSRSRSRSRSRSRS aaaa  
2

0,02,0,01,00,0, RSRSRSRSRSRS aaa  

As noted in Subsection 7.4.4, a closed-form solution is available for quartic polynomials such as

Eq 218. After finding the solution for tRS, it is substituted into Eq 217 to obtain λ. Then tRS and λ

are substituted into Eq 211 to find Δ� � . Next, � �
� is found from � �

� = Δ� � + � �
� . Finally, the

aircraft latitude and longitude are found from Eq 181.

7.5.4 Remarks

The computation of the solution for Δ� � described above does not utilize either Eq 214 or Eq

215. However, if tUV is needed, then Eq 214 and Eq 215 are both used. (When λ is known, Eq

215 reduces to a quartic polynomial in tUV.) One reason for computing tUV is to determine the

offset between the clocks for the two station pairs.

7.6 Solution for Three Pseudo Slant-Range Stations in Flatland (Fang)

7.6.1 Problem Statement

Flatland is a useful construct for developing a conceptual understanding of a situation. Moreover,

Flatland can be a useful approximation for physical problems involving limited geographical

areas — e.g., the surface of an airport.

Assume that an aircraft in Flatland is within the coverage region

of a multilateration surveillance system that has three stations —

M, U and V — with known coordinates (see figure). The

stations have synchronized clocks, and each station measures

the time-of-arrival at its location — tM, tU and tV, respectively —

of the same aircraft transmission. (An equivalent situation can

be posed as a navigation problem, whereby the times-of-

transmission of three ground stations are synchronized.) The

unknown variables to be found are the aircraft coordinates ξA

and ζA. The time of the aircraft’s transmission tA can also be found.

This formulation can be considered to be a simplified version of multilateration surveillance of

an airport surface. Qualitatively, the results are similar to those for the two-dimensional,

spherical earth pseudorange problem addressed in Section 7.7.
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7.6.2 General Solution

The solution that follows utilizes the traditional (non-Bancroft) approach as described in Ref. 42.

The expressions found in this way are the same as those that would be found using Bancroft’s

algorithm, but fewer algebraic manipulations are needed. Implicit in this development is that:

    VAMAVMMVUAMAUMMU

MVMU

ddttcdddttcd

VdUd




Eq 219

The approach begins with formulation of the pseudo slant-range differences. Taking M as the

common station, these are

 
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Eq 220

In Eq 220: (a) each equation describes a hyperbola, and (b) the left-hand side of each of equation

can be either positive or negative. The solution is the intersection of a specific branch of each

hyperbola. After re-arranging, then squaring, each equation in Eq 220, the result is
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Eq 221

In Eq 221, � � = � �
� + � �

� . Dividing one equation by the other, and re-arranging, yields

DC AA   Eq 222
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The condition � � ≠ 0 is equivalent to requiring that the stations not form a straight line, and the

condition ∆� � � ≠ 0 is equivalent to requiring that the aircraft not be on the perpendicular

bisector of the baseline MU. These special cases are addressed in Subsection 7.6.3.

Eq 222 defines a line in the � − � plane which contains the aircraft location. Using this equation

to substitute for � � in the first equation in Eq 221, then squaring and collecting like terms, yields:

0002  MUAA dVGFE  Eq 223
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Thus the general solution of the “three pseudo slant-range system in Flatland” problem can be

reduced to:

 Solve the quadratic equation that is first line of Eq 223 to obtain (usually) two candidate
values for � �

 Substitute the two candidate values for � � into the first line of Eq 222 to find the
corresponding values for � �

 Attempt to determine which candidate solution-pair ( � � , � � ) is correct by substituting
each into Eq 220.

The squaring steps in the solution process can generate a second candidate solution that

corresponds to pseudo slant-range differences of −� � � and −� � � . (i.e., the negation of the

measured slant-range differences, with both having the same sign). When a sign reversal is

involved, the incorrect candidate solution can be detected by substituting the two candidates into

the original equations to be solved (Eq 220).

If needed, the time of the aircraft’s transmission can be found from the correct solution using

221
AAMA

c
tt   Eq 224

7.6.3 Solution Cases

As noted in conjunction with Bancroft’s algorithm (Subsection 7.2.3), solutions to a quadratic

equation such as Eq 223 can be grouped into categories. Six possibilities relevant to this situation

are explored in this subsection. The first four are “special cases” resulting from arrangements of

the aircraft and stations and corresponding to lines in the � − � plane. The other two possibilities

are “general cases” and correspond to areas of the � − � plane.

Stations Form a Straight Line — If the station locations form a straight line, the solution to Eq

221 is (in order):



DOT Volpe Center

-116-

   
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Eq 225

This is a geometrical special case of the problem formulation, rather than a mathematical special

case of Eq 223.

Aircraft Equidistant from Stations M and U — Eq 222 and Eq 223 fail when an aircraft is

equi-distant to stations M and U. When this occurs, Eq 221 reduces to

0
2

2  KJH
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AAA  Eq 226
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Two double-special cases of Eq 226 are of interest. When an aircraft is equidistant between both

station pairs MU and MV, the quadratic equation has a double root and the aircraft location is:
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UVVU
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22
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When H is zero, the quadratic equation is degenerate and Eq 226 has a single root at:
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


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Double Root – Aircraft on a Baseline Extension — When an aircraft is at a station or on a

baseline extension, the associated slant-range difference is the same for any position on that

extension and is equal in magnitude to the baseline length. In the double special case where the

three stations form a straight line and the aircraft is on an extension of that baseline, then

∆� � � = ± � and ∆� � � = ± � , with the same sign applying to both measurements. Thus the

expression for 	� � in Eq 225 is singular.

For the more usual two-dimensional station geometry, assume that the aircraft is on the 	� -axis to

the left of M. Then ∆� � � = −� , so the discriminant for Eq 223 is zero, indicating the occur-

rence of a double-root. The aircraft position is given by



DOT Volpe Center

-117-

  0
2

22





 A

MV

MV
A

dV

dV

C

D




Eq 229

The expression for the location of the aircraft relative to the nearest station (i.e., � � in Eq 229)

does not depend upon the length of that baseline.

The solution in Eq 229 depends on both conditions |∆� � � | = � and |∆� � � | ≤ � being valid. If

either is violated due to measurement errors, the solution will change in character — either it

may not exist (the discriminant is negative) or the double root may divide into two single roots

(the discriminant is positive). For this reason, it is sometimes said that locations on the baseline

extensions are unstable. Also, while Eq 229 is derived for only one of six baseline extensions, by

transforming the coordinate axes and the slant-range differences, it can be applied to any

baseline extension.

Single Root – Degenerate Quadratic — While Eq 223 is nominally a quadratic function of � � ,

it reduces to a linear function of � � when E = 0, or when

02 222222   VUddUVdUdV MVMUMVMU Eq 230

Eq 230 is analytically intractable, as it involves all three possible products of the three radicals in

Eq 220; thus, repeated isolating and squaring will result in a 8th order polynomial. However, Eq

230 can be readily solved numerically — e.g., using the secant method (Subsection 2.1.6). The

result of such a calculation, for stations that form an equilateral triangle with unit baselines, is

shown as the green curves in Figure 30. Geometrically, the single-solution case occurs when the

two hyperbola have asymptotes that are parallel to each other.

The loci of single-root solutions (three green curves in Figure 30) partition the � − � plane into

four regions. From numerical trials, it has been found that in the two-root case, both solutions are

always located in the same region (Ref. 44). When the aircraft is near this boundary, the

incorrect solution is very distant from the correct solution

For the square area shown in Figure 30 (3 x 3 Base Line Units [BLUs]), the ‘extraneous’ region

is 62.5% of the total area, and each of the three ‘ambiguous’ regions is 12.5%. If attention is

limited to an area of 1.5 x 1.5 BLUs (which better resembles one of operational interest), the

‘extraneous’ region is 79.8% of the total and each of the three ‘ambiguous’ regions is 6.7%.

Two Roots – Different Branches — This situation occurs when the aircraft is in the larger,

‘extraneous solution’ area of the � − � plane in Figure 30. An algebraic indicator of this situation

is that E in Eq 223 is negative. Geometrically, each solution is formed by the intersection of

hyperbola branches which are distinct from those which form the other solution (Figure 31(a)).



DOT Volpe Center

-118-

The filled circle corresponds to the correct slant-range differences, and the unfilled circle to their

sign-reversed versions. Thus the correct solution can be identified.

Two Roots – Same Branches — This situation occurs when the aircraft is in one of the three

rounded-V-shaped ‘ambiguous solution’ areas in Figure 30. An algebraic indicator of this

situation is that E in Eq 223 is positive. Both solutions are formed by intersections of the

branches of the hyperbolas which correspond to the correct slant-range differences (Figure

31(b)). Thus, the correct solution cannot be identified without additional information.

7.6.4 Remarks

Service Area — Every navigation or surveillance system is intended to provide service in a

defined area or volume. Generally, in the service area/volume, the measurement geometry (e.g.,

crossing angles of LOPs) is satisfactory, and the signal-to-noise ratio is adequate. For a three-

station pseudorange system with equal baselines, the service area is approximately a circle with

its center at the mid-point of the station locations and radius equal to one-half the baseline length

(Figure 30). This includes almost all on the triangle connecting the stations, plus three circle

segments adjacent to the baselines. The maximum “bulge” outward from each baseline is 21% of

a baseline length. Subsection 8.4.2 provides additional information about pseudo slant-range

systems’ service areas.

Figure 30 Solution Regions for Three Pseudo Slant-Range Stations in Flatland
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Contribution of Derivation — The development in Subsection 7.6.2 is the least-complicated

derivation of a solution to the ‘three pseudo slant-ranges in Flatland’ problem. This solution only

requires finding the roots of a quadratic equation in one position coordinate. Also, it provides

insight into the effects of the geometry on the solution. In contrast, Bancroft’s algorithm requires

solution of a quadratic equation in a quadratic quantity — the Lorentzian norm of the aircraft

location. A third derivation takes a coordinate-free approach and only utilizes distances and

angles (Ref. 48). It does not provide as much insight.

Keys to Derivation — A key step in Fang’s derivation is dividing the two equations in Eq 221.

If, instead, one were to square the two equations separately to eliminate the radicals, the result

would be two fourth-order polynomial equations. Geometrically, two families of hyperbolas, one

associated with each baseline, intersect at up to four points and thus may require a fourth-order

polynomial for computing all the intersections. Fang’s derivation takes advantage of the fact that

the two slant-range differences have one station in common. A similar step occurs in the

derivation of Razin’s algorithm for a spherical earth.

Numerical Results — When numerical results are needed, Bancroft’s algorithm may be

preferable to implementing Eq 222 and Eq 223. One reason is that, if vector-matrix software is

available, the coding task is simpler. A second is that Bancroft’s algorithm places all the stations

on an equal footing, while Fang’s algorithm makes MU the primary baseline. A consequence is

that the solution code must handle ∆� � � = 0 as a special case. Another may be that the solution

is more sensitive to measurement errors in ∆� � � .

(a) Different Branches (Extraneous Soln.) (b) Same Branches (Ambiguous Soln.)

Figure 31 Types of Solutions for Three Pseudo Slant-Range Stations
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Two Station Pairs — One could define a hyperbolic system involving four stations comprised

of two separately synchronized pairs of stations (similar to Loran-C cross-chaining). A deriva-

tion similar to the above would require two squaring operations to remove all radicals, which

would result in a fourth-order polynomial.

Application to Ellipsoid LOPs — Reference 42 makes the point that — with some sign

reversals — the equations of this section would apply equally well to measurements of the two

sums of the slant-ranges for three ground stations to an aircraft. While not commonly

implemented (e.g., by a multi-static radar), it is a point worth noting.

Relationship to Classic Hyperbola Parameters — Figure 32 shows the classic form of a

hyperbola which satisfies the equation

1
2

2

2

2


b

y

a

x
Eq 231

This classic hyperbola can be easily related to the

hyperbola described by the first line of Eq 220.

Equating the distances between the vertices and

the foci of the two hyperbolas, respectively,

yields:

Uba

da MU





222

2
Eq 232

Thus the tangent of the acute angle that an asymptote makes with the baseline is:

1

2













MUd

U

a

b
Eq 233

The quantity under the radical in Eq 233 is fundamental to this formulation, and also appears in

the expressions for D (Eq 222) and E, F and G (Eq 223).

Insight into More Complex Situations — The problems addressed in this section, three-

pseudorange-stations-in-Flatland, is a simplified version of the problems addressed in Sec-

tions 7.4 and 7.7. Qualitatively, the solutions behave similarly.

Figure 32 Classic Hyperbola
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7.7 Solution for Three Pseudo Spherical-Range Stations (Razin)

7.7.1 Problem Formulation

Pseudo (or differences in) spherical-ranges are the basis upon which several radionavigation

systems have been developed, most prominently Loran-C. Spherical ranging systems are

intended for use on or near the earth’s surface; altitude has no role in their concepts or solutions.

The Loran community developed an advanced concept involving user-carriage of an atomic

standard, enabling measurement of spherical-ranges (vice differences). Such measurements can

be handled by the method described in Section 6.4 and are not addressed here.

Figure 33 illustrates a basic scenario using

Loran-C station labels: M at latitude/longitude

(LM, λM) is the master station, and X (LX, λX)

and Y (LY, λY) are secondary stations whose

transmissions are synchronized with those from

M. The coordinates of all stations are known.

The assumption is that aircraft A is employing

the system for navigation, and wishes to deter-

mine its latitude and longitude (LA, λA).

Two time-difference-of-arrival (TDOA) meas-

urements available from the station’s transmis-

sions; these are grouped as “M minus X” and “M

and Y”. The TDOAs are equivalent to two

spherical-range differences with constrained magnitudes:

MYMYAYAMAMYA

MXMXAXAMAMXA








Eq 234

7.7.2 Problem Solution

Figure 33 depicts two mathematical spherical triangles MXA and MYA with common side MA.

The goal in analyzing these triangles is to find θMA and either βX or βY, as having these quantities

reduces the task to solution of the Direct Problem of Geodesy. As occurs for position determin-

ation based of two real slant-range measurements (Section 6.4) — which devolves into position

determination based of two real circular-range measurements — multiple solutions can occur.

Step 0: Solve the Indirect Problem of Geodesy (Section 4.2) for the paths MX and MY, yielding

the geocentric angles θMX and θMY and the azimuth angles ψX/M and ψY/M.

