REPORT NO. UMTA-MA-06-0052-78-3

PARATRANSIT VEHICLE TEST AND EVALUATION Volume III: Handling Tests

L. Wesson C. Culley R.L. Anderson

Dynamic Science, Inc. 1850 West Pinnacle Peak Road Phoenix AZ 85047

JUNE 1978 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared by

U.S. DEPARTMENT OF TRANSPORTATION

URBAN MASS TRANSPORTATION ADMINISTRATION

Office of Technology Development and Deployment

Washington DC 20590

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1. Report No.	2. Government Accession No.	3: Recipient's Catalog No.
UMTA-MA-06-0052-78-3	•	PB295477
4. Title and Subtitle		5. Report Date
PARATRANSIT VEHICLE TEST AN	June 1978	
Volume III: Handling Tests	6. Performing Organization Code	
7. Author(s)	8. Performing Organization Report No.	
L. Wesson, C. Culley, R. L.	Anderson	DOT-TSC-UMTA-77-49, III
9. Performing Organization Name and Address		10. Work Unit No.
Dynamic Science, Inc.(subsi	diary of Talley Industrie	s) MA-06-0052(UM824/R8732)
1850 West Pinnacle Peak Roa	ıd	11. Contract or Grant No. DOT-TSC-1241-3
Phoenix, Arizona 85047		<u> </u>
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
U. S. Department of Trans	sportation	Final Report
Urban Mass Transportation		Nov. 1976-Sept. 1977
400 Seventh Street, S. W.		14. Sponsoring Agency Code
Washington, D. C. 20590 15. Supplementary Notes Other vo	umas in the "Paratransit	Vehicle Test and Evaluation"
series are: Volume I: Rio	le Comfort and Quality Tes	ts; Volume II: Acceleration and
All of the volumes are avai	he IV: Fuel Economy lests Llable from the National T	; and Volume V: Noise Tests. echnical Information Service.
16. Abstract		
The vehicles presently ava-	lable for paratransit ser	vice do not cover the full spec-
trum of required character:	-	
		for a vehicle specifically for
		manufactured for the Government
by two different manufactur		
		sts and evaluations of the two
		rovide performance data on the be used to upgrade future rede-
		series: 1) Ride Comfort and
) Handling; 4) Fuel Economy; and
	-	in a five-volume technical re-
port, and each volume corre		
	•	
		s and results of the handling
		andling characteristics of the
		vehicle. The tests assessed during cornering, ability to
•		safely maintaining lateral
		eral traction limits, and sta-
bility and controllability	during rapid control reve	rsals.
		·
	110 0:	
<pre>17. Key Words Acceleration; Evaluation;</pre>	Handling A. 11.1	
Tests; Lateral Acceleration		to the Public through the Technical Information Service
sit; Performance; Vehicle		eld, Virginia 22161
•	Springile	ras tribring const.
·		·
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price
Unclassified	Unclassified	94 AD5-AD1

PREFACE

This final report, Volume III, summarizes the handling tests on the Paratransit Evaluation and Testing Contract. The program was structured to provide performance data on the prototypes compared to a baseline vehicle that will be used to upgrade future redesigns.

The program was conducted by Dynamic Science, Inc. under Contract DOT-TSC-1241 with the Transportation Systems Center (TSC) of Cambridge, Massachusetts for the Urban Mass Transportation Administration. The contract was technically managed by Mr. Jim Kakatsakis and Mr. Joe Picardi of TSC.

The opinions and findings expressed in this publication are those of the authors and not necessarily those of the Government.

METRIC CONVERSION FACTORS

	Sympton			. Ė .	5 &	Ţ	Ē			75	` *	7					2					2	K.	5 }	. T	E PA									
c Measures	12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14			inches	inches	yards	s ejes			souther inches	sprey events	square miles	acres.				powds	short tons				fluid ounces	pints	quarts	cubic feet	cubic yards					Fahrenheit	temperature	30		9 1 1 1 1 1
Irsions from Metri	Multiply by	LENGTH		0.0	* E	* -	9.0		AREA	0.16	1.2		5.5		MASS (weight)	360 0	2.2	1.1		VOLUME		0.03	2.1	3 9	35.28	1.3			IEMPERALURE (exact)	***	3/5 (men	900 37)		98.6	80 120
Appraximate Conversions from Metric Measures	When Yeu Knew	i		milimeters	meters	meters	Kilometers		1	square centimeters	square meters	square kilometers	hectares (10,000 m²)				grams	tonnes (1000 kg)				allititers	iters	iters	cubic meters	cubic meters		TCBB			Cersius	temperature		.,	
	Symbol			Ē S	E	Ε.	Ę			cum ₂	~ _E	~ <u>,</u>	2			,	2 2	٠.				Ē.			. E	e _E					ر			40	, • T
		12	20	61		8 T	4	21	91		şī	1	Þ١	3	:1	73	1	ī	0		6		8		٤ .	1	9	9	s	1	,	٤		2	[1
£2	ZZ 1				1111							HIH		111							1111											[]			
52 	ZZ	8		! 		1 7	 ' '	1.1.	· 1 ·	6		 - - -	' ' '	· I ·	5				 		 ' '	 '	'I'		 	rdi 'I'						 -			
144.1		' ' ' '					' '		· i ·		, es -	I'	''''	1	5		' '	6.	• •		 		E 1					•	2 2			, o, .	-		1
Mossy 8	To Find Symbol 22			•••	and	E3	Meters a		* ; * ·	•	lers s	Square moters at	5		5		grams grams		• • •					≣	liters	liters – — — —		` E				Celsius "c	-		1
Mossy 8	Symbol	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	LENGTH	• • •		centimeters			AREA	•		square moters	square kilometers					tonnes	• •	VOLUME		millitters	ĒĪ	Militare Interes			liters	cubic meters m	cubic meters m ³	RATURE (exect)			racting temperature	32)	1
9	To Find Symbol	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			ord and and	30 centimeters cm	meters		AREA		Square centimeters	U.U. Square moters	2.6 square kilometers	hectares	MASS (weight)		Grams 65	0.9 tonnes	(2000 lb)	VOLUME	ľ	5 milliliters	militars mi	0.24 litters	0.47	0.95	3.8 liters	0.03 cubic meters m ³	cubic meters m ³	TEMPERATURE (exact)		Celsius	racting temperature		1 to 1.254 invacion, for other exact conversions and over defauled labbles, see NBS Msk, Plate, 280.

TABLE OF CONTENTS

Page

1.0	INTRO	ODUCTION	1
2.0	TEST	DESCRIPTION	4
	2.1	TEST OBJECTIVES	4
	2.2	TEST DESIGN	4
	2.3	SCOPE OF TEST SERIES	5
3.0	TEST	VEHICLES	6
	3.1	ASL PARATRANSIT VEHICLE	6
	3.2	DUTCHER PARATRANSIT VEHICLE	6
	3.3	BASELINE TEST VEHICLE	10
	3.4	COMPARISON OF BASIC VEHICLE CHARACTERISTICS	10
4.0	TEST	FACILITIES	12
5.0	TEST	PROCEDURES	15
	5.1	TEST INSTRUMENTATION	15
		5.1.1 Required Measurements	15
		5.1.2 Instrumentation Specifications	15
		5.1.3 Data Acquisition System	18
		5.1.4 Calibration Procedures	18
		5.1.5 Data Reduction	20
	5.2	VEHICLE PREPARATION	20
		5.2.1 Instrumentation/Equipment Installation	21
		5.2.2 Vehicle Loading	21

TABLE OF CONTENTS (CONTD)

		•	Page
	5.3	TEST CONDUCT	29
		5.3.1 General Test Procedures	29
		5.3.2 Steady State and Transient Yaw Tests	30
		5.3.3 Returnability Tests	31
		5.3.4 Maximum Lateral Acceleration Tests	31
		5.3.5 Breakaway Control Tests	31
		5.3.6 Slalom Tests	34
	5.4	PROBLEMS ENCOUNTERED DURING TESTING	34
6.0	TEST	RESULTS	36
	6.1	STEADY STATE YAW TESTS	36
	6.2	TRANSIENT YAW TESTS	39
	6.3	RETURNABILITY TESTS	61
	6.4	MAXIMUM LATERAL ACCELERATION TESTS	68
	6.5	BREAKAWAY CONTROL TESTS	76
	6.6	SLALOM TESTS	79
		LIST OF ILLUSTRATIONS	
Figu:	re		Page
1		Test Vehicles Left-to-Right: Dutcher PTV, ASL PTV, Chevrolet Nova	7
2		ASL Paratransit Vehicle	8
3		Dutcher Paratransit Vehicle	9
4		Aerial View of Dynamic Science Deer Valley Facility	13
5		Skid Pad	14
6		Slalom Course	14

LIST OF ILLUSTRATIONS (CONTD)

Figure		Page
7	Data Acquisition System Schematic	19
8	Typical Fifth Wheel Installation	22
9	Visual Displays from Fifth Wheel Mounted in ASL Prototype	23
10	Gyro Package and Signal Conditioning Equipment Mounted in ASL Prototype	24
11	Control Box for Gyro Package Installed in ASL Prototype	25
12	Steering Wheel Potentiometer Installed in Dutcher Prototype	26
13	Front Wheel Potentiometer Installed in Dutcher Prototype	27
14	Typical Steering Machine Installation	28
15	ASL Prototype Beginning a Yaw Test	32
16	ASL Prototype During Maximum Lateral Acceleration Test	33
17	Steady State Yaw Response Versus Tangential Velocity for Nova (Base- line) at 300-pound Load	40
18	Steady State Yaw Response Versus Tangential Velocity for ASL Proto- type at 300-pound Load	41
19	Steady State Yaw Response Versus Tangential Velocity for Nova (Baseline) at 650-pound Load	42
20	Steady State Yaw Response Versus Tan- gential Velocity for ASL Prototype at 650-pound Load	43
21	Steady State Yaw Response Versus Tan- gential Velocity for Dutcher Prototype at 650-pound Load	44
22	Transient Yaw Response Versus Time for Nova, 300-pound Load, 25 mph	51

LIST OF ILLUSTRATIONS (CONTD)

Figure		Page
23	Transient Yaw Response Versus Time for Nova, 650-pound Load, 25 mph	52
24	Transient Yaw Response Versus Time for Nova, 300-pound Load, 50 mph	53
25	Transient Yaw Response Versus Time for Nova, 650-pound Load, 50 mph	54
26	Transient Yaw Response Versus Time for ASL Prototype, 300-pound Load, 25 mph	55
27	Transient Yaw Response Versus Time for ASL Prototype, 650-pound Load, 25 mph	56
28	Transient Yaw Response Versus Time for ASL Prototype, 300-pound Load, 50 mph	57
29	Transient Yaw Response Versus Time for ASL Prototype, 650-pound Load, 50 mph	58
30	Transient Yaw Response Versus Time for Dutcher Prototype, 650-pound Load, 25 mph	59.
31	Transient Yaw Response Versus Time for Dutcher Prototype, 650-pound Load, 50 mph	60
32	Returnability Performance in Terms of Yaw Rate for the Nova (Baseline) at 300-pound Load	62
33	Returnability Performance in Terms of Yaw Rate for the Nova (Baseline) at 650-pound Load	63
34	Returnability Performance in Terms of Yaw Rate for the ASL Prototype at 300-pound Load	64
35	Returnability Performance in Terms of Yaw Rate for the ASL Prototype at 650-pound Load	65
36	Returnability Performance in Terms of Yaw Rate for the Dutcher Prototype at 650-pound Load	66

LIST OF ILLUSTRATIONS (CONTD)

Figure		Page
37	Returnability Performance in Terms of Heading for Nova (Baseline) at 300-pound Load	69
38	Returnability Performance in Terms of Heading for Nova (Baseline) at 650-pound Load	70
39	Returnability Performance in Terms of Heading for ASL Prototype at 300-pound Load	71
40	Returnability Performance in Terms of Heading for ASL Prototype at 650-pound Load	72
41	Returnability Performance in Terms of Heading for Dutcher Prototype at 650-pound Load	73
	LIST OF TABLES	
<u>Table</u>		Page
i .	Handling Test Series	5
. 2	Basic Test Vehicle Characteristics	11
3	Vehicle Measurements for Each Test Series	16
4	Handling Test Instrumentation List	17
5	Vehicle Test Weights for Handling Test Series	29
6	Handling Test Schedule (for Each Vehicle)	30
7	Summary of Steady State Yaw Testing for the Nova (Baseline)	37
8	Summary of Steady State Yaw Testing for the ASL Prototype	38
9	Summary of Steady State Yaw Testing for the Dutcher Prototype	39
10	Comparison of Dummy Response During Steady State Testing	45
11	Summary of Transient Yaw Testing for the Nova (Baseline) at 300-pound Load	46
12	Summary of Transient Yaw Testing for the Nova (Baseline) at 650-pound Load	47

LIST OF TABLES (CONTD)

<u>Table</u>		Page
13	Summary of Transient Yaw Testing for the ASL Prototype at 300-pound Load	48
14	Summary of Transient Yaw Testing for the ASL Prototype at 650-pound Load	49
15	Summary of Transient Yaw Testing for the Dutcher Prototype at 650-pound Load	5.0
16	Comparison of Dummy Response During Transient Yaw Testing	61
17	Comparison of Dummy Response During Returnability Testing	67
18	Summary of Maximum Lateral Acceleration Performance for the Nova (Baseline)	67
19	Summary of Maximum Lateral Acceleration Performance for the ASL Prototype	74
20	Summary of Maximum Lateral Acceleration Performance for the Dutcher Prototype	74
21	Comparison of Maximum Lateral Acceleration Testing	75
22	Summary of Breakaway Control Performance for the Nova (Baseline)	76
23	Summary of Breakaway Control Performance for the ASL Prototype	77
24	Summary of Breakaway Control Performance for the Dutcher Prototype	77
25	Comparison of Breakaway Control Testing	78
26	Summary of Slalom Course Testing for the Nova (Baseline)	80
27	Summary of Slalom Course Testing for the ASL Prototype	80
28	Summary of Slalom Course Testing for the Dutcher Prototype	81
29	Comparison of Slalom Course Performance	82

1.0 INTRODUCTION

The paratransit mode of transportation provides an alternative between transit in privately owned and operated vehicles and scheduled mass transit systems. Paratransit includes such systems as dial-a-ride, taxi, and jitney service. It is of vital importance to people without individual cars or ready access to regular mass transit and to people of limited mobility. The vehicles presently available for paratransit service, however, do not cover the full spectrum of required characteristics. They are slightly modified versions of vehicles designed for different purposes. As such, they are not as efficient in their operation nor as easy to enter and exit as is desirable in this type of transportation.

Therefore, the Urban Mass Transportation Administration (UMTA), working through the Transportation Systems Center (TSC), developed specifications for a vehicle specifically for use in paratransit which combines a number of desirable features without compromising important performance parameters. Prototype vehicles were manufactured for UMTA by two different manufacturers (ASL Engineering and Dutcher Industries) according to these specifications. The primary features of the vehicles are a low pollution, quiet, efficient propulsion system combined with a body designed for the comfort and convenience of both the passengers and driver. The vehicles include provisions for easy ingress and egress for the general public as well as the elderly and handicapped, including the easy ingress/egress and accomodation of a wheelchair passenger.

Dynamic Science, Inc. was selected by UMTA to conduct an independent series of tests and evaluations of the two prototype paratransit vehicles (PTV). These tests were designed to provide additional information on the ride quality and comfort, fuel economy, performance, and handling characteristics of the two vehicles. A compact passenger car (Chevrolet Nova) was utilized as a baseline test vehicle throughout the test series to furnish comparative data for the evaluations.

The paratransit vehicle testing and evaluation program consisted of six major tasks. The first task consisted of initial vehicle inspection, test preparation, and driver familiarization efforts conducted upon delivery of the vehicles to the Dynamic Science test facility. The remaining five tasks consisted of conducting and evaluating the results of five separate test series. These series were:

- Ride Comfort and Quality Test Series which measured the ride characteristics of the test vehicles to determine if and how well they satisfy accepted standards of ride quality.
- Acceleration and Interior Measurement Test Series which determined the acceleration characteristics and available interior space of the vehicles in order to evaluate their suitability for urban paratransit use.
- Handling Test Series which determined the steering and handling characteristics of the PTVs and allowed their characteristics to be compared with those of the baseline test vehicle.
- Fuel Economy Test Series which obtained fuel economy data for the PTVs under actual road conditions with various driving cycles.
- Noise Test Series which measured the acoustic noise generated by the vehicles and the noise environment inside the passenger and driver compartments.

