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1. INTRODUCTION

1.1 PROBLEM PERSPECTIVE AND WORK SCOPE

The problem addressed in this research is the development of on-line
computer algorithms for traffic surveillance data processing in urban freeway
corridors. Our focus is on timely estimates of prevailing traffic conditions
as measured in terms of aggregate traffic-flow attributes such as volume,
speed,and density, over time periods from seconds to minutes. The traffic
surveillance activities proposed here are viewed more to serve the needs of
real-time traffic control, than the survey type data collection requifed for
long«term traffic management and planning. Results are directed at being a
complement to the overall real-time traffic management methodology proposed
in this study [FR1] - [FR5]. The methodology has the unifying theme of
optimal traffic management in urban freeway corridors. Surveillance needs
are thus driven by the information requirements of the real-time control

system [FR2], which requires spatially aggregate variables of mean speed*and

mean—density* on roadway sections. A fundamental constraint that we have
adopted,which reflects practical implementation, is that estimates of these
spatially defined variables must be derived from convential "presence" type
loop detectors, located at discrete (typically 1/2-mile) intervals along the

roadway .

The approach embodies modern estimation theory techniques via the
extended Kalman filter. Central to the filter development is a finite-
dimensional fluid-analog model in which the freeway is viewed as a coupled set
of ordinary non-linear differential equations. Each section or link is modeled

by two state variables, the spatial mean speed and mean density. These variables

typically describe the aggragate behavior of 1/2 mile roadway sections.
Knowledge of parameter values in the link-state differential equations is shown
to provide qualitative as well as quantitative information concerning link

traffic flow behavior. These parameters vary with time, traffic conditions, and

* These quantities are defined precisely in Section 2.

—r e
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Since the late 1960's, there have been many researchers involved in the
development procedures for estimating mean-speed and mean density from loop-detector
surveillance data. Typical density estimation schemes are described in Nahi
[371, Gazis and Knapp [38], and Gazis and Szeto [20]. Mean speed estimation
with detector loops has been proposed in Mikhalkin [13, 14]. All of these
methods are based on very simple dynamic or static models of traffic flow.

During conditions where flow conditions are very inhomogeneous (such as rush-
hour or following incidents), such models do-not apply and the corresponding
performance of the surveillance algorithm deteriorates: increased error

variances and biases typically appear in the estimates.

The Kalman-fjltering approach employed here admits the inclusion of more
complex dynamic models which govern the underlying variables being estimated.
A Kalman filtering approach was used by Gazis and Szeto [20] in the context
of tunnel traffic surveillance, but assumes a very simple dynamic model
which does not extend to the freeway environment. Their results do, however,
demonstrate the effectiveness of the procedure in that traffic surveillance
application. Surveillance data are processed recursively as they become
available, and estimates of parameters associated with the underlying model

become available in addition to estimates of tunnel traffic density.

Essential elements in our approach using the extended Kalman filter are
the dynamic model used and the techniques for processing loop detector data to
be consistent with that model. Macroscopic traffic models first proposed by
Payne [4] were employed. These models haye increased complexity to capture
the important qualitative traffic attributes during inhomogeneous conditions,

but are not so complicated as to preclude algorithm design and implementation.

A closely related Kalman-filtering approach to ours using these models
has recently been proposed by Grewal and Payne [28]. The important contri-
bution of the Payne paper is a rigorous demonstration that certain parameters in
the model can be identified from observations of mean speed and mean density.
Processing of spatially discrete detector data to derive such observations,
however, is not addressed. We provide an approach to the latter issue and

an alternative parameterization of the model, from which on-line estimates



1.4 ORGANIZATION OF REPORT

The technical content of the remainder of the report is organized as
follows: Section 2 introduces the notation, traffic flow, and detector
models, and defines the detailed objectives of the surveillance algorithm
development. Then in Section 3 the pre-processing procedure for loop-
detector data is presented together with details of the extended-Kalman filter
data~processing algorithm used in this study. A simple candidate study
network and the microscopic vehicle simulation description are provided in
Sections 4.1 to 4.3. They are followed by an evaluation of the algorithms
from Section 3 in sections 4.4 to 4.6. Finally, implementation considerations
for designs in Section 3 are briefly considered in section 4.7. Section 5

presents our conclusions and suggestions for future research.



a compressible fluid analog were made popular by Lighthill and Whitham ([11)},
and proliferate in the literature of the later 1950's and early 1960's (see;
e.g., Gazis [2]).

Macroscopic fluid-analog models appear to offer attractive advantages of
mathematic simplicity while retaining correct qualitative real-time behavior.
Although kinetic and continuum models for limited - access roadways have long
appeared in the literature [l, 2], only recently have some of the discrepancies
between macroscopic models and actual traffic behavior begun to be resolved,

stemming from the work of Phillips [3].

2.1.1 Mathematical Model

Macroscopic models simplify the mathematics in the sense that individual
vehicle behavior is aggregated into a one-dimensional continuum, analogous to
the flow of fluid. However, it is nontrivial to produce a fluid approximation
which both retains the correct dynamic gualitative behavior and, from an esti-

mation algorithm design viewpoint, is sufficiently simple.

In a macroscopic traffic description, just as in a fluid of molecular
particles, it is common to denote the speed (distance per unit time) of vehicles
at position x at time t by v(x,t), and the density (vehicles per unit distance) at
position x at time t by p(x,t). A third variable of interest is the flow ¢ (x,t)

(in vehicles per unit time) passing point x at time t.

The model which describes the evolution in time and space of v(x,t) and

p(x,t) is derived in a sequence of steps:
a. specify a conservation of vehicles (mass-balance) equation, and

b. postulate an explicit form for acceleration response of drivers to local

conditions.

Completion of both steps in either the deterministic [4], or statisti-
cal [3,5,6], framework results in a pair of simultaneous, non-linear partial

differential equations for v(.,.) and p(.,.):

5 5 B

'a—t D(X,t) + 3% ¢(X,t) =0 , (2.1)
av A 3v av } (2.2)
ac (x,t) 3t (x,t) + v 3% (x,t) = £(p,V) .



Equation (2.1) is simply a statement of the principle of conservation of
vehicles. It is the contiquum equation from the kinetic theory of gases [3,5].
Equation (2.2) postulates that the local acceleration of drivers can be expli-

citly parameterized as a function of local traffic conditions in the stream.

Over the years, there have been numerous suggestions for the specific
choice of £(.,-). The key idea in picking £(-,-) is to posit a mechanism for
how drivers physically respond to changing traffic conditions, and then examine

the consequences of these behavioral assumptions [7,8].

The most important behavioral attributes which when modeled retain correct
qualitative traffic flow behavior appear to be the desire of drivers to
maintain:

a. a safe (typically speed-dependent) headway,
and

b. a certain maximum speed provided no other cars are in the way.

The exact choice for the function £(-,-) will establish gqualitative properties

such as stability and steady-state solutions (if they exist) to (2.1) and (2.2).

By formal derivation from classical car following theory (e.g., Gazis [7]), one

possible relationship for f£(.-,-) is
dvix,t) 1
——EEL—‘ = -7 [vxe) - v (plxeN)], (2.3)

where T represents driver reaction time, and ve(p) is an equilibrium speed

distribution. The Ve(p) curve can be formally derived in terms of parameters
of the particular car-following law used. In practice, however, the curve is
fitted to steady-state samples from observed traffic data to average individual
driver characteristics at a particular location. The Ve(p) curve, however
obtained, plays a crucial role in traffic behavior analysis discussed in

section 2.4.

Intuitively the relationship (2.3) states that on the average (over the
ensemble of the driver population), drivers adjust their speeds as a function of
local density alone. Empirical evidence has shown that this relationship is

typically monotone non-increasing with density.

While the steady-state characteristics are adequately captured by the
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T, V,and ve(p) jointly affect qualitative dynamic behavior, and are typically
obtained from a calibration against historical data or heuristic assumptions.
In what follows, we show that the most important parameters affecting the
qualitative dynamic behavior are those of the equilibrium speed curve

ve(p). Attributes of ve(p) and the closely related the fundamental diagram

are discussed further in section 2.4.

Note that the model describes the longitudinal dynamics of traffic flow:
there is no explicit representation of the lateral dynamics that result from
passing maneuvers and other forms of lane changing. This may seem like a
highly unrealistic assumption for describing traffic on freeways. However, the
validity of making this approximation will be demonstrated in the performance
of the estimation algorithm. We show this by evaluating the surveillance
algorithm in a microscopic simulation where passing is present. A significant
finding to be demonstrated is that qualitative effects of lateral dynamics on
reducing roadway capacity can be modeled by a change in the parameters of the

Ve(p) curve. Thus,the model can be used for multi-lane roadways.

2.2 FINITE-DIMENSIONAL APPROXIMATION TO PAYNE MODEL

In the form (2.7), (2.8),the Payne continuum model is not very useful for
control or surveillance algorithm design since it is a non-linear partial dif-
ferential equation in p{x,t), v(x,t). A pivotal approach to simplification
is achieved by spatial discretization of the continuum model. This discreti-

zation has two purposes:
a. The model mathematical complexity is greatly reduced, and

b. ariables in the discretized model are more easily observed with

available sensors.

The approximation is obtained by partitioning the freeway into N spatially
discrete sections, and replacing p(-,-) and v(-,-) on each section by a certain
spatial average. These definitions are then used in the continuum model using

finite difference techniques in a consistent fashion that retains certain boundary
conditions.

2.2.1 sSpatial Mean Variables

For a section of length Ax beginning at x define
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t+AT
M(x,t,AT) = p(x,T)v(x,T)dT. (2.16)
t

We remark in passing that while (2.15) will always be true, it is generally not
the case that ¢(x; t,AT) can be obtained by the product ;Xx,Ax; t)-E(x,Ax; t).

Conditions when this holds approximately are discussed below.

2.2.2 Finite-dimensional Approximate Model

Payne [4] proposed use of the spatial mean variables defined above together
with finite differences to replace spatial derivatives in (2.7) and (2.8),
to reduce the partial differential equations in space and time to ordinary

differential equations in time alone. The procedure is to:

Step 1

Divide the roadway into spatially homogeneous subsections, [xj, xj+ij],

where xj partitions need not be uniform.

