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PREFACE

This report presents the results of a program on rail steel fatigue crack ini-
tiation characterization. It has begen prepared by Battelle's Columbus Laborataries
(BCL) under Task 3 of Contract DDT-TSC-1426 for the Transportation Systems Center (TSC)
of the Department of Transpoertation. Work was begun under the technical direction of
Rgger Steele of TSC and subsequently completed under the supervision of QOscar Orringer
of TSC. ‘ ,

The experimental work was performed in the Fatigue Laboratory of Battelle's .
Columbus Laboratories by Norman Frey, whose care and concern are gratefully
acknowledged. The develcopment of nondestructive crack initiation monitoring techniques
was handled by Ms, Karen Pfister. Her efforts are also appreciated. Some assistance
on data analysis was also gratefully received from Ronald Galliher.
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EXECUTIVE SUMMARY

This report presents part of the results of a study on rail material characteriza-
tion for the correlation of rajl defect growth and failure properties to better define
rail defect mechanisms. The work was conducted as part of the Track Structures Research
Program under the direction of the Transportation Systems Center and sponsored by the
Federal Railrcad Administration. The results are presented in two volumes entitled?

Determination of Residual Stresses in Rails
Fatigue Crack Initiation Properties of Rail Steels.

This report describes an experimental study in which the objective was to deter-
mine fatigue crack initiation properties of standard American Railway Engineering
Association (AREA) rail steel. The fatigue life of structural components is determined
by the sum of the loads and stress cycles required te initiate a fatigue crack and to
propagate that crack from subcritical dimensions to a critical crack size. Thus,
knowledge of fatigue crack initiation properties, which crack propagation models do
not address, is necessary for a complete assessment of rail life.

One new and four used rail steels were investigated. The influence on crack
initiation behavior of stress ratio, control mode, orientation within the rail and
periodic overstrain were investigated. Both constant and variable amplitude experi-
ments were performed. An analytical madel was developed, employing an equivalent
strain parameter, which allowed prediction of variable amplitude (service load)
fatigue crack initiation from constant amplitude material characterization data.

"From this study it can be concluded that periodic overstrains above the constant
amplitude fatigue limit will substantially increase the damage caused by strain ranges
below the 1imit, and a periodic overstrain fatigue curve should be used in life pre-
dictions on such spectra, Accordingly the entire range of traffic loads must be con-
sidered, neot just isolated overloads. Transverse rail head cracks were found to
initiate more rapidly than longitudinal rail head c¢racks, and the relative susceptibil-
ity of various head locations to rail fatigue failure was identified. Also, it was
demonstrated that linear damage accumulation models can be used effectively to provide
reasonable crack initiation life predigtions. .







1. INTRODUCTION

A typical failure in a rail is the culmination of a progressive damage process
that begins with the initiation of :a fatigue crack, followed by the growth of that
crack to a critical size. If the reliability of a ra11 system is to be assessed, it
is quite important to.develop data on the crack initiation and propagation behav1or
of rail materials and to develop a damage accumulation model which relates constant
amplitude laboratory fatigue data with variable amplitude and service simulation .
fatigue behavior.

Crack propagation data, both constant and variable amplitude, were developed in a
previous DOT/TSC program (1)* (Contract No.. DOT-TSC-1076). A predictive model for
crack growth was also developed. (2)

In task 3 of this program, the problems of‘cfack=initiation wére-aSSessed, both
in terms of the development of critical data and the formulation of a damage model.
This report contains the results of the Task 3 efforts, -

T
References are listed on page 56.
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2. RAIL MATERIALS

Two 39-foot sections of new:100- pound/yard rail steel were purchased from the

Fritz Rumer Cooke Company for this program.
used rail material were obtained to provide 4 cross-section of used rails for a com-
parison with presently produced standard rail.
materials are presented in Table 1.

" In add1t1on, four shorter sections of

‘Background ‘data on the used rail

Reference 3 and an inclusion content in Reference 4.

TABLE 1.

Further information on chemlstry 1s 1nc1uded in’,

USED RAIL MATERIAL BAQKGROUNDIDATA'

'BCL Rail ‘Source ‘Rai1 Ngight : T R
Number Number (1bs) Year Rolled Characteristics
3 100 85 1920 Low Sulfur/Oxygen Ratio
High Inclusicn
4 418 130 1929 Low S/0 Ratio
' Low Inclusion
5 vD-2 115 1974 High $/0 Ratio
Intermediate Inclusion
6 - 398 130 1923 Intermediate $/0 Ratio
Intermediate Inclusion




3. EXPERIMENTAL DETAILS

3.1 SPECIMENS

Two specimen geometries were used for the majority of experiments in this program.
Both specimen geometries were designed with a 0,25-inch diameter reduced section, The
specimens tested at BCL were designed with threaded ends as shown in Figure 1, while
the specimens tested at Boeing Commercial Airplane Company (BCAC) were designed with
longer smooth ends as shown in Figure 2, to accommodate hydraulic grips. A small
number of reduced-size, threaded-end specimens of the type shown in Figure 3 were
also designed for transverse rail orientation specimens.

The longitudinal rail specimens were removed from three different locations within
the rail cross-section. The center head specimens were taken from 3/4-inch square
blanks of material centered on the midplane on the rail head (see Figure 4). The
intermediate head specimens were taken from blanks centered 1/2-inch from the rail mid-
plane and one-inch from the upper rail surface (see Figure 5). The surface head
specimens were taken from blanks taken as near the side surfaces of the rail as pos-,
sible centered 'in a plane one-inch from the upper rail surface (see Figure 6). The
transverse rail head specimen blanks were taken from the rajil centered in a plane omne-
inch from the upper rail surface. Because of the location and orientatjon within the
rail, the transverse specimens were only about 2-1/2 inches ‘long, as previously shown
in Figure 3. ' :

The number of each type of specimen produced is detailed in Table 2. An overall
total of 254 specimens were produced; 156 of those for testing by BCAC, including 64
used rail specimens. '

TABLE 2. RAIL SPECIMEN INVENTCRY

- " Specimen : ‘ © BCL i BCAC

Rail . "Type ] Specimens | ~ Specimens
Unused Center 78 42
Intermediate -- 20
Surface 12 30
Transverse 8 -

Used Center .- gal®)
Total 98 156
OVERALL TOTAL........... TP 254

(a) 16 specimens from each of 4 used rails.

