UMTA-MA-06-0025-83-2 DOT-TSC-UMTA-83-1

Wheel/Rail Force Measurement at the Washington Metropolitan Area Transit AuthorityPhase II Volume II Test Report

P.J. Boyd J.P. Zaiko W.L. Jordan

ENSCO, Inc. Springfield VA 22151

June 1983 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation

Urban Mass Transportation Administration

Office of Technical Assistance Office of Systems Engineering Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2 6	. N Ta	Recipient's Catalog N						
UMTA-MA-06-0025-83-2	2. Government Access	3. K	١٥.						
4. Title and Subtitle			eport Date						
WHEEL/RAIL FORCE MEASUREMENT			ne 1983						
METROPOLITAN AREA TRANSIT AUT VOLUME II TEST REPORT	HORITY - PHASE		erforming Organizati C/DTS-77	on Code					
		8. P	erforming Organizati	on Report No.					
7. Author(s)			• •						
P.J. Boyd, J.P. Zaiko, and W.		DO	DOT-TSC-UMTA-83-1						
9. Performing Organization Name and Address ENSCO, INC.*	UM:	Work Unit No. (TRAI 204/R2608	S)						
Transportation Technology Eng	ineering Divis	sion 11.	Contract or Grant No						
5400 Port Royal Road		DT	FR-53-80-C-00	0002					
Springfield, VA 22151		13.	Type of Report and F	Period Covered					
12. Sponsoring Agency Name and Address			nal Report						
U.S. Department of Transports			y 1981-Novemb	er 1981					
Urban Mass Transportation Adm			, 1901 110 01111	01 2701					
Office of Technical Assistant	e	14.	Sponsoring Agency C	ode					
Washington, DC 20590		UR	T-10						
15. Supplementary Notes U.S. Dep	artment of Tra	nsportation							
*Under contract to: Research	and Special I	Programs Administra	ation						
Transpor	tation Systems	Center							
	ge, MA 02142								
16. Abstract									
On the basis of preliminary s									
Washington Metropolitan Area									
suspension and tapered wheels		d to reduce excess:	ive wheel and	l rail					
wear and rail fastener failur	e.			1					
Force sensing instrumented wheeffects of wheel taper and lose Both changes reduced curving predominant effect at curves the greatest reduction of flachanges was complimentary. If the standard truck were achieves bushings.	ongitudinal stange forces of less than in the large force at its deductions in its descriptions.	iffness of the pring Suspension comploon of the radius, and larger curves. The lateral force of 60 of the state of 60	mary suspensi liance had th d wheel taper e combination 0%-90% relati	ton. ne r produced n of both .ve to					
No hunting was detected at 75 standard or soft primary long			r for either	the					
Dundard of Bott primary 1011)	5		2	18					
Volume I of this Test Phase	report carries	the sub-title of	Analysis Repo	ort.					
	=	Ψ.							
17. Key Words		18. Distribution Statement							
Wheel/Rail Forces		DOCUMENT IS		E PUBLIC					
Wheel/Rail Wear			AVAILABLE TO TH NATIONAL TECHN						
Urban Transit Vehicle		INFORMATION	SERVICE, SPRING						
Instrumented Wheels		VIRGINIA 2216	1						
19. Security Classif. (of this report)	20. Security Classi	f. (of this page)	21. No. of Pages	22. Price					
UNCLASSIFIED	UNCLASSIFI		94						

PREFACE

In support of the Office of Rail and Construction Technology of the Urban Mass Transportation Administration (UMTA), the Transportation Systems Center (TSC) is conducting analytical and experimental studies to relate transit truck design characteristics, wheel/rail forces and wheel/rail wear rates, in order to provide options for reducing the wear rates of wheels and rails experienced by transit properties and minimizing system life cycle costs of vehicle and track components, while maintaining or improving equipment performance.

As part of this work, TSC planned and implemented a measurement program, in order to obtain onboard wheel/rail force measurements over a representative range of Washington Metropolitan Area Transit Authority (WMATA) operating conditions; obtain data to quantify the load environment on direct fixation fasteners and evaluate the influence of changes in fastener characteristics on fastener performance; evaluate the influence of taper and suspension modifications on high speed stability and to assess the feasibility of a retrofit to the WMATA truck to improve curving performance. These tests were conducted in the fall of 1981. The Analytic Sciences Corporation (TASC), under Contract DTRS-57-80-C-00062, provided support to TSC in these activities. by conducting analyses of the tradeoffs between curving performance and high speed stability, by definition and coordination of in-shop measurements to obtain engineering parameters for use in the analysis, by specification and procurement of the retrofit primary suspension element used in the truck tests, by comparison of measured data, with analytic predictions to assess measurement consistency and by recommending test program modifications to improve the accuracy and completeness of the results relating to the truck modifications. This report describes the work performed by TASC under this effort in support of this measurement program. The report Number is UMTA-MA-06-0025-83-.

Vehicle/truck instrumentation and data acquisition support for the truck tests was provided by ENSCO, Inc., while equipment and support personnel, for conducting selected vehicle and truck measurements in the WMATA shop, were provided by the Transportation Test Center (TTC), Pueblo, Colorado and are provided in this report. The modified primary suspension elements used in the (Phase II) test program were developed and fabricated by the BUDD Co., under subcontract to and in accordance with design specifications developed by TASC. Vehicles, operators, track rights, shop facilities and shop test support were provided by WMATA.

Wayside instrumentation development, installation and calibration and data acquisition support for measurements of fastener loads was provided by Battelle Columbus Labs, under contractual arrangement with TSC. Results of these measurements will be documented in subsequent reports.

METRIC CONVERSION FACTORS

	Symbol		.5	≣ .⊆	z	yq	Ē			•	, E	Ā.	į						?	ē					11 02	£	늉	an and	- -	, pA					u.		V			-		
: Mesures	To Find		1	inches	feet	yards	miles				squere inches	equare yards	square miles	acres.					Ounces	spunod	short tons				fluid ounces	pints	quarts	gallons	cubic feet	cubic yards					Fahrenheit	temperature	10	212	160 200	08 . 09		
rsions from Metric	Multiply by	LENGTH		5 0.0	3.3	17	9.0		AREA		9.16	1.2		2.5			MASS (weight)		0.036	2.2	=		VOLUME		0 03	2.1	1.06	0.26	38	1.3			TEMPERATURE (exact)		9/5 (then	#0d 32)		98.6	80 120	20 40	37	
Approximate Conversions from Metric Mesures	When You Know			millimeters	meters	meters	kilameters				equere centimeters	square meters	square kilometers	hectares (10,000 m ²)		,			grams	kilograms	tonnes (1000 kg)				4	9.00	liters	iters	cubic meters	cubic meters			TEM		Celsius	temperature		32	0	-40 -20 0-	٥, د	
	Symbol				5 ∈	6	支			ı	76	7E	km ²	2					•	2	•				•	Ē.			. ["] E	. [©] E					ပ္			·	1	i		
EZ	22 	12 	30 30	6	t 	8	t 			91 		72 	1111	*	t 	3	t 	z	t 		t 		a N	6	; 				2 		9		S		•	l liiiii	e III		z 		шо 	ĺ
9	Lä.		' ' '	'	' 'I	'	'l' 7	η.	!' !' 	 'l'	'	 	'I'	'1	' '	l'	5	' ''	' '	l'	'ו'	' ₄	' '		' '	 '		' 3	'l'		1	ų.	1 2	ı	!' '	l' '	'l'	1	 ' '	inch	1 1	
]					E	5 (. 5	i			7 5	~ E	٦Ę	km²	2				ъ.	9.	_				Ē	Ē	Ē			- -	_ [: °1	Ė			ပ			ol. 286.		
Messures	1					centimeters	centimeters	meters				square centimeters	square meters	equare meters	square kilometers	hectares				grams	kilograms	tonnes				milliliters	milliliters	milliliters	liters	liters	liters	liters	cubic meters	cubic meters			Celsius	temperature		lables, see NBS Misc. Pub		
irsions to Metric 1			LENGTH			-2.5	30	9. C	2	AREA		6.5	60'0	9.0	2,6	9.0		MASS (weight)		28	0.45	6.0		VOLUME		9	15	30	0.24	0.47	0.95	8.E	0.03	0.76	TEMPERATURE (exact)		5/9 (after	subtracting	32)	arsions and more detailed	D Catalog No. C13.10:260	
Approximate Conversions to Metric Measures	3	When Tou hadw				inches	feet	yards	39198			source inches	souare feet	square vards	square miles	BCr6\$		7		Ounces	spunod	short tons	(01 0007)			teaspoons	tablespoons	fluid ounces	cups	pints	quarts	gallons	cubic feet	cubic yards	TEMPE		Fahrenheit	temperature		1 in = 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286.	and Measures, Price \$2.25, S	
						, u	#	7 .	Ē			z _{ui}	.7₽	705	².≝					20	₽					tso	Theo	# 0z	v	ă	¥	gal	₂ _	, pA			<u>u</u> .			*1 in = 2,54 (exa	Units of Weights a	

TABLE OF CONTENTS

Section		<u>Title</u>	Page
1.0	INTRO	DDUCTION	1
2.0	DESCI	RIPTION OF TESTS	3
	2.1	Steady Curving	3
	2.2	Acceleration in Curves	5
	2.3	Stability	5
	2.4	System Surveys	6
3.0	VEHI	CLE INSTRUMENTATION	7
	3.1	Transducers	7
	3.2	Instrumented Wheelset	10
		3.2.1 Description of Strain Gage Bridges	13
		3.2.2 Primary Sensitivity and Crosstalk	18
		3.2.3 Ripple	22
		3.2.4 Load Point Sensitivity	23
		3.2.5 Thermal and Centrifugal Effects	
		and Other Sources of Drift	25
		3.2.6 Sensitivity to Longitudinal Force	25
	3.3	Data Acquisition System	27
	3.4	Data Reduction	29
4.0	TEST	RESULTS	31
	4.1	Curving	31
	4.2	Stability	34
Appendices			
APPENDIX A		eady State and Peak Lateral Wheel Forces the High Rail vs. Test Speed	A-1
APPENDIX B	- Tal	bulated Results by Test Series	B-1
APPENDIX C	Re	port of New Technology	C-1

LIST OF ILLUSTRATIONS

Figure Number	Title	Page
2-1	Route Description	4
3-1	Sensor Placement on Lead Truck	8
3-2	Wheelset Data Flow	11
3-3	Vertical Force Measurment	14
3-4	Triangular Output and "A+B" Processing	15
3-5	Lateral Force Strain Distribution	17
3-6	Lateral Force Measurement Bridge	24
3-7	Longitudinal Force Strain Distribution	26
3-8	Data Acquisition System	28
4-1	Summary of Steady State Lateral Wheel Forces on the High Rail at Balance Speed	32
4-2	Summary of Peak Lateral Wheel Forces on the High Rail at Balance Speed	33
A-1	Curve 37 Steady State Lateral Wheel Forces	A-2
A-2	Curve 37 Peak Lateral Wheel Forces	A-3
A-3	Curve 49 Steady State Lateral Wheel Forces	A-4
A-4	Curve 49 Peak Lateral Wheel Forces	A-5
A-5	Curve 311 Steady State Lateral Wheel Forces	A-6
A-6	Curve 311 Peak Lateral Wheel Forces	A-7
A-7	Curve 3 Steady State Lateral Wheel Forces	A-8
A-8	Curve 3 Peak Lateral Wheel Forces	A-9
A-9	Curve 43 Steady State Lateral Wheel Forces	A-10
A-10	Curve 43 Peak Lateral Wheel Forces	A-11
A-11	Curve 157 Steady State Lateral Wheel Forces	A-12
A-12	Curve 157 Peak Lateral Wheel Forces	A-13

LIST OF TABLES

Table Number	<u>Title</u>	Page
1-1	Test Series	2
2-1	Test Curves	5
3-1	Characteristics of WMATA Car Instrumented Wheels	21

		ě
		181
		÷
		ر ه

1.0 INTRODUCTION

The Washington Metropolitan Area Transit Authority (WMATA) has experienced high rates of wear of wheels and rails and failures of rail fasteners. These problems are especially pronounced on curves having radii less than one thousand feet (5.7°). Preliminary studies conducted by the Transportation Systems Center (TSC) (ref) and by Deleuw, Cather and Company (ref) recommended several changes to the vehicles and track. This report describes a test program to evaluate the effect of the recommended changes to the WMATA car on curving flange forces and high speed stability. The participating agencies were the Urban Mass Transit Administration (UMTA), TSC, ENSCO, the Analytic Sciences Corporation, Battelle Columbus Laboratories, WMATA, and the Federal Railroad Administration (FRA).

The test directly addresses the classical trade off between curving and stability. The use of highly tapered wheels and longitudinally compliant primary suspension allows a vehicle to negotiate sharper curves without flange contact or excessive slip. Increasing the taper reduces the axle movement toward the high rail necessary to maintain pure rolling in a curve, and longitudinal compliance allows the axles to orient radially to the curve. However, both taper and compliance reduce the speed at which unstable "hunting" occurs. Wheel taper causes the varying lateral component of the contact force which drives the oscillation, and compliance partially uncouples the wheelsets from the truck frame creating a less stable system.

The possibility that the original truck design compromised curving to gain excessive stability, in view of the actual speed and curving requirements, motivated this test in which wheel taper and primary suspension stiffness were the principal variables. Tapers of zero (cylindrical wheel), 1:20, 1:10 and 1:5 were used. Testing with 1:5 taper was cancelled, however, because yard movements demonstrated the inability of the switch frogs to

handle steeply tapered wheels. The primary suspension of the Rockwell Trucks used at WMATA consisted of an elastomeric bushing with a longitudinal stiffness of 115,000 lb/in (vertical, 74,000 lb/in; lateral, 62,000 lb/in). An experimental bushing constructed for greater longitudinal compliance with a longitudinal stiffness of 29,700 lb/in (vertical, 116,00 lb/in; lateral, 37,000 lb/in) was also used to vary the radial self-steering property of the truck. The test was divided into series featuring different combinations of the two mechanical variables as shown in Table 1-1.

TABLE 1-1
TEST SERIES

Series	Wheel Taper	Primary Suspension Longitudinal Stiffness
A	cyl.	115,00 lb/in
В	1:20	115,000 lb/in
С	1:10	115,000 lb/in
D*	1:5	115,000 lb/in
F	1:10	29,700 lb/in
G	1:20	29,700 lb/in
I**	1:20	115,000 lb/in
J	cyl.	29,700 lb/in

^{*} Cancelled due to insufficient switch frog clearance.

^{**100} passes over curve 37 in Series B configuration to investigate the possibility of rail contamination.

2.0 DESCRIPTION OF TESTS

The Brentwood Shop facility served as the base of operations for all testing. Most of the tests were conducted on the Red Line (Van Ness-Silver Spring) which is adjacent to the Brentwood yard.

2.1 STEADY CURVING

The steady curving tests were performed by driving a married pair of vehicles from Farragut North to Brookland on the Red Line as indicated in Figure 2-1. The speed was held as constant as possible at six test curves along the route. Several passes over the entire route were made to provide a range of speed levels at each test curve. The speed was limited to the service speed at each curve by the automatic train control system. The instrumented wheelset was in the lead position of the first car for forward runs and in the trailing position of the last car for the reverse runs.

Table 2-1 identifies the test curves. They range in radii from 755 ft. to 2508 ft. with a radius of less than 1000 ft. for three test curves. All curves except 311 were turning left in the forward test direction. Superelevation typically was held to 4 inches in tunnels for clearance.

The listed service speeds were not exceeded during testing, but up to 4.5 inches of cant deficiency could be developed at representative sharp right and left curves. Curve 37 was equipped with force sensing instrumented rails to monitor revenue traffic as part of a simultaneous track oriented program also conducted by TSC. Very good agreement, especially at the heavily flange loaded high rail, was obtained between the independent wayside and onboard measurements.

The route evaluation runs listed in Appendix B were steady curving tests in which the speed was controlled by the autopilot rather than manual override. The maximum test speeds usually occurred during route evaluation runs.

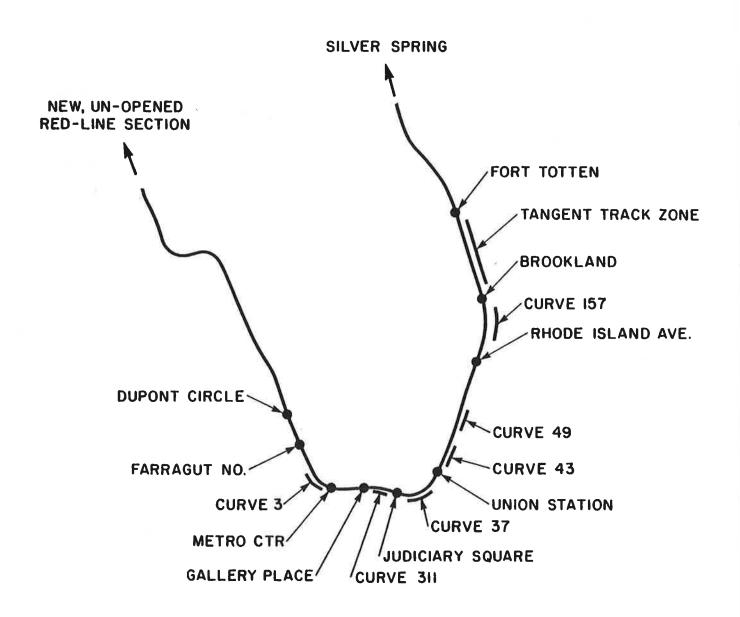


FIGURE 2-1. ROUTE DESCRIPTION

TABLE 2-1
TEST CURVES

No.	Length (ft)	Radius (ft)	Curvature (deg)	S.E.	Service Speed (mph)	Cant Deficiency at Service Speed (in)
3	490	1200	4.8	4	50	4.4
311	430	956	6.0	4	45	4.5
37	780	755	7.6	4	40	4.5
43	220	1750	3.3	6	65	3.7
49	310	800	7.2	6	45	4.2
157	680	2508	2.3	6	70	1.8

A special set of steady curving tests were performed at curve 6 on the Blue Line because its rails had substantially less wear than those at the older Red Line curves.

2.2 ACCELERATION IN CURVES

A mode of non-steady curving was also tested. The vehicle was stopped on tangent track before the test curve, and a traction motor current control setting was selected. The vehicle then accelerated through the curve with constant tractive effort. The test was repeated at the highest and next to highest current control levels. Curves 3, 37, and 157 were used as test sites.