Step 2
Define: (Figure 2.2)

(t) = p(x., Mx.; t), 2.17
pj( ) p(xj xJ ) ( )

. (t E_ . o 7 -
vJ( ) V(xJ ij t), (2.18)

and approximate spatial derivatives by

P s (£)=p. (t)
ap S k.2 S R
ax (Xrt) = B . (2.19)
(X, A%,
XE [%4 /¥y ij]
V(). _(t)
ov -1
ox (x,t) ~ Ax. ' (2.20)
xe[x,,x.+Ax,] J
J 3 J

for j = 0,1,2,...,N,

where:

2
il

number of sections (defined a priori),

ij length of section j ,



Remarks

a. Note that (2.19),

beginning of section j
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start of freeway section modeled, and

j
= x_ + .
0 ééiAxk

(2.20) are not the usual finite difference approximations

defined in terms of point variables, e.g.,

ap
ox

(x, t) ~

P(X,

lt) - p(%j,t)

Ax.,
J

1

(2.21)

The spatial mean approximation is used because it is formally convenient to

express the model directly in terms of variables which can be observed, as will

be demonstrated below.

b. The density gradient is approximated by a forward difference, while the

velocity gradient is approximated by a backward difference.

Payne [4] motivates

the density approximation choice from heuristic physical reasoning (drivers

anticipate primarily in a forward direction), and the backward velocity choice

for stability of the discretization,

Step 3

Using the approximations in Step 2, substitute in (2.8) to obtain:

dv, (t)
at

The terms on the right hand side of (2.22) are often referred to as "convection,"

= -v, (t)
J

1
A<
| Vﬂ

v, (6) - v, (0

1
2(ij + ij_l)

ij+l(t)‘pj(t)
1

1)

i 2(ij + ij_

-

-

_lyz _ 3z
= vj(t) Vg (pj(t)

(2.22)

"relaxation,"and "anticipation," respectively, corresponding to the physical

interpretation in both gases and car-following theory.

Step 4

Approximate the continuity equation (2.7) by the simple conservation

expression
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time
An analog signal resulting from the passage of
a single vehicle
' '
presence ’ presence H
pulse T time !
-
: L
The analog signal is put through a threshold fime
device to yield a binary signal in time
HIGH ; ;
! :
' ]
LOW d—
000000000000 11111111111111111000000000000  tjme

Signal is sampled (15 - 60 time sec.)

1: "vehicle present" bit

0: "vehicle absent" bit

Figure 2.4: Presence Detector Signal Associated with

Single Vehicle Passage
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by sampling errors of +4T, where 4T is the sampling period. Errors resulting
from ti,I'ti' and F sampling have a more pronounced eff?ct at low density flows ,
or where short observation intervals, AT, result in Ml(x;t,AT) being "small."
Analysis and compensation for the effects of such errors will be provided

by the Kalman filter algorithm.

Intuitively at least, the quantity occupancy is proportional to density.
At higher density,one would expect to see a vehicle over a detector a greater
percentage of the time and conversely. However, a precise model for this in-
tuitive relationship must be developed with care, because occupancy is a
time-average quantity at a point,whereas density in our model is a spatial-
average quantity, at a given time. Conditions under which one can be
derived approximately from the other are obtained in Kurkjian {12] and

Mikhalkin [13,14], and summarized in section 3.3.4 of this report.

2.4 QUALITATIVE SIGNIFICANCE OF MODEL AND TRAFFIC VARIABLES IN SURVEILLANCE

Knowledge of the macroscopic traffic variables defined in sections (2.2),
(2.3),can provide considerable qualitative as well as quantitative insight
into prevailing traffic conditions. Since most of this report focuses on
quantitative calculation of the relevant quantities, we feel it is important
to grasp why certain variables are significant in predicting
traffic behavior useful for decisionmaking, and how these quantities relate
to the model and surveillance data available. Qualitative aspects are
particularly important because for many of the estimated quantities there is
no rigorous correspondence between the variable in the model and the real

world.

2.4.1 Equilibrium Speed Curve

The equilibrium speed curve, Ve(p) in (2.8) and (2.22), plays a particularly
$imple and yet important role in characterizing qualitative roadway conditions.
By defining

d)e(p) = pve(p) P (2.27)

one obtains a classical parameterization of traffic behavior known as the
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. g . . . ' .
1 tagnation or jam density (pjam)

density at
jam 7 jwhich equilibrium ’
speed Ve(pjam)=0

O
i

2. Free speed (Vf):
speed drivers

VfE assume at , and
low density

3. Available Capacity (¢max):

maximum steady

¢ - ) state flow found
max =
from: ,
max V_(p)
e
P

In the model, jam density and free speed have intuitive meaning, and can be
relatively easily measured. In real traffic,pjam and Vf have meaning only as random
variables over the population of drivers. In the model, these are mean values
of the observed distribution. Typically,pjam is taken to be the bumper-to-
bumper concentration of vehicles for the roadway under study, and Vf the speed
limit.

The concept of capacity is somewhat more elusive than the other two, and
requires some care to establish our parameterization of this quantity. In the
traffic engineering community, the capacity of a roadway is defined as a fixed
quantity depending on lane widths, surface, grade, curvature, and other geometric
properties [17]. One could, therefore, use the value supplied by the appropriate

handbook, and define it as the maximum capacity.

Clearly, the steady state ability of a roadway to support a capacity volume
of traffic depends on factors other than strictly geometric roadway features.
Two important factors in our view are environment associated with weather, and

the occurrence of traffic incidents. During inclement weather, the maximum

throughput of a roadway is lower than for dry surface conditions, due in part
to more conservative driver behavior. Similarly, the occurrence of accidents,
presence of stalled vehicles,and spilled loads in traffic lanes reduces the

maximum steady-state throughput achievable. We shall refer to this maximum
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FLOW
<i’e(ccnrs/hr)

%

'Djam= 225 cars/miles

V¢ =55 miles/hour
SO000 |-

4000

3000

2000
max(a)

1000

SLOPE =¥y | max(a) DENSITY
0 A\ { L] >
Pjom ('OO)Pjom 3Pjam Pjam ,
7 > a (225) (cars/miles)
a = - a=0 a=1
P, P; P:
jam jam 2("jam
Pmox(a) \é( 2 ) 2 3 2 )
¢ (a) L(Vf ° Piom) Vt ® Pjom | (Vf ° Pjom)
max 3v3 4 3 Eg 4
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3. SURVEILLANCE ALGORITHM DEVELOPMENT VIA KALMAN FILTER TECHNIQUES

Tn this section we develop the principal data processing algorxithms
proposed for application to traffic surveillance. Modern estimation theory
and techniques,and in particular,the so called Kalman filtexing method form the
foundation of our approach. Kalman filtering techniques have enjoyed wide-
spread application in the aerospace community since the early 1960's in
everything from intertial navigation to control configured aircraft [19].
With the increased use of digital-processing techniques in traffic management,
these modern estimation techniques are finding their way into such activities
as density estimation on bridges and in tunnels (e.g., and Gazis [20] and Szeto [201]).
The "filter" is essentially a recursiye algorithm which processes the incoming
data as they are received to produce estimates of the underlying system variables
which are optimum in the sense of minimum error variance. The underlying state
variables in this study are the spatial mean speed and mean density defined in

Section 2.2.

The classical Kalman filter algorithm has its roots in linear least-
squares optimal estimation; when the system is linear and the uncertainties
have prescribed independence properties, the resulting estimates are also
optimum in the sense of minimum mean square error. In the context of traffic
surveillance, the models are non=-linear, and the uncertainties are seldom white
Gaussian processes. For the ncn-linearsetting, a widely used filtering
technique is to exploit a linearized or "extended" version of the Kalman filter
(EKF). Properties of the EKF are summarized in this section as they pertain
to the traffic estimation algorithm, including standard procedures by which
unknown model parameters can be augmented to the model states and estimated.

We will then show in section 4 how the EKF may be used with the model from
section 2 to estimate the spatial mean variables and available capacity as

parameterized by the fundamental diagram of traffic.

3.1 DISCRETE TIME EXTENDED KALMAN FILTER: STRUCTURE AND UNDERLYING ASSUMPTIONS
3.1.1 System Model

The model described in section 2 for traffic—flow behavior can be written

in the form:




-35-
yE) =g (x(g)) + Alg), (3.4

or in more compact notation*.,

Y =g (x) * A (3.4) 7

where:

. . . i i
Y, isanm vector, m # n in general, with components Y = gi(gk) + Ak
i=1, ..., M,which are functions which will be specified in the traffic

setting in section (3.3). The m-vector discrete observation noise sequence,

{Ak } is assumed to have statistics:
Ef{Af=0 all k= 1,2,..., (3.5)
and positive definite covariance matrix,

E{\

A Agt = A S (3.6)

By assumption, {Ak } and {w (t)} are mutually uncorrelated, and uncorrelated

with the initial conditions, Ejto), having

(3.7)

1]

i

E{x (t )}

- -7
E{(x(t)- x ) (x(t) = x) | (3.8)

*
For notational convenience, we will equivalently refer to sampled varaibles

z =zlt) Tz (kAT.

i ] = -m; O = i .
ka is the Kronecker delta function, skm 1, k=m; n 0 otherwise

via:
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Because the dynamic model is non-linear, the Kalman filter algorithm

applied to the linearized system model is strictly suboptimal @ with res-

pect to the specified performance criterion [19,21].