Figure 33 Pseudo Spherical-Range Scenario
Involving Stations M, X and Y and Aircraft A
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Step 1: Form the difference of the azimuth angles ψX/M and ψY/M, yielding the angle β between

great circle arcs MX and MY satisfying 0 < β < π 

  2,2,min //////  MXMYMXMYMXMY Eq 235

To establish the sign conventions, assume that the vehicle is within the V-shaped region with

sides MX and MY. Then both βX and βY are positive as shown. The following is always true:

YX   Eq 236

Step 2: Solve Eq 234 for θXA and θYA, then take the cosine of both sides, yielding:

         
         MYAMAMYAMAYA

MXAMAMXAMAXA









sinsincoscoscos

sinsincoscoscos
Eq 237

Step 3: Apply the spherical triangle law of cosines for sides (Eq 56) to MXA and MYA, yielding:

           
           YMYMAMYMAYA

XMXMAMXMAXA

=

=





cossinsincoscoscos

cossinsincoscoscos




Eq 238

Step 4: The first and second lines, respectively, of Eq 237 and Eq 238 are equated, eliminating

θXA and θYA. Then solving for θMA yields:

     
     

     
     YMYMYA

MYAMY
MA

XMXMXA

MXAMX
MA











cossinsin

coscos
tan

cossinsin

coscos
tan











Eq 239

Step 5: Equate the two expressions for θMA in Eq 239 and eliminate βY using Eq 236, yielding:

   
     

   
     XMYMYA

MYAMY

XMXMXA

MXAMX


















cossinsin

coscos

cossinsin

coscos
Eq 240

Step 6: Re-write Eq 240 as:

    CBB XsXc   sincos

Eq 241
             
       

           ]cos[cossin]cos[cossin

sin]cos[cossin

cos]cos[cossin]cos[cossin

MXAMXMYAMYAMYMXA

MXAMXMYs

MXAMXMYMYAMYMXc

C

B

B













Step 7: Re-write Eq 241 as:

 

     csscm

Xm

BBBBB

CB

,arctan

cos

22







Eq 242
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The four-quadrant arc tangent function is used in Eq 242.

Step 8: Find βX using Eq 243.

    


















m
cs

m
csX

B

C
BB

B

C
BB ArcCos,arctanarccos,arctan Eq 243

In Eq 243, ArcCos denotes the principal value of the arccos function — i.e., the value in the

range [0, π]. Thus, in general, two solutions are possible. 

Step 9: For both possible solutions, find θMA using the first line of Eq 239.

Step 10: For both possible solutions, find the aircraft’s latitude and longitude (LA, λA) as a

solution to the Direct Problem of Geodesy, given the latitude/longitude (LM, λM), the geocentric

angle θMA and the azimuth angle ψA/M = ψX/M + βX.

Step 11: For both possible solutions, the geocentric angles θXA and θYA are found from the aircraft

and station latitudes and longitudes as solutions to the indirect problem of geodesy.

Step 12: For both possible solutions, substitute the angles θMA, θXA and θYA in the right-hand side

of Eq 234. Compare the resulting spherical range difference to the measured values for these

quantities. Discard a possible solution when agreement does not occur.

7.7.3 Types of Solutions

No Solution — Measurement errors can cause one of the inequalities in Eq 234 to be violated.

That, in turn, can cause the argument of the arc cosine function in Eq 243 to be greater than one

in magnitude, in which case a solution does not exist.

Double-Root Solution — If the aircraft is on a baseline extension, including at a station, then Eq

240 becomes indeterminate and the equations immediately before it must be used. For example,

assume the aircraft is on the extension of MX, closer to X. Then � � � = Δ� � � � , and equating the

first two lines of Eq 237 and Eq 238 yields βX = 0, hence βY = β. Thus, since 0 < β < π, there is a 

single solution for θMA given by the second line of Eq 239.

Single Solution — In Eq 243, if � � = � then the ArcCos term is zero and there is only one

solution for βX. The locus of latitudes/longitudes for which � � = � can be found numerically.

Two Solutions: Ambiguous vs. Extraneous — In most instances, two candidate solutions are

found by the method described in Subsection 7.7.2. One is always correct. The other is either:

(a) extraneous, corresponding to the negation of the measured spherical-range differences (thus

will be detected in Step 12); or (b) ambiguous, also corresponding to the measured spherical-
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range differences, and thus not resolvable without additional information.

The intended service area for a pseudorange system is, approximately, the region within the

perimeter of the polygon enclosing the stations (but not close to a station) or the border area

outside the perimeter but near the bisector of the baseline joining the closest two stations. In the

service area, one candidate solution is extraneous and corresponds to the “+” sign in Eq 243,

while the correct solution corresponds to the “–” sign. Example 10 in Subsection 7.9.3 illustrates

where both ambiguous and extraneous solutions occur.

7.7.4 Remarks

System Applications — The primary examples of long-range pseudo spherical-range systems

are Loran-C and Omega. For their combinations of system characteristics (long-ranges between

stations and aircraft, low-frequency radio waves and ground propagation paths), processing steps

in addition to those described in Subsection 7.7.2 were generally needed to achieve the systems’

potential accuracies.

Accuracy Enhancements — Two areas have been addressed to improve the accuracy of low-

frequency spherical-range difference systems:

 Earth Geometry — For distances of more than a few hundred miles, the ellipticity
error incurred by using a spherical-earth model is usually unacceptably large. One
approach is to employ approximations to an ellipsoid (Refs. 10-12 and 14-16) which
are not amenable to closed-form solution. These can be utilized in an iterative
solution technique that is initialized with the solution obtained from Razin’s
algorithm (see Chapter 8). A second approach is to tailor the spherical-earth model to
the service area involved (Refs. 43 and 49).

 Radiowave Propagation — Low-frequency electromagnetic ground waves cannot be
assumed to travel with constant speed, since their propagation depends upon the
conductivity of the ground over which they travel. Modeling and measurements have
both been used to address this issue. The resulting adjustments are easily incorporated
in the pseudo spherical-range difference measurements.

Validation — Reference 49 contains the findings of a comparison, using Loran-C measure-

ments, of Razin’s algorithm and the semi-official, iterative algorithm published by the Radio

Technical Commission for Maritime Services (RTCM) (Ref. 50). Differences between the

computed latitude/longitude coordinates for the two algorithms are between 3 ft and 5 ft.

Similarity to Flatland Solution — Although the analysis formulations are different (rectangular

versus spherical), the qualitative characteristics of the solutions for the Flatland/Fang and

spherical-earth/Razin algorithms are qualitatively virtually the same. Both have two solutions

with the incorrect one being detectable (i.e., extraneous) in the useful service area for a system,

but not detectable (i.e., ambiguous) between and near the baseline extensions for the stations.
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7.8 Solution for Two Pairs of Stations Measuring Pseudo Spherical-Ranges

7.8.1 Problem Formulation

This section addresses a problem that is close to the topic of the previous section: determining an

aircraft’s position from two spherical-range difference measurements. However, in this section,

the measurements are obtained from four stations comprising two distinct pairs, rather than from

three stations comprising two pairs having a common station. It is also close to the topic of

Section 7.5, which addresses two pairs of stations that measure pseudo slant-ranges.

Figure 34 illustrates the scenario using Loran-C-like station labels. Station M at latitude/lon-

gitude (LM, λM) is a master station, and station X (LX, λX) is an associated secondary station.

Similarly, station N (LN, λN) is the master for a separate set of stations (chain), and station

Y (LY, λY) is an associated secondary. The transmissions of each master-secondary pair are

synchronized, but not with those of the other pair.

Figure 34 Pseudo Spherical-Range Measurement Scenario
Involving Two Station Pairs and Aircraft

The assumption is that aircraft A is employing this set of stations for navigation. The aircraft’s

first priority is to determine its latitude/longitude (LA, λA) coordinates. A second priority is to

determine the spherical-range to and azimuth angle toward each of the four stations.

Two time-difference-of-arrival (TDOA) measurements are available from the station’s transmis-
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sions; these follow the convention “M minus X” and “N minus Y”. These TDOAs are equivalent

to two spherical-range differences. These are, together with the limitations on their magnitudes:

NYNYAYANANYA

MXMXAXAMAMXA








Eq 244

7.8.2 Problem Solution

Figure 34 depicts three mathematical spherical triangles: MXA, NYA and MNA. The goal in

analyzing these triangles is to find values for the two spherical-range/bearing pairs θMA and βX

and θNA and βY. Knowing these quantities reduces the task of finding (LA, λA) to a solution of the

Direct Problem of Geodesy. As in other multi-dimensional problems, multiple solutions for

(LA, λA) may occur; when they do, the validity of each must be checked.

The immediate goal is to find βX, as the quantities θMA, θNA and βY follow readily.

Step 0: Solve the Indirect Problem of Geodesy for three paths between stations:

 MX (master and associated secondary): Provides θMX and ψX/M

 NY (master and associated secondary): Provides θNY and ψY/N

 MN (two master stations): Provides θMN, ψM/N and ψN/M

Define the positive angles between the path MN and, respectively, the paths MX and NY

 
 



2,2,min

2,2,min

//////

//////





NMNYNMNYNMNYN

MXMNMXMNMXMNM
Eq 245

Formally define βX as the angle XMA, measured clockwise from XM. Similarly, define βY as the

angle YNA, measured counter-clockwise from YN.

Step 1: Solve Eq 244 for θXA and θYA, then take the cosine of both sides, yielding:

         
         NYANANYANAYA

MXAMAMXAMAXA









sinsincoscoscos

sinsincoscoscos
Eq 246

Step 2: Apply the spherical law of cosines for sides to triangles MXA and NYA, yielding:

           
           YNYNANYNAYA

XMXMAMXMAXA





cossinsincoscoscos

cossinsincoscoscos




Eq 247

Step 3: The first lines of Eq 246 and Eq 247 are equated, eliminating θXA. Then solving for the

master station-aircraft distance yields θMA as a function of βX and known quantities
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   
     















XMXMXA

MXAMX
MA






cossinsin

coscos
arctan Eq 248

In Eq 248, the single-argument arc tangent function should be used.

Step 4: Consider spherical triangle MNA. The four-part cotangent formula yields an expression

for βY as an explicit function of βX and quantities that are either known or are functions of βX:

 
   















XMMNMAMN

XM
NY






cos)cos(cot)(sin

sin
arctan Eq 249

In Eq 249, the two-argument arc tangent function should be used.

Step 5: The second lines of Eq 246 and Eq 247 are equated, eliminating θYA. Then solving for the

master station-aircraft distance yields θNA as a function of βY and known quantities

   
     















YNYNYA

NYANY
NA






cossinsin

coscos
arctan Eq 250

In Eq 250, the single-argument arc tangent function should be used.

Step 6: The value of βX sought is a root of the following equation (application of the Law of

Sines to spherical triangle MNA)

 
 

 
 MA

YN

NA

XM









sin

sin

sin

sin 



Eq 251

By substituting and re-substituting Eq 248, Eq 249 and Eq 250 into Eq 251, the result would be

an explicit function of βX and known quantities. There is no point in doing so, however, since the

expression would be too complex to be solved analytically for βX. Instead, a root finding

technique (such as the secant method) can used to find one or more values for βX.

Step 7: For each candidate solution for βX, find the corresponding value for θMA using Eq 248.

Step 8: For each candidate solution pair for bearing βX and range θMA, find the aircraft’s latitude

and longitude (LA, λA) as a solution to the Direct Problem of Geodesy.

Step 9: If multiple solutions to Eq 251 occur, for each solution set, find the geocentric angles θXA

and θYA from the aircraft and station coordinates as solutions to the Indirect Problem of Geodesy.

Step 10: For each solution set, substitute the angles θMA, θXA and θNA, θYA in the right-hand side

of Eq 244. Compare the resulting spherical range difference to the measured values for these

quantities. Discard a candidate solution when agreement does not occur.
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7.8.3 Remarks

 An obvious application of this algorithm is to Loran-C “cross-chaining” — finding pos-
ition solutions using TDOA measurements from two separate chains. Loran-C cross-
chaining can involve three stations, with one station being dual-rated. However, in terms
of the position-solution algorithm, three-station cross-chaining is no different than three
stations from a single chain. This section addresses the more-complex situation involving
two pairs of stations, one pair from each chain.

 Sequences of equations other than those in Subsection 7.8.2 can be used arrive at a
function of βX (only) whose root is to be found. The solution sequence presented herein
follows Razin (Ref. 43) and appears to yield satisfactory results (Subsection 7.9.4).

 When a closed-form solution to a problem does not exist, reducing the solution to finding
the root of a scalar equation over a pre-defined range of values is the next best option.

7.9 Example Applications

Example applications are presented in this section, with the intent of providing a sense of how

the equations presented earlier in this chapter might be utilized.

7.9.1 Example 8: Slant-Range Measurement System in Flatland

Problem Statement — Consider the simplest application of Bancroft’s algorithm — finding the

intersections of two circles in a plane. Stated as a navigation problem, an aviator in Flatland

measures his/her slant-range to two stations — say, � � � to station S1 having known coordinates,

and � � � to station S2 also having known coordinates. This formulation can be considered to be a

simplified version of the problem of computing a DME/DME/altitude fix (Section 6.4).

The first step toward a solution is selecting the coordinate frame.

Because Bancroft’s algorithm involves calculating a matrix

inverse, the origin cannot be in-line with the two stations

(Subsection 7.2.3). A good choice is to place each station on one

axis, equidistant from the origin (illustrated at the right). A

normalized distance scale is chosen such that the separation

between the stations is one unit — i.e., distances are quantified

in Base Line Units (BLUs).

Solution — Carrying out the steps indicated in Subsections 7.2.1 and 7.2.2 yields
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Thus
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The two possible solutions for the aircraft location are
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Types of and Conditions on Solutions — Insight into the solution can be obtained by

examining the sum and difference of the slant-ranges. Thus let
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Upon substituting into Eq 256, the discriminant Disc can be written as

     222 114Disc dd   Eq 260

The four types of possible solutions for the norm λ are enumerated in Subsection 7.2.3. It follows

from Eq 255 that, since � = 1, a single real root cannot occur. Geometrically, this is because two

circles in a plane must cross at two points, be tangent at a point, or not cross.
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The other three solution types can occur, depending upon the value of the discriminant. For real

roots to occur, both of the following conditions must be true:

11  dd Eq 261

Since the two stations are separated by one BLU, Eq 261 “says” that (a) the sum of the ranges to

the stations must be at least equal to the separation between the stations, and (b) the absolute

value of the difference between the ranges to the stations must be no more than the separation

between the stations. Based on geometric reasoning, when Σ� is unity, the aircraft must be on the

baseline separating the stations, and when |Δ� | is unity the aircraft must be on an extension of

the baseline. Similar conditions are derived in Subsection 6.4.3 for the analogous problem

involving a spherical earth.