2.3 STABILITY TESTS

A tangent track zone between Fort Totten and Brookland on the Red Line (Figure 2-1) was selected for stability tests. The maximum speed of the transit system, 75 mph, is permitted in this zone. Each combination of taper and suspension bushing stiffness was run at 35, 55, 65 and 75 mph in both directions. Wheelset to truck frame yaw and lateral displacement, truck to carbody yaw and lateral displacement, and axle lateral acceleration were observed for signs of unstable oscillation.

2.4 SYSTEM SURVEYS

In addition to the performance tests on the Red Line during out of service hours, the test cars were run over the entire system during Sunday revenue service. Both tracks of the Red, Orange and Blue Lines were traversed with the instrumented truck leading. The test train ran between scheduled trains under autopilot control.

The survey was performed twice. The standard configuration of stiff bushings and cylindrical wheels and an experimental configuration of soft bushings and 1:20 tapered wheels were used.

3.0 VEHICLE INSTRUMENTATION

The vehicle was equipped with instruments to measure, display and record the following parameters:

- Vertical and lateral wheel/rail forces at each wheel on the lead axle.
- Lateral acceleration of each axle on the lead truck and the lead axle of the trailing truck.
- 3. Longitudinal deflections of each primary suspension bushing of the lead truck.
- 4. Lateral deflection of each primary suspension bushing of the lead truck.
- Vertical and lateral acceleration of a traction motor on the lead truck.
- Yaw and lateral displacement of the lead truck with respect to the carbody.
- Carbody lateral acceleration, vertical acceleration, and roll acceleration
- Vehicle speed
- Traction motor current of one truck
- 10. Simultaneously recorded track location reference marks

3.1 TRANSDUCERS

Most of the transducers were mounted on the lead truck of the lead car. They are briefly described below in the same order in which the parameters they measure were listed. The force sensing wheelset was the most elaborate transducer and it is described in detail in the next section. Figure 3-1 locates the truck mounted transducers by the numbers of the headings of the following descriptions.

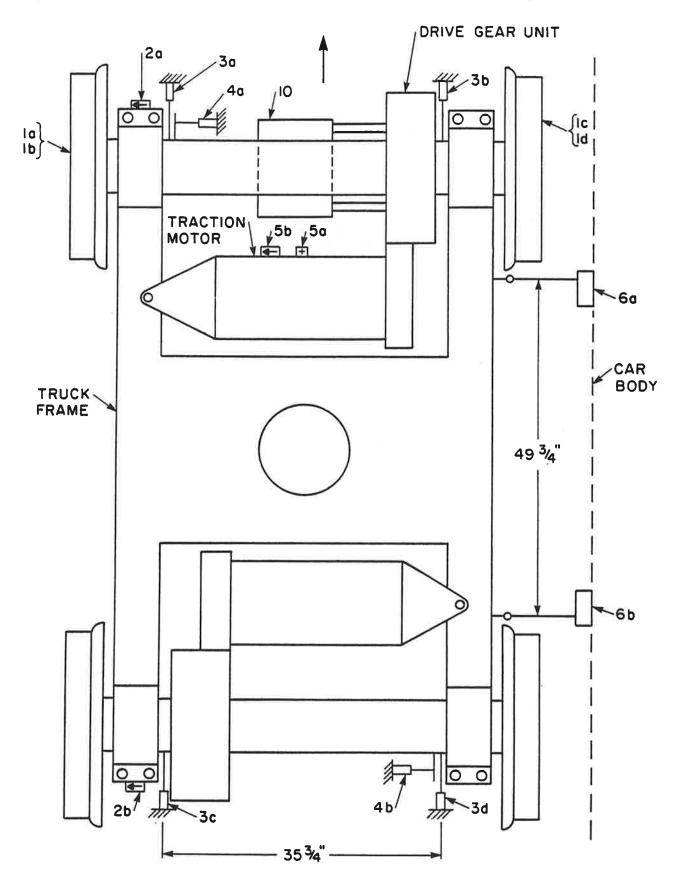


FIGURE 3-1. SENSOR PLACEMENT ON LEAD TRUCK

- 1. a) Left front wheel vertical force a pair of strain gage bridges on the wheelplate producing triangular wave strain summations as the wheel rotates. A wheelset processor combines the output of the two out of phase bridges to create a single continuous signal proportional to vertical force. See Section 3.2 for details.
 - b) Left front wheel lateral force a similar pair of strain gage bridges on the wheel-plate producing sinusoidal strain summations as the wheel rotates under a lateral load. A wheelset processor combines the output of the two out of phase bridges to create a single continuous signal proprotional to lateral forces. See Section 3.2 for details.
 - c) Right front wheel vertical force same as left sensor
 - d) Right front wheel lateral force same as left sensor
- a) Lead truck lead axle lateral acceleration
 5g servo accelerometer mounted to the truck frame at the axle bearing clamp.
 - b) Lead truck trailing axle lateral acceleration - similar sensor
 - c) Trailing truck lead axle lateral acceleration - similar sensor
- 3. a), b), c), d) primary suspension longitudinal deflection at all four axle bearings on the lead truck - DC-DC LVDT displacement transducers (min +1/2" range) acting between the bearing clamp of the truck frame and the outer race of the axle bearing.
- 4. a), b) Primary suspension lateral deflection for each axle of the lead truck DC-DC LVDT displacement transducers (min $\pm 1/2$ " range) acting between the bearing clamp of the truck frame and the outer race of one bearing on each axle.
- 5. a. Vertical acceleration of lead traction motor - 5g servo accelerometer mounted to the front face of the traction motor.
 - b) Lateral acceleration of the lead traction motor - similar sensor.

- 6. a), b) String type (±5-1/2" range) displacement transducers between the right side of the body and the side of the truck frame. Truck yaw is the difference in output of the two transducers divided by their spacing; lateral translation is the average output of the sensors.
- 7. a) Carbody vertical acceleration lg servo accelerometer mounted on the car interior floor along the center line near the front truck.
 - b) Carbody lateral acceleration = similar transducer and mounting
 - c) Carbody roll acceleration a second lg vertical servo accelerometer offset laterally from 7a) provides the means in conjunction with 7a) for calculating roll acceleration.
- 8. Vehicle speed a test point in the vehicle speed control circuit was used for an analog speed indication.
- 9. Traction motor current a test point in the vehicle was used for an analog indication of the traction motor current for one truck.
- 10. Automatic Location Detection a capacitive sensor mounted on the gear drive, cantilevered to the car centerline below the axle, produced spikes to indicate the presence of aluminum sheet metal targets placed at rail sensors or other track features. Permanent track features such as switch turnouts or electrical enclosures between the rails produced spikes to identify locations during survey runs.

3.2 INSTRUMENTED WHEELSET

The lead axle in the forward direction was equipped with wheels instrumented to sense vertical and lateral contact forces continuously. Figure 3-2 is a block diagram of the wheel/rail force measuring system. The essential elements are 1) pairs of strain gage bridges producing ac signals as the wheel rolls, proportional to lateral or vertical force, 2) slip rings to allow rotation of the electical circuits, 3) high gain carrier amplifiers

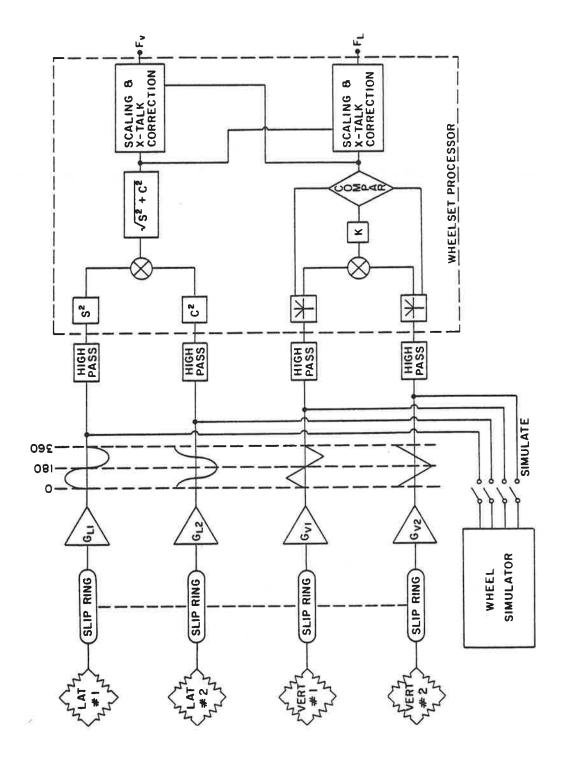


FIGURE 3-2. WHEELSET DATA FLOW

suited to bridge signals in the microvolt range, 4) high pass filters to achieve automatic zeroing, and 5) a processor to combine bridge signals into direct force indications and to perform crosstalk corrections. ENSCO has produced many wheelsets for FRA safety experiments to measure limiting values of flange force which required accuracy at high lateral forces. The WMATA car tests also required accuracy to very low lateral forces to evaluate the desired effects of wheel taper and suspension changes. Higher sensitivity of both lateral and vertical bridges and improved linearity of lateral bridges at very low force were achieved for the WMATA car, but the crosstalk was greater than for previous wheels. The crosstalk between vertical load and lateral force indication (and vice versa) were determined by calibration in a loading fixture after each change of taper, and thus accuracy was maintained through compensation performed by the processor. The basic sensitivity of the vertical and lateral bridges (microstrain per 1000 lb of load) did not change greatly during successive machinings of the wheel tread.

The basic objective of the design of force measuring wheels is to obtain adequate primary sensitivity for low signal/noise ratio and high resolution while controlling crosstalk, load point sensitivity, ripple, and the effects of heat, centrifugal force and longitudinal forces. The design philosophy was to choose strain gage bridge configurations which inherently minimized as many extraneous influences as possible and which were responsive to the general strain patterns expected in any rail wheel subjected to vertical and lateral forces. Such bridge configurations could be adapted to the standard production wheels of any test vehicle, eliminating problems of supply, mechanical compatibility, and possible alterations of vehicle behavior due to special wheels. The radial locations of the strain gages were optimized for each wheel size and shape while their angular locations were fixed by the chosen bridge configurations. Locomotive, passenger coach and freight car wheels, as well as small transit car wheels, have been instrumented successfully by ENSCO using the same general procedures.

3.2.1 DESCRIPTION OF STRAIN GAGE BRIDGES

The vertical force measuring bridges follow a concept used by ASEA/SJ. Each bridge consists of eight strain gages arranged in a Wheatstone bridge having two gages per leg. Each leg of the bridge has one strain gage on the field side and one strain gage on the gage side of the wheel. The four legs are evenly spaced apart on the wheel as shown in Figure 3-3. The general strain distribution in a typical rail wheelplate due to a purely vertical load is characterized by maximum strains which are compressive and highly localized in the wheelplate above the point of rail contact. As the pair of gages in each leg of the bridge consecutively passes over the rail contact point, two negative and two positive peak bridge outputs occur per revolution. correctly choosing the radial position of the gages, the bridge output as a function of rotational position of the wheel can be made to resemble a triangular waveform having two cycles per The purpose of having gages on both sides of the revolution. wheelplate in each leg is to cancel the effect of changes in the bending moments in the wheelplate due to lateral force and the change of axial tread/rail contact point.

When two triangular waveforms equal in amplitude and out of phase by one-fourth the wavelength, are rectified and added, the sum is a constant equal to the peak amplitude of the individual wave-In order to generate a strain signal proportional to forms. vertical force and independent of wheel rotational position, the outputs of two identical vertical bridges out of phase by 45° of wheel arc are rectified and summed as shown in Figure 3-4. Since the bridge outputs do not have the sharp peaks of true triangular waveforms, the sum of one bridge peak and one bridge null is lower than that of two concurrent intermediate bridge outputs. In order to reduce the ripple or variation in force channel output with wheel rotation, the bridge sum is scaled down between the dips coinciding with the rounded bridge peaks. By taking as the force channel output the greatest of either individual bridge output or the scaled down sum of both bridges, the scaling down

"A + B" TRIANGULAR OUTPUT (ASEA/SJ)

- TWO BRIDGES
- GAGES ON BOTH SIDES OF WHEELPLATE
- TRIANGULAR WAVEFORMS-2-CYCLES PER REVOLUTION
- OUTPUT = MAX {IAI, IBI, K(IAI + IBI)}

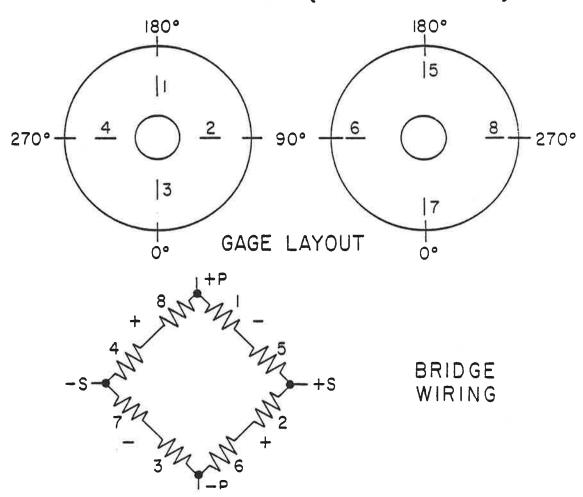


FIGURE 3-3. VERTICAL FORCE MEASUREMENT BRIDGE

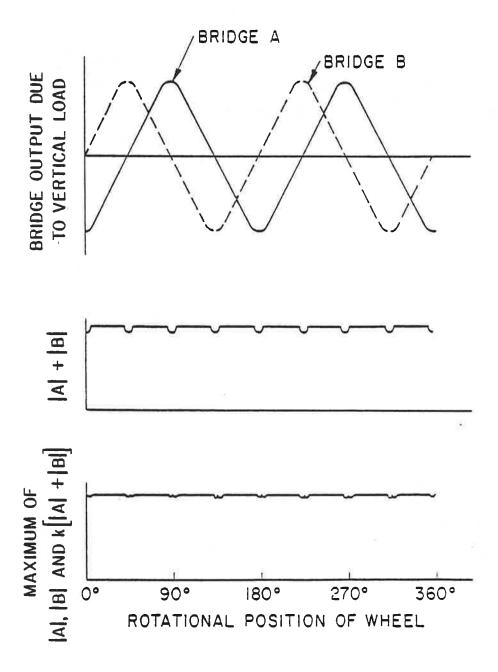


FIGURE 3-4. TRIANGULAR OUTPUT AND "A + B" PROCESSING

is applied selectively to the part of the force channel output between the dips as shown in Figure 3-4.

The general strain distribution of a typical rail wheelplate due to a purely lateral flange force is characterized by two components as shown in Figure 3-5. One component is a function of radius only because the wheelplate acts as a symmetric diaphragm in opposing the lateral force at the axle. The second component results from the moment about the hub caused by the flange force, and it tends to vary at a given radius with the cosine of the angular distance from the wheel/rail contact point. The strain distributions on the gage and field sides of the wheelplate are similar in magnitude but opposite in sign (compression or tension).

Lateral force measuring bridges which follow a concept advanced by EMD (Ref. 19) take advantage of the general strain distribution in a standard rail wheelplate. As shown in Figure 3-4, each bridge is composed of eight gages evenly spaced around the field side of the wheelplate at the same radius. The first four adjacent gages are placed in legs of the bridge that cause a positive bridge output for tensile strain and the next four gages are placed in legs causing a negative bridge output for tensile The resulting bridge cancels out the strain due to the axial load because all eight gages are at the same radius with four causing positive and four causing negative bridge outputs. However, the bridge is very sensitive to the sinusoidal strain component associated with the hub moment due to the flange force because the tensile strains and the compressive strains above and below the axle are fully additive in bridge output twice each revolution (once as a positive peak and once as a negative Radial gage locations may be chosen such that the bridge output varies sinusoidally with one cycle per wheel revolution. Two identical bridges 90° out of phase are used to obtain a force channel output independent of wheel rotational position as a consequence of the geometric identity:

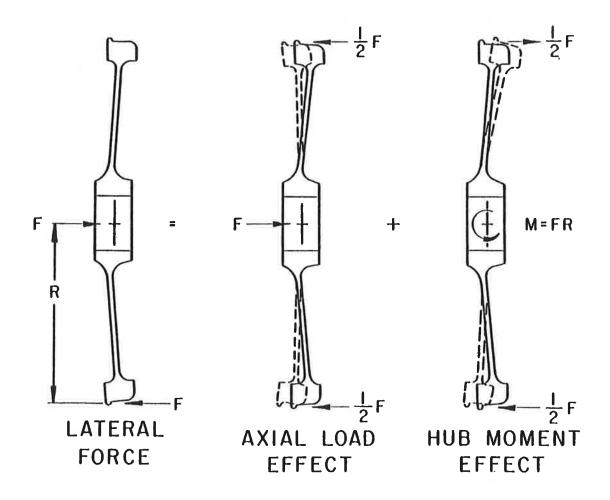


FIGURE 3-5. LATERAL FORCE STRAIN DISTRIBUTION

$$\sqrt{(\text{Lsin}\theta)^2 + (\text{Lsin}\{\theta+90^{\circ}\})^2} = |L| \text{ for any } \theta$$

3.2.2 PRIMARY SENSITIVITY AND CROSSTALK

The first step in the production of the instrumented wheels was the machining of both to an identical contour. The contour was dictated by the minimum allowable wheelplate thickness and by the production variation of the available sample of wheels. The machining contour is usually close to the original design shape but at a minimum thickness. The thinning of the wheelplate is the easiest step in maximizing sensitivity because it does not involve compromise with the other measurement properties of the wheel.

The most powerful tool in selecting the radial locations of the strain gages for the best compromise between primary sensitivity, crosstalk, ripple, and sensitivity to axial load point variation is a detailed empirical survey of the strains induced in the given wheelplate by the expected service loads. The use of wheels machined to an identical profile makes the empirical approach to wheelset instrumentation practical because the results of the strain survey may be applied to all wheels in the group. The calibration loads and the reference lateral position of the wheel on the rail should reflect the type of experiment in which the wheels will be used.

The WMATA car wheels were loaded both to the nominal static load of 10,000 lb and to 15,000 lb (to simulate load transfer) with the rail adjacent to the flange to determine the primary vertical sensitivity. Lateral loadings of 1,000 lbs., 2,000 lbs., 5,000 lbs. and 10,000 lbs. were made while maintaining the 15,000 lbs. vertical load. The normalized difference in lateral bridge strain between the highest combined load and the purely vertical

load is the lateral sensitivity, and the other loads were taken to verify linearity. The combined vertical and lateral loading at a high L/V ratio accomplished by forcing the wheelset laterally against a rail while maintaining a vertical load was used to select strain gage locations for minimal crosstalk. Vertical loadings at several points across the tread were taken to evaluate the sensitivity to axial load point.