This extended-Kalman

filter, however, has been widely used in non-linear applications with mixed

experiences (see [26] for surveys of EKF applications as well as discussion

of related non-linear estimation techniques).

rithm, we define the following quantities, in addition to

m =

nm e

e+l |kl

k+1|k+1

Related quantitie

Y1k

ne>

e

S

A

ne

[[]>4

ne>

=3

Predicted estimate of before observing

el
Xk+l (i.e. given data up to time k),

error covariance of predicted estimate §k+1|k’

A ~ T
{(5k+1 B | Free1 T B i }'

updated or "current" estimate of Ek given

new data {Zk+1) '

updated estimate error covariance of X

given new data.

of interest are:

Predicted observation of xk+1 given data up

to time k,

EAC Y PR

residual process at time k+l,

Yy = Y1k -

To summarize the EKF algo-

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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+
+
)‘k +1
L
Predicted Observation Actual Observafion; Yic+1
A A
X+ 1/k Yi+1/k
-+ gle)
K+
Corrector
Gain Update
(Eq. 3.24)
2z
+ t k+1/k
Predicted State Covariance
0 Predictor
Yk+1/k+1
{Eq. 3.20)
A
Xk+1/k
/ State Covariance Ek/k
Predictor | g L | Update
(Eq. 3.19) {Eq. 3.25)

» Current Estimate

Rer 141

Figure 3.2: Data Flow in Continuous-Discrete Extended
Kalman Filter
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in a wide spectrum of applications is known to prevent divexgence of the
filter; even where diyvergence is not a problem, mean-sguare error generally
improyes (see;e.g., (26) for a suxryey of applications as well as alter-

native techniques for parameter identification),.

3.2.1 Continuous-Discrete Filter: Unknown Parameters

The EKP described in section 3,1 is readily modified to permit ap-
plication to estimating uncertain parameters in the model. Unknown param—
eters ayxe treated as state variables and adjoined to the "physical"
states in such a way that they appear as explicit estimates in the Kalman

filter algorithm. Starting from

x(t) = £[x(t), p(t)] + w(t) . : (3.1)
Consider

8x(t) = x(t) - x(t), (3.26)

Sp(t) = p(t) - p, (3.27)

where ;(t) and E are nominal state and parameter values. Then as in

Appendix B, the linearized model for small changes in 8x(t), Op are

written
S5 8X(6) = F(RISX(8) + L(6) 8p(t) + w(t), (3.28)
where: _ _
F(t) = — ' (3.29)
xj nxn
df, (x(t) ,p]
L{t) s | ———— , (3.30)
o nxnp

so that at sampling instants

Sx = <I>(k+l,k)6_)5k + P(k+1l,k)Sp + (3.31)

K+l E v
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(i.e, dgk does not change with time) then (3,31) and (3.34) can be

combined into;

6§k+1 ann lJJnxnp dfk Ek
———— = + — ' (3,37)
P Q I Sp Q
=k+1 - npxnp
let the augmented variables be denoted:
a A
O% = (Oxpqr OPpyq)
ra L
¢ (k+1,k) = ’
0 I|—_ &
x = xk k
al
ék = (EJ{I 0) ,
h -entries
b
and similarly with:
~ ~ a
— (3.38)
Szk [Gk Nk]6§k + Xk ’
then associating:
Aa A A
G =6 mJ|l (3.39)
X = xklk
we have
a _ 2a a a '
6§k+l = (k+l,k)<5xk+1 + §k ' (3.40)
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3.2.3 Comments on Parameter Identification

It is obvious that using the extended Kalman filter for adaptive param-
eter identification greatly increases its complexity. Although straight-
forward in theory, the increased computational load required on-line may be
prohibitive. When there is no intrinsic interest in the parameter values
themselves, a number of tricks are possible to eliminate some of the required
equations (see;e.g., Schmidt (27). They are, of course,heuristics (in general)

for which no guarantees of convergence can be provided a priori.

As motivated in the introduction, there is in the traffic context
interest in knowing model parameter values explicitly, since, for example,
the available capacity parameter in the fundamental diagram of traffic pro-
vides qualitative information about the presence of incident conditions.

We have therefore restricted attention to adaptive parameter identification
where the parameters are explicitly estimated. Even with this constraint,
a number of computational simplifications are feasible, and are proposed

further in Section 4.7 of this report.
3.3 MODEL FOR OBSERVATIONS PROCESS

The Kalman-filter design presumes to have available noisy, possibly non-
linear observations of the underlying variables of the mathematical model.
It is not possible within reasonable economic constraints to observe directly
the spatially defined microscopic traffic variables. The problem is thus
to approximate or infer the spatial quantities from appropriate processing of
the microscopic raw detector data obtained from discrete points along the
roadway. In this section,we show how vehicle counts, occupancies and indi-
vidual vehicle speed measurements may be pre-processed and treated as noisy
observations of the spatial mean speed and mean density. In so doing, we obtain
as a byproduct an approximation to the a priori covariances which charac-

terize the random processes in the model.

3.3.1 Background
In section 2.3,we defined microscopic variables associated with presence
type vehicle detectors. There are two types of presence detectors in current

use: magnetic detectors and inductive loop detectors [FR1]. The loop detector
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Figure 2.3 shows that the only way for a vehicle to cross a detector sta-
tion and not produce a presence pulse is for the vehicle to be less than five
feet wide and traveling centered over a line separating lanes as it crosses
the detector station. It is assumed here that this event never occurs, and,

therefore, all vehicles get counted at least once.

Figure 2.3 also shows that it is possible for a vehicle, changing lanes
near a detector station, to activate presence detectors in both lanes, and thus,
to produce two presence pulses. Figure 3.4 shows a top view of vehicle of
length £ [ft] and width w [ft] making a lane change. It is moving from center
to center of adjacent 12-foot lanes. The lane-changing operation is assumed to
take place at a constant speed v [ft/sec] and requires t seconds to complete.
Thus, z feet of road are needed for the change where z = vt. Assuming that
the detection regions of the loops in adjacent lanes are five feet apart, this
vehicle will activate both detectors if,and only if,the detector station is
located in the length X of road indicated in Figure 3.4. From the simple geo-
metry of Figure 3.4, the following equation is obtained relating X to %, w, v,

and t: (see Kurkjian [12]).

= Y& (-
X= 75 (w5 + 1. (3.45)

Suppose a vehicle 18 feet long and 6 feet wide makes a lane change at a constant

speed of 88 ft/sec, and requires 4 seconds to complete the change. Using Eq.
(3.45),this results in X = 47.3 feet. Assuming the lane change is equally
likely to occur anywhere along the road, the probability of the lane change

resulting in two presence pulses in

X _ 47.3
2640 [ft/detector station] 2640

=0.0179. (3.46)

Thus,it is rather unlikely that any given lane change will cause an extra
count, with 1/2 mile detector spacings. Based on this model for generating
errors, the microscopic simulation described in Section 4 and Appendix B was
exercised to find empirically error statistics for counting vehicles. The

details of this procedure are described in 4.4.
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3.3.4 Space-Time Homogeneity and Approximations to Mean-Speed and Density

Occupancy as defined in Section 2.3 is a measurement obtained from data
taken over time at a fixed point. Density, on the other hand, is a spatial
quantity associated with a fixed time. To relate fixed-time spatial
quantities to fixed point temporal quantities in traffic, a model describing
the relationship between various instantaneous point variables in traffic is
needed. Similarly, point observations of vehicle speeds cannot simply be

arithmetically averaged to provide observations of space mean speed.

The approach adopted here is to assume first a certain regularity of
traffic flow, under which conditions an explicit and simple relationship
between individual vehicle data and the spatial quantities can be shown to

exist.

The traffic flow on a section [x, x+Ax] over an interval [t, t+AT] is

said to be space-time homogenous if the space mean speed and mean density on any

subsection of [x, x+Ax] at any time within [t, t+AT] is equal to the space-
mean speed and density on any other subsection of [x, x+Ax] at any other time
within [t, t+AT]. (For a more rigorous definition, see Breiman [22, 25].)
Intuitively, the assumption of space-time homogenous traffic flow means that
the traffic conditions do not change either in time or in space. Thus, from
observations at a point, spatial quantities can be inferred. Restricting our
attention to this condition, the following simplification of notation* is
possible:

vix,Ax;t] = v(x,0x) ,

(3.47)

D (x,Ax;t) = p(x,Ax) .

Breiman [22] showed the following relation to exist between aggregate
variables under space time homogenous conditions

¢(x0,t,AT) = Efx,Ax);Kx,AxL
(3.48)

X, elx, x+Ax],

*
See Section 2.3 of this report.
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The omission of the effect of vehicle acceleration results in little loss in
accuracy. Only extremely slow speeds (i.e., under 5 miles/hour), or extremely

rapid acceleration causes the acceleration term to become significant.

In Eq. (3.52), the presence times, tj, and the (average) effective loop
length, d, are known quantities,but the vehicle lengths, Rj, are unknown.
To circumvent this problem, imagine that the £, are samples of a
random variables, %, with a known probability gensity function, fz(l), and

replace Eq. (3.52) with its expected value over . This results in

5280 - 1 N{t,T) c veh
L £ 2+d j=1 j mile

p(x,Ax) =

per lane , (3.53)

where EZ['] denote expectation over fz(l). Note that the 5280 converts the
density value from vehicles/foot to vehicles/mile. Comparing Eq. (3.51)
with the definition of occupancy, Eg. (2.26) (ignoring the

end-effects t, and ti,F) an approximate relationship between occupancy and

i,I
density is seen to exist, given by

5280
100

1 } veh

[y mile per lane . (3.54)

p (x,Ax) occ(t,AT)El{
It is important to have an intuitive understanding of Egs.

(3.50) and (3.54). The density obtained using Eq. (3.54) is actually a time

averaged density at a fixed space point,and not the desired spatial average

density at a fixed time. It is the space-time homogeneity assumption which

allows time averages to be equated to spatial averages.

The assumptions and approximations made in deriving Eq. (3.50) and (3.54)

should be understood. They are restated and discussed here.

(a) The traffic is assumed to be space-time homogenous. Such an
assumption is restrictive.

