AD=A102 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/6 17/2
TUENTY-CHAMEL VOICE RESPONSE SYSTEM.(U)
DO‘I’-?SC-ISlJ

UNCLASSIFIED FAA=RD-81-51

[

B

s U By '}
g nTo 'lﬂ
: (I !

NI TP W P,/

:: :’:-J

REPORT NO. FAA-RD-81-51

TWENTY- CHANNEL VOICE RESPONSE SYSTEM

INPUT OUTPUT COMPUTER SERVICES, INC.
400 Totten Pond Road
Waltham MA (02154

ADA102185

JUNE 1981
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC E;,3

THROUGH THE NATIONAL TECHNICAL

INFORMATION SERVICE, SPRINGFIELD, P % e .

VIRGINIA 221861 & - ' P
S JULTO 1981

] A ‘4
Y

D

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION
Systems Research and Development Service
Washington DC 20591

81 7 28 044

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or us
thereof. :

:
:
i
}
L)
,.‘

NOTICE

The United States Government does nat endorse pro-
ducts or manufacturers. Trade or manufacturers'
names appear herein solely because they are con-
sidered essential to the object of this report.

e R e

1. Repert No. V 2. Gevernment Accossion No. 3. Recipient's Ceteleg Ne.
* FAA-RD-81-51 Jﬂ&' A. _i@ _4{5_ .
,'» =, | 4. Title and Sybtjrle - i // - S nel ’

* 6 TWENTY~-CHANNEL VOICE RESPONSE SYSTEM, ;.
- - - L - £ 5 etion Code

e . —
F 5. Porierming Organizetion Report Ne.

. 7. Author's) ﬂjﬁy é 5J DOT-TSC-FAA-81-5

. 9. Perlorming Organizetion Nome end Address 10. Werk Unit No. (TRALS)

; Input Output Computer Services, Inc.* /t‘ FA031/R1115
' 400 Totten Pond Road Y
Waltham MA 02154 OT-TSC-131

. Yo of Report ori
" 12. Sponsoring Agency Neme end Address / . -~

b4 U.S. Department of Transportation @ Flna}}/,x’e t, /— 78
) Federal Aviation Administration Mar # M77-sepl 78,
‘ Systems Research and Development Service
Washington DC 20591

15. Supplementery Notes U.S. Department of Transportation

_ * . Research and Special Programs Administration
3 Under Contract to: Transportation Systems Center

Cambridge MA 02142

14 .

16. Abstroct

3 < {'This report documents the design and implementation of a Voice

3 Response System Y¥RS); which provides Direct-User Access (DUA) to the
FAA's aviation-wéather data base. This system supports 20 independent
audio channels, and as of this report, speaks three weather products

' over a push-button telephone interface: hourly surface observations, 1
{Sa), terminal forecasts PT), and forecast winds aloft.{6F}.’ The

system is implemented on two linked computers:-_a PDP 11/70%host
which maintains the data base, and a PDP 11/34® front-end which
manages the weather briefings.]

AT oa SN k. -
~N

] 17. Koy Words 18. Distribution Stetement

Voice Response System (VRS) DOCUMENT IS AVAILABLE TO THE PUBLIC

s T H THE NATI

Direct-User Access !DUA) INFORMATION SERVICE, SPRINGFIELD,
) Flight Service Station (FSS) VIRGINIA 22161 : :

19. Security Clessil. (of this repert) . Security Classil. (of this poge) 21. No. of Poges | 22. Priee

Unclassified Unclassified 444
Form DOT F 1700.7 0.72 Repreduction of comploted poge sutherized /J

- - PIS5E

/

PREPACE

L o S . G ot
LT Rs

The development work summarized in this final report was carried
out by Input Output Computer Servictes, Inc., under contract to the

e e

é : ° 17.S. Department of Transportation, Transportation Systems Center
‘ * (DOT/TSC). The research was sponsored by the Pederal Aviation
3 Administration (PAA) as part of their Plight Service Station (¥sS)

g automation program.

The system described in this report is intended to provide
preflight weather briefings to the aviation community via computer-
generated voice output. It is a 20-channel Voice Response System
(VRS) which uses Adaptive Differential Pulse Code Modulation (ADPCM)
speech-compression techniques and a push-button telephone communi-
cation interface for a real-time pilot self-briefing system.

The work reported here was completed under the direction of the
TSC program manager, Manuel F. Medeiros, and the technical monitors,
. John J. Sigona and Vito P. Maglione. Carey Weigel of the ®AA
¢ provided overall program guidance.

L e RN Wy)

Aooesalon'ror
NTIS GRA:I x
DTIC TAB O

Unannounced O
Justification . !

R e N T]

By
| Distribution/

Availabil}gy»Code§
Avail and/or
Dist Special

AL

iii

S e T e ot ﬁ“" L Ry e

e b it ., Ak b W A W

s O SN i s -
P

o it RSN Iy LA o G VR I SN 2 A i iy sy o Tplh ot s

AR A AR
% TWTWKV*WEWFWFWFWFWTWFWFWFWTWTWTWPWFW

: il ihj

} Wl it b Wl ﬂ
i ED i !'
E I 2.5 o slaas g ged § epg3dda g R
1 {211 : ’
g % A ﬁfn it Mttt |
i 1 MY ve tll.anry

iv

Section

l.
1.1
1.2
1.3

2.1

2.2

2.3

INTRODUCTION « « ¢« o o o o ¢ o o

VRS Functional Overview . .

l.1.1
l.1.2
l.1.3

PDP-11/34® Punctions

PDP-ll/?OO FPunctions

Global PFunctions . .

PDP-11/34 Hardwareo *® e o o
PDP-11/70 Hardware.

VRS SOFTWARE DESIGN. « . « « « &

VRS Communications.
2.1.1 Establishing cammunlcatxons.
2.1.2 PDP-1ll/34 to PDP-11l/70
PDP-11/70 to PDP-11/34

2.1.3

- .
. L3
. .
L] L]
L] .

1
2.1
2.2
2.3
2.4
2.5
2.6
atl
3
s
4
2

3
4.4

3
4
4

UPPORT SOFTWARE
.1

UDFPRG.
ERRCRT.
DEPTT .
VRINIT.
VRSTOP.
NLCUPD.
SENDIC.
WRDICT.

DP-11/34 Resident Software

Data Bases . . « .«
Device Drivers . . .
Dialogue Program . .
Completion Routines.
Line Timeout Routine
Trap Handler

tatistics Package Overview
.1 Statistics File Initializatio
.2 Statistics File Structure.
ident PDP-11/70 Software .

Data Bases o

Raw Data Processing.

o o & o o o

*

TABLE OF CONTENTS

.

L] L [] .

*

Transmzssions
Transmigssions

PDP-11/70 Retrieval Task

MAINTENANCE.' 11/34 e o o o o
Program Creation Procedure,

System

Requirements

1

1l Overview of PDP-11/70 VRS Mes

3 L] L[] L[] [L] . L L[]

-oomOo:’uoaﬁclo

e o o (N o ¢ 4 ¢ o 0 ¢ o 4 o

& & 8 e o ®* o * o ® o o o

o o ¢ ()¢ o o o 8 4 * ¢ o g 0 o 0 o 6 & @

¢ o o Ne ¢ ¢ o ¢ s o o 0 4 0 s 8 e 0 o e

¢ @ o -0 o % o & 9 O 4 B o * e 6 9 & &

e o o e o ° o 0 o 0 o & ¢ ¢ & s o 0 s

2-29

2-30
2-31
2-37
2-37
2-38

NN
[}
o o
- ~J

) R
N WWRN

LK X WWwWwwwwww
'

JRE

TABLE OF CONTENTS (Continued)

E Section
3

F 5. VRS MAINTENANCE ==11/70. « « « o « o o o o o o o o o « =
: 5.1 Task Creation Conventions « ¢« « ¢ ¢ &« ¢ « &
é 5.2 Software ConventionsS. . « « « ¢ o ¢ o o o o ¢ o o o
} 5.3 Support Software Task CreationN. . . « « « o « o o &
3 5.3.1 UDFPRG + « « « « o o o o o o o o o o o o o o
?4 5-3-2 EmRT e © e 8 o e e e e e ¢ o e &8 © o e e @
& 5-303 VRSGLB e ®© 6 o € o @ © ® e ® o e @ o a e o o
s 5.3.4 VRINIT . ¢ ¢« ¢ ¢ o « o o2 « o o o o s o o o »
5.3.5 VRSTOP . « 2 o o o s o o o o o o o o o o o o
5.3.6 NLCUPD L] - L] L] * * L] L] L] L] L] L] L] * . L] L d L] L]
5.4 VRS Weather ProCesSSOL .« « « « « « = s o o s o o o o
5.5 Periodic Software Changes . . « ¢ « o o ¢ o o o o o
6. OPERATIONS MANUAL. e o a s o & @« o o o o o @
6.1 Start Up 11/70 Subsystem. e 4 o o o o e e o s s o =
6.1.1 Log-on Terminal. . ¢« . ¢ o o o ¢ o o o o o o
6.1.2 Bring Up Subsystem . e o s & o ® s o & o
6.1.3 Start Up 11/34 Subsystem e e e o e e o o o
6.1.4 Shut Down 11/70 Subsystem. . . « . « o ¢ o o«
6.1.5 Shut Down 11/34 Subsystem. . . « ¢« ¢ ¢ « o+ &
6.1.6 "Barge IN" ON. . ¢ « o ¢ « o o o o s o o o =
6.1.7 "Barge IN" Off . . ¢ o o ¢« ¢ ¢ o o ¢ o o o o
6.1.8 System TeSt. . « ¢ ¢ e o o o o o o s o o o o
6.1.9 System Trouble Chart . . . ¢« ¢« + ¢ ¢ ¢ o o &«
7. USERS' MANUAL. ¢ « ¢ « o o o s s s o o o o s a o o o« o @
7.1 Entering DAta . « ¢ ¢ o o o o o o o o o o o o o o o
7.2 Data Not Available. . « ¢ &« & ¢ ¢ o o o ¢ o o o-a o
7.3 Control PUNCEIONS . . 4+ 4 ¢ o o o ¢ o o o o o o o o
7.4 Example of Typical VRS Dialogue ¢ ¢ ¢« « &

APPENDIX A PDP-11/34® anp pop-11/70® sorTwARE MoDULE
. DESCRIPTIONS 3 . 3 3 . e e . .

A.l PDP"ll/34 VRS- e« e s e e & ® e © e e e & 8 © & e e s o o
Aoz PDP‘ll/?o VRS e e & e 83 ¢ e ® e e e 6 e & e e o+ S s e o o
Ao3 PDP-11/70 RETREV e ® o & ¢ © s * ° ° & & ¢ e o & 2 s s o
A.4 PDP-11/70 VRSOUT . ¢« « o o o o o o o o o o o o o o o o o
A-S PDP-11/70 VRSFD- e & o 8 s ° e & 5 8 4 5 s & e o o & s oo
A.6 PDP-11/70 FDRTRV . . &« «. o o o o o o o o o o o o o o o o
Ao? PDP-11/70 UDFPRG ® & e s s e o s e s s e s o e s s s s
A.B PDP‘ll/?O VRINIT T *+ e s 8 ® s e & & e & & e e & o e o @

8 . REFERENCES e o © e » ® ® & ® e ® & 6 e 6 & © o o e o o o

Page

Illlllllltln
-

HF O ONUO R HERRRRONRRRE NUB RS WWW W

[IO I I B |]
Lo X W VN SN S

© NN

TABLE OF CONTENTS (Continued)

- Section

4
% APPENDIX B PDP-ll/34o AND PDP-li/70o LINE COMMUNICATION . . B-l
S

B.l PDP-1ll/34 and PDP~11/70 Communications Protocol. B-l

* 802 PDP-11/34-- PDP-11/70 DECNBT (Dm) e e o o o o e o e o 8-2

R B.3 Transparent-Text Mode. « ¢ ¢ ¢ « ¢ o« ¢ » o« ¢« o« « B=5

B.4 General Transmission Procedures. . . « « 2 « « ¢ ¢« « « « B-6

3-4 .l output Timing. . 'y . '3 ° - ° 'y ° 'Y . o . . ° . B-7

1 B.4.2 Block Acknowledge Procedures . . . « « ¢ « s o o o o« o B=7
. B.4.3 Block Rerun ProceduresS . . « « o« « o « « ¢« s« « « o« « « B-8
P B.4.4 Block Transmission Procedures. . . « « ¢« ¢ « ¢« ¢« « » o B-8
' B.5 Line Synchronization Procedures. « ¢« ¢« « « « « « B-8
; B.6 Cyclic Redundancy Checking (CRC-16). . « ¢« ¢« « ¢ ¢« « &« « B-9
; APPENDIX C PDP-11/70 SOFPTWARE FLOW DIAGRAMS C-1
3 C.l VREXEC e ® ® ®© ® e ® e ® e @ ® e e o & e ® e @ o e o e » C'3
3 C.2 VRSOUT e ®© o e 8 ® e o e e e o & o o ® ® ® e © & o 8 o o C'S
&‘ C.3 SA PROCESSOR 3 ° Y ° . 'Y . Y . Y 3 . o C-9
2 C.4 SA REMARKS PROCESSOR . &« ¢ ¢ 2 o o 2 s o o o s o« s o« o« « C=41
! . C.5 PT PROCESSOR « « « « ¢ « o o o o o o o o o+ o o o s o« « o C=59
.‘ - C.6 RETREV e o e o e e o ‘e @ o e * o o . e o e e s e o o o C"75
: . APPENDIX D REPORT OF NEW TECHNOLOGY . . « « « « « « « o« o o D=1

TN e

| BN b X VR

5 LIST OF ILLUSTRATIONS

H Figure . Page
1-1 PDP-11/34® VRS Software e . . . 1-3 '
1-2 PDP-11/70® VRS Software 4 4 4 . . . 1l=7 v
1-3 PDP-11/34 Hardware Configuratlon. c e o o o o o o « 1l=-10 N
1-4 PDP-11/70 Hardware Configuration. . . . ¢« ¢« « « o « 1=13 i
4 2-1 VRS System COMPONENtS . « « « « o« « o o« o o o« o o o 2=9 v
& 2-2 Three Queue EXampPleS. . + « « « o s = o o« o o o o o 2=12
2 2-3 I/OQueue Element . . . « o « o o o o o o o« o o o« » 2=13
k- 2-4 User Status BloCK . ¢ ¢ ¢ ¢ ¢ o ¢ o o o s ¢« o o o o 2=15
4 2-5 Dialogue Protocol INdeX . « « « « « « o o o o o « o 2=19
i 2-6 Dialogue Program. . « « o« o « o o o o o o o o o o o 2=22
2-7 Completion Routines . . « ¢ « ¢« o« o o o o o o « o« « 2=28
2-8 Record Pointer BlocK. « « « « o o o« ¢ o o o o« o o« o 2=32
2-9 Record Definition . . « ¢« ¢ ¢ ¢ ¢ o « o« o « s ¢« « o 2=33
2-10 Raw Weather Message ProcCeSSOr . . « ¢ « « o o « o« « 2-39
2-11 Raw Data Base File KCW.DAT. . « « « s o o o o o o« « 2=40
2-12 VRS Universal Data File . ¢« «¢ ¢ ¢ ¢ o« « ¢ « o« o o « 2=42
2-13 VRSGLB MAp ALLAY. « o o « o o o s o o o o o = o o o 2=43
2-14 Locator Index Table Format. . . . ¢« « ¢« o« o « « o« « 2=-45
2-15 Message Unit Format for a 256-Word Block in UDF . . 2-46 4
2-16 Transmitted Message Units . . ¢« ¢ ¢« ¢« ¢« ¢« o« & « &« « 2=56 .
2-17 Data Edit Configuration . .« . &« ¢ ¢« &« ¢ ¢ o o« o « « 2=60
2-18 PDP-11/70 Weather Retrieval Software. « . « 2-62
2-19 BUFFER, RETQUE, FREEPL. . «: « ¢ « ¢ o « « o« o« s « « 2=65 .
2-20 CRBT and CRMUT. . . « « « « o « o o o o o o« o « « o« 2=73 d
q 4-1 11/34 Software Subroutine Tree. . . « o« « ¢« ¢ « « o« 4=3
i 5-1 PDP-11/70 VRS Task/Overlay/Subroutine Tree. 5-6
4 5-2 RETREV Subroutine Tree. . « « « « o o « « o« s s« « « 5-8
i 5-3 FDRTRV and VRSFD Subroutine Tree. . . . o « « o . . 5=9
; 6-1 VRS System Trouble Chart. « ¢« ¢« ¢« ¢ « ¢« ¢ ¢ o o o« « 6=2
C-1 VREXEC . & o o o o o s o o o o o o o o s o s s o« o« C=4
C-Z VRSOUT * Y . Y - . 3 . - Y . - . . C-G
. c-3 SA PROCESSOR . . c e e e s e e e e e e e e .. C-10
) C-4 SA REMARKS PROCESSOR. o o o o s s s s 2 s e e s e+ . C=42
C-5 PT PROCESSOR &+ &+ 2 4 o « 2 4 o o s o s o« o« o« o« o « C=60
C-6 RETREV . 4 ¢ o ¢ o o ¢ o o o o o s s s o s o o o 2 o C=76
LIST OF TABLES , L
Table Page §
3
1 BASE LEVEL FUNCTIONS PERFORMED. . ¢ « ¢ « ¢« o o o« « 2=23

viii

- TR o oA T Gy W AT

1. INTRODHCTION

The Direct Nser Access (DUA) system is presently being developed
as a component of the PAA Flight Service Station Automation
Program. The system will enable pilots to interact with a computer
system to obtain weather briefings and file flight plans.
Transactions will be made over CRT and hardcopy terminals for
graphical and textual output, and over Touch-Tone® telephones for
spoken briefings. The spoken material is the output of the
20-channel Voice Response System (VRS) developed at the
Transportation Systems Center (TSC) in Cambridge, Massachusetts. To
date, the VRS gives (speaks) three weather products over the
telephone with stored words: Hourly Surface Observations (3A4),
Terminal Porecasts (¥T), and Porecast Winds Aloft (GF) (Air
Transport Association (ATA) Grid Winds -- prepared by the National
Meteorological Center for the airlines]. Using a special Touch-Tone
protocol, the pilot enters the three-character location identifier
for each airport or weather station of interest. The VRS prompts
the pilot to indicate which weather products are needed, and, if
necessary, to enter specific altitudes and time for Winds Aloft data.