3.2 TESTING PROCEDURES |

The BGL fatigue crack initiation experiments were conducted in a 20,000-pound
capacity electrohydraulic servocontrolled fatigue machine. All BCL tests were per-
formed 1in strain control at cycling frequencies ranging from 5 to 20 Hz, depending on
strain amplitude. Environmental conditions were maintained at 70F and 50-percent
relative humidity, Load as a function of time was recorded continuously for most
experiments and stress-strain hysteresis loops were reccrded at frequent intervals.

The BCAC crack initiation experiments were conducted on an Amsler Vibraphone in
load control at a frequency of about 105 Hz, 1In selected cases, the specimen tempera-
ture during testing was monitored; temperatures approaching 150 F were found in short
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life tests (Nj ° 100,000 cycles) while temperatures did not exceed 100 F for the long
life tests (Ni > 1,000,000 cycles). :

3.3 CRACK INITIATION DETECTION

It was a primary objective in the BCL tests performed in this program to develop
some technique for detection of small fatigue cracks in the laboratory specimens tested
under constant amplitude conditions. Detection of cracks less than 0.04 inch (1 mm)
deep was considered possible and desirable, This would provide a less ambiguous
definition of crack initiation, necessary for a smooth transitiom from crack initia-
tion analysis to crack propagation analysis in the reliability study.

Originally, it was considered likely that either ultrasonics or eddy-currents
could be used to detect .these small fatigue cracks. Ultrasconics in the pulse echo mode -
was at first thought to be the best approach because it was easily adaptable to ‘
automated testing. One of the anticipated difficulties with pulse-echo ultrasonics,
however, was that the reflection from the interface might obscure the reflection from
the crack. By using a frequency above 10 MHz, it was thought the beam spread would be /-
negligible and the wave length small enough to detect the crack. Although a higher
frequency means a more directive beam according to the formula for beam spread, sin
8/2 = 1.22x, there-is a tradeoff involved bécause the higher frequency pulses are more
easily scattered by the material, resulting in loss of resolutien.

The adequacy of the ultrasonics approach was evaluated experimentally in the
laboratory using a 0.25-inch-diameter Aerotech (Alpha) transducer at frequencies of 5,
10, 25, and 43 MHz. The ultrasonic pulse generators were the Sperry 721 Reflectoscope,
Sonic Mark I, and the Matec Pulse Modulator and Receiver Model 6600. A Lucite holder
grip was machined to support the transducers longitudinal to the axis of the specimen
and maintain a specific free gap between the end of the specimen-and the transducer
crystal, as in Figure 7. In the gap between transducer and specimen was an oil couplet
basin acting as a cushion for the crystal face during fatigue cycling.

The results of the ultrasonic pulse-echo testing proved to be negative at all
frequencies and with all instruments. It was concluded that the filleted end of the
gauge section caused mode conversions {change from longitudinal waves to shear waves)
and extensive back reflections of such high amplitide that the signal to noise ratio
was very low and that any reflection from the EDM notch was obscured, and virtually
hidden in the noise (Figure 7). The high frequencies used also caused scattering and
loss of resolution. This result was disappointing in view of previous positive results
obtained by NASA Lewis. (5) This earlier work was done on an unfilleted, notched
specimen, however, and the negative effect of the fillet on the signal to noise ratio
was substantial. '

Since ultrasonics proved to lack the sensitivity required, eddy-current detection
was evaluated. An. NDT 15 Eddyscope was used with two different Nortec surface fre-
quency probes (500 KHz and 2 MHz models). These probes were 1/4-inch in diameter,
enclosed within a casing and spring loaded for uniform contact on the specimen,

The NDT 15 Eddyscope in combination with the 500 KHz surface probe proved success-
ful in the laboratory for detection of fatigue cracks as shallow as 0.015 inch. Its
major drawback was that it could not be used as a continuous monitor of crack initia-
tion. Every time a check was made with the eddy current system, the machine had to be .
shut down and the strain control extensometry had to be removed from the specimen.

This proved to be very time-consuming and inefficient.

Because of problems with both the ultrasonic and eddy current techniques, a third
crack detection method was investigated. This method was based purely on the detec-
tion of a change in specimen compliance that occurs when a crack forms. One signifi-
cant problem was found in differentiating between an apparent compliance change caused
by cyclic hardening or softening of the material and an actual compliance change
caused by crack formation. It was found, however, threugh some trial and error experi-
mentation, that nearly all specimens developed a stable stress response to constant
amplitude strain cycling by the time each specimen has been subjected to about half
the expected cycles to failure. At this point, it was possible to monitor the maximum
cyclic stress (actually load was measured but for 4 constant specimen area on an un-
notched specimen, stress can be considered directly proportional to load) and to note
small increases or decreases in that maximum stress. If such changes occurred, it
was nearly always an indicator that a crack had developed and that failure of the

10
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spec1men was scon to follow. A decrease in max. stress indicated" Cracking in the
specimen between the clip gauge probes because the compliance of a specimen reduces
in the region of a crack which lowers the load for a given strain limit. An increase
in max. stress indicated a crack outside the probes of the clip gauge. The large
majority of specimens developed cracks between the clip gauge probes.

The specimen compliance method of crack detection was verified on a series of
specimens at different strain ranges. The limit detectors on maximum stress were set
to shut off the machine when the maximum stress (after stabilization) varied by 2 to 4
percent, After the machine shut down, the specimen was removed and placed in a small
furnace at about 700 F for 45 minutes. This heating process caused a tinting of the
crack which was visible on the fracture surface after the specimen was reinstalled in
the test system and cycled to failure. Figure 8 shows the heat tinted crack initia-
tion on one of the test specimens cycled'at a strain range of 0.80 percent.

Through the above procedures, it was possible to record. cycles to 1n1tlat10n the
crack depth at initiation, and cycles to failure for a number of the constant strain
amplitude tests performed at BCL. There was considerable scatter in the final results
(see Figure 8) but the expected trend was evident-—an increasing ratio of initiation /7
cycles to propagation cycles (N;/Nf) for increasing size of the initiated crack.