Aircraft locations along the baseline connecting the stations and its extensions are unstable

because small measurement errors can change the character of the solution — to a situation

where a solution does not exist or to one where there are two separate candidate solutions.

It follows from Eq 257 and Eq 260 that
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Either solution to Eq 262 (and to Eq 257 as well) may be correct. Of course, only one solution is

actually equal to the vehicle’s true position — the other

solution is ambiguous. Two slant ranges do not provide

enough information to make a decision.

“Natural” Coordinate System — While the (� , � ) frame is

compatible with Bancroft’s algorithm, it is not the natural

frame for this problem. Thus, consider the (ξ, ζ) frame 

(Figure 35) which is generated by rotating the (� , � ) frame

counter clockwise by 45 deg, then offsetting it by one-half a

BLU to the right. The result is that (a) both stations lie on the

ζ-axis, and (b) the ξ-axis is the perpendicular bisector of the 

baseline connecting the stations. The solutions for the aircraft

location can be expressed in the (ξ, ζ) frame as: 
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Figure 35 Two Slant-Range
Stations and Aircraft in Flatland
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This solution can also be written as
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Let a breve diacritic mark above a normalized quantity denote its un-normalized version; thus,

e.g., � � = �  � and � � = �  � , where B is the baseline length. The un-normalized version Eq 264 then

is
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Geometry-Based Derivation — There is an older, more direct, geometry-based derivation of Eq

263. Referring to Figure 35, the two slant-ranges satisfy Pythagoras’ theorem:
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Completing the squares and subtracting the second equation from the first in Eq 266 yields
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Lastly, substituting for ζA in the first equation in Eq 266 yields
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Remarks

 In the absence of slant-range measurement errors that cause one or both of the
inequalities of Eq 261 to be violated, there are no aircraft positions where either line in
Eq 263 fails — i.e., the equations do not have any singularities.

 If the aircraft position is on the ζ-axis — either on the baseline connecting the stations or 
on an extension — the discriminant (Eq 256 and Eq 260) is zero and Eq 255 has an
unstable double root. This different than the situation for three pseudorange stations in a
plane (Section 7.7); there, only positions on the baseline extensions are unstable.

 If the aircraft is not on the ζ-axis, then Eq 255 has two separate real roots that correspond 
to the actual and ambiguous aircraft locations.

 The correct and ambiguous solutions are symmetrically located with respect to the ζ-axis 
but cannot be distinguished based on two slant-range measurements.
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 Movement of the aircraft with a component toward or away from the ζ-axis is a method 
for determining the correct solution.

 The effect of measurement errors on the solution depends strongly on the location of the
aircraft. This is the topic of Subsection 8.4.1.

 The two-ranging-stations-in-Flatland problem is a simplified version of the DME/DME/
Altitude problem addressed in Section 6.4. Qualitatively, the solutions behave similarly.

7.9.2 Example 9: Three Pseudo Slant-Range Stations in Flatland

This subsection presents examples of results obtained using Fang’s algorithm described in Sec-

tion 7.3 for finding the two-dimensional position of an aircraft from three pseudo slant-range

measurements. Figure 36 depicts three such stations, labeled M, U and V. The three green curves

partition the space into four regions that contain the incorrect (ambiguous or extraneous) solution

when the correct solution is in the same region (Figure 30).

The thicker, solid blue and red lines with filled symbols at their ends represent hypothetical

aircraft flight tracks. The thinner dashed blue and red lines with unfilled symbols at their ends

depict the incorrect solutions yielded by the algorithm for the hypothetical tracks of the same

color. An asterisk marks the center of each hypothetical or incorrect track.

The blue track corresponding to the correct solution is well within the service area, as is its

corresponding incorrect track (which is in approximately the opposite direction, and is slightly

curved). In the ‘extraneous’ region, the correct solution can be identified by inspection. For

Figure 36 Three Pseudo Slant-Range Stations in Flatland and Two Aircraft Tracks



DOT Volpe Center

-133-

example, the filled blue circle is equidistant from M and U and furthest from V. In contrast, its

counterpart, the unfilled blue circle, is equidistant from M and U and closest to V (i.e., the order

is reversed). Similar statements can be made about every point in this region. Calculations reveal

that the magnitudes of the slant-range differences are the same for the correct and incorrect

solutions; however, their signs are reversed.

In contrast to the blue track, the red track corresponding to the incorrect solution transitions from

the ‘extraneous’ region to the ‘ambiguous’ region. Starting from the circle symbols the correct

solution moves directly “north” in a straight line, while the incorrect solution moves largely

“south” in a slightly curved path. As the aircraft approaches and crosses the transition between

the regions, the incorrect solution moves at a high rate to the “south” then reappears at the far

“north” and again moves at a high rate to the “south”. As the aircraft moves away from the

transition curve, the incorrect solution moves close to the correct solution.

7.9.3 Example 10: Three Pseudo Spherical-Range Stations

This subsection presents an example application of Razin’s algorithm (Section 7.7) utilizing

three pseudo spherical-range navigation stations in the U.S. Northeast Loran-C chain (Ref. 51).

In Figure 37: M represents the master station at Seneca, NY; W represents the secondary station

at Caribou, ME; and X represents the secondary station at Nantucket, MA. For a spherical-earth

formulation, the baselines and their extensions for these stations are great circles.

Figure 37 Position Solutions for Triad of Stations from the Northeast U.S. Loran-C Chain
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Fourteen airport locations were selected, and spherical-range differences for the station pairs M-

W and M-X were calculated using a spherical-earth model. The methodology of Section 7.7 was

used to find solutions for the airport locations from the range differences. Green (“–” solution)

and red (“+” solution) icons of the same shapes represent the algorithm’s solutions for the same

airport. Blue-colored symbols depict the actual airport locations, and overprint the correct

solution (in all cases, they agree to machine precision).

Six airports are in the service area for these stations: Reagan National, VA (DCA); LaGuardia,

NY (LGA); Boston, MA (BOS); Portland, ME (PWM); Bangor, ME (BGR); and Halifax, Nova

Scotia (YHZ). A blue line represents a hypothetical flight path connecting these airports. A

thinner red line connects the incorrect “+”solutions.

For airports in the service area, the incorrect solutions can be detected by inspection. For

example, DCA is closest to station M and furthest from W. However, its extraneous version is

closest to W and furthest from M. More generally, for locations in the service area, the range

differences for an extraneous solution will be negative versions of the range differences for the

correct solution. Another method for detecting the correct solution is to examine the flight path.

In this case, the incorrect “flight path” is, overall, in the opposite direction of the correct track.

Eight other airports are also depicted by blue symbols: Pittsburgh, PA (PIT); Cleveland, OH

(CLE); Columbus, OH (CMH); Indianapolis, IN (IND); Milwaukee, WI (MKE); Buffalo, NY

(BUF); Goose Bay, Labrador (YYR); and Bermuda (BDA). These airports are all outside the

nominal service area for the stations, and are in or near the three regions bounded by baseline

extensions. The incorrect solutions, which may be either the “–” or “+” solution of Eq 243, are

all ambiguous — i.e., the range differences calculated from the correct and incorrect airport

locations are identical.

This example is revisited in Subsection 8.4.4, which addresses the effect of mis-modeling the

earth as a sphere (i.e., the ellipticity error), and presents a solution.

7.9.4 Example 11: Two Pairs of Pseudo Spherical-Range Stations

This subsection presents an example of the solution algorithm for two pairs of pseudo spherical-

range navigation stations described in Section 7.8. Figure 38 depicts the master station at Seneca,

NY for the U.S. Northeast Loran-C chain and a secondary station at Nantucket, MA. It also

depicts the master station for the U.S. Great Lakes Loran-C chain at Dana, IN, and a secondary

station at Malone, FL.

Figure 38 also shows seven airports which represent possible locations of aircraft employing

these stations for navigation: LaGuardia, NY (LGA); Elizabeth City, NC (ECG); Charleston, SC
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(CHS); Charleston, WV (CRW); Atlanta, GA (ATL); Nashville, TN (BNA); and St. Louis, MO

(STL). All of the airports locations are within the expected service area for such a navigation

system.

The solution algorithm presented in Section 7.8 is straightforward except for the process of

finding values for βX that are roots of Eq 251. Thus the primary issue explored is the behavior of

Eq 251 as a function of βX — i.e., with θMA, θNA and βY determined from βX. (Here, βX is the

angle, measured clockwise, from (a) the baseline from Seneca to Nantucket to (b) a great circle

path from Seneca to the aircraft.)

Figure 39 shows the difference between the left- and right-hand sides of Eq 251 as a function of

assumed values for βX in the range (� � − � ) ≤ � � ≤ � � . Each of the seven possible aircraft

locations are considered for the half-sphere on the southeast side of the great circle path through

Dana and Seneca. The curves for six of the seven airports (all except STL) have the same basic

shape — a “sideways S”. Most important is that each curve in Figure 39, including that for STL,

has only one root, so ambiguous and extraneous solutions do not occur for locations in the area

of interest. If the roots for βX shown in Figure 39 are substituted into Steps 7-10 of the algorithm

in Section 7.8, the original aircraft locations result.

Figure 38 Two Pairs of Loran-C Stations and Seven Airport Locations
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A plot similar to Figure 39 was generated for the area on the northwest side of the great circle

path through Dana and Seneca. Four of the airports of interest (LGA, ECG, CRW and BNA) had

a single extraneous solution in this area. CHS and ATL did not have a second solution, and STL

has two additional solutions.

Figure 39 Example 11: Sensitivity of Law-of-Sines Difference to Trial Values of βX

This example is re-visited in Subsection 8.4.5.

7.9.5 Example 12: Wide Area Multilateration (WAM)

As an example of the solution technique presented in Section 7.4, a WAM system is postulated

which has ground stations at three airports: Boston, MA (BOS); Manchester, NH (MHT); and

Hartford, CT (BDL) — see Figure 40. An aircraft at an altitude of 25,000 ft over-flies five

airports in the system’s service area: Westfield-Barnes Regional, MA (BAF); Dillant-Hopkins,

Keene NH (EEN); Fitchburg Municipal, MA (FIT); Lawrence Municipal, MA (LWM); and

Hanscom Field, Bedford MA (BED). To provide insight into the algorithm’s behavior outside

the service area, solutions are found for three possible aircraft locations outside the service area

and near extended baselines: Barnstable Municipal, MA (HYA); Stewart International, NY

(SWF); and Portland International, ME (PWM).

Interest in the algorithm of Section 7.4 centers on the solution to Eq 200 for the aircraft time of

transmission � � . In this example, the times of reception at the ground stations � � were shifted by

the same amount, so that the earliest occurred at � � = 0. As a result, the correct value for � � must

be negative. The four roots of Eq 200 were found using the Matlab routine ‘roots’. These were

multiplied by the speed of light, c, converting their units to nautical miles. Thus, the correct
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solution is the negative of the slant-range between the aircraft and the nearest ground station.

Since the reception range of a WAM ground station is similar to that of an en route SSR (Figure

7), ranges beyond a few hundred nautical miles are not feasible.

The calculated roots (potential values for � � ) are displayed in Table 10. Positive roots cannot be

correct, nor can complex roots. Thus, for each airport, only the two negative roots are possible

solutions. For the five airports in the WAM system’s service area, the negative root nearer to

zero is clearly the correct choice. (The magnitude of other negative root is approximately an

earth-radius.) In fact, the negated values of the calculated correct roots were equal to the slant-

ranges used to generate the simulated measurements, to machine precision. For the three airport

locations outside the service area, either negative root could be correct. Similar situations,

involving extraneous and ambiguous solutions, occur in Examples 9 and 10.

Figure 40 Three-Station WAM System and Example Flight Track
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This example is re-visited in Subsection 8.4.6, where an ellipsoidal earth model is considered.

Table 10 Roots for Aircraft Transmission Time, in NM, for Example 12

Aircraft Root 1 Root 2 Root 3 Root 4

Location Real Imag Real Imag Real Imag Real Imag

BAF -4,002.6 0.0 -13.3 0.0 82.8 0.0 4,066.4 0.0

EEN -4,748.8 0.0 -36.9 0.0 78.9 0.0 4,795.0 0.0

FIT -6,361.5 0.0 -27.0 0.0 58.9 0.0 6,397.5 0.0

LWM -4,022.4 0.0 -19.0 0.0 74.1 0.0 4,094.9 0.0

BED -4,771.9 0.0 -15.1 0.0 86.0 0.0 4,812.5 0.0

HYA -52.1 0.0 -29.5 0.0 106.1 -3,508.9 106.1 3,508.9

SWF -68.7 0.0 -35.6 0.0 135.6 -1,072.8 135.6 1,072.8

PWM -177.1 0.0 -65.3 0.0 211.6 -1,053.7 211.6 1,053.7
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8. LINEARIZED LEAST-SQUARES (LLS) METHOD (GAUSS-NEWTON)

8.1 General LLS Method

8.1.1 Background / Context

This final chapter is a fundamental departure from the foregoing chapters in several aspects.

Situations addressed in Chapters 3-7 explicitly or implicitly assume that

 There are exactly as many measurements (equations) as there are unknown variables
— i.e., there is no role for redundant measurements

 The available measurements can be described by simple equations that can be
inverted to find the aircraft’s coordinates or other unknown quantities of interest —
i.e., there is no role for complex expressions, recursive algorithms or tabular data.

One implication of the second item is that the problem setting must be a spherical earth or (less

commonly) a two- or three-dimensional rectangular Cartesian frame.

This chapter removes the above restrictions, enabling more general situations to be addressed.

Simply put, Chapters 3-7 provide exact solutions to approximate problems, while this chapter

provides approximate solutions to exact problems.

A cost of this generality is that the solution techniques are iterative/numerical rather than analytic

and closed-form. This results in a loss insight into problems. For example, an iterative method

does not reveal how many solutions may exist, or their nature (extraneous, ambiguous, etc.).

Moreover, iterative techniques require that an initial value be provided. Thus there are useful

roles for both analytic and iterative techniques.