1.1 VRS FUNCTIONAL OVERVIEW

A Digital Equipment Corporation (DEC) PDP-11/34® computer issues
the prompts and receives the user's requests, sending the requests
to a second computer, a DEC PoP-11/70® which has access to the
National Weather Service files in Ransas City, Missouri. The 11/70
weather orocessors are constantly translating incoming weather
products into sets of pointers which reference the VRS dictionary of
recorded words and phrases.

e L

10 AN 0 A T Ao B 24 SI

When the 11/70 weather report retrieval program receives a
request, the pointers corresponding to the required weather report

o TR, TRROVIINITT e vy

are located and sent back to the 11/34. The specified locations in
the dictionary file are read and the data sent to an output

subsystem (the Adaptive Differential Pulse Code Modulation (ADPCM) ’
decoder) which decodes the digital data and converts it to analog .
signals (stored records) that the user can hear over the telephone. 'Y

T g S g

1.1.1 PDP-11/34‘E Tunctions

The VRS computer (i.e., the PDP 11/34) performs all "terminal”
functions. These functions include: accepting input from the user
via Touch-Tone® phone, transmitting this input to the 11/70 and
providing voice output of information sent back from the 11/70. The
basic software flow diagram is presented in Figure 1-1. A brief
discussion on each block function is presented as follows in the
sequence that the computer processes the information.

The user input enters the software through the Touch-Tone s
driver. The driver provides device-dependent function handling,
such as phone answering and producing ASCII characters from the
Touch-Tone input. The driver also separates the input from all
channels into separate storage areas.

The separate storage areas are then examined by the dialogue
program. This module collects all information needed by the 11/70
to perform data retrieval. The information collected includes
location identifiers, altitudes and weather types.

At this point, the program prompts (speaks to) the user to input
the data required. The program has a collection of responses that
it "speaks" to the user. These responses are retrieved and spoken
to the user by using the disk driver, the disk driver completion
routine, the ADPCM driver, and the ADPCM completion routine. The
disk driver reads a portion of the message to be spoken and executes

e A b o PR et 5 = erttoe %

ndug
I9atTad
autrl

0L/T1T-dad
woxj/ol

—>

SIBMIJOS SYA SvE/11-daAd

!1-1 @2anb1g

aur3inoy
uot3yatduo) | 10a120 ¥SI1q
aA 1803y
aur3inoy \
uot3ardwo)
xmﬂa\\
|
I9ATIAd ¥S1d
andang
13ATIQq wexboxg <
|sut1 anbote1q
" - A BN P N E

aurjnoy
uotisrdwo)
HWodav
IaATxq >
Woaav
LOV T1°d
woxg/oyg,
Iaataq
auoyg,
-yonoy, <
L 4
e R 4l gette MR-

the disk completion routine. The disk completion routine sends the
message fragment to the ADPCM driver. The ADPCM driver speaks the
message fragment and executes the ADPCM completion routine which
requests another disk read from the disk driver. This process of
disk driver, to disk read completion, to ADPCM handler, to ADPCM
completion, continues until the entire message is spoken. After
completing the spoken message the ADPCM completion routine returns
control to the dialogue program.

The information collected by the dialogue program is formatted
and transmitted to the PDP-ll/?O® by the line driver output. This
driver performs the functions required by the line protocol. This
includes insertion of all protocol characters, and data retrans-
missions required by invalid user entries or line interference.

The 11/70 prepares the requested data for transmission. The
data arrives at the line driver input in "message units" (defined in
Section 2.4.3.4). The message units must be specifically requested
by the VRS computer before they are sent. A request for the next
message unit is sent by the ADPCM completion routine when it has
completed the speaking of the previous one.

1.1.2 PDP-11/70 Functions

The PDP-11/70 maintains all of the weather data which are
required to be vocalized by the VRS computer. The PDP-11/70 will
eventually contain the software required to process eleven different
weather report types. It currently contains three weather
processors: Surface Observations (SA), Terminal Forecasts (FT), and
Forecast Winds Aloft. The processing procedure consists of three
operations: accessing a dynamic data base of weather information to
recover raw weather data; translating the raw weather data into a
format which is recognized by the VRS 11/34 computer; and storing
the translated information in data files that are organized to

process is one of mapping ASCII* weather report words and phrases
into their corresponding dictionary file addresses of the locations
where the actual digitized utterances are located.

The translation requires a dictionary (sort for indicating)

- where each word and phrase are located in the vocabulary file. Two
. copies of the dictionary exist, one on the 11/34 fixed head disk
where the vocabulary file itself resides, and the other on the 11/70
g disk where it is accessed by the weather processors. (When the
dictionary is updated at the 11/34, it is sent to the 11/70 using an
| off-line utility, SENDIC.)

In addition to translating the raw data, validity checks are
{ made and unrecognized words or formats are flagoed as errors for
manual editing. The method of handling unrecognized ASCII com-
4 binations is described in detail in Section 2.4.3.5.

' The PDP-ll/?Oo is required to retrieve weather information upon
request by the VRS computer. Three modes of retrieval (selected by
the pilot) have been defined as follows:

1. Local - Predefined data for-particulat locations are
presented in the following order, if available: Area Forecasts
e.g., (WA, WS, WW, WH) Notices to Airmen-NOTAMS (NO), Density
Al titude, Surface Observations (SA), Pilot Reports (UA), Terminal

SORS v

Forecasts (FPT), Forecast Winds Aloft, and Weather Synopsis (SY).
i 2. Selected Weather - The weather reports: Sa, FT, UA, NO, SY,
) and Winds Aloft (time, altitude) are retrieved for each location
5 specified. ' ?
)
? % *American Standard Code for Information Interchange (ASCII)
¢
¥
)
v 1-5

d
L
i
i

P et ol

e oS S A Fdhr AT M ey
It e

et e AT

3. Prompt - The user is asked a series of questions requiring
yes/no answers concerning the report he wants for the specific
locations. The prompt mode is currently the mode in operation for
the 20-channel system. '

The PDP-11/70® uses a Location Index Table (LIT) in a Universal
Data Pile (UDF) to locate the disk block numbers of the translated
weather reports requested by the user. A briefing table of these
block numbers is constructed and used for reading the blocks
containing disk pointers that indicate the stored utterances as
transmitted to the 11/34. The disk pointers are grouped into
logical divisions called message units (see Section 2.4.3.4). The
11/34 begins requesting successive message units when it is ready to
speak, and the 11/70, following its briefing table, reads the blocks
into a buffer and sends the data message a unit one at a time to the
11/34. The 11/70 software configuration is shown on Figure 1-2.

1.1.3 Global Functions

The division of work between the two systems implies a number of
functions are handled by both. These functions are system
initialization, error handling, and communications.

1.1.3.1 1Initialization - Tnitialization of the VRS involves two
distinct operations, program startup and establishing communica-
tions. The exact implementation of operations may be different in
the two computers, but the function is the same.

Program startup is internal to the two systems. The proper
orograms must be brought into core memory and all run time data e,
bases, such as 1/0 buffers, must be initialized. ®stablishing
communications consists of the 11/34 logging onto the 11/70, as a
i human would, and issuing an RSX-11lD monitor command to load and
execute the retrieval program (RETREV). Continued execution of

SIS SN

1-6

TE

e

A o A DA T L A W3 .

91eM3J0S S¥A 0L/TT-ddd

11@ viwi

714
| O3

T

)

B e ok a § - n e T N Lo B o St Ml A7 A . Gl X AN o 10tk
3 DA At Pt S Bkl A ot - —

tZ-1 @2anbyg

_ _IdIn0 1 1
A HOLVTSHAIL J I
V1N NS . VM
KON FHIVH S \ ﬁm)_i

T AW . s T.,..,q Carr. ALY 3.!&1.3.@’..\3«\.‘ i

NAITULRY S¥A

o O~ -

e

RETREV is thereafter verified by polling. If the 11/70 does not
respond to the polls, the 11/34 software prints an error message and

aborts.

1.1.3.2. Error Handling - Errors may occur in the actual operation
of the program. A reporting function must exist to permit tracing
sources of error to improve operation.

Errors fall into two major categories. The first areas are
those which totally incapacitate the VRS. The second are those
which permit the system to continue operation, but in a degraded
manner.

The first category includes the following principal areas:

1) Disablement of the VRS computer. Hardware failure to
prevent the VRS computer from performing its VRS functions. This
type of error is determined using device status registers, and bus
timeouts induced by accessing totally disabled I/0 registers.

2) Line Failure. Both the 11/70 and the VRS computer are
prevented from communicating as a result of serial line failure.
The total failure of either machine will appear to the other as a
line failure. FPFailures are determined by timeouts on the
communication line,

The second category of errors includes: 1
l. Raw Weather Data Errors. Format problems of the raw weather
data due to spelling errors, or other format problems result in

these errors being sent to the Data Editor (see Section 2.4.3.5).

2. Garbled Transmission. Messages sent on the Communications
line will occasionally suffer from noise and line outages. This

. . b ¢ OB I, i I, vl

I e i A

includes only occasional distortion of messages, not total line
failure which was discussed previously.

3. I/0 Errors. On occasion, peripheral devices will fail on an
attempted I/0 transfer. This type of error is rare with current
technology but should be accounted for on the few occasions when
they do occur.

Other errors such as software failures can also occur. The
above list can be expanded as implementation proceeds, but is
adequate to define the error problem.

1.1.3.3. Communications - The communications task provides the link
between the systems. It must format data in a manner suitable for
serial transmissions, and must receive the data, checking it for
integrity and acknowledging receipt.

The line is bi-directional and the messages are of 4 types. The
first is a briefing request. This message is transmitted from the
11/34 to the 11/70. It contains data used by the 11/70 to access
the processed weather files. The 11/70 responds with either a
positive acknowledgment, or a diagnostic message indicating such
things as improperly spelled data, etc. If the request is accepted,
11/70 then internally prepares the data corresponding to the
retrieval request. Communications integrity is checked by check-sum
logic via the 11/34 and the Retrieval (11/70) program. This is
explained further in Chapter 2.

1.2 ppp-11/34® HARDWARE

The various components of the 11/34 system (see Figure 1-3) are
as follows:

jusudoToAasp Arernqeooa xo3j paiyinbey,

oL/11 OL .
< _ uofjexnbyyuo) sremprey pe/TT-d0d ‘e-T FNOIA

XNRW HIOLS XYYTINGYOO0A
* WROO

] ASIa *aH
aaxid oaa

att-1a
FOVIIIN
anva 002

/

d/1 attria

!

(LOANI)
YOLVYANTD
XEVTINEGVYO0A
o1any

ol e e R e Y oy Ty T

CPyy - PDP-11/34A processor,

Memory - 64K word parity core memory for program execution.

TTY - System master console (CDI Teleterm 1030) for running
the VRS system and for software development.

Calendar - TCU-100 Hardware clock calendar unit used by the
VRS to obtain the current date and time of day.

Clock - KW-1l/UL real-time clock required by the operating
system to perform timing functions such as timing user
response time.

Magtape - TU-10 Mag tape drive. Required for regqular
back-up. 0Used to copy programs and vocabulary.

. ° Telephone Company (TELCO) Switched Uines - provides access
to VRS using telephones.

° Bell 407C Data Sets - Converts the Touch-'l‘onesO into
signals the equipment can handle incorporated in the Bell.

. Touch-Tone Mux - VOTRAX MC-I decodes and multiplexes the
Touch-Tone input from the twenty 407C units.

L o PRI SIS N O P e ore il W el

DLII-E - Asynchronous interface to the 11/34 unibus for the
VOTRAX unit.

20 Channel ADPCM Decoder - a specially designed interface
for decoding the ADPCM code words into PCM samples and then

' into analog signals.

¥More details can be found in the references. See (1) for Digital
Equipment Corporation peripherals, Reference 2 for special purpose
hardware. See also (3) and (4) for the Bell Bquipment.

o AP MY AR i N

° Audio Vocabulary Generator and A/D - audio hardware for
inputting the vocabulary (typically a tape recorder or
microphone).

° Pixed-Head Disk - Digital- Development Corporation
(DDC-9112-D-8) fixed-head disk. The disk is used for
storage of VRS software, program library, operating system,
and the VRS vocabulary. Capacity of 4 million l6-bit
words, 1800 RPM, 17 ms access time.

° DL-11E - 1200 bps Asynchronous Interface.

[] Communications Multiplexor - A Computer Transmission
Corporation Model 1315 communications multiplexor for
communicating with the PDP-11/70® computer.

1.3 POP-11/70 HARDWARE

The PDP-11/70 hardware consists of 768K bytes of memory with
memory management and a dual 88 mega-byte disk storage system. The
POP-11/70 communicates with the VRS computer via a single channel in
the multi-channel DH-1ll interface.

The PDOP-11/70 system is controlled by RSX-11D/V6B, which is an
event driven, multiprogramming operating system offering up to 250
priority levels for task execution, multiple activity monitoring,
priority interrupt servicing, task scheduling, dynamic memory
partitioning, event flags for task notification and synchronization,
support of multiuser programs, etc., as well as on-line software
develooment, concurrent with task execution., A diagram of the 11/70
configuration is shown in Figure 1-4.

I93u3) TejuswTIadXd SOTITTTORS UOTIRTAY [RUOTIEN - DAIVNe

uotieanbyjuo) aIeMpIeH OL/TT-dAd :p~T AWNOId

\'/ \/
(aw 89) (aw 89)
qAdYL AS1Ia ASIA
q4avdd qavd NALNINd ANIT 91T NML vody yoamd
1190 1141
¥ A | >

L0
SOIHAVYD
SSLA

- TN ,
_ adaame (Sad o€)
e "WYEL 9EVT)y

a A v / ¢ (Sdd o0z1) >
- _9SL___ SdJ 0¢ JANIWAL * J ° - 551
A €0T WIALATAL Y

(aNrTe\&— ~ T MOV
550 (aNIT9D) \ @ | (S3LAG N8IL) | o P/ s TS o

(04d N
oL “HONASY 0L/11-dad € — X o

0ot ..
(cor W YL\

AR L ARE o R P

2, VRS SOFTWARE DESIGN

2.1 VRS COMMUNICATIONS

The nature and formats of the data transmitted between the two
VRS computers are described in this section. The topic of
communications line protocol and the associated protocol characters
is addressed in Appendix 8.

2.1.1 ©Establishing Communications

When the 11/34 operator enters the RT-11 monitor command, 'R
VRS,' to begin execution, one of the initialization procedures the
11/34 VRS software performs is logging onto a certain 11/70 disk
area to initiate execution of the weather report retrieval program,
RETREV. The 11/34 sends the characters necessary for an ordinary
RSX-11D log on: '

HEL (300,100]
(current password)
RUUN RETREV,

The log-on characters are echoed back to the 11/34 which types
them on the terminal as reassurance to the operator that the log-on
is happening as it should. (After this, no further transmissions to
the 11/70 are echoed.) 1If the log-on and all other initialization
procedures (discussed in subsequent sections) are successfully
completed, a message to that effect is typed on the terminal. If
the message does not appear, communication with the 11/70 has very
likely not been established and the operator would take off-line
remedial action. When communication has been successfully
established, however, the 11/34 undertakes to monitor it by sending

2-1

a special polling message, NULL ESC, every seven seconds to RETREV,
which must respond with '*1' (ASCII asterisk one) within 20 seconds
or the 11/34 assumes that either RETREV, the 11/70, or the

communication line has failed. Without RETREV, the 11/34 can access

no weather data, so it informs thé.operatOt of the trouble and
aborts itself.

2.1.2 pop-11/34® to pop-11/70® Transmissions

The 11/34 computer transmits two types of messages to the
11/70: briefing compilation requests (type 1) and demand response
requests (type 2). Type 1 messages are further defined into two
sub-types. One sub-type is briefing request message #1 (BRMl). The
other sub-type is briefing request message #2 (BRM2).

The briefing compilation request messages consist of ASCII
character strings (terminated by a carriage-return character) which
supply the parameters that the PDP-~11/70 employs to retrieve weather
data. The parametric information required by the PDP-11/70 consists
of such items as briefing mode, location identifiers, report types,
hours, and altitude.

The demand response requests consist of ASCII character strings
(terminated by a carriage-return character) which require either a
transfer of verbalization data from the PDP-11/70 to the VRS
computer or informs the PDP-11/70 of some special condition of the
briefing (shut-down, hangup, etc.)

2.1.2.1 Type 1 VRS Computer to POP-11/70 Transmission - There are
two sub-types of the type 1 transmission. They are identified as

briefing request message #1 (BRMl) and briefing request message #2
(BRM2) ,

2-2

T

el

o R R LR R TR, 4

© A

A W et P AP o Ml 4 N g e SRR Y 1 TR

L A GANCIR WD B A e

Pe

BRML is used to inform the POP-11/70® of three briefing
parameters: channel, briefing mode, and location identifiers.

BRM2 is used to inform the PDP-11/70 of four briefing
parameters: channel, report types, time (hours from current time),
and altitude.

An entire series of BRM2 transmissions may logically be issued
for a single BRM1l transmission and thus effectively cause a briefing
gsession to be a series of sub-briefings for the locations indicated
in the BRMl transmission. This permits the user to be actively
involved in the progressions of the briefing in order that he may
make subsequent requests based upon previous weather information.

The general form of BRM1 is shown below. The two fields are
generalized as Pl and F2.

BRML: XPl-F2[CKS] [CR]
X: Channel Number: ASCIT 0-19
Fl: Mode: LM, SM, PM, (for local, selected,
or prompt)
F2: Location identifier string
CKS: A three-character check-sum consisting of a

two-character encoded sum of all transmitted
characters followed by a character total of
the number of transmitted characters.