The Paratransit Test and Evaluation Program is documented in five separate volumes as follows:

Volume 1 Ride Comfort and Quality Tests

Volume 2 Acceleration and Interior Measurement Tests

Volume 3 Handling Tests

Volume 4 Fuel Economy Tests

Volume 5 Noise Tests.

This volume (Volume 3) presents the test procedures and results of the handling tests conducted on the two PTV prototypes and the baseline vehicle.

2.0 TEST DESCRIPTION

2.1 TEST OBJECTIVES

This test series was designed to determine the steering and handling characteristics of the prototype paratransit vehicles and a production baseline vehicle. The tests assessed each vehicle's understeer/oversteer characteristics during cornering, ability to return to a straight line from a turn, capability of safely maintaining lateral accelerations, ability to be maneuvered near its lateral traction limits, and stability and controllability during rapid control reversals.

2.2 TEST DESIGN

The handling test series was composed of the following six tests:

- Steady State Yaw tests which determined the vehicle's response in steady state turns at a constant lateral acceleration of 0.4G and speeds of 25, 40, and 55 mph.
- Transient Yaw tests which measured the vehicle's transient yaw response when entering a steady state turn of 0.4G lateral acceleration at speeds of 25 to 50 mph.
- Returnability tests which assessed the vehicle's ability to return to a straight line course after steering wheel release during a 100-foot radius turn at 25 mph.
- Maximum Lateral Acceleration tests which measured the vehicle's maximum steady state velocity around a 100foot radius turn without breaking away. Tests were conducted on both dry and wet surfaces.
- Breakaway Control tests which determined how fast the driver could return to a 100-foot radius turn after the vehicle had been accelerated to the point where it had moved radially 10 feet from its original path.
- Slalom Course tests which measured how fast the vehicle could be driven successfully through a 1,000-foot slalom course with traffic cones positioned at 100-foot intervals. The course was run at 25, 40, and maximum speed not exceeding 55 mph.

Tests were run with two loading conditions: 300 and 650 pounds, including driver and instrumentation. The 650-pound condition included an instrumented Alderson VIP-50 anthropomorphic dummy in the wheelchair position of the paratransit prototypes and in the right front seat of the baseline vehicle. Ballast was added as necessary in the passenger compartment to achieve the 650-pound load.

2.3 SCOPE OF TEST SERIES

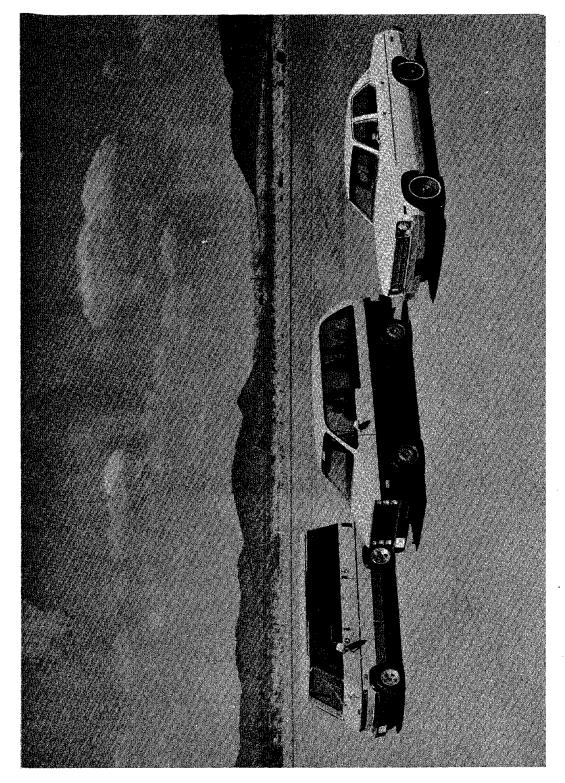
The scope of the handling test series is shown in Table 1. The series consisted of 94 tests at two loading conditions for a total of 188 tests on each test vehicle.

	TABLE 1. HAI	NDLING TEST	SERIES		
Test Type	Test Condition per Load	Turning Directions	Test Repeats	Loading* Conditions	Number of Tests
Steady State Yaw	3 velocities	2	3	2	36
Transient Yaw	2 velocities	2	5	2	40
Returnability	l velocity	2	3	2	12
Maximum Lateral Acceleration	2 surfaces	2 .	5	2	40
Breakaway Control	l course	2	6	2	24
Slalom Course	3 velocities	2	3	2	36
				Total	188

^{*}Only one loading condition for Dutcher prototype.

3.0 TEST VEHICLES

The test vehicles consisted of two prototype paratransit vehicles (one manufactured by ASL Engineering and the other by Dutcher Industries) and one baseline vehicle (Chevrolet Nova). These vehicles are shown in Figure 1.


3.1 ASL PARATRANSIT VEHICLE

The ASL PTV (Figure 2) is a front engine, front drive vehicle which can accommodate a maximum of five seated passengers or three seated passengers plus a wheelchair. Ingress/egress is accomplished through remotely operated sliding doors on each side of the vehicle. An electrically powered loading ramp may be extended on the right side of the vehicle to permit unassisted ingress and egress for wheelchair passengers.

The driver's compartment is separated from the passenger compartment by a bullet-resistant partition. An intercom system is provided for communication between the two compartments. All seating positions are equipped with belt restraints and a restraint system is also provided to fasten the wheelchair securely to the vehicle.

3.2 DUTCHER PARATRANSIT VEHICLE

The Dutcher PTV (Figure 3) is a rear engine, rear drive vehicle which also accommodates five seated passengers or four seated passengers plus a wheelchair. Hydraulically actuated bifold doors on each side of the vehicle permit passenger ingress and egress. An electrically powered loading ramp extending on the right side of the vehicle allows wheelchair ingress and egress.

Test Vehicles Left-to-Right: Dutcher PTV, ASL PTV, Chevrolet Nova. Figure 1.

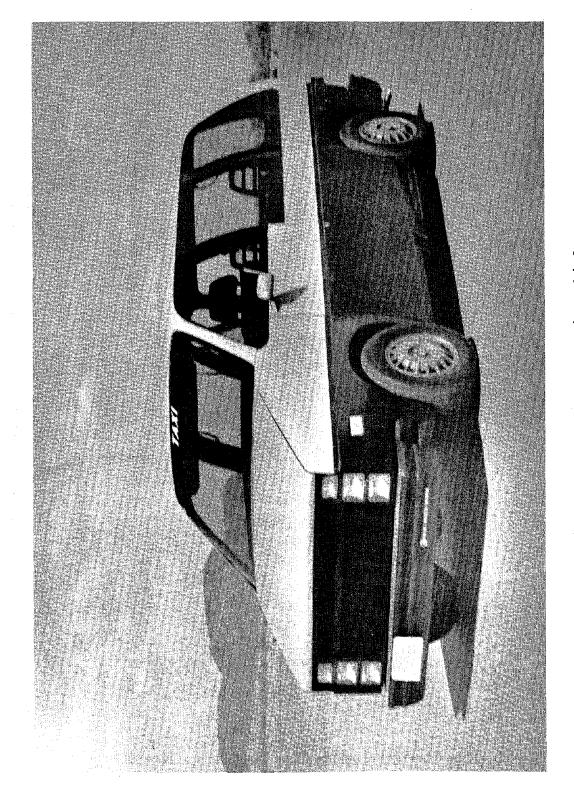


Figure 2. ASL Paratransit Vehicle.

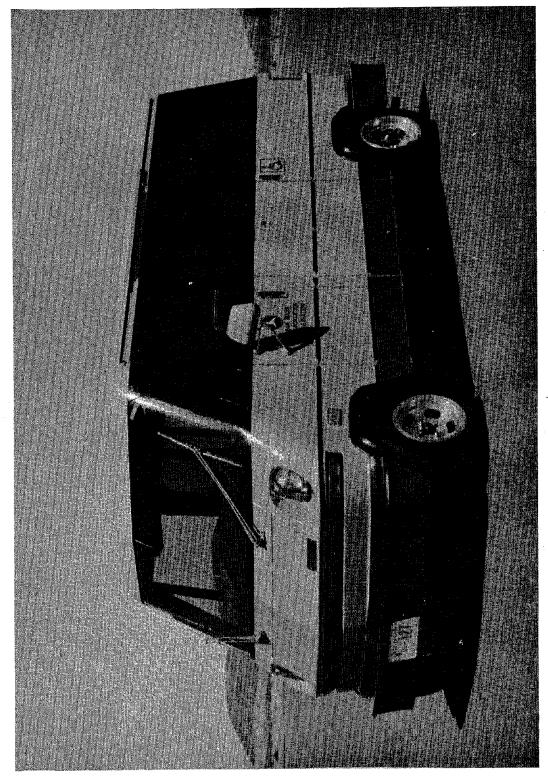


Figure 3. Dutcher Paratransit Vehicle.

As in the ASL PTV, the Dutcher PTV contains a driver compartment which is completely separated from the passenger compartment by a transparent partition. Communication between passengers and driver is accomplished through an intercom system. Restraints are provided for all seating positions and for the wheelchair.

3.3 BASELINE TEST VEHICLE

The baseline test vehicle which was used for comparative evaluation of the PTV test results was a 1977 Chevrolet Nova 6. The criteria for the selection of the baseline vehicle were:

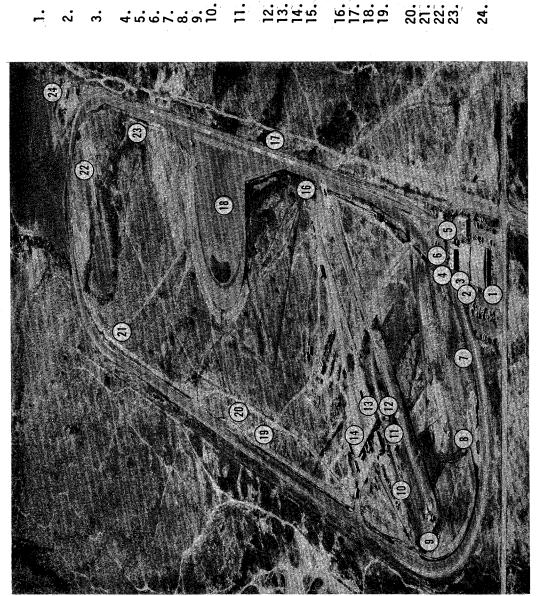
- Compact Size
- 4-Door Passenger Car
- 6-Cylinder Engine
- Automatic Transmission
- Air Conditioning System
- Radial Tires
- Weight, Width, and Length Comparable to the Paratransit Vehicle
- Mileage Less Than 5,000 Miles.

The Nova was selected because it fulfills all of the above requirements and, in addition, is more prevalent and more commonly known than any of the other vehicles which met the criteria.

3.4 COMPARISON OF BASIC VEHICLE CHARACTERISTICS

The basic test vehicle characteristics are listed in Table 2. The characteristics of the two PTV vehicles are similar in most instances. The major differences between the two vehicles lie in the engine location/drive configuration and in the front-to-rear weight ratio (1.59 for the ASL and 0.60 for the Dutcher).

	TABLE 2. BASIC I	EST VEHICLE CH	IARACTERISTICS	
	Vehicle Parameter	ASL PTV	Dutcher PTV	Nova (Baseline)
1.	Dimensions			
	Height (in.) Width (in.) Length (in.) Wheelbase (in.) Track	70.8 72.5 184 108.3	80.1 72.8 172.5 106.8	55.1 73 197.1 111.4
	- Front (in.) - Rear (in.)	63.4 63.2	63.5 61.9	61 59.3
2. 1	Wei ght			
	Curb Weight (lb)	3510	3021	3450
	- Front Rear Ratio	1.59	0.60	1.23
3.	Minimum Turning			
	Diameter (ft)	37.5	33.8	40.2
4.	Engine			
	Location No. of Cylinders Displacement (in. 3) Horsepower Compression Ratio	Front 4 114.5 95 8:1	Rear 4 120.3 86 7.6:1	Front 6 250 110 8.25:1
5.	Transmission			
	Automatic/Manual No. of Forward Speeds	Automatic 3	Automatic 3	Automatic 3
6.	Brakes			
÷	Power/Manual Front Rear	Power Disc Drum	Manual Disc Drum	Power Disc Drum
7.	Tire Size	ER78-14	Front BR78-13 Rear ER78-14	FR78-14
8.	Steering			
	Power/Manual Type	Power Rack & Pinion	Manual Rack & Pinion	Power Standard
9.	Drive			
	Front/Rear Ratio	Front 4.11	Rear 4.57	Rear 2.73
10.	Fuel Capacity (gal)	15	15	21


4.0 TEST FACILITIES

The handling tests were performed on the skid pad portion of the Dynamic Science test facility (Item 18 of Figure 4). The skid pad is a large, flat (runout less than 0.25 inch in ten feet), asphaltic concrete area adjoining the south straight-away of the two-mile oval. It covers ten acres and has a maximum width and length of 600 feet each.

The skid pad contains permanently marked circles of 100and 110-foot radii which were used for the returnability, lateral acceleration, and breakaway control tests (see Figure 5).
The initiation point for the steady state and transient yaw
tests was marked with traffic cones. The slalom course was
laid out on the entrance region to the skid pad, parallel to
the south straightaway of the oval track. The course was
marked with traffic cones positioned in line every 100 feet as
shown in Figure 6.

Skid numbers are monitored periodically by a skid trailer which meets the ASTM-274 requirements. The skid numbers obtained at the time of the handling tests were:

- Skid pad, dry = 74.0
- Skid pad, wet = 51.7
- Skid pad entrance region = 77.0

ENGINEERING/ADMINISTRATION

MECHANICAL/INSTRUMENTATION

SHOPS DUMMY CALIBRATION

LABORATORY

GARAGE/MAINTENANCE SHOP ENVIRONMENTAL CHAMBER STATIC CRUSH FACILITY TWO-MILE OVAL TURNAROUND (TYPICAL OF TW BARRIER IMPACT FACILITY DROP TOWER/SLED TEST

CENTRAL DATA ACQUISITION AND CONTROL STATION PENDULUM FACILITY

Figure 4. Dynamic Science, Inc. Deer Valley Facility.

BALLISTIC TEST RANGE PARKING BRAKE T PULL-OFF AREA (

HIGH AND LOW SKID NUMBER BRAKING LANES SALT WATER TROUGH

ROLLOVER TEST FACILITY

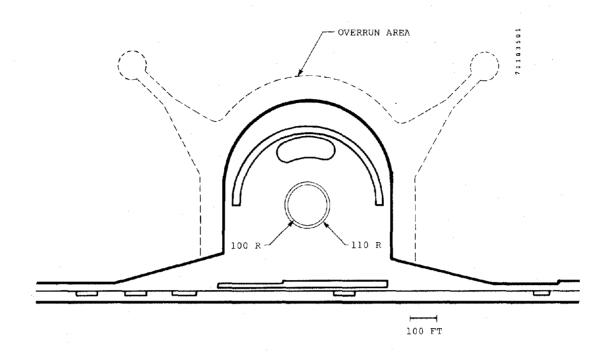


Figure 5. Skid Pad.

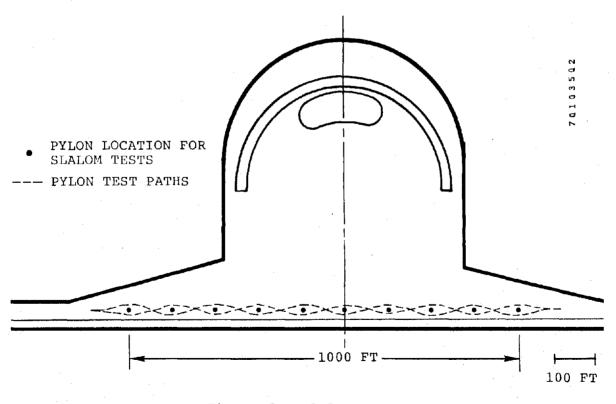


Figure 6. Slalom Course.