The form of the iterative equations depends upon the sensors involved and the coordinate system

employed. There are two basic alternatives. When a spherical or ellipsoidal earth model is

employed, the unknown aircraft position variables will generally be its latitude LA and longitude

λA, and possibly altitude hA. When an earth-fixed rectangular coordinate system is used, the

unknown aircraft position variables will be its Cartesian xA, yA and zA components. (Appendix

Section 9.3 shows how to convert between these formulations.) When pseudorange measure-

ments are involved, the time of transmission by the aircraft tA (surveillance) or ground stations tS

(navigation) may also be an unknown variable.

In terms of mathematical techniques, the Linear Least Squares (LLS) technical utilizes vectors

and matrices. In contrast, Chapters 3-4 and 6-7 rely on multiple scalar equations.

8.1.2 Linearized Least Squares Problem and Solution

In this section, a spherical/ellipsoidal coordinate system is used, but the basic technique also



DOT Volpe Center

-140-

applies to a rectangular coordinate system. It is assumed that there are measurements � �� available

(combinations of slant-ranges, angles, etc.) of the unknown variables of the form
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Here: (a) x denotes the vector of unknown variables; (b) m is the number of measurements

(which must be at least equal to the number of unknown variables); (c) vi is the measurement

error that is inevitably present; and (d) tX is either tA or tS. The vector of measurement errors is

characterized by a zero mean and known covariance matrix (Subsection 8.1.3).

Often Eq 269 is termed the scalar measurement model. In Eq 269, the measurement function

� � ( � � , � � , ℎ� , � � ) is known but need not be invertible; it can be any combination of analytic

expressions, recursive algorithms and tables that, when the variables ( � � , � � , ℎ� , � � ) are known,

yields a value for � � (Subsection 8.1.4).

Each unknown variable is expressed as the sum of an “initial” estimate for the iteration step

involved, denoted by an overbar, and a perturbation term. For the first iteration step, the initial

estimate must be provided by an external source; for subsequent steps, the initial estimate is the

updated value for the previous step.
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The scalar measurement � �� can thus be replaced by the first-order (or linearized) scalar
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In Eq 272, all partial derivatives are evaluated at the initial estimates for the unknown variables.

In Eq 272, the quantity � � � = � �� − � � ( � � � , � ̅� , ℎ� � , � � ) is often called the measurement residual. An

abnormally large measurement residual can be the basis for rejecting a measurement as

anomalous. A scalar cost function C that quantifies the measurement residuals is:

zδWzδ TC  Eq 273
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Eq 274
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Here, W is an analyst-defined positive-definite, symmetric (and often diagonal) matrix that

weights the measurement equations. A method for selecting W is given in Subsection 8.1.3.

The full set of equations for the linearize measurement model (Eq 272) can be written as
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Denoting the matrix of partial derivatives as J (for Jacobian), Eq 275 can be written as the

linearized matrix measurement model

vxδJzδ  Eq 276
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In general, matrix J is non-square and cannot be inverted. The standard approach is to compute

δx as the value that minimizes the weighted sum of the squared residuals after being adjusted by

an estimate for δx. Thus, denoting Ĉ as the cost function to be minimized:

    xδJWJxδzδWJxδzδWzδxδJzδWxδJzδ TTTTTT
C  2ˆ Eq 277

The value δx that minimizes Ĉ in Eq 277 is

  zδWJJWJxδ TT 1
ˆ


 Eq 278

Existence of the matrix inverse indicated in Eq 278 requires that J be of full rank, i.e., to have

linearly independent columns. For the situation where the number of measurements is the same

as the number of unknown variables, Eq 278 reduces to Eq 279 below. In this situation, there is

no role for a weighting matrix W.

zδJxδ 1ˆ  Eq 279

Given the solution for δx̂, the unknown variables are updated in accordance with

� � = � + � � � Eq 280

� � � = � � � + � � � � � � � = � ̅� + � � � � ℎ� � = ℎ� � + � ℎ� � � ̂� = � ̅� + � � ̂�
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Combining Eq 280, Eq 279 and Eq 274 yields

� � = � + J-1[� � − � ( � )] Eq 281

This (Eq 281) is the multi-dimensional Newton-Raphson formula for solving � � = � ( � ) by

iteration. It applies when the number of equations is equal to the number of unknown variables

— a common situation in navigation.

Combining Eq 280, Eq 278 and Eq 274 yields

� � = � + (JT  W  J)-1  JT  W  [� � − � ( � )] Eq 282

This (Eq 281) is the Gauss formula for solving � � ≈ � ( � ) by iteration, and applies when the

number of equations exceeds the number of unknown variables.

In contrast to Eq 281 and Eq 282, in the vector/matrix notation employed in this chapter, the

solution methods of Chapters 3-7 can be written as � = � � � (� � ). By taking advantage of the

structure of specific problems, the measurement equations involved can be inverted.

For δx̂ given by Eq 278, Ĉ (Eq 277) evaluates to

  CCC TTT 




 


zδWJJWJJWWzδ

1ˆ Eq 283

Ĉ can be interpreted as the difference between C (the weighted sum of the squared measurement

residuals for � � − � ( � ) and ΔC (the estimated amount that the residual would be reduced after

using δx̂ to adjust the unknown variables). By employing a matrix inequality, it can be shown

(Ref. 52) that Ĉ must be non-negative. When the number of equations is equal to the number of

unknowns (and noting that J must be invertible in that situation), Ĉ is equal to zero.

A convergence check is performed at the end of each iteration step. This involves comparing the

updated value of each unknown variable with its initial estimate. If the measurement equations

(Eq 269) are linear functions of the unknown variables, then only one iteration is needed. How-

ever, when the measurements are nonlinear functions of the unknown variables, at least two

iterations should be performed — the last step confirming that the changes in the values of the

variables sought are negligible.

The value of the cost function (Eq 273) is usually monitored for each iteration. Temporarily

using an additional subscript to denote the iteration number, the cost function for the next

iteration (say Cn+1) will be different than the value of Eq 283 for the current iteration (say Ĉn).

The latter can be regarded as a prediction of the former based on first-order perturbations.

If convergence is not achieved in an iteration step, the updated value for each unknown variable
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becomes the initial estimate for that variable in the next step:

� � � , � � � = � � � , � � ̅� , � � � = � � � , � ℎ� � , � � � = ℎ� � , � � ̅� , � � � = � ̂� , � Eq 284

The solution process (Eq 271 - Eq 283) is then repeated.

8.1.3 Solution Properties

Here Eq 278 defines δx̂, and is the formal solution to the Normal Equation (Eq 285).

  zδWJxδJWJ TT  Eq 285

Numerical methods for solving the Normal Equation are available that are more stable than

directly computing the inverse of the matrix on the left-hand side of Eq 285. Perhaps the best

approach is to not compute that matrix, and to perform orthogonal decomposition on W½ J,

where W½ W½ = W (i.e., utilize the antecedent of the normal equations, similar to Eq 276). This

can be accomplished in some mathematical software packages using the ‘\’ operator. In the

syntax of such packages, δx̂ is computed using

   zδW\JWxδ 1/21/2ˆ Eq 286

Returning to conventional notation, if Eq 276 is substituted into Eq 278, the result is

  vWJJWJxδxδ TT 1
ˆ


 Eq 287

Thus, in the context of the linearized measurement model, δx̂ from Eq 278 is an unbiased

estimate of δx and is corrupted only by measurement errors. The covariance matrix of the

estimation error for the unknown variables is

       11
ˆˆ


 JWJJWRWJJWJxδxδxδxδ TTTT

E Eq 288

Here, R is the measurement error covariance matrix:

    Rvv0v  TEE Eq 289

It can be shown that (Ref. 52) that the estimation error covariance (Eq 288) has the following

lower bound

         1111
ˆˆ


 JRJJWJJWRWJJWJxδxδxδxδ TTTTT

E Eq 290

It can further shown that the lower bound is only achieved when W = R-1. For this reason, the

weight matrix is often chosen to be the inverse of the measurement error covariance matrix.

When the number of measurements and unknown variables are equal, W is the identify matrix

and Eq 290 becomes
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         1111
ˆˆ


 JRJJJJRJJJxδxδxδxδ TTTTT

E Eq 291

For the situation (often-assumed for convenience) when the measurement errors are independent

and have a common variance � � � � �
� , both Eq 290 (provided that W = R-1.) and Eq 291 reduce to

     12ˆˆ


 JJxδxδxδxδ T
meas

T
E  Eq 292

An alternate to Eq 283 for computing Ĉ is

  zδWJxδzδWzδzδWxδJzδ TTTT
C ˆˆˆ  Eq 293

This is true because

  0ˆˆ  xδJWxδJzδ
T Eq 294

8.1.4 Advantages of the LLS Technique

Uses All Measurements — One reason for employing the LLS technique is to be able to utilize

more measurements than there are unknown variables. Using redundant equations enables some

averaging of measurement errors and often eliminates the ambiguous/extraneous solutions that

can occur with the minimum required number of equations.

Utilizes Uninvertible Measurement Equations — While all of the measurement equations in

Chapters 3-7 are analytically invertible (i.e., expressions exist for the unknown variables as

functions of the measurements), invertibility is not always possible. Thus, another motivation for

utilizing the LLS approach is its capability to utilize measurement equations that cannot be

inverted. Such situations generally arise because an expression that accurately characterizes a

measurement is too complex to be inverted.

Utilizes Non-Equation “Measurement Equations” — In most applications, the measurement

equations (symbolized by � � ( � � , � � , ℎ� , � � ) in Eq 269) is the most accurate available repre-

sentation of the quantities which are measured. Since invertibility is not required, the

“measurement equations” need not be equations in the analytic sense. Rather, what is needed is a

process to compute the measured quantities (e.g., ranges and/or angles) as a function of the

independent variables (e.g., � � , � � , ℎ� 	and	� � ). A combination of analytic expressions, recursive

algorithms (such as Vincenty’s) and table lookup have been used as “measurement equations”.

Approximate Jacobians Useful — Because the LLS solution technique is recursive, the

elements of the Jacobian matrix (J in Eq 276) need not be precisely equal to the partial

derivatives of the measurement equations (which may not even have derivatives). This situation

is analogous to the secant method for finding the root of a scalar equation using approximations

to the derivative of the equation (Subsection 2.1.6). In navigation and surveillance applications,
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an obvious source of such approximations is the spherical earth model (Subsection 8.3.2).

Provides Accuracy Estimates — An important feature of the LLS technique is that it provides

estimates of the accuracy of a solution to the measurement equations. Characterizations for both

the measurement residuals (Eq 273) and the navigation variables (Eq 288 – Eq 292) are

available, including for the situation where the number of measurements and unknown variables

are equal. With an equal number of measurements and variables, a closed-form solution can be

obtained (Chapters 3-7) and the solution error can be estimated separately (Eq 288 - Eq 292).

Role of Accuracy Estimates — Estimating position error statistics from station locations and

measurement error statistics is often used in planning studies — e.g., to determine the stations

should be placed for a proposed system. Since measurement error statistics are approximate and

virtually never regarded as having the same level of precision as a position solution, character-

izing the earth as an ellipsoid is usually not necessary.

Useful Optimization Criterion — The LLS technique employs an optimization criterion that

has proven to be useful in a wide variety of application areas for over 200 years. Focusing on

navigation, Ref. 46 contains a case study of several solution techniques; its conclusion is that the

linearized least-squares technique always yields a “good”, and often the “best”, solution.

Proven in Navigation Applications — Several important navigation systems have been

deployed with the assumption that user’s would use the LLS technique or an evolved form of it

(e.g., Kalman Filter) to convert a set of measurements to latitude/longitude coordinates.

Prominent examples are Loran-C, Omega and GPS. *

8.1.5 Remarks

Historical Credit — Ascribing the LLS technique to Gauss and Newton is established usage, if

not completely accurate historically. While the least-squares technique is usually credited to Carl

Friedrich Gauss, a case has been made for Adrien-Marie Legendre. Isaac Newton is often

credited with the technique for iterative solution of an equation whereby the value of the

independent variable is changed by the ratio of value of the dependent variable to its derivative.

Joseph Raphson frequently shares credit.

Dilution of Precision (DoP) — When the measurement errors for individual stations are

independent and have a common variance, then the estimate of the accuracy for navigation

variables in Eq 292 is the product of: (a) a factor, (JT J)-1, that depends only on the geometry of

* These systems now (or did) involve station-vehicle separations of up to twelve thousand nautical miles. To achieve
achieve useful accuracies over such distances, the ellipticity of the earth is/was characterized in the measurement
equations.



DOT Volpe Center

-146-

the aircraft and the stations; and (b) a factor, � � � � �
� , that depends only on the electronic systems

involved (including their installations). Often only the geometric factor is analyzed, and various

Dilution of Precision (DoP) metrics are defined for the elements of (JT J)-1 — see Subsections

8.2.5, 8.4.1, 8.4.2, 8.4.4 and 8.4.5.

Jacobian Rank — The necessity that the Jacobian matrix J be of full rank is an observability

requirement. Essentially, in order for an unknown variable to be determined, a change from the

assumed initial value must cause a unique signature in the available measurements.

Initial Estimate — The first iteration step requires that initial estimates be provided for the

quantities sought. Potential sources for the initial estimates are: (1) a solution based on an

assumed spherical-earth; (2) a previous estimate, possibly updated by changes from the previous

solution (obtained from, e.g., a “tracker” or dead-reckoning system); and (3) user-provided.

Qualitative Characteristics — While the LLS technique has been applied to many fields,

qualitative conclusions drawn in one field may not be valid in another. Much of the modern LLS

literature involves its application to model parameter identification. Often parameter identi-

fication can be characterized as fitting an equation with a few unknown parameters and

heuristically chosen functions to many (hundreds or even thousands) measurements (e.g.,

Ref. 53). While this literature is mathematically relevant, judgment must be exercised before

adopting qualitative conclusions to navigation and surveillance applications.

In contrast to parameter identification, navigation/surveillance applications usually involve:

(a) at most, only a few more measurements than unknown variables;* (b) a scientific basis for the

functions being fitted; and (c) reasonably good initial values for the unknown variables. These

factors reduce the likelihood that a solution will yield a local (rather than a global) minimum and

largely eliminate concerns about computational resources.

Geometric Interpretation — A geometric interpretation of Eq 294 is that the measurement

residual after correction by δx̂ is orthogonal to the estimate of the perturbation of the unknown

variables. Informally, the interpretation is that — within the limitations of linear perturbation

models — the estimate δx̂ embodies all the information available from the measurements.