“Crack depths below 0.010-inch were not plotted because,of measurement uncertainties.
Observed scatter is the result of sevéral factors — (1} multiple cracks in some
instances (2) strain control cycllng which allows cracks to precpagate in a semistable
manner {especially under low strain amplitudes}, and (3]} inherent scatter in material
behavior. In the extreme, if the load drops enough with a ductile material, it is
possible for the crack to act essentially as an elastic hinge which results in un-
realistically high Nj/N¢ ratios. For these reasons,. the experimental results did not
permit establishment of a clearly defined relatlonshlp between N /N and crack depth.

In summary, the specimen compliance technique could not be used to precisely
identify the point when a small crack of some specific depth has been reached. Too
many variables influenced the accuracy of the technique. It could be used, however,
to identify an approximate relationship between Nj/Nf and crack depth that could be
used to approximate what portion of the totdl cycles to failure was involved in the
initiation of a crack of a given depth. It also was a method of crack initiation
monitoring that could be used both by BCL and BCAC, It was, therefore, adopted by both
laboratories in this study.

12



4.

4.1 CONSTANT AMPLITUDE EXPERIMENTS

TEST RESULTS

J
A total of 191 constant amplitude crack initiation experiments were completed in

this program.

while the others were load-controlled experiments conducted at BCAC.

Of this total, 42 were strain-controlled experiments conducted at BCL,

All of the BCL

experiments were completed on new rail material, while 57 of the BCAC specimens were

taken from used rail material.

The program involved extensive laboratory testing —

approximately 200 million fatigue cycles were applied to generate just the unused rail

data.
J

4,1.,1 Unused Rail Data

A direct comparison of data generated in both laboratories was desirable, but that

comparison was complicated by the differences in control parameters.

In the BCL strain

control tests, cyclic softening of the new rail material from its initial monotonic

stress-straln response was observed.

for center, surface, and transverse rail specimens, respectively.

This behavior is shown in Figures 10, 11, and 12

In other words, for

a given strain amplitude, the observed maximum stress in individual hysteresis loops
decreased from a higher initial monotonic response to a lower, stable maximum stress.
A corresponding increase .in plastic strain was, of course, seen with the decreasing

maximum stress in each specimen.
esis loops reproduced in Figure 13.

This trend is clearly visible in a series of hyster-

In the BCAC load control tests, strain was not monitored; but it is evident from
Figures 10 and 11 that some cyclic softening (under constant stress} should be

expected at the stress levels evaluated.

With small plastic strains, as were seen in

the long-life BCAC tests, this softening behavior remained stable and controlled; hut
load control tests at higher stress amplitudes would likely ‘have resulted in uncon-
strained cyclic strain softening (or ratcheting) of the specimen, leading to tensile

failures rather than fatigue failures.

Since only medium to long life tests were

performed at BCAC, this ratcheting phenomenon did not occur.

From the cyclic stress-strain data developed in the BCL tests,

it was possible to

predict the stable strain response of the BCAC tests and to equate test results from

the two sources.

previously analyzed at BCL. (6)

This was done through calculation of an equivalent strain parameter
This parameter is similar in form to that originally

developed by Walker, (7) but it was modified along the lines suggested by Smith, et al.

(8) to define eeq as follows: ;

_ m 1-m
foq (A;) CE (1)
where Ae = stable strain range
Onax = maximum stable stress .
E = elastic modulus
m = constant for a material
In order to compute equivalent strains using Equdtion‘(l), it is obviously

necessary to know the correct values for each constituent term in the expression. In

the BCL strain control tests Ae was controlled, opax was measured (at the point of
stable stress response), and an average E was computed from a series of monotenic

stress-strain curves.

E had to be estimated from monotonic and cyclic stress-strain data.

In the BCAC load control tests omax was controlled, but Ae and

Values of Ae were

computed by using the following equations which approximated the cyclically stable
stress-strain response of the longitudinally criented rail specimens: .

ZSa

Ag =

Ae =

s \1/nq
()
K

, 0 < Ae < Ae(1) , (2a)

, Ae(1) < Ae < Ae{2) , (2b)

13
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s \/P; -
Ae = 2 (—3) , Ae(2) < Ae (2c)

where K, and K, = strength coefficients

1 2
ny and n, = strain hardening exponents‘

specific values of Ae that denote break points in the

Ae (1) and 4Ae(2) . S
tri-log-linear stress-strain curve approximation,

The approximate values for the constants in the Equation (2) series were found as
follows for the new rail material:

3

E = 29 x 10" ksi

K, = 3.43 x 10° ksi X, = 8.05 x 102 ksi
Ae(1) = 2.7 x 1073 AE(2) = 4.0 x 1077

ny = 0.677 : n, = 0.443
Sa(l) = 39.1 ksi = ) Sa[Z) = 51,3 ksi

A value for the material constant, m, in Equation (1) was found through an examin-
ation of the BCAC data generated at three stress ratios. By comparing the stress con-
ditions which provided nearly identical fatigue lives at different stress ratios, it
was possible to iteratively solve Bquation (1) -'to find a value of m which provided
equal equivalent strain values for conditions where equal fatigue performance had been

* found. A value of m = 0.6 gave the best overall consolidation of the data.

All of the crack initiation test data developed on unused rail samples in this
program are listed in Table 3. The data include specimen type, source, stress ratio,
maximum stress, computed or measured total strain, computed equivalent strain and
specimen identification, The fatigue lives are also listed in increasing order of
cycles to failure for each condition, and appropriate group statistics are presented
including average fatigue life (based on the antilog of the average of the log lives),
and the coefficient of variation, The coefficient of variation is defined as the
ratio of sample standard deviation to the mean (in percent); it provides an indication
of the relative variability within a data set. . It should be noted that the cycles to
initiation for the BCL tests were adjusted to 94 percent of total cycles to failure
because that ratio of Nij to Nf compared approximately with a crack initiation crack
depth of 0.030 to 0.040 inch, which is the approximate crack initiation crack size
chosen for the reliability analysis. The number of non-runouts and tctal specimens
tested in each category are listed in the last two columns of Table 3.