Example: X Fl P2
8PM~-B0S/ALB/BNIP [CKS]

2-3

z
3
3
¥
1

<t G T - B W

Entr Meanin
ntry Meaning
Mode Prompt Mode

Locations . Boston, Albany,
Buffalo

This briefing compilation request informs the PDP-11/700 that
the user has requested a prompt mode briefing for Boston, Albany,

and Buffalo. The VRS computer has assigned the user to channel 8.

The general form of BRM2 is shown below. The three fields are
generalized as ¥l, ¥2, and ¥3.

BRM2: XFl-¥2-F3 [CKS] [(CR]
X: Channel Number: ASCIT 0-19
Fl: Report types
F2: Times (hours from current time)
F3: Altitude (in feet or feet x 100)

Example: F1L 2 ¥3
4 Sa/¥PD-12-9700([CKS] [CR]

Entry Meaning

Report types SA's, FD's (winds)

Hours Winds for 12 hours
in advance

Altitude Winds for 9700
feet

i k. Sl AR 1Nt

ey

I8

e, (L

]
*
\.':
%
:
k
g
§
.
'
5

g e o i s

This briefing compilation request informs the PDP-11/70o that
the user on channel 4 has requested Hourly Surface Observations and
Porecast Winds Aloft for the locations previously entered during a
BRM1l transmission. The winds aloft are desired for 9700 feet and
the twelve-hour forecast is requested.

2.1.2.2 Type 2 VRS Computer to PDP-1ll/70 Transmission - This
transmission type is the method by which the VRS computer demands an
immediate response from the POP-11/70. The transmission is in
ASCITI-mode. There are three fields of information supplied, with an
optional fourth field. The request is terminated with a
carriage-return character.

The general form of a type 2 transmission is shown below. The
left and right brackets are used to indicate that the enclosed
information is optional. The brackets are for illustrative
purposes, and are not transmitted.

Type 2: &xv[nlnzn3n4] [CRS] ([CR]
Field 1: &, type 2 identifier
Field 2: X, X = channel number ASCII 0-19
Field 3: Y, Y = command code (A, B, C, D)

Pield 4: N1N2N3N4, message unit number

The command codes (Field 3) represent the different types of
responses the VRS computer expects.

When Pield 3 is an A, the VRS computer is informing the
PDOP-11/70 that the briefing session is completed and that the
channel is released (i.e. telephcne hang-up or disconnect).

2-5

When Field 3 is a B, the VRS computer is requesting that the
PDP-—ll/?OO supply the message unit data and, in addition, echo the
message unit number (See Section 2.1.3.2).

When Field 3 is a C, the VRS computer is requesting that the
PDP-11/70 send the message unit number and message unit data of the
first message unit of the next report type of the briefing. When
Pield 3 is a D, the VRS computer is requesting that the PDP-11/70
send the message unit number and message unit data for the first
message unit of the report that contains the requested message unit
(L.e., backup to the beginning of the current spoken report).

Field 3 Field 4 Required
A Yes = (
B Yes =
c Yes =
D Yes =

2.1.3 PDP-11/70 to PDP--ll/34® Transmissions

The PDP-11/70 answers the two types of VRS computer trans-
missions with two types of responses. A type 1l response is an
ASCII-mode transmission which is used for two purposes: to indicate
a completely acceptable briefing request; and to "echo“ an invalid
command string representing a request for a briefing. A type 2
response is a transparent-mode transmission which responds to a
demand response request. This is the transmission which delivers
the voice pointers and size data which the VRS computer uses to
vocalize the weather information.

2.1.3.1 Type 1 PDP-11/70 to PDP-11/34 Transmission - The type 1
response to the VRS computer is an ASCII-mode message which is a
response to a briefing request. The ASCII-mode message is used for
diagnostics: one of which is a statement that the PDP-11/70 can

2-6

N e PR

T

comply with the transmitted request; the second of which is an echo
of a briefing request with @'s substituted for the subfields which
are acceptable. Type 1l responses are terminated with carriage-
returns. '

Type l: Acceptable
X [CR] [CKS]
This transmission consists of the channel number (ASCII 0-19).
Type l: BRMl echo
X@-BOP/@/IAE [CR] [CKS]
This is a diagnostic response to a request on channel X (ASCII
0-19) in which the briefing mode was acceptable and the second

location identifier was acceptable. Uocations BOP and IAE were not
located in the system data base.

Type l: BRM2 echo
XPs/@-@-7 [CR] [CKS]

This is a diagnostic response to a request on channel X (ASCII
0-19), in which an invalid report-type was requested (¥S), a valid
report-type was requested, the time field is valid and the altitude
field is invalid.

2.1.3.2 Type 2 POP-11/70® to poP-11/34® Transmission - a type 2 3
transmission to the VRS computer is used to honor a demand response
tequest. This transmission is in binary transparent-mode and

consists of the command echo, the channel, the message unit number,
and the message unit data (if applicable). The general form of the
transmission (characters in brackets are optionally transmitted) is:

Type 2: CE N N,N.N [AA,. « « « « . .A[]

n

where, C is an eight bit echo of the demand;
E is an eight-bit ‘channel number:

Ny to‘N4 is a 32 bit message unit number;

A) to A, are the 8-bit bytes of the message
unit.

With reference to Section 2.1.2.2, request codes B, C, and D
require the message unit data and request code A requires a special
message unit number zero, which is a confirmatory signal to the
PoP-11/34® that the PDP-11/70® is closing all activity on the
specified channel. If any command other than A contains a response
of message unit zero, a message unit has been requested which is
beyond the range of the briefing.

2.2 PD?P-11/34 RESIDENT SOPTWARE

Section 1.1 provides a brief introduction to the functions
provided by the 11/34 VRS computer. The software to perform these
functions is discussed here.

The RT-1l1l Version 3 Extended Memory monitor is used as the
operating system for the VRS computer. The various components of
the VRS system are depicted in Figure 2-1. The function of each of
the components of the system will be given later. Here we will
discuss the different priority levels of the components.

p

The driver components operate at three priority levels. Read or

write I/0 commands are initiated at priority zero, the lowest

+ e e BT vz

T
§
%
! - ——
5 Timsout Eandler
\ PR 6 PR 7
,;I L)
' Jre’uﬂ‘ 9 .
Tone <F—.1qupm-
. Driver
4)
ADPCH [~ AP
Completion < Driver
INT PR S
A
!
; Disk Disk
§] Completion |€———— oDriver <
:! ’ INT PR S
i _pmers | —_—
i’ [
j
i Raceive 11/70
| Completion Line Out
g Routine : Driver < L
INT PR 4 ;
i y Yy
11/70 :
Line In '
f Driver v
11/70
INT PR &
L ¢

FIGURE 2-l1: VRS System Components

- |
i 11/70
)

2-9

processor priority. Data characters sent or received by the drivers
are processed at priorities four or five. This guarantees instant
response to data interrupts. The disk and ADPCM completion routines
operate at interrupt priority five. The receive completion routine
operates at priority four. The dialogue program operates at
priority zero. The trap handler, the component synchronizer,
operates at priority seven, the highest process level. The line
timeout component,which monitors the activity of all lesser
conponents, operates at priority six.

The 11/34 software is examined under the following section

headings:
o Data Bases
° Device Drivers
[Dialogue Program
* Completion Routines
e Line Time-Out
[Trap Handler

2.2.1 Data Bases
The VRS computer maintains four data bases.
These data bases are:

Queues

Buffers

ser Status Blocks
Dialogue Protocol Index.

2.2.1.1 Queues - Queues are linked lists consisting of a queue
header and a chain of any number of queue elements. The Queue
header is a two-word field that determines the limits of the chain

2-10

of queue elements. The first word points to the first queue element

and the second word points to the last queue element. If there are
no queue elements in the queue, both words are set to a zero value.
Figure 2-2 shows three examples of queued lists.

All queue elements linked to a specific queue header are members
of that particular queue. Each queue element of a particular queue
is a consecutive block of memory whose first word is a link pointer
to the next element of the queue. If the queue element is the last
element of the gueue, the link pointer value is zero. The values
contained in the remainder of the consecutive block of memory depend
on the queue function.

Figure 2-3 shows an I/0 queue element used by the RT-1ll system
to queue I/O orders. The link word's function is described in the
previous paragraph. Word 1 contains the VRS channel number and the
I/0 function code. Word 2 is used by the RT-11l operating system.
Word 3 is the block address for random access devices. Word 4
contains the input or output buffer address. Word 5 is the word
count that determines the number of words to transfer. Word 6 is
the completion code which determines the action to take upon
initiating or completing the I/0.

The VRS contains three different types of queued elements: the
I/0 queue elements, disk read queue elements and 11/70 receive queue
elements. The I/0 queue elements were explained in the previous
paragraph. The disk read queue eclements are elements whose
consecutive block of memory contains a link field, followed by a
five word I/0 parameter list, followed by a 1024 word input/output
buffer. The element is used to read disk voice data and write the
data to the ADPCM driver. The receive queue elements contain a link
field followed by a 64-word data buffer used to send or receive data
to or from the 11/70.

e vl by o s AN - . . i RS ————

i
1
3
4
header -
0 current -
§ 0 last
‘ queue a .
-
4 header
; current .—7
last \a)
0
2 -
% queue b
i A
3 current
4 last
|
element element
o> 0

For a queue of length:

*
a) 0 elements
b) 1 element |
c) 2 elements) |

FIGURE 2-2: Three Queue Examples

RIS SR .

2-12

;
é
)

Word No.

4] Link Word

’-E r
1 I/0 Code VRS Channel
2 RT-11
3 Block Address
4 Buffer Address
5 Word Count

4

6 Completion Code

FIGURE 2-3: I/0 Queue Element

2-13

2.2.1.2 Buffers - The VRS software uses three types of buffers.

The first is a 40-word Touch-Tone® input buffer permanently assigned
to each of the VRS channels. All translated Touch-Tone input is
placed into this buffer. The buffer is also used to transmit
briefing requests to the 11/70. The second is a 1024-word buffer
used for reading disk voice data and speaking the data using the
ADPCM driver. The third is a 64.-word buffer used to receive input
from the 11/70 and to echo Touch-Tone input.

2.2.1.3 nser Status Block - A user status block (USB) is assigned
to each VRS channel. The (JSB is a separate data base enabling
asynchronous operation of all VRS channels. Figure 2-4 defines the
fields of the 17SB., The following describes each field of the 1ISB:

° Bytes 0,1 contain the beginning address of the permanently
assigned 40 word buffer,

] Bytes 2,3 contain the byte location within the 40 word
buffer that will receive the next translated Touch-Tone
input character.

° sytes 4,5 contain the byte location within the 40 word
buffer of the start of the last input field, i.e.,

beginning of last location identifier or weather report
type, etc.

°® Byte 6 contains the first character of a Touch-Tone input
keystroke pair.

® Byte 7 contains the current position within the dialogue.

° Bytes 10,1l contain the identifier of the last component of
the system that serviced the line.

2-14

joold snjeas aesn

9000 AUVUNIA |

d4a0od IIOSsvY

NOISIOdud dFT14nod

L

ONINVEd4S LINN IDVYSSIAW

cL

TIVI anand JXvVads

oL

avaH anand Mvads

99

NOISIOJ¥d F149noda

v9

a3LsAN0Ad LINN IAOVSSAN

9

TIVL QIATIOIY IDOUSSAW

09

aNdAN0 QIAIIDAY HOVSSIAW

9s

NOISIOd¥d d149n0d

147

LINN FDVSSIW TAATIIOTY

(4]

dJ0OW ONIJdIud

0S

Ch YNV IJAVS

97

1# vV 3JAVS

| 44

TIVI anand avay

A 4

WAAYEH dnand avay

oy

19350
aaqumpN 234g

b -z WANOII

9L LL -

SSIYAqVY NINLIY

TIVL anand YIvVl

¥IGVaAH anand NIVL

YIIWON HO01d MSIa

SYO019 40 HIGHNN

4NAO0D ¥O0T1d 1SW1

YIAINIOd ITOVSSITW

SddAL IHOdIM

SLIg OVId ININVWEAQ

L GNIAT

YOLOAA SLIgE OW1d

ASYW NOILITIWOO

SNLYLS INIT

ANOYLSXIANA YILNIO4
LSUId aNO01Ivia
LNANI LSYT 40 ONINNIOIL 4
NOIZVYI0T LNANI INTNUND [4
YI3Jd4Nd 40 ONINNIODIL 0
12390
Jaqumy 934g

Bytes 12,13 are the completion mask, which is a unique bit
for each VRS channel. The bit is used to distinguish which
particular VRS channel is signalling a significant event.

‘Byte 14 contains an event vector to distinguish the
particular event being signalled by the completion mask.

Byte 15 contains the flag bits that signal the functions to
take place during this particular step of the dialogue
protocol.

Bytes 16,17 contain flag bits that govern the functions to
take place during two or more steps of the dialogue
protocol.

Bytes 20,21 contain the flag bits that signal what report
types are available.

Bytes 22,23 are the pointer to the sequence of field pairs
that define the message to be spoken.

Bytes 24,25 contain the number of words in the last block
of the voice data for the current utterance being spoken.

Bytes 26,27 are the number of disk blocks that contain the
utterance being spoken,

Bytes 30,31 contain the disk block number of the utterance
being spoken,

Bytes 32,33 are the queue header and bytes 34, 35 are the
tail pointer of the read queue elements queued for the

ADPCM handler.

Bytes 36,37 are the address of the instruction where

processing will resume when the current message is spoken.

- s - e e e e -1

o Bytes 40,41 contain the header and bytes 42, 43 contain the
tail for the read queue elements currently queued to the
disk handler.

r o Bytes 44 through 46 contain the return address pointers to
| : the subroutines that are-to be returned to after a briefing
request completes.

{ o Bytes 50,51 define the current briefing mode: selected,
local, or prompt.

o Bytes 52 through 55 contain the ASCII number of the last
briefing message unit received from the 11/70.

o Bytes 56 through 61 are the queue header of all receive
queue elements of message units received from the 11/70.

o) Bytes 62 through 65 contain the ASCII number of the last
briefing message unit requested from the 11/70.

. o] Bytes 66,67 contain the queue header and bytes 70,71 are
the tail of the message units queued to be spoken. ‘

o Bytes 72 through 75 contain the ASCII number of the message .
unit that is currently being spoken.

o Byte 76 is the channel binary code.

] Byte 77 is the channel ASCII code.
2.2.1.4 Dialogue Protocol Index - A dialogue protocol index is used %7
to prompt the user through one step of the protocol. The dialogue

protocol index indicates what functions are to take place
immediately before, during, and immediately after a single step of

- e,

N S TT e T

2-17

| the user dialogue. Figure 2-5 shows the fields of a dialogue
~ protocol index.

) Bytes 0,1 contain the flag bits placed into the user status
block at the bébinning of "this step of the user dialogue.

e Bytes 2,3 are the address of the special function
subroutine to be performed before speaking the prompt
message. '

° Byte 4 contains the number of seconds to wait before

speaking the prompt message.

® Byte 5 contains the number of seconds to wait before
echoing the user response.

° Bytes 6,7 define a message link to enable all dialogue
protocol indices that speak the same prompt message to use
the same stored canned message.

. Bytes 10,11 contain the address of the stored canned
message unit. C e ‘
3 Bytes 12,13 define the address of the special function

subroutine to be executed before performing the syntax 1
analysis check.

® Bytes 14,15 define the syntax analysis check mask to verify
the user input. :

® Bytes 20,21 define the address of the special function
subroutine to be performed before beginning the next !
dialogue protocol index.

) Byte 22 defines the next dialogue protocol index to execute
1£ the user makes a normal or yes response.

Byte Number
Octal

FLAG BITS

. SPECIAL FUNCTION
BEFORE SPEAKING

PROMPT
WAIT

ECHO
WAIT

MESSAGE LINK

PROMPT MESSAGE

12 SPECIAL FUNCTION
BEFORE SYNTAX ANALYSIS

e

SYNTAX CHECK MASK

16 SPECIAL FUNCTION
BEFORE ECHOING RESPONSE

20 SPECIAL FUNCTION
BEFORE NEXT DIALOGUE

' i R a0l

YES or
NORMAL BRANCH

NO or
ABNORMAL BRANCH

All fields are optional except the prompt
message and the yes/no branch vector fields.

FIGURE 2~5: Dialogue Protocol Index

L I

Byte 23 defines the next dialogue protocol index to execute if
the user responds with an abnormal or no response.

2.2.2 Device Drivers ' .

The VRS software performs all of its I/0 using the programmed
requests provided by RT-11. Hence, all reads and writes of
a2 information must obey the conventions of the operating system.

Reference 9, the RT-11 Advanced Programmers Guide describes these
programmed requests and shows how specialized handlers must work

2 within the constraints of RT-11l. The RT-ll Advanced Programmers
{ Guide is recommended reading for £full comprehension of the
specialized handlers.

2.2.2.1 Touch-Tone® pDriver (MCX) - The Touch-Tone driver is RT-1l1 .
compatible with the exception of its servicing of read requests. .
- The driver services the input Touch-Tone keystrokes by decoding and
\ inserting the decode character into the fixed 40-word VRS Touch-Tone :
p input buffer for the designated channel. 1t decodes a pair of input
1 keystrokes if alphanumeric input is expected, or a single keystroke

if numeric inout is indicated. The Touch-Tone driver services write
requests to enable or disable a VRS channel. The driver notifies
the dialogue program when any significant event occurs on a VRS
channel by setting the user status block completion mask bit into a
fixed memory location. Significant events reported are: telephone 7
ringing, disconnect, input complete, invalid input, etc.

o, sk ol

2.2.2.2 D0OL-1l1l Line Interface Driver - The DL-ll interface is
controlled entirely by line-in and line-out software.

2.2.2.3 FPixed-Head Disk Driver (RFX) - The fixed-head disk driver
is an RT-11 driver. Exact details of what this implies are
described in Reference 6, Chapters 2, 4, and 5.