In the strain survey conducted on the WMATA car wheels, strain gages were applied at intervals of one inch or less on both field and gage sides of the wheelplate along two radial lines separated by 180° of wheel arc. The calibration loads were repeated at every 15° of wheel arc until the strain along 24 equally spaced radial lines on both gage and field side was mapped for each load. This data was used in a computer program to predict the output of a force channel as a function of the radial locations of the gages in the companion bridges.

The vertical force measuring bridges of the WMATA car wheels have strain gages on both sides of the wheelplate. The simulation program allowed the rapid trial of many combinations of gage and field side radii as potential strain gage locations. The maximum sensitivity possible for a purely vertical load on a given wheel of a bridge actually producing the triangular waveform is rapidly revealed. The "triangularity" of the waveform of a candidate bridge can be tested by adding its output at each angular load position to that at a load position advanced by 45° of wheel arc. This test determines the ripple expected of a force channel composed of two out of phase candidate bridges.

A lateral force affects the vertical bridge both by directly changing the strain pattern in the wheelplate and by moving the point of vertical load contact with the rail toward the flange. By using as a measurement of crosstalk the difference in bridge output caused by adding a lateral load to an existing vertical load, correction factors may be chosen which compensate for net

lateral force crosstalk which includes direct lateral force crosstalk and the effect of slight vertical load point movement. It is desirable to identify vertical bridges in which the direct lateral force crosstalk and the effect of load point changes are opposed and yield a minimum net crosstalk for flange forces in service. The accuracy of the highly loaded flanged wheel is enhanced using a correction factor in processing based on the net lateral force crosstalk. Compromises in bridge selection are usually biased in favor of the flanged wheel because it generates the most vital data for vehicle dynamics or rail wear studies.

The primary sensitivities and crosstalk factors achieved for the WMATA car wheels are listed in Table 3-1. The vertical bridges were chosen from a detailed simulation with radial position increments of 0.1 inches on the basis of maximum primary sensitivity while holding the simulated ripple below 5% and minimizing crosstalk and sensitivity to axial load point. The primary sensitivity was observed to be linear within about 1% because the strains at each gage are low and the wheelplate behaves elastically. Primary vertical force sensitivity appears to be inversely proportional to tread diameter and wheelplate thickness for several wheelplate shapes which have been instrumented by ENSCO.

The lateral force measuring bridges of the WMATA car wheels have gages on only one side of the wheelplate and the trial simulation of bridges is used to determine the most advantagous side of the wheel and the radial gage position. Sensitivity was measured with combined vertical and lateral loads and crosstalk was determined from purely vertical loads. A very high sensitivity was achieved for good resolution, but at low lateral forces the linearity also required special consideration. The lateral force is computed from the sum of the squares of two bridge outputs causing all measurements to have a positive sign. The convenient determination of the direction of a lateral creep force requires

TABLE 3-1. CHARACTERISTICS OF WMATA CAR INSTRUMENTED WHEELS

A. Calibration Constants

	Vertical For	rce Me		Lateral Forc	ce Measurement				
Wheel Description	Sensitivty	<u>_K</u>	Raw Lat- eral Force Crosstalk*	Sensitivity	Raw Verti- cal Force Crosstalk*				
28" tread dia.; convex conical wheel plate, 3/4" min. thickness	7√ ₂ με/kip	.95	10-20%	60 _{με} /kip	7-17%				

B. Uncorrected Variability

	ertical Force Measurement	Lateral Force Measurement					
Sensitivity to Axial Load Point	Max.Ripple Vertical Load	Max.Ripple Combined Load	Sensitivity to Axial Point	Max. Ripple Combined Load			
+10%/inch	<u>+</u> 5%	<u>+</u> 7%	-3%/inch	<u>+</u> 3%			

a wheel rotational position sensor. (It can also be accomplished by careful examination of the sinusoidal output of a single bridge.) It is possible that a purely vertical load can cause a lateral bridge output having a sign opposite to that caused by lateral force, but the crosstalk would appear positive because of squaring. The first increment of lateral load would cause a reduction rather that an increase in the output of such a bridge

^{*}Crosstalk varies with tread taper; the force indication is entirely compensated for crosstlak by the wheel processor.

and bridge strains at low lateral forces would not be unique to a particular force. Although this would be of little concern in an experiment to measure high L/V ratios, low force measurements were vital to this test program. It is more important to optimize the sign of the vertical crosstalk than its magnitude where the lateral force measurement range extends to low forces. Raw vertical into lateral crosstalk of up to 17% (varying with taper) rather than the usual 1-3% was a consequence of optimizing the vital properties, but the processor compensation completely removed the crosstalk from the force indication.

3.2.3 RIPPLE

Ripple is caused by the failure of the bridges to produce the desired waveform and by deviation from the correct phase relationship between the companion bridges which are processed together as a force channel. The wheelplates are machined for uniformity to reduce ripple and a grid of radial and circumferential lines is scribed on the wheelplate to aid accurate gage placement. The massive computer aided simulation of trial bridges was used to determine gage locations of minimum inherent ripple. The ripple of the vertical force channel is reduced by attenuating the high bridge sums occurring between the rounded bridge peaks as shown in Figure 3-4. This method achieves a substantial reduction in ripple at a small cost in average sensitivity.

The lateral bridge output is inherently very sinusoidal. The requirement for two bridges at the same radius out of phase by 90° is in conflict with the 45° spacing between the gages in each bridge because theoretically both bridges should occupy the same space. Placing the gages side by side causes a deviation from the proper phase relationship which manifests itself as a ripple. Table 3-1 gives the maximum ripple for the WMATA car wheels. Larger wheels which have less phase deviation between lateral bridges also have less ripple. Greater ripple is measured at combined loads because crosstalk produces distortions of the waveforms.

Ripple does not create as much error as might be supposed. Even the peak wheel forces measured during vehicle dynamics testing frequently are averaged for about 50 milliseconds. A 28-inch wheel makes half a revolution in 50 milliseconds at 50 mph, substantially negating ripple in a 50 millisecond average wheel force since 2 cycles per revolution is a typical ripple frequency. A single instantaneous measurement is rarely sought and filtering has a mitigating influence on ripple similar to time averaging.

3.2.4 LOAD POINT SENSITIVITY

Lateral changes of the point on the tread where the wheel contacts the rail affect the bridge strains in two ways. The change in hub moment is similar to the effect of a lateral force. It acts directly on the lateral bridge and through crosstalk on the vertical bridge. However, the failure of the tread to transmit the moment due to load point offset uniformly into the wheelplate probably has the major effect on the vertical bridge. Unsymmetric changes in the local intense compressive strains in the wheelplate above the rail contact can influence the vertical bridge sensitivity. Wheels with thin tread hoops are most susceptable in this regard. The load point sensitivity of the WMATA car wheels (Table 3-1) remained stable despite several retaperings, indicating sufficient remaining tread hoop stiffness.

The effect of load point sensitivity on measurements taken with the WMATA car wheels on the high rail was negligible because the calibration was performed with the wheel flange adjacent to an actual rail. The true vertical load on the unflanged low rail wheel is about 15% less than the indicated. To correct the lateral force indication of the unflanged low rail wheel, its absolute value should be increased by about 5% of the corrected vertical if it is zero or positive (toward the flange) or decreased by the same amount if it is negative.

$\sqrt{\sin^2 + \cos^2}$ TECHNIQUE (EMD)

- TWO BRIDGES
- SINUSOIDAL OUTPUT
- 90° OUT OF-PHASE
- APPLIED AT SINGLE RADIUS TO ONE SIDE OF WHEELPLATE

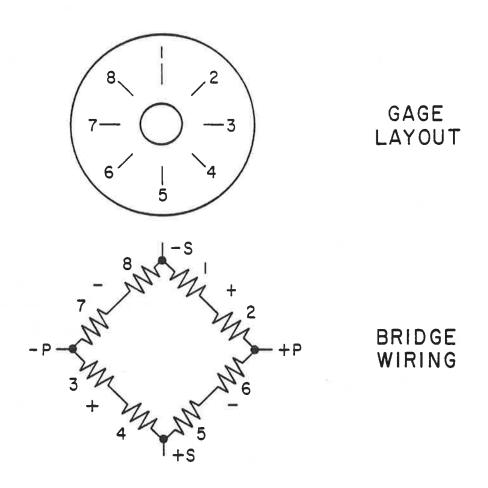


FIGURE 3-6. LATERAL FORCE MEASUREMENT BRIDGE

3.2.5 THERMAL AND CENTRIFUGAL EFFECTS AND OTHER SOURCES OF DRIFT

The vertical and lateral bridges used on the WMATA car wheelsets are particularly immune to drift by virtue of strain gage location and instrumentation technique. Strains induced by thermal change and centrifugal force are radially symmetric on each side of the wheelplate. The lateral bridge consists of eight gages at the same radius on the same side of the wheelplate positioned in the bridge so that four add and four subtract. A radially symmetric strain field is cancelled by the additions and subtractions. Similarly, the vertical bridges have four gages at the same radius on each side of the wheelplate. On each side two gages add and two subtract.

Each bridge generates a triangular or sinusoidal waveform as the wheel rotates under load. High pass filtering of the amplified bridge signals at 0.2 Hz does not attenuate the oscillating part of the signal but it forces the signal to oscillate about zero. High pass filtering eliminates gradual drift that could occur from thermal effects on the wheelset wiring and wheel to amplifier cabling and zero drift of the strain gage bridge amplifiers. It would also suppress thermal and centrifugal effects in bridges which do not self cancel them.

3.2.6 SENSITIVITY TO LONGITUDINAL FORCE

Longitudinal forces involved in braking and driving are extraneous influences on the vertical and lateral force measurement bridges. Brakes on instrumented wheelsets are usually disabled to avoid sensor damage by overheating and to avoid accidental flatspotting. However, instrumented wheelsets on self propelled vehicles must cope with driving forces. Figure 3-7 shows the strain distribution in a driven wheel. The longitudinal force may be resolved into a torque about the axle and a horizontal force perpendicular to the axle. The similarity between this horizontal force component and the vertical force suggests an error source.

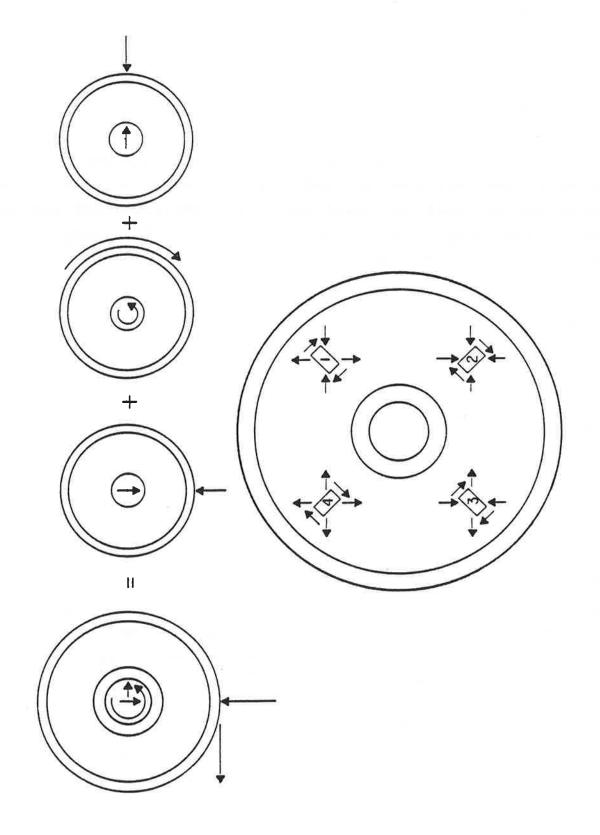


FIGURE 3-7. LONGITUDINAL FORCE STRAIN DISTRIBUTION

The vertical force measuring bridges on the WMATA car wheelsets are configured in such a way as to cancel the effect of longitudinal forces. Figure 3-7 shows the strain components at four gage positions on one side of the wheelplate due to vertical and driving forces. The bridge is shown in the vertical null output position. Gages at 180° spacing add together in their contribution to the bridge summation. The vertical, horizontal and shear components of strain are opposite in sense for gages spaced 180° apart and cancel each other out retaining the null bridge output. The longitudinal force does not create an intense local strain aligned with the sensitive axis of a strain gage which stimulates the vertical bridge in any rotational position. The insensitivity of the vertical bridges to longitudinal force has also been verified experimentally.

The lateral bridges used on the WMATA car wheels are also insensitive to longitudinal forces. The symmetric gage pattern limits the effect of the shear strains, but the horizontal force has the effect of adding vectorially to the vertical force to produce crosstalk. Since the longitudinal force is limited by friction to about 1/4 the vertical load, the vector sum of forces is only about 3% higher than the vertical force alone. An increase in crosstalk of 3% of 12% and (0.36%) is insignificant.

3.3 DATA ACQUISITION SYSTEM

Figure 3-8 is a block diagram of the data acquisition system.

The displacement and acceleration sensors described in the previous sections were cabled to junction boxes containing power supplies and to signal conditioning amplifiers where the full scale range of ± 10 Vdc was established. The outputs of the speed, traction motor current and location detection sensors were also scaled by the signal conditioning amplifiers.

The instrumented wheel strain gage bridge circuits were connected to the strain gage amplifiers by means of rotating sliprings at

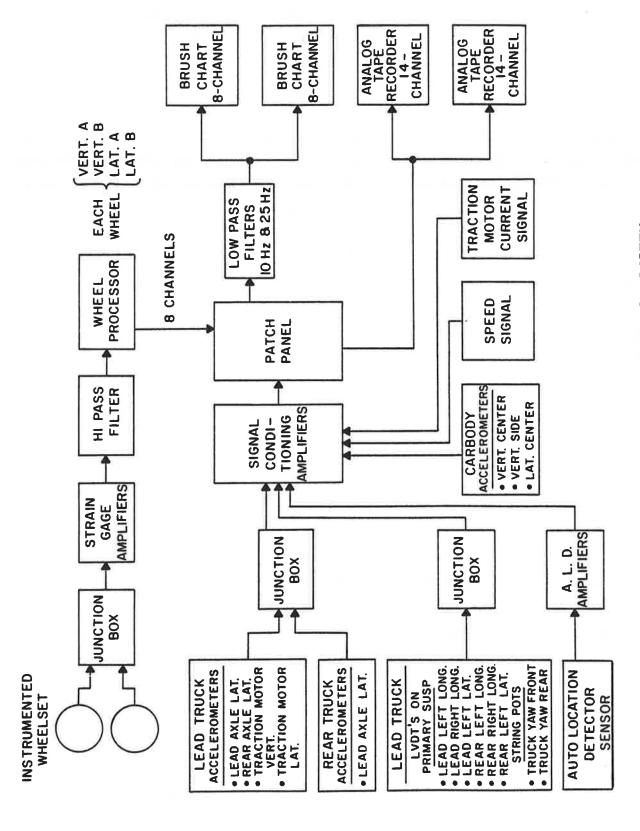


FIGURE 3-8. DATA ACQUISITION SYSTEM

each end of the axle and a junction box to join the wheel cables. The strain gage ammplifiers supply ac carrier excitation to the bridges and demodulate the bridge responses to produce highly amplified dc signals proportional to the bridge strain summation. Carrier amplifiers provide superior noise immunity.

As the wheels rotate, the output of the individual bridges (two bridges are required for each force channel) under a constant force vary as sine waves or triangular waves. High pass filtering is applied to the rotating wheel bridge output to eliminate all sources of signal drift. Wheel rotation causes the bridge responses to oscillate at the wheel rotation frequency with drift resembling a change in dc level. High pass filtering strikes out the drift while preserving the ac waveform thus eliminating the need for rezeroing even during long test days.

The wheelplate processor combines the individual bridge signals to form continuous force measurements. It also performs crosstalk correction and scaling to a ± 10 Vdc range proportional to $\pm 25,000$ lb. wheel/rail force.

The wheelset outputs and the conditioned outputs of all the other sensors are merged at a patch panel. All of the signals were recorded by the analog tape recorders, but the patch panel allowed sampling of the various sensors for real time observation with the strip chart recorders. The data signals were filtered before observation on the strip charts, but they were recorded on magnetic tape at the frequency response of the sensors.

3.4 DATA REDUCTION

The data presented in Appendices A and B were obtained by reading strip chart recordings. The data tapes were replayed to the strip chart recorders after the test was finished so that attention could be given to holding accurate zeros. The accelerometer channels were filtered at 10 Hz and the force and displacement channels were filtered at 25 Hz.

The steady state readings were averaged by inspection over the length of the constant radius part of each curve. The constant radius part of the curve was identified by targets placed on the ties for detection by the ALD sensor and by the character of the high rail lateral force indication.

The peak readings were simply the highest filtered level attained at the spirals or body of each curve. The filtering was used to elminate events having such short time duration that they were insignificant to the dynamic behavior of the vehicle.

A second type of peak indication was also listed in the stability test data included in Appendix B. It was the level exceeded for a time of 100 milliseconds. It was used to eliminate more events on the basis of time duration to make hunting, should it occur, more obvious against the background of ordinary rail roughness.

4.0 TEST RESULTS

The principal data channels appropriate for each type of test run have been reduced and are tabulated in Appendix B. Auxilliary data channels have not yet been reduced except for isolated runs to check for consistency. The peak and steady state lead wheel lateral forces at each test curve have been plotted versus vehicle speed in Appendix A. A detailed analysis of the test results is presented in Part I of this report, and only a few general observations are offered below.

4.1 CURVING

Figure 4-1 summarizes the steady state lateral force mesurements by plotting the data (interpolated to balance speed) versus curve radius for combinations of suspension bushing stiffness and wheel taper (1:20 and cylindrical). Both changing from stiff to soft bushings and changing from cylindrical to tapererd wheels produced consistent reductions in flanging forces. Suspension compliance appeared to be the more effective change at sharp curves of less than 1000 ft. radius, and wheel taper was the more beneficial change at curves of larger radius.

The combination of changes was especially effective. Reductions of lateral force between 60% and 90% were achieved, and the effect of the combined changes was greater than the sum of the effects of the individual changes.