5.0 TEST PROCEDURES

5.1 TEST INSTRUMENTATION

5.1.1 Required Measurements

The primary variables measured during the testing were:

- 1. Velocity
- 2. Lateral acceleration
- 3. Yaw rate
- 4. Front wheel angle
- 5. Heading angle
- 6. Steering wheel angle
- 7. Triaxial dummy chest acceleration (wheelchair position).

Vehicle variables measured during each test series are listed in Table 3. Dummy chest accelerations were obtained for all of the tests.

5.1.2 Instrumentation Specifications

Table 4 presents the instrumentation specifications for the handling tests.

A Labeco fifth wheel was used to measure vehicle velocity. The output of the fifth wheel was inputted into a Weston 901 speedometer for visual display of velocity. A Meter Master mill meter, paralleled with the Weston 901, allowed expansion of the desired velocity scale for more accurate speed control.

TABLE 3. VEHICLE MEA	ASUREMENTS FOR EACH TEST SERIES
Test Type	Variables Measured
Steady State Yaw	Front wheel angle, yaw rate, and velocity
Transient Yaw	Front wheel angle, yaw rate, velocity, and steering wheel angle
Returnability	Heading angle, yaw rate, and velocity
Maximum Lateral Acceleration	Lateral acceleration and velocity
Breakaway Control	Time, velocity, and lateral acceleration
Slalom Course	Time, velocity, and lateral acceleration

Vehicle dynamics were measured by gyros and accelerometers. These instruments were part of a self-contained Humphrey gyro package. The steering input was measured at the steering wheel and at one of the front wheels.

One Alderson VIP-50 anthropomorphic dummy was instrumented with three orthogonal accelerometers mounted in its chest cavity to measure dummy referenced vertical, lateral, and longitudinal accelerations.

An event marker triggered by the driver upon starting and completing a test provided an impulse signal on the recording system. The time to transverse the course or return to the original course during the slalom and breakaway control tests was measured with a stopwatch.

Measurand Type Manufacturer Acceleration Full-Scale Accuracy Tull-Scale Accuracy Tull-Scale Accuracy Tull-Scale Accuracy Tull-Scale Accuracy Tull-Scale Accuracy Tull-Scale Accuracy 1 Percentation Acceleration Acceleration Acceleration Humphrey Rate Acceleration 410°/sec 40°/sec 40°/sec 1 6 6 6 6 6 7 8 8 8 8 8 8 9 8 9 8 9		TABLE 4. HAN	HANDLING TEST INS	INSTRUMENTATION LIST	LIST		
Fifth Wheel with Weston 901 readout 701 with Weston 901 readout Ristler 3036 11.0G 10.01G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Measurand	Type Transducer	Manufacturer and Model	Full-Scale Range	Full-Scale Transducer Accuracy	Qty	Remarks
Force Balance Accelerometer Kistler 3036 ±1.0G ±0.01G 1 Force Balance Accelerometer Kistler 3036 ±1.0G ±0.01G 1 Rate Gyro Humphrey RG51-0343 ±40°/sec ±0.5°/sec 1 Position Gyro Humphrey Humphrey Humphrey B-0902-1 ±178° ±0.2° 1 Linear Poten- Fr-101-30C Gelesco Frain Gauge Bell and Accelerometer Howell H	Vehicle Velocity	Fifth Wheel	Labeco TT481 with Weston 901 readout	100 mph	0.5%	н	
Force Balance Accelerometer Ristler 3036 ±1.0G ±0.01G 1 Rate Gyro Humphrey RG51-0343 ±40°/sec ±0.5°/sec 1 Position Gyro Humphrey 18-0902-1 ±178° ±0.2° 1 Position Gyro Humphrey 18-0902-1 ±45° ±0.5° 1 Linear Poten Poten Pr-101-30C 20 in. ±0.05 in. 1 Linear Poten Pr-101-30C 15 in. ±0.05 in. 1 Linear Poten Pr-101-15C 5G 0.75% 3 Strain Gauge Pr-101-15C 4-203-0107 5G 0.75% 3 Stopwatch Breitling N/A N/A N/A N/A 1 N/A N/A N/A 1 1	Longitudinal* Acceleration	Force Balance Accelerometer		±1.0G	±0.01G	H	
Rate Gyro Humphrey RG51-0343 ±40°/sec ±0.5°/sec 1 Position Gyro Humphrey 18-0902-1 ±178° ±0.2° 1 Position Gyro Humphrey 18-0902-1 ±45° ±0.5° 1 Linear Poten- celesco tiometer PT-101-30C 30 in. ±0.05 in. 1 Linear Poten- Pyt-101-15C 15 in. ±0.05 in. 1 Linear Poten- Pyt-101-15C 5G 0.75% 3 Strain Gauge Bell and Accelerometer Howell Howell 4-203-0107 5G 0.75% 3 Stopwatch Breitling N/A N/A N/A N/A N/A 1	Lateral* Acceleration	Force Balance Accelerometer		±1.0G	±0.01G	H	
Position Gyro Humphrey 18-0902-1 ±178° ±0.2° 1 Position Gyro Humphrey 18-0902-1 ±45° ±0.5° 1 Linear Poten- tiometer Celesco PT-101-15C 30 in. ±0.05 in. 1 Linear Poten- tiometer Celesco PT-101-15C 15 in. ±0.05 in. 1 Strain Gauge Accelerometer Bell and 4-203-0107 5G 0.75% 3 1 Stopwatch Breitling N/A 0.05 sec 1 Switch N/A N/A 1	Vehicle Yaw* Rate		Humphrey RG51-0343	±40°/sec	±0.5°/sec	П	
Position Gyro Humphrey ±45° ±0.5° 1 Linear Poten Celesco 30 in. ±0.05 in. 1 Linear Poten PT-101-30C 15 in. ±0.05 in. 1 Linear Poten PT-101-15C 5G 0.75% 3 1 Strain Gauge Bell and 5G 0.75% 3 1 Accelerometer Howell 4-203-0107	Vehicle* Heading Angle	Position Gyro	Humphrey 18-0902-1	±178°	±0.2°	Ч	
Linear Poten- Celesco tiometer PT-101-30C Linear Poten- Celesco Linear Poten- Celesco Linear Poten- PT-101-15C Linear Poten- PT-101-15C Linear Poten- PT-101-15C Accelerometer Howell Accelerometer Howell A-203-0107 E Stopwatch Switch N/A N/A N/A N/A 1 10.05 in. 1 1 4-203-0107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Roll Angle*	Position Gyro	Humphrey 18-0902-1	±45°	±0.5°	н	
Linear Poten- Celesco 15 in. ±0.05 in. 1 tiometer PT-101-15C 5G 0.75% 3 1 Strain Gauge Bell and 5G 0.75% 3 1 Accelerometer Howell 4-203-0107 e Stopwatch Breitling N/A 0.05 sec 1 Switch N/A N/A 1	Steering Wheel Angle	Linear Poten- tiometer	Celesco PT-101-30C			H	
Strain Gauge Bell and 5G 0.75% 3 1 Accelerometer Howell 4-203-0107 e Stopwatch Breitling N/A 0.05 sec 1 Switch N/A N/A 1	Front Wheel Angle	Linear Poten- tiometer	Celesco PT-101-15C			П	
e Stopwatch Breitling N/A 0.05 sec Switch N/A N/A N/A	Dummy Acceleration	Strain Gauge Accelerometer	Bell and Howell 4-203-0107	2G	0.75%	m	1 dummy
Switch N/A N/A N/A	Elapsed Time	Stopwatch	Breitling	N/A		Н	
	Time Marker	Switch	N/A	N/A	N/A	Н	

5.1.3 Data Acquisition System

The data acquisition system for the handling tests is shown schematically in Figure 7. The signal conditioning equipment was mounted on board the vehicle in a location which did not interfere with the testing procedures. All data were transmitted to the Central Data Acquisition Control Station (CDACS) via a telemetry system. At the CDACS, the data were recorded on a tape recorder for a permanent record of the test as well as for access at a future date. The data were also discriminated and displayed on a recording oscillograph for the purpose of obtaining quicklook evaluation data. These quick-look data provided a check as to whether test conditions had been achieved and also provided a view of the critical test parameters to ensure that good data were obtained during each test run.

5.1.4 Calibration Procedures

Pre- and post-test electrical calibrations of the instrumentation/data acquisition system were obtained for each set of test runs. In addition, the following physical tests were performed on a daily basis to check the calibration of the instruments:

- The fifth wheel was spun up using the calibration motor. Tire pressure was adjusted to yield the desired calibration value.
- Velocity, lateral acceleration and yaw rate were correlated with each other by driving the vehicle around a 100-foot radius circle at constant speed. The correlation equations are:

$$A_{y} = V^{2}/R$$

$$W = \frac{A_{y}}{V}$$

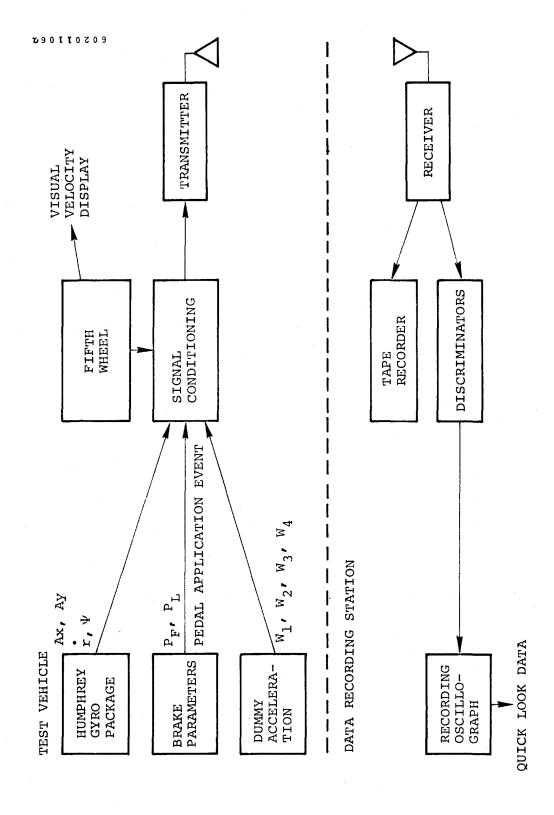


Figure 7. Data Acquisition System Schematic.

where A_y = lateral acceleration, G

V = vehicle velocity, ft/sec

R = radius of circle = 100 feet

W = yaw rate, deg/sec

K = constant = 857.66

 Yaw Rate and heading were also correlated with each other by driving the vehicle around a 100-foot radius circle at constant speed. The correlation equation is:

W = change in heading/change in time

• The steering wheel and front wheel potentiometers were also calibrated while driving around the 100-foot radius circle and comparing the electrical outputs with those obtained from known steering and front wheel turn angles determined before testing.

5.1.5 Data Reduction

The vehicle data from the steady state yaw, transient yaw, and returnability tests were digitized and processed by the Dynamic Science handling program (AVOID) for further data analysis. The largest frequency of interest for the analysis is around 5 Hz, thus the data were presample filtered to 5 Hz to eliminate any unwanted noise. The sample rate of the digitizing was 20 samples/second per data channel.

The remaining data for the handling test series were reduced directly from the oscillograph traces.

5.2 VEHICLE PREPARATION

The vehicles were prepared for the handling tests by installing the instrumentation listed in Section 5.1.2 and by ballasting to the prescribed loading conditions.

5.2.1 Instrumentation/Equipment Installation

The Labeco fifth wheel was mounted to the rear bumper of the vehicle as shown in Figure 8. The visual displays from the fifth wheel were mounted for easy viewing by the driver as illustrated in Figure 9.

The Humphrey gyro package was mounted near the vehicle's center of gravity and the exact locations of the gyros with respect to the vehicle were measured and recorded. Figure 10 shows the Humphrey package, power supply and signal conditioning equipment mounted in the ASL prototype. The control box for the gyro package was installed near the driver as shown in Figure 11.

The linear potentiometers used to measure steering wheel angle and front wheel angle were attached to the steering shaft and front wheel as illustrated in Figures 12 and 13, respectively.

An automatic steering machine was used to provide the prescribed steering input during the steady state and transient yaw tests. A typical steering machine installation is shown in Figure 14.

5.2.2 Vehicle Loading

Two vehicle loading conditions were used during the handling tests - 300 pounds and 650 pounds.

The 300-pound load included the driver and all instrumentation. The 650-pound load included driver, instrumentation, instrumented dummy in wheelchair, and ballast as necessary.

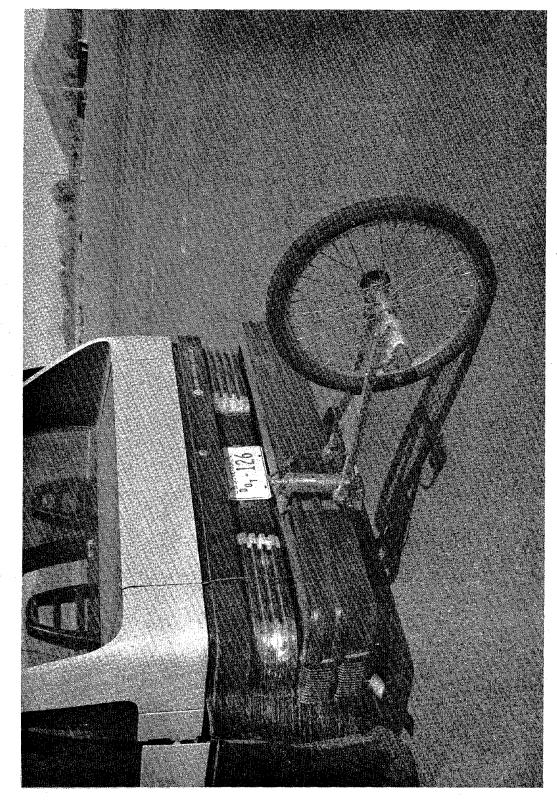
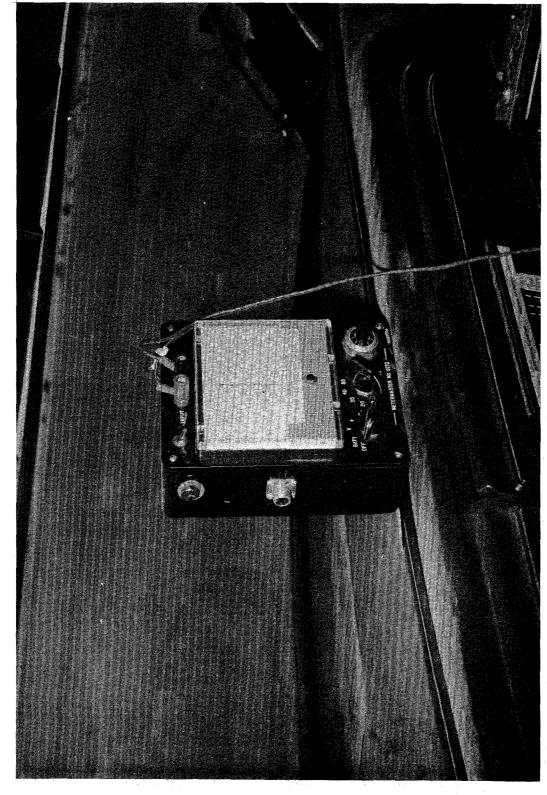
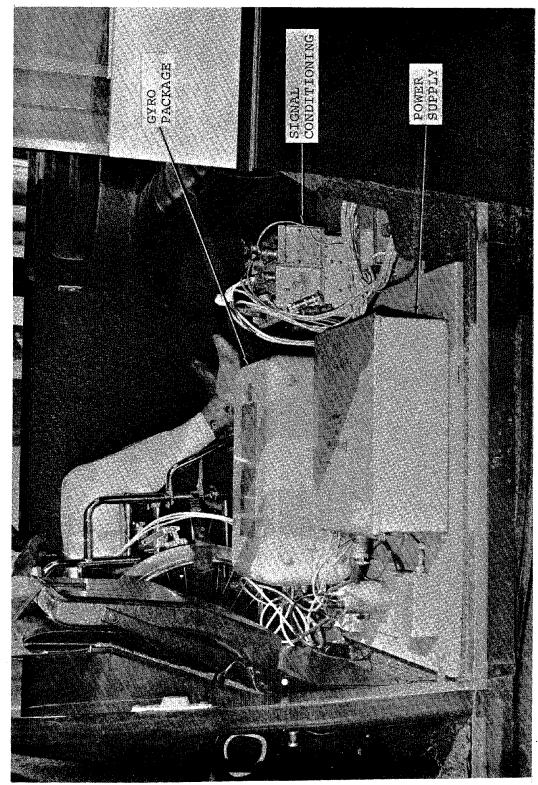




Figure 8. Typical Fifth Wheel Installation.