Probabilistic Interpretation — Although not done herein, probability distributions can be

assigned to the measurement errors. This enables determination of additional statistical quantities

— e.g., confidence bounds on the unknown variables. Such analyses are most meaningful when

there are many more measurements than there are unknown variables.

* Generally, the cost of providing an additional real-time navigation or surveillance measurement is the cost of a
ground station (real estate, equipment, installation and maintenance). This is usually significantly more than the cost
of an additional parameter identification measurement (e.g., that of extending a data collection period).
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Numerical Examples — Examples 10 (Subsection 8.4.4) and 12 (Subsection 8.4.6) illustrate the

convergence of the LLS iterative method for ellipsoidal earth measurements and spheroidal

Jacobian elements. In these examples, the iteration process is initialized by the solution for a

spherical earth, and four or fewer iterations are needed to reduce the residual aircraft location

error to less than the error in the location of the ground stations involved.

8.2 Solution Employing Cartesian Coordinates

8.2.1 Introduction

Application of the linearized least-squares technique described in Section 8.1 only requires

specification of the measurement equations (Eq 269) and the weight matrix (Eq 273). Moreover,

the latter is not needed if the number of measurements and unknown variables are equal. Among

the most common least-squares applications are those involving ‘range-type’ measurements of

the distance between an aircraft and a known location. These include:

 Actual slant-range measurements of the distance between an aircraft and a station —
such as a radar or a DME transponder. Usually, these involve transmission and
reception of signals by both the station and the aircraft (two-way ranging).

 Pseudo slant-range measurements of the distance, plus an offset common to all
stations, between an aircraft and one of set of stations with synchronized clocks —
such as a multilateration remote unit or GPS satellite. Usually, these involve
transmission of signals by one entity and reception by the other (one-way ranging).

 Altitude measurements of the distance between an aircraft and the center of the earth
— usually performed by a barometric altimeter (see Appendix Section 9.1).

Range-type measurements can be processed/analyzed using any rectangular coordinate frame,

since the form of Pythagoras’s equation is the same in all frames. Thus the choice generally

depends upon the application. One option, suitable for small areas, is a local tangent plane frame

(Subsection 5.1.2). For larger areas, the earth-centered earth-fixed (ECEF) frame e introduced in

Section 5.1.1 is more suitable, and is used in this section. If station S is has latitude LS, longi-

tude λS and altitude hS, its ECEF coordinates are
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er Eq 295

Assuming that the aircraft A is has unknown latitude LA, unknown longitude λA and unknown

altitude hA, then its unknown ECEF coordinates are
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A caveat concerning notation: In this section, z denotes one axis in the ECEF system, while in

Section 8.1, z denotes a generic measurement. Hopefully, this will not cause confusion.

8.2.2 Measurement Equations

Range Measurement — The non-linear scalar measurement model, corresponding to Eq 269,

for the slant range dri between ranging station Sri and aircraft A is

     222

~

riAriAriAri

ririri

zzyyxxd

vdd




Eq 297

Here, � � � , � � � , � � � are the ECEF coordinates of Sri. The partial derivatives of dri with respect to

the unknown aircraft position variables (corresponding to the partial derivatives in Eq 272) are
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Eq 298

The measurement residual, corresponding to the left-hand side of Eq 272, is

     222~~
riAriAriAriririri zzyyxxdddd  Eq 299

Here � � � � denotes the output of ranging instrument/system (e.g., DME) i and � ̅� , � � � , � ̅� are initial

estimates for the unknown variables, which be computed from initial estimate of latitude,

longitude and altitude using Eq 296.

Pseudo Slant-Range Measurement — The non-linear scalar measurement model,

corresponding to Eq 269, for the pseudo slant-range ppi between station Spi and aircraft A is

      XpiApiApiApi

pipipi

tczzyyxxp

vpp





222

~

Eq 300

Here, � � � , � � � , � � � are the ECEF coordinates of Spi and c is the known speed of propagation.

The partial derivatives of ppi with respect to the unknown variables (corresponding to the partial

derivatives in Eq 272) are
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Eq 301
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In Eq 301, dpi is given by

     222
piApiApiApi zzyyxxd  Eq 302

The measurement residual, corresponding to the left-hand side of Eq 272, is

      XpiApiApiAiiii tczzyyxxpppp  222~~ Eq 303

Here � � � denotes the output of pseudo slant-range station i (e.g., multilateration system Remote

Unit) and ∆�� � � is the initial estimates for the unknown clock synchronization difference.

Altitude Measurement — Let rA be the distance from the aircraft A to the earth’s center. Then

the non-linear scalar measurement model, corresponding to Eq 269, for an altimeter measure-

ment is

     222

~~
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
Eq 304

The partial derivatives of rA with respect to the unknown variables (corresponding to the partial

derivatives in Eq 272) are
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Eq 305

The measurement residual, corresponding to the left-hand side of Eq 272, is

     222~~
AAAeAAAA zyxRhhhr  Eq 306

Here ℎ� � denotes the altimetry system output.

Rather than treat the altimeter output as a measurement (as is done in this subsection), it is also

possible to treat it as a constraint, as is done in Subsection 8.2.4.

Weight Matrix / Measurement Error Covariance — The weight matrix W (which is not

needed when the number of measurements and unknown variables are equal) is selected —

usually as the inverse of measurement error covariance R. The latter is usually chosen as a

diagonal matrix whose elements are the measurement error variances (i.e., the measurement

errors are assumed to be uncorrelated).

][diag 22
1

2
1 altpr  R Eq 307

8.2.3 Solution Process

The vector of measurement residuals (e.g., left-hand side of Eq 275) is assembled, one element
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per measurement, from Eq 299, Eq 303 and Eq 306. The Jacobian matrix J (as in Eq 275) is

assembled, one row per measurement, from Eq 298, Eq 301 and Eq 305. Except for notation, the

iteration process is identical to that described in Subsection 8.1.2. For each iteration, the initial

estimates of the unknown variable � ̅� , � � � , � ̅� and � ̅� (if applicable) are employed to generate

updated estimates � � � , � � � ,	� ̂� and � ̂� (if applicable) using Eq 278. The process is terminated when

the change between the initial and updated estimates are insignificant.

When the iteration process has converged, the values for � � � , � � � ,	� ̂� and � ̂� (if applicable) during

the last iteration are employed to determine the aircraft latitude, longitude and altitude using Eq

181.

8.2.4 Altitude Constraint

Rationale — In aviation applications, it’s often the case that altimeter reading, which may or

may not be considered to be error-free, cannot be improved upon by slant-range and pseudo

slant-range measurements whose signal paths are essentially parallel to the earth’s surface.

Mathematically, altimeter information constitutes a constraint rather than a measurement. The

linearized measurement model corresponding to Eq 272 then is
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This equation can be solved for any one of the three unknown position variables in terms of the

other two. Upon selecting, � � � as the variable to be found in terms of the other two position

coordinates, Eq 308 can be re-written as
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Slant-Range and Pseudo Slant-Range Measurements — By substituting for � � � using Eq 309,

the number of unknown variable is reduced by one, and the analysis can be re-cast in terms of the

remaining unknown variables. The linearized measurement models then become
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In Eq 310, the partial derivatives of dri and ppi with respect to the two remaining unknown

position variables are
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The re-cast problem thus involves a Jacobian matrix having dimensions m x 2 or m x 3, where the

first dimension, m, is the total number of slant-range and pseudo slant-range measurements, and

the second dimension is the number of remaining unknown variables. The measurement

residuals are computed as in Eq 299 and Eq 303.

Measurement Error Covariance — Assuming that the altimeter error is not neglected, the re-

cast problem also involves a different measurement error covariance matrix. It has larger

diagonal terms and off-diagonal terms, and is a function of both the aircraft’s and station’s

position. If the slant-range, pseudo slant-range and altimeter errors are assumed to be

uncorrelated, then the re-cast measurement error covariance matrix is:
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Eq 312

Solution Process — The iterative process for finding the unknown variables is similar to that

described in the first paragraph of Subsection 8.2.3. A difference is that, at each iteration, the

value of � � ̂� is updated using
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When the iteration process has converged, the values for � � � , � � � ,	� ̂� and � ̂� (if applicable) from

the last iteration are employed to determine the aircraft latitude and longitude using Eq 181.

8.2.5 Dilution of Precision (DoP)

When the measurement are all the same type — e.g., slant-ranges or pseudo slant-ranges —

frequently it’s assumed that the measurement errors are independent and have the same variance,

� � � � �
� . Then the estimation error covariance for the unknown variables (Eq 292) is the product of

� � � � �
� and a term (JT J)-1 that depends only on the measurement geometry.

Since, the formulation in this section utilizes the ECEF frame, in some instances it’s convenient

to rotate the Dilution of Precision (DoP) matrix (JT J)-1 into the local-level frame at the estimated

aircraft location using an expanded version of the direction cosine matrix of Eq 112:
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Thus the DoP matrix in the east-north-up frame at the estimated aircraft location is
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Eq 315

The fourth row and column of C and M are not present when pseudo slant-range measurements

are not involved. Various DoP quantities are computed from M, including Horizontal Dilution of

Precision (HDoP), Vertical Dilution of Precision (VDoP), Time Dilution of Precision (TDoP)

and Geometric Dilution of Precision (GDoP):
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Eq 316

8.2.6 Remarks

Multilateration Application — An airport surface is a small enough region that the earth can be

treated as flat within its perimeter, and a tangent plane coordinate system can be used. Also,

aircraft on the surface can be assumed to be at the same altitude. Thus the multilateration pseudo



DOT Volpe Center

-153-

slant-range equations can be processed with two position variables. If low-altitude aircraft are

involved, altitude information provided by aircraft can be employed for the vertical dimension,

and combined with the multilateration horizontal solution.

GPS Application — GPS is ‘at the other end’ of the size scale from airport multilateration. The

“ground stations” are satellites in orbit approximately 10,900 NM above the surface — about

three times the radius of the earth. At this scale, and using only pseudo slant-range measure-

ments, the ECEF frame is the natural setting.

Solution Option — When a set of pseudo slant-range measurements (Eq 300) is being

processed, a solution method is to subtract one pseudo slant-range from the others. Analytically,

this reduces the number of measurement equations by one, eliminates Δt as an unknown variable

and increases the measurement error per equation. The hyperbolic geometry associated with

range differences can provide insights into regions where a set of stations provides (and does not

provide) effective measurements (e.g., Section 7.3). However, this solution method is not

preferred for numerical results; knowing the clock offset and associated TDoP may be useful in

some situations, and the additional computational cost is insignificant.

8.3 Solution Employing Spherical Coordinates (Latitude/Longitude/Altitude)

8.3.1 Introduction / Rationale

As shown in Chapter 7, Cartesian coordinates and range-type measurements result in simple

measurement equations. However, in the context of much of aircraft navigation — involving

station-aircraft distances of hundreds of miles — ECEF coordinates have important limitations:

 In contrast with range-type measurements, ECEF coordinates do not handle angular
measurements well — e.g., the aircraft azimuth or geocentric angle from a station

 Each of the unknown ECEF variables � � , � � , � � is a function of the aircraft latitude,
longitude and altitude, complicating the placing of restrictions on the latter, more natural
set of unknown variables.

A second reason to utilize spherical coordinates in an LLS solution is noted in Subsection 8.1.4,

under the title “Approximate Jacobians Useful”. Accurate solutions can be readily found when

the Jacobian matrix elements are approximations (rather than exactly equal) to derivatives of the

measurement equation. This is particularly important when the measurements pertain to an

ellipsoidal earth; then Jacobian elements for a spherical earth are usually satisfactory.

In this section, it is assumed that station S is has known latitude LS, longitude λS and altitude hS.

It is similarly assumed that the aircraft A is has unknown latitude LA and longitude λA and

possibly unknown altitude hA. It is further assumed that initial estimates for the unknown aircraft
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coordinates � � � , � ̅� , ℎ� � and the time of transmission � ̅� by A or S (if applicable) are available.

8.3.2 Measurement Equations

Slant Range Measurement — The slant range between station S and aircraft A can be

expressed in terms of LA, λA and hA by substituting Eq 65 into Eq 159. Thus the nonlinear slant

range measurement model is:
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Here � � � � denotes the error-corrupted measurement, � � � denotes the error-free slant range and vrS

denotes the additive measurement error.

The partial derivatives of dAS with respect to the unknown aircraft position variables

(corresponding to the partial derivatives in Eq 272) are
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The measurement residual, corresponding to the left-hand side of Eq 272, is

ASASAS ddd 
~

 Eq 319

Here � � � � denotes the output of a ranging system (e.g., DME) and � ̅� � denotes the initial estimate

for � � � , computed from Eq 317 using the initial values of the unknown variables � � � , � ̅� , ℎ� � .

Pseudo Slant-Range Measurement — The pseudo slant-range between station S and aircraft A

can be expressed in terms of LA, λA and hA by modifying Eq 317 to include the clock

synchronization offset Δ� . Thus the nonlinear slant range measurement model is:

pSASAS vp=p ~

XASAS tcd=p 
Eq 320

Here � � � � denotes the error-corrupted measurement, � � � denotes the error-free pseudo slant-range

and vpS denotes the measurement error.

The partial derivatives of � � � with respect to the unknown variables (corresponding to the partial
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derivatives in Eq 272) are
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Eq 321

The measurement residual, corresponding to the left-hand side of Eq 272, is

ASASAS ppp  ~ Eq 322

Here � � � � denotes the output of a pseudorange station and � ̅� � denotes the initial estimate for � � � ,

computed from Eq 320 using the initial values of the unknown variables � � � , � ̅� , ℎ� � and ∆�� � � .

Altitude Measurement — The measurement model for the altitude of the aircraft A is simply:

altAA vh=h 
~

Eq 323

Here ℎ� � denotes the error-corrupted measurement, ℎ� denotes the error-free altitude and valt

denotes the measurement error.

The partial derivatives of ℎ� with respect to the unknown variables (corresponding to the partial

derivatives in Eq 272) are
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Eq 324

The measurement residual, corresponding to the left-hand side of Eq 272, is

AASA hhh 
~

 Eq 325

Here ℎ� � denotes the output of a pseuodrange station and ℎ� � denotes the initial estimate for ℎ� .

Azimuth Measurement — The azimuth angle ψA/S of the aircraft A with respect to station S is

expressed in terms of LA and λA by Eq 71. Thus the nonlinear measurement model is:
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Eq 326

Here vψS denotes the angle measurement error.