(b) The harmonic average, Eg. (3.50), is actually an approximation of an
expected value (see Breiman [22]). The accuracy of such an approximation
increases with N(t,AT). This implies that large time intervals, AT, are needed

for a given level of accuracy when there are low-flow rates.
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P _ = P
yj(tk) = pj(tk) + Aj(tk), (3.56)

for density observations; and
v - v
Yj(tk) = Vj(tk) + Xj(tk), (3.57)

for speed observations; where the noise statistics, {Ai}, {Ai} are charac-

terized by exercising the microscopic simulation (or eventually from actual

data) and comparing true spatial mean variables with those computed using

(3.28) and (3.32). 1In Section 4 of this report we will show that the error
2

1
processes Ak' Ak can be characterized adequately by zero-mean, white processes

with specified covariance.

If occupancy data are used both for speed and density cbservations,
it is not hard to anticipate that errors in such observations will be
correlated. The raw detector count process, N(t,AT), provides an

alternative measurement of the state, which is non-linear:

b _ N(t,AT)

Yj (tk) = _AT ’ (3.58)
and modeled as

W = v e + 2% (3.59)

ik j ok 3ok j ok ’

A priori statistics of the processes {X?(-)}, {Xg(')} and {Ag(-)} are
specified either from the analysis in Section 4 of this report, or, in some
applications, from available prior surveillance data. For convenience, the

detector pre-processing formulas are summarized in Figure 3.5.

3.4 SUMMARY

In this section we have presented the continuous-discrete extended-Kalman
filter algorithm for use in both state and parameter-estimation traffic-
surveillance activities. Inputs to the algorithm are discrete-sampled outputs

from the continuous-traffic network obtained at (as yet to be specified)
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periodic intervals, AT. The filter is based on a microscopic model for
vehicular traffic flow in width spatial mean speed and mean density are the state
variables for each section. Outputs of the filter are estimates of these

spatial mean quantities together with estimates of parameters in the model.

The microscopic data available from roadway loop detectors are not directly
compatible with the microscopic traffic variables of interest. We showed

that by harmonically averaging individual vehicle speed measurements, and by
scaling occupancy measurements in a certain way, these quantities could be

approximated to be the spatial-mean variables in the presence of additive noise.
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a. Dynamic propogation of disturbances between links;

b. Facility to study the impact of unmodeled exogenous
(ramp-flow) demands;

c. Facility to determine sensitivity of surveillance algorithm
performance to model parameter variations including a priori noise
statistics, model parameter values, sensor data; and

d. sSufficiently small network that can be modeled and
simulated microscopically (i.e., individual vehicles) to provide
benchmark on

1) performance of macroscopic model-based filter
with microscopic (detector-loop) data;

2) answers to sensitivity questions as in (b),
(c) above; and

3) overall impact of unmodeled lateral dynamics
(including lane changing and passing), mixes of driver and
vehicle types, and incidents.

The microscopic simulation of the study network identified in paragraph

(d) above is detailed in Section 4.3 of this report.

4.2.1 Model Structures

As shown in figure 4.1, the study network consists of three links,
each with entry on-ramps and off-ramps. For conceptual purposes, the on-ramps
are assumed to be located at the beginning or upstream end of a link section
and the off ramps at the downstream end of a section. The ramp locations
may typically define link boundaries, or the link boundaries can be defined
relative to loop-sensor locations. Where freeways are already instrumented,
there is some motivation for taking link boundaries to coincide with detector
locations; this issue is discussed further in Section 2 of this report.
For purposes of this study, each section has been taken to be 0.5 mile
in length, and boundaries are defined by detector-loop locations

(Figurxe 4.1 (b)).
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The macroscopic model in Figure 4.1 is described in terms of
equations (2.22) and (2.23), which result from the four step approximation

procedure outlined in Section 2.2, i.e.f

d;: [v. - v, ] s
i "ej‘pj’]
1/2(ij+ij_l)

-v 1 [pju - Py vV (4.1)
T
T 4] 1/2 (b g+ +1) )
dp.
e V. , - p. v. + NETFLOW j L FywPir (4.2)
dt i-1 "3-1 0 5 7 Bxy j

<
T

spatial mean speed on section 3.

spatial mean density on section j,

e}
11

NETFLOW j = net flow entering freeway section j s

vej(as) Equilibrium speed (fundamental diagram)for Section j {(mi/hr).

ij = length of section j (mi) (typically .5 mi here).

<
it

= driver-reaction sensitivity coefficient ((mi)2/hr),

= driver-reaction time coefficient (sec). and

~
t

xj = distance coordinate for end of link j-

*Time arguments are omitted for clarity of notation.
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TABLE 4.2 TYPICAL PARAMETER VALUES FOR MACROSCOPIC FREEWAY MODEL

-67-

(Logarithmic Fundamental Diagram)

T

AY

pjam

pfree

v
free

FLO (INPUT)

NETFLOWl, NETFLOW, , NETFLOW

2 3

CAPACITY ¢ MAX.

NUMBER OF LANES

p P p
Wi W w3

Wy, Wy, Wy
1" 72" 73

.00139 Hour (5-sec)

15 milesz/hour

225 cars/miles/lane

23.1 cars/miles/lane

55 miles/hour

1667 cars/hour/lane

0 cars/hour/lane (Nominal)
2000 cars/hour/lane

3

3.33 cars/mile/lane (Standard Deviation)

5 miles/hour (Standard Deviation)




-69-

Note that ¢in(t) is not strictly Poisson because of the "sampling" of
n(t) over (t,t+AT), Figure 4.2. However, for simulation purposes, the
correlation introduced by sampling n(t) when AT is small (1 second) is
negligible. As usual, a uniformly distributed pseudo-random number
generator will be used for simulation purposes; i.e., let et be a sample
of uniformly distributed random variables on (0,1), then n(t) is the

smallest integer n such that

n(t) i
>
e — > 6 (4.7)
. il ="t
i=0
where

A = (FLO.AT) .

4.2.3 Summary

The equations of motion for the three-section dynamic model which

encompasses the above assumptions can be summarized as follows:

dsi - 1 p

Frale [d)in - plvl + NETFLOWl] e + wl ’ (4.8)
1

dv1

P, = p
e 1 vi 2 1 v
a [T— 17 V% ‘pl)] Tt [1/2(Ax1+Ax2)] tw, (4.9)

PV, + NETFLOWz] o W (4.10)
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w, [, -7

_dt2 = 202 1 % + w2“ , (4.11)
1/2(Ax2+Axl)

dp

333 _33 P (4.12

TS [pzvz Pyvy + NETFLOW3 A)]; + Y3 ' )

3

dv v (v, - v

T3 T3l v Vz)-i[U-v3<E)]+w" (4.13

dt 1/2(Axg+hx,) T 3 e ‘P3 3 - .13)

Equations (4.8) to (4.13) together with explicit parameterizations of
Vej(BS), NETFLOWj, and initial conditions define the macroscopic freeway
model for the study network. Defining the six-vector

x(t) = (El, ;1’ 32, 32, 53, 3
we have exhibited the non-linear dynamic model in the form required for
filter design,

x(t) = £ (x(t)) + w(t), (4.14)

where f(.) is defined by the right-hand sides of (4.8) to (4.13). 1In
modeling randomness in the dynamic model, we will for the most part
consider only {wip, wiv} to be random processes and the NETFLOWj terms

to be zero- or known time functions.*

*If NETFLOWj is random or non-zero mean, it is easy to replace wjp by
vp o p
w, = NETFLOWj + wj

\ . v X
in which NETFLOWj is the zero-mean random component of

NETFLOWjo



-73-

4,2.4 Free Parameters in Fundamental Diagrams for Study Network

The dynamics of the six-state freeway model (equations (4.8)
to (4.13)) implicitly have free parameters in the equilibrium speed

curve, veJ(ES), which we consider to be in the form:
x(£) = £(x(t) p(t)), (4.15)

in which we let p,l(t) denote the i-th free parameter on link j.
In this study, there are at most two free-parameters in each funda-

mental diagram so that p(t) has a maximum dimension of six:
- 1 2 1 2 1 2
E_(t) = (p1, pl' PZ' Pzr P3r P3) .

Table 4.3 summarizes the free parameters used in various forms of

the fundamental diagram that are used in simulationms.

4.3 MICROSCOPIC TRAFFIC SIMULATION

4.3.1 Motivation for Simulation Development

At the commencement of this research project, a need was estab-

lished to have a viable traffic-data benchmark for evaluating modeling

assumptions, and control and surveillance algorithms. A microscopic
individual-vehicle simulation was desired. Although a data source

for freeway traffic measurements was potentially available for sur-

veillance algorithm evaluation [29], it did not have a benchmark on the

spatial mean variables of interest (it is primarily raw occupancy and
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(c) Multiple vehicle types classified by weight and acceleration
capabilities;

() Multiple driver types characterized by aggressiveness in
selecting available gaps for passing and merge maneuvers j;

(e) Arbitrary detector/sensor location, and monitoring during
simulation run j;

(f) ability to interface sensors and ramp controls with sur-
veillance and control algorithm logic;

(g) Bookeeping for various simulation statistics, including
(1) arbitrarily defined subsection aggregate variables
(spatial mean speed, spatial mean density, and input and out-

put flow);

(2) cumulative individual travel times, aggregate delay,
number of stops; and

(3) records of incidents and vehicle maneuver conflicts;

(h) Ability to simulate various traffic incident events in-
cluding

(1) blocked lane from vehicle failures;
(2) slow-moving vehicles; and

(3) on-ramp demand surges.

The main program logic for exercising vehicle behavior is shown
in Figure 4.4. A detailed description of all the modular blocks in

Figure 4.4 is provided in Appendix A of this report.
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This conjecture concerning space-time homogeneity has, in fact,
been verified using the traffic simulation program. The effects of the
other approximations used in deriving Eq. (3.54) (see Section 3.3.4) have
also been determined.

The testing of Egq. (3.54) consisted of an examination of the error
between the actual spatial density and the density predicted by Eq.
(3.54); i.e., with

5280
100

1

occ(t,AT)El {EIE}

veh
mile

E(X,Ax) = per lane . (3.54)

The test used:

(1) values of AT ranging from 5 seconds to 1 minute.
(2) vValues of Ax ranging from 100 feet to 1 mile.