Visual Displays From Fifth Wheel Mounted in ASL Prototype. Figure 9.

Gyro Package and Signal Conditioning Equipment Mounted in ASL Prototype. Figure 10.

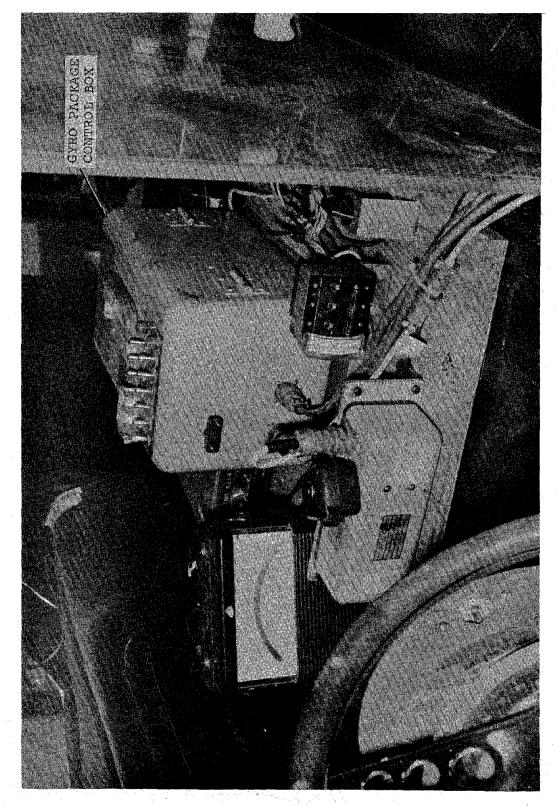
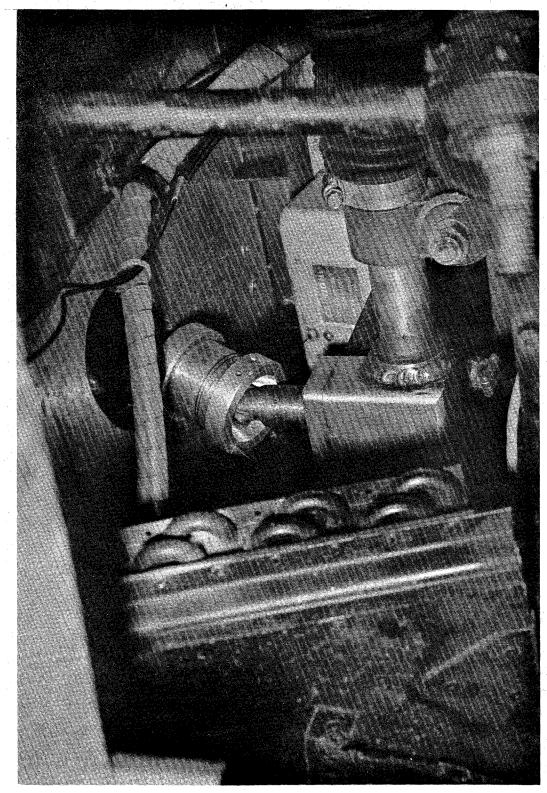
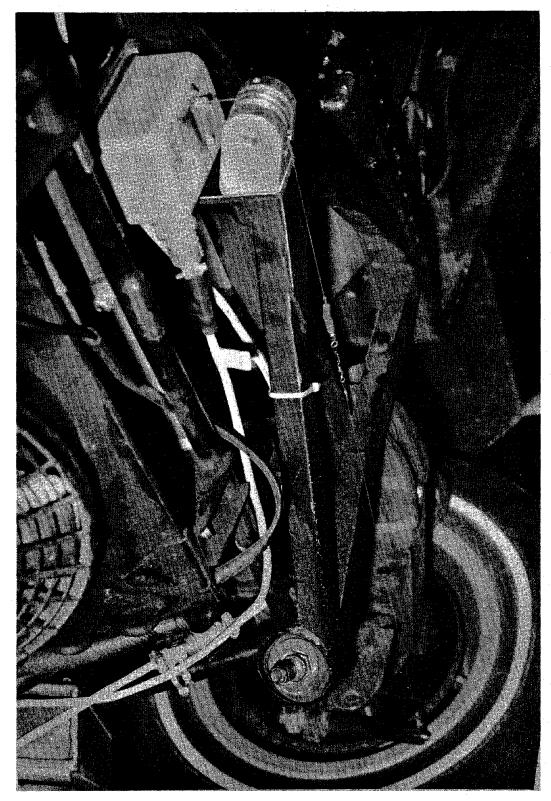




Figure 11. Control Box for Gyro Package Installed in ASL Prototype.

Steering Wheel Potentiometer Installed in Dutcher Prototype. Figure 12.

Front Wheel Potentiometer Installed in Dutcher Prototype. Figure 13.

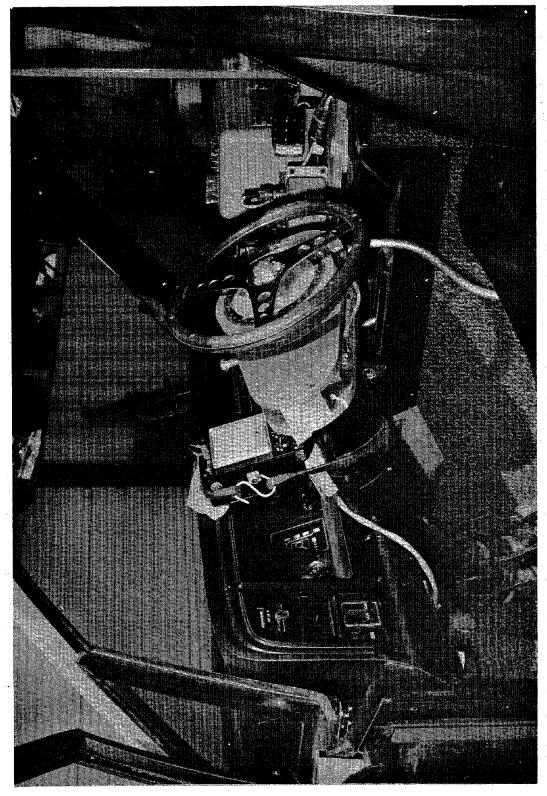


Figure 14. Typical Steering Machine Installation.

The Dutcher prototype was tested in the heavily loaded condition only due to a tendency of the vehicle to lift the inside front wheel during turning maneuvers at lightly loaded conditions. The manufacturer adjusted the vehicle suspension and added ballast to the front of the vehicle in addition to the weight of the dummy and wheelchair to keep the wheel from lifting.

The vehicle test weights are listed in Table 5.

	TABLE	5.		TEST WEIGHTS FOR TEST SERIES		
Specified	1		Ve]	hicle Test Weight	(lb)	
Test Load		(B	Nova aseline)	ASL Prototype		Dutcher* Prototype
300			3,756	3,830		<u>-</u>
650			4,090	4,154		3,639
	at 650		nd load or		······································	

5.3 TEST CONDUCT

5.3.1 General Test Procedures

The handling test schedule is given in Table 6. The tests were run alternately in each direction for each test type and condition.

A test was repeated if the test conditions were not met or maintained sufficiently for a valid test. The specification on test speed was ± 2 mph on initial velocity and ± 4 mph during the test. The specification on lateral acceleration during the yaw tests was ± 0.04 G.

Testing was suspended if the steady wind speed exceeded 10 mph or if gusts exceeded 15 mph.

TABLE 6. HANDLING TEST SCHEDULE (FOR EACH VEHICLE)

	Light	Weight	Loaded Weight		
	Clockwise	Counter- clockwise	Clockwise	Counter- clockwise	
Steady State Yaw, .4G			T.		
25 mph	3 ·	3	3	3	
40 mph	3	3	3	3	
55 mph	3	3	3	3	
Transient Yaw, .4G	1				
25 mph	5	5	.5	5	
50 mph	5	5	5	5	
Returnability					
25 mph	3	3 .	3	3	
Maximum Lateral Acceleration					
Dry Surface	5	5	5	5	
Wet Surface	5	5	5	5	
Breakaway Control	6	6	6	6	
Slalom Course					
25 mph	3	3	. 3	3	
40 mph	3	3	3	3 ,	
Maximum velocity not to exceed 55		μ·		•	
mph	3	3	3	3	

5.3.2 Steady State and Transient Yaw Tests

The steering machine installed in the vehicle was set prior to the test run for the steering wheel angle that would yield a 0.4G turn at the designated test speed. The driver approached the skid pad at the prescribed test speed. At the test initiation point, he engaged the steering machine while holding the throttle in the same position. After five seconds, the steering machine was disengaged and the vehicle manually controlled to

remain on the paved surface of the skid pad while it was brought to a stop. Figure 15 shows the ASL prototype beginning a yaw test.

5.3.3 Returnability Tests

The vehicle was driven around the 100-foot radius circle on the skid pad at 25 mph. The driver monitored the vehicle speed until it was stabilized while maintaining the course. The steering wheel was then released while the vehicle's speed was maintained. After five seconds, the vehicle was brought under manual control to remain on the paved surface and brought to a complete stop.

5.3.4 Maximum Lateral Acceleration Tests

The vehicle was driven around the 100-foot radius circle at an initial speed of 25 mph. The speed was slowly increased until the maximum speed at which the course could be maintained was reached. Data recording then began and continued while the vehicle completed one circle on course, maintaining maximum speed. The test was then terminated and the vehicle brought to a stop. Figure 16 shows the ASL prototype during a maximum lateral acceleration test.

5.3.5 Breakaway Control Tests

The vehicle was driven around the 100-foot radius circle at an initial speed of 25 mph. The speed was slowly increased until the maximum speed at which the course could be maintained was reached. Data recording then began. The vehicle velocity was increased until the 110-foot circle was reached. When any part

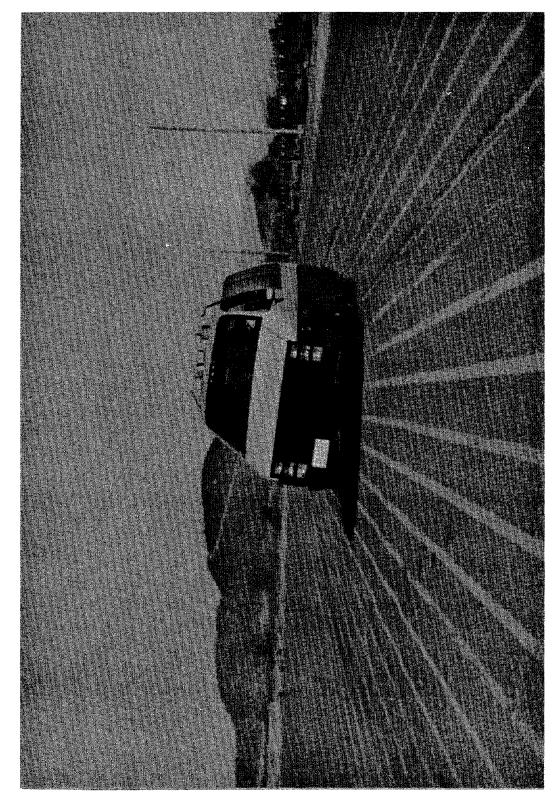
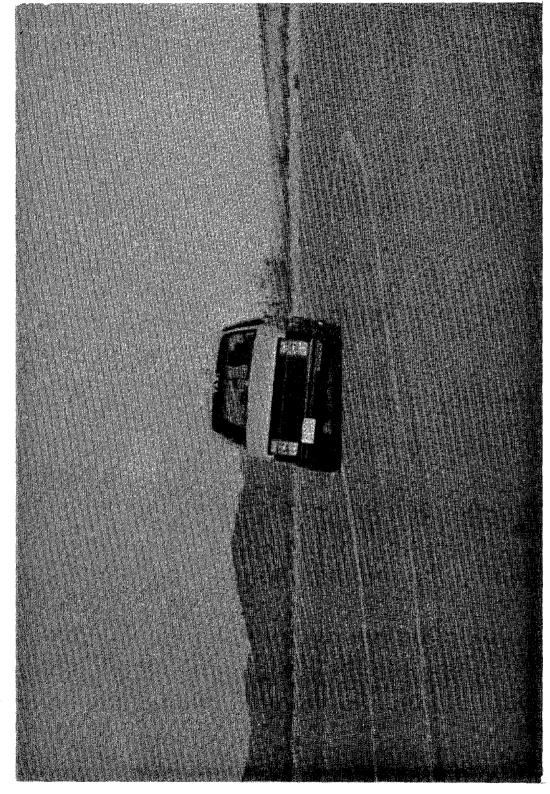



Figure 15. ASL Prototype Beginning a Yaw Test.

ASL Prototype During Maximum Lateral Acceleration Test. Figure 16.

of the vehicle became tangent to the 110-foot circle, the driver engaged the event switch, started the stopwatch, released the throttle, and steered the vehicle to regain course on the 100-foot circle as quickly as possible without braking or applying power. Upon returning to the original course, ±2 feet, the event switch was disengaged and the stopwatch stopped, terminating the test.

5.3.6 Slalom Tests

The driver approached the slalom course at the prescribed test speed. At the test initiation point, the driver engaged the event switch and a ground-based observer started timing. The vehicle was driven through the course, passing the cones alternately on the right and left, while maintaining the designated test speed. Upon passing the final cone, the event switch was disengaged and timing stopped. The tests were run with alternating initial right and left turn directions.

5.4 PROBLEMS ENCOUNTERED DURING TESTING

The tendency of the Dutcher prototype to lift the inside front wheel during turning maneuvers was reduced by ballasting the vehicle and testing only at the 650-pound load condition (refer to Section 5.2.2). The ballasting did not completely eliminate the problem, however, especially when approaching limit conditions. Thus, the maximum speeds attained during the breakaway control and lateral acceleration tests were limited to prevent wheel lift-off from occurring.

The ASL prototype encountered several minor problems during the handling tests. One of these involved the steering linkage

spacer. The spacer had become loose during the previous noise test series, causing the vehicle to lose the proper front wheel alignment. The spacer was tightened and the vehicle realigned before the handling tests were started. No further problems were encountered with the spacer.

Problems with the ASL fuel system vapor-locking, causing hard starts, had also been noticed during the noise tests. The vehicle was taken to an Audi dealer for fuel system repairs/adjustments before the handling tests started. Although the fuel system performed satisfactorily after this, in regard to the vapor-locking and hard starting, fuel starvation and engine stall were encountered during left turns with a lateral acceleration of 0.25G or more. Personnel from ASL Engineering reoriented the fuel pump accumulator system which eliminated this particular problem. However, minor problems were still periodically encountered with the fuel system during the testing. The fuel pump appeared to be generating air bubbles in the fuel line. Shaking the pump relieved this situation.

6.0 TEST RESULTS

6.1 STEADY STATE YAW TESTS

The results of the steady state yaw tests are summarized for each of the vehicles in Tables 7 through 9. The steering gain values were computed from the following equation:

Steering Gain (ft/sec) =
$$\frac{\text{Yaw Rate x Wheelbase (deg/sec x ft)}}{\text{Front Wheel Angle (deg)}}$$

The tolerance interval is defined as that interval within which 90 percent of the samples will fall with a 90 percent confidence level.

The steering gains for each vehicle are plotted and compared with the PTV specification in Figures 17 through 21. As may be seen from these figures, all three vehicles were within the specification limits for all the test conditions.

Turn direction and load condition did not significantly affect the steering gain of either the Nova or ASL vehicles; nor was there any significant difference between the steering gains of the two vehicles.

The Dutcher prototype, however, exhibited significant differences in the steering gain compared to the other two vehicles.