Curve 311 was the only right curve of the six test curves. Measurements of truck geometry indicated a slight skewing of the axles that could bias it against curving to the right, and this bias may account for the high force measurements at curve 311. The combination of soft bushings and wheel taper appeared to reduce the sensitivity of the truck to production variations.

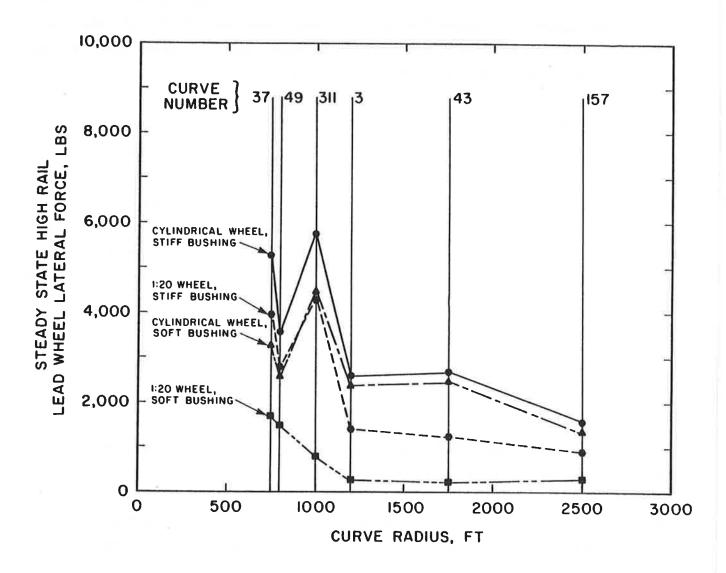


FIGURE 4-1. SUMMARY OF STEADY STATE LATERAL WHEEL FORCES ON THE HIGH RAIL AT BALANCE SPEED

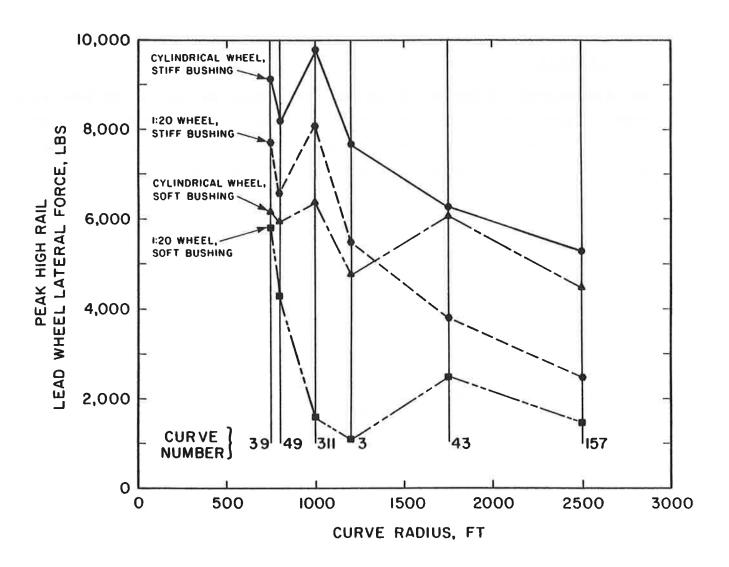
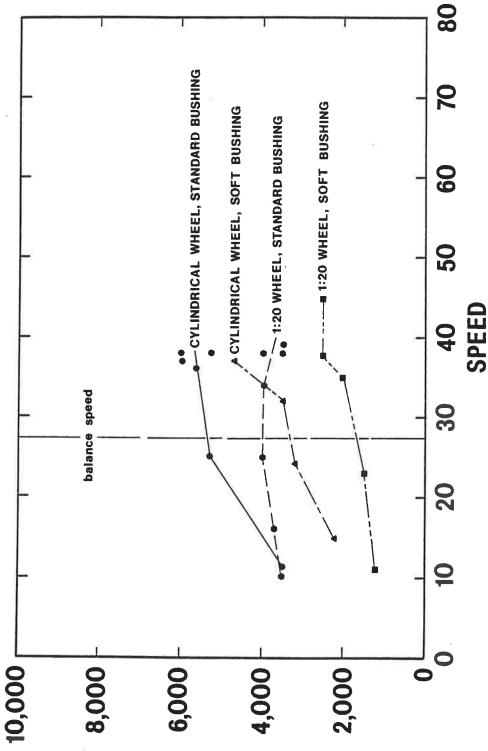


FIGURE 4-2. SUMMARY OF PEAK LATERAL WHEEL FORCES ON THE HIGH RAIL AT BALANCE SPEED


The same observations can be made for the peak measurements presented similarly in Figure 4-2. The change to greater longitudinal suspension compliance seemed the more effective for curves up to about 1300 ft. radius, but the combination of changes was extremely effective in reducing peak lateral flange forces in all cases.

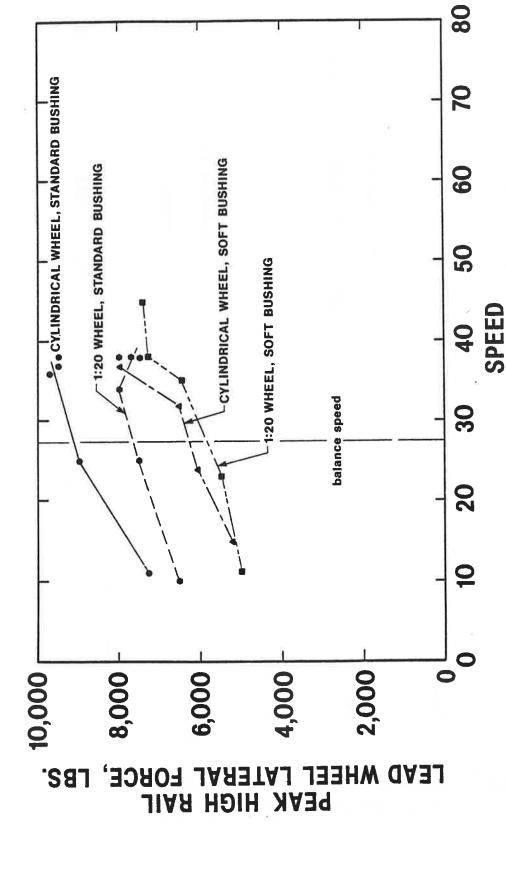
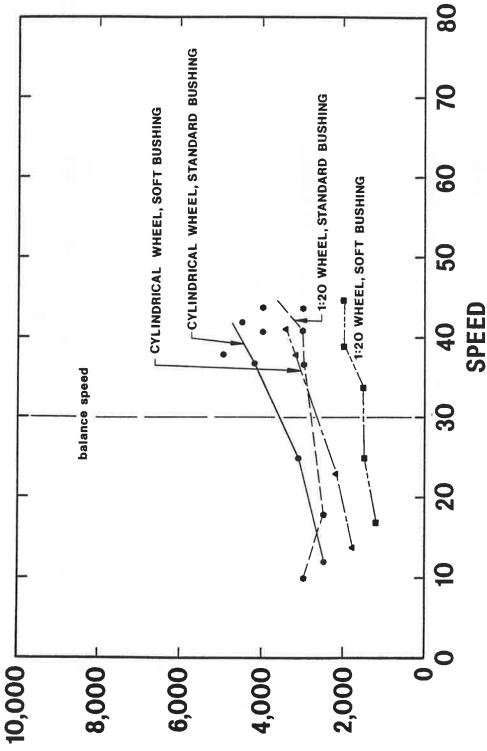
4.2 STABILITY

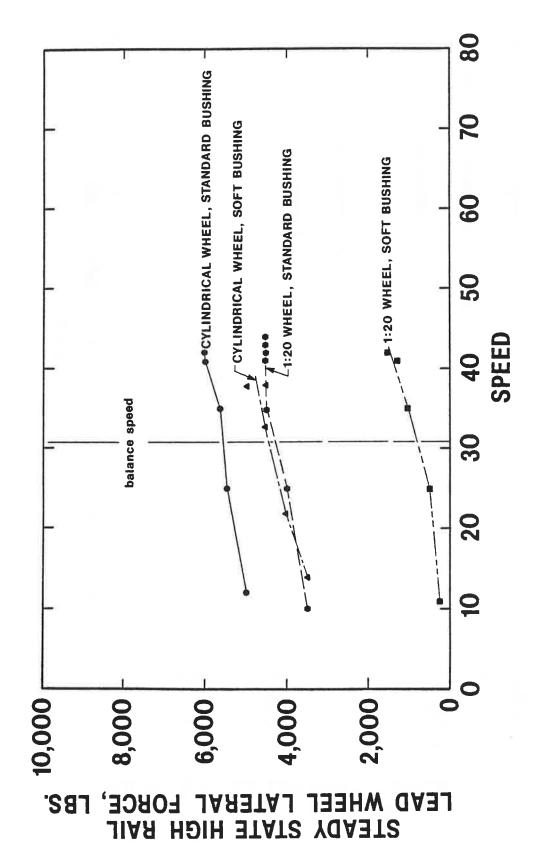
No discernable hunting occurred for tests at up to 75 mph with wheel taper as great as 1:10 for either the standard or soft longitudinal bushing. The attempt to test a greater wheel taper was frustrated because of inability of highly tapered wheels to negotate switch frogs smoothly.

APPENDIX A: STEADY-STATE AND PEAK LATERAL WHEEL FORCES ON THE HIGH RAIL VS. TEST SPEED DATA PLOTS

STEADY STATE HIGH RAIL LEAD WHEEL LATERAL FORCE, LBS.

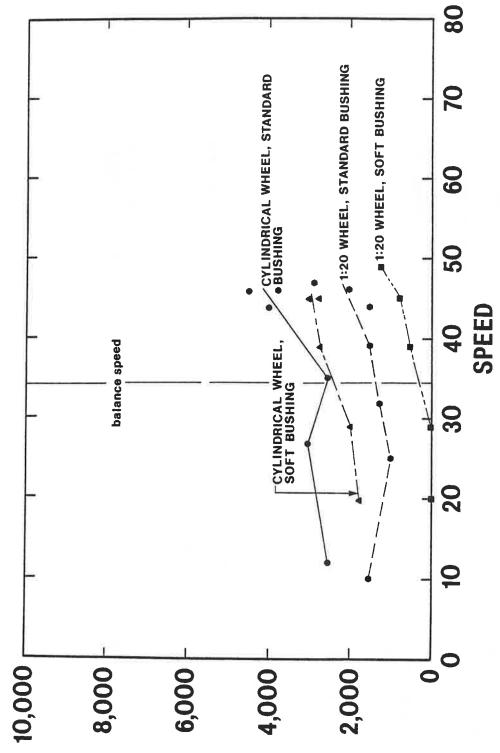
CURVE 37 STEADY STATE LATERAL WHEEL FORCES FIGURE A-1.


FIGURE A-2. CURVE 37 PEAK LATERAL WHEEL FORCES

H BAIL **TB2 LEAD WHEEL** STEADY STATE HIGH

CURVE 49 STEADY STATE LATERAL WHEEL FORCES FIGURE A-3.

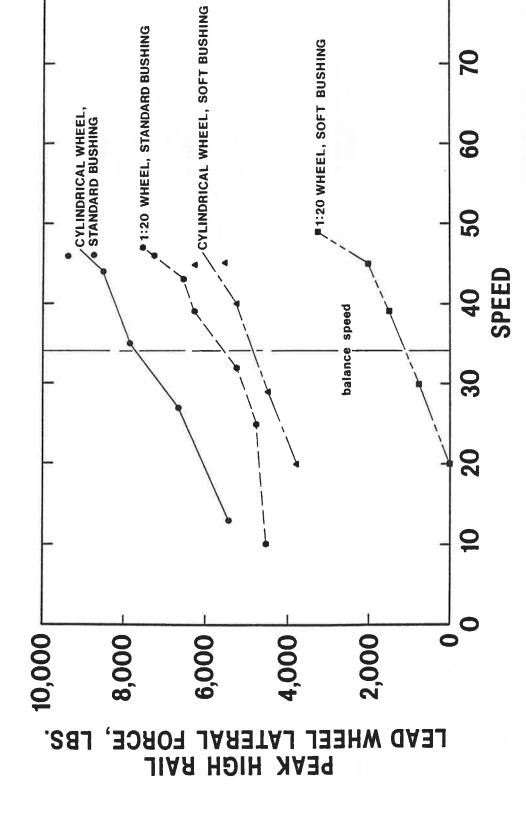
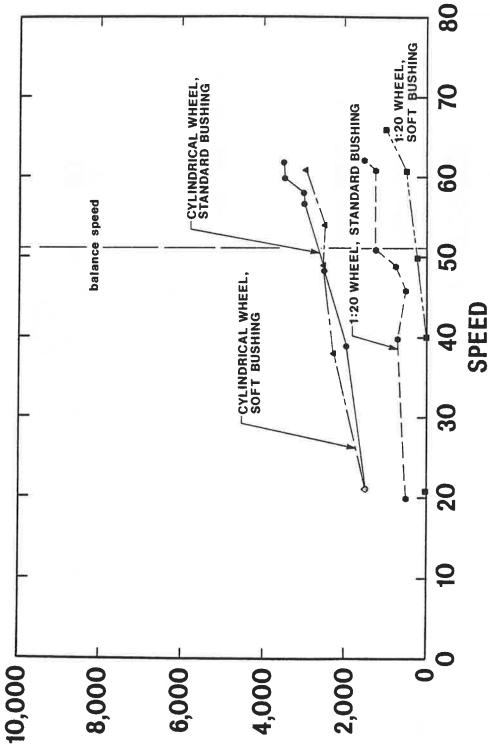

FIGURE A-4. CURVE 49 PEAK LATERAL WHEEL FORCES

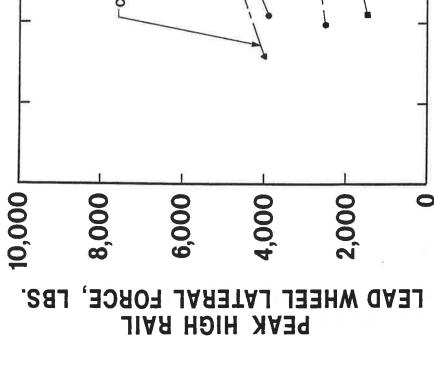
1

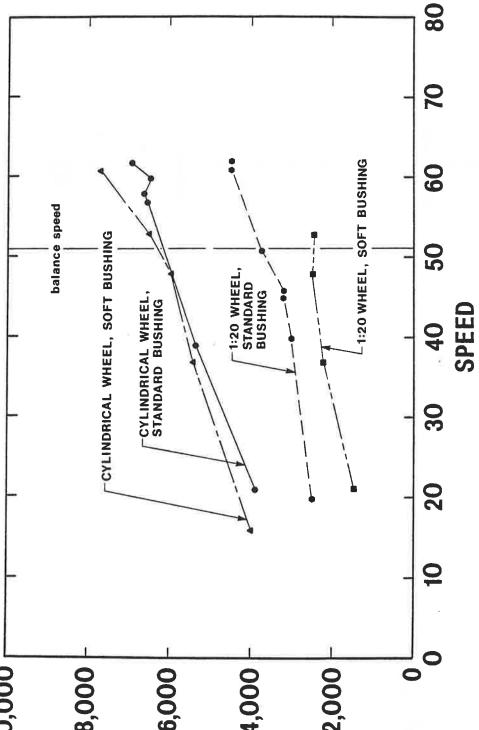
FIGURE A-6. CURVE 311 PEAK LATERAL WHEEL FORCES

STEADY STATE HIGH RAIL LEAD WHEEL LATERAL FORCE, LBS.

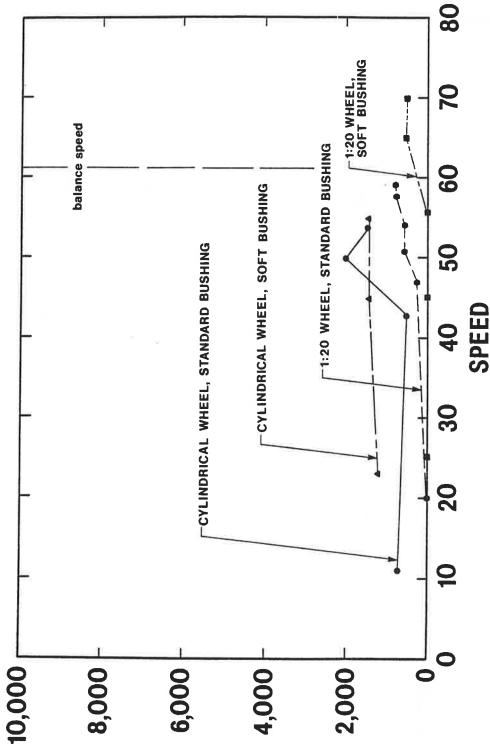
STEADY STATE LATERAL WHEEL FORCES CURVE 3 FIGURE A-7.


FIGURE A-8. CURVE 3 PEAK LATERAL WHEEL FORCES


80

STEADY STATE HIGH RAIL LEAD WHEEL LATERAL FORCE, LBS.


CURVE 43 STEADY STATE LATERAL WHEEL FORCES FIGURE A-9.

CURVE 43 PEAK LATERAL WHEEL FORCES FIGURE A-10.

LEAD WHEEL LATERAL FORCE, LBS.

CURVE 157 STEADY STATE LATERAL WHEEL FORCES FIGURE A-11.

FIGURE A-12. CURVE 157 PEAK LATERAL WHEEL FORCES

80

APPENDIX B: TABULATED RESULTS BY TEST SERIES

LEGEND OF DATA ABBREVIATIONS

A. RUN CODING

example: 25 - G - SC (1R)

Day of the month &

Test Series 4

A - cyl; stiff

B - 1:20; stiff

C - 1:10, stiff

F - 1:10; soft

G - 1:20, soft

I - 1:20, stiff
J - cyl; soft

Test Type

SC - steady curving

RE - route evaluation

ST - stability

TR - acceleration in curve

Sequence Number

1 is the first run of a test type

2 is the second rum of a test type

3 ...

Direction &

R is reverse run
F or blank is forward run
(instrumented wheelset leading
consist)

B. MEASUREMENTS

 $L_{\rm L}$ - Left wheel lateral force, lbs.

 $L_{\rm R}$ - Right wheel lateral force, lbs.

 ΔY_{LF} = Front axle primary lateral displacement, measured at left, in.