(3) Traffic flow conditions ranging from low flow
(~750 veh/hr per lane) to high flow (~1600 veh/hr per lane),
and included homogeneous and inhomogeneous traffic.

2+4a

obtained from vehicle-type distribution information (see Appendix
A, Table A.3) assuming d = 8 fee.

(4) A value of Ez{—l—} equal to 0.034 feet. This was

Before discussing the results, let us recall some notation.

Let yp(k) denote the density at time step k obtained using Eq. (3.54)
and Bkk) denote the actual density at time step k obtained from the
traffic simulation program. The error between the two densities,
e(k), can be thought of as a random process e(k) = yp(k)—EKk). This
study is actually a study of the error process e(k), k = 1,2,... .

The results of the test were as follows:
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Of course, the problem with increasing AT or Ax is that the guarantee
of space-time homogeneity is lost. Traffic conditions can and do change
drastically at a point over a 1l-minute interval and along a 1/2 mile
section at a fixed time. Because the density obtained from Eqg. (3.54)

is actually a time-averaged density localized at a point, this density

can be highly dependent upon where in the section the station is located.
Furthermore, the section density can change considerably over the
time interval. Thus, the selection of a section and a time to which
the density of Eg. (3.54) relates is not straightforward, and sometimes
results in large unpredictable errors.
4.4.2 Summary
Main findings from this simulation study were:
(1) The temporal density variation on a section or road very
local to the detector station can be obtained from occupancy measure-

ments taken over short time intervals. Equation (3.54) is the conversion

from occupancy to density, and is valid at all flow levels and inhomogeneous

conditions. The noise associated with the conversion (i.e., the dif-
ference between the true density and that predicted by Eq. (3.54) is

a zero mean white process with a large variance.

(2) Occupancy measurements taken over larger ; e.g., one minute,
intervals, do not, in general, convert to a section density using
(3.54). This is due to the inhomogeneities (i.e., irregularities)

that occur in traffic over one-minute intervals.

(3) Section densities on, say, a 1/2mile section cannot be,

in general, obtained from a static conversion of occupancy measurements




-9]1-

4,5 FILTER PERFORMANCE IN MACROSCOPIC SIMULATION

Before proceeding to evaluate the EKF in the microscopic simulation
described in Section 4.3, it was decided to generate data with a simulation
of the macroscopic Payne model (Figure 4.8). This procedure serves a

number of purposes:

a) The filter design can be evaluated with an exact match to the model

providing a lower bound on relative error performance,

b) Sensitivity to changes in model and noise parameters can be

assessed, including impact of changes in sampling rates, and

c¢) Structural questions relating to the identifiability and distinguish-

ability of model parameters can be addressed.

In essence, by examining the filter performance when the assumed model agrees
exactly in structure with "plant" that generates the data, one can isolate

problems which are encountered when actual roadway data is used.

4.5.1 Main Results

The main qualitative findings from this macroscopic filter evaluation were

as follows:+

4.5.1.1 Known Model Parameters

a) When noise-~corrupted cbservations of mean-speed (;;) and density (Bi)
were provided to the filter, the estimates converged rapidly to the true

values;

b) Estimate error performance was least sensitive to error variance
in mean-speed observations, and most sensitive to error variance in density

observations,

c) With measurements of speed alone, the filter diverges or develops
large biases in density estimates,

+All conclusions are based on a simulation of the three-link candidate study
network in Section 4.2.



d) With measurements of density alone, the estimates of both mean speed

and density converge to the true values at only a slightly slower rate than (a);

e) From a noisy observation of density alone, the filter can provide
estimates of densities on neighboring links (without additional observations)

but with slower (by a factor of about 3) rate of convergence.

These qualitative conclusions apply over a wide range of both a priori process

noise variance and observation noise variance (see experiments below) , and

f) With observations of flow (5; ;;) and mean speed (;;) on each link
instead of density, estimate error convergence was generally achieved, but

at a slower rate than any case where density was available.

Using flow as an observation was proposed initially as an alternative to deal
with practical difficulty of measuring density with spatially separated

point sensors.

4.5.1.2 Unknown Fundamental Diagram Parameters

a) One or two free parameters in each of the candidate fundamental
diagrams in Table 3.1 (linear, logarithmic, and parabolic) could be identified
per link with the augmented extended Kalman filter (AEKF),

b) With observation scenarios where the estimate converged with known

parameters (i.e., except where flow or speed alone are measured), state and

parameter estimates converged with rates of convergence that paralleled the

cases described in 4.5.1.1 above,

c) Sensitivity of the state and parameter estimates to a priori noise

variance paralleled the known parameter case, and

d) With two or more free parameters in the fundamental diagram,
convergence was unpredictable. This is related to a structural identifiability

and distinguishability problem discussed below.

4.5.2 Sample Run with Known Parameters

A sample simulation run to illustrate the observability of density on
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Y, (P) = Glx.,p), (4.17)

then two parameter values, say p and 0 (with p + 0),are said to be indistinguish-
able if

G(ﬁ{l&) — G(ﬁ(,a) ’ (4.18)

for all k=1,2,... and admissible test sequences {u _}. Otherwise, p and o are
o R 2

said to be distinguishable; if for a given parameter value, p , p, and o are

distinguishable for all g in a small region (e-ball) near p, then the system

is called locally identifiable [28].

Recently Grewal [ 28] showed that the V and T parameters and one parameter
(linear slope) of the fundamental diagram are locally identifiable in this
sense in the Payne model. However, the concept of identifigbility is a

completely deterministic structural property of the particular model parameter-

ization used. That a parameter in a system is locally identifiable, however,
does not imply anything about the convergence of an estimator of that parameter,

even locally.

Essentially, one needs more than identifiability to assure
that the parameters can be estimated. A central problem is choosing test
signal sequences {Ek}, that are "sufficiently exciting” in the sense that
the parameter modulates the output in such a way that its effect is observable.
Unfortunately, for non-linear systems, there exists no easy way to characterize
sufficiently exciting inputs which render the unknown parameters observable
(we refer to [26] for a detailed discussion of these and related issues in

system identification).

In traffic flow, the random effects of driver behavior and stochastic
demand fluctuation are likely to suffice for the purpose of an identifying
test sequence. Based on our preliminary simulation results, some caveats
regarding observability of parameters with an extended-Kalman filter can be
noted. With two or more free parameters, the mean speed and density need

to be changing in time to obtain usable parameter estimates. While no precise
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Simulation 2: Low-Noise Estimation of Slope Parameter (s) in Linear
Fundamental Diagram (Synopsis: Table 4.6)

This run started with identical conditions as in Simulation 1 except

i . i .
the Ve was given and the slope parameter, sl, estimated on each link. Thus,
the assumed fundamental diagram was:

vei(E 1y = 55 -8, 0 1 i=1,2,3. (4.21)

Although it required 15 measurements (60 sec) worth of data to converge within
the steady-state error variance, it did so with small true changes in mean speed
and density from initial conditions. Figure 4.12 (a) shows the estimated slope
parameter (§2) on link 2 over the simulation run. Figures 4.12(b) and 4.12(c)
illustrate the corresponding space mean speed and density on link 2. Note that
the errors in speed and density estimates for Simulation 2 had no statistically
significant difference from simulation 1, despite the fact that in Simulation 2

the flow variable was made pseudo-random as described in Section 4.1.

As a preliminary test of the AEKF's ability to truck parameters which change
with time, Simulation 2 was repeated, except that a step change in the the slope
parameter on link 2 was introduced at t=35 seconds (Figure 4.12(d)). Note
that the change is detected within about 5 measurements (20 sec). This

"detection" result is an optimistic or "best case" since a step change's

effect is easier to observe than when (as in reality) the parameter changes
less discontinuously. We will later show, using microsimulation, that less
abrupt changes resulting in microscopic traffic flow can also be detected, but

the corresponding estimates require longer convergence time.

Simulation 3: Estimation of o Parameter in Parabolic Fundamental Diagram
(Synopsis: Table 4.7)

The objective of this simulation was to show that with alternative
parameterizations of the fundamental diagram, unknown parameters could be
estimated. 1In this case, we set the true fundamental diagram on each link to

be linear with
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—_ - i _
v, (p)) =ve, (1 ) (4.22)

pjam

with vfl=55 and pljam=225 for i=1,2,3. 1In the filtexr, however, the fundamental

diagram was assumed to be

) . . . P
o y=v.ta - 2 5+t (4.23)
v, (pi ) ve (1 T) (1-8 T
pjam pjam

with S-jami = 225 and vfi = 55 (the true known values above), and &i estimated
on-line, for i=1,2,3. As a result of this mismatch in model structure, one
would hope that the filter would estimate ai to be zero (&i=0 means the parabola
degenerates into a straight line). This is in fact the resulting performance

as illustrated in Figure 4.13(a), and Table 4.7. Comparing this run to
Simulation 2, a slightly worse parameter r.m.s. error performance can be

noted, due to the a priori structural mismatch. The state estimates are

illustrated for link 2 in Figure 4.13(b) and (c).

Simulations 4 and 5: Multiple Parameter Estimation with Increased Sampling
Intervals and Alternate Measurement Strategies

Two sets of macrosimulation runs were made to determine the effects of
increased sampling intervals on estimator performance. In addition, two
parameters were allowed to be free in the fundamental diagram. The form of the
fundamental diagram was:

i) =% -8, p. 4.24
v, (P y) = 9. (-8, by, (4.24)

for each i=1,2,3. For each link the true parameter values were:

*Close comparison of Figures 4.12(b), (c) with 4.13(b), (c) shows a very

strong correlation in the "random" error. The reason is that the pseudo~random
number generator for flows and noises are initialized with the same kernel in
both runs, with the result that successive runs appear correlated.
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vfi = 55 (mi/hr) ,
(4.25)

s, = 0.244 miz/veh-hr.