It also showed significant differences during the clockwise and counterclockwise tests at 40 mph. Part of the difference between the data from the two different turn directions might be due to the ballasting that was necessary to keep the right wheel from lifting off. This ballast was placed on the right side of the vehicle in the luggage area, and could thus affect the vehicle behavior differently during right and left turns. There is no ready explanation of why this effect did not also show up during the higher speed tests at 55 mph.

		F	Tolerance Interval	2.084	4.422	1.747	2.877	2.639	.305
(BASELINE)	(၁၅	650-1b Load	Standard	.356	.756	.299	. 492	.451	.019
HE NOVA	in (ft/se		Average	26.381	32.961	28.122	31.250	28.107	27.292
LING FOR T	Steering Gain (ft/sec)	1	Tolerance Interval	1.547	3.029	1.724	7.491	18.051	5.000
SUMMARY OF STEADY STATE YAW TESTING FOR THE NOVA (BASELINE)	St	300-1b Load	Standard	.265	.518	. 295	1.281	3.087	.855
SADY STAT		3	Average Value	27.797	32.057	30.836	32.887	29.320	27.875
RY OF STE	e Peak	uny acceleration (G)	Lateral	0.52	0.45	0.53	0.53	0.48	0.46
	Average Peak	ation (G)	Longi- tudinal	0.04	0.07	90.0	0.05	0.05	0.07
TABLE 7.		ייונה	Di C	CW	CCW	CW	GW	CW	CCW
	-	Nominal rest	Velocity (mph)	25	25	40	40	55	55

37

*cw = Clockwise. ccw = Counterclockwise.

,	TABLE 8		MARY OF S	STEADY ST	SUMMARY OF STEADY STATE YAW TESTING FOR THE ASL PROTOTYPE	STING FOR	THE ASL	PROTOTYPE	
		Average Peak	Peak		St	Steering Gain (ft/sec)	in (ft/se) (2)	
Nominal Test	Tilro	ation (G)	(B)	3	300-1b Load		9	650-1b Load	1
Velocity (mph)	Velocity Direction (mph) (cw/ccw)*	Longi- tudinal	Lateral	Average Value	Standard Deviation	Tolerance Interval	Average Value	Average Standard Value Deviation	Tolerance Interval
25	αM	00.0	0.51	29.421	.255	1.296	30.006	.135	608.
25	CCW	90.0	0.57	29.583	.450	2.655	27.765	.423	2.457
40	CΨ	0.00	0.50	35.766	2.115	12.375	35.046	.405	2.394
40	CCW	0.12	0.59	30.096	.468	2.754	28.170	.477	2.772
55	ΩW	0.08	0.46	27.594	3.888	22.725	32.031	1.827	10.674
55	CCW	0.13	0.63	32.643	1.458	8.505	24.813	1.053	6.156

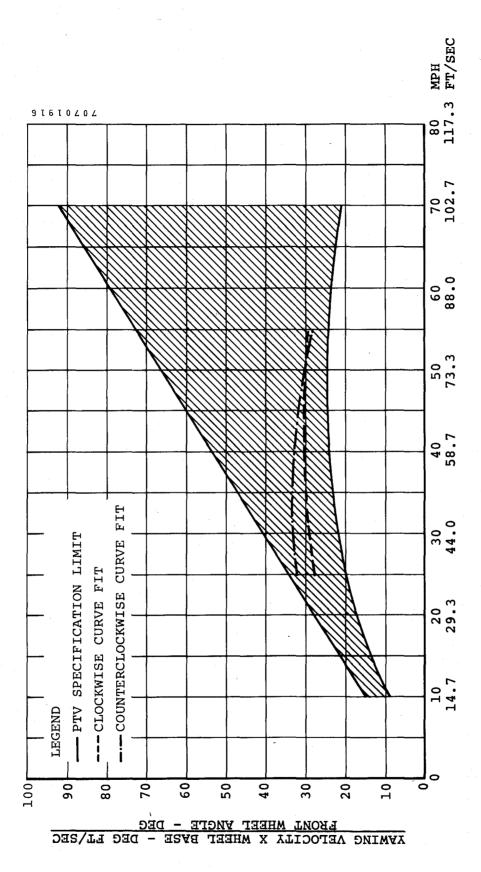
*cw = Clockwise. ccw = Counterclockwise.

TABLE 9. SUMMARY OF STEADY STATE YAW TESTING FOR THE DUTCHER PROTOTYPE

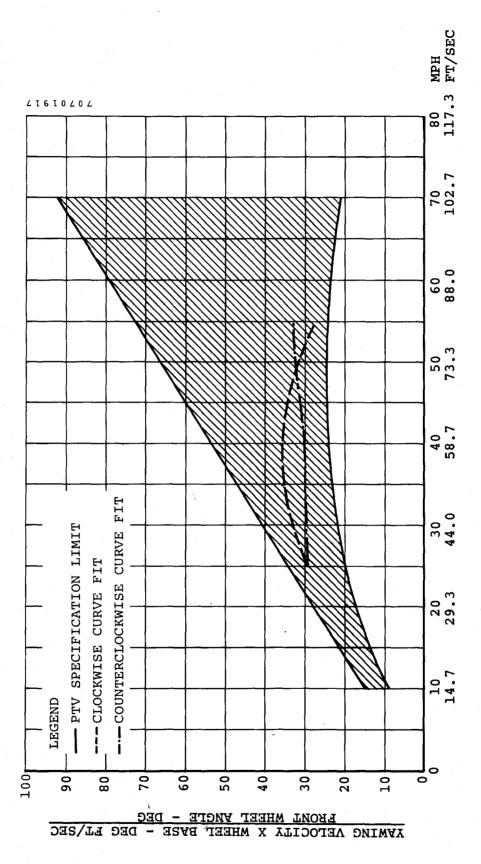
		Average Peak Dummy Acceler- ation (G)		Steering Gain (ft/sec)			
Nominal Test	Turn			650-lb Load			
	Direction (cw/ccw)*	Longi- tudinal	Lateral	Average Value	Standard Deviation	Tolerance Interval	
25	CW	0.03	0.43	33.554	6.230	36.427	
25	CCW	0.04	0.42	33.026	6.538	38.192	
40	CW	0.11	0.61	50.490	7.341	42.923	
40	CCW	0.16	0.76	42.155	1.268	7.417	
55	CM	0.00	0.56	68.068	6.811	39.776	
55	CCW	0.17	0.47	70.198	5.993	35.024	

^{*}cw = Clockwise.

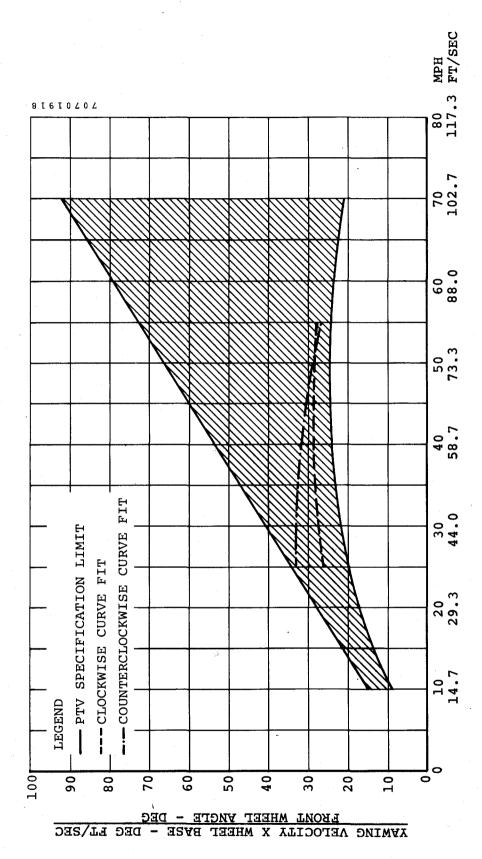
The dummy responses for the vehicles are compared in Table 10. Although there are some variations in the data, there is no overall significant difference in the dummy accelerations in the three vehicles.

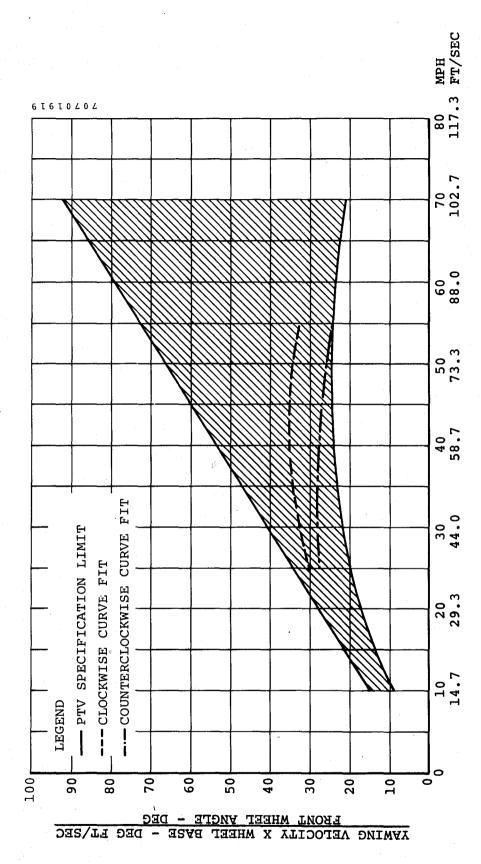

6.2 TRANSIENT YAW TESTS

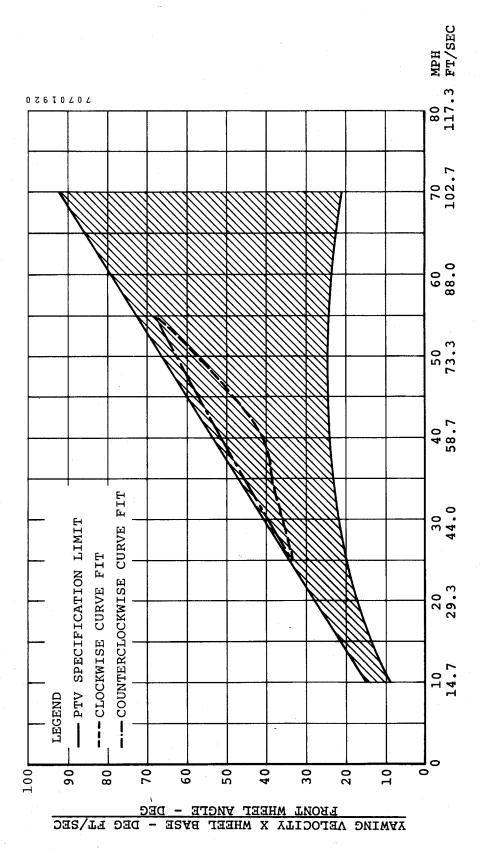
The results of the transient yaw tests are summarized in Tables 11 through 15. The steering gain ratios in percentages, were computed from the following equation:


Steering Gain Ratio (%) =
$$\frac{\text{Steering Gain (transient)}}{\text{Steering Gain (steady state)}} \times 100$$

The times for which the steering gain ratios are reported are based on time zero occurring when 50 percent of the steering input has been made.


ccw = Counterclockwise.


Steady State Yaw Response Versus Tangential Velocity for Nova (Baseline) at 300-pound Load. Figure 17.


Steady State Yaw Response Versus Tangential Velocity for ASL Prototype at 300-pound Load. Figure 18.

Steady State Yaw Response Versus Tangential Velocity for Nova (Baseline) at 650-pound Load. Figure 19.

Steady State Yaw Response Versus Tangential Velocity for ASL Prototype at 650-pound Load. Figure 20.

Steady State Yaw Response Versus Tangential Velocity for Dutcher Prototype at 650-pound Load. Figure 21.

TABLE 10. COMPARISON OF DUMMY RESPONSE DURING STEADY STATE TESTING

		Longitudinal Acceleration (G)			Accel	Latera. Leration	
Nominal Test Velocity (mph)	Direction of Turn	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type
25	CW*	0.04	0.00	0.03	0.52	0.51	0.43
25	ccw**	0.07	0.06	0.04	0.45	0.57	0.42
40	cw	0.06	0.00	0.11	0.53	0.50	0.61
40	ccw	0.05	0.12	0.16	0.53	0.59	0.76
55	CW	0.05	0.08	0.00	0.48	0.46	0.56
55	CCW	0.07	0.13	0.17	0.46	0.63	0.47

^{*}Clockwise.

The steering gain ratios are plotted at 0.1 second intervals and compared with the PTV specification in Figures 22 through 31. In general, all of the vehicles were within the specification limits until the time at which the steering ratio overshoot should cease and the vehicle approaches the steady state yaw condition (1.6 seconds). All of the vehicles were close to or within the specification as they entered the steady state condition at the 25-mph speed. However, all of the vehicles oscillated in and out of the steady state range at 50-mph speeds. This oscillation was greatest for the ASL, followed by the Nova. The Dutcher prototype was nearly within the specification for return to steady state conditions.

No noticeable overshoot occurred with any of the vehicles at 25 mph. There was no significant difference in the average peak value of the overshoot between the three vehicles; however, both

^{**}Counterclockwise.

TABLE 11. SUMMARY OF TRANSIENT YAW TESTING FOR THE NOVA (BASELINE) AT 300-POUND LOAD

	Value of Parameter for the Nominal Test Velocity						
	25 1		50 1				
Parameter	CW Direction	CCW Direction	CW Direction	CCW Direction			
Steering Gain Ratio at							
0.2 Seconds							
- Average	70	65	70	78			
- Standard Deviation	5.216	4.817	11.437	5.357			
- Tolerance Interval	18.22	16.83	39.96	18.72			
0.6 Seconds							
- Average	102	94	131	132			
- Standard Deviation	1.414	1.304	9.072	7.503			
- Tolerance Interval	4.941	4.556	31.697	26.217			
0.8 Seconds							
- Average	. 105	97	122	120			
- Standard Deviation	1.140	1.517	7.649	4.087			
- Tolerance Interval	3.98	5.30	26.72	14.28			
1.6 Seconds							
- Average	105	96	102	100			
- Standard Deviation	1.304	2.302	9.555	8.204			
- Tolerance Interval	4.56	8.04	3.49	28.66			
Peak Overshoot	•						
- Average	105.8	97.4	136	139			
- Standard Deviation	1.304	0.548	7.969	8.532			
- Tolerance Interval	4.556	1.914	27.84	29.81			
Time of Peak Overshoot of Steering Gain Ratio	0.83	0.85	.58	.48			

TABLE 12. SUMMARY OF TRANSIENT YAW TESTING FOR THE NOVA (BASELINE) AT 650-POUND LOAD

	Value of Parameter for the Nominal Test Velocity						
	25 r		50 mph				
Parameter	CW Direction	CCW Direction	CW Direction	CCW Direction			
Average Peak Dummy Acceleration							
Longitudinal	0.10	0.07	0.08	0.04			
Lateral	0.50	0.45	0.59	0.37			
Steering Gain Ratio at							
0.2 Seconds							
- Average	72	68	92	86			
- Standard Deviation	3.317	7.810	13.126	10.035			
- Tolerance Interval	11.59	27.29	45.86	35.06			
0.6 Seconds							
- Average	107	92	144	136			
- Standard Deviation	2.683	2.191	3.808	8.289			
- Tolerance Interval	9.375	7.655	13.305	28.960			
0.8 Seconds							
- Average	108	97	123	114			
- Standard Deviation	1.817	2.074	6.870	4.764			
- Tolerance Interval	6.35	7.25	24.00	16.65			
1.6 Seconds							
- Average	107	93	115	105			
- Standard Deviation	1.517	2.168	8.532	7.791			
- Tolerance Interval	5.30	7.57	29.81	27.22			
Peak Overshoot							
- Average	109.6	97.8	147	149			
- Standard Deviation	1.140	1.789	2.302	5.612			
- Tolerance Interval	3.983	6.25	8.04	19.61			
Time of Peak Overshoot of Steering Gain Ratio	6.90	0.66	0.51	0.44			