The partial derivatives of ψA/S o with respect to the unknown aircraft position variables (corres-

ponding to the partial derivatives in Eq 272) are
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In Eq 327:
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Eq 328

The measurement residual, corresponding to the left-hand side of Eq 272, is

SASASA ///
~   Eq 329

Here � � � / � denotes the output of an azimuth measurement system (e.g., VOR) and � � � / � denotes

the initial estimate for � � / � , computed from Eq 326 using the initial values of the unknown

variables � � � and 	� ̅� .

Geocentric Angle Measurement — The geocentric angle (or spherical range) between station S

and aircraft A can be expressed in terms of LA and λA using Eq 65. Thus the nonlinear slant range

measurement model is:
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Eq 330

Here � � � � denotes the error-corrupted measurement, � � � denotes the error-free geocentric angle

and vθS denotes the measurement error.

The partial derivatives of � � � with respect to the unknown aircraft position variables

(corresponding to the partial derivatives in Eq 272) are
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The measurement residual, corresponding to the left-hand side of Eq 272, is

ASASAS  
~

Eq 332

Here � � � � denotes the output of a measurement system and � ̅� � denotes the initial estimate for

� � � , computed from Eq 330 using the initial values of the unknown variables � � � and 	� ̅� .

8.3.3 Dilution of Precision (DoP)

The concept of Dilution of Precision (DoP) applies to the spherical-earth framework as well as to

the Cartesian/rectangular framework. Thus, the discussion in Subsection 8.2.5 is relevant here as

well.

A minor difference in the spherical-earth framework is that the horizontal variables are taken to

be � � � and cos( � � ) � � � , to maintain consistency in horizontal distance changes for different

azimuth angles. To accommodate this adjustment, in the Jacobian matrix employed for DoP

calculations, partial derivations with respect to � � are divided by cos( � � ) — e.g.,
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cos

1
becomes Eq 333

Here θSA denotes the geocentric angle between station S and aircraft A. Examples in Subsection

8.4.4 and 8.4.5 reflect this change.

8.3.4 Remarks

The measurement residuals vector (e.g., left-hand side of Eq 275) is assembled, one element per

measurement, from Eq 319, Eq 322, Eq 325, Eq 329 and Eq 332. The Jacobian matrix J (also in

Eq 275) is assembled, one row per measurement, from Eq 318, Eq 321, Eq 324, Eq 327 and Eq

331. The iteration process for determining a solution is identical to that described in Subsection

8.1.2. For each iteration, the initial estimates of the unknown variables � � � , � ̅� , ℎ� � and ∆�� � � (if

applicable) are employed to generate updated estimates � � � , � � � , ℎ� � and ∆�� (if applicable) using Eq

278, which become the initial estimates for the next iteration. The process is terminated when the

change between the initial and updated estimates are insignificant.

Advantages of using � � , � � , ℎ� and � � (if applicable) as the unknown variables include:

 Almost any form of measurement equation can be accommodated, including some that
are not compatible with Cartesian coordinates:

(1) Those extending the spherical earth model in order to better represent the ellipsoidal
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shape of the earth;

(2) Measurements of the aircraft azimuth relative to a station; and

(3) Measurements of the geocentric angle between the aircraft and a station

 Any one or more of the variables � � , � � , ℎ� and � � (if applicable), but typically ℎ� , can be
constrained to its initial value by omitting its perturbed value from the variables to be
estimated

Historically, sextants provided geocentric angle measurements to the nadir of a star. During the

twentieth century, Loran-C, Omega, Decca and other radionavigation systems provided

measurements of the geocentric angle between a user and their low-frequency transmitters.

8.4 Example Applications

8.4.1 Example 8 Continued: Slant-Range Measurement Systems in Flatland

This subsection continues the analysis, begun in Subsection 7.9.1, of a surveillance or navigation

system operating in Flatland. The systems employs ground stations which can be used to

measure the slant-range to an aircraft. The stations are separated by one Base Line Unit (BLU).

The analysis in this subsection is focused on Horizontal Dilution of Precision (HDoP), a measure

of system accuracy. The methodology employed is described in Subsection 8.2.5, and utilizes the

partial derivatives in Eq 298 (without the z-component). Upon carrying out the straightforward

calculations involved, the HDoP contours are shown in Figure 41.

In Figure 41, the left-hand side pertains to a two-station configuration, and the right-hand side to

three stations. The calculations employed assumed each station’s signal could be received up to

3.5 BLUs in range. The HDoPs for both configurations are symmetrical about a vertical axis, and

thus can be truncated to the “west”.

Considering the two-station configuration, there is strong directionality to the HDoP pattern.

Coverage is best perpendicular to the baseline, and non-existent along the baseline extensions

(where the solution is unstable). Using HDoP equal to five as a criterion, the service area can be

approximated by a 7 BLU x 1 BLU “north-south” rectangle bordered by four right triangles with

sides of 3 BLU and 1 BLU. Thus the service area can be approximated by:

(7 x 1) + 4 x (½ x 3 x 1) = 13 BLU2.

The three-station configuration eliminates the unstable solutions present in the two-station case.

As a result, the service area (maximum HDoP equal to five) is roughly circular. There is some

directionality (partly due to the assumed range limitation) but it is not pronounced. Thus the

service area is approximately π 3.5 BLU x 3.5 BLU ≈ 36 BLU2.

Subsection 8.4.3 contains a more detailed analysis of service areas.
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8.4.2 Example 9 Continued: Pseudo Slant-Range Measurement Systems in Flatland

This subsection continues the analysis, begun in Subsection 7.3, of a surveillance or navigation

system operating in Flatland. The system employs ground stations which are used to measure the

pseudo slant-range to an aircraft, and are separated by one Base Line Unit (BLU). This sub-

section is focused on Horizontal Dilution of Precision (HDoP), a measure of accuracy. The

methodology employed is described in Subsection 8.2.5, and utilizes the partial derivatives in Eq

301 without the z-component. Upon carrying out the straightforward calculations involved, the

HDoP contours are shown in Figure 43.

In Figure 43, the left-hand side pertains to a three-station equilateral triangle configuration, and

the right-hand side to four stations arranged in a square. The calculations assume that each

station’s signal can be received up to 3.5 BLUs in range. HDoPs for both configurations are

symmetrical about a vertical axis, and thus can be truncated “to the west”. Two facts concerning

Figure 43 are immediately evident

(a) Two Stations (b) Three Stations

Figure 41 HDoP Contours for Slant-Range Measurement Systems in Flatland
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 Coverage of a network of pseudo slant-range ground stations does not extend much past
the perimeter polygon formed by connecting the stations

 Within the perimeter polygon, pseudo slant-range systems HDoPs are comparable to
those of a system that measures slant ranges.

As is the case for slant-range systems, using a

redundant ground station eliminates unstable solutions

— in this case, along the baseline extensions for a

station triad. A redundant station also provides a small

increase in the service area — approximately from a

circle of radius of ½ BLU to a circle of radius ¾ BLU.

An alternative four-station configuration, more suited to

situations when as much coverage as possible is sought,

is the four-station Wye configuration (Figure 42). In

this case, a BLU is the distance from the center station

(which served as the Master in certain radionavigation

systems) to each of the three outlying, secondary

stations.

Figure 42 HDoP Contours for Wye
Configuration Using All Stations

(a) Three-Station Equilateral Triangle (b) Four-Station Square

Figure 43 HDoP Contours for Pseudo Slant-Range Measurement Systems in Flatland
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8.4.3 Interpretation: Pseudo vs. Real Slant-Range Systems

Service Area Comparison — Figure 44 is a quantitative comparison of the service areas for the

five system configurations addressed in Subsections 8.4.1 and 0, assuming a common baseline

length. Figure 44 indicates that a navigation or surveillance system utilizing real slant-range

measurements will have a substantially larger (e.g., ten times) service area than one

utilizing pseudo slant-range measurements, assuming that common station baseline lengths are

used. However, having equal or comparable baselines for different systems is only a convenience

for analysis purposes, and is not a constraint.

Siting Flexibility — A more meaningful conclusion that can be drawn from this analysis is that

real slant-range systems have greater station siting flexibility. Pseudo slant-range systems must

have station locations that almost surround the service area, while real slant-range systems do

not. To address this limitation, pseudo slant-range systems have been built with extremely long

baselines. The ultimate system in this regard is GPS, which has its stations on satellites, resulting

in stations separated by on the order of 20,000 NM.

GPS Service Area — Interestingly, GPS users on or near the earth’s surface are outside the

perimeter of the polygonal surfaces formed by the stations in use. Instead, GPS users are in the

“border area” adjacent to and near the center of the baselines connecting the satellites with the

lowest elevation angles (Figure 30 shows the Flatland equivalent).

Geometry Advantage of Range Measurements — Figure 45 helps explain why HDoPs for

pseudo slant-range systems degrade much more rapidly with distance from the stations than do

HDoPs for real slant-range systems. The figure shows two stations and the circular LOPs they

Figure 44  Service Area with HDOP ≤ Max. HDOP for Five System Concepts 
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would generate if the stations were used for real slant-range measurements. The LOP crossing

angles starts at zero on the baseline, where the

solution is unstable. Moving perpendicular to

the baseline, the crossing angle becomes useful

within perhaps one-eighth of the baseline

length, and remains useful to about 3.5

baseline lengths (outside of the limits of the

figure) where the crossing angle becomes too

shallow. An important aspect of this figure is

that the separation between LOPs for each

station remains constant with distance from the

station.

Figure 45 also shows a family of LOPs for a

pair pseudo slant-range stations. If there were

two pairs of stations, degradation in their

crossing angles with distance from the stations

would be evident (e.g., Figure 29). However, a second source of accuracy degradation is

involved for pseudo slant-range systems: the LOPs become further apart with distance from the

stations, much as the LOPs for an angle measurement system. This divergence of the LOPs

limits the service area of a pseudo slant-range system to, roughly, the region surrounded by the

stations.

8.4.4 Example 10 Continued: Three Pseudo Spherical-Range Stations

Introduction — This subsection continues the example, begun in Subsection 7.9.3, of an aircraft

that utilizes three stations in the U.S. Northeast Loran-C chain (M at Seneca, NY; W at Caribou,

ME; and X at Nantucket, MA) for navigation. Two topics are addressed which are relevant to the

material in this chapter: Horizontal Dilution of Precision (HDoP) and accounting for the earth’s

ellipticity using the Gauss-Newton LLS technique.

HDoP Contours — While more commonly used for rectangular geometries (e.g., Subsections

8.4.1-8.4.3), Horizontal Dilution of Precision (HDoP) is also applicable to spherical geometries

— see Subsections 8.2.5 and 8.3.3. Here, the modified Jacobian matrix is
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Figure 45 LOPs for Slant-Rang and Pseudo
Slant-Range Systems
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HDoP is then given by

   
22

1

11

1
HDoP


 DOP

T
DOPDOP

T
DOP JJJJ Eq 335

Results of this calculation are shown in Figure 46. This figure is qualitatively similar to Figure

43(a), which applies to a two-dimensional Cartesian setting. The information in Subsection 7.6.3

concerning extraneous and ambiguous solutions is relevant here as well.

Figure 46 HDOP Contours for a Triad of Pseudo Spherical-Range Stations

Need to Consider Ellipsoidal Earth —If the earth were a sphere, Razin’s algorithm (Sec-

tion 7.7) could be used without modification. However, the earth is better modeled as an

ellipsoid of revolution (Section 2.2). Since errors resulting from modeling the earth as a sphere

(ellipticity error) tend to increase with distance, they can become important for accurate, long-

range systems. For example, consider four airport locations: LaGuardia, NY (LGA); Boston, MA

(BOS); Portland, ME (PWM); and Bangor, ME (BGR). The path lengths between the three

ground stations and these airports vary from 81.0 NM (X and BOS) to 444.3 NM (W and LGA);

the average is 233.5 NM. Based on (a) the distances involved, (b) the “rule of thumb” for the

spherical earth approximation that the distance error is roughly 0.3% of the distance, and (c) the

Coast Guard’s Loran-C accuracy goal of 0.25 NM, the effect of mis-modeling the earth’s
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geometry should be addressed.

Table 11 shows the position error resulting from applying Razin’s algorithm to range-differences

generated using Vincenty’s algorithm (Subsection 2.2.3), rather than those for a spherical earth

(as assumed by the algorithm). The ellipticity error values, between 0.38 NM and 1.13 NM, are

consistent with the 0.3% of distance “rule of thumb”.

Table 11 Example of Ellipticity Errors for Razin’s Algorithm

Airport
True Lati-
tude (deg)

Lat Error*
(deg)

True Longi-
tude (deg)

Lon Error*
(deg)

Distance
Error (NM)

LGA 40.7772500 -0.0062000 -73.8726111 0.0011000 0.38

BOS 42.3629418 -0.0006300 -71.0063931 -0.0102000 0.45

PWM 43.6456435 0.0036400 -70.3086164 -0.0148100 0.68

BGR 44.8074444 0.0061100 -68.8281389 -0.0250500 1.13

* True minus estimated coordinate value

Application of LLS — The LLS technique is used to improve the solution accuracy of Razin’s

algorithm. Following Subsection 8.1.2, each spherical-range difference measurement is com-

puted using Vincenty’s algorithm* for the distance s(S,A) along the surface of the ellipsoid

between a station S at (LS, λS) and aircraft A at (LA, λA). The first line of Eq 269 becomes

),(),(~
),(),(~

2

1

AXsAMs=z

AWsAMs=z




Eq 336

The measurement equation for each spherical-range difference also employs Vincenty’s

algorithm. However, the aircraft location replaced by the current estimate Â of its location. Thus

the second line of Eq 269 becomes

� � � � , � , � , � � � = � � � , � � � − � � � , � � �

� � � � , � , � , � � � = � � � , � � � − � ( � , � � )
Eq 337

The Jacobian (Eq 276) is composed of the partial derivatives of the measurements with respect to

the unknown variables — LA and λA in this case. However, it is not necessary that the elements

of the Jacobian used in computations be exact derivatives of the measurement equation. Because

the LLS technique is recursive, approximations of the derivatives are sufficient (Subsec-

tion 8.1.4). This is fortuitous, because Vincenty’s technique is not an equation in the analytic

sense, but a recursive procedure; expressions for its derivatives cannot be computed easily.

In place of the derivatives with respect to LA and λA of the distance along the surface of an ellipse

for Vincenty’s algorithm, scaled derivatives of the geocentric angle θSA are used. Thus, the

* Selection of Vincenty’s algorithm was based on the availability of validated computer code. Other methods could
have been used.
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Jacobian is computed using Eq 331
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Any reasonable value for Re can be used; here the value following Eq 23 is employed.