The fully reversed (R = -1.0) results presented in Table 3 are displayed graphic-
ally in Figures 14 and 15 for center head specimens and other specimen locations,
respectively., Good agreement between BCL and BCAC test results is evident. There is
also close agreement between fatigue data from center head specimens:and surface and
intermediate specimens; data for transverse specimens fall well below those for other
orientations. Both the longitudinal and transverse orientation crack initiation
fatigue test results compare favorably with data generated in an earlier program at
BCL (9) on a hot rolled rail material. Substantial differences are evident between the
data developed in this program and those developed by Fowler, (10) however. For
example, his indicated endurance limit stresses (R = -1.0) range from about 52 to 62 ksi
for six different rail materials. The BCL and BCAC results indicated endurance limit
stresses below 50 ksi. It is likely that Fowler data fall higher because of the
rotating beam test equipment which he used. Rotating beam tests inherently apply
maximum stresses to a small volume of material "at the surface of the material, which
commonly leads to the infamous size effect in fatigue. (11)

4.1,2 Used Rail Data

The crack initiation tests on the used rail materials were conducted at BCAC.
Including specimens used to set stress levels, there were 57 tests completed on four
different used rails. The tests were performed in load control at a stress ratio of
0.10 with maximum stress levels ranging from 65 ksi to 105 ksi., Five to seven tests
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were completed at each of two stress levels for each rail material. The reduced data
are presented in Table 4. The variability in fatigue performance compared to the
baseline data on unused rail material is shown in Figure 16. The data are plotted in
terms of maximum stress rather than equivalent strain since cyclic stress-strain data
on the used rail materials were not generated.

Two used rail materials performed far below crack initiation fatigue life trends
previously established for the unused rail. These were rails produced in the 1920's,
One rail performed similarly to the new, unused rail; it was a vacuum-degassed rail
produced since 1970. The fourth rail, which performed somewhat better than the
unused rail, was also produced in.the 1920's. No correlation was evident between
fatigue performance and either sulfur to oxygen ratio or inclusion content of the rail
material. ’ ’

4.2 PERIODIC OVERSTRAIN EXPERIMENTS

The objective' of these experiments was to determine the extent to which periodic
overstrains would affect the fatigue resistance of the rail steel in the regime of the
constant amplitude fatigue 1limit and below.. If it were assumed that all cycles
experienced by a rail material beleow its constant amplitude fatigue limit are non-
damaging, a periodic overstrain should not cause failure until the total number of
overstrain cycles is equal to the cyclic life of a virgin specimen subjected to con-
stant amplitude cycling at the overstrain level, A comparison of actual cycles to
failure and this hypothetical fatigue 1ife is made in Table 5. It is obvicus that the
small amplitude cycles below the constant amplitude endurance limit were actually
quite damaging when combined with periodic overstrains. In fact, if the small
amplitude cycles to failure are plotted on an equivalent strain basis, excluding the
overload cycle, the endurance limit essentially vanishes {or is reduced appreciably),
This is shown in Figure 17 where the overstrain data are plotted relative to the con-
stant amplitude baseline crack initiation curve. Elimination of the constant amplitude
endurance limit through periodic overstrains has been observed previously by Brose. (13)

‘ Figure 17 does not clearly illustrate the relative damage caused by the overstrain
and small amplitude ¢ycles. Table 6 was constructed in an effort to evaluate the-
extent of damage caused by the large and small amplitude strain cycles; cycles to
failure are noted, along with the number of overstrain cycles endured. The number of
overstrain cycles were divided by the average cycles tc failure under a constant strain
range of 0.80 percent (11980 cycles), to compute a percent of damage caused by the
large cycles (assuming the linear damage theory as developed by Miner is valid). (12}
The number of small amplitude cycles are also listed. Theoretically, according to the
linear damage hypothesis,:.the balance of damage not caused by the large overstrain
cycles (100 percent = total damage of failure) should have been caused by the small
strain cycles. If this were true, the damage per small cycle could be computed as
follows:

ADsmall_ = 100 - ADy . oen 8, (3)
AD AD ‘
-small small
- ., 3/cycle (4)
cycle small :
where ADsmall = percent of damage caused by small cycles
ADlarge = percent of damage caused by large cycles
NSmall = number of smgll cyclesh

Values for Equation (4) are‘presented'in the last column of Table 6 for each over-
strain specimen.

If the damage process were indeed linear, it would have been expected that the
damage/cycle for all four tests at the two different small strain cycle levels would
have been equal, or nearly so (taking into account normal fatigue data variability).
Differences do exist, however, which suggest some history dependence within the
damage process. The history dependence is most evident for the very small strain range
tests (0.3 percent). There are two readily identifiable explanations of this
phenomenon, neither of which appear to be completely satisfactory, or readily applied
to a complex stress history.
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TABLE 6. COMPUTATION OF RELATIVE DAMAGE CAUSED BY LARGE
' AND SMALL CYCLES IN PERIODIC OVERSTRAIN

COMPUTED

INCREMENT

OF DAMAGE

PER SMA 5

: cYCLE(D).

CYCLES TO | OVERSTRAIN | OVERSTRAIN | AMPLITUDE | x 10-4, ¢

- FAILURE, CYCLES, CycLEs{@ CYCLES, | aD
N AD AD N —Small_
CONDITION f ‘ Large Large Small Cycle

1 209,240 2,090 17.4% 207,140 3.99
217,600 2,170 18.1% 215,430 3.80
2 270,200 | 270 2.25% 269,930 3.62
289,400 289 2.41% 289,117 3.38
3 422,820 4,220 35.2% 418,600 1.55
401,270 4,010 33.5% 397,260 1.67
4 900,700 900 7.51% 899,800 1.03
930,785 330 7.76% 929,850 0.99

(a) Ng = 11,980 at e = .80%

(b} 100% damage equals failure.

The first explanation is based on a plastic strain accumulation damage hypothesis
as investigated by a number of researchers. (14,15) Alceng this vein, it could be
hypothesized that a certain number of large strain cycles were required to cyclically
soften the material to the point where plastic strain damage began to develop at the
lower strain range as well. Some simple calculations suggest that this is at least
plausible, as is demonstrated in Table 7. Since the material does undergo a gradual
softening when subjected to cyclic plastic deformation, it is not unreasonable to
assume that it would take longer to soften to a level where significant plasticity
was experienced at 0.3 percent strain range, than'at 0,375 percent. Table 7 suggests
that this difference in the required number of large cycles could have been as great as
a factor of ten, from 40 large cycles to 400. : .