TABLE 13. SUMMARY OF TRANSIENT YAW TESTING FOR THE ASL PROTOTYPE AT 300-POUND LOAD

	Value of Parameter for the Nominal Test Velocity						
	25 r	mph	50 mph				
Parameter	CW Direction	CCW Direction	CW Direction	CCW Direction			
Steering Gain Ratio at							
0.2 Seconds							
- Average	70	65	75	84			
- Standard Deviation	9.576	5.595	5.079	15.017			
- Tolerance Interval	33.46	19.55	17.75	52.47			
0.6 Seconds							
- Average	100	97	133	116			
- Standard Deviation	1.140	2.000	13.027	11.261			
- Tolerance Interval	3.984	6.988	45.516	39.344			
0.8 Seconds							
- Average	101	98	124	105			
- Standard Deviation	1.92	1.871	7.328	10.545			
- Tolerance Interval	6.72	6.54	25.60	36.84			
1.6 Seconds							
- Average	102	98	108	104			
- Standard Deviation	1.788	1.871	4.550	4.817			
- Tolerance Interval	6.25	6.54	15.90	16.83			
Peak Overshoot							
- Average	102.4	98.4	141.0	124			
- Standard Deviation	1.140	2.608	11.832	16.799			
- Tolerance Interval	3.984	9.111	41.342	58.700			
Time of Peak Overshoot of Steering Gain Ratio	0.40	0.60	0.46	0.55			

TABLE 14. SUMMARY OF TRANSIENT YAW TESTING FOR THE ASL PROTOTYPE AT 650-POUND LOAD

	Value of Parameter for the Nominal Test Velocity					
	25	25 mph		50 mph		
Parameter	CW Direction	CCW Direction	CW Direction	CCW Direction		
Average Peak Dummy Acceleration						
Longitudinal	0.00	0.07	0.01	0.11		
Lateral	0.52	0.60	0.46	0.62		
Steering Gain Ratio at						
0.2 Seconds						
- Average	65	65	69	97		
- Standard Deviation	6.595	3.209	12,280	13.027		
- Tolerance Interval	23.04	11.21	42.91	45.52		
0.6 Seconds						
- Average	98	97	122	131		
- Standard Deviation	3.362	2.739	7.829	11.432		
- Tolerance Interval	11.745	9.569	27.356	39.945		
0.8 Seconds						
- Average	99	94	119	110		
- Standard Deviation	2.646	3.209	14.082	14.353		
- Tolerance Interval	9.24	11.21	49.20	50.18		
1.6 Seconds						
- Average	98	99	99	98		
- Standard Deviation	2.449	1.517	11.149	12.071		
- Tolerance Interval	8.56	5.30	38.95	42.17		
Peak Overshoot						
- Average	101.0	102.0	126.2	147.0		
- Standard Deviation	2.915	3.240	7.155	7.396		
- Tolerance Interval	10.187	11.322	25.001	25.84		
Time of Peak Overshoot of Steering Ratio	0.83	0.44	0.65	0.40		

TABLE 15. SUMMARY OF TRANSIENT YAW TESTING FOR THE DUTCHER PROTOTYPE AT 650-POUND LOAD

	Value of Parameter for the Nominal Test Velocity					
	25	mph	50 mph			
Parameter	CW Direction	CCW Direction	CW Direction	CCW Direction		
Average Peak Dummy Acceleration						
Longitudinal	0.03	0.05	0.04	0.14		
Lateral	0.44	0.42	0.54	0.59		
Steering Gain Ratio at						
0.2 Seconds						
- Average	92	88	92	87		
- Standard Deviation	4.930	12.235	14.046	18.863		
- Tolerance Interval	17.22	42.75	49.08	65.91		
0.6 Seconds						
- Average	97	95	114	124		
- Standard Deviation	3.362	4.037	14.950	15,437		
- Tolerance Interval	65.441	14.106	52.235	53.937		
0.8 Seconds	•					
- Average	102	97	95	103		
- Standard Deviation	1.483	2.608	22.21	20.586		
- Tolerance Interval	5.18	9.11	77.60	71.93		
1.6 Seconds						
- Average	101	97	107	92		
- Standard Deviation	1.673	0.837	12.570	11.000		
- Tolerance Interval	5.85	2.92	43.92	38.43		
Peak Overshoot						
- Average	104.2	99.8	124.8	142.6		
- Standard Deviation	1.095	1.789	8.044	9.864		
- Tolerance Interval	3.827	6.250	28.104	34.465		
Time of Peak Overshoot of Steering Gain Ratio	0.99	0.89	0.61	0.43		

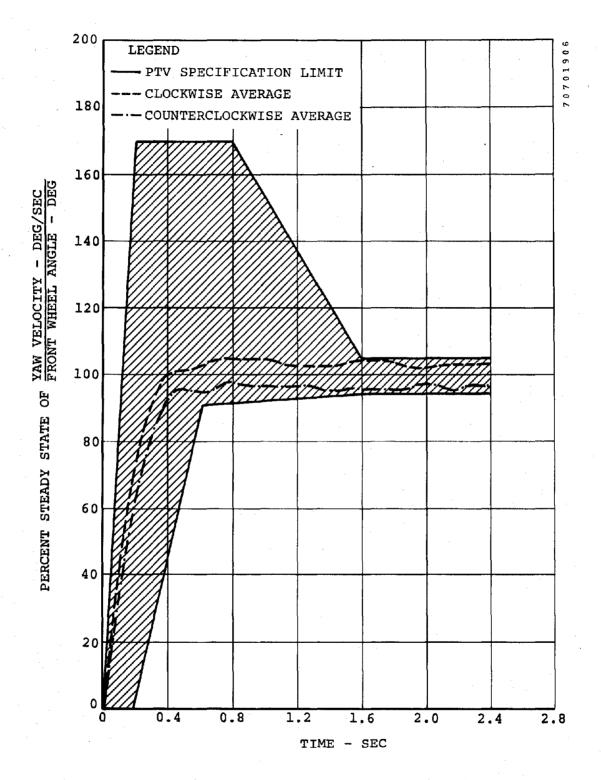


Figure 22. Transient Yaw Response Versus Time for Nova, 300-pound Load, 25 mph.

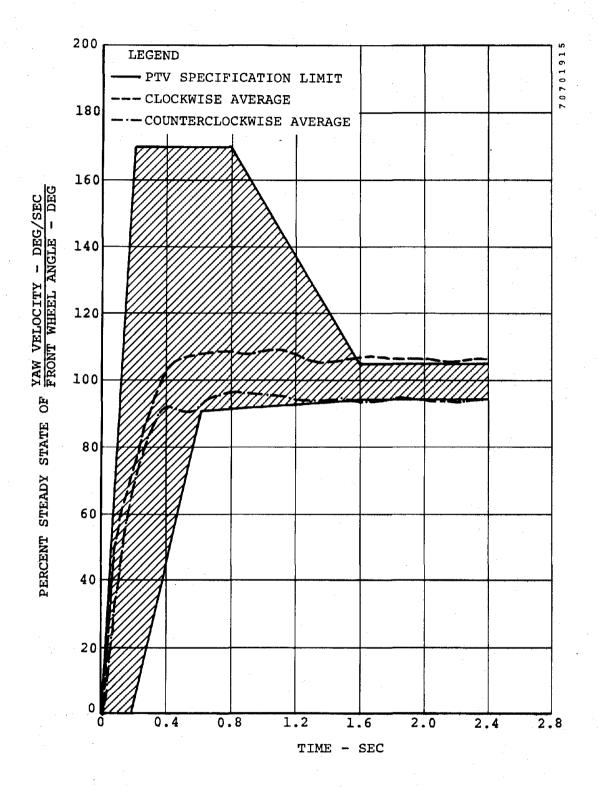


Figure 23. Transient Yaw Response Versus Time for Nova, 650-pound Load, 25 mph.

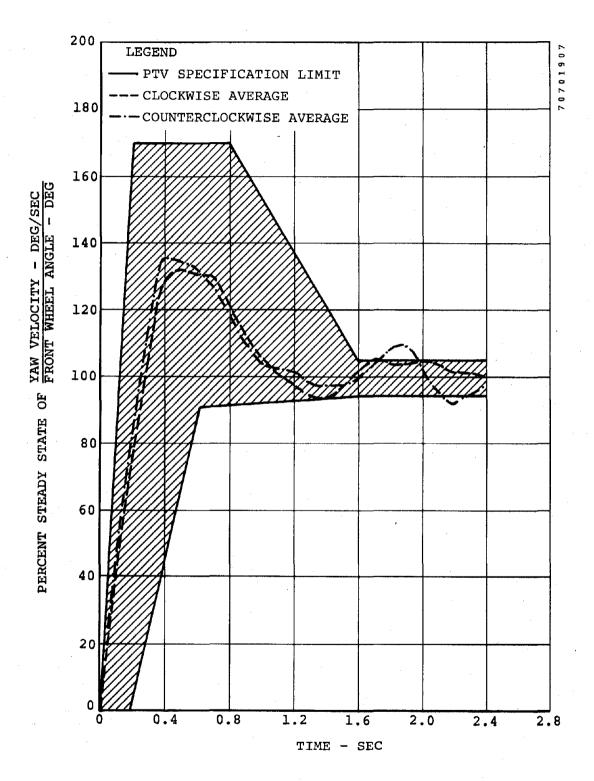


Figure 24. Transient Yaw Response Versus Time for Nova, 300-pound Load, 50 mph.

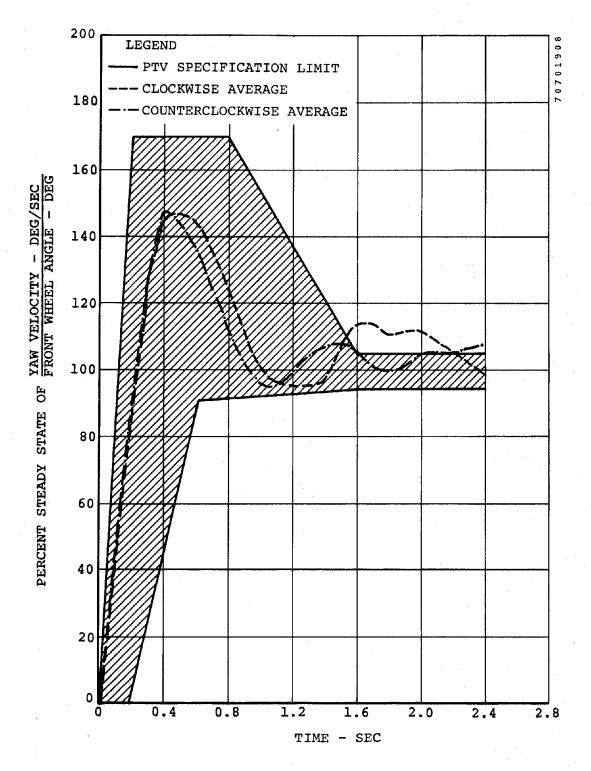


Figure 25. Transient Yaw Response Versus Time for Nova, 650-pound Load, 50 mph.

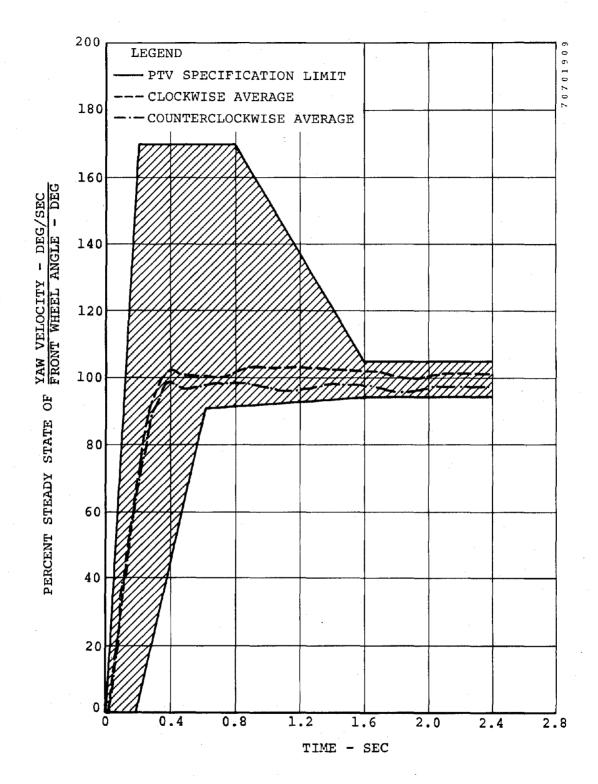


Figure 26. Transient Yaw Response Versus Time for ASL Prototype, 300-pound Load, 25 mph.

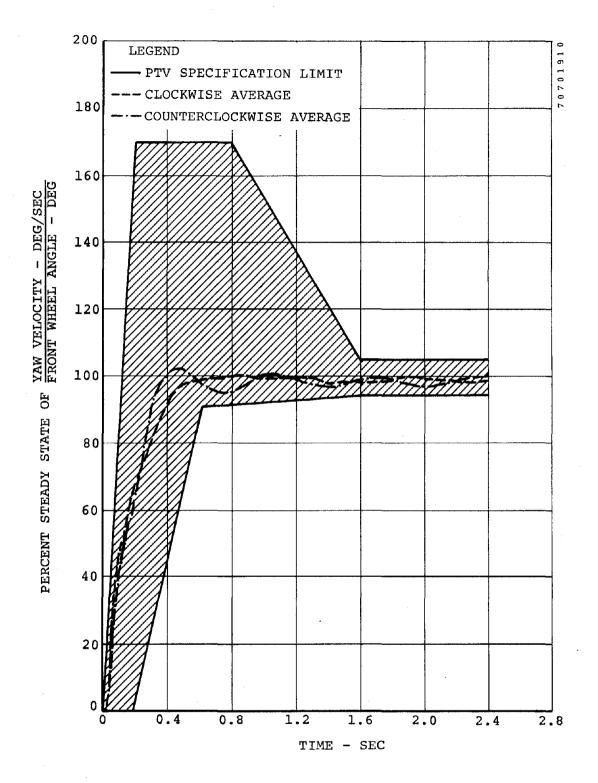


Figure 27. Transient Yaw Response Versus Time for ASL Prototype, 650-pound Load, 25 mph.

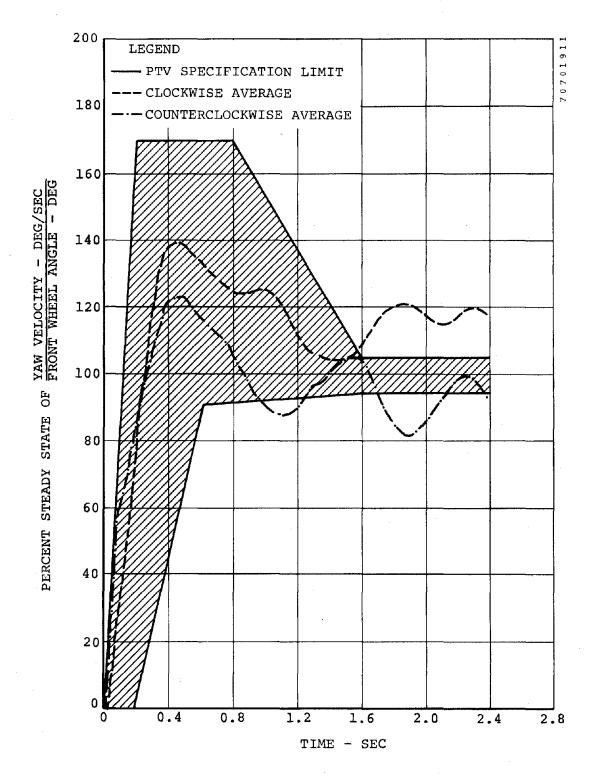


Figure 28. Transient Yaw Response Versus Time for ASL Prototype, 300-pound Load, 50 mph.

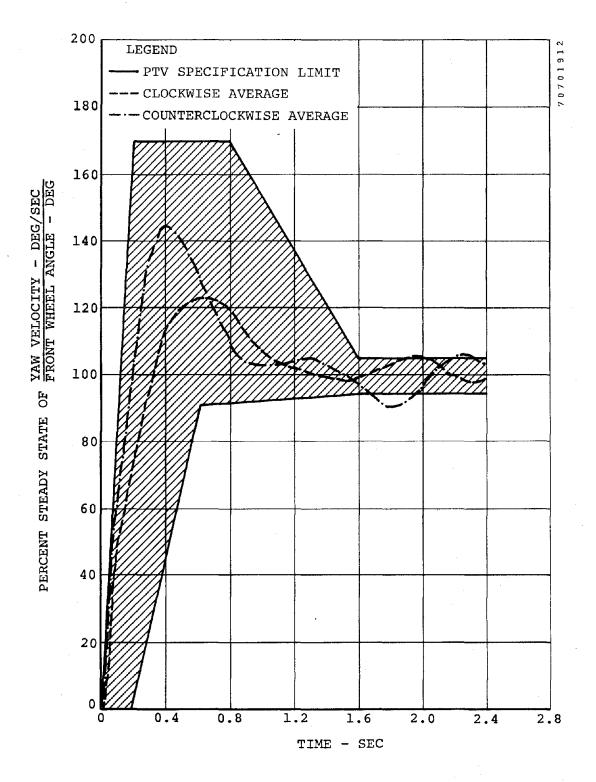


Figure 29. Transient Yaw Response Versus Time for ASL Prototype, 650-pound Load, 50 mph.