The LLS process is initialized using values for � � � and � ̅� found using Razin’s algorithm for a

spherical earth. The perturbation corrections � � � � and � � � � are found using Eq 279, since a weight

matrix W is not used in the absence of redundant measurements.

Calculation of Results — Carrying out the LLS process for five iterations yields a sequence of

increasingly accurate position estimates for four airport locations. The associated residual errors

are shown in Table 12. Convergence of the LLS technique is rapid in this situation. Each of the

first four iterations reduces the error by a minimum factor of 76; the average latitude or longitude

error reduction by one iteration is a factor of 539. The fifth iteration appears to approach the

limits of machine precision (calculations were done in double precision).

Useful Solution Precision — Aside from demonstrations of the LLS technique (such as this), in

practice, when applied to Loran-C measurements, one or two iterations would generally be

sufficient. Even with error-free measurements (e.g., as can be assumed during system analyses),

there usually is no point in computing an aircraft’s position to greater precision than that to

Table 12 Gauss-Newton Residual Error for Spherical-Range Difference Measurements

Iter-
ation

LaGuardia (LGA) Boston (BOS)

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)

0 -0.006,204,297,044,61 0.001,098,559,038,59 -0.000,627,450,377,91 -0.010,195,811,988,10

1 -0.000,020,505,170,77 -0.000,001,816,926,14 -0.000,008,177,955,56 0.000,045,180,746,10

2 -0.000,000,027,423,43 0.000,000,018,116,62 -0.000,000,014,339,68 -0.000,000,157,274,01

3 -0.000,000,000,083,93 -0.000,000,000,062,20 -0.000,000,000,032,53 0.000,000,000,565,15

4 0.000,000,000,000,01 0.000,000,000,000,29 -0.000,000,000,000,04 -0.000,000,000,002,02

5 0.000,000,000,000,01 -0.000,000,000,000,01 0.000,000,000,000,01 0.000,000,000,000,03

Iter-
ation

Portland (PWM) Bangor (BGR)

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)

0 0.003,642,517,508,14 -0.014,811,819,575,26 0.006,109,544,331,55 -0.025,054,253,476,51

1 0.000,001,297,312,66 0.000,072,399,332,72 0.000,018,565,242,40 0.000,160,340,474,51

2 -0.000,000,016,162,69 -0.000,000,244,802,54 -0.000,000,084,834,17 -0.000,000,437,980,97

3 0.000,000,000,041,82 0.000,000,000,817,39 0.000,000,000,213,29 0.000,000,001,148,99

4 -0.000,000,000,000,15 -0.000,000,000,002,72 -0.000,000,000,000,57 -0.000,000,000,003,05

5 0.000,000,000,000,01 0.000,000,000,000,04 -0.000,000,000,000,01 0.000,000,000,000,00

* True minus estimated coordinate value
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which the ground stations are known. Loran-C station locations are known to 0.001 arc second,

or approximately 0.1 ft, or 0.000,000,3 deg (Ref. 51), which is achieved with two iterations in

the calculations employed here. For real-time operational use, if one optimistically takes the

Loran-C measurement accuracy to be 10 ft (it is often quoted as “100 ft or better”), then

computing the aircraft location to a precision of 0.000,03 deg would be sufficient.

Related Work — Razin’s paper (Ref. 43) recognized the need to modify a solution to the ‘two

spherical-range difference’ problem based on an assumed spherical earth, and contained a

technique to do so. References 48 and 49 did as well. This solution is closest to that in Ref. 48.

8.4.5 Example 11 Continued: Two Pairs of Pseudo Spherical-Range Stations

This subsection is a continuation of the example, begun in Subsection 7.9.4, concerning two

distinct pairs of pseudo spherical-range navigation stations. For such a configuration, the solution

algorithm for a spherical earth is described in Section 7.8. The ellipticity error inherent in a

solution that assumes a spherical earth can be corrected by the Gauss-Jordan LLS technique

demonstrated in Subsection 8.4.4. However, that topic is not pursued here.

Since two distinct pairs of stations is not as common as a triad of stations, Horizontal Dilution of

Precision (HDoP) is utilized to obtain insight into this configuration’s performance. The

Jacobian matrix and HDoP expressions follow directly from Eq 334 and Eq 335, respectively.

Figure 47 depicts HDoP contours for the four stations and seven airport shown in Figure 38. For

all airports depicted, HDoP is 10 or less. As expected, the solution becomes unstable along the

extensions for the baselines connecting a station pair (Seneca-Nantucket and Dana-Malone).

However, the solution is not unstable along the extensions for the paths connecting stations from

different chains. For this example, there is a region where HDoP exceeds 50 close to the Dana-

Seneca path, as the hyperbolic LOPs for the two chains are nearly parallel in this area.

As noted earlier, navigation and surveillance systems are developed/deployed to provide service

in a defined area. In the case of the U.S. East Coast Loran-C Chain, the station at Carolina

Beach, NC, was intended to support service in much of the U.S.Southeast. However, stations are

occasionally be out-of-service. In such a circumstance, cross-chaining was an advanced

capability that enabled operations to continue during a station outage (for appropriately equipped

aircraft).
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A second advanced capability (relative to traditional Loran-C) was employing redundant stations

to improve measurement geometry. The Dana station was in fact dual-rated: it was the master for

the Great Lakes Chain and a secondary for the East Coast Chain. Figure 48 depicts the HDoP

contours when measurements by the Seneca-Dana pair are used with those for the Seneca-

Nantucket and Dana-Malone pairs. HDoPs adjacent to the Seneca-Dana baseline are improved

markedly (e.g., six of the seven airports shown have HDoPs less than two), while HDoPs for the

area further to the southeast are only marginally improved.

The geographic size of service areas involved in Figure 47 and Figure 48 are quite large. For the

two figures, HDoP is 5 or less for approximately 798,493 (Figure 47) and 1,165,883 (Figure 48)

square nautical miles, respectively. The major reason for large coverages is use of long baselines:

for Dana-Malone, approximately 544 NM; and for Seneca-Dana, approximately 510 NM.

Figure 47 HDoP Contours for Two Pairs of Pseudo Spherical-Range Stations
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Figure 48 HDoP Contours for Three Pairs of Pseudo Spherical-Range Stations

8.4.6 Example 12 Continued: Wide Area Multilateration (WAM)

Introduction — This subsection continues the example, begun in Subsection 7.9.5, of a WAM

system that utilizes aircraft altitude reports and pseudo slant-range measurements at ground sites

on three airports: Boston, MA (BOS); Manchester, NH (MHT); and Hartford, CT (BDL). The

analysis in Subsection 7.9.5 assumes a spherical earth; this subsection accounts for the earth’s

ellipticity using the Gauss-Newton LLS technique.

Equations Employed — Following Subsection 8.1.2, each slant-range difference measurement

is computed using Appendix Section 9.3 (particularly Eq 350) for the slant-range d (S, A)

between a station S at coordinates (LS,  λS, hS) and aircraft A at coordinates (LA, λA, hA). The first

line of Eq 269 thus becomes

),(),(~
),(),(~

2

1

ABDLdAMHTd=z

AMHTdABOSd=z




Eq 339

The measurement equation for each slant-range difference also employs Eq 350. However, the

aircraft location replaced by the current estimate Â of its location. Thus the second line of Eq
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269 becomes

� � � � � � , � � � , � � � , � � � = � � � � � , � � � − � � � � � , � � �

� � � � � � , � � � , � � � , � � � = � � � � � , � � � − � ( � � � , � � )
Eq 340

The Jacobian (Eq 276) is composed of the partial derivatives of the measurements with respect to

the unknown variables — LA and λA in this case. It is not necessary that the elements of the

Jacobian used in LLS computations be exact derivatives of the measurement equation. Because

the LLS technique is recursive, approximations of the derivatives are sufficient. Thus, the

derivatives of slant-range with respect to LA and λA are computed using the corresponding

expressions for a spherical earth model (Eq 318).

The LLS process is initialized using values for � � � and � ̅� found using the spherical earth model

(Section 7.4 and Subsection 7.9.5). The perturbation corrections � � � � and � � � � are found using Eq

279, since a weight matrix W is not used in the absence of redundant measurements.

Results — Carrying out the LLS process for five iterations for four airport locations yields a

sequence of increasingly accurate position estimates. Their residual errors are shown in Table 13.

“Iteration 0” corresponds to the solution based on a spherical-earth model, which is used to

initialize the iteration — the table provides its ellipticity error. For these four locations, the

average ellipticity error is 1,204 ft; the maximum (for BAF) is 2,122 ft.

Table 13 Gauss-Newton Residual Error for WAM Slant-Range Difference Measurements

Iter-
ation

Westfield-Barnes Regional (BAF) Dillant-Hopkins, Keene (EEN)

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)

0 -0.001,301,968,265,58 0.007,647,699,521,99 -0.001,104,331,349,71 0.003,587,102,019,89

1 -0.000,023,346,121,51 -0.000,083,388,490,38 0.000,003,508,767,16 -0.000,020,825,500,81

2 0.000,000,023,629,92 0.000,000,077,274,69 -0.000,000,013,518,20 0.000,000,091,899,49

3 -0.000,000,000,019,79 -0.000,000,000,082,41 0.000,000,000,068,21 -0.000,000,000,412,05

4 0.000,000,000,000,03 0.000,000,000,000,08 -0.000,000,000,000,27 0.000,000,000,001,82

5 0.000,000,000,000,01 0.000,000,000,000,00 0.000,000,000,000,00 -0.000,000,000,000,01

Iter-
ation

Lawrence Municipal (LWM) Hanscom Field, Bedford (BED)

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg)

0 -0.001,215,745,248,65 -0.003,554,998,523,51 -0.001,341,677,997,11 -0.001,310,031,212,80

1 0.000,003,288,339,05 0.000,029,318,295,92 -0.000,003,587,543,95 0.000,008,337,514,17

2 0.000,000,018,603,13 -0.000,000,113,464,86 -0.000,000,004,694,52 -0.000,000,028,663,83

3 0.000,000,000,023,39 0.000,000,000,519,98 -0.000,000,000,019,15 0.000,000,000,097,83

4 0.000,000,000,000,22 -0.000,000,000,002,11 -0.000,000,000,000,02 -0.000,000,000,000,33

5 0.000,000,000,000,00 0.000,000,000,000,01 -0.000,000,000,000,01 0.000,000,000,000,00

* True minus estimated coordinate value
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In this example, convergence of the LLS technique is rapid. Each of the first four iteration steps

reduces the error by a minimum factor of 50; the average latitude or longitude error reduction by

one iteration is a factor of 426. The fifth iteration appears to approach the limits of machine

precision. This performance is consistent with that for pseudo spherical-range measurements

addressed in Subsection 8.4.4.

Two iterations would be sufficient for virtually all real-world applications, as the survey error of

most locations, including those of airports, exceeds 10-7 deg.
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9. APPENDIX: RELATED SPECIALIZED TOPICS

9.1 Aircraft Altitude and Air Data Systems

9.1.1 Meanings of “Altitude”

This memorandum is primarily mathematical, and — except for application examples — the

equations involve only one notion of altitude: geometric height above an assumed perfectly

spherical earth, measured along a radial from the earth’s center. However, when interpreting the

results of calculations for applications, the analyst must be aware that there are multiple

meanings of altitude. The differing meanings are of concern in aviation, because aircraft

(a) utilize barometric altimeters, but (b) must also main a vertical geometric distance above

terrain. Figure 49 illustrates several notions of vertical distance above the earth, or “altitude”:

Figure 49 Different Notions of Altitude

 Height — or, better, Height Above Terrain (HAT) — is the vertical distance between
an aircraft (or the top of a structure on the ground) and the terrain beneath it

 Altitude — or, better, Altitude MSL (above Mean Sea Level) — is the vertical
distance between an aircraft and mean sea level. Generally, aircraft use altitude MSL
in terminal areas/at low altitudes. To do so, the aircraft’s altimeter is adjusted for the
current local MSL pressure by applying the “QNH” correction†, which is broadcast
by a local airport.

 Flight Level — Vertical distance between an aircraft and the point below where the
sea-level standard day pressure occurs (29.92 inches of mercury). In the U.S., flight

† QNH is not an acronym. It is one of a collection of standardized three-letter message encodings, all of which start
with the letter "Q". They were initially developed for commercial radiotelegraph communication, and were later
adopted by other radio services, especially amateur radio. Although created when radio used Morse code exclu-
sively, Q-codes continued to be employed after the introduction of voice transmissions.
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levels are used above the transition altitude of 18,000 ft.‡

 Elevation — Height of the terrain above MSL.

These definitions are reasonably standard, but are not universally used. Documents related to

aircraft procedures are particularly carefully to adhere to these definitions.

9.1.2 Aircraft Pitot-Static System

Aircraft certified under Federal Aviation Regulations§ Parts 91, 121 and 135 are required to be

equipped with a pitot-static system. A pitot-static system utilizes the static air pressure (collected

at the static port), and the dynamic pressure due to the motion of the aircraft through the air

(collected by the pitot tube) — illustrated in Figure 50, from Ref. 54. These combined pressures

are utilized to provide the pilot with three indicators critical to operation of the aircraft:

 Airspeed indicator (ASI)

 Altimeter

 Vertical speed indicator (VSI).

Figure 50 Basic Aircraft Pitot-Static System

‡ The figure, from Wikipedia, was drawn from a European perspective. It has (a) a lower transition altitude, and
(b) the QNH quantified in hectopascals (hPa) rather than inches of mercury.
§ The Federal Aviation Regulations, or FARs, are rules governing all aviation activities in the United States. The
FARs are part of Title 14 of the Code of Federal Regulations (CFR).
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9.1.3 Barometric Altimeter Temperature Sensitivity

The basic design of aircraft barometric altimeters does not provide a means for compensating for

deviations from the assumed standard day sea level temperature of 15 °C (59 °F)**. Such a

deviation results in an uncompensated altitude error that: (a) is the same for all aircraft at the

same altitude, and (b) does not fluctuate. Temperatures that are less than the standard 15 °C

cause the altimetry system to report a higher altitude than is true. Conversely, temperatures that

are greater than the standard cause the altimetry system to report a lower altitude than is true

(Figure 51).