- ΔY_{RR} Rear axle primary lateral displacement, measured at right, in.
- ∆XLF Left front primary longitudinal displacement, in.
- ΔX_{RF} Right front primary longitudinal displacement, in.
- ΔX_{LR} Left rear primary longitudinal displacement, in.
- a_vA-l Lateral acceleration; lead axle, lead truck, g's

SERIES A - STEADY CURVING, FORWARD

E.R.	8.00	025 026 020 030	.039	045 045 048	015 018 014	031 019 020 016	009 .010 010 012
∆ X _{LR}	Peak	031 040 029 042	.056 .046 .047	050 052 056 049	023 027 024 034	040 036 028 025	019 .014 024 025
	8.8.	029 030 030	.035 .028 .026	042 036 043 039	028 016 025 025	037 024 031 029	008 .002 013
^ X _{LF}	Peak	044 047 050 040	.041 .035 .033	047 044 054 047	045 035 047	049 038 047 038	028 033 030
~	S.S.	008 004 007	.004	015 009 006	.001 001 003	004 008 007	006 001 002
∆ Y _{RR}	Peak	017 018 023	.015 .014 .017	023 023 024 023	007 017 013	014 019 015	014 018 023 013
	S.S.	004 .001 .001	.013 .011 .009	007 .005 .007	004 001 .004	001 .003 .007	009 .003 .001
∆ Y _{LE}	Peak	016 . 014 .015	.025 .033 .030	019 .017 .021	015 023 .013	015 013 .020	022 .019 .015 015
	S.S.	2500 3000 2000 3750	3650 3800 3500 3000	4500 5300 4575 5250	1500 2000 3000 3000	2600 3100 4250 4000	750 500 1500 1600
$\Delta \mathbf{L_R}$	Peak	5400 6650 7850 8750	4750 4950 4700 3900	7250 9000 9750 9500	3850 5400 6600 6650	6500 7900 6400 6200	2750 3700 5000 4450
	8.8	1500 1475 900 750	5000 5475 5650 6000	3000 3000 2475 2000	1550 1500 1100 1000	1550 1400 900 850	1100 870 900 1150
$\Delta^{\mathbf{L_L}}$		2750 2950 2150 1400	8150 9200 10400 10600	4450 3950 3600 3150	3100 2975 2575 2450	3450 3650 2100 1900	2450 3800 2350 2400
Q.	S.S.	12 27 35 46	11 24 33 -	10 24 34 37	20 38 56 57.5	11 24 36 40	11 40 52 44
SPEED	Peak	13 32 44 47	12 25 36 42	12 25 39 39	21 40 57 58	13 26 37 41.5	11 45 56 52
Curve	Number	m	311	37	43	o 4	157
		22 ASC (1) 22 ASC (2) 22 ASC (3) 22 ASC (4) 22 ASC (4) 22 ASC (5)	22 ASC (1) 22 ASC (2) 22 ASC (3) 22 ASC (4) 22 ASC (4)	22 ASC(1) 22 ASC(2) 22 ASC(3) 22 ASC(4) 22 ASC(5)	22 ASC (1) 22 ASC (2) 22 ASC (3) 22 ASC (4) 22 ASC (4)	22 ASC (1) 22 ASC (2) 22 ASC (3) 22 ASC (4) 22 ASC (4)	22 ASC (1) 22 ASC (2) 22 ASC (3) 22 ASC (4) 22 ASC (5)

SERIES A - STEADY CURVING, REVERSE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
S. Γ_{LL} Γ_{RR}	
L_L L_R <t< th=""><td></td></t<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
S. Peak S.S. Peak S. 11 900 100 800 31 -300 -150 1400 36 -500 -100 2400 35 900 150 1250 36 -400 -50 1250 38 -200 -200 2400 38 -200 -100 2300 1 20 1100 650 1100 52 1600 500 3300 1 54 1400 550 2200 55 1600 500 3300 1 54 1400 550 2200 55 1600 500 3300 1 57 -250 -200 1350 58 -300 -200 3600 1	
S. Peak S.S. Pea 11 900 100 8 31 -300 -150 14 36 -500 -100 24 45 1300 -500 12 26 -400 -50 12 26 -400 -50 12 35 900 150 12 36 -250 -200 24 36 -250 -200 22 36 -250 -100 23 37 1400 650 11 42 1400 550 22 52 1600 500 25 54 900 250 29 45 -300 -200 13 7.5 -250 -200 36 8.5 1300 500 36 8.5 1300 -200 9	
E. Peak S 11 900 31 -300 36 -500 45 1300 12 900 26 -400 35 900 42 1600 54 900 54 900 54 900 54 900 54 900 54 900 54 900 54 900 54 900 54 900 55 1600 56 -400 57 5 -250 68 5 1300	
S. Peak 111 96 111 96 45 136 -56 45 136 -25 38 -26 47 12 126 45 -46 45 -46 47 -5 -46 47 -5 -46 48 -5 -46 48 -5 -46 49 -5 -46 49 -5 -46 40 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	
[N] ALV 8	
SPEED SPEED S.S. S. S	
Peak 112 450 460 470 470 470 470 470 470 470 470 470 47	
3 31 31 43 43 49 49	
22 ASC (1R) 22 ASC (2R) 22 ASC (3R) 22 ASC (5R) 22 ASC (5R) 22 ASC (1R) 22 ASC (2R) 22 ASC (2R)	ASC (3R) ASC (4R) ASC (5R)

	Curve	SPEED	7		I.R.		^ Y _{LF}	Ge.	$^{ m \Delta}{ m Y_{RR}}$		^ × _{L.F}	Fq	^ x _{LR}	R
	Number		Peak	S. S.	Peak	ω. ω.	Peak	S.S.	Peak	S.S.	Peak	8.8	Peak	S.S.
22 ARE (F) 22 ARE (EB)	e	44 46	2000	700 1200	8500 9400	4000			012006 +.016008	-, 006	052 048	040	044	032 032
22 ARE (F) 22 ARE (EB)	311	42	11250 11500	0009	3500 3500	3000			+.024	+.012	+.032	+.020	.040	.036
22 ARE (F) 22 ARE (EB)	37	37 38	3000	2500	9500 9500	0009			018008 024008	008	052 052	040	060	052 056
22 ARE (F) 22 ARE (EB)	43	60 62	2500 2500	1000	6500	3500 35000			+.020	008	044	024 032	030	020
22 ARE (F) 22 ARE (EB)	49	42 38	2500 3000	2000	8500 9000	4500 5000	020008	008	+.028	+.012	+.048	+.032 +.032	+.048	+.040
22 ARE (F) 22 ARE (EB)	157	50	2500	1250	5000	2000	028004	004	020	008	+.032	+.016	+.028	016 012

SERIES A - ACCELERATION IN CURVES

	انا	88	9‡	36	51	98	15
RF	S.S	03	0	0.	0.1	.0	0.1
VΔ	Peak	034	059	045	070	017	023
LF	8.8	020	019	041	042	600	010
Χ∇	Peak	030	043	054	062	034	031
RR	S.S.	3000 1450 6750 3000 .008001016008030020034028	.012 .001017005043019059046	.017 .003015010054041045036	.018 .008019011062042070051	.027 .008 .020 .009034009017008	.028 .008 .021 .008031010023015
ΥΔ	Peak	016	017	015	019	.020	.021
Ē4	S.S.	001	.001	.003	.008	.008	.008
$\Delta \mathbf{r_L}$	Peak	.008	.012	.017	.018	.027	
	5.5.	3000	8300 3200	2000	2600	1300	1300
$\Gamma_{\! m R}$	Peak	6750	8300	8350	9400	3800	4200
	S.S.	1450	0 1450	4100 2850	2500	2500 1400	0 1100
$\Gamma_{\!$	Peak	3000	3150	4100	3800	2500	2450
SPEED	Min.	21	14	80	16	10	16
SP	Мах.	32	43	28	41	40	48
Curve	Number	m	м	37	37	157	157
Run	Number	23 ATR3P3	23 ATR3P4	23 ATR37P3	23 ATR37P4	23 ATR157P3	23 ATR157P4 157

					1	and Level Exceeded for 100 ms	1 ptuck	Abanlut	to and	Aug Es	ceeded	for 100	Sm (
		52.50	-	(kine)	L. L.	(kips)	a.A-1	a.A-1 (g's)	a,A-2	a,A-2 (g's)	a_A-3 (g's)	(g'g)	△ vLF (in)	(in)	∆ yRR	(in)
Run	Speed (mph	(mph)	T ge	100ms	1.0	100ms	abs	100ms	abs	100ms	aps	100ms	aps	100ms	abs	100ms
Manipa					•			;		7	7	9	000	010	A L O .	.012
22AST35	30	36	3.5	3.5	2.5	1.5	•16	80.	.12	. U4	. 21	90.	070.	7 70	* •	
22AST55	aborted	eq														
22AST75	09	78	4.2	2.5	2.6	1.5	.38	.04	.22	90.	.41	80.	.018	.010	.016	.010
Reverse Runs	tuns													ļ		3
22AST35R	32	36	• 5	ιÇ	.2	.2	1	Ĩ	.30	• 04	.18	.04	.020	.014	• 018	.012
22AST55R	26	26	1.0	5.	1.0	.2	.43	.05	*54	90*	.41	• 02	.018	.010	.016	.012
ののまではない		7.4	1.0	4	1.5	.2	.50	90.	. 54	60.	.40	.10	.020	.012	.014	.010
3CC TCW77		•	ŀ													

SERIES B - STEADY CURVING, FORWARD

ï	1					
△ X _{RF}	+.008 +.044 +.044 +.040	012 020 020 024	064 +.052 +.052 +.052	+.040 +.040 +.032 +.024	+.054 +.028 +.040 +.036	+.030 +.032 +.032 +.038
	+.050 +.058 +.056 +.054	020 028 032 036	+.068 +.060 +.060 060	+.056 +.056 +.052 +.040	+.048 +.032 +.046	+.048 +.052 +.048
Eq. o	004 040 044	+.012 +.028 +.028 +.024	032 040 048	028 028 032	016 036 040	024 020 024 024
A XLE	012 054 056	+.020 +.036 +.036 +.036	036 052 060	040 048 052	025 048 052	036 034 040
g v	+.008 +.008 +.012	+.008 +.004 +.004	+.006 +.004 008	+.004 +.008 +.008 +.012	+.008 +.012 +.006 +.006	+.008 +.008 +.004 +.004
^ VRR	9999	+.012 +.010 +.012 +.012	+.012 +.012 +.012 +.016	+.012 +.020 +.020 +.020	+.010 +.016 +.012 +.010	+.012 016 +.012 +.008
AYLF ak S.S.		+.020 +.012	+.020 +.020	+.008 +.012 +.008 +.008	+.016	+.012
∆ y Peak	+.004 +.022 +.024 +.024	+.020	+.032	+.016 +.024 +.024 +.010	+.020	+.020
s s	1500 1000 1250 1500	3300 3800 3300 2800	3500 4000 4000 3500	500 700 500 500	3000 2500 3000 3000	0 250 700 700
L _R Peak	4500 4750 5250 6250	5800 5300 4800 3800	6500 7500 8000 8000	2500 3000 3250 3250	5000 6000 2000 7500	1500 2250 2250 2750
S.S.	2300 1800 1800 1200	3500 4000 4500 4500	4300 3800 3300 2300	1800 1300 1300 130	3800 3300 2300 2050	1800 1550 1000 1300
L _L Peak	3300 3800 3050 2550	6000 7750 8250 9500	5300 4800 4300 3550	3300 3050 2550 4800	5300 4300 3050 2800	3050 2800 2300 2550
ED Max.	10 30 40 44	12 26 36 42	12 26 36 40	20 40 41 40	12 18 37 42	20 50 52
SPEED Min. Ma	19 24 34	24 33 39	24 32 36	20 40 48 49	8 17 36 40	20 44 52 50
Curve	m	311	37	43	6	157
	10 BSC(1) 10 BSC(2) 10 BSC(3) 10 BSC(4) 10 BSC(5)	10 BSC(1) 10 BSC(2) 10 BSC(3) 10 BSC(4) 10 BSC(5)	10 BSC(1) 10 BSC(2) 10 BSC(3) 10 BSC(4) 10 BSC(5)	10 BSC (1) 10 BSC (2) 10 BSC (3) 10 BSC (4) 10 BSC (5)	12 BSC(1) 12 BSC(2) 12 BSC(3) 12 BSC(4) 12 BSC(5)	12 BSC(1) 12 BSC(2) 12 BSC(3) 12 BSC(4) 12 BSC(5)

55							
F	2.3.	+.020 +.020 +.016 +.014	018	+.038 +.032 +.028 +.028	+.016 +.010 +.012 +.008	+.028 +.028 +.020 +.024	+.016 +.012 +.012 +.008
∆ ¾RF	Peak	+.032 +.039 +.028 +.024	024	+.044 +.040 +.036	+.024 +.018 +.024 +.010	+.040 +.040 +.028 +.032	+.030 +.026 +.026 +.028
C C	8.8	022 024 020 018	+.024	024 026 026	012 016 020 020	030 032 024 016	016 016 018 020
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Peak	026 030 028	+.028	028 030 034 034	016 024 026 026	034 040 034 028	028 028 028
e	. v	018 020 020	+.010	018 020 020	016 016 016	016 012 016 020	008 008 010
∆ YRR	Peak	024 024 026	+.018	028 022 032 032	022 024 020	024 018 020 020	016 016 012 016
(C)	S.S.	012 012 006		012 012 010 008	014 014 012 010		+.012 +.002
△ Y _{LF}	Peak	020 020 016		022 014 022 024	018 022 024 020		+.012
	s.s.	250 550 800 1000	500	500 800 1000 1500	250 550 800 800	250 500 800 1000	500 750 750
R	Peak	550 1000 1500 2250	1550 800	800 1500 2250 2500	550 1000 1750 1500	800 1050 1750 2250	550 1050 1500 1250
	S.S.	0000	250	250 0 0 0	0000	500 250 0 0	1000 550 500 500
된	Peak	1000 250 0 0	1000	800 250 250 250	750 250 0 250	1050 250 0	3250 2000 1750 1250
İ	Max.	12 32 40 47	11 28	12 37 38 41	21 43 53 54	11 26 36 41	22 46 57 58
<u> </u>	Min.	10 29 39 46	10	10 35 33 37	20 41 48 48	9 25 36 40	19 45 54
Curve	Number	m	311	37	43	49	157
		10 BSC(1R) 10 BSC(2R) 10 BSC(3R) 10 BSC(4R) 10 BSC(5R)	10 BSC(1R) 10 BSC(2R) 10 BSC(3R) 10 BSC(4R) 10 BSC(5R)	10 BSC (1R) 10 BSC (2R) 10 BSC (3R) 10 BSC (4R) 10 BSC (5R)	10 BSC (1R) 10 BSC (2R) 10 BSC (3R) 10 BSC (4R) 10 BSC (5R)	12 BSC (1R) 12 BSC (2R) 12 BSC (3R) 12 BSC (4R) 12 BSC (5R)	12 BSC (1R) 12 BSC (2R) 12 BSC (3R) 12 BSC (4R) 12 BSC (5R)

SERIES B - ROUTE EVALUATION, FORWARD

	ا. ا	4	2	0	0	9	4	7	0:	0,	82	6	81	Ş	2 0	g <u>⊆</u>	2		9	14		88	į
ᄔ	S. S.	.044	+.052	+.040	+.040	036	044	044	020	+.060	+.048	+.060	+.048	- 1	. +	+ 040	+.032		+.056	+.044		+.028	
AXRF	Peak	.052	+.060	+.052	+.048	040	052	052	032	+.068	+.056	+.072	+.060	1040	10.40	+ 056	+.048		+.064	+.052		+.050	•
Ľ.	S.S.	056	028	064	032	.036	+.024	+.024	+.028	048	044	064	040	040	250	- 036	028		040	044		028	1 2 2
∆X _{LF}	Peak	068	040	076	+.046	.044	+.032	+.032	+.036	064	056	076	052	020	000	200°-	046		048	-,056		040	•
æ	S.S.	.007	+.004	+.012	+*000	.008	+.004	+.008	+.004	+.004	+.006	+.004	+.004	. 10	210.+	+ 008	+.008		+.004	+.006		+.006	
∆YRR	Peak	.016	+.012	+.028	+.014	.016	+.012	+.018	+.012	+.016	+.016	+.008	+.010		070-1	+ 020	+.016		+.012	+.010		+.012	1
YLF	S.S.	.018	+.010			900				+.040 +.012	+.024				070-1								
χ	Peak	.028	+.028			.016				+.040	+.032			-	070.1	4.010							
	S.S.	1500	2000	3000	2000	1800	1800	2300	2050	3500	2000	4000	2000	000	000	1500	1000		4000	3000		800	
$_{ m R}$	Peak	6500	6750	7500	7250	2800	3050	3300	3300	7250	9750	7250	7250	יו מיו	2500	3300	4500		7250	8000		2250	7
	S.S.	800	2800	800	1050	4000	2600	4500	4500	2300	3400	3300	2800	6	000	000	800		1800	1800		1300	2001
7	Peak	1800	4300	2050	2300	8750	9500	9750	9500	3300	3550	3800	3550	000	1000	1550	1800		2800	3300		2300	7700
SPEED	Max.	46	34	48	47	45	44	44	44	40	37	40	40	1	# T	# C	62		44	44		64	20
SP	Min.	42	9	46	44	42	42	43	40	37	36	36	37	\$	4 4	î (8 6		43	43		55	5
Curve	Number	m				311				37				\$	£.			49			157		
		10 BRE (F)	10 BRE (FB)	12 BRE (F)	12 BRE (FB)	10 BRE (F)	10 BRE (FB)	12 BRE (F)	12 BRE (FB)	10 BRE (F)			12 BRE (FB)			10 BKE (FB)	12 BRE (FB)	10 BRE (F)	12 BRE (F)		10 BRE (F)	12 BRE (F)	

		מ	CDERD	ų		I.		$\Delta \mathbf{Y}_{\mathbf{LF}}$	Fe-	∆ Y ₁	æ	$\Delta \mathbf{x_{LF}}$	Fe	ΔXRF	Ľ
	Number	Min.	Max.	Peak	S.S.	Peak	S.S.	Peak	8.8	Peak	S.S.	Peak	S.S.	Peak	S.S.
10 BRE (R) 12 BRE (R)	ю	48	49	250	00	2800 2750	1250	020010	010	032024 024016	024 016	038026 022012	026	+.024 +.016 +.028 +.014	+.016 +.014
10 BRE (R) 12 BRE (R)	311	36	44	1800	800 250	500	0 750	010006	900*-	+.034	+.034 +.020 +.014 +.008	+.030	+.022	024020 012010	020
10 BRE (R) 12 BRE (R)	37	38	39	0 250	00	2500 2500	1500	016012	012	028	024 018	044	036	+.034	+.028
10 BRE (R) 12 BRE (R)	43	52 56	56	0 250	00	1500	800 1000	020014	014	036 024	020	016 014	012	+.028 +.028	+.020
12 BRE (R)	49	42	44	200	0	2750	1500			028	020	018	014	+.030	+.020
12 BRE (R)	157	26	62	1250	200	1750	800			018	012	024	012	+.016	+.012