The second explanation for the apparent history effects in the overstrain experi-
ments is based on an jinitiation-propagation damage concept. With this concept, it can
be assumed that only cycles above the constant amplitude endurance limit contribute
to the formation and initiation of a fatigue crack; but all c¢ycles, including the
small ones, are effective in propagating that crack beyond scme "equivalent initial
flaw." If this concept has physical meaning, it suggests that very small flaws are
subject to propagation by sub-endurance limit strain ranges. For example, if it is
assumed that the small cycles listed in Column 4 of Table 7 effectively represent ini-
tiation cycles, it is evident that Nj/Nf ratios would be extremely small for a .375
percent strain range (from 1 to 11 percent). If Figure 9 is extrapolated_back to such
small Nj/Ng values, it suggests initiation crack depths well below 0.001 inch. At
present there is very little experimental evidence to support this concept; therefore,
it is not a practical methed to account for stress history effects.

4.3 VARIABLE STRAIN AMPLITUDE EXPERIMENTS

The objective of these experiments was to develop a collection of variable
amplitude fatigue data for simulated rail histories that could be used to assess
current linear damage accumulation prediction capabilities.

Three different spectra were used in the variable amplitude experiments. These
spectra were derived from cumulative probability curves of wheel rail loads measured
© for four different railroads. These curves are shown in Figure 18. The most severe
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spectrum used in this program was based on the NEC wheel rail loads, while the least
severe was based on the SP wheel rail loads. The third spectrum used in this program
was based on a combination of the UP and FEC wheel rail load distributions; it fell
intermediate to the NEC and SP spectra.

Each of the three basic spectra was converted from cumulative probability curves
to load exceedance diagrams for 1-million gross tons (MGT) of traffic. For estimating
purposes, 3700 axle passes (peak load occurrences) per day were considered to represent
an annual traffic lead of about 20 MGT. This meant that 365 x 3700/20 = 67,000 axle
passes represented 1 MGT of traffic. In the earlier crack growth work done by BCL on
rail steel, (1 § 2) the wheel rail load data were converted to rail stress spectra which
were subsequently converted to load histories used to control the fatigue machine
during the crack growth experiments. 1In this program, the previously computed stress
ranges were converted linearly to strain ranges. All strain ranges in each spectrum
were programmed to be proportional to the stress ranges previously computed. . The
maximum strain levels in each test were held constant to simulate a residual ten511e
strain within the rail head, while the magnitudes of the negative strain excursions
from that maximum strain were selected to achieve long life, but nonruncut fat1gue
crack initiation conditions.

Three different representations (histories) of the 1/2FEC + 1/2UP spectrum were
tested. Only the simplest (unit train) history representation was used for the NEC and
SP spectra. The unit train history was an 8-level high-to-low, block loading history
(applied under strain control), representing a single train which was repeated con-
tinuously. It was designed to represent an average or unit train. A total of 170
unit trains (1 MGT) contained the same number of cycles at each strain level as the
same number of trains of the more complex spectra. \

The next history of intermediate complexity was the train-by-train loadlng pattern,
which consisted of an 1l-level series of high-to-low block loading (under strain
control). This history was made up of six different trains,; as shown in Figure 19
The composition of each of the six trains was selected more or less. arb1trar1ly,
however, they resembled actual trains in size and load content. A mixture of 2 trains
Al, & trains A2, 12 trains A3, 120 .trains B, 20 trains C, and 10 trains D were mixed
in such a way that the heavy and 1ight trains were not grouped together The mixture
of 170 trains was repeated during the tests, : o

The most complex history was random in nature with the 11 strain range levels
within each train randomized and the six different train types within the history also
randomized. An example of a random sequence of loads is Shown in Figure 20.

A total of 17 variable amplitude strain control experiments were performed as
listed in Table 8. Fatigue lives ranging from 127,000.to 6,480,000 cycles to failure
were obtained. Data on stable stress levels for the various straln levels 1mposed in
the unit train experiments are presented in Tabhle 9.

32



Train A, (extremely heavy, 100 cars, 118 percent)

[ T

. Train A [very heavy, 50.cars, 3.53 percent]

[ T NN -Traln A, (heavy, 100 cars, 7 pg percent)
) ‘ - .
S Train B (medium, 100 cars, 70.6 percent}
o ' o
A | —— L -
&
o ‘ Train C (medium, 134 cars, 11.8 per;en?)
[ i —
Trdin D (light, 50 cars, 5.88 percent}
FIGURE 19. TRAIN COMPOSITIONS FOR TRAIN-BY-TRAIN AND RANDOM HISTORIES

0.10%

——"‘ l"—‘5 sec

PART OF THE STRAIN HISTORY OF THE 11-LOAD RANDOM SERVICE

FIGURE 20,
SIMULATION EXPERIMENTS

33



‘d|ge|leAe j0u uoljewdoiui (p)
; | ) ‘ *anound ‘[Les 30u pLg (2)

PR ‘aungtey 191114 (q)