I T iy Y. W

R tEe

Ty

i
!

2-20

2.2.2.4 ADPCM Driver (ADX) - When VRS wants to speak a message to
the user, it calls the ADPCM driver, which initiates speech on the
proper channel. The ADPCM hardware does not require processor
intervention while speaking a message because it is a direct memory
access device. When the ADPCM hardware runs out of speech data, it
calls the ADPCM interrupt routine _which checks for errors. Then it
starts the next speech message to the channel. If there are no
speech messages, it turns off the ADPCM hardware on that channel.
Finally, the ADPCM handler initiates the ADPCM completion routine
with the channel number.

2.2.3 Dialogue Program

The dialogue program, operating at priority zero (the lowest
machine priority) constantly checks the status of a significant
event completion indicator located in a fixed memory word. The
Touch-Tone® driver indicates a significant event by setting the user
status block completion mask bit for the affected channel. The
Touch-Tone driver also sets ‘the particular significant event code.
Figure 2-6 is a schematic flow of the priority zero VRS software.
Table 1 presents the functions performed and their effects.

The dialogue program significant event recognition routine
sequentially checks each of the VRS channels. This sequential check
guarantees consecutive servicing of all VRS channels. Using the
completion event code set by the Touch-Tone driver, the significant
event recognition routine vectors to the proper servicing routine.

b
:

o

Touch-Tone

Driver

:

Significant

Event

Analyzer

!

i

Yes/No and Repeat Skip

Disconnect Normal Ring Last or
Completion Prompt Repeat
'l’ Briefing

Dialogue
Protocol
Index

Special
Function
Subroutines

\ 4
To 11/70

y

Briefing

v

From 11/70

FIGURE 2-6:

Echo Message
Routine Prompt
v v
Speak
Component

Dialogue Program

2-22

LY

A Taiass 8 NS AN AL I e 5 LA i M~ K027

JOINNOOSIA V 1D3add ANV SNNODSIA ¥ 103ddd d NIW ST NVHI HaIVIO
HOVSSAN ANONVH XVad SOVSSIN ANONVH NVEd HALSXS NO SHIY INOAWIL
SNON ONINVAAS 40LS . dols
ANON ONINVEAS HFNNILNOOD Os 09
XUINE LSV TAONVD SINON Qs TAINVD
. FAGET L
LdWodd ISVl Ivaday XM ISV INIaTY 1 Ivaaay
NOILONNA
NOILONNA IXAN/M FANNILNOD IXAN/M FONILNOD NOILONNA SHA JO NOILATAWOD N OLTY
SSNOdSAM ON Ol YOLO3AA ANON $IN ON
JSNOdSHY SAX Ol ¥OIOIA ANON 17 SaX 9
!
QdqaIORT o
SNONYH dNONVH V . ﬁzaoo HOYYd NOISSIWSNVUL'T
V¥V S103449 FYVYMLAOS S104ddd FUVMIJIOS NOILIANOD dNONVH FAIFOAN T LOANNOISIA
HOVSSAN 4OTTdH. FHL AVALS SINON NOILIANOD HNI¥ FATADTY ONIY
ANON IH0ddd XM IXAN Od muam_ Cs dIjds
AOVSSIAN ,OTTaH, THL IVIIS|ONIJIAIUE HIHINAM NIOH - FTOXC
NOILSAND ILXAN/M FONIINOD ANON i NOILI'TdWOD TVWHON
»AUINT AITVANI, MVIAJIS JNON ANOUISXAN QITVANI PICWILSXAN AITVANI
103343 FIOW LdWO¥d | 103439 AAOW ONIJAIYH SASNYD AWYN

Aamiodquad SNOILONNA ‘13ATT ASVd

T 319vE

- JRIRE ISP SR 7 SRS - Nyry v

The significant event service routines are:

e The telephone ringing service routine
which activates the 11/70 retrieval
' program if no other VRS channels are
active and initializes the user status
block.

e The telephone disconnect service routine
which notifies the 11/70 retrieval program
that the briefing is complete for the given
channel and if no other VRS channels ére
active, deactivates the 11/70 retrieval
program,

e The yes/no and normal completion service
routines set their unique status indicator into
the status field of the user status block.

¢ The repeat last prompt service routine
enables the repetition of the last message
prompt.

® The skip or repeat service routine disables
the current operation of the briefing com-
ponent and requests from the 11/70 either
the previous message unit for a repeat, or
a skip to the next report.

All of the service routines, with the exception of the skip or
repeat service routines, interface to the dialogue protocol index
troutine, The dialogue protocol index routine directs and conducts
the operation on a VRS channel. fsing the dialogue pointer
contained in the 1788, the dialogue protocol index routine executes

one step of the protocol. The routine initiates the speaking of a

message prompt to the user. The routine also directs the
Touch-‘l‘oneO driver to decode the user responses as alphanumeric or
numeric input. Finally, the routine performs a syntax analysis
check on the user input, echoing a correct response if the dialogue

protocol index indicates the user input is to be echoed. It
executes the appropriate special service subroutines.

The special service subroutines perform services that are unique
for a particular dialogue protocol index. Examples of some of the
services performed are:

0 Formatting the Touch-Tone input to separate
logical fields.

o Changing briefing modes.

o Clearing the Touch-Tone input buffer.

0 Recognition of lgst location identifier.

0 Skipping to another dialogue protocol index.
0 PFormatting a specific weather report type.

0o Sending briefing requests to the 11/70.

The dialogue protocol index routine, using its special service
subroutines, requests the user input location identifiers. The
complete set of location identifiers is formatted and sent to the
11/70 retrieval program. The retrieval program validates each
location identifier. If all location identifiers are valid, the
11/70 retrieval program sends back an acknowledgment to the 11/34
VRS software. If any location identifiers are invalid, the if
retrieval program sends back a diagnostic message which identifies
which location identifiers were valid and which location identifiers
were invalid. A special service subroutine within 11/34 VRS

o

Loy e

requests the user correct the invalid location identifiers by
cancelling them or re-inputting another location identifier. The
correct location identifiers are retransmitted to the 11/70.

Dependent upon the particular briefing mode, the dialogue
protocol index routine may ask the user for additional input. PFor a
local mode briefing, no other information is requested and the
dialogue protocol index routine enters briefing mode. For a prompt
briefing, the user is asked a series of questions requiring a yes or
no response. For each yes response, a weather report type request
is sent to the 11/70 retrieval program and the dialogue protocol
index routine enters briefing mode. For a select mode briefing, the
user is asked to input the weather report types. The input weather
report types are sent to the 11/70, and the dialogue protocol index
routine enters briefing mode.

The preceding material has explained the operation of the lowest
priority routines of the VRS software. The operation services in a
serial fashion each of the VRS channels that indicates a significant
event. PFor a given VRS channel to perform the functions detailed
above, there are a number of significant events. Each time a
message is spoken to the user, requesting a user response, a
significant event is required to cycle the user to the next step of
the dialogue protocol. 1In general, the VRS completes instructions
for a single VRS channel before it cycles back to check for a
significant event on another VRS channel.

2.2.4 Completion Routines

The completion routines operate at an interrupt level priority
zero. They are capable of interrupting the processing of the zero
oriority software. One of the completion routines is the receive
completion routine which receives messages from the 11/70. 1If the
received message is an acknowledgment from the 11/70 of a briefing
request, the receive completion routine transfers control to the

2-26

dialogue protocol index routine by setting a completion code and the

completion mask in the same manner as the Touch-Tone® driver.
Figure 2-7 demonstrates the logical flow of the completion routines,

If the received message from the 11/70 'is a briefing message
unit, the receive completion routine interfaces with the speech
initiator. The speech initiator called by the receive completion
routine or by the dialogue protocol index routine, initiates the
verbal output by requesting a read of the appropriate voice data

from the disk driver. The disk driver activates the disk completion
routine when the disk read completes.

The disk completion routine requests the ADPCM driver speak the
voice data. After speaking the voice data, the ADPCM driver

e i

executes the ADPCM completion routine. The ADPCM completion routine
determines if the entire message prompt or the entire briefing has
been spoken. If it determines that the entire speech has not been
spoken, it requests another disk read of the next portion of the
prompt message or briefing. If all of the current briefing
verbalization has been spoken and it is not the end of the briefing,
the ADPCM completion routine requests another briefing message unit
from the 11/70.

To effect continuous speech, all read requests to the disk
handler are buffered ahead so that the ADPCM driver always has the
next portion of the verbal message to be spoken. The ADPCM driver
automatically starts speaking the next portion upon completion of

the last. When the entire message or briefing is complete, the
ADPCM completion routine cycles back to the dialogue protocol index
by setting a completion code and the completion mask, the same as
the Touch-Tone driver and the receive completion routine.

2-27

- e 0 Ml NIV 008 S AN BN, 72

11/70
- Dialogue Protocol Index

j -
3 _

[!
- RECEIVE SPEECH

COMPLETION —®| INITIATOR
4
"
DIALOGUE
PROTOCOL
; INDEX
DISK

; COMPLETION -
'i ROUTINE ~
4
? -
:' 'S
1
b
] ——P11/70
¥
H

v

FIGURE 2-7 : Completion Routines

i P

2-28

A gl M TN AN > TR e
A, Y St S s DO ST

2.2.5 Line Timeout Routine

Y A

The line timeout routine performs two functions. First, it
resends unanswered requests to the 11/70. If a communication error
has occurred--either the 11/70 or the 1l1/34 has dropped a
message--then line timeout will retransmit the request three times,
at five-second intervals. If the data are not received, the user is
. disconnected.

DA o L

The second function performed by line timeout is checking for
pilot Touch-Tone“’input. If no reply is made to a prompt by the
11/34 after fifteen minutes, then a disconnect message, "Your

R § S T

ot A

: briefing has been terminated due to excessive time," is spoken and
h the line is disconnected.

2.2.6 Trap Handler

The trap handler operates at priority seven, the nighest machine
. priority. The trap handler synchronizes operations among the

- various components of the operating system. An example is the
adding or taking an element away from a queue header. Without the
synchronizing feature of the trap handler, a component of the system
operating at a certain priority could be taking the element from a
given gqueue, be interrupted by a high priority routine that takes an
element from the same queue. Without a synchronizing method, both
components may well receive the same queue element. The trap

il AT gl ol St e o R
]

? handler routines are:
é) Adding an element to a queue (Queue)
i
| . ° Taking an element from a queue (dequeue)
% e Modifying the status field of the user status block b
N :
° Resolving an absolute user status block address

.
T AR Y T & WS

2-29

.y
H

[Removing the significant event status bits from the fixed
memory location.

2.3 STATISTICS PACKAGE OVERVIEW

In order to measure the use of the Voice Response System, the -
software on the PDP-11/34® maintains a data base describing each
user's actions. A record is kept of when each user called, what
reports were requested, which location identifiers were requested,
if any special commands were requested, and when the caller hung
up. The data base (VRDATA.DAT) is created by the VRS software each
day and is a chronological file indicating all "significant events"
for each call.

2.3.1 Statistics File Initialization

Each time the PDP-11/34 software is started, the statistics file
(VRDATA.DAT) is initialized. There are three types of
initialization: .

1. Start with no statistics file - under the condition
that the file VRDATA.DAT does not exist, the VRS
software creates a file of 1,000 blocks in length.
The file is zeroed such that all records are made
blank.

2. Start with a complete file - under the condition
that the system was taken down by the operator with
an "EXIT" command, the file is defined to be complete.
On normal EXIT of the system, pointers to the last

data written in the file are written. When the
system is started again, these pointers are used to
define where to write subsequent data. o

2-30 .

i Sauan

4l

3. Start uvp after a system failure - under the conditions
of a crash of the system, the pointers to the last
data written in the file are not updated. On initial-
ization, the software reads the file to the end and
begins writing data at the end of the previous data.

<

2.3.2 Statistics File Structure

2.3.2.1 Overall File Structure - The statistics file is circular in
nature and is 1,000 blocks long. The first block of the file is
reserved as a pointer block. All other blocks in the file contain
data. The pointer block depicted in Figure 2-8 shows the format of
the pointer records.

As mentioned above, VRDATA.DAT is a circular file, that is,
after the last physical block of the file is written, the software
will beqgin writing over the existing oldest data in the file. The
file has been constructed sufficiently large to accommodate 24
hours' worth of data for twenty users without wrapping. TIf the file
should wrap, however, the pointers to the file are modified during
initialization to reflect the new start and end of file.

2.3.2.2 Record Structure - The record definition appears in

Figure 2-9. All values appearing in the text are octal. The first
element is the record header containing a value of -16. The field
data generated by each trace element is 16 bytes long. The second
element is the length of the variable data record. It is equal to
the number of bytes stored as data. The third element (US.CHN) is
the channel being recorded. The low byte contains the binary

value. The upper byte contains its ASCII equivalent (used in
communications with the Retrieval Program). The fourth element
(JS.STA) contains the line status and as such defines the reason for
the trace. The low byte of 11S.STA can take on the following values:

: .
3
r

F Word 0 2 4 6 10 :

Date Low Time *High Time Block Start Offset Start 3
3 12 14 16 , 20 22 v
'q Date Low Time High Time Block End Offset End

DATE = 16 BIT INTEGER CONTAINING TODAY'S DATE

(See Section 2.4.10 of RT-11 Advanced Programmer's
Guide).

1

g LOW TIME = 16 BIT INTEGER CONTAINING LOW 16-BITS of the number
of seconds since midnight.

HIGH TIME = THE HIGH order number of seconds since midnight.
k. -
BLOCK START = STARTING BLOCK of data in the file. (3 until =1

file wraps).

W

OFFSET START

How far into the block the data begins (usually 2)

BLOCK END Last block of data in the field.

OFFSET END

]

How far in the block the data are written.

FIGURE 2-8: Record Pointer Block

* -16
g
LENGTH
: |
: CHANNEL
P STATUS
i KEY
.) FLAG
§ PERMANENT
TIME
TIME
1 i DATA -
* -1 -
¥ el d
?
i
f
:‘ (1
: 1
‘ « FIGURE 2-9: Record Definition
£ {
¥
4
3
3

2-33

e -

DX TN

eSS ey

NAME VALIE EXPLANATION

RING 40 Channel is ringing

DISCON 41 Hang up in progress

sToP 42 Briefing stopped by user
GO 43 Briefing restarted by user
REPEAT 45 Briefing repeated by user
SKIP ’ 46 Report skipped by user
ST.INV 47 Invalid entry by user
CANCEL 50 Cancel last entry

ST.SND 11 LOC-ID's Transmitted
ST.RNA 13 Receive from washington

not accounted for

The fifth element is the current value of the protocol, US.
RKEY. The high order byte of this record defines what the user is
currently doing. The low order byte contains a value only if a
control keystroke was the last character entered by the user.

The sixth element, US.FLG, contains temporary protocol bits
describing what the user's current status is in the high byte, and a
7ector to the routine last executed at base level in the program in
the low byte. Following is a list of low byte values of 1IS.FLG.

NAME VALUE EXPLANATION
INVALK 0 Jser took abnormal (NO)

response
NORMAL 1 Jser took normal (YES)

response
RECYC 2 ser typed "Begin Over" i
SKIP 3 1ser requested a skip function %
INVALK 4 ser did not use valid

Touch-Tone® entry ¢
RING 5 Telephone is ringing
DISCON 6 Telephone has been disconnected >
YES ? nser answered "Yes"
NO 10 fIser answered "No"
RETDRN 11 Return from high level routine

2-34 :

BRIEFER 12 Leave briefing mode
REPEAT 13 Repeat question or report
CANCEL 14 Cancel last entry
GO 15 Proceed with briefing

) STOP 16 Stop briefing

- \

The high order byte contains the following status infor-

mation:
Position Name ON OFF
Bit 8 FL.ENP IJser may not User may enter
enter data data
Bit 9 FL.NUM Iser must enter May enter alpha-
numeric numeric
Bit 10 FL.DAP Cyclic call Non-cyclic call
Bit 11 FL.ECH Response to be No echo of res-
echoed ponse
¢ Bit 12 FL.PHE Phonetic echo Non-phonetic echo
: git 13 FL.DIS Jser may not Iser may enter
- enter data data
. Bit 14 FL.TKD Speech is Speech in pro-
finished gress
Bit 15 FL.ECD Echo is BEcho in progress
finished

The seventh element contains more status information
(7S.PER), and is depicted below:

Position Name oN OFF
8it 0 FL.TRA Software maint-
enance
s Bit 1 FL.YER Yes response No response
Bit 2 FL.DBL Receive double Receive single .
: buffered buffered
v Bit 3 FL.TRN Hang up in No hang up in i
; progress progress %
: i
'e
'
2-35 i

j |

:
3
E

T3 e

T T p——— T roy—

ey

s «

Bit
Bit

Bit
Bit

Bit

Bit
Bit

Bit

Bit

Bit

Bit

Bit

4

10

11

12

13

14

15

FL.BGYN
FL.LST

FL.BRF
FL.BRD

FL.PFIR

FL.INT
FL.SKP

FL.LOC

FL.COR

FL.SPC

Begin Protocol
Last LOC ID
entered
Briefing Mode
Briefing
finished

First pass
thru protocol
Stop speech
Skip ahead in
prog.

Entering LOC-
ID's
Correcting
LOC-~-ID's
Special KRey-
stroke entered
Speaking at
base level
Skip or repeat

Continue Protocol
Last LOC ID not
entered
Non-Briefing Mode
Briefing in prog-
ress

No first pass

Continue speaking
vot skipping data

Not entering LOC-
ID's

Not correcting LOC-
ID's

Last character not
special

Not speaking at
base level

Neither skip or
repeat

The eighth element contains the low order time since mid-

night in seconds.
since midnight.

The ninth element contains the high order time

The tenth and final element is the data buffer for the user.

This buffer contains the message to be transmitted to the PDP-11/70®

retrieval program.

It is variable in length and its length is

defined as the second element in the record. This element will
contain the location identifiers requested by the user.