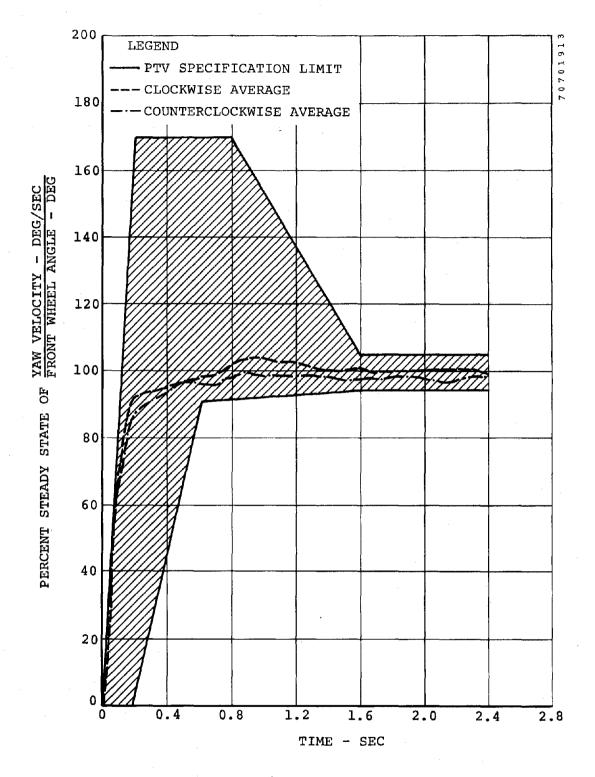


Figure 30. Transient Yaw Response Versus Time for Dutcher Prototype, 650-pound Load, 25 mph.

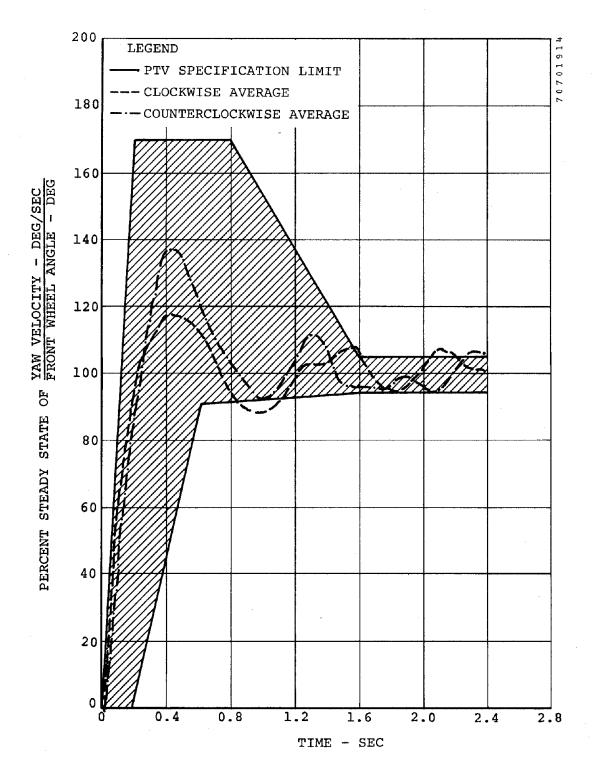


Figure 31. Transient Yaw Response Versus Time for Dutcher Prototype, 650-pound Load, 50 mph.

prototypes showed significant differences in the overshoot values depending on the turn direction, while the overshoot of the Nova was essentially identical for both clockwise and counterclockwise turns.

The dummy accelerations obtained during the transient yaw tests are compared in Table 16. These values are close to those obtained during the steady state yaw tests and do not vary significantly from vehicle to vehicle.

Т2		OMPARI:		OUMMY RES	SPONSE 1	DURING	
Nominal			ngitudi leratio			Lateral leratio	n (G)
Test Velocity (mph)	Direction of Turn	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type
25	cw*	0.10	0.00	0.03	0.50	0.52	0.44
25	ccw*	0.07	0.07	0.05	0.45	0.60	0.42
50	CW	0.08	0.01	0.04	0.59	0.46	0.54

0.11

0.14

0.04

0.62

0.37

0.59

50

6.3 RETURNABILITY TESTS

CCW

The average yaw rates versus time for the three vehicles are plotted, along with the PTV specification, in Figures 32 through 36. These figures show that both prototypes met the PTV specification easily and that there were no significant differences in the returnability characteristics of the two vehicles. Their performance was considerably better than that of the Nova, which did not meet the specification during either load condition.

^{*}Clockwise.

^{**}Counterclockwise.

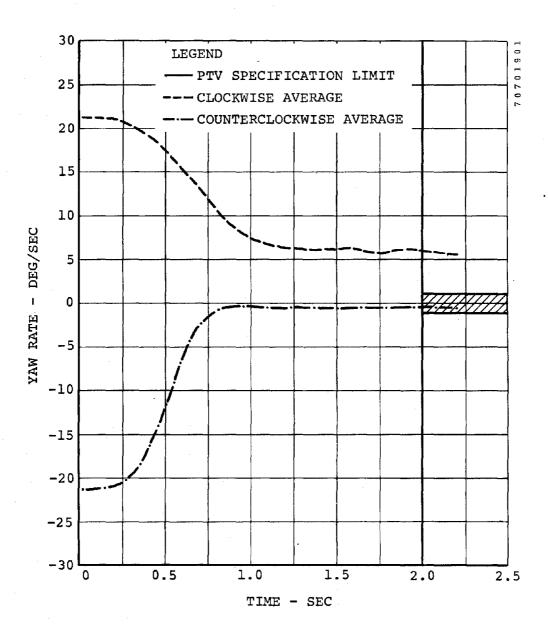


Figure 32. Returnability Performance in Terms of Yaw Rate for the Nova (Baseline) at 300-pound Load.

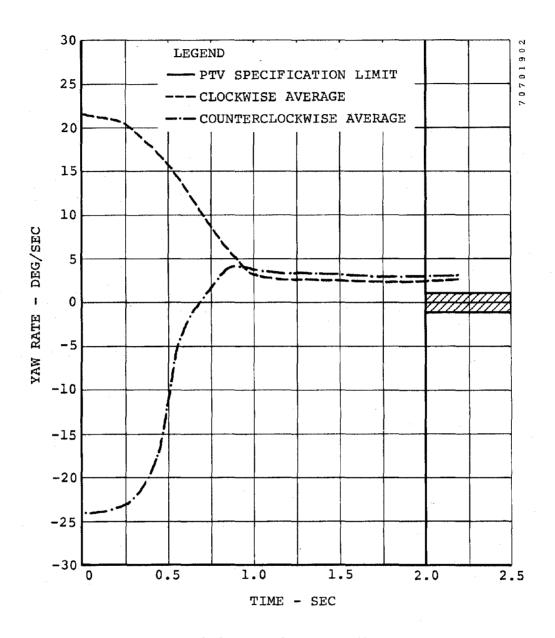


Figure 33. Returnability Performance in Terms of Yaw Rate for the Nova (Baseline) at 650-pound Load.

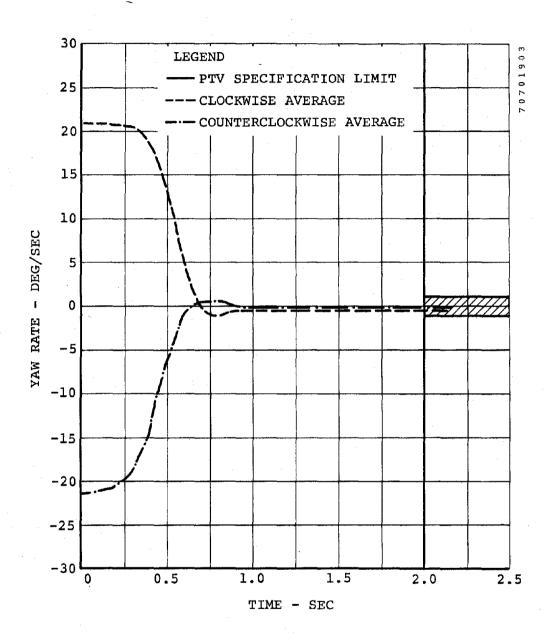


Figure 34. Returnability Performance in Terms of Yaw Rate for the ASL Prototype at 300-pound Load.

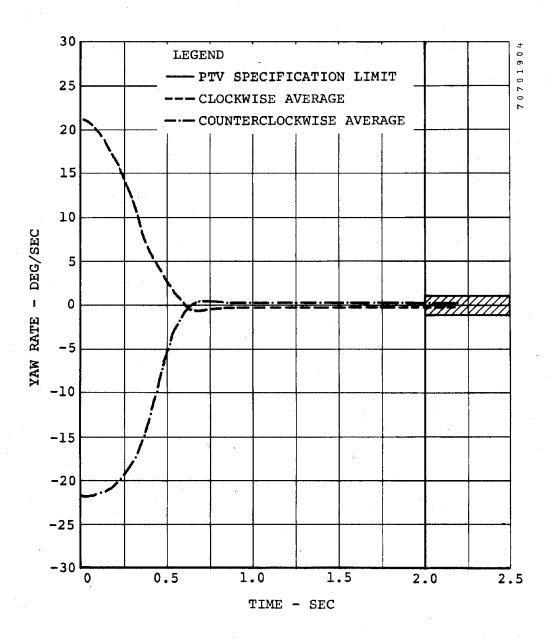


Figure 35. Returnability Performance in Terms of Yaw Rate for the ASL Prototype at 650-pound Load.

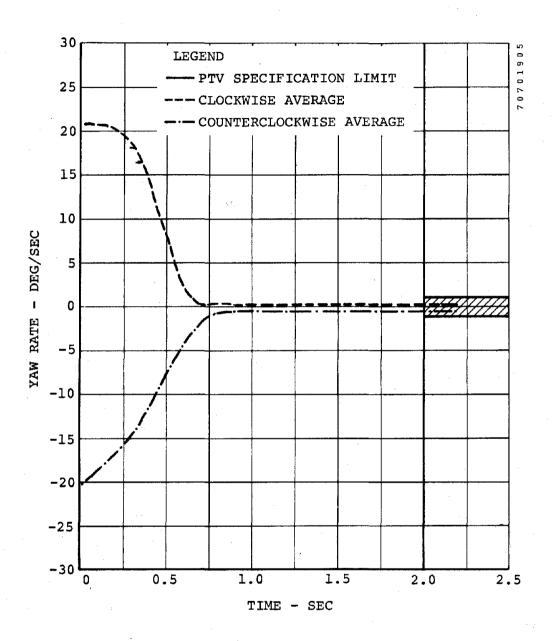


Figure 36. Returnability Performance in Terms of Yaw Rate for the Dutcher Prototype at 650-pound Load.

TABLE 17. COMPARISON OF DUMMY RESPONSE DURING RETURNABILITY TESTING

			ngitudi leratio			Lateral leratio	
Test Velocity (mph)	Direction of Turn	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type
25	cw*	0.05	0.07	0.13	0.50	0.34	0.52
25	ccw*	0.04	0.12	0.09	0.47	0.43	0.53

^{*}Clockwise.

TABLE 18. SUMMARY OF MAXIMUM LATERAL ACCELERATION PERFORMANCE FOR THE NOVA (BASELINE)

			Average Dur	e Peak mmy	Maxir	num Lat	eral Accele (G)	eration
Loading	Pavement		Accele:	ration G)		Stan- dard		PTV
_	Condition	Turn	Longitu-		Aver-	Devia-	Tolerance	
(1b)	(Dry/Wet)	Direction	-	Lateral	age	tion	Interval	cation
300	Dry	cw*	-	_	0.652	0.016	0.057	0.60
300	Dry	CCW**	-	-	0.644	0.017	0.055	0.60
300	Wet	CW	. , -	-	0.654	0.006	0.019	0.41
300	Wet	CCW	-	-	0.622	0.022	0.076	0.41
650	Dry	CW	0.19	0.85	0.656	0.022	0.077	0.60
650	Dry	CCM	0.10	0.76	0.596	0.009	0.031	0.60
650	Wet	CW	0.16	0.79	0.615	0.013	0.054	0.41
650	Wet	CCW	0.10	0.70	0.576	0.015	0.053	0.41

^{*}Clockwise.

^{**}Counterclockwise.

^{**}Counterclockwise.

The returnability characteristics of the vehicles were also plotted using relative heading angles versus time. These data are contained in Figures 37 through 41. The specification used for the Ford Experimental Safety Vehicle (ESV) evaluation is also shown on these plots for comparative purposes.

These figures show that the ASL had the best returnability performance according to the ESV criteria, meeting the ESV specification at both load conditions. The Dutcher performance was better than that of the Nova, as it exceeded the ESV specification to a small degree during the counterclockwise tests, while the Nova exceeded the specification to a much greater extent during the clockwise tests.

The dummy accelerations during the returnability tests are compared in Table 17. The Dutcher and Nova dummies experienced comparable accelerations while those of the ASL dummy were slightly lower.

6.4 MAXIMUM LATERAL ACCELERATION TESTS

The data for the maximum lateral acceleration tests for the three vehicles are summarized in Tables 18 through 20. These data are compared in Table 21.

All three vehicles passed the PTV specifications for the wet and dry conditions, with one exception. Neither the Nova nor ASL met the specification during the counterclockwise tests on dry pavement with a 650-pound load. The Dutcher met the specifications during all the tests at this load.

Although there were some variations for certain test conditions, the Nova generally achieved slightly higher lateral accelerations before breaking away than did the two prototypes.

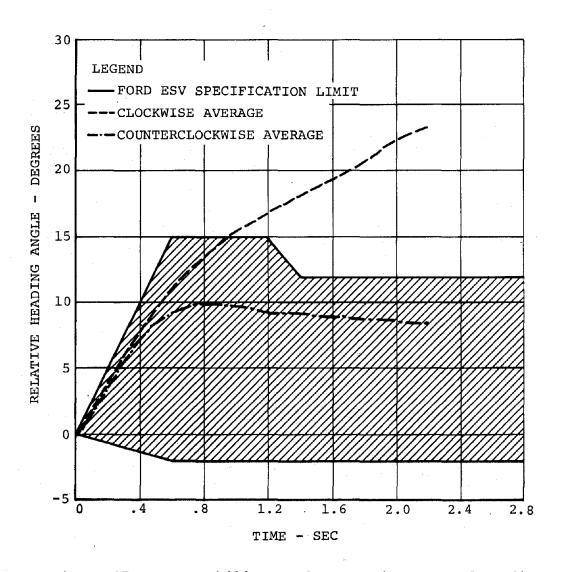


Figure 37. Returnability Performance in Terms of Heading for Nova (Baseline) at 300-pound Load.

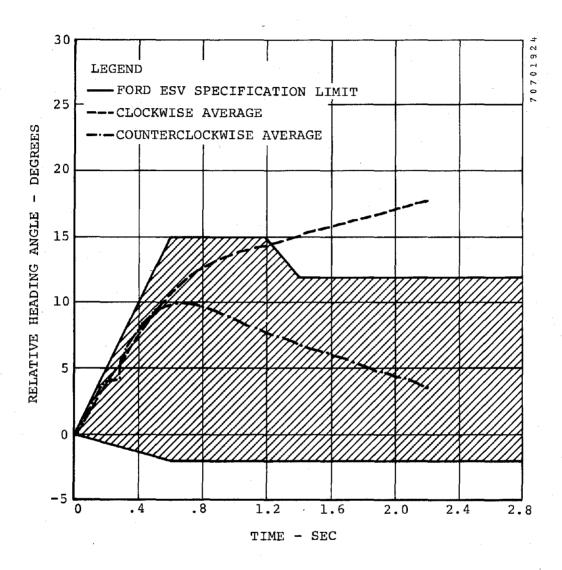


Figure 38. Returnability Performance in Terms of Heading for Nova (Baseline) at 650-pound Load.