. : .wz 40 uaduad pp = *z uo paseg (e)
000°060°2 000°022°2 05 £°€9 9-9-2
000°OLL ¥ 000°0LE b 0S¥ ¥ 65 3-gl-1
000°€ELL 000°6SL 6v°G 9°6S 3-1-¢
000°8.¢€ 000° 20V : YA ¥'8s 2-9-1 dng + 234§
Eowomm
{9)000°02s"“ 1 (9)000°029° 6°€ (rP) - 08°2- - V-8-2
ooo“oLb € © 000°0E9°E 0S¥y FAN 02°¢ J-¥-¢ dn§ + 234%
uLed] Aq =Tugk
000°010°2 000°0FL 2 06°¢E 6°99 ©0-t-1
(9)o00°08H°9< (2)o00°08t°9 oL¢ 5765 ¥-8-1L
(9)000°0¥8°¢ {9)000°080 ¥ 08°¢ L°95 o 076-L ds
000°S/9 059°/1L oL°g - 8718 “Y-6-t
000°56¢ oLL* 02t oL"s 6°8Y v-€l-¢
000°68¢ 09c“ELY 6'v 2°6S v-11-¢
000°021 045°/21 SL°9 876§ J-0L-1 J3N
000°056° L 000°0£0°2 oL’y ¥ 0s 3-€-1
000°€0h oL6“8zy 0L v 2es J-t-1
000°0Se“2 000°005°2 0L b L*6S J-8-¢ .
000°81LS 000° LSS 0LV - €09 "Y-0L-2 dng + J334%
’ . uted] 3tun
(e)uotrieiyLug auanjteq -0l X - . LSy muo_.x;w_. ~ J43quny uoL3dLadsaq
Jyoean 03 <Xellyg -« Xellg CXBlly .. © - uswraads wnujoadg
031 S3194A9 . abuey €SS3ULS - ‘uLeays - - -7
S91049) uteals wnwL xep wnuixey
painduwo) wnu L X ey a|qels

SLINSHY ISHL HADILVd HAALITIWY NIVILS HIIVIHVA

‘8 414Vl

34



L9 L'y 2°9- 2 l- v°22- 6°92- 665 v-8-1

L'8L L°8- €' Le- 8°6¢- 0°8e- L €~ 645 . J-r-1L

L8t 0°L- ¢ Ll R TA £7¢E- 8°LE- . L79G J-6-1 ds

Ly~ 9°g¢- A 8 L€~ 0° G- €796~ t°05 “bay -

L'e- 9°1¢- G'62- 0°Le- 8 - ¥ 96- 8 LS V-6-1

N AVA m.mma. mmmmn 9°8¢- AR A AN Ll 68t V-€L-¢

£°¢ €°91- A A 0°'Le- 9°8E- - 6°1S- 2’65 v-LL-¢

€olL- L°0€- 6°LE- 0°€Ev- - L 6%~ ¥ 09- 876G J2-01-1 J3IN

'8 8'8L-- £°8¢- 0°9¢- 1 O°Ly- L vS- v 1S “bay .

S°8 S LL- - £7Le- 9 - L ot~ €°€6- ¥°0g 3-€-1

v'8 L1702~ V6~ AFA S 0°¢b- 0° 65~ ¥°Zs : J-g-1

€°6l 9°€lL- 9°¢e- |- 8'0¢- §9¢c- G 8p- 176G “bay

€76l 0°¢clL- A XA 8°0¢- L°9€- 6°8t- 165 J-8-¢

€74l £ L~ £ve- . 870¢g- v oE- L'sy- | €709 v¥-01-2 . dn% + D34

LSY SSOULS WnWILULY ] LSY uo17ed1413Udp] uo11dLuaosag
g " £ 2 L «Xell uswLdadg wna3oadg
L9AS7 SSaulg ) €SSaalg .
wnuwL xey -

SNIWIDHS LSdl NIVEL LINN 40 dSNodSHY SSAYIS F1AVIS "6 ITAVL

35




5. DAMAGE ACCUMULATION MODEL

The development of a damage accumulation model for crack initiation that would
be useful in the reliability analysis of railroad rails involved several interrelated
tasks, including 1) the definition of an initiation crack size, 2) the statistical
definition of the constant amplitude crack initiation data on new and used rail
material, and 3) the development of a damage model which could be used to predict
variable amplitude crack initiation fatigue performance from constant amplitude crack
initiation data. These tasks are reviewed in the following sections. .

’

5.1 DEFINITION OF INITIATION CRACK SIZE

It was shown earlier in Figure 9 that 85 to 95 percent of the total cycles to
failure were involved in initiating a crack about 0.3-inch deep in the BCL specimen
tested at R = -1.0. The work presented in this section was done to answer the follow-
ing questions :(1) how is the transition crack size affected by stress ratio, and (2) at
what initiation crack depth are stresses near the endurance limit sufficient to give
crack tip stress intensities near the threshold for crack propagation? (Note that a
crack initiated at a stress just above the endurance limit must be of sufficient size
to be propagated at that same stress. Since the stress intensity depends on stress
and crack size, the threshold stress intensity for crack growth can be exceeded only
if the crack is large enough at a given stress.) : '

In reviewing past BCL work, (1) it is possible to determine that likely threshold
stress intensity levels for rail steel at different stress ratios‘were as follows:

Stress Intensity Range '
at Threshold :

Stress Ratio . ' AK, k3i-in.?
-1.0 1 14 - 18
0.10 12 - 16°
0.50 7 -9

In order to use this information effectively, it was necessary to know the
relationship between crack depth and stress intensity for the test specimen being used
in all fatigue tests. A recent publication by Dauod, et al, (16) shows that the
effects of geometry on stress intensity are small (<3 percent) for crack depths less
than 0.050-inch in the BCL and BCAC specimen of 0.250-inch diameter. 1In other words,
Ehe general formula for stress intensity could be used without a geometry factor as

ollows: v

1/2

AK = Ao /ma , ksi-in. (5)

Where Ag = stress range, ksi

a crack depth, inch ‘ )

T Pi (3.1416).

Using the above expression, it was possible to develop constant stress-intensity-range
lines on a plot of maximum stress versus crack depth. These curves are shown in
Figures 21 through 23 for the test stress ratios of -1.0, 0.1 and 0.5. The approximate
endurance limits obtained from constant amplitude fatipue experiments are also
indicated. The intersection of the threshold stress-intensity lines with the endurance
limit band creates a zone of particular interest. It is within this zone that
stresses near the endurance limit also cause stress intensities near the threshold

for crack propagation. The crack depths associated with this zone are logically
associated with the transition crack size between crack initiation and propagation.
The relationship between transition crack size and stress ratio is shown' in Figure 24.
Obviously, the apparent equivalent initial flaw size decreases with increasing stress

ratio. At an R = -1.0, a crack depth of 0.03-inch is representative, but crack depths
as small as 0.006-inch are representative at an R = 0.5. The variable size of the
transition flaw size shows its non-unique, empirical nature. It also illustrates
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the problem in the selection of a meaningful transition flaw size for a rail reliabil-
ity analysis. A 0.03-inch flaw size was selected more or less arbitrarily, because
crack propagation is expected at this crack size for all stress ratios above -1.0.