3
1
3
3

L

LA AdeC R e M AT i il vaser o, SLERERCR

Bit 4 FL.BGN Begin Protocol Continue Protocol

Bit 5 FL.LST Last LOC ID Last LOC ID not
entered entered

Bit 6 FL.BRF Briefing Mode Non-Briefing Mode

Bit 7 FL.BRD Briefing Briefing in prog-
finished ress

Bit 8 FL.FPIR" First pass No first pass
thru protocol

Bit 9 FL.INT Stop speech Continue speaking

Bit 10 FL.SKP Skip ahead in Not skipping data
prog.

8it 11 FL.LOC Entering LOC- Not entering LOC-
ID's ID's

Bit 12 PL.COR Correcting Not correcting LOC-
LOC-ID's ID's

Bit 13 FL.SPC Special Key- Last character not
stroke entered special

Bit 14 FL.SPK Speaking at Not speaking at
base level base level

Bit 15 FL.RTS Skip or repeat Neither skip or

repeat
The eighth element contains the low order time since mid- 3

night in seconds,

The ninth element contains the high order time

since midnight.

The tenth and final element is the data buffer for the user.
This buffer contains the message to be transmitted to the PDP-ll/?OO
retrieval program. It is variable in length and its length is

defined as the second element in the record. This element will
contain the location identifiers requested by the user.

2.4 RESIDENT PDP-11/70® SOFTWARE

The function of the resident software on the PDP-11/70 is to
transmit the requested weather data to the VRS computer. The
accomplishment of this process requires two separate and distinct
phases of data handling. The first is the translation of weather
data into VRS recognizable pointers. The second function is the
selection and transmission of the proper data to the VRS computer.

The translation of the raw weather data into VRS pointers and
the update and maintenance of those files is referred to as the
"message processing"™ function. The selection of the VRS pointers
and their subsequent transmission to the VRS computer is the
"retrieval” function. The remainder of this chapter is devoted to
description of these two functions.

2.4.1 OQverview of PDP-11/70 VRS Message Processing

The data base to be accessed by the VRS system consists of data
which have been processed from a raw data file, KCW.DAT. The
processing procedure performs a translation of weather data which
are received via transmission line from the Federal Aviation
Administration's Weather Message Switching Center (WMSC), in Kansas
City, Missouri. The translation procedure involves the following
steps: acquisition of the proper sub-file to access the reports of
a particular type; identification of the individual reports of that
type and correlation to a location identifier (LOC.ID) or geographic
region; separation (parsing) of the recognized words within the
report, and use of a dictionary look-up technique to translate the
ASCII words to binary representation. The binary information
represents position and length parameters that are correlated to
digitized words and phrases which are stored on the VRS computer
disk files.

Figure 2-10 is a block diagram representation of the translation
procedures (message processing).

2.4.2 Data Bases

The VRS 11/70 Software uses three data bases and a global common
area (GCA). The data bases are KCW.DAT, UDF.DAT, and ERR.DAT. The
global common area, called VRSGLB, is a shareable global task area
linked to by the VRS processor tasks. VRSGLB contains input and
output arrays for report processing and a map array for report block
allocation (See Section 2.4.2.2.1). The following sections describe
KCW.DAT, UDF.DAT, and VRSGLB:; however, ERR.DAT is described later in
Section 2.4.3.5.1.

2.4.2.1 Ransas City Weather Data Base - The weather data which are
to be translated reside in a disk file, KCW.DAT at the PDP-11/70%
system. The file consists of an index, followed by thir teen
mutually exclusive ASCII sub-files, each of which is a circular
buffer. The index maintains the current status of each sub-file,
with respect to sub-file boundaries, last disk block written, last
character written, and circular wrap-around indicator. Each
sub-file represents a different weather type, except in the case of
area forecasts and significant meteorological events which reside in
the same sub-file (see Figure 2-1l).

Each sub-file consists of headers and reports, stored by weather
type. The headers and reports are stored in the sub-files in ASCII,
exactly as received from the WMSC. The weather reporting formats of
all the weather types are described in the National Weather

Service's Operations Manual.

o e o <A S LM STt R N

TNNIREL)

ORILICA

08890013 9PUVEBOW IDYILOM Mvy 0T-C MINOII

||Iv||ll|l|ll|||:l||l"'|||ll|l|llll|d

P ¥1vd Qassdaooud

]

YITANVH YOSSIOOUd

- M

: I
dﬂ _

| |

_

_

|

vIva MV RIVNOIIOIA |
Q3aLOTNIOD SYA vava mea |

—— l‘!“lll'“nlnl‘lll.lll’ll‘l_

TINAEO0Yd NOLLYISNYYL YIVa MVH

Ry e v S g SRS s

| -
YIHLYIM

FAILNOAXA

« 4085d004dd

2-39

SUB-FILE INDEX

SA SUB~FILE 1

FT SUB~FILE 2

CARF SUB-FILE=13

i

é

————————— e .
L

e 2 s man el

-«
§
»
FIGURE 2-11: Raw Data Base File XCW.DAT ‘
2-40 f

e AR SRS A

2.4.2.2 Universal Data File - The general aviation weather from the
WMSC line is translated and placed in one file on the 11/70 disk.
This niversal Data File (UJDF) contains all the elements required to
perform the processing (translation) of the raw weather data into
tetrievable VRS "message-units.” The UDF occupies an area of 10,240
blocks of disk space and is comprised of five primary components
{see Pigure 2-12).

2.4.2.2.1 Map Array - A map array of 5120 words is used to depict
the allocation status of all the disk blocks in the file. Each
block of the disk is represented by a byte in the map array and its
value indicates the current status of its corresponding data block.
There are four general conditions represented by each byte in the
map array. They are: block allocated and contains a valid report;
block in use; block not in use, and available for a new report, The
map is used by both the processing and the retrieval functions of
the system. The map is read into the Global Common Area (GCA) at
system initialization time. It will be replaced at system shut down
or powerfail time (see Pigure 2-13). 1In its initial design, the
first twenty blocks of the UJDF were occupied by the map array. Now,
since the map is only in the GCA, these twenty blocks are free for
system expansion,

2.4.2.2.2 Regional Report Table - The twenty-first block of the
finiversal Data File is the Regional Report Table (RRT). This area
(256 words) will contain the identifiers for all regions of the 1.S.
and the virtual block number where that report resides. The
dimersion of the array will be the number of regional areas by the
number of regional report types. When a regional report is being
teported, the retrieval software will first determine the region for
the requested location identifier, then get the report from the
block number indicated by the address in the RRT.

B

L

UNUSED - 20 blocks o

. REGIONAL - 1 block
_ REPORT TABLE

LOCATOR INDEX - 233 blocks
TABLE

Up to four message units
(MU's) pef block; One
report per block; Blocks

PROCESSED hained £ "
WEATHER DATA chaine or reports .
IN. : larger than four MU's -
MESSAGE UNIT) . i
FORMAT - .
8,246 blocks
1,740 blocks
Not in MU format.
WINDS ALOFT The first 1,271 blocks
DATA

unused. One block used
for Winds Aloft data
status.

468 data blocks.

FIGURE 2-12: VRS Universal Data File

Byte
10,240

Each Byte represents the status of the corresponding
Block in the UDF. The first 254 and the last 1,740
Indicator Bytes will always be set = 1 to indicate
the presence of permanently allocated blocks.

Key: Byte =
' -1 =~ block available for use

0 =~ block to be de-allocated; report
no longer valid

>0 - block contains valid report

FIGURE 2-13: VRSGLB Map Array

L, AN ki, AT ol ot KoiiioRio 3N

Aok

v

2.4.2.2.3 Location Index Table - The next area contains the matrix
of location identifiers by report type. It is an area of
approximately 60 thousand words and is used to determine the
location of a particular report within the -UDF. The value found at
the juncture of the report type requested, for a given location
identifier, represents the block number in the UDF where that report
has been placed by the message processor. The LIT is contiguous in
the file and does not contain any header or trailer information. A
stand-alone program (UDFPRG) creates the LIT array and the program
is also used to effect any updates to the index table. (See Figure
2-14.)

2.4.2.2.4 Message Unit Data - The remainder of the UDF is comprised
of the processed weather data. These data (with the exception of
the Winds Aloft data) reside in the file in message unit format.
That is, the data have been processed and the reports have been
translated into message units ready to be retrieved and sent to the
11/34. All retrieval is accémplished by using block I/0. Each
block (512 bytes) contains up to four message units. Each message
unit is prepended by eight words of header information in integer
form. Also, each block contains an eight-word header. This leaves
room for four S54.word message units (27 spoken items) per block. No
block ever contains message units from more than one report. If a
report requires more than four message units, several blocks may be
chained together to link the message units together for the
retrieval function. These linked blocks need not be contiguous to
carry out this procedure. The link indicator in the header contains
the block number of the lined block for access purposes. The
internal format of the message units consists of paired voice
pointers. Each recognized word of the original report is converted
to a location pointer and corresponding length code via a dictionary
look-up task. The pointers and lengths are then put in the message
unit and stored in UDF. (See Figure 2-15.)

2-44

oA T, A

— e e

jewrog °@[qel X9pul 103007 b T-7 FUNOIJ

‘wa3ysis syl ur gIr-001 Ieyl 103
‘punol aq ued s3jxodal juaiind
{S9pPTISA®I UOTILDOT IPYF YOTYM
$SUTRIUOD 3UTT ' (4I°D07) Ax3ua yoes io04

9d4A3 jeyl jo jaxodex pyTeA ou ST DI9Y3 S93ILOTPUT OIBZ V¥
9yl YOTym uT (IBqUNU YO0Tq) UOTILDO[8y} !uoihboai-qns e
ur uotbhax ayz !{uorlLoOT 3IBYI IO °NOT 8 °'IV'1T

(popoau 3T) uotrboi-qng - Cy

STT®J QI'D0T YOTym uy uorhay - 'y

s83nuTw UT "NOT % °&4V1

. UOTIBION (0SAVY UT dI°D01

© 0 0 o

pIom T
e

< —_ J z

“d9vds ¥n ON 1d VS ¥ W cNoT1 awv1 artom

91 St LAY 1 § AN Tt 0t 6 8 L 9 S 14 € 4 T 'pm

2-45

P A

[XY P LY W g

S\ W7, i

i e

B

wd.

17
25
33
41
49
57
65
73
81
89
97
105
113
121
129
137
145
153
16l
169
177
185
193
201
209
217
225
233
241
249

FIGURE 2-15:

1 2 3 4 5 7 8
CHAIN| #M.U. | paT | 7mM PEND
#DTR [TIM
#PTR
‘ | #PTR
| !
|
i
|
|
#PTR , ;

L |
| j

i : ?

[} .

1 ' i

i 1

; !

! i

o

] ‘ i

| : !

O ——

Block Header

Massage Unit
Header

Message Unit-1l
54 words

Message Unit-2
Header

Message Unit-2
54 words

Message Unit
Header

Message Unit-3
54 words

Message Unit

Header

Message Unit-4
54 words

Message Unit Format for a 256-Word Block in UDF

s IO PP ild

2-46

M At BalTELiin A

TITemer T wmOyW C
i

2.4.2.2.5 winds Aloft Data - The last 1740 blocks of the UDF
contain the processed Grid Winds Aloft data. The Winds Aloft data
are not stored in the message unit format as is the rest of the
processed data, but rather contain numerical values of temperature,
X and Y wind vector coordinates for various altitude levels at
specific geographical points. The further processing of the data
into message unit format is a function of the winds retrieval
software (¥DRTRV). This is due to the nature of the winds data. To
report the wind speed, direction and air temperature, a specific
location is required (latitude and longitude of a location
identifier) and an altitude. The desired values are then obtained
by interpolation of data for specific grid points. This process can
only be done at retrieval time. The winds data also carry a header
indicating effective time and date of the forecast.

2.4.2.3 1Initialization of Data Base UJDF.DAT - At system start-up a
stand-alone program is run, VRINIT, to initialize the TDF data
base. First the map array is initialized by setting the weather
data blocks free, with all others, such as LIT and Wwind Data Block,
set for "in use.”™ The UIT is then scanned for report blocks in
use, If an error has occurred and one block is in use for two
locations or revorts, those reports are zeroed. After initializing
the map array, the KCW file pointers for the VRS are reset to the
last major weather transmission for each report type.

2.4.3 Raw Data Processing

The various types of weather data have significantly different
characteristics. This creates the need for multiple processors,
each tailored to the individual requirements of the data. Each
sub-file of raw data is accessed by its own processor routine. The
routines are in the form of overlaid modules to be used, in
conjunction with the executive routine (Figure 2-10), to accomplish

the raw data processing.

¥ .

Each processor routine will be constructed to account for the
differences in structure and content of the various report types.
The general functions of recognizing individual words, inserting
header of "blocking" words and performing maintenance procedures on
the raw data file will be common to all processing routines.

2.4.3.1 Processor's Executive - An executive structure, called VRS
on the PDP-ll/?O0 maintains control of the execution of the
individual processor routines. The routines are brought in and used
as an overlay structure. The executive continuously monitors the
sub-file activity and brings in each processor to translate the data
in the raw KCW file. If there has been no activity (no new data
have been received), the executive continues to scan through the
sub-file indices. 1If there has been activity in the sub-files, the
appropriate processor is invoked. If there has been no activity,
the executive prints the processor statistics and then puts itself
in a wait state for two minutes. After this time, the executive
again begins polling the status of the raw data file.

2.4.3.2 Message Processing Routines - Each type of weather data is
translated by a separate processor routine. Each routine is
tailored to suit the raw data configuration of a particular report

type. These routines are in the form of an overlay structure so
that only one processor is in execution at any time. An overlay
consists of the main processor and several suppor ting subroutines. f
Under the RSX-11lD system, this procedure is carried out similar to
regular Fortran subroutine calls after the overlay threading has
been accomplished during the task-build phase.

Each processor executes the translation procedure on a full ."
report basis. A complete report is translated and all recognized
words, plus any "blocking" words required, are placed in a single
array. This array of words is returned for dictionary translation.
When the entire report has been processed, the processor returns
program control to the executive.

2-48

&

o i

P P e

The current weather processors available are for surface
observations (SA) and surface observation remarks, terminal
forecasts, and winds aloft. vPollowing is a brief description of the
processor design as it interacts with the VRS Executive. For a more
detailed description of weather data and content checks for each
processor, see Reference 7, "The Ten Channel VRS Processor Design
Report.” '

2.4.3.2.1 Surface Observation (SA) Processor . The SA processor is
an overlay module invoked by the VRS processor executive. The
function of this module is to unpack, decode, and translate surface
observation reports into ASCII text. The text is then translated
into voice pointers and stored in a data base. The procedure used
in decoding the SA data is of a scan and extract type. Initially,
the report is scanned to determine the presence of four critical
fields. These are the SA location identifier, the sky cover, the
visibility, and the wind field. During this process pointers are
set delimiting the fields present. Aafter this is done, the
individual components of the report are extracted, decoded, and
placed in the output list. During this extraction process, limit

and quality checks are applied to the data.

The SA Processor consists of a main coutine (VRSSA) and four
extraction subroutines (SUBFLD, VISWX, SKY, EXTHED). The VRSSA main
routine begins the process by calling each of the extraction
routines. The routines return translated pieces of the SA report.
Then, VRSSA puts the pieces together in the proper order. If any of
the routines has discovered a serious error (one that leaves some
doubt regarding the validity of the translation), or if any of the
key fields is missing, VRSSA will flag the report as erroneous and
notify the executive that the report should not be placed in the
processed weather data base.

2-49

et Ao g et e e

vy

eI

il

ek R

L

’

2.4.3.2.2 Surface Observation Remarks Processor - After the SA
Processor has decoded the report, the SA Remarks Processor Overlay
is called to decode the remaining remarks of the report. Then the
dictionary look-up task is called to translate the entire report.
The SA Remarks processor uses a 'kéy-word" approach to translating
the data. The main routine (VRRMK) extracts one word at a time,
using a blank character as a delimiter. The process begins at the
start of the remarks field specified to VRRMK through a call
argument received from SA subroutine SHUBFLD.

The remarks processor is a separate overlay within the VRS
program. It resides at the same level as the other processor

modules.

The processor always begins scanning the data from the left and
proceeds to the end of the remarks field. The beginning is usually
one character past the end of the altimeter field. 1If the altimeter
is missing, the beginning is assumed to be one character past the
end of the wind field. The main processor routine (VRRMK) extracts
a "word”" from the raw data. A "word" in this context is any string
of characters preceded by and followed by a blank. The word may be
all numeric, all alpha, alpha-numeric, or alpha-numeric with special
~haracters. When alpha or alpha-numeric data are found in the word,
the program then attemots to identify a “key" within the word. 1If a
key is found, then VRRMK invokes the proper subroutine. Each
subroutine orocesses a particular type of remark. The subroutine
receives the array and the pointer to where its key is found. The
subroutine knows if preceding or following information is required
and can step along the raw data to extract all the information
vertinent to that particular type of remark. when the remark has
been translated, the subroutine moves the vointer to where it ended

and returns to VRRMK,.

At this point, the process is begun again. This process
continues until all remarks have been processed or until an
unrecognized or all-numeric field signals the end of remarks and

®
3
3
3
X
k)
A

< WP

beginning of additive data. Each remark field is handled separately
with no restrictions to sequence or amount of field type.

If a word containing alpha characters is extracted and no key is
found in that word, it is assumed to be free text and is entered
into the output array as such.

sing this approach, highly coded remarks or free text in any
sequence or mix can be translated. Whenever a free-text entry is
made, the processor notes its position in the raw remark. These
pointers are saved and used by the on-line editor. 1It can be
assumed that if an error occurs during the dictionary look-up task,
it would be caused by a free-text entry and not by coded processing.

2.4.3.2.3 Terminal Forecast (FT) Processor - The principal
objective of the raw weather data processor array is to insure
reliability of the processed weather report. The Terminal Forecast
(PT) Processor must be able to discern the properties of each raw
weather data field to be processed such that the probability of
misrecognition is reduced to zero,

It is better for the processor to flag a weather field as a
non-recognition error than to process it incorrectly. The
processor, however, must be sophisticated enough to reduce the
amount of non-recognition errors being sent to the editor.