The unknown parameters and states on each link were measured in two ways.
In Simulation 4 (Table 4.8), noisy observations of the true mean-speed and

density (B;,;;) on each link were available; i.e., from Table 3.3

i_ P
yp - pl + x i
(4.26)
i = v
Y’V =V, + )\ il

for i=1,2,3, where Api and Avi are the (assumed) white noise terms corrupting
the observations. By contrast, in Simulation 5, the observation of true
density was not available, but only link flow and spatial mean speed, or, as

in Table 3.3,

Yo =V A i’
(4.27)
i_— = .0
Y¢ _pivi+)\il

for i=1,2,3, where Xiv is the same as above, and Ai¢ is the white noise term
corrupting the flow observation. The purpose of introducing flow-speed
observations in Simulation 5 was simply to test the observability of parameters
and spatial mean variables with non-linear observations. Intuitively, this

was motivated by the practical consideration that flow is a directly obser-

able quantity with detector loops at spatially discrete points.

Results are summarized in Tables 4.8 and 4.9 and Figures 4.14(a) to (d).
Note that over the longer (25-minute) simulation run, mean speed and density
undergo larger relative changes than for the short runs (100 sec) in Simulations
1 to 3. This "motion" greatly enhances the observability of unknown parameters
as demonstrated by Figure 4.14(a). Although the elapsed time for estimating

free speed and slope parameter is longer (%5 min., with full state observations),
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: OO0 Median Lone

Shoulder Lane

 UPSTREAM | MIDDLE | DOWNSTREAMI
!LINK 1 | LINK 2 ; LINK 3 |
TTTA I J T »
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o am—.— —' ————————— —— — avoen ome G me —— G —— C—
[ETFLOW i
1 :DD :CID XDD Imim)
- . . =5
112 Mi 1 1/2Mi 1 1/2 Mi I
STALLED
_—
FLOW VEHICLE

Microsimulation Conditions

1. Exogeneous incoming flow on Link 1, with mean

NETFLowl= 1000 veh/hr/lane (independent

Poisson arrivals on each lane).

2. Standard mix of vehicular traffic (see Appendix A, Table A.3)

3. Run Conditions:

a. Non-Incident:

with 32(0) = p2

jam

b. Incident:

congested middle link 2

Initially free flowing traffic, stalled

vehicle in right-hand lane at t=300 sec.

Figure 4:15:
Microscopic Simulation

Study Network for Filter Evaluation in
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Incoming (exogeneous) flow was assumed for both runs to be pseudo-Poisson
with an intensity of 1000 (veh/hr-lane) or a total of 2000 (veh/hr) for the
two-lane freeway. Generation of vehicles, their type and associated driver
characteristics,followed exactly the algorithm outlined in Appendix A. For
the fixed parameter run (Case 1), we chose initial conditions for vehicle
speeds and densities which roughly correspond to the initial conditions used
in the macroscopic simulation (Table 4.10); in particular, the middle link
was assumed to be inifially congested with a density close to the bumper-to

bumper concentration.

4.6.2.2 Filter Design

Using the detector observations described in 4.6.2.1, the EKF algorithm
design was developed around the 6-state macroscopic model described in section

4.2, with N=3. The filter state is therefore
E_(t) = (5.1 l;l 152 I;2 16_3 173)

The observations available for each link are modeled in the filter design

as (see Table 3.3):

v — i
yi(tk) vi(tk) + Av(tk),

(4.31)

v ) =P, () +AT(e),

for i=1,2,3, where {Ai,kz} are the error processes which model the difference
between detector observations and the true spatial mean state. Specification
of the appropriate covariances for these processes was initially done based on
the detector-loop study, described in section 4.4. Because there is no
rigorous correspondence between the error process assumed in the filter design,
and the actual error process, some "tuning” of the appropriate covariances will
be required. Typical values are given in Table 4.10 Generally change of 4:1
in the assumed observation error covariance matrix entries (from nominal) did

not alter the qualitative convergence properties observed below .

* pjam = 225 (veh/mi) implies a bumper—to-bumper spacing of approximately
24 feet.
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or
P, (0 0 ceee. O 0
w=% ) Y0 ... 0 0 (4.35)
. 03(0) 0
0 ) veee. O 33(0)
- ] 6x6 .

This amounts to the approximation that the 3-¢ (standard-deviation) limits on

{pi(t), vi(t)} are within 50 percent of their initial value. Clearly, where actual

statistics of these random processes are known or can be measured, the relevant

values can be used in lieu of this choice.

The model parameters V,T used for the filter design were the same as those
used in the macrosimulation runs, and reflect an average of typical values found
in the literature ([9-111,[28]). Because of the insensitivity of filter per-
formance to changes in V and T, no attempt will be made explicitly to identify

them here -- see Grewal [28]. For each link, a logarithmic fundamental diagram

was assumed, i.e.:

a i
V0 pl 5-pf
i %nlpg/p.. ] i = i
) i’%5 .
Gop =) 0 TSP P (4.36)
i
e ln[pf/pjam]
— i
0 P; —'pjam
for i=1,2,3

(see Figure 2. 11). Detailed motivation for this choice of equilibrium speed
curve is given in Mitchell [33}. Essentially, this representation appears to
provide a better fit at low to medium densities than the simple polynomial
fits (linear and parabolic) without increasing the number of free parameters.
i

For the free-flow, fixed-parameter run, the values for Vo

i i .
,(% ’ Ojam obtained

by Mitchell were used, and are summarized in Table 4.10.
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4.6.3 Results with Fixed-Parameter Design

From the starting conditions in Table 4.10, the microsimulation
was run for a period of approximately three minutes. The time evolution of
traffic behavior with the congested middle link is as shown in Figure 4.16. No
impediments to traffic flow were introduced in this run except for the initial
congestion on both lanes of the middle link at t=0. Performance of the
extended Kalman filter algorithm for a typical simulation run with 5-second
update rate is shown in Figure 4.17 ((a) to (f)). For all links, the error in
density estimation was comparable with the macroscopic simulation runs, while
mean-speed estimates had consistently higher variance (approximately 20 percent
higher with microsimulation data). Mean speed estimation was consistently
poorer with microsimulation data because of the short sampling time (5 sec.)
and inhomogeneous traffic conditions (see Section 4.4). Additional error
sources are related to the detailed operation of the microscopic simulation
(Appendix A). In particular, vehicles entering the freeway from upstream are
given slow initial speeds to avoid overtaking a preceding vehicle the moment
they enter the roadway . This biases the upstream sensor speed measurements

to underestimate the true space mean speed (e.g., on Link 1, Figure 4.17 (b)).

Sensitivity of mean-speed estimation performance to sensor location can
also be seen on the middle link. Initially, the vehicles passing the upstream
detector on link 3 cause slight bias toward over-estimation of mean-speed on
link 2. Note, however, that as traffic speed on the initially congested middle
link increases and conditions tend toward more homogeneous flow, the bias in
mean-speed estimation (sé) tends to vanish. This is entirely consistent with

the analysis in Sections 3 and 4.4.

4.6.4 Results with Adaptive Parameter Estimation

The network in Figure 4.15, and described in Section 4.6.3, was again

employed, with the following modifications:

a. a capacity-reducing incident was introduced on the right-hand
land of an initially free-flowing roadway at t=30C sec;

b. an Augmented extended-Kalman filter was employed to estimate

the available capacity of each link.
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Recall from Section 2, the available capacity is defined to be

max ¢, (p,) = max EiV;(Ei) , (4.37)

Pi pi
for each link i=1,2,3. For the logarithmic fundamental diagram (equation 4.36 ),
¢ i—- i 4 i
v
each link e(pi) has up to three free parameters,vo, pf » and pjam

i i .
VO and pjam were fixed by following the simplifying approach in

section 2.4.2 [see also Mitchell [31]]. This leaves one free parameter on

. i .
each link, Pe v which parameterizes capacity in a very simple way.
It is easy to show by elementary calculus that with:

v : 3<pf

0
v (p) = nlp/p,_ ) ,
€ vo:——:’——am ' pf <p< pjam (4.38)
Rn(pf/pjam)
0 : P> Djam
=2 —
¢e(p) has a maximum at p , where:
< <
pgam : Qus Pe pjam ,
—k —% € €
p =p (pf) = (4.39)
Pg = ; < <
£ J:m S P Djam '
and
—k _ , v 0 < < 0.
9, ) =Clpy) = EJ%E__EL- =Pe " Bam (4.40)
£ ( n[pjam/pf]) €
pf Vo f pjam < pf < pjam

€
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Figure 4.18: Effect of P; Parameter in Logarithmic Fundamental

Diagram on Available Capacity, c(pf)
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stalled vehicle backs into the upstream section (Link 1) at t = 8 minutes, the

corresponding available capacity estimate begins to fall off, reflecting the loss

in available capacity downstream.

Although only one lane of the freeway section was physically blocked, note

that the estimated available capacity after the incident (= 600 veh/hr) is less

than one~half of the estimated available capacity before the incident (2 2000 veh/hr) .

This is clearly intuitive since the ability of the remaining lane to carry
traffic flow is degraded by queued vehicles behind the stalled one changing

lanes to pass.

In figure 4.21, the simulation illustrated in figure 4.20 was re-run, but
with detector occupancy and speed measurements employed (instead of the true
spatial means) as inputs to the AEKF algorithm. Althou_h the responses differ
slightly, the same qualitative "signatures" of the available capacity are

exhibited, namely:

a. A marked decrease in the estimated available capacity on
the section with the stalled vehicle (link 2).

b. A slight increase in the estimated available capacity
on the downstream (uncongested) section (link 3).

c. A finite (approximately 3-minute) response time before
the upstream estimated available capacity (link 1) beings to

decrease (from queue spill-back).

The main differences between runs with the perfect and detector observations
are that with detectors the response to a stalled vehicles is slower (by about

30 seconds), and the estimated available capacity is higher (= 900 veh/hr).

It would be erroneous to conclude from these results alone that available
capacity can be accurately estimated in absolute terms. Rather, the results
show a clear and unambigous signature that identifies a relative change in

capacity after the incident.
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The relative change in the estimated available capacity has
behavior that is intuitive. Moreover, this behavior of estimated capacity is
exhibited with an extremely simple (one-parameter per-link) model. Clearly
more free parameters could be added to the available degrees of freedom

where circumstances warrant. However, with only this simple one parameter
characterization of available capacity, we have subsequently been able to show

that systematic approaches to incident detection are feasible, primarily as a

consequence of the parameter signature that accompanies a capacity reducing

incident [see Willsky et al [34] for details).