5.2 STATISTICAL DEFINITION OF CONSTANT AMPLITUDE FATIGUE DATA_
The variability in fatigue data is of prime importance in a rail reliability

analysis. For this reason, all of the unused and used rail crack initiation data were
‘reviewed to.provide a statistical definition of those data.

§.2.1 Unused Rail Crack Initiation Data

. Through the use of the equivalent strain factor (Equation (1)), it was possible
to combine all of the unused rail crack initiation data into a single fatigue curve,
with the exception of those for transverse specimens. Grouped data of all the
longitudinal orientations are shown in Figure 25. Some scatter is evident, but there
is no consistent trend or layering of the data with either stress ratio or specimen
location within the rail head. Two other things are also noted. First, the limited
data for periodic overstrains shown also illustrate the dramatic effect of overstrains
on high cycle fatigue performance. Second, the percent of runcuts {(shown for log egq
value of -2.55 and below) .indicates that the rate of increase in percent of runouts
depends upon the stress ratio. These data are not conclusive but perhaps should be
taken into account in reliability analyses involving constant amplitude fatigue data
"near the so-called endurance”limit. The periodic overstrain data seem to indicate
that the endurance 1limit found in the constant amplitude tests may not apply for

variable amplitude loading conditiens.

In order to assess the variability of the data for different life ranges, the
data were subdivided into four groups as follows: o

L GroﬁE Equivalent Strain
- ‘ ' R . " -3 o l’ :
. | 1. | » Eeq < 4.40 x 10 . A
2 5.20 x 107% < e < 3.60 x 10
3 3.00 x 1077 < Coq < 3-20 x 1073
¢ - 2,80 x 1077 < e < 3.00x 10”3

Most tests completed bélow an Eeq of 2.80 x 10'3 were runouts and were therefore not
included in this analysis. o

The data within each group were ranked and the statistical parameters shown in
Table 10 were calculated. These statistics include an average life 10 log N:i, a
coefficient of variation, median ranks (for plotting on log-normal paper)‘ané fraction
failed (for plotting on Weibull paper). The average life, of course, goes up with
decreasing equivalent strain. The coefficient of variation also increases somewhat
with increasing life which has been noted elsewhere with some steel alloys. This
increase in scatter is evident in Figure 26 where the four groups of data are dis-
played on log-normal prohability paper. The increase in slope of the data trends with
increasing crack initiation 1life indicates increased variability. Several observa-
tions can be made here. First, in the area of principal interest (early failures in
the long life regime) . the distribution of failures follows a log-normal trend reason-
ably well. Second, the breakpoint in the curve for the longest life test series
seems to be indicative of a transition in the failure mechanism. Tt is at least
plausible that the early failures preceding the transition are representative of
specimens already containing microcracks, and the late failures (and runouts)
following the transition are representative of essentially defect-free rail specimens.
Whatever the explanation, the area of prime interest involving early failures follows
log-normal trends.

The data were alsoc plotted on two-parameter Weibull paper as shown in Figure 27.
At the shorter lives (Groups 1 and 2), there are too few data to verify trends, but
for Groups 3 and 4, the data fairly clearly do not follow a two-parameter Weibull,
unless one resorts to a two or three piece linear representation of the data.
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TABLE 10. CROUPED AND RANKED CRACK INITIATION DATA ON

UNUSED RAIL MATERTAL

AVERAGE COEFFICIENT '
FATIGUE LIFE OF MEDIAN FRACTION
GROUP . RANK LIFE {LOG) VARIATION, % RANK . FAILED
1 1 10775 12203 1.5 0.2063 0.33
2 11770 - 0.5000 0.67
3 14330 0.7937 1.00
2 1 49710 60133 1.5 0.12%4. 0.2
2 57000 0.3147 0.4
3 57610 0.50000 0.6
4 62000 0.6853 0.8
5 77690 0.8706 1.0
3 1 51000 128653 5.3 0.0277. 0.04
2 60000 0.0670 0.08
3 65000 0.1064 0.12
4 66000 0.1457 0.16
5 72000 0.1851 0.20
6 79000 0.2245 0.24
7 88000 0.2638 D.28
8 91000 0.3032 0.32
9 92580 0.3425 0.3
10 102000 0.3819 0.40
11 107000 0.4212 0.44
12 107000 0.4606 0.48
13 115000 0.5000 0.52
14 120000 0.5393 0.56
15 144000 0.5787 0.60
16 154000 0.6180 0.64
17 163800 0.6574 0.68
18 167000 0.6967 0.72
19 177000 0.7361 0.76
20 183300 0.7754 0.80
21 187800 0.8148 0.84
22 234700 0.8542 0.88
23 246800 0.8935 0.92
24 308000 0.9329 0.96
25 924600 0.9722 1.00
4 1 81000 37924 6.5 0.0198 - 0.029
2 102000 0.0480 0.057
3 104000 0.0763 0.086
4 127870 0.1043 ©0.114
5 143000 0.1327 0.143
6 157000 0.1610 0.17]
7 167000 0.1892 0.200
8 173940 0.2175 0.229
9 179290 0.2457 0.257
10 183000 0.2740 0.286
11 209000 0.3022 0.314
12 210000 0.3305 D.343
13 254000 0.3587 0.371
14 256000 0.3870 0.400
15 294000 0.4152 0.429
16. 303000 0.4435 0.457
17 309000 0.4717 0.486
18 315000 0.5000 0.514
19 326000 0.5282 0.543
20 328000 0.5564 0.571
21 334000 0.5847 0.600
22 358000 0.6129 0.629
23 431000 0.6412 0.657
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TABLE 10. (Concluded)

AVERAGE COEFFICIENT : .