In order to achieve this goal of zero misrecognition errors and
a low amount of non-recognized fields, the PFT processor is designed

not only to determine what a field is, but more importantly, what a
field is not.

The Terminal Forecast (PT) Processor must process the eight
fields contained in an PT report. The PT fields are:

TR e e v L -

1) station Designator

2) Bulletin Notice

3) Date-Time Group

4) Sky/Ceiling Cover R
5) Visibility/Precipitation

6) Winds
7) Remarks
8) Time.

An FT report always contains a heading of station designator, a
possible bulletin notice, and a date-time group. The body of the
report, however, contains multiple time groups in which the
remaining fields may or may not occur. Also, the field may be
embedded within a remarks field. 1In order to handle these
discrepancies efficiently, the processor routine calls a recognition
routine for each field as the characters are read in from the
array. Each recognition routine scans the "character" group and
reports one of three conditions: (1) it is definitely the
recognizer's field; (2) it is probably the recognizer's field; or
(3) the field is not recognized at all. The character group is then
processed by the appropriate field processor according to the
following protocol.

A single, definite recognition of a field is flagged as the
correct field, even though other routines may have reported probable
recognition. If there has been no definite recognition, then a
single, probable recognition is flagged as the correct field. All
other conditions cause the editor to be flagged. Thus, the
processor is able to make a finer distinction between fields whose
forms sometime seem identical and to recognize fields whose forms
frequently change even within a single time frame.

2-52

e A cul) vt e by

n
]
k|

S T IR

A g I ot

2.4.3.2.4 Winds Aloft processor - The Winds Aloft Processor (VRSFD)
accepts the winds aloft data in the order that they are transmitted
and decodes them into temperature, X and Y coordinates of the wind
vector, and additionally for Level 2 data, tropopause height. These
data are written to the Universal Data File'along with header
information containing amendment designation, forecast day and time,
transmission day and time, blockette header time code, and a file
wrap index. The record location of the data within the UDF is
determined by the blockette number, altitude level, and forecast

time code.

The file structure for the Winds Aloft is organized so that data
for six forecast time periods starting from a time zero reference
point are available for retrieval. This is done by having a file
structure which wraps around continuously, with each new forecast
period data overlapping the previous forecast period data in the UDF
where the data are for the same forecast time period measured from

the zero reference point.

This file structure also allows accommodation of transmissions
with missing or erroneous data. One block in the UDF is set aside
for storing file record pointers, special information flags, and
time data for both the Winds Aloft processing program and retrieval
program. The information contained in this "master™ block allows
the Winds Aloft programs to function correctly after periods of
computer down time and allows correct storage and retrieval of
processed data at all times. ¥

2.4.3.3 DICT - The dictionary task translates ASCII text to a group
of speech file pointers. The task is installed and can be used bv
any caller. The data is entered in VRSGLB array PDICIN if called by
the VRS processor and the speech file pointers are returned in the
array PDICO. When called by FDRTRV for winds retrieval, the VRSGLB
array is ATADII and output appears in ATADIO. DICT uses a binary
search algorithm to find the data. It returns the speech file

2-53

pointers and a word containing the length in bytes of the translated
pairs. On the event of a failure of translation, the routine
returns pointers to where the text was in the original string which
could not be translated.

2.4.3.3.1 Dictionary Structure - The raw data in ASCII format must
be put in a form recognizable by the VRS system before it can be
spoken. This is accomplished by using a core resident dictionary
and corresponding look-up procedure,

The dictionary contains the VRS spoken word index number and a
length code for each word or phrase that can be spoken by the VRS
unit, The dictionary program uses a binary search to locate the
proper index and length code for each recognized ASCII word it
receives.

The look-up procedure is carried out as an installed task. The
task is invoked by the processor executive as stand-alone and is not
re-entrant. The dictionary task, when activated, is presented with
the array of recognized words prepared by the individual processor
routine. The dictionary task proceeds to create a list of length
codes and pointers on a one-for-one basis and returns this list to
the executive by placing it in the GCA array. Also, an error flag
is set to indicate if the report contained any words that could not
be found in the VRS dictionary file. Control is then returned to
the executive. ‘

2.4.3.4 VRSOUT - A separate installed task VRSOUT is called by the
VRS executive to write the array of dictionary pointers into.the
TOP. The array is stored in the VRS global common area by the
dictionary. fpon being called by VRS (l11/70) to output a report,
first, VRSONT checks for a Surface Observation (SA) special report.
If the report is special, it is appended to the current SA report by
the subroutine SASPEC.

2-54

-

A b MRS . il 5 s o

et

. e

-

f
D e AF TR

B
]

I}

The basic component of speech in the system is the message
unit. EBach message unit can contain up to 27 pairs of VRS pointers
(i.e., 27 spoken words or phrases). During the retrieval process,
the messages units are taken from the data file (7JDF) and
transmitted to the VRS computer. .fhe format of a transmitted
message unit is shown in Figure 2-16.

After a report has been translated by the processor, the array
of VRS pointers is taken by the block formatting routine (BLCRS).
This subroutine places the paired VRS pointers in the message unit
Eormat and creates an output block. Each message unit is prepended
with appropriate header information for its report type. The format
of a message unit within the 0UDF is shown in Figure 2-16.

The map array is scanned for free UDF blocks and their
corresponding map bytes are set. The subroutine IOBLCK is called to
output the block to the NDF. This procedure is repeated until the
entire array is output. A chain word is used to indicate the next
block of the sequence of blocks with zero indicating the last
block. The new report block then replaces the old report in the
LITZ//The old block number and its chained block map values are
decremented to free the unused blocks.

Before the VRS executive starts its wait cycle, it calls VRSOUT
to exit. When VRSOUT receives an exit command, it first scans the
map array for unused blocks (bytes equal to 0, see Figure 2-13). The
free indicator (bytes equal to -1) is set for each unused block.
VRSONIT then exits from memory.

VRSPURG - The function of the subroutine VRSPURG is to purge Hourly
Surface Observation (SA's) and Terminal ﬁbrecast (FT's) reports from
the data base when they are considered to be too old and no longer
valid. The routine is called by VRSOUT once each hour during the
time period of 15 minutes past the hour to 45 minutes past the

hour. As most of the SA and FT repocts come in between on-the-hour

2-55

Ny o

o &

H
-
¥

e i A e

Py

BLOCK HEADER

wd. 1 2 3 4 5 6 7 8 .
) p p 4 r »
lsmm-so .
Loc. ID
Append Special
Block Number

‘—Report Time
L——Report Date
—Number of Message Units in Block

Chain Indicator: 0 = no chain
>0 = location of next block in chain

MESSAGE UNIT HEADER

wd. 1 2 3 4 5 6 7 8 »
l | 1
p 3 SPARE -
| 1 | .
L J
b
b—Time 1 - SA ;)
'———SA - Special Appended Message Unit Offset
L—Report Time
L—Nmber of VRS INDEX/LENGTH pairs in Message Unit
MESSAGE UNIT STRUCTURE
wd. 1 2 3 4 5 6 7 8
VRS
INDEX| LENGTH { INDEX | LENGTH |INDEX |LENGTH | INDEX |LENGTH
Bl
1 spoken wordl———— T —
—
INDEX|LENGTH| o o o o o o
47 48 49 50 51 52 53 54 ‘

If fewer than 27 spoken words, MU
will be padded with zero words.

PIGURE 2~16: Transmitted Message Units

i

O A ! v WM A et AN S 8

i S PR

¢
b
3
¥
?
i
¥
J

and 15 minutes past the hour, calling VRSPURG in the time frame
given previously allows for new data to replace old data in a normal
fashion and reduces the workload of VRSPNRG by eliminating
unnecessary purging. Hourly Surface Observations are purged when
they have become more than 2 hours old. Terminal Forecasts are
purged when they have become more than 8 hours old.

Bach time VRSPURG is called, it scans every SA and FT report in
each page of the locator index table (LIT). When a report is found
to require purging, VRSPURG calls the subroutine NOTAVB. The sole
purpose of NOTAVB is to create a standard message of “current report
not available®" to replace the report to be purged. It does this,
returning the UJDF block number of the canned message to VRSPURG. .
VRSPMRG then replaces the old SA/FT report block number in the LUIT
with the canned message block number. @When every LIT page has been
scanned, VRSPNRG returns to VRSOUT.

2.4.3.5 Data Bdit Position - When a report is determined
untranslatable by a weather processor, the report is written to an
error file. The Data Bdit Position (DEP) software reads the report,
displays it on a screen, and allows a DEP opetator to correct it.

After an operator has made all the corrections to the report, it
is written into another area in the file for later translation by
the VRS weather processor. The data edit position software is
composed of three major components; terminal tasks, (DEPTT), a
service task, (DEPST), and a data base, (ERR.DAT). The following
sections describe the functional description of the Data Edit
Position. Por a complete description of the Data Edit Position,
including the Data EBdit commands, see Reference 8.

2-57

Tr ey Y

e R R 4 g e L

- —— S T TSR R a2 X YRR € -

Sy~ r g

s AR % . " T H

? 2.4.3.5.1 Error File, ERR.DAT - The erroneous and corrected reports
i ’

2 are kept in the error file, ERR.DAT. The file is structured into

3 three parts: the pointer blocks, the error subfiles, and the

corrected subfiles. This file is created by the stand-alone program
ERRCRT.

The first section is contained in the first two blocks of the
file. The first block contains the VRS executive read and write
vointers to each subfile. The second block contains the DEP Service
Task read and write pointers for the subfiles. Bach subfile has a
five parameter pointer set. These are the subfile start and end

block, the next report block and integer offset, and the report
sequence number. The only exception to this is that the VRS read
pointers contain the next report block and byte offset to correspond
to its GETRPT software. The next section of the file is the
circular subfiles containing the error reports received from the VRS
weather processors. EBach subfile contains a report type.

The third section of the file is identical to the error file ’
except that this section contains the corrected reports received
from the Data ®Bdit Position.

2.4.3.5.2 Dpata Edit Position Service Task - The DEP Service Task i
(DEPST) is a communications driven service module which provides
information for the VRS and interfaces between the error file and
the DEP terminal tasks. All requests for service are queued by the .
RSX-11lD operation system and are handled in the order in which they !
occur. Hence, the DEPST is dedicated to a specific task which is :
making a request until the request is honored. After performing the
indicated service, DEPST suspends itself until more requests are
generated, .

There are five types of requests sent to DEPST, one by the VRS :
(11/70) and four from DEPTT. The VRS executive only regquests the . E
service task to update its pointers to the corrected report subfiles.

2-58

2. A i i e At

gy, i iy

b

when a terminal task enters memory, it requests the Service Task
to assign it buffer space in the Global Common Area. The Service
Task keeps track of which terminal has been assigned to each buffer
space of 256 words. (Ipon request(_the Service Task places the next
error report into this common area for the Terminal Task. The
Service Task obtains the error report from the proper error
subfile. It checks the date and time of the error report and the
current report in the MDF for the corresponding location. The error
report is dropped if it is not the most recent report in either
file. This insures that the operator would not have to correct an
already expired report. When a report has been corrected, the
Terminal Task requests it to be filed. The Service Task files the
report in the error file and updates the pointers. A DEPTT requests
exit permission when a DEP operator types the "EXIT" command.

Tpon receiving the exit request, the DEPST frees the assigned
buffer space. 1If there are no other terminal tasks being serviced,

DEPST also exits memory.

2.4.3.5.3 Data Edit Position Terminal Tasks =~ The DEPTT's are
dedicated tasks which, when run, communicate with the DEP operators
by way of CRT displays. The tasks only interface with the rest of
the DEP system through data stored in the Global Common area and the
RSX-11D Send and Receive commands, which the Terminal Tasks use to
request operations from the Service Task. After initialization, a
Terminal Task first requests to be assigned buffer space by the
DEPST. When this has been completed, the Terminal Task then awaits
input from the overator requesting a report to edit. With this
information, the Terminal Task requests the report from the Service
Task. The report is placed into the Global Common Area assigned
buffer (see Figure 2-17). The operator's edit commands are then
performed on the report until a file or drop report is received. 1If
another report is requested, this process is continued. When all
error reports have been corrected, or when the operator types the

exit command, the Terminal Task notifies the Service Task, and then
exits memory.

uotrljexnbyyuo)d 3Tpd eIeRd

NOWWOD V4079

1103 A

ASVL IIIA3S
113

= T TR

SLT-T FwNOIA
00 =
— STULENS QIO oSS
-)08d
SHA
hes
$311441S dovy3 ¥0SS
-20dd
SUA
¢
XIH1 31440 a3L0TN40)
X3ANI 3114908 Youy3
0
%907

3114 4043

va

. - e
I PN

é
4
|
|
]

2.4.4 ppP-11/70® Retrieval Task

The twenty.channel resident PDP-1l1/70 retrieval software is a
multi-channel program responsible for receiving and interpreting
results from the VRS computer and'honorihg those requests by
supplying weather information from the weather data base. The
inputs from the VRS computer take the form of specific requests for
message unit elements of the weather data base (demand response), or
of supplying the parametric information defining the briefing

requested by the user (briefing request message Section 2.1.2.1).

It is the responsibility of the retrieval task to access the
weather data base independently, building briefing tables for
asynchronous access for the VRS computer. The process of
constructing briefing tables may occur several times during each
user session (briefing) in order to progress through briefing
phases. Each briefing phase (sub-briefing) is delineated by a
briefing request message #2 (Section 2.1.2.1). The VRS computer
employs the briefing request message #2 to cause the retrieval to
build a sub-briefing. When the VRS computer has requested all of
the message units it requires (dependent upén user Touch-Tone®
interactions) as a result of briefing request message #2, it may
issue a subsequent briefing message #2, to cause the retrieval
program to build another briefing table. During a channel briefing,
there is only one briefing table, the progressions from sub-briefing
to sub-briefing are conducted only in a forward-going manner. That
is, the VRS computer may not request message units from the briefing
table for any briefing request message #2 prior to the briefing
request message #2 currently being processed. Figure 2-18 shows a
baseline structure for the PDP-11/70 retrieval task.

2.4.4.1 Retrieval Task Organization - In crder to take advantage of
the RSX11lD/V6B, event-driver, multi-programming system, the

PDP-11/70 retrieval task is comprised of three basic components: an
executive level; an interrupt level; and an internal data base used

ey

SIeMIJOS TPASTIIBY IayledM 0//1T-dAd * 8[-z FUASIA

61# Touue
O3 LNWYD P
amxo PTm

. ;|;|x|

1% Touue 0§ Touuey;
*[X0F LNWHD pu 103 LOWND pu
JEO PIIN L0 prIn

dﬂ>0ﬁkuﬂ~m 208890014
sadAy, ajnoy
axodsy 11y

— g —

h

Isp1Ing
asuodsay
Tauuey)

(buyssao0ad LSVY)
NOIIOMILISNOD FTHYL X018 ASNOJSIY TANNVHO

xarpuey
buyzjewzog andang
10003014 T1-AQ
S BuTL/SHA SHA O

]

(14 Touuey
Aq) pepuewsg
‘N°W pesy

ﬁ.

so13IsTIe]S
JuauTIISg %
auty, pIoosy

s3k

e
SeTaeL osuodsay
burssaooxg
/yo3edsig OL////W// P

Iaypuey
20posag andur
pueumo) .|||mwnbm

SHA wWoxg

NOILAGIMISIC/43d003d LNANT

e ARt M I o 3 5 M LI = TR 0T - e e At e == == - - - e LT

for communication between the executive and interrupt levels, and
also used for inter-computer communication, disk transfers, tables,
flags, and variables of processing. The interrupt level will be
defined as asynchronous trap (AST) processing. With reference to
Section 2.2, the executive level may be -onsidered as analogous to

Yu

the VRS computer background processing and the AST level may be
’ considered as analogous to the VRS computer completion routine

processing.

2.4.4.1.1 Retrieval Task Data Base - To maintain channel

» independence and integrity, a data base consisting of eight hundred
words per channel is used for all channel dependent variables,

flags, 1/0 areas, tables, etc. 1In addition, another area consisting

antol g

of twenty buffers of sixty-four bytes is maintained as a gueued
input buffer, for receiving VRS computer commands.

2.4.4.1.1.1 1Input Buffer Queue - The input buffer, labeled BMFFER,
consists of forty elements. ©Bach element contains sixty-four
characters, where the first two bytes are used as a linkage thread,

L) »
-

and the last sixty-two are used for storing the commands received §
from the VRS computer.

The threads are used to maintain information as to the logical |
assignment of the elements. Two list headers (queues) are i
maintained. Each list header contains two words, where the first

word is used to point to the top of the list, and the second word is
used to point to the tail (end) of the list. The two list headers

i

are used for maintaining a queue of "in use" elements, and for

- i veays, ket

maintaining a queue of "available"” elements.

By the process of maintaining the elements' threads, buffer

a8 e

elements may be accessed in the order in which the VRS computer
transmits commands, thereby ensuring that the PDP-ll/?OO retrieval
program services the VRS computer requests in the order presented.

2-63

T e e St kL o

—_— o ERECPRIT WXWor & Y Y
- o LAl ; " :

A P

i

e W W

i

This does not assure responses to the VRS computer will be in the
order of received requests. Because of the length of time of
command, services will not, in general, be uniform.

Figure 2-19 is a representation of the input buffer, and the two
list headers. The figure assumes that the queue for "in-use"”
elements is labeled RETQUE and the queue for "available" elements is
labeled FREEPL. The linkage threads are the element identifiers,
and the thread ends with the element whose linkage is zero. The
figure shows that elements 2, 3, and 4 are "in-use”, element 5 is
currently assigned as the input area for the current outstanding
read function, and the remaining elements are "available." They will
be assigned in the order: element 6 through element 20 in order,
then element 1. TIf any "in-use” element were to be released, it
would be placed at the tail of the FREEPL queue and element 1l's
linkage thread would be repléced with the freed element's
identifier, whose linkage thread would be zero,

2.4.4.1.1.2 cChannel Status 8lock - In order to maintain complete
channel independence, and to maintain briefing state information for
each channel, a sixteen thousand word block of memory is allocated,
eight hundred words per channel. The channel status block (CSB) is

used for maintaining all the information relative to the operation
of the channel.