Figure 51 Effect of Non-Standard MSL Temperature on Barometric Altimeter Indication

Altitude errors due to uncompensated temperature deviations from the standard value are a

particular concern for low-altitude operations. The amount is quantified by the ICAO Cold

Temperature Error Table, which is reproduced in Ref. 55.

9.1.4 Vertical Speed Indicator Temperature Sensitivity

The Vertical Speed Indicator is subject to the same temperature sensitivity as the barometric

altimeter. Most pertinent to VNAV approaches: Ref. 36 cautions: “Because of the pronounced

effect of nonstandard temperature on baro-VNAV operations, VNAV approaches will contain a

temperature restriction below which use of the approach is not authorized.” For example, the

RNAV (GPS) approach plate for Logan International Airport (BOS) runway 04R that was valid

for 07 Feb 2013 to 07 March 2013 had this statement: “Uncompensated Baro-VNAV systems,

LNAV/VNAV NA [Not Available] below -13 °C (9 °F) or above 43 °C (109 °F)”.††

** The correction applied by a pilot in a terminal area, utilizing Automatic Terminal Information Service (ATIS) or
Automated Weather Observation System (AWOS) information, only accounts for atmospheric deviations from the
standard day pressure at sea level.
†† The low-temperature restriction ensures that the actual vertical path flown is obstacle-free. The high-temperature
restriction reduces the likelihood that at Decision Height, the aircraft will be above the minimum ceiling and/or have
to execute a significant vertical flight correction.
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The International Civil Aviation Organization (ICAO) has estimated the impact of temperature

on VNAV approaches, and developed the following table (Ref. 56):

Table 14 Effect of Uncompensated Airport Temperature on VNAV Glide Path Angle

Airport
Temperature

Actual Glide
Path Angle

+30 ⁰C (+86 ⁰F) 3.2 deg
+15 ⁰C (+59 ⁰F) 3.0 deg

0 ⁰C (+32 ⁰F) 2.8 deg
-15 ⁰C (+5 ⁰F) 2.7 deg
-31 ⁰C (-24 ⁰F) 2.5 deg

For airport at MSL and a charted 3 deg glide path angle

Temperature compensation of the VNAV system is offered on many full-sized transport aircraft

and some smaller aircraft, but is not often found in aircraft currently operating.

9.2 VNAV Constant Descent Angle Trajectory

9.2.1 Derivation of Equations

Barometric Vertical NAVigation (Baro VNAV) creates a descent path that is, absent instru-

mentation errors and incorrect assumptions, similar to, but slightly different from, an ILS glide

slope. Whereas ILS navigation involves flying a constant vertical angle α with respect to the

plane of the runway, VNAV involves flying a constant vertical descent angle αʹ with respect to

the horizontal plane at the current aircraft location, and is defined by

speedground

speedvertical
)tan( Eq 341

Generally, vertical speed is derived from the aircraft’s pitot-static system, and ground speed is

found from one of (a) the combination of airspeed and headwind, (b) a GPS receiver, or (c) range

measurements to a DME ground station on the airport.

Employing the notation of Chapters 1-3, the differential equation governing a vertical trajectory

involving a constant vertical descent angle αʹ with respect to the local horizontal plane is





d
hR

dh

dhRdh

e

e

)tan(

)()tan(






Eq 342

Integrating both sides of Eq 342 from the surface of the earth to altitude h yields the expression

for the geocentric angle θ
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)tan(

log













 

 e

e

R

hR

Eq 343

The natural logarithm is employed in Eq 343. This equation can be manipulated to find the

altitude and descent angle as a function of the other two variables.

  etc.)(tan)tan()1)tan((exp 22

2
1   eee RRRh Eq 344

etc.
32

log

)tan(
3

3

2

2









 


eee

e

e

R

h

R

h

R

hR

hR




Eq 345

The correspondence between the preceding three equations for a VNAV approach and those for

an ILS glide slope approach are: geocentric angle, Eq 343 ↔ Eq 27; altitude, Eq 344 ↔ Eq 51; 

vertical angle, Eq 345 ↔ Eq 38. 

9.2.2 Typical Vertical Profiles

Figure 52 is a plot of aircraft altitude above MSL versus distance along the curved earth’s

surface from the runway threshold for (a) baro-VNAV guidance with a descent angle of

3.00 deg, (b) ILS guidance with a glide path angle of 3.00 deg, and (c) ILS guidance with a glide

path angle of 2.90 deg. At the threshold, the baro-VNAV and ILS 3.00 deg curves coincide; at 5-

7 NM from the threshold, the baro-VNAV curve is about halfway between the two curves for

ILS guidance; at 14 NM, the baro-VNAV and ILS 2.90 deg curves essentially over lay each

other.

9.2.3 Remarks

 References 2 and 3 require the use of Eq 343 to Eq 345 in the design of VNAV
approach procedures.

 Requirements for aircraft implementation of VNAV are found in FAA Advisory
Circulars AC 90-105 (Ref. 36) and AC 20-138C (Ref. 37). These documents specify
the use of a flight director and vertical deviation indicator (VDI) and assume the use
of a flight management system.
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Figure 52 Aircraft Elevation vs. Distance along Ground, for Three Guidance Schemes

9.3 Ellipsoidal Earth Model and ECEF Coordinate Frame

This section presents coordinate frames and transformations associated with an ellipsoidal model

for the earth. It draws on Section 2.2 (concerning ellipsoidal earth parameters) and Section 5.1

(concerning coordinate frames and transformations associated with a spherical earth model). In

this document, the primary use of a model for an ellipsoidal relates to Chapter 8 — formulating

analytic models for slant-range and slant-range difference measurements.

As in Section 5.1, the ellipsoidal earth-centered earth-fixed (ECEF) frame e is defined by:

 xe-axis: lies in the plane of the equator and points toward the Greenwich meridian

 ye-axis: completes the right-hand orthogonal system

 ze-axis: lies along the earth's spin axis.

For these axis, the ellipsoid model for the earth’s surface is

1
)()()(

2

2

2

2

2

2


b

z

a

y

a

x eee

Eq 346

As in Section 2.2, in this section, a denotes the earth’s equatorial radius and b its polar radius.

The WGS-84 values for a and b are given in Section 2.2. Figure 24, depicting a spherical earth

— with slight flattening at the poles — is relevant here, as well.

Figure 53 is depicts an ellipsoidal model of the earth, employing a plane passing through the spin

axis. The coordinate quantities of greatest interest are:
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Figure 53 Ellipsoidal Earth Model for a Plane through the Spin Axis

 Geodetic latitude L (denoted by ϕ in Figure 53) — the angle that a normal to the 
ellipsoid surface makes with the plane of the equator. Geodetic latitude is generally
used for navigation and surveying; other measures of latitude are used in
mathematical analyses.

 Ellipsoid longitude λ — sometimes termed terrestrial longitude. Longitude for an
ellipsoid earth model is conceptually the same as longitude for a spherical model.

 Several definitions of altitude are used. Height above the geoid, an equipotential
gravitational surface that approximates mean sea level, is useful for some aspects of
navigation. Height above the reference ellipsoid is more convenient for analysis. The
two heights are related by the undulation of the geoid, which is published in the form
of tables and/or formulas.

A user’s height above the ellipsoid hU,ellip, height above the geoid hU,geoid and undulation of the

geoid at the user’s location Δhe-g (LU, λU) are related by

 UUgegeoidUellipU Lhhh ,,,  Eq 347

Undulation of the geoid is usually computed as a harmonic expansion in latitude and longitude

that’s fit to measurements. Reference 57 is a source of data concerning undulation of the geoid

relative to the WGS-84 reference ellipsoid. The order of the expansion used in Ref. 57 exceeds

2,000, which results in a resolution of 1 arc min. For the CONUS, the geoid is generally below

the surface of the WGS-84 ellipsoid — more in the East and less in the West. For locations of

interest — e.g., navigation and surveillance ground stations, runways, monuments, etc. —

coordinates are generally provided in geodetic latitude and terrestrial longitude relative to the

WGS-84 ellipsoid; their elevation is usually stated in relative to mean sea level.

To approximate an ellipsoidal earth at a location on its surface by a sphere, two radii of curvature

(RoCs) are commonly defined —the RoC in the meridian (north-south orientation), Rns, and the

RoC in the prime vertical (east-west orientation), Rew. These are given in Subsection 2.2.2 (Eq
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20). The value for Rew is repeated here, as it is needed below; again, e2 denotes the earth’s

eccentricity.

2/122 )](sin1[ Le

a
Rew


 Eq 348

Given a user’s geodetic latitude LU, terrestrial longitude λU and height above the ellipsoid hU, the

location of the user U relative to the earth’s center O in the e-frame is

     
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2
,

,

,




e
OUr Eq 349

It is evident from Eq 349 that Rew is the distance along the normal between the ellipsoid surface

and the earth’s spin axis, while Rew (1 - e2) is the distance between the ellipsoid surface and the

equatorial plane.

Given the components of re
OU and those of ground station re

OS, the slant-range between the user

and station is

     2,,

2

,,

2

,,
e

zOS
e

zOU
e

yOS
e

yOU
e

xOS
e

xOUUS rrrrrrd  Eq 350

Conversely, given the components of re
OU, the user’s latitude, longitude and altitude can be

found. User longitude is given by

 e
xOU

e
yOUU rr ,, ,arctan Eq 351

The expressions for user latitude LU and elevation above the ellipsoid hU are in Eq 349 are not

analytically invertible due to the presence of Rew. Thus an iterative solution is required. The three

components of Eq 349 can be combined to eliminate elevation hU, yielding

   
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
Eq 352

The geodetic latitude LU can be found from Eq 352 iteration, using the geocentric latitude as the

initial value


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r
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Then hU can be found from
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 
  )(1

sin
2,

Uew
U

e
zOU

U LRe
L

r
h  Eq 354

In the methodology exposed herein, Eq 351 - Eq 354 are virtually never needed. When an

ellipsoid earth model is employed in determining aircraft location, latitude, longitude and altitude

are found by an iterative solution of the measurement equations (Subsection 8.1.2).

9.4 Rhumb Line Navigation

9.4.1 Background

The defining characteristic of rhumb‡‡ line navigation is that the planned track over the ground

has a constant azimuth angle with respect to North at each location along the track. That is,

constant)),cos((arctan  dLLd Eq 355

An example rhumb line course is shown to the right. Mathematically,

such courses are loxodromes; they spiral toward, but do not reach, a

pole. (The exception is a constant-latitude course; these are often

treated separately.)

Rhumb line navigation has been used by mariners for hundreds of

years.§§ An advantage was that rhumb lines simplified the helms-

man’s task in an era when only the most rudimentary tools were

available. Even when a great circle route was being implemented, the path was approximated by

a series of waypoints and rhumb line navigation was employed between waypoints.

Another important advantage of rhumb line navigation is that, for a Mercator projection, a rhumb

line course is a straight line on a chart. This greatly simplifies the planning process, and likely

contributed to the popularity of the Mercator projection.

Today, great circle navigation has largely replace rhumb line navigation, particularly for

aviation, since it provides shorter paths and air routes are less restricted than marine routes.

Rhumb line navigation is still in use for applications lacking a flight computer (or the

equivalent).

Three factors cause great circle and rhumb routes to be dissimilar and favor great circle

navigation:

‡‡ The word "rhumb" may come from Spanish/Portuguese rumbo/rumo, meaning course or direction (Wikipedia).
§§ Rhumb lines were first discussed by the Portuguese mathematician Pedro Nunes in 1537, in (translated) Treatise
in Defense of the Marine Chart (Wikipedia).
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 Path length: The origin and destination (or end points of a navigation leg) are far
apart (e.g., thousands of miles)

 Starting location: Route leg starts at mid- and/or high-latitude, and

 End location/route direction: The end point is at mid- and/or high-latitude on the
same side of the equator.

Numerical examples illustrating the importance of these points are presented in Subsection 4.8.4.

Consistent with the intent of this document, the equations presented below are for rhumb line

navigation with respect to a spherical earth (Refs. 26 and 58). More accurate equations applic-

able to an ellipsoidal earth may be found in Ref. 59.

9.4.2 Solution of the Indirect Problem

The indirect problem of geodesy / navigation is defined in Section 1.3 and its solution for great

circle navigation is given in Section 4.2. Here the known quantities are the latitude/longitude of

the starting point U (LU, λU) and end point S (LS, λS). The quantities to be found are the distance

D between U and S; and the azimuth angles ψS/U at U and ψU/S at S of the trajectory connecting

U and S.

If Eq 355 is rewritten with the latitude-related quantities on one side and the longitude related

quantities on the other, then integrated from U to S, the result is

))]log[tan()]log[tan(,(arctan
42

1
42

1
/

  USUSUS LL Eq 356

The natural logarithm is used in Eq 356.

Since a constant azimuth angle is involved, it follows that

   USSUSUSU LL /42
1

42
1

/ )]log[tan()]log[tan(,(arctan Eq 357

Once the azimuth angle ψS/U is known, the distance D between U and S can be found using

US
SU

SU
e

US

US
e

L

L US
e LL

LL
R

LL
R

dL
RD

S

U







  when
)cos()cos()cos( /// 

Eq 358

This equation fails for constant latitude paths, and must be replaced by

USUeSe LLLRLRD  when)cos()cos( Eq 359

An equation for the distance D between U and S that does not daisy-chain on the solution for

ψS/U can be developed using the analyses associated with the Mercator projection. The results of
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that analysis are quoted here. Define the stretched latitude difference by

)]log[tan()]log[tan(
42

1
42

1   USUS LLL Eq 360

Also, for convenience, let

USUSUSUS LLL   and Eq 361

Then the rhumb line distance D is given by

USUS
US

US
USe LL

L

L
LRD 




 when)(

)(

)(
)( 2

2

2
2  Eq 362

With these definitions,

),(arctan/ USUSUS L  Eq 363

9.4.3 Solution of the Direct Problem

The direct problem of geodesy / navigation is defined in Section 1.3 and its solution for great

circle navigation is given in Section 4.3. Here the known quantities are: the latitude/longitude,

(LU, λU), of the starting point U; the distance, D, between U and S; and the azimuth angle at U,

ψS/U, of the trajectory connecting U and S. The quantities to be found are the latitude/longitude

(LS, λS), of the end point S.

From Eq 358 it follows that

)cos( /US
e
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D
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






 Eq 364

I am not aware of a solution for λS that does not utilize the solution for LS. One option is to

manipulate Eq 363 to obtain
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Substituting Eq 364 into Eq 365 yields the alternative form
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When LU is equal to LS, then
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