Ħ	S.S.	+.052	+.052	+.052	+.052	+.032	+.032
ΔX_{R}	Peak	4300 2800 6000 1500 +.012 +.008 +.012 +.008040028 +.060 +.052	6000 2000 +.028 +.020 +.016 +.008040028 +.060 +.052	4500 +.028 +.016 +.012 +.004048036 +.060 +.052	060032 +.000 +.052	032020 +.048 +.032	+.012 +.004032016 +.048 +.032
Ę.	s.s.	028	028	036	032	020	016
√×	Peak	040	040	048	090		032
æ	S.S.	+.008	+.008	+.004	+.004	+.004 +.002	+.004
$\Delta \mathbf{Y}_1$	Peak	+.012	+.016	+.012	4500 +.028 +.020 +.012 +.004	+.004	+.012
Ē4	.s.	+.008	+.020	+.016	+.020		
$\nabla \mathbf{x_L}$	Peak	+.012	+.028	+.028	+.028		
	S.S.	1500	2000	4500		200	800
$L_{ m R}$	Peak	0009	0009	7000	8000	2000	2500
	S.S.	2800	2800	5800 4300	4050	3300 1800	1800
$\mathbf{I_{L}^{I}}$	Peak	4300	4300	2800	5550	3300	3300
SPEED	Min.	1	ı	ı	ı	t	ı
SP	Max. Min.	34	44	32	42	44	54
Curve	Number	æ	m	37	37	157	157
Run	Number	10-BTR3P3	10-BTR3P4	10-BTR37P3	10-BTR37P4	12-BTR157P3	12-BTR157P4

Runder Appendix Min max Tr. (k1ps) abs						Peak	Peak Measurements - Absolute and Level Exceeded for 100 ms	ments -	Absolut	te and I	Level Ex	ceeded	for 100	m (
In max abs 100ms ab		Speed	(dom)	L	(klps)	I,R	(kips)	ayA-1	(g,b)	ayA-2	(s,b)	ayA-3	(8,6)	$\Delta_{ m y^{LF}}$	(1n)	$\Delta_{\mathbf{y}}$ RR	(in)
35 37 2250 2000 1250 14 .04 .14 .04 .20 .08 .004 55 57 2250 1000 2250 1000 .24 .12 .26 .08 .28 .08 .08 .08 .006 .006 .00 .28 .10 .32 .08 .028 .08 .010 .001		min	шах	aba	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms
55 57 2250 1000 224 12 26 .06 .28 .09 .26 .08 .28 .08 .06 .006 56 69 2750 1250 2000 1000 .28 .10 .32 .08 .028 .08 .010 35 36 1200 1750 750 .12 .04 .12 .06 .12 .04 .010 56 58 1250 1000 1750 750 .30 .08 .30 .08 .30 .08 .30 .08 .30 .09 .010 72 77 1500 1700 500 .32 .10 .44 .08 .34 .06 .010	~	35	37	2250	2000	2000	1250	14	• 04	.14	. 04	.20	. 08	.004	.004	800.	900.
56 69 2750 1250 2000 1000 .28 .10 .32 .08 .028 .08 .010 35 36 1200 1250 1750 750 .12 .04 .12 .06 .12 .04 .010 56 58 1250 1000 1750 .30 .08 .30 .08 .20 .04 .008 72 77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010		55	57	2250	1000	2250	1000	. 24	.12	. 26	80.	.28	80.	900.	.004	.012	.008
35 36 1200 1250 1750 750 .12 .04 .12 .06 .12 .04 .010 56 58 1250 1000 1750 750 .30 .08 .30 .08 .20 .04 .008 72 77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010	<u>~</u>		69	2750		2000	1000	. 28	.10	.32	80.	.028	80.	.010	.010	.012	.008
35 36 1200 1250 1750 750 .12 .04 .12 .06 .12 .04 .010 56 58 1250 1000 1750 750 .30 .08 .30 .08 .20 .04 .008 72 77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010																	
35 36 1200 1250 1750 750 .12 .04 .12 .06 .12 .04 .010 56 58 1250 1000 1750 750 .30 .08 .30 .08 .20 .04 .008 72 77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010																	
36 1200 1250 1750 750 .12 .04 .12 .06 .12 .04 .010 58 1250 1000 1750 750 .30 .08 .30 .08 .03 .04 .008 77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010	æ	ans															
58 1250 1000 1750 750 .30 .08 .30 .08 .20 .04 .008 77 1500 1700 500 .32 .10 .44 .08 .34 .06 .010	5R	35	36	1200		1750	750	.12	.04	.12	90°	.12	• 04	.010	.010	900.	900.
77 1500 1000 1700 500 .32 .10 .44 .08 .34 .06 .010	5R)	99 (28	1250		1750	750	.30	.08	.30	.08	.20	.04	800.	.004	.010	.004
	5R	27 (77	1500		1700	200	.32	.10	.44	80.	.34	90.	.010	.012	.014	.008

SERIES C - STEADY CURVING, FORWARD

∆ XRF	Peak S.S.	+.036 +.028			+.028 +.020	016012				+.032 +.028		+.044 +.040		+.036 +.028			+.026 +.020	+.032 +.028			+.030 +.026	+.030 +.022	+.028 +.020	
لئ	s:	028 +.	024 +.			+.024				028 +.				024 +.				020 +.				016 +.		
∆X _{LF}	Peak	032	032	042	040	+.028	+.028	+.020	+.016	032	036	040	048	032	032	036	042	028	032	036	042	020	034	700
∆YRR	S.S.	+.010			900*+ 3	- 004				+.008				1 +.010		0 + 0		010.+ 3		4.004		1 +.012		
7	Peal				1 +.012	1016				+.010				1+.014							4.012	+.014		
^YLF	Peak S.S.	+.024 +.016	+.020 +.012	+.016 +.008	+.016 +.008	014004	016008		024012	+.020 +.012	+.028 +.016		+.024 +.012	+.016 +.008	+.020 +.012		+.016 +.008	+.020 +.012	+.020 +.012	+.020 +.010	+.022 +.012	+.016 +.004	+.016 +.004	
~	S.S.	1500	1250	2000	2500	2500	2000	2250	1750	2500	3250	3500	3500	200	1000	1000	1500	2000	2500	3000	3000	0	200	6
LR	Peak	4000	4250	6250	6500	3750	3500	3000	2500	4750	0009	7000	7250	2250	2750	3000	4500	3500	0009	6750	6750	2000	2250	6
د.	S.S.	2000	1500	1000	1000			4000		2500	2250	2500	2000	1500	1750	1500	750	2000	2250	2500	1500	1500	1500	000
L	Peak	2500	2000	1750	1500	5000	0009	6750	7500	3500	3500	3500	3000	2500	2500	2500	2000	3250	3250	3000	2750	3000	2500	0000
SPEED	Max.	15	56	44	48	10	25	37	41	12	27	36	41	20	42	51	65	10	27	49	42	25	45	C
S	Min.	10	25	42	46	80	22	33	40	80	24	33	38	19	42	50	63	6	25	47	42	18	44	0.0
Curve	Number	m				311				37				43				49				157		
			19 CSC(2)	9 CSC (3)	19 CSC (4)	19 CSC (1)	19 CSC(2)		19 CSC (4)	19 CSC (1)	19 CSC(2)	19 CSC (3)	19 CSC(4)	19 CSC (1)	19 CSC(2)	19 CSC (3)	19 CSC (4)	19 CSC (1)	.9 CSC(2)	19 CSC (3)	19 CSC (4)	19 CSC(1)	19 CSC (2)	10 000 01

	8.8.	114	.012	112	.014	014	- 016	910	010	010.	.024	020	018	910	800	900	800.	800	.014	016	910	0.14	.004	900	012	
AXRF	တ																		·				·	Ĭ	•	
۷	Peak	.016	.012	.01	.016	016	- 020		O.Lo	.012	.024	.02	.022	.01	. 008	.008	.012	.01	.016	.02	.02	.02	. 008	.012	.01	
ě.	8.8	016	012	012	012	018	020	7.0	#TO.	.018	016	024	022	020	014	004	010	004	016	026	022	024	004	- 008	-, 008	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Peak	016	016	020	016	020	022	220.	910.	.024	020	028	024	034	016	014	016	014	020	028	032	036	012	016	016	
œ	8.8.	008	016	016	016	000	800	000	010	.012	012	012	016	020	016	018	016	016	014	014	014	016	-, 008	012	-, 006	
∆ YRR	Peak	008	016	018	018	010	610	210.	910.	.020	012	014	016	024	016	020	018	020	016	020	022	020	016	016	020	
G.	S.S.	008	008	- 008	008	800	010	210.	.004	.002	012	012	-,008	012	.016	012	010	006	016	012	012	012	012	008	-,008	
∆ Y _{LF}	Peak		020	022	020	910	900	070.	.020	016	032	-,028	032	024	.026	022	024	022	028	024	026	032	034	024	- 02R	
	S.S.	0	250	200	1000	טטג	2	0 0	250	200	0	250	200	1000	0	200	200	1000	0	0	200	750	0	0	250	
兄	Peak	200	750	1500	1500	1500		000	T000	1000	200	1000	1500	2000	200	1250	1500	2000	200	1000	1500	2000	1000	750	0001	
	s.s.	0	0	0	0	c	•	0	250	250	200	0	0	0	0	0	0	0	200	0	0	0	200	0	C	
ᅺ		1250	200	200	200			000	750	1000	1250	750	200	250	500	2002	250	0	2000	1000	2005	200	2000	1000	002	
e	Max.	14	28	41	45	0.1	9 6	97	34	39	14	28	3.	42	20	40	20	28	12	56	55	40	20	46	2	
SPEED	Min.	&	28	39	41	o	9	07	33	32	60	24	3	38	20	40	49	28	œ	24	33	34	60	45	7	
Curve	Number	٣				וני	116				37	3			43	?			49	:			157			
		19 CSC (1R)					19 CSC (1K)	9 CSC (2R)		19 CSC (4R)	19 CSC (1R)	10 (20/30)			(4L) 7S7 (1B)	19 (26/25)	19 CSC (3R)		19 CSC (1R)	10 (20 (28)	19 CGC (3B)		(80,080,01	9 CSC (2R)	10 000 (30)	

SERIES C - ROUTE EVALUATION, FORWARD

	Curve	SP	SPEED	7		$\mathbf{r}^{\mathbf{L}}$		ΔY_{LF}	¥Δ	RR	$\Delta \mathbf{x}_{\mathbf{j}}$	F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹F
	Number	Min.	Мах.	Peak	S.S.	Peak	S.S.	c S.S. Peak S.S. Peak S.S. Peak S.S. Peak S.S. Peak S.S.	Peak	s.s.	Peak	s.s.	Peak	8.8
19 CRE (F)	ю	38	43	25(1500	5250	2000	2500 1500 5250 2000 +.020 +.012 +.004 .002040030 +.032 +.020	+.004	.002	040	030	+.032	+.020
19 CRE (F)	311	32	32	6500	6500 4000	3250	2000	3250 2000022008022008 +.022 +.020020018	1022	008	+.022	+.020	020	018
19 CRE (F)	37	32	33	3250	3250 2500	6500	3000	6500 3000 +.024 +.012 +.004 +.002040036 +.040 +.032	+.004	+.002	040	036	+.040	+.032
19 CRE (F)	43	41	43	3000	2000	3500		750 +.018 +.008 +.014 +.008040024 +.036 +.030	1 +.014	+.008	040	024	+.036	+.030
19 CRE (F)	49	41	42	2750	2750 2000	6750	3000	6750 3000 +.024 +.014 +.008 +.004044036 +.028 +.024	1 +.008	+.004	044	036	+.028	+.024
19 CRE (F)	157	52	54	2500	2500 1500		200	2000 500 +.010 +.004 +.010 +.004042028 +.024 +.012	1 +.010	+.004	042	028	+.024	+.012

	Curve	SP	EED	Ţ		r,		$\Delta \mathbf{Y_I}$	ĔĮ.	∇∇	R	ΔX	LF	AXRF	\F
	Number	Min.	Min. Max.	Peak	Peak S.S.	Peak S.S.	S.S.	Peak	s.s.	Peak S.S. Peak S.S.	S.S.	Peak	Peak S.S. F	Peak	Peak S.S.
19 CRE (R)	m	31	31 32	200	0	1000 002401201614020016 .016	0	024	012	016	14	020	016	.016	.012
19 CRE (R)	311	0	25	200	0	1500 250 .028 .012 .020 .012 .024 .022016012	250	.028	.012	.020	.012	.024	.022	016	012
19 CRE (R)	37	36	38	200	0	1750	750	020	008	750020008018016026018 .028 .024	016	026	018	.028	.024
19 CRE (R)	43	20	20	200	0) 1250		024	012	500024012018016020012 .018 .014	016	020	012	.018	.014
19 CRE (R)	49	42	44	200	0	0 2500 1000036008028016040032	1000	036	008	028	016	040	032	.030 .024	.024
19 CRE (R)	157	53	28	200	0	0 1000 250034008026008018008 .012 .006	250	034	008	026	008	018	-,008	.012	900.

SERIES C - (BALLASTED) STEADY CURVING, FORWARD

		142	+.032	+.028	+.012	+.020	018	022	020	016	024	+.026	+.048	+.044	+.046	+.044	+.042	+.034	+.028	+.028	+.024	+.042	+.034	+.030	+.032	+.028	+.032	+.024	+.022	+.028	+.020
ΔXRF	S.									-	-					•		-													
Χ۵	Peak	+.046	+.038	+.030	+.016	+.024	022	024	024	022	030	+.028	+.050	+.056	+.056	+.048	+.048	+.040	+.032	+.034	+.032	+.046	+.036	+.032	+.036	+.032	+.044	+.036	+.036	+.044	+.040
떹	က လ	028	030	028	036	036	+.030	+.024	+.020	+.014	+.010	024	044	042	044	046	026	028	028	030	032	028	032	032	032	032	022	022	024	024	020
^ X _{LF}	Peak	036	040	040	044	044	+.036	+.030	+.028	+.024	+.024	028	046	052	052	050	032	040	040	040	044	034	040	040	040	040	026	036	038	040	040
æ	8.8	+.014	+.012	+.008	+.006	+.008	008	008	004	+.004	+.004	+.012	+.008	+.006	+.004	+.006	+.016	+.012	+.012	+.012	+.010	+.014	+.010	+.010	+*008	+.008	+.012	+.010	+.012	+.008	+.008
∆ Y _{RR}	Peak	+.018	#*.018	+.014	+.010	+.016	016	014	012	+.014	+.012	+.014	+.010	+.012	+.010	+.016	+.016	+.020	+.014	+.020	+.020	+.016	+.014	+.012	+.012	+.020	+.016	+.016	+.020	+.016	+.020
(Eu	8.8	+.012	+.012	+.016			002	002	006			+.014	+.018	+.020			+.012	+.012	+.016			+.010	+.012	+.018			+.004				
^ Y _{LF}	Peak			+.024			016					+.026	+.028	+.036			+.022	+.022	+.022			+.020	+.020	+.024			+.018	+.018	+.018		
	S.S.	1000	T200	1750	2000	2500	3000	3000	2000	2000	2000	3000	3250	3000	3400	3500	250	250	750	1000	1000	1750	2000	2500	3000	3500	0	250	250	200	200
7.	Peak	4000	4500	0009	6500	8250	4500	4000	3500	3500	3250	0009	6250	7750	8000	7700	2500	3250	3000	3750	4250	4250	2000	0009	7100	8500	1500	2000	2000	2750	2500
	S.S.	1750	1250	1000	1000	750	4000	4000	4000	2000	5500	3500	3500	2500	2400	2250	2000	2000	1250	1000	200	2250	2250	1750	1500	1000	1500	1250	1250	1000	750
7,	Peak	2750	2250	1750	1500	1250	6500	6500	8000	0006	9200	2000	2000	3500	3600	3250	3600	3250	2500	2000	1500	3500	3500	3000	2600	2250	3250	2500	2500	2000	2000
ED	Max.	20	30	41	46	20	14	24	32	38	44	14	25	32	40	44	20	38	49	, C	62	15	25	35	42	46	25	46	99	99	99
Cards	Min.	19	29	40	43	48	12	22	32	38	42	10	22	32	36	39	18	35	48	5.7	61	13	23	34	38	44	24	42	64	62	09
Curve	Number	e					311					37					43	}				49					157				
		20 CSC (1)	-	20 CSC (3)	20 CSC(4)	20 CSC(5)	20 CSC(1)	_	_			20 CSC(1)		_			20 CSC (1)		20 CSC (3)		20 CSC (5)	20 CSC (1)					20 CSC(1)				20 CSC(5)