All flags, status indicators, disk transfer buffers, VRS output
buffers, etc., are contained in this area. 1In addition, all driver
tables and parametric information required for constructing the

desired briefing are in this area.

The retrieval program constructs the briefing directly onto the
CSB. It consists of a list of virtual disk blocks of the weather
data base. T™he following items are entries in the CsSB.

2-64

MM e S ARSI U0 S 5

[Linkage

' Thread Received Characters Element

. 0 1’ "2 n-__° 1
3 2
[]

‘ 4 3
3 0 4
¥ 0 5
&

b 7 6

)

8 7
9 8
9

[
—
|
o

e
-
N

b
(]
w

H
>

H
(<)
e o
(<)30 (V]

[ond
o
—
~

(o
o
[
[+2]

el W . o ARSI . AU) T e 48 X ot AR A
- .
._l
N
—
'_A

} 20 19
1 1 20
St RETQUE: 2 (head) FREEPL: 6 (head)

! 4 (tail) 1 (tail)

. § R
é FIGURE 2-19: BUFFER, RETQUE, FREEPL
1

- -

2-65

1 e DIOA
e QB
4
f e MODE
e DIAGP
e CReT
3 e CRMUT

R e R i

Disk I/0 Area
This area occupies 256 words and is used as the block

-transfer area from disk into memory.

This word contains the number of the BIJFFER element
currently in use for the channel. 1It is saved for the
requirement that element numbers must be retrievable
so that they can be used in the buffer release call.

This word is used to save the mode under which the
current briefing is operating.

This word is used to maintain the next available byte
position in the diagnostic buffer for the channel.

Channel Response Block Table (Briefing Table). This
is a table which contains the 1JDF virtual block number
of each block required for the briefing currently in
progress., Every block is entered regardless of
whether it is the start of a linked-block indicating
report continuation. The table is constructed in a
top-down manner in which each succeeding entry
logically follows its predecessor for purposes of the
briefing presentation. There is no relationship of
the virtual block numbers to other wvirtual block
numbers, other than briefing order. (Size 300 words.)

Channel Response Message finit Table. Because of the
requirement to deliver message units by number and
because of the construction of the data base in which
each block may contain either one, two, three or four
message units, a table of cumulative count of message
units must be maintained. The CRMUT contains the
least message unit (LM) number and the greatest
message unit (GMf7) number in the briefing message unit

2-66

v e e B e S Mty M, AR 9 e M

4

; E
3 sequence for the current block. A demand message g
S unit, not within the range of the CRMUT, will cause %
. the appropriate block to be read. :

e DIAGB This is a sixty-fouf word area into which diagnostic
messages are constructed. These are the messages

-Q which are transmitted to the VRS computer for the

1 purpose of either indicating command compliance or for

indicating why compliance is not possible

(Section 2.1.3). ’

s ALT This word contains the requested altitude for
processing Winds Aloft Data and for determining the
filtering of reporting points along a flight path.

T w3 A b A e T

% @ HOURS This word contains the "forecast-ahead" time for which ¢
3 - Winds Aloft Data are required. ’
{ - |
‘% 3 e LMUS This word contains the number of the last message unit .
q - sent.

4

RPMSK This is a table of requested report types and is
constructed from the information received in a BRM2
transmission.

PR e]
o

@ RLOCS This is a table of sixteen-word entries which are the
locator index table (LIT) entries corresponding’to the
requested location identifiers. The entries are ;
extracted from the locator table index at the time of %
location identifier confirmation. They are held in
; the channel's status block area in order to obviate
the necessity for reading the disk each time a report
: isolation is required. That is, the function of
a reading a report requires only reading the report and
not reading the locator index table again.

g

2-67

Rreas Ay

T & i
DRSS i analiel

.
adbn

in S
s

R el s T XY 2

® LULOCPTR This is a position indicator for accessing the RLOCS
tables.

e BRMLE Brror indicator for briefing request message 1. The
indicator may be set-fbr a variety of reasons:
request out of format; improper mode; illegal location
identifier(s); improper channel, etc. The indicator
is used as a switch at the end of decoding, as to
whether a confirmation message is required or a

diagnostic message.

‘"
D
n
e
O
3
Q

m LS8TLOC Tndex 4o the numher 0F location identifiers

in The RLOCSE tzbles.

Tn czder uo accomplish ius funciion, COMDEC is requirad 0 parse
the Iirout commancs ‘Seckion 2.1,.2..), checking for hoth form and
content, Duripc the 2rocess of scanning the inout command, the
t2hles, flacs, and i~dicators of “he channel status block (previous

zaction) axg ininializad and sonstructed in conformance with the

. Alsc, nhe dlagnostic area is initialized and its

2-68

R v e

ot s e

5

The command decoder remains in a suspended state until resumed
by the asynchronous trap handler which receives the communications
line inputs. The input is dequeued from the input buffer area,
BUFFER (Section 2.4.4.1.1.1), and the channel status block, Css
(Section 2.4.4.1.1.2), is constructed. The'system is designed such
that each input request causes a series of disk accesses which are
processed on the AST level (Section 2.4.4.1.3). The command decoder
is not required to take any further action upon an input request
beyond causing the initial disk access. The disk access will in

turn cause further disk accesses for the purpose of either accessing
the locator index table (for location identifier verification). or
accessing a block of data representing processed weathar data (for
demand response delivery).

After the disk access is initiated, the command decoder dequeues
the next input command., TIf no input command has been received, the
command decoder suspends itself (to be resumed by the communications
line AST handler).

2.4.4.1.3 AST Processing - This level of processing may be
considered as analogous to the RT-1ll completion routines described
in Section 2.2.4,

There are two asynchronous traps (AST) which the retrieval task
is required to implement--one to handle input requests from the VRS
computer via the communications line, and one to handle disk read
completions.

The AST logic required for handling the communications line
consists of linking the current input buffer element to the "in-use"
list header (Section 2.4.4.1.1.1), acquiring the next available
input buffer element from the "available” list header, resuming the
command decoder, and issuing a communications line read request. 1In
this manner, there is always an outstanding read request, which
ensures that no requests issued by the VRS computer will be missed.

k.

<o

R VR e ppen ~as o

LR g

The function of resuming the command decoder is an RSX-11D operating
system directive which will cause the command decoder to re-start if
it is suspended when the directive is issued, or will not cause any
action if the command decoder is not suspended when the directive is

issued.

The AST logic required for handling disk read completions is
dependent upon the original reason for generating the read. The
final function of the disk read AST logic may be to issue another
I/0 request, either another disk read (which will cause another AST)
or a communications line response to the VRS computer, or simply to

exit, without initiating further 1/0 action.

There are essentially three distinct stages during a briefing
session which require disk access. When the briefing request
message #1 is received, it is necessary to verify that all locations
requested exist in the weather data base. ®ach identifier
verification read completion AST will start the read for the next
identifier, until the fiqal identifier is verified. The final AST
will cause the AST logic to issue a message to the VRS computer,

During message unit delivery in response to VRS computer
demands, the disk block containing the message unit is read. when
the AST occurs, the proper message unit within the disk block must
be extracted and the AST logic terminates by issuing the message
unit to the VRS computer via the communications line.

2.4.4.1.4 popP-11/70® Retrieval Task Inputs - The inputs required

for the retrieval task are the VRS computer command messages and the
processed weather data base.

The briefing request messages are used to construct channel
devendent directive tables and parameters which become secondary
inputs for locating the required weather data. The tables and
parameters are discussed in Section 2.4.4.1.1.2.

2-70

B A et B
N N s

[

o - -
MDA, . o I

o b

The demand response messages are used to retrieve specific
message units from the weather data base and send the message units
to the VRS computer. The message units may be ;ecovered and
delivered to the VRS computer either in sequence (that is, in the
order requested) or out of sequenée'in the case of repeat and skip
functions. The VRS computer controls the briefing presentation
order by demanding which message unit to skip ahead from. 1In
addition, demand response messages are used to indicate channel
activity, such as end-briefing, hang-up, etc.

2.4.4.1.5 pPpP-11/70® Retrieval Task Outputs - The primary output of
the retrieval task is message units of processed weather. The
message unit information is transmitted to 11/34 VRS in response to
the 11/34 demands.

In addition to the primary output there are required a series of
secondary outputs which are constructed as a function of compiling
the specific briefing requested.

The secondary outputs are two tables which are channel dependent
and reside in the CSB. They are the channel response briefing table
(CR8T) and the channel response message unit table (CRMUT).

The CRBT is an ordered list of weather data base virtual block
numbers. The order is determined by compiling the list in the same
order as requested by the VRS computer. That is, for each weather
report type requested, the block numbers containing the weather data i
are written to the table in location identifier order. Por example,
if Hourly Surface Observations (SA) and Terminal Forecasts (FT) were
to be requested for Boston (BOS), Albany (ALB) and wWashingtcn
Vational (DCA), the CRBT would consist of the virtual block numbers
of the weather data base, containing, in order, the BOS 3A, the ALB
SA, the DNCA SA, the BOS PT, the ALB ¥T, and the DCA FT.

SR T AP

2-71

PR S S A 5

Corresponding to each block number is a "flag" word containing
flag bits for new report type, skip type, and report location in the
Location Index Table. As the briefing message units are demanded by
the VRS computer, the block message units are sequenced. The
sequence number of the first message unit of each block is entered

into the corresponding message unit number (MU#) of the CRBT as the
block is read. This number is also entered into the CRMUT as the

least message unit (uLMfJ). The sum of this number and the number of
message units contained in the block is the greatest message unit

(GMUJ). When a message unit is demanded that is greater than the
current GM7J, the next block of the briefing is read. If a message
unit is demanded that is less than the UMWI, the appropriate block is
found by the previous MU#.

Pigure 2-20 shows the construction process for the CRBT and
CRMIT. The blocks are listed in briefing order with their
appropriate "flag" values. FPFor example, block 256 contains the BOS
SA weather data. The flag values are:

Bit 1 = 1 B80S is the first SA report
Bit 2 = 1 SA skip protocol - skip to next report type

Last 4 bits = 1 SA is the first report in the Location
Index Table.

In this example, block 466 has been read into the buffer., 1Its
first message unit is the eighth message unit of the briefing.
Since block 466 contains three message units, the eighth through
tenth message unit is currently in the buffer. This is indicated by
the CRMOT values.

In addition to the outputs required to satisfy the briefing

(message units and briefing tables), an Brror and Diagnostic File is
generated. This file maintains a history of activity of the

b

LOWND pue jGyp :0C-¢ JUNOIJA

3x0dax 3Ixau 03 diys - |
uotT3leooT Ixau o3 drys ~ ¢

aapio buyjyeraq ur LI7T uo jxoday 3o betra dys 3jaxoday
I9quUMN YO0Td IenIITA (3397 wox3j) uoTlIsSOod
joo1q ut _
ITun sbessaw 3IsaT3 : 6
I03 xaqumu aousanbog ° o _v_vlzlcuuwwmmomwm
—paom T—>| ~—PbPIomM T > {(——paom 1—> %
burzyeraq N
ut }O01q peaxun
18113 S93ROTPUT . 0ze 0100 00
“°*X9puUt 6666 = ¥NW Lﬂmmmm 0ze 0to0 00
8 99y 0100 o1
=g 413 1000 10
«PIOM T-)|cPIOM T—» € voe 1000 10
T 9G6¢ 1000 11
1T 8
aHd it NN JA0014 OVTd
(@198 3ITUN
obessap osuodsay Tauuey)) {219el corg ssuodsay tauuey))
LOWID L98D

— T I e i i O Y T T e S T e S

v
i

AD=A102 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/6 1172
TWENTY=CHANNEL VOICE RESPONSE SYSTEM. (U}
JUN 81 . DOT-TSC=-1313
UNCLASSIFIED FAA=RD-81~51

n
[

1.}
mE
mm

- i '

o A S RSS20 SRR NP o It ¥ e e R A’ LN T

retrieval task. Additional outputs of the retrieval task could be
accounting information files allowing an analysis of system resource
use.

2.4.4.1.5.1 Message Unit Transmission Format - The message units
are transmitted according to a fixed communications protocol
(Apvendix B). The message units are buffered directly from the
channel status block area into which they are read from disk
(DIOA). That is, the address presented to the DV-11l handler is the
one representing the correct message unit position of the block of
data residing in the CSB.

2.4.4.2 Winds Aloft Retrieval - When a briefing request for Winds
Aloft data is received by Retrieval, it, in turn, must request the
data from a special, installed task, Winds Aloft Retrieval

(FDRTRV). This is because Winds Aloft information must be
dynamically interpolated for each location from a grid of winds data
stored in the UDF (see Section 2.4.3.2.4). »!

FDRTRV receives and processes requests for Winds Aloft o 3
information for a given location, altitude, and time period.
Restrictions on. the input to the program are that the altitude
cannot be greater than 45,900 feet and the time period cannot be
more than 30 hours beyond the effective date and time of the winds
aloft data. Blocks numbers returned by FDRTRV contain message unit
data for the given altitude, an altitude 4,000 feet higher, and an
altitude 4,000 feet lower (unless the given altitude was equal to or
less than 6,000 feet, in which case an altitude 2,000 feet lower is
given). TIf the altitude given is determined to be less than the
estimated terrain height for the location given, then the values
returned are for an altitude equal to the terrain height plus 2,000 c
feet and a higher altitude equal to the previous value plus 2,000
feet and a higher altitude equal to the previous altitude value plus *
4,000 feet. Tf the altitude given plus 4,000 feet is greater than

I T T gr ey e v T

e

TR

TN v RS o

2-74

e 5" Sl el A I M RIS & W

T N By M

45,900 feet, then the higher altitude values are not returned by
FDRTRV. Alternatively, if the lower altitude calculated for the
given altitude is lower than the terrain height, no values are
returned for the lower altitude.

The values which are returned by FDRTRV for each altitude are
the wind direction in degrees, the wind speed in knots and the
temperature in whole degrees Celsius. Since these values are
determined by interpolation from retrieved data values, if critical
data are missing or have become too o0ld, (more than 30 hours) a
message of "data not available" is returned.

After FDRTRV has calculated the Winds Aloft Data and stored them
in message units in the UDF, it then returns the block numbers to
the Retrieval program. These block numbers are inserted into the

appropriate Channel Response Briefing Table for use during the
weather briefing.

2-75/2-76

Gl o g

e TR

v

SRR LS TR N 1

3. SUPPORT SOPTWARE

In addition to the operating systems, there are programs
required to create and initialize the VRS data base.

3.1 UDFPRG

Using a file (NLC.DAT) containing the name, region, and
geographic coordinates of each weather reporting station, UDFPRG
creates the file UDF.DAT where VRS processed weather reports are
stored (see Section 2.3.2.2).

3.2 ERRCRT

When raw weather reports read from the KCW.DAT file contain
errors, they are stored by VRS in an error file (ERR.DAT) where they
are accessible by the editor. ERRCRT creates ERR.DAT (see Section
2.4.3.5).

3.3 DEPTT

The Data Edit Position Terminal Tasks, in conjunction with
DEPST, constitute the editor used to correct erroneous raw weather
reports (see Section 2.4.3.5).

3.4 VRINIT

Before VRS can be executed, certain initialization functions
must be performed. The subroutine VRSMAP initializes the UDF block
allocation map by flagging all table blocks as being in use and the

}
3
b

L ARGREY v R AR . e

remaining report blocks as being free. It then scans the Locator
Index Table for any report blocks in use and sets the corresponding
map bytes in the UDF block to one, signalling the blocks in use.

Also if there are any duplicate report blocks for locations,
signifying an error has occurred in block allocation, the blocks in
question are zeroed thus preventing invalid reports for location.

There exists a file, SFI.DAT, which is used by the VRS
subroutine VRPAOV to determine if any new reports have been recently
added to KCW.DAT. SFI.DAT contains the same subfile pointers that
are contained at the beginning of KCW.DAT itself. If new reports
have been added, the data will not be the same and VRS then knows it
must invoke the report processors. The VRINIT subroutine, VRSPTR,
initializes SFI.DAT to point to the most recent set of weather
reports so that the VRS will process them as soon as execution has

begun.

3.5 VRSTOP

To safely stop the VRS execution in a coordinated way that
insures all files are closed and an I/0 function is not interrupted
before completion, VRSTOP is executed. A message is sent to the VRS
executive. When the VRS sees it, an acknowledgment is sent and both

the VRS and the VRSTOP exit.

3.6 NLCUPD

The file NLC.DAT, containing identifying information on each
weather reporting station, is used by UDFPRG to create the UDF (see
Section 3.1). NLC.DAT is built and modified by program NLCUPD,
which provides editing capabilities.

3-2

P

3.7 SENDIC

The "dictionary" portion of the 11/34 vocabulary disk file,
3 DIRECT.DVF, is needed by the 11/70 dictionary task. SENDIC sends it
to the VRS disk area on the 11/70.

T R R
-

3 3.8 WRDICT
3
i Once SENDIC (above) has been executed, the file created at the
E 11/70 is made into a common block within the 11/70 dictionary task
3 by executing this utility.
3
H
3
* .
2 '
;
‘ L]
A .
)
;
’ .

e ¢

- ¢

¥ L

3-3/3-4

— . JE—— .. -- e e = e

e o L e e et A e e R S . AL N~ W kP

! 4. VRS MAINTENANCE--11/34

For discussion of the 11/34 maintenance proéedu:es the reader
should be familiar with the RT-11V03 Extended Memory Monitor and
MACRO-11 programming. The reader should have a thorough
understanding of the functional flow of completion routines before
attempting to modify the 11/34 software (see Reference 9).