FATIGUE LIFE OF MEDIAN FRACTION

GROUP RANK LIFE (LOG) variation, ¥ - RANK - FAILED
24 438000 0.6694 0.686
25 589000 0.6977 0.714
26 - 610000 0.7259 0.743
27 645000 0.7542 0.771
28 712000 0.7824 0.800
23 973000 0.8107 0.829
30 . 1314000 0.8389 0.857
31 1324000 0.8672 0.886
32 3026000 0.8954 0.914
33 5080000R 0.9237 0.943
34 5087000R 0.9519 0.97M
35 5TO0000R 0.9801 1.000
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In summary, it appears that a log-normal or a two-parameter Weibull representa-
tion of the early failure data is useful only if the late failure nonlinearities can
be ignored. This may well be the most reasonable approach, especially in view of the
lack of ready alternatives. An assumption of homoscedasticity is also questionable,
if such an assumption is used, it should be based on the.slope of the low equivalent
strain data groups in the early failure region (see Figure 26, data groups 3 and 4
below about a 60 percent median rank). . .

5.2.2 USED RAIL CRACK INITIATION DATA

Most of the used rail initiation data were generated at maximum stress levels
of 85 and 95 ksi (R = 0.10). At the other three stress levels (of 105, 75, and 65
ksi), data on only one or two of the four used rail materials were generated — the
fatigue lives obtained at these levels were, therefore, not representative of the
overall collection of used rail materials and were omitted from this analysis.

The data generated at the two primary stress levels were ranked for statistical
analysis in the manner shown in Table 11. The ranked data were plotted on normal
probability paper in Figure 28 to evaluate their trends. Distinctly nonlinear
patterns are evident at both stress levels. Since this result was considered unsat-
isfactory, the data were examined jointly, in an effort to better represent overall
used rail fatigue data trends, Figure 29 shows the result of the data combination.

A very nearly linear pattern is evident. The average fatigue life of this combined
group was 147,900 with a coefficient of variation of 10.0. : ' .

The combined used rail fatigue data display mean fatigue life is nedrly equal to
‘the unused rail data (at log ceq = -2.53 Nj = 147,900 for used rail, 180,000 for
unused rail). The coefficient of variation of 10.0 for the used rail data is nearly
double that found for unused rail material, however, and should be taken into account
in the reliability amalysis. , \

5.3 VARTABLE STRAIN AMPLITUDE CRACK INITIATION PREDICTION

Three different methods of predicting fatigue lives for the variable strain ..
amplitude experiments were attempted. The basic element in each calculation was the
equivalent strain factor, previously presented in Equation {1). Since strain was
controlled in these spectrum tests, the various levels of strain range, Ae, were known
and the maximum stable stress, opax, was necessarily measured or calculated. Where
omax was computed, the cyclic stress-strain curve for the material was used.

Damage calculations for the three-unit train spectra are shown in Tables 12
through 14, Similar calculations for the train-by-train and 'random -spectra are shown
in Table 15, The individual methods of linear damage calculations involved the
following variables: ‘ :

. Method Fatigue Curve Maximum Stress""
1 Constant Amplitude Actual
2 Periodic Overstrain Actual
3 Periodic Ovérstrain' Computed

The results of these three damage calculations for all the spectra are summarized in
Table 16. The results are presented graphically in Figures 30, 31, and 32 for Methods
1, 2, and 3, respectively. It is evident in Figure 30 that Method 1 overestimated
actual crack initiation lives in nearly every case, in an unconservative manner. In
Figure 31, it is evident that Method 2 provides a substantially improved prediction
of actual crack initiation lives. TFor reference purposes, 1 and 2 standard deviation
lines are constructed (based on a constant coefficient of variation of 5 percent).

All data are contained within two standard deviations. S
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The predictions based on Method 3 are shown in Figure 32, A similar predictive
capability is evident for Method 3, as was shown for Method 2, although it does tend

to be somewhat more conservative in the long-life regime. Both Methods 2 and 3 provide
predictions nearly as good as the basic scatter in the data.

Neither of the two satisfactory methods included any history or sequence account-
ability; they represented simple, Miner’'s rule, linear damage models based on strain-
life fatigue curves for test with overstrain cycles, Interestingly, it does not
appear that history effects were particularly significant. It is also evident, how-
ever, that the second and third damage models were somewhat conservative in the long-
life tests which suggests that smaller cycles in these histories may have been non-
damaging early in the history, thereby prolonging life in the manner discussed pre-
viously for the periodic overstrain data. Lacking a simple and justifiable method
for introducing a history dependence in the damage models investigated, it is recom-
mended. that the third linear damage method be used in a reliability analysis. The
third method is suggested over the second simply because actual stable maximum
stresses in a history are seldom known. It should be noted, however, that its
adequacy has. been proved only for the life ranges covered by the tests, Therefore,
generalization is still speculative, .

5.4 TIMPLEMENTATION OF DAMAGE MODEL IN A RELTIABILITY ANALYSIS

The following procedure should be used to perform life estimates for a stress-
cycle history.

1. Sum all cycles at like values of local stress range and maximum stress within
the spectrum. '

2. Compute a strain range for each stress range using the following definition
of the cyclic stress-strain curve :

a
g_ = = S < 39,1
3 59 x 10° a -
sa
e, =[—————=) , 1.48
3.43 x 10
39,1 < 5 < 51.3
a S
S \2.26 , 5. > 51.3
- a a
Ea" “*ﬁ
8.05 x 10

3. Using the computed values of strain range and known values of maximum stress,
compute equivalent strains. If maximum stress is negative, change the sign'
of minimum and maximum stresses before computing equivalent strains. :

4. Using the number of cycles of each stress magnitude, compute damage incre-
ments using Method 3, i.e., strain-life curve corrected for effect of
periodic overstrain.

5. Sum the damage increments for the spectrum.

6. Consider the inverse of the total damage increment as the predicted average
number of spectra te fatigue crack initiation.
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6. CONCLUSIONS

\

From this experimental and analytical investigation of the crack initiation
behavior of rail steels, the following conclusions have been made:

1.

- Periodic overstrains above the constant amplitude endurance limit will sub-

stantially increase the damage caused by strain ranges below that limit, and
a periodic overstrain fatigue curve should be used in life predictions on
such spectra. :

Transverse rail head crack initiation properties can be expected to fall
well below longitudinal rail head properties.

Linear damage accumulation models can be expected to provide,rgasonable life
predictions, although such life estimates may become censervative in the very
long life histories.

There is no definitive transition flaw size, but a flaw of 0.030-inch may
serve as a useful transition flaw between crack initiation and propagation.
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