With adaptive estimation of available capacity, the error variance of the
spatial mean speed and density estimate is also slightly improved (by about
10 percent) over the fixed-parameter case under conditions, the improvement in error
Under incident and non-homogenecus flow conditions, the improvement in error
variance is approximately 30 percent for runs such as the one illustrated above.
Moreover, no bias was observed to develop in the estimates (see Mitchell [33]

for details).

A consistent finding in both the fixed parameter and adaptive parameter
estimation schemes is the apparent insensitivity to lateral dynamic traffic
behavior. In both the non-incident and incident scenarios,
passing and lane-changing behavior was intentionally programed into the cor-
responding microscopic simulations. Even though such lateral behavior is not

explicitly modeled in the filter design, filter performance was not degraded.

e ———
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In some cases, the problems with numerical precision can be handled by 5
use of floating-point and/or multiple precision fixed-point arithmetic. A
penalty incurred with this approach is the increased time overhead per opera-
tion. When combined with the large number of operations required, this may |
result in filter update rates (1/AT) which are unacceptably large on a small '
machine. Alternatively, different equivalent realizations of the Kalman %
filter, such as the class of square-root algorithms [35] are possible. Square-
root algorithms, for example, effectively yield double-precision performance
without changing the physical machine word length, albeit at a slight increase

in the number of operations that must be performed.

Considerable literature exists on technigues for dealing with finite-word
length effects (a highly recommended source is Bierman's Book [35]}). More-
over since we did not directly evaluate the impact of finite word-length ef-
fects on the traffic surveillance algorithms developed, we now focus attention
on the problem of the "dimensionality curse" for which problem specific

alternatives can be proposed.

4.7.2 Effects of Algorithm Complexity and "Dimensionality Curse"

In this section we examine implications of the AEKF algorithm complexity
on computer-time and storage requirements, and examine possible approaches to
deal with the need to operate the algorithm in real time. The essential prob-
lem is that the number of equations that must be propagated EETliEE with the
AEKF becomes enormous as the number of states increases, growing essentially

as n2, where n is the total number of filter states, i.e.,

n = 2N + n, (4.42)

with, N, the number of freeway sections, and, np, the total number of free-

parameters being estimated. 1In Table 4.12,we have summarized the approximate

count of state and covariance equations that must be propagated on-line with the

AEKF algorithm as a function of the number of freeway sections (N), and free

parameters (np). Note for example, that with as few as N=8 sections with two

estimated parameters per section, there are some 500 differential |

equations that must be propogated on-line!
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The bulk of the computer time and storage required by the continuous-

discrete AEKF can be attributed to the state-prediction and covariance prop-

e —

agation, as summarized in Figure B-1, and from Section 3, we have:

N tk+1 N i
Xk = f Ex(t|t,))ar , (3.19)
Predict tk |
Step ;
x(tklf]() = l{-k'k : I
- AT !
= %k ) °k+1|k +E (3.20) l
k+1|k k| i

el il T ek T S e T S i) (3.23)
Update z " z :
Step = (I~ G, . .) (3.25) |
k+1|k+1 et ke x+1|k "

where the Kalman gain, Kk+1' is:
=7 T |& SN (3.24)
Keer = K+l | Gkl k1 YA .

k+1|k k+1|k

the main numerical activities which must be performed on-line can thus be

seen to be:

a. Numerical integration (in (3.19), and solution for

transition matrix ¢k+l|k)'

b. Matrix Inversion (in (3.24)), and

c. Matrix Multiplication (all). i

These activities are certainty not unique to Kalman filtering, and we will
not attempt to identify "efficient techniques" here.* Rather, we shall at-
tempt to identify properties of the Kalman filter structure, which in the

problem specific traffic surveillance context, permit reduction

*gor an introduction inthe context of Kalman filtering, refer to [2l], Chapter !
. i
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[FR2]. From the structure of the model equations in Section 2, we have that:

dv = —_ v -v - v - _j 0
j v-_J v, v,_1 % <vj ve(pj)>
dt c.
J
v o1 p_+l - pj , (2.22)
T P. C.
J J
h . 43 j
where cJ [Ax] + ij_l]/2 and
ap. V. P, -V, +*r, -w.
pJ - -1 pj-l JpJ i J . (2.23)
dt Ax
J

Thus, the (;5, 55) dynamics depend only on the dynamics of the nearest

neighbor links, (pj-l' vj—l) (upstream), and (pj+1' Vj+l) (downstream) .

Based on this decoupling from other links (j + k) for k > 1, Looze [FR2]
showed that a viable strateqgy for decoupling of the filter was to:

a. Group the freeway into coupled subsection, each
with 3 links (6 states) per subsection;
b. Assume that the coupling terms from states associated

with neighboring subsections are perfectly known; and

c. Design the 3-state EKF for each subsystem assuming the
known observations are time-varying terms in the

subsystem dynamics.

The approach is illustrated in Figure 4.22, for a 6-section (N=6 network.
In filter "A," assumption (b) enters into the design in (c) by making the
local dynamics time-varying by the assumption that (y4(t),y4(t)) are known.
Conversely,(y (t),y3(t)) make the local dynamics time-varying in filter "B".

To recapitulate:
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1. Decomposition based on the model structure results
in N/3 filters, each with only 3(2+m) states;l

2. Filters are decoupled except for observations from
boundary section (Figure 4.22); and

3. Coupling makes filters time varying, but does not

increase their dimension.

The resulting extended-Kalman filter will be suboptimal in a strict mathe-
matical sense. However in evaluating this approach in a macroscopic simulation,
Looze showed that even linear time invariant approximations of this type do

not degrade estimate performance by more than 5 to 10 percent, when the model

2
parameters are known.

An approximate feeling for the decrease in algorithm complexity can be
obtained by examinimgTable 4.13, in which the total number of state and
covariance equations required in a standard and decentralized EKF are compared.
Notice that the relative saving in complexity is greater with a larger
freeway (or equivalently a larger number of sections for a given freeway).
Another advantage of the decentralized EKF is that each filter algorithm

can be operated in parallel, providing possible opportunities for multi-

processing and/or microcomputer architectures.

The above comparison is only approximate since the ultimate program
complexity and operation count will depend on the particular machine used.
Although we did not evaluate the DEKF performance in the microsimulation,

a macroscopic simulation run provides some basis for comparison. EKF and

DEKF filters were designed for a 6-link (3.0~-mile) model, which was a conca-
tenation of two copies of the one in Section 4.5.3 Identical speed-

density initial conditions were used. For a 25 minute simulation run with l-minute
updates and one unknown parameter per link, the filter computation time was

as follows:

T
6 states + m unknown parameters per subsection, in general.
2

fee Looze et al [FR2].

See Table 4. 8 for conditions and unknown parameter values.

S ——
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{Decentralized filter = 0.684 (c.p.u-minutes),

central processor time (DEKF) (2 filters, 9 states per filter),

{Centralized filter = 1.11 (c.p.u-minutes),

Central processor time (EKF) (l-filter with 18 states),

or about a 40 percent decrease with the DEKF implementation. In comparing the
filter performance between the EKF and DEKF in the macroscopic simulations,
mean speed and density estimates in the DEKF generally took 15 percent longer
to converge to within 1-0 of the true state, with no statistically significant
difference in accuracy. Error variance in the parameter estimates was about
11 percent higher, however, with the DEKF. These numbers should be taken
with the caveat that they do not apply to microscopic freeway data.* We

would expect similar relative behavior between the EKF and the DEKF, when

tested in the microsimulation, but this demonstration remains as a future

activity (see section 5).

*
Microsimulation runs were infeasible due to computer budget constraints.
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Furthermore, by relating this quantity to a parameter of the funda-

mental diagram, ve(53, on each link and estimating this parameter on-line,

a different perspective of this quasi-equilibrium relationship emerges. 1In
particular, one does not derive the ve(53 curve from an independent, off-line
(e.g. least-squares) fit of a curve to historical speed-density data, but
adapts it on-line to existing conditions. Not only is qualitative incident
information provided with this procedure, but, at least in our microscopic
simulations, overall estimate accuracy is enhanced, by removing the bias in
speed estimates. Clearly, more detailed evaluation of results from both the

microscopic simulation and the actual data would be a relevant activity.

From a quantitative performance viewpoint, the extended Kalman filter is
a very adequate data-processing algorithm in this application. A substantial
hurdle must be surmounted, however, if the algorithm is to be practically
implemented in realistically sized corridors. The problem with the straight-
forward (i.e., standard) EKF implementation is simply the enormous growth in
the number of equations which must be solved on-line as the number of freeway
sections increases. Based on the sparsely coupled structure of the traffic
model, however, there is cause for optimism that some of the decomposition/
decentralization ideas presented in Section 4.7 and in Looze [FR2] may pro-
vide the necessary dimensional simplification. The DEKF algorithm associated
with these procedures possesses the additional structural property that
parallel implementation with multi-processor computer architectures is feasible.
A high priority should be attached to future developments along these decom-
postion lines, particularly because of the close correspondence with the de-

centralized control implementation work [FR2].

Many other performance complexity tradeoffs need to be addressed in the
context of practical implementation. Included are the impact on surveillance
algorithm performance of changes in loop detector spacing from the 1/2-mile
spacing used here and widely deployed in practice. Some of our results
for speed and density estimation suggest that density estimation suggest that
greater spacing could be used on raodway-segments which have no entry/exit
ramps, whereas closer spacing would probably have been advantageous in proxi-

mity to ramps, lane drops, and weaving sections if they were present. On the

e e ——————
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APPENDIX A

MICROSCOPIC VEHICLE SIMULATION PROGRAM

A.l PROGRAM OVERVIEW

This appendix details the microscopic vehicle simulation used for evalua-
tion of the state estimation and parameter identification schemes documented
in this report. It was developed as an interim evaluation device since the
original planned use of the INTRAS simulation program [3l] was not possible.
Some of the microscopic behavioral logic is adapted from St. John et al [32]
although modifications to reflect driver types and acceptable risks more typi-
cal of urban freeways than rural roads have been made. It was not our attempt
to provide a simulation program in this research, and hence,detailed program
listings are not provided. FORTRAN listings will be made available
upon request. Tn Section A.l,we provide a summary of the main program
features; Section A.2 motivates the philosophy for program development; and,
Section A.3 details block diagrams of the high-level and most-critical low-

level routines.