SERIES C - (BALLASTED) STEADY CURVING, REVERSE

	0.0	.016 .014 .010 .012	006 008 012 016	. 020 . 028 . 020 . 020	.008 .009 .008 002	.012 .012 .012 .016	012 004 008 008
A XRF	ام				ı		.020 .010 .016 .016
	Peak	.018 .016 .012 .016	008 010 022 018 020	.024 .030 .022 .024	.010 .010 .010 008	.016 .028 .020 .022	0.0000
Pig (v.	010 .008 008 008	.024 .024 .016 .016	012 012 012 020	016 010 004 006	009 014 012 008	014 012 010 012
ALF	Peak	018 016 020 016	.028 .020 .020 .022	020 020 024 028	020 014 012 014	015 020 020 020	018 020 020 020
8	8.8	012 012 018 020	.008 .010 .016 .016	012 018 020 020	014 012 016 014	.002 008 012 008	004 004 012 018
∆ YRR	Peak	012 016 020 024	.015 .016 .022 .026	014 020 028 034	020 016 024 020	.004 018 016 014	004 010 020 016
	s.s.	016 016 012	.008	.024 016 012	012 016 016	008 016	3016 3012 3016
V VLF	Peak	028 020 022	.020	.040 038 040	028 026 034	016 030 038	028 028 038
	8.8.	250 250 750 1000 1500	250 0 0 0	250 250 1000 1500 2000	0 500 500 1500	250 250 500 1000 1500	0 250 500 500
LR	Peak	750 750 1750 2250 2500	1500 1000 1000 500 500	1250 1200 2000 2500 3500	250 1500 1500 2000 3000	750 1000 1500 2000 3000	0 500 1000 1250
	S.S.	250 0 0 0	250 500 750 1000 1500	500	250 0 0 0	750 0 0 0	750 250 250 250 250 250
7,	Peak	1250 500 500 500 500	1000 1500 1500 2000 2500	1500 1000 500 250 500	1500 500 500 250 250	2000 1250 500 500 500	2750 1750 1000 1000 1000
<u>@</u>	Max.	20 30 40 50	14 24 35 40 45	16 27 38 42 46	20 40 50 60	15 25 34 40 44	25 46 55 60 62
SPEED	Min.	19 28 38 42	14 24 33 40	15 22 32 32 34	20 40 50 60	15 23 30 38 43	24 44 49 55
Curve	Number	m	311	37	4 33	49	157
ວິ	N.	20 CSC (1R) 20 CSC (2R) 20 CSC (3R) 20 CSC (4R) 20 CSC (5R)	CSC (1R) CSC (2R) CSC (3R) CSC (4R) CSC (5R)	20 CSC (1R) 20 CSC (2R) 20 CSC (3R) 20 CSC (4R) 20 CSC (5R)			20 CSC (1R) 20 CSC (2R) 20 CSC (3R) 20 CSC (4R) 20 CSC (5R)

	(1n)	100ms	.008	.012	.012		.012		800.	.010	010	.020
	∆ "RR	aps	.008	.012	.012		.016		800.	.012	.010	.020
	(1n)	100ms	.012.	*008	.008		900.		800.	800.	900*	900.
O ms	A vLF	abs	.016	910.	.016		.014		90.	910.	.015	.016
for 10	(8,6)	100ms	.05	.04	90.		80.		.03	.04	.04	90.
xceeded	a _v A-3	aps	. 20	.36	. 44		• 38		.13	. 20	.22	.22
Level E	(8,8)	100ms	• 04	90.	.07		90.		90.	90.	.08	.07
ite and	ayA-2	sqe	.12	. 25	.30		. 28		.30	54	.43	.42
Absolu	(g'g) .	100ms	.03	• 05	• 05		.04		.04	• 04	90.	90.
ments -	ayA-1	aps	.12	. 24	34		.32		.16	• 30	.32	.32
Peak Measurements - Absolute and Level Exceeded for 100 ms	(kips)	100ms	1.2	1.0	1.0		1.0		£.		6.	۴,
Peak	LR	abs	1.5	1.6	1.6		1.7		ν, ·	1.0	1.0	1.0
	(kips)	100ms	1.5	1.5	1.5		1.0		ī.	5.	.5	.5
	Į.	aps	2.2	2.5	3.4		3.0		3.	1.0	1.0	1.0
	(udm)	max	36	26	89		73		38	26	29	72
	Speed (mph)	utu	34	20	62		54	ns	35	51	22	26
	Run	Number	19C ST35	19C ST55	19C ST65	(rain)	19C ST75	Reverse Runs	19C ST35R	19C ST55R	19C ST65R	19C ST75R

100 Miles	D yrm	100ms abs 100ms abs 100ms		- 03 .014 .008	.014 .008	.014 .008 = .014 .006	.014 .008 = .014 .006 .014 .006 .014 .006	.014 .006 .014 .006 .014 .006	.014 .008014 .006014006	.014 .006 .014 .006 .014 .006 .014 .006	.014 .008014 .006 .014 .006 .014 .006 .014 .006	.014 .008014 .006 .014 .006 .014 .006 .014 .007 .014 .007 .014 .012 .014 .012
, 1012) C # 1	ayA=3 (9'8)	abs 100ms	5	• 03	40.	. 05	.05	.05	. 0	.05 .05 .05	.05 .05	. 05 . 05 . 06 . 06 . 06 . 06 . 06 . 06
(s. 6)	7	100ms abs	.02 .18		.03 .35							
	(g.s) a _y A-2	100ms abs	.02 .12		.03 .18						,	•
	a _y A-1 (aps	.14		. 21							
	LR (Kips)	abs 100ms	1.5 1.0		2.0 1.0							
(80,00)		100ms a	1.5 1		1.2							
•	T _T (q	abs x	2.5	3.0								
	Speed (mph)	min max	35 36	44 57		64 68			ed ed S	erer :	en en . L et	en en 5 t et 80
	Rim	Number	20C ST35	20C ST55		20C ST65	20C ST65 20C ST75	20C ST65 20C ST75	20C ST65 6. 20C ST75 6. Reverse Runs	20C ST65 20C ST75 Reverse Rull 20C ST35R	20C ST65 20C ST75 Reverse Ru 20C ST35R 20C ST35R	20C ST65 20C ST75 Reverse Run 20C ST35R 20C ST55R 20C ST55R

Min. Max. Peak S.S. Peak S.S. <th< th=""><th>3 311 37 14 18 3000 1700 37 38 2000 600</th><th></th><th>Curve</th><th>SE</th><th>CEED</th><th>II.</th><th></th><th>Į,</th><th></th><th>$\nabla \mathbf{x}$</th><th>H.</th><th>RR</th><th></th><th>ŢŢ.</th><th>ΧΔ</th><th>RF</th></th<>	3 311 37 14 18 3000 1700 37 38 2000 600		Curve	SE	CEED	II.		Į,		$\nabla \mathbf{x}$	H.	RR		ŢŢ.	ΧΔ	RF
311 37	311 37 14 18 3000 1 16 18 1500 37 38 2000		Number	Min.	Max.		S.S.	Peak		Peak	S.S.	8.8		8.0	Peak	Peak S.S.
311 37	311 37 14 18 3000 1 16 18 1500 37 38 2000		m								3					
37 14 18 3000 1700 4200 1000 +.032 +.018 +.024 +.008144112 16 18 1500 500 0024010046032104064 37 38 2000 600 5500 1500 +.032 +.016 +.032 +.020176120 43	37 14 18 3000 3 16 18 1500 37 38 2000		311													
16 18 1500 500 0024010046032104064 37 38 2000 600 5500 1500 +.032 +.016 +.032 +.020176120 43	16 18 1500 37 38 2000 43	7 FSC(1)	37	14	18	3000		4200	1000	+.032	+.01.8		144		+.180	+.148
37 38 2000 600 5500 1500 +.032 +.016 +.032 +.020176120 43	37 38 2000 43	7 FSC (1R)		16	18	1500		200	0	024	010		104		+.128	
43	43	7 FSC(2)		37	38	2000		5500	1500	+.032	+.016		176		+.232	100
49			43													
	49		49													

157

Run	Speed	Speed (mph)	占	(kips)	r.	L _R (kips) a _y A-	ayA-1	(6,8)	-1 (g's) a_yA-2 (g's) a_yA-3 (g's) Δ_y	(g's)	ayA-3	(a's)	^LF	(in)	AyRR	(in)
Number	min	max	aps	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms
17F ST35	35	36	1500	200	200	200	.14	90.	.12	• 04	. 20	.04	.016	.008	.010	.010
17F ST55	34	28	1500	200	200	200	.16	.02	.20	• 04	.24	90.	-016	.008	•01.6	.012
17F ST65	35	89	1500	200	200	200	.30	.04	. 20	* 08	. 26	.08	.020	.008	.014	.01.2
17F ST75	34	9	1500	200	200	200	.30	.02	.16	• 04	. 26	.04	.016	.008	.016	.012
Reverse Runs	Runs															
17F ST35R	R 34	36	1200	200	200	200	.12	.02	.22	90.	.10	.02	.018	800.	.016	.012
17F ST55R	R 32	25	1000	200	1000	200	. 22	• 04	.32	• 04	.16	.04	.020	.012	.030	.020
17F ST65R	R 32	75	1200	200	200	200	. 20	90/	.32	90.	. 20	.04	.020	.012	.028	.020
17F ST75R	R 34	75	1200	200	1000	200	. 24	90.	• 26	90 •	. 20	.04	.020	.012	.020	.016

SERIES G - STEADY CURVING, FORWARD

45.	+.090 +.104 +.960 +.096 +.088	140 162 144 152	+.150 +.168 +.168 +.168	+.080 +.088 +.080 +.088	+.130 +.136 +.128 +.144 +.120	+.050 +.040 +.004 +.088 +.072
∆X _{RF}	+.160 +.196 +.172 +.176 +.176	195 236 +.232 204 208	+.195 +.208 +.216 +.212 +.212	+.150 +.184 +.180 +.192 +.164	+.160 +.176 +.164 +.192 +.168	+.110 +.136 +.164 +.188 +.204
4	110 104 96 088	+.140 +.128 +.144 +.128 +.088	110 128 128 120	700 080 080 080	110 120 128 128	050 072 048 040
AX _{LF}	-1.70 176 176 172 168	+.185 +.176 +.192 +.124 +.180	170 184 +.196 200	130 152 172 172 170	150 176 168 176	115 152 132 128
∆Y_RR	+.004 +.006 +.004 +.008	002 0 +.004 008	+.008 +.008 +.020 +.016	+.004 0 +.008 +.004 +.006	004 +.004 +.016 +.008	008 0 +.004 +.004
N	+.020 +.024 +.020 +.024 +.032	008 +.008 +.008 020	+.020 +.020 +.028 +.038	+.012 +.008 +.016 +.020 +.020	032 +.032 +.040 +.026 +.048	024 +.012 +.020 +.024 +.024
^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+.020 .010 +.020 +.008 +.028 +.012	028022 032016	+.020 +.008 +.020 +.008 +.028 +.012 024 +.008	+.020 +.010 +.020 +.008 +.020 +.010 +.024 +.008	+.016 +.008 +.036 +.012 +.032 +.012	+.014 +.008 +.024 +.010 +.022 +.008
ĺ	250 500 1000 1500 1500	500 250 0 0	1250 1500 2000 2500 2500	250 250 500 500	1250 1500 1500 2000 2000	0 0 500 750
.T.	2500 3000 4500 5600	1500 1250 1000 750 750	5000 5500 6250 7250	2000 2600 3000 4250 4000	3750 4250 4500 5000	500 1600 1750 2250 2250
1	500 500 500 250 100	750 1000 1250 2000 2000	2000 1250 1000 750 500	.1000 750 250 250 250	2000 1500 1000 750 500	1250 750 750 500 500
7,	2000 1500 1500 1250	2250 3100 3600 5250 7600	4000 3000 2500 2500 2000	2500 2100 1500 1000	3500 3000 2750 2250 2000	200 2500 1500 1600 1500
G	23 30 42 48 51	11 25 34 42 44	14 24 38 40	22 38 50 59	18 25 36 41 46	26 46 56 68 68
SPEED	22 28 38 48 48	10 22 32 37 42	22 32 36 44	20 37 48 58 58	16 23 33 44	22 45 56 63
Curve	m	311	37	4 33	49	157
	25 GSC(1) 25 GSC(2) 25 GSC(3) 25 GSC(4) 25 GSC(5)	25 GSC(1) 25 GSC(2) 25 GSC(3) 25 GSC(4) 25 GSC(5)	25 GSC (1) 25 GSC (2) 25 GSC (3) 25 GSC (4) 25 GSC (5)	25 GSC(1) 25 GSC(2) 25 GSC(3) 25 GSC(4) 25 GSC(5)	25 GSC (1) 25 GSC (2) 25 GSC (3) 25 GSC (4) 25 GSC (5)	25 GSC (1) 25 GSC (2) 25 GSC (3) 25 GSC (4) 25 GSC (4)

SERIES G - (BALLASTED) STEADY CURVING, REVERSE

S.S.	.070 +.056 +.056 +.040 +.040	080	+.110 +.080 +.080 +.064 +.080	+.060 +.048 +.048 +.048 +.048 +.080 +.080 +.056 +.072	+.035 +.032 +.016 +.008 +.016
× ×					
Peak	+.148 +.148 +.140 +.128 +.132	125 128 128 128	+.050 +.148 +.144 +.104	+.090 +.104 +.112 +.108 +.092 +.110 +.136 +.136 +.136	+.070 +.064 +.046 +.052
S.S.	060 .056 056 056	+.090 +.056 +.080 +.072 +.064	060 088 080 080	505 040 048 040 070 072 096	030 040 048 056
^X _{L.F}	130 124 128 124	+.130 +.104 +.128 +.112 +.112	120 136 144 164	080 088 104 104 110 152 152 153	050 080 092 092
8. S.	016 020 016 016	+.016 +.020 +.024 +.024 +.032	032 028 024 024	016 012 010 012 008 032 032 038	+.004 012 012 010
AYRR Peak	032 032 038 044	+.024 +.030 +.040 +.040	056 048 040 042	036 036 026 026 024 050 050 052	+.024 032 032 038
. S.	008	008 +.004 +.012	012	+.008 008 012 012	+.008 004
ALF Peak	016016020020	024 +.016 +.024	024	+.020 +.008036008012006040012052012	+.020
8.8.	0 0 500 750 1250	00000	500 1000 2000 2000	250 250 500 1000 0 500 750	0 0 200
L _R Peak	0 750 1500 2000 3250	250 0 0 0 250	250 1250 2000 4500 4750	0 500 1250 2750 3750 3750 0 750 1500 1750	0 600 1000 1750 2000
S.S.	250 250 0 0	250 500 1000 1250 1500	00000	1000 500 250 0 250 250 0 0	1500 1250 750 500 500
L _L Peak	1250 1000 1000 750 600	1000 1250 1750 2250 2500	1000 250 0 250 500	2000 1500 750 500 1000 1250 1000 500 250	2500 2000 2100 1750 1250
ED Max.	20 30 40 45 50	12 26 36 42 44	12 28 38 46 49	20 40 51 61 17 27 27 44 40	27 47 58 68 72
SPEED Min. Ma	19 28 38 44 48	10 24 34 39 40	10 25 34 35 36	20 40 50 64 15 15 44 44	24 44 52 64
Curve Number	м	311	37	43	157
	25 GSC (1R) 25 GSC (2R) 25 GSC (3R) 25 GSC (4R) 25 GSC (4R)	25 GSC (1R) 25 GSC (2R) 25 GSC (3R) 25 GSC (4R) 25 GSC (5R)	25 GSC (1R) 25 GSC (2R) 25 GSC (3R) 25 GSC (4R) 25 GSC (5R)	25 GSC (1R) 25 GSC (2R) 25 GSC (3R) 25 GSC (4R) 25 GSC (5R) 25 GSC (1R) 25 GSC (1R) 25 GSC (1R) 25 GSC (3R) 25 GSC (3R) 25 GSC (3R) 25 GSC (5R)	25 GSC (1R) 25 GSC (2R) 25 GSC (3R) 25 GSC (4R) 25 GSC (5R)

Run	Curve	SP		T.		L _R		$\Delta \mathbf{Y_{L}}$	Ē	$\Delta \mathbf{Y}_1$	æ	^ ×	F.	X \q	RF
Number	Number	Max. Min.		Peak	S.S.	Peak	S.S.	Peak S.S. Peak S.S. Peak S.S. Peak S.S. Peak S.S.	S.S.	Peak	S.S.	Peak	S.S.	Peak	S.S.
25-G-TR3P3	ю	42	42 0	2600	750	4000	250	+.022	+.012	+.024	900*+	160	070	+.200	+.120
25-G-TR3P4	m	46	0	2100	1000	4500	200	+.026	+.008	+.028	+.008	165	060	+.026 +.008 +.028 +.008165060 +.230 +.150	+.150
25-G-TR37P3	37	34	0	3500	1750	4500	1500	1500 +.022 +.008 +.020 +.008170100 +.210 +.170	+.008	+.020	+* 008	170	100	+.210	+.170
25-G-TR37P4	37	46	0	4000 1750	1750	5250	2000	2000 +.026 +.008 +.038 +.012190900 +.230 +.200	+* 008	+.038	+.012	190	900	+.230	+.200

					Peak	Peak Measurements - Absolute and Level Exceeded for 100 ms	ments -	Absolu	te and	Level E	xceeded	for 10	SIII C			
Chond (mmh)	U E	1	4	Lr. (kips)	l _R	L _R (kips)	a _y A-1	(s,6)	ayA-2	(g's)	ayA-3	(d,s)	a_yA-1 (g's) a_yA-2 (g's) a_yA-3 (g's) \triangle_yLF (in)	(1n)	∆yRR (in)	(fu)
min	1	max	aps	100ms	aps	100ms	abs	100ms	abs	100ms	abs	100ms	apa	100ms	abs	100ms
33		36	1000	900	2000	200	14	04	+.14	+.04	+.12	+.06			+.016 +.012	+.012
22		26	1250	1000	2500	200	30	14	+.28	+.08	34	10			+.016	+*008
49		29	1500	750	2750	250	40	16	+.32	16	42	+.14			+.010 +.008	+.008
75		78	1750	750	3250	250	52	12	+.40	16	56	18			020	012
32		37	1100	750	900	200	+.12	+.04	+.20	+.04	+.12	+.04			+.018	+.014
25GST (65R) 66		99	1500	200	909	0	28	+.08	34	06	28	+.08			016	+.008
25GST (75R) 76		78	1500	1000	750	0	36	08	42	-, 10	42	+.10			+.280	+.008