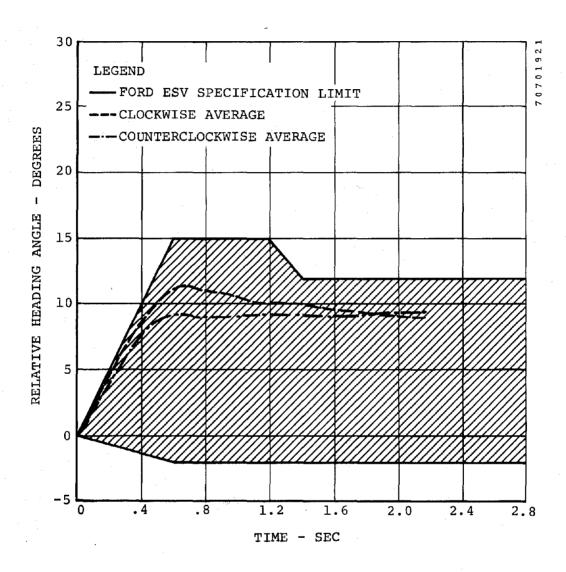


Figure 39. Returnability Performance in Terms of Heading for ASL Prototype at 300-pound Load.

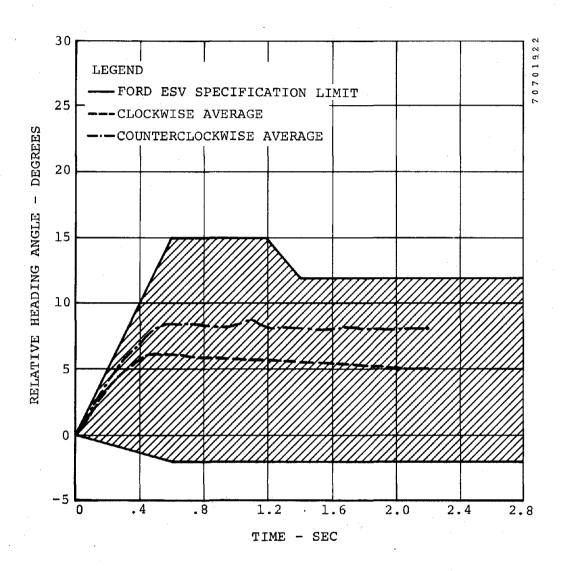


Figure 40. Returnability Performance in Terms of Heading for ASL Prototype at 650-pound Load.

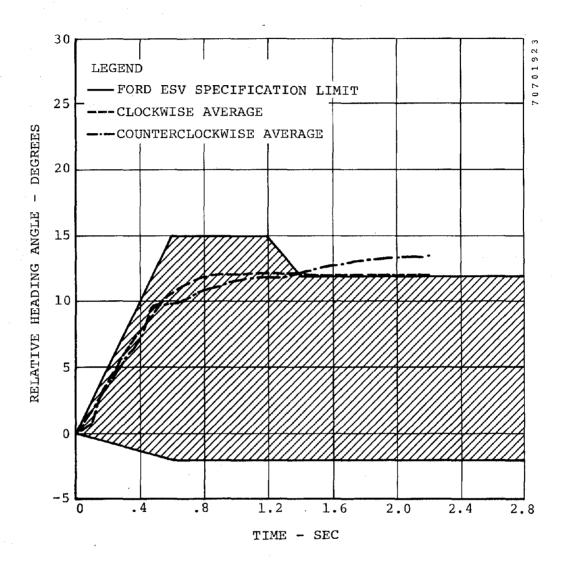


Figure 41. Returnability Performance in Terms of Heading for Dutcher Prototype at 650-pound Load.

TABLE 19. SUMMARY OF MAXIMUM LATERAL ACCELERATION PERFORMANCE FOR THE ASL PROTOTYPE

		·	Averag Dui	e Peak mmy	Maxir	num Late	eral Accele	eration
Loading	Pavement		Accele:	ration 3)		Stan- dard		PTV
-	Condition	Turn	Longitu-		Aver-	Devia-	Tolerance	Specifi-
(1b)	(Dry/Wet)	Direction	dinal	Lateral	age	tion	Interval	cation
300	Dry	cw*	· <u>-</u>	_	0.666	0.022	0.076	0.60
300	Dry	ccw**	_	-	0,606	0.026	0.091	0.60
300	Wet	CW	-	-	0.592	0.061	0.213	0.41
300	Wet	CCW	-	-	0.534	0.052	0.181	0.41
650	Dry	CW	0.06	0.82	0.620	0.026	0.089	0.60
650	Dry	CCW	0.18	0.81	0.566	0.027	0.094	0.60
650	Wet	CW	.0.05	0.79	0.578	0.019	0.067	0.41
650	Wet	ccw	0.16	0.89	0.562	0.052	0.182	0.41

^{*}Clockwise.

TABLE 20. SUMMARY OF MAXIMUM LATERAL ACCELERATION PERFORMANCE FOR THE DUTCHER PROTOTYPE

			Averag Dur	e Peak mmy	Maxir	num Late	eral Accele (G)	eration
Loading	Pavement		Acceler (0	ration G)		Stan- dard		VTQ
Condition (lb)	Condition (Dry/Wet)	Turn Direction	Longitu- dinal	Lateral		Devia- tion	Tolerance Interval	Specifi- cation
650	Dry	cw*	0.08	0.81	0.606	0.015	0.053	0.60
650	Dry	ccw**	0.14	0.96	0.644	0.013	0.045	0.60
650	₩et	CW	0.23	0.76	0.556	0.030	0.104	0.41
650	Wet	ccw	0.15	0.89	0.572	0.008	0.029	0.41

^{*}Clockwise.

^{**}Counterclockwise.

^{**}Counterclockwise.

		TABLE 21.		ARISON (COMPARISON OF MAXIMUM LATERAL ACCELERATION TESTING	M LATER	AL ACCE	LERATION	TESTIN	<u>G</u>	·	
			1	Average	Average Peak Dummy Acceleration (G)	umy Acce	leratic	uc		Maximum	Maximum Lateral	
			Lonc	Longitudinal	11	ı	Latera1			Accere)	Acceleration (G)	
Loading Condition (1b)	Loading Pavement Condition Condition (1b) (Dry/Wet)	Condition Turn (Dry/Wet) Direction	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	PTV Specifi- cation
300	Dry	Cw*	i	ı	ı	ı	1	1	0.652	0.666	*	0.600
300	Dry	ccw***	ı	ı	ı	ı	ı	I.	0.644	0.606	*	009.0
300	Wet	CW	1	ı	i.	1	1.	ı	0.654	0.592	*	0.410
300	Wet	CCW.	ı	ı	ı	1	I		0.622	0.534	*	0.410
650	Dry	СW	0.19	90.0	0.08	0.85	0.82	0.81	0.656	0.620	909.0	0.600
650	Dry	CCW	0.10	0.18	0.14	0.76	0.81	96.0	0.596	0.566	0.644	009.0
650	Wet	CW	0.16	0.05	0.23	0.79	0.79	0.76	0.615	0.578	0.556	0.410
650	Wet	CCW	0.10	0.16	0.15	0.70	0.89	68*0	0.576	0.562	0.572	0.410

^{*}Clockwise. **Testing not performed. ***Counterclockwise.

The Dutcher achieved higher accelerations than the ASL on dry pavement with 650 pounds of load, while the reverse was true on wet pavement. The Nova and ASL achieved higher accelerations in the clockwise direction, while the Dutcher's higher accelerations were obtained in the counterclockwise direction.

Peak dummy accelerations were slightly higher in the Dutcher than in the other two vehicles. The Nova dummy accelerations were slightly lower than those in the prototypes.

6.5 BREAKAWAY CONTROL TESTS

The data from the breakaway control tests for the three vehicles are presented in Tables 22 through 24 and compared in Table 25. All the vehicles passed the PTV specification easily.

	TABLE 22			EAKAWAY ((BASELINI	CONTROL PER	RFORMANCE	
Loading		Average Dun Acceler (G)	nmy cation		Returi	n Time (sec	c)
Condition (1b)	Turn Direction	Longitu- dinal	Lateral	Average		Tolerance Interval	PTV Specification
300	CW*	-	-	2.315	0.207	0.724	4.0
300	CCW**	-	-	2,000	0.332	1.041	4.0
650	CW	0.31	0.76	2.766	0.494	1.546	4.0
650	ccw	0.14	0.85	2.496	0.377	0.181	4.0

^{*}Clockwise.

^{**}Counterclockwise.

TABLE 23. SUMMARY OF BREAKAWAY CONTROL PERFORMANCE FOR THE ASL PROTOTYPE

Average Peak
Dummy
Acceleration

Loading		(G)		Retur	n Time (se	<u></u>
Condition (1b)	Turn Direction	Longitu- dinal	Lateral	Average	Standard Deviation	Tolerance Interval	PTV Specification
300	cw*	-	-	2.510	0.075	0.236	4.0
300	ccw**	-	, -	2.480	0.098	0.308	4.0
650	CW	0.13	0.93	2.380	0.075	0.236	4.0
650	CCW	0.06	1.06	2.410	0.260	0.813	4.0

^{*}Clockwise.

TABLE 24. SUMMARY OF BREAKAWAY CONTROL PERFORMANCE FOR THE DUTCHER PROTOTYPE

Average Peak Dummy Acceleration

Loading		(G)	<u> </u>		Returi	n Time (sec	<u>e)</u>
Condition	Turn Direction	Longitu- dinal	Lateral	Average		Tolerance Interval	PTV Specification
650	cw*	0.24	1.05	2.870	0.112	0.350	4.0
650	ccw**	0.19	1.03	2.737	0.296	0.928	4.0

^{*}Clockwise.

^{**}Counterclockwise.

^{**}Counterclockwise.

		-	TABLE 25.		ISON OF	BREAKAWA	COMPARISON OF BREAKAWAY CONTROL TESTING	TESTING			
			Averag	Average Peak Dummy Acceleration (G)	ummy Acce (G)	leration	_	·			
		Lo	Longitudinal	al		Lateral			Retur	Return Time (sec)	(၁၈
Loading Condition (1b)	Turn Direction	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base- line)	ASL Proto- type	Dutcher Proto- type	Nova (Base-	ASL Proto- type	Dutcher Proto- type	PTV Specifica- tion
300	CW*	ı	. 1	I	i		ı	2.315	2.510	*	4.0
300	***MDD	ı	i	I		ı	ı	2.000	2.480	*	4.0
650	ΟW	0.31	0.13	0.24	0.76	0.93	1.05	2.766	2,380	2.870	4.0
650	CCW	0.14	90.0	0.19	0.85	1.06	1.03	2.496	2.410	2.737	4.0
*Clockwise. **Testing no: ***Counterclo	*Clockwise. **Testing not performed. ***Counterclockwise.	rmed.									

The Nova returned to the original course without braking faster than the ASL prototype in the lightly loaded condition (300 pounds). However, the ASL return time in the heavily loaded condition (650 pounds) was faster than that of the Nova. The returnability of the Dutcher was the slowest of the three vehicles at 650-pound load.

Peak dummy lateral accelerations were lower in the Nova than in either of the prototypes. The Dutcher dummy's lateral acceleration was greater than the ASL's during the clockwise tests but the same as the ASL's during the counterclockwise tests.

6.6 SLALOM TESTS

The individual vehicle data from the slalom tests are presented in Tables 26 through 28. A comparison of the data is presented in Table 29.

The Nova negotiated the slalom course above the 45-mph PTV specification during both the light and heavy load tests. The ASL prototype exceeded 45 mph with the light load but was approximately 0.5 mph under the specification with the heavy load. The Dutcher prototype was well under the specification at the heavy load condition, successfully negotiating the course at a maximum speed of only 42 mph.

Peak dummy accelerations varied between the vehicles during different test conditions and no pattern is obvious except at maximum speed. The Dutcher dummy longitudinal and lateral accelerations are lower at maximum speed than are those of the other two vehicles. This is consistent with the lower maximum speed attained by the Dutcher during the tests.

TABLE 26. SUMMARY OF SLALOM COURSE TESTING FOR THE NOVA (BASELINE)

			650-1b	Load			
Nominal	Initial	Average Dum Accele: (G	my ration	Aver-	Average	Aver-	Average
Test Velocity (mph)	Turn Direction (L/R)		Lateral	Test Time (sec)	Test Velocity (mph)	Test Time (sec)	Test Velocity (mph)
25	Left	0.06	0.28	27.2	25.2	27.5	25.3
25	Right	0.08	0.27	27.3	25.1	27.6	25.1
40	Left	0.18	0.89	16.9	40.6	17.1	40.0
40,	Right	0.18	0.89	16.8	40.7	17.3	39.9
maximum*	Left	0.43	1.52	14.4	46.7	13.8	49.8
maximum*	Right	0.39	1.63	14.7	47.8	14.0	48.7
*PTV spec	cification	is 45 mp	h.				

TABLE 27. SUMMARY OF SLALOM COURSE TESTING FOR THE ASL PROTOTYPE

			650-1b	Load			
Nominal Test	Initial Turn	Average Dum Accele (G)	my ration	Aver- age Test	Average Test	Aver-	lb Load Average Test
	Direction (L/R)	Longitu- dinal	Lateral	Time	Velocity (mph)		
25	Left	0.08	0.31	27.8	24.7	27.6	25.8
25	Right	0.09	0.37	28.0	24.7	27.4	25.8
40	Left	0.08	0.81	17.5	39.7	17.6	39.4
40	Right	0.21	0.83	17.5	39.6	17.7	39.7
maximum*	Left	0.35	1.58	15.1	44.6	14.2	49.5
maximum*	Right	0.27	1.42	15.2	44.5	14.2	49.3

^{*}PTV specification is 45 mph.

TABLE 28. SUMMARY OF SLALOM COURSE TESTING FOR THE DUTCHER PROTOTYPE

		650-lb Load						
Nominal Test	Initial Turn	Averag Dum Accele (G	my ration	Aver- age Test	Average Test			
Velocity (mph)	Direction (L/R)	Longitu- dinal	Lateral	Time (sec)	Velocity (mph)			
25	Left	0.10	0.38	27.2	24.9			
25	Right	0.10	0.37	27.2	25.1			
40	Left	0.15	0.79	16.7	40.2			
40	Right	0.13	0.92	16.8	40.1			
maximum*	Left	0.19	1.33	16.1	42.0			
maximum*	Right	0.15	1.23	15.9	41.8			

TABLE 29. COMPARISON OF SLALOM COURSE PERFORMANCE		Jad	Dutcher Proto- type	24.9	25.1	40.2	40.1	42.0	41.8
	(mph)	650-1b Load	ASL Proto- type	24.7	24.7	39.7	39.6	44.6	44.5
	elocity	9	Nova (Base- line)	25.2	25.1	40.6	40.7	46.7	47.8
	Average Test Velocity (mph)	300-1b Load	Dutcher Proto- type	*	*	*	*	*	*
	Averag		ASL Proto- type	25.8	25.8	39.4	39.2	49.5	49.3
		30	Nova (Base- line)	25.3	25.1	40.0	39.9	49.8	48.7
	uc		Dutcher Proto- type	0.38	0.37	0.79	0.92	1.33	1.23
	leratic		ASL Proto- type	0.31	0.37	0.81	0.83	1.58	1.42
	umy Acce		Nova (Base- line)	0.28	0.27	0.89	0.89	1.52	1.63
	Peak Dummy Acceleration (G)		Dutcher Proto- type	0.10	0.10	0.15	0.13	0.19	0.15
	Average	Longitudinal	ASL Proto- type	0.08	0.09	0.08	0.21	0.35	0.27
	7	Loi	Nova (Base- line)	90.0	0.08	0.18	0.18	0.43	0.39
			Initial Turn Direction	Left	Right	Left	Right	Left	Right
,		Von i mo	Test Velocity (mph) D:	25	25	40	40	Maxi- mum**	Maxi mum**

*Testing not performed. **PTV specification is 45 mph.