A.1.1 Main Program Features

Two-lane freeway, with lane changing and passing.

Up to 12 entrance ramps in simulated freeway, including microscopic
merging logic from freeway-entrance ramps.

Freeway may be divided into, at most, 12 links with different types of
grade, and geometry, so that spatial mean values of densities and velocity may
be obtained for each link.

Nine different driver personalities (corresponding to various desired
speeds and acceptable risk levels) and six different vehicle types (corres-
ponding to performance limits) may be used in the simulation to model tbe
mixture on an actual freeway. r h

Up to 12 traffic-presence detectors may be included at specified lo-
cations of the model freeway, and their presence and velocity outputs as a
function of time can be used for real-time estimation or saved for future

analysis.
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The user can either explicitly specify the initial vehicle statistics
for a particular run,or allow the program to generate them for the user.

The input flow to each lane of the freeway and each ramp is an inde-
pendent Poisson process with user-specified mean.

The user can, if desired, simulate an incident which closes a lane of
the freeway by creating a stalled vehicle at a specified time and position of

the model freeway.

The microscopic simulation program is a FORTRAN routine which, in its
present form, has been implemented on an IBM 370/168 computer. It requires
about 340 kilobytes of main storage to compile the FORTRAN source code, using
the IBM FORTRAN IV Gl compiler,and to execute a typical simulation. Approximately
1.2 minutes of central processor time are required to run a simulation of
1200 steps and a total length of 1.5 miles of high-density traffic on the 168
using the OS/MVT operating system. This time figure is

linearly dependent upon the total freeway length;

linearly dependent upon the number of time steps;

linearly dependent upon the traffic density (since it is linearly
dependent upon the number of vehicles in the system); and

virtually independent of the number of links, ramps, and presence

detectors used in the simulation.

This program consists of a main program which keeps track of the current
time, and which vehicle is being processed at this time, and subroutines which
are called to perform specific parts of the simulation. 2 qualitative over-
view of the routines and program organization are given in Table A.l and

Figure A.l.

A.l.2 Input Data Requirements

Data areread into the program from the standard FORTRAN input file.

Random Number Kernel (used in generating pseudo-random numbers for
all stochastic processes used in the program.
Freeway Topology Data
Length of Simulated Highway
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Number and Position of Link Endpoints, Entrance Ramps, and
Presence Detectors ;
Stalled Vehicle Time and Location (if used) ; and

Probability Distributions for Vehicle and Driver Types.

Initial Conditions
Either
Statistics of all vehicles at t = 0
or
Initial values for spatial mean density and input flow for each

lane of each link of the freeway.

Output flag specifying what data (if any) are to be written to the
output file.

Time Step and Run Duration Data.

A.1l.3 Microscopic Simulation Output

The program generates the following plots on the line printer:
1) Every 10 time steps, vehicle positions and velocities.
2) At the end of the run (for each lane of each link)
spatial mean density vs. time,
spatial mean velocity vs. time,
average travel time (time required for vehicles leaving this link
during the time interval to reach its end) vs. time, and
spatial mean number of stops vs. time.
3) At the end of the run (for each lane of the simulation)

velocity vs. time and position.

The program will also, at the user's request, write out the spatial mean
density and velocity data for each link and the presence data for each detector
to output files where they may be punched into cards, printed, or saved in on-
line storage for use by other programs. Output data may be obtained from either

lane of the simulation or as the average of data from both lanes.
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Figure A.2: Definition of Freeway Variables



~171-

TABLE A.3

STANDARD MIX OF TRAFFIC

a. Vehicle Type
Description Acceleration Length (ft) width (ft) Percent
car good 18 6 43.750
car medium 18 6 39.375
car poor 18 6 4.375
van - 20 7 6.250
truck - 40 8 3.750
truck - 60 8 2.500
b. Driver Type
Driver Risk Level Percent
slow low 1
slow medium 3
slow high 1
medium low 9
medium medium 27
medium high 9
fast low 10
fast medium 30
fast high 10




-173-

SIBATIQ *MSTY-uNTpay ¢poadg-unipay 103 Xy yjduo] deg snsiop 1/ JuelISUO) SWIL :¢°'Y 2In3T4g

— m.Nl
0
o]
515/1408 = A @ i
335/1409 =1 @
5315/1d0r = A O v
335/14 02 = “> o ﬁ\o
335/140L = 'A @ \o
— m.—l
o « \
X<x \“\O
N \ \qu
)
m \.\.
™ o= —*
™ L .
012 o —lg-
67701 x>x
| _ 1 | | 1 | | 0
002 Gl 0]} G2l 0.0]! Gl (0] 174 0]

(L334) LV H19N3T dVv9

3, LNVLSNOD 3WIL



=175~

(which reflect the maximum deceleration they are willing to use in normal ma-
neuvers). Typical values for a medium risk, moderate speed driver are RQ = Q,54,

R1 = 0.00645. What we call a standard traffic mix is- given in Table A.3,

A.2.3 Ramp-aerging Algorithm

A vehicle will merge into the freeway from an entrance ramp if an adequate
space gap exists in the right-hand lane of the freeway at the beginning of the time
step. BAn adequate space gap must meet both of the following conditions:

1) the acceleration of the merging vehicle as a function of the new
leader must be greater than the risk level of the merging driver; and

2) the acceleration of the new follower as a function of the merging

vehicle must be greater than the risk level of the following driver,

A.2.4 Lane-changing Algorithm

For a vehicle to change lanes, all of the following four conditions
must be met:

there must be adequate space in the other lane for the lane changing
vehicle to enter;

its computed acceleration as a function of its leader in the present
lane must be less than the maximum acceleration of which it is capable at its
present speed;

if it is traveling in the inside (right-hand) lane, its computed speed as
a function of its current leader must be less than its free speed (note that,
for this reason, vehicles in the right-hand lane tend to stay there, while vehicles
in the left-hand lane tend to move to the right); and

the acceleration as a function of the new leader in the adjacent lane

must be greated than its acceleration as a function of its present leader.

A.3 PROGRAM OPERATION

Figure A.l gives an overview of the logic of the microscopic simulation
program. A qualitative description of the subroutines used in the program is

given.
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following equations are used to compute the updated speed and position of this

vehicle as a function of the leader in its new lane.

A.3.4 Updating of Cumulative Statistics

The program then checks to see if the vehicle leaves the freeway, and if
so, it removes its entry from the master file (this entry is now available

for assignment to a new arrival). Then the cumulative link statistics

N
Spatial Mean Density 0, = —————%——— . (A.11)
iox5, " % .
Tk
_ . . i .
Spatial Mean Velocity V, = 1E 1l§k J, (A.12)
i
_— N N i z(t‘t. -)
Average Travel Time At = 1E llnkNL nJ (A.13)
i
) Ns,
—— j € link i 3
Spatial Mean Number of Stops NS, = ' (A.14)
i NL,
of Stops . i
where N; = number of vehicles on link i at time t ,
NL; = number of vehicles leaving link i at time t ,
;j = velocity of vehicle j at time t ,
. . = time vehicle j entering freeway,
in,j
st = number of stops vehicle j has made during run ,

are finally updated, presence detector data (the number and mean velocity of
vehicles crossing this detector during this time step ) are recorded, and the

processing of the next vehicle begins.

Once all vehicles have been processed, the time step is incremented and
new vehicles are placed on the end of the freeway and the ramps (if sufficient
unoccupied space exists at the end of the freeway or ramps). Independent
Poisson processes are used to generate the vehicle interarrival times for each
ramp and lane of the freeway although the program can be adapted to use other

types of distributions.



-181-

APPENDIX B
SUMMARY OF EQUATIONS FOR CONTINUOUS-TIME DISCRETE
OBSERVATION EXTENDED KALMAN FILTER

This appendix summarizes an alternative form of the discrete-observation
continuous-state extended Kalman filter which does not use the transition

matrix, <I>(tk+l,tk) , but relies on numerical integration of the continuous

dynamical state and covariance equations directly.

Step (1) 1Initialization

=X (B.1)
z Zo (B.2)

Step (2) Nonlinear Continuous State Prediction

A

*k+1|k = x(tk+1ltk) !

(B.3)
tk+1
= £(x
f (x(t]t )dr
tk
the integration sweep (B.3) generates,
R Bfi .
= < < .
F(t) v (x(t]t)) b Sttt ., (B.4)
J nxn
and
~ agi A
Gr F mm, (Rlegle)) - (B.5)
J NI,
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APPENDIX C
REPORT OF INVENTIONS

This report contains no inventions or other patentable items; however,
it provides advances in techniques for real time freeway traffic surveillance
data processing, including estimation of speed, density and available capacity

from presence detectors as detailed in Sections 3 and 4. In particular,

Using an intuitive and simple pre~-processing procedure for occupancy
and speed data from individual vehicles, the processed detector outputs can

be modeled as noisy observations of spece mean speed and mean density.

With the pre-processed data from 1/2-mile spaced detectors and free-
flowing traffic conditions, accurate estimates of mean speed and mean density

can be consistently obtained.

Under non-homogeneous conditions, it is shown that (typically) a single

parameter can be used to model the available capacity of a freeway section

(via the fundamental diagram of traffic), and that the value of this para-

meter can be identified with an augmented extended Kalman filter.

Information in the time behavior or signature of the estimated capacity
in response to incident conditions is shown to establish a foundation for

reliable and rapid incident detection, as well as providing quantitative

information for use in the traffic control system [FR3].

110 copies