SERIES I - STEADY CURVING, FORWARD

	S.S.	+.040	+.040	+.040	+.032	+.032	9	028	032	038	040	+.044	+.048	+.046	+.046	+.044	+.038	+.038	+.032	+.034	032	028	+.036	+.032	+.034	+.036	.032	+.036	+ 028	+ 036	+.038	+.032
ΔX_{RF}	ဖ	•																														
7	Peak	+.048	+.050	+.048	+.040	+.038	č	034	040	048	046	+.052	+.052	+.052	+.052	+.050	+.044	+.044	+.040	+.040	+.042	+.036	+.044	+.040	+.044	+.048	+.044	+ 048	+ 046	+.048	+.050	+.042
الخ	S.S.	026	028	032	036	034		4.020	+.028	+.024	+.024	+.020	028	036	038	036	036	020	028	028	028	028	024	032	030	032	036	-,020	024	020	-, 016	018
$^{ m \Delta_{X_{LF}}}$	Peak	032	036	040	048	044	900	1.030	+.034	+.032	+.032	+.024	036	044	048	044	050	028	038	036	040	044	032	040	044	048	050	-,032	040	-, 035	032	034
œ	8.8.	+.012	+.012	+.012	+.012	+.014	0.00	0.10	012	008	008	010	+.008	+.008	+.012	+.008	900*+	+.010	+.012	+.012	+.012	+.010	+.004	+.008	+.012	+.008	+.004	+,008	+.008	+.008	+.006	+.004
∆r _{RR}	Peak	+.022		+.024	+.028		000	020	020	010	020	018	+.020					+.018	+.020		+.020		+.014				+.032	+.018				
Ēz,	8.8	+.014	+.016	+.020	+.012	+.018	700	# 00 ·	008	008	008	010	+.012	+.016	+.024	+.016	+.020	+.012	+.012	+.008	+.012	+.018	+.008	+.012	+.016	+.012	+.012	+.008	+- 008	+.012	+.006	+.010
△ Y _{LF}	Peak				+.018	+.028	7					- 020	+.020	+.024		+.024	+.026		+.020	+.018	+.022	+.026	+.024	+.046		+.040	+.048	+.020				
	S.S.	1250	1000	2000	1750	2250	3000		0027	2500	2000	1750	4000	4000	4500	4000	4500	750	1000	1250	1000	1250	2500	2750	3500	3750	3500	200	200	1000	1000	750
$_{ m R}$	Peak	4250	4250	0009	6250	7100	4000	100	00/5	3/50	3000	2750	7250	7000	8000	8500	8500	3200	4500	5750	6500	6750	2000	5250	0099	7000	7000	2250	2500	2000	3250	3400
	S.S.	1750	1500	1500	1250	1250	3500		3000	4000	4000	3750	3250	3000	2750	2750	2750	2000	1750	1500	1250	1000	2500	2250	2000	2000	2000	2000	1500	1750	1750	1750
$\Gamma_{\!$	Peak	3250	3000	2600	2750	2500	6400		0000	8000	0006	9250	2000	4400	4000	4000	4000	3500	2750	3000	2250	2250	4000	3750	3400	3000	3000	3500	3000	3400	3600	3600
ED	Max.	22	23	46	48	49	17		£ 2	9	43	45	19	27	40	42	40	22	41	54	99	99	18	36	40	46	45	27	27	62	62	19
SPEED	Min.	14	22	40	36	47	7	3 5	0, 6	35 5 7	41	44	14	56	36	38	37	20	40	23	64	65	14	34	38	43	45	26	40	43	40	42
Curve	Number	ю					311	1					37					43					49					157				
						31 IRE(F)	31 ISC(1F)				31 ISC (4F)	31 IRE(F)		31 ISC(2F)	31 ISC(3F)	31 ISC (4F)	31 IRE(F)	31 ISC(1F)			31 ISC(4F)	31 IRE(F)		31 ISC(2F)		31 ISC(4F)	31 IRE (F)	31 ISC(1F)	31 ISC(2F)	31 ISC (3F)	31 ISC(4F)	31 IRE(F)

REVERSE
CURVING,
STEADY
1
Н
SERIES

	S.		+.010	+.008 +.006	+.004	030	032	030	028	+.024 +.022	+.016	+.020	r. 0 t4	+.010	900.+	+.012	+.008	+.032	+.018	+.022	+.016	+.020	+.012	+.012	STICKING
AXnc	Dosk o			+.014 +. +.012 +			- 030 -		- 032 -	+.028 + +.024 +			+ 0.22 +	+.014			+.016		+.024		+.024	+.030	+.022	+.024	+.024 +.024
	i	•		+ 010°-			+.022		+.024	-,016			018	900-	1.004	004	000.	016	012	014	014	- 008	008	004	004
* <		Peak		016 - 018 -			+.024 +			020 -			- 026		. 008			024	020	022	020	810	018	016	018
		S.S.		- 008				+.010 +.012		010	010	008	-* 008	008	012	010	012	012	000	-,008	900	ò	000	008	006
*	Z.	Peak	018 -	018				+.026			1.016		020	014	020	016	020	032	024	018	032	Č	016	024	018 018
		.S.	016	004	.000	+.004	+.006	+.008	+.004		- 008	,		016		002	- 1	020		- 004			2 012		2004 0004
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Peak	022 -		+.012	+.012		+.020	+.010	016	014	012	+.012	024	020	008	008	032	024	014	026		022		
		S.	0 050	1000	1250 1500	0	0	0 0	0 0	100	250	1500	1000	0	250	750	750 750	_	0	500	1250	2	0	200	750 750
יחמיוני	LR	Peak S	750	2100	2400 2750	750	250	009	0	750	1100	2250	2250	001	750	1600	1500	c	200	1400	2000	0077	250	1500	1750
ו ד מ		S.S.	0 0	00	0 0	25.0	200	1250	1500	250	0	0 0	0	250	0	0	00	000	200	0	0 0	>	1000	500	200 200 200
SEKLES	7		1000	200 200	400		1500	2250	2500 2600	1600	1000	009	006	000	500	400	500 250		1500	1000	750	009	2250	2000	2100
		×	21	32 44	49	:	16 27	39	45 45	8	27	40	42	8	2.2 A.3	23	53	3	16 26	38	43	46	29	48	65
	CDEED	Min. Ma	19	30 42	47	; ;	15	98 98 78	44	14	7 7 7	38	40 32	1	22	53	52	3	14	38	42	44	27	46	22
		Number	3				311			27	'n				43				49				157	Ì	
	•	ن <i>م ر</i>	ISC(1R)	ISC (2R)	• • • •	IRE (5K)		ISC (2R)			ISC(IR)					1 ISC (2R)		31 IRE(5R)		31 ISC (2R)			21. TGC/18)		31 ISC(3R) 31 ISC(4R)
			31	31	31.5	31	31	3 2	31.	7	31	31	21	ก่	31	E :	31 7	m	m	(4) (5	·) (*)	(*)	**	,,	

Run	Curve	SP	EED	7		T.		WI.P	Λ ∇	90	X	Ē	ΔX	L
Number	Number	Max.	Max. Min.	Peak	s.s.	Peak	s.s.	Peak S.S.	Peak	S.S.	Peak	S.S.	Peak	S.S.
31-I-TR3P3	ю	44	44 0	3750	2500	2600	2000	0 3750 2500 5600 2000 +.016 +.008 +.022 +.008030020 +.042 +.036	+.022	+.008	030	020	+.042	+.036
31-I-TR3P4	м	52		4250 2500	2500	0009	2500	2500 +.010 +.004 +.020 +.008030 .016 +.044 +.036	+.020	+.008	030	910.	+.044	+.036
31-I-TR37P3	37	28	0	5250	4500	8250	4500	4500 +.026 +.008 +.014 +.004030020 +.038 +.034	+.014	+.004	030	020	+.038	+.034
31-I-TR37P4 37	37	42	0	2000	4500	8100	4500	4500 +.008 +.004 +.016 +.004044020 +.042 +.036	+.016	+.004	044	020	+.042	+.036

					Peak	Peak Measurements - Absolute and Level Exceeded for 100 ms	ments -	Absolu	te and 1	Level E	xceeded	for 10(Sm C			
בופ	Speed	Speed (moh)	7.	(ktps)		(klps)	a _y A-1	ayA-1 (9'8)	ayA-2	(g,g)	ayA-3	(8,8)	Δ _V LF	(in)	$\Delta_{\mathbf{y}}$ RR	(in)
Number	m Tu	шах	aps	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	abs	100ms	aps	100ms
311ST (35F)	36	38	1500	200	2250	200	+.18	+.04	+.10	+.04	+.14	+.04	+.024	+.016	+0.20	+.012
311ST (55)	57	28	1600	1000	3250	250	+.28	+.06	+.26	+.04	+.26	+.04	+.016	+.008	+0.16	+.008
311ST(65)	64	89	1750	1000	3100	250	.30	90.	. 28	90.	.30	80.	910.	.008	.012	.008
311ST (75)	09	75	1900	750	3250	250	.32	80.	.32	90.	.32	.08	.020	.012	.012	900.
311ST (35R)) 36	38	1750	1000	200	0	+.12	+.02	+.16	+.02	+.14	+.04	+.018	+.012	+.018	+.008
311ST (55R)	95 (09	2000	1100	200	0	+.20	04	. 22	+.02	.18	90.	+.022	+.008	+.020	+.012
311ST (65R)) 58	70	2000	1000	750	0	. 22	.04	. 26	90.	. 20	.04	.020	.008	.018	.008
311ST (75R) 63	63	74	1900	1000	750	0	.22	.04	. 26	.04	.22	.04	.022	.008	910.	900.

SERIES J - STEADY CURVING, FORWARD

17	S.S.	060.+	+ 020	+.080	+.080	050	080	070	050	070	+.140	+.100	+.120	+.130	+.120	+.060	+.025	+.040	+.050	+.030	+.120	+.090	+.100	+.130	+.100	+.010	000.	+.010	+.060	+.030
ΔX_{RF}	Peak	+.190	+ 175	+.195	+.190	125	165	155	125	165	+.210	+.180			+.190	+.165	+.145	+.145	+.210	+.190	+.190	+.160	+.180		+,175	+.080				+.110
5	S.S.	080	080	060	050	+.080	+.060	+.080	+.045	+.070	060	100	080	090	060	040	050	040	050	030	110	110	100	120	100	040	040	020	010	010
∆ X _{LF}	Peak	180	- 200	215	155	+.170	+.145	+.155	+,120	+.165	170	175	170	230	190	130	135	120	150	150	160	180	190	190	200	110	-,105	095	085	095
RR	S.S.	010	000	+.008	+.006	008	008	012	012	018	008	000.	+.004	+.006	+.006	018	+.002	008	-, 006	+.012	010	006	+.004	+.004	+.008	012	008	008	-,010	010
∆ YRR	Peak	028	+.022	+.036	+.026	024	020	036	028	042	024	+.016	+.026	+.022	+.022	034	+.014	024	020	+.044	028	032	+.026	+.022	+.032	040	024	022	028	026
Ţ.	8.8.																													
^Y _{LF}	Peak														60															
	S.S.	1750	2750	3000	2750	2500	2000	1750	1500	1750	2500	3250	3500	3250	3750	2000	2250	2500	2500	3000	1750	2250	2750	3250	3500	1250	1500	1500	2000	1750
Ţ,	Peak	3750	5250	6250	2200	3750	3250	3000	2600	2750	5250	6100	6500	7500	8000	4000	5500	0009	9	7750	2000	0009	5750	6100	7000	2750	4000	4000	4500	4000
	S.S.	1250	750	1000	200	3500	4000	4500	4500	2000	1400	1500	1000	1500	1000	2250	1700	1500	1250	1000	1250	1250	750	1000	750	2000	1750	1250	1500	1500
占	Peak	3000	2600	2250	2000	5500	0009	6500	7400	8250	3000	3250	2750	3250	2600	3750	3000	3000	2750	2250	3500	3750	3000	2900	2750	3500	2750	2500	3000	2750
SPEED	Max.	20	38	46	45	15	23	33	40	41	18	56	34	38	38	18	38	49	54	62	16	24	44	39	41	25	46	26	28	25
SPI	Min.	30 50	41	43	44	12	22	32	37	36	12	23	31	12	35	14	37	48	23	09	12	22	44	36	40	22	44	54	40	96 93
Curve	Number	m				311					37					43					49					157				
		7 JSC(1)		JSC	7 JRE (F)			7 380(3)	-	7 JRE (F)		7 JSC (2)	JSC	JSC	7 JRE (F)	-			7 JSC (4)	7 JRE (F)	7 JSC (1)			JSC	7 JRE (F)			7 JSC (3)	JSC	7 JRE (F)

	S.S.	+.100	+.080	+.055	+.040	155	160	170	160	160	+.120	+.130	+.110	+.100	+.100	+.050	+.050	+.040	+.035	+.040	+.110	+.115	+.090	+.090	+.070	+.025	+.015	+.030	+.010	+.025
ΔXRF	Peak	+.175 +				200				195					+.165	+.120				060*+	+.160	+.175	+.150	+.155	+.140	+.060	+.045	+.070	+.040	+.070
E	S.S.	080	- 070	055	060	+.170	+.180	+.170	+.160	+.170	100	090	080	100	060	055	045	030	045	035	100	100	090	100	090				040	040
∆ X _{LF}	Peak	150	145	140	160	+.225	+.220	+,220	+.210	+.220	160	160	160	190	190	085	095	105	100	085	-,160	170	160	190	195	070	060	050	080	110
æ	S.S.	+.010	+.010	+.012	+.016	012	020	020	032	020	+.012	+.016	+.028	+.012	+.020	+.006	+.010	+.006	+.008	+.008	+.008	+.012	+.012	+.012	+.032	+.004	+.012	+.016	+ 008	+.016
∆ YRR	Peak	+.042	+.040	+.046	+.048	028	044	044	058	044	+.036	+.046	+.060	+.052	+.050	+.024	+.032	+.032	+.024	+.052	+.032	+.036	+.036	+.042	+.052	+.024	+.046	+.044	+.040	+.040
∆ Y _{LF}	Peak S.S.																													
	S.S.	250	2000	1500	1500	0	0	0	0	0	250	750	1500	1250	1500	0	200	1000	1000	1000	0	250	750	1250	1250	0	250	200	1000	1500
LR	Peak	1500	2000	3600	4400	750	750	250	200	009	1750	2500	4200	3900	4000	1000	2750	3000	2500	3000	1500	2500	3200	3750	4250	1000	1750	2100	3250	3100
	. S. S.	1000	750	250	250	0	0	200	1000	250	200	250	0	250	0	1500	1000	1000	1000	750	750	200	0	0	0	1250	1000	1000	1000	750
71	Peak	2100	2000	1500	1000	750	1100	2000	2400	1250	2000	1500	1000	1700	1200	2750	2500	2250	2400	2500	2000	2000	1100	1000	1000	2500	2500	2100	2000	1500
SPEED	Max.	19	78	36	4 6	ה	24	36	41	30	16	<u>@</u>	36	37	37	20	9 %	48	46	49	15	7	36	39	42	28	46	26	19	48
SP	Min.	17	27	89 ¥	48	σ	24	34	36	78	14	25	32	8	36	ä	9 6	. 4	44	49	13	22	32	38	40	24	46	48	28	46
Curve	Number	ю				111	1				37	ò				43	2				49	1				157				
					7 JRE (R)	7 Ter (1b)			7 JSC (4R)		(AL) JSL (/d[/ 751 F	J TSC (JB)			7 JRE.(R)	(AL) JST. L					7 JSC (1R)			7 JSC (4R)	7 JRE (R)

RF	S.S.	+.090	+.100	+.100	+.090	
Δx_{RF}	Peak	+.145 +.090	+.160	+.165	+,165	
LF	S.S.	153080	085	080	090	
$\Delta \mathbf{x}_{\mathbf{LF}}$	Peak	153	165	150	.160	
RR	Peak S.S.	006	004	*		
VΧ	Peak	022	022	*		
LP	Peak S.S.	016004	004	900-	900	
₩	Peak	016	022	022	022	
~	Peak S.S.		4000			
L	Peak	7250	7500	7600	7000	
	ak S.S.		1250			
	Pe	2750	2750	2750	2750	
EED	Min. Max.	37	37	38	38	
SP	Min.	35	35	35	36	
Curve	Number	9				
		2 JCA (6A) 1	2 JCA (6B) 2	2 JCA (6C) 3	2 JCA (6D) 4	S

B-34

*Not valid. The LVDT was loose, lost completely during next run.

∆XRF	ak S.S.	024006140040 +.195 +.100	220 +.130	020004160070 +.220 +.140	024004200040 +.225 +.170
لغ	S.S. Pe	040 +.	020 +.	070 +.	040 +.
∆xr	Peak	140	080	-,160	200
RR.	S.S.	900*-	008	004	004
VΔ	Peak	024	024	020	024
∆Y _{L.P}	Peak S.S.				
			00	3000	3000
7	Peak S.S. Peak S.S.	5000 25	3750 1500 6000 2500	5750 30	6500 30
	S.S.	1500	1500	1500	1500
4	Peak	3500	3750	3250	4000
ĺ	Max. Min.	40 0	0	0	c
ŧ	Max.	40	48	32	40
ı	Curve	ю	m	37	27
	Run Number	7~J~TR3P3	7-J-TR3P4	7-J-TR37P3	Lattern + t

Greed (mak) Lr.	1	4	1	(kips)	Peak	Peak Measurements - Absolute and Level Exceeded for 100 ms $_{ m Lp}$ (kips) a.A-1 (q's) a.A-2 (q's) a.A-3 (q's) \wedge 1	a.A-1	a.A-1 (q's)	a.A-2	Level E	a.A-3	for 10 (q's)	A L.F	(dn)	AR <	(dp)
, a	, a	×	¥ .	1		1							X		TA VI	
min max abs 100ms abs 100ms	abs 100ms abs	100ms abs	abs	7/:	E001	n	abs	100ms	abs	100ms	aps	100ms	aps	100ms	abs	1.00ms
35 37 3000 1750 4500 2000	3000 1750 4500	1750 4500	4500		2000		. 20	80.	91.	.02	.22	90.	+.016	+.012	+.016	+.012
48 58 2900 1250 4000 1750	2900 1250 4000	1250 4000	4000		1750		.36	.04	. 24	.02	.32	.04	+.014	+.008	+.020	+.012
52 59 3250 1250 5500 2000	3250 1250 5500	1250 5500	5500		2000		.40	.12	.30	.04	. 54	90.	+.016	+.008	+.024	+.010
64 75 4200 1250 5400 2000	4200 1250 5400	1250 5400	5400		2000		.50	.04	.38	• 04	.52	80.			+.022	+.010
34 38 1600 600 750 0	1600 600	009		750 0	0		.16	0	.32	.04	*18	0	020	016	018	012
56 58 1500 500 1000 0	1500 500	200		1000 0	0		.42	.04	.56	90.	.34	.04	036	030	024	020
60 68 1250 500 1250 0	1250 500 1250	500 1250	1250		0		. 52	.04	.62	90.	* 34	90.	014	008	018	014
70 75 1500 500 750 0	1500 500	200		750 0	0		.54	• 04	.62	80.	• 36	.04			022	012

APPENDIX C REPORT OF NEW TECHNOLOGY

This report describes analyses and tests of wheel taper and primary suspension stiffness on wheel-rail interaction forces. The work described has not resulted in the development of any new or unique devices.

			,
			*
			·
		<u>.</u>	

AL PARTY OF THE PA				
			Þ	

			2