4.1 PROGRAM CREATION PROCEDURE

< W ok o WO S Sl ST AN - . SRS e B v
[]

The RT-11V03 indirect command file capability is used to create
the 11/34 VRS software. The indirect command file ASMVRS.COM
assembles the software from the MACRO sources. The following
modules must be present to assemble the system:

R

BACKGR . MAC
DAP.MAC
DICT.MAC
SPEC.MAC
SPEAK.MAC
SEND.MAC
CLOCK . MAC
PIIRGE. MAC
QUENE.MAC
TRAP.MAC
TABLE.MAC
TRAC .MAC
PREFPIX.MAC.

O
.

B ik aT

® 6 & & & o & &6 O o 9 o o

The following four modules must be present to generate the
specialized data handlers for insertion into the RT-11 operating
system:

e P e
44 -4

T az G A T

4-1

. . N - — e e o e ; 7

W S S

e

L et A e Sy KA ¢ WA TR

i d WS S it

1 A IOR L AL IR it

i - o e il

ADX.MAC
LCX.MAC
LIX.MAC
LOX.MAC. .

By typing "@ASMVRS" all object modules listed above will be
generated. The object modules must be linked together to create the
VRS save image file. The command file VRSUNK performs this
operation. To list the software package, the users can type @ASMLST
and the sources of all seventeen modules will be listed on the line
printer. To generate the specialized handlers needed by the
software, the command file VRSHND should be invoked.

Figure 4-1 is a subroutine tree of the 11/34 modules. Since the
software is a Macro-ll asynchronous event-driven program, the tree
does not depict logical program flow. It is meant to depict
possible modular interface. See Appendix A for a more detailed
description of the modules.

4.2 SYSTEM REQUIREMENTS

TOo generate a twenty channel voice response system the following
assumptions are made:

e Hardware
a. POP~1l1l with extended memory management
b. 64K words l6-bit memory

c. Past Random Access Disk with a capacity of at leaat ‘
3.5 Megabytes ,

d. Specialized DMA ADPCM Module 4

4-2

<

£
H
§
a4
b+ .
VRS
E . INITIALIZATION
5 -
i DICTIONARY: STRTM: ~CLXRPT ————SNDPOI
. INITIALIZATION —aALARM
, . BACKGR—————DAP~——r—SPEAK: SPXST SPEAKR READ READC: MAP
. Lwrrrc
: ‘ RANT LDBRF
»‘q M INCRBQ
4 ENDAST
|—SP .BRE
- ISP . BR1——INVALK
; —SP.BRE
8 —SP .CLR
A l—5P .CSV SP.CAR
ISP .DIS OMMON
RESET
IGNAL
l—SP . ENR SP.CLA
leeSP . ETA————SP . CAR
[=SP . FCT———ASKYNO
—SP . FDR——r—RPTYP
Lsp.car
5P . FER=—————ASKYNO
4 —§P . FT8———5P.SAB
t l—SP . HYP
N lmeSP . LOB
i . r—=SP . LOC
v . ~—S5? .LST ISPL2
} - Ep.aar. -
3 P.CAR 1S2LA LDBRF
3 . I OMMON
i - SEND RCVC —ALARM
] , ‘ $IGNAL
3 . R.DQE
3 ’ R.QUE
. - ~~=RCVEX TR.USB
§ [—=SPEAK (see DAP)
p —32.CLR
§ .—SP.MOD
—SP . SAD SPEAX (see DAP)
, —SP . SMD=—-——SP . CLA
§ F=SP . SYR————ASKYNO
3 =57 . NOT RPTUP
ISP .7TR
—SP . PRP
. . —SP.SAS
B leSP . T IM——ZCHO
L—COMMON
3 —GETT IMe—aeem$ ML I
: —$DVI
1 —$1CO
: —$2.WMD
l 3P . WRN————me3P . CLA
| =3P .CAR
—DAPCOM—ren cz-zo———:orc-r
Ir" , SPEAK $PXST =5 PEAKR——REAN—————TR. SPX
| | “—=TYRANT ————3LOBRF
P . | ! —INCREQ
 a i i SENDRT
| oS TNTAX = AL P HA VAL S Demmmeme A RRE X
. : ‘ =S YNHR————NINVAL
¢ ! ——3YNALT NTMVAL NINVAL
i ¢ : ~—=3STHETA —CERNUM
g ! —=WETPCX OXVAL VALID
) f —7ESCX —INvaL?
. —VALID . P

FIGURE 4-1: 11/34 Software Subroutine Tree

4-3

P’ o3 wme pe~

L

§
:
]

YL A

R

BN W A W

e 1 o RACNE T 4 ARz M S & mate 1 S . e e

—

SACKGR (continued)

l-prsasL DISCON BLDBRF————SP.CLA
KREQ———TR.DQE
[—~COMMON
—ECHDON————=TR . MOD
}=—ENABLE ————eRPTREQ
—INCREQ
|—MRXTT CON AEADC
RSP K ey READ e
E::rrc—mp
—TR.USB
—TYRANT LDBRF
Emcaso
SENDRT
IGNAL
! ~—RTNQUE
= EXIT———————ISABL —{see abave)
LM SEN CVC e M
Esrcuu.
~TR.DQE
—TR.QUE
La —TR.USB
CVEX
{—STRT
—TRESET
R.MOD
r—INVALXR———CLRTTR
~—SPEAX (see DAP)
l TR, 40D———TRACE
NO
NORMAL
~—NXTCAR———NXTEXT
i —PROCA
] j—PROCCR
. =2 ROCD————3 I GNAL
—PRrOCLT
ROCR
—PROCT
“—PROCX
—rR.usB
h~RECYCLE
F—REPEAT ————P PTSKP————3 . DARF SP.CLA
~—CHKREQ———TR. JUE
—CLRTLK
—-DECAM
=~=INCREQ
—eRTNQUE———TR. OQE
L=TR.QUE
=S END——eee (3 @@ ZXIT)
——SPEAK {see DAP)
TS TRCV—1—3LDBRF 57.CLA
~SEND
'—TR.ZCE
r~3KI? PRATSKP {ses REPEAT)
—~STOP T, MOD
—TTMOUY TR. .53
—3IGNAL
~T0GO —MRKXTIM {see ZXIT) R
3 LTy TIGURE 4.1. 11/34 SOFTWARE SU3ROUTIN
—2TNQUE -
| —rerx 3@ 3AP (continued)
: —3? . 218 IS NVON
—TR.2GZ
-T2, 3CZ

[y

TREE

o e A Y L5 R e

e. 2 asynchronous line units

R M. i s

€. 1 20-channel Votrax MC-I
g. 1 TC17-100 Timing Control mUnit"

® Software -

RT-11 V03 XM generated for use with the specified disk.

° Data Bases -

DIRECT.DVF - this file (5000 blocks long) contains all
utterances spoken by the system. It is created using
the ADPCM encoder and programs VEDIT and RECORD (see
Reference 6, Chapter 8),.

VRDATA.DAT - this file (1000 blocks long) is created
by the VRS software and contains all statistics data
generated in system operations.

PPy e —E———r— -~

4-5/4-6

S. VRS MAINTENANCE--11/70

For the discussion of 11/70 maintenance prdcedures, the reader
should be familiar with FORTRAN-IV PLUS and MACRO-1l programming
languages under the RSX-1llD monitor and with the RSX-1llD utilities,
special subroutines, overlay capabilities, event flags, priority
levels, and asynchronous system traps.

5.1 TASK CREATION CONVENTIONS

The RSX-11lD command file capability is used to assemble,
compile, taskbuild, and install or remove most tasks. The command
files are named AAABBB.CMD, where AAA is the task name abbreviation
(e.g., VRS) and BBB is LST if a compiling command file, INS if an
ihstalling command file and REM if a removing command file. BBB is
omitted if the command file is for taskbuilding. For example, if a
task were to be built from the FORTRAN source file VRS.FTN, the
procedures would be as follows:

0 MCR PF4P @VRSLST - to compile, then
© MCR TKB Q@VRS to taskbuild.

If VRS.CMD used the TKB overlay switch an overlay definition
file must exist and would be named VRS.ODL.

The command files are written to create object files the same
name as the source file and to create nonspooled compiler listings
on disk.

5.2 SOFTWARE CONVENTIONS

The following items are miscellaneous practices in the 11/70 VRS
software. The 11/70 program written in MACRO-1l1 are DICT, RETREV,

5-1

VRSTIM, and VRSGLB. These programs require the special capabilities
available only with MACRO-11l, such as the asynchronous system

traps. The rest were written in FORTRAWN-IV PLIS: VRINIT, VRS,
VRSOUT, VRSFD, FDRTRV, VRSTOP, UDFPRG, and ERRCRT.

Many of the subroutines of the FORTRAN programs reference by
means of an INCLUDE statement the file VRPARAM.PTN which contains
ubiquitous VRS parameters in common. The parameters are:

e ITI - Terminal logical unit number

e LPU ~ Line printer logical unit number

e LINERR - ERR.DAT logical unit number

e LMINRCW - KRCW.DAT logical unit number

e LINUDF - UDF.DAT logical unit number

e LUNHIS - SFI.DAT logical unit number

® MAXIN - Raw weather report buffer size (from RKCW.DAT)
e MAXOUT - Processed weather buffer size (to NIDF.DAT)

e ISLOTS - Location Index Table size in blocks

e IESTEDT - EST or EDT time indicator.

The VRS software makes use of the RSX-11lD special subroutines to
handle inter-task communications. A variable number of parameters
pertinent to the transaction are transmitted using VSNDRR and
responses received using VRECRR.

All disk files are referenced within the software as residing on
disk structure DB7. An assignment can be made with the RSX-11lD

monitor that would define DB7 as being any other single disk
structure.

Task priorities are fine-tuned through experience with the
system, but in general it can be said that the device handlers must
run under the highest priority used and that RETREV and FDRTREV must

run at a higher priority than the VRS proéessor to insure good
response time.

el ol ORI

R R N . e

5.3 SUPPORT SOFTWARE TASK CREATION

The programs used to create and initialize data base files and
perform other auxiliary functions are discussed in Section 3.0.
This section will discuss how to create the executable file for each.

5.3.1 UDFPRG

The Universal Data File, UDF.DAT, is crected with UDFPRG which
requires as input the file NLC.DAT containing the identifying data
for each weather reporting station and airport. UDFPRG is comprised
of five source files: UDFPRG, BLCR8, IOBLCK, VRSLIB, and NOMESG.
They are compiled and listed using the command file UDFLST.CMD and
taskbuilt using UDFPRG.CMD.

5.3.2 ERRCRT

Raw weather reports containing format errors are sent to the
file ERR.DAT which is created using program ERRCRT. ERRCRT is
contained on a single source file, ERRCRT.FTN, and so compile
command file is used. The compiler command line is as follows:

e MCR F4P ERRCRT, ERRCRT 1l-SP = ERRCRT.

e For taskbuilding, the command file ERRCRT.CMD is used.

5.3.3 VRSGLB

A VRS global common area is created with VRSGLB. The source
file, VRSGLB.MAC, is assembled using the MACRO Command File
GLBLST.CMD. Taskbuilding is accomplished when the DICT module is
taskbuilt with DICT.CMD.

sk

BBt = B A AL LA KPS

5.3.4 VRINIT

SFI.DAT is a file containing the RCW.DAT pointers existing at
the time VRS last processed the raw weather reports. When SFI.DAT
and the RCW pointers no longer match, VRS knows new reports have .
been entered. SFI.DAT is created or initialized by a subroutine of -
VRINIT, VRSPTR. VRINIT also initializes the map array in the GCA.

1 VRINIT is comprised of 6 source files: VRINIT, VRSMAP, ZULUTIM,
DTELAP, EXTHED, and VRSULIB. They are compiled using VRINLST.CMD and
taskbuilt using VRINIT.CMD.

: 5.3.5 VRSTOP
1 The only safe way to stop the 11/70 VRS executive is to run

VRSTOP, which insures that the MDF block usage control array will be
in order. Any other method such as ABORT or a system crash will .
require running VRINIT before execution could be resumed. The F4P
command lines needed to compile the VRSTOP modules are as follows:

e MCR F4P VRSTOP=VRSTOP
e MCR P4P VRSULIB=VRSLIB

i SO il S R B R 280

The TKB command file, VRSTOP.CMD is used for taskbuilding.

5.3.6 NLCUPD

An editor is required to modify and add to NLC.DAT, the file
containing the weather reporting station identification data.

NLCVPD is compiled as follows:

Al oA S 2 kS

MCR F4P NLCVPD=NLCVPD.

; ﬁ Taskbuilding is done with TRB command file NLC.CMD.

5-4

2 ¢l il o RS i SN,

Bt e e e

e -

(2]

5.4 VRS WEATHER PROCESSOR

The VRS Processor executive is an overlaid task with the tree
structure shown in Figure 5-1. The VRS roaqt contains the only
MACRO-11l routine for the task, VRSTIM.MAC. The second level of
overlays constitute the primary VRS functions:

® OPEND opens and closes files and check subfile pointers for
KCW.DAT, SFI.DAT, and ERR.DAT.

° SA is the surface observations processor. .
'

° SARMK is the surface observations remarks processor. %

. FT is the Terminal Porecast processor.

o ERR is the erroneous report handler.

The names given are those used in the Overlay Definition Files.
Five other tasks also called by the VRS processor executive,
differ from the above in that they are independently executing

programs, not just subroutines of VREXEC.

1. VRSPD is the Winds Aloft processor. The compiler command
lines are as follows:

® MCR F4P VRSFD3VRSFD
e MCR F4P VRSLIB=VRSLIB.

Taskbuilding and installation are accomplished with the command
files VRSFD.CMD and FRSINS.CMD, respectively.

2. VRSOT, the VRS I/0 task, is comprised of eight source
modules which are compiled by means of the F4P command file

5-5

e . ool % Y el PR AT Bt LAl e LR A
Wﬁ, - = ™ i,v!"fj"mm‘l" A T el v Cal

VRSINP VRSSA
L VRSTIM EXTHED
b GETRPT SUBFLD
E VRSLIB vISWX - |
SKY

1 VRSLIB
[VRSFT
: —_ FTFUNC
] FTSKRE
| FTVIRE
FTWIRE
FTTIRE
FPTRERE
FTLOPR
: FTDTPR
g B FTSKPR
4 FTWIPR
1 FTTIPR
, FTREPR
FTVIPR
FTPRDC
] VRERMK

» VRSLIB -
SKYRMK
WETHER

VREXEC
SA

SARMK

- e

VROPOV

VRPAOV

VRCLOV
DTELAP
ZULUTM

OPEND

it v, e Y

B S

VRSOUT
BLCRS = _SASPEC |
IOBLK VRSPURG
YVDATE NOTAVB

ZULUTM

10
> 3
H
z

i e

VRSOUT
PURG
3 .

s

Rlicatd ST
!

e

FIGURE 5-1: PDP-11/70°VRS Task/Overlay/Subroutine Tree i

5-6

A s et 1 A el

o - by B AN . R

N e ARt R ¢ e an - Y PR N . e . N e e eem— e 1

e s =i ARl SR A

VRSLST.CMD. Taskbuilding is done with VRSONT.CMD and the overlay
definition file VRSOUT.ODL. Installation is done with VRSINS.CMD.

3. DICT, the module that translates raw weather reports to
dictionary pointers, is comprised of the twé modules DICT.MAC and
VOCAB.MAC (Plus assembly contents contained on PREFIX.MAC) which as
assembled with the following MACRO command lines:

¢ MCR MAC DICT = PREFIX, DICT
e MCR MAC VOCAB = PREFIX, VOCAB.

Taskbuilding is done with TRB command file DICT.CMD and installation
with FRSINS.MD.

4. RETREV, the VRS weather data retrieval program, is comprised
of 10 MACRO source files which are assembled with MACRO command file
RETASM.CMD. To taskbuild, RETREV.CMD is used. See Figure 5-2.

5. FDRTREV, which calculates Winds Aloft data, consists of 5
source files compiled with P4P command file FDRLST.CMD.
Taskbuilding is done with FDRTRV.CMD. Installation is done with
VRSINS.CMD. See Figure 5-3.

5.5 PERIODIC SOFTWARE CHANGES

The PDP-11/70® system time is set to Eastern Standard or Eastern
Daylight Time. VRS, however, runs under Greenwich Mean Time and
three routines must be changed biannually: RETVER.MAC, a subroutine
of RETREV, DTELAP.FTN, and ZULMITM.MAC, subroutines of VRSOUT. The
chanages to the FORTRAN programs DTELAP, and 2NLOTM may be made to a
change to include parameter IESTEDT.

5-7

RETINI SUSPEN ———y———— QUEUE ' .
DQUEUE
GETCSB .
— BRF2 ~——— FDBLK
. Sar— SEND e
] e sENDMU
4
] e CMDND ———— QUEUE
3 t GETCSB
F {——— DBLOCK
! SENDMU OUTPUT !
OUTSND
TINAST — GETCSB ,
je—e— DQUEUE
QUEUE 3
SUSPEN
ERRTN .
MKAST ~———————RCVAST SEND .
[GETess .
RDAST ASTVER)
A STSKP
ASTDMD SENDMU
DEMAND
SNDAST SUSPEN
' RCVAST SEND
t —::Garcsa

FIGURE 5-2: RETREV Subroutine Tree

5-8

vy . B -TgRE e TR TR R M AT T e e v

| e Y S A . SR LW ki T2

b }
: |
FDRTRV ey RECEV —'—VRECSP
L——ERRPRC
’ SUMMIT IOBLCK
¥ — WTFOR3
: ACTIV — VSNDRR
———EXIT
RECEV VRECSP
:) L———-ERRPRC
3
X p———RSPASC
< f———1DpATE
——— TIME
IOBLCK
}————BLCRS
3 VRECEX
! VRSFD T RECEV VRECSP
i ~——— —ERRPRC
? - ~————— GTRPT ————— BLOCK
H | i————ALTSTR
; - ———— EXTSTR
3 : f————IDATE
; ‘————TOBLCK
¥ .
'i
Doe *;
J
R FIGURE 5-3: PDRTRV and VRSFD Subroutine Tree
b
!
i
4

5-9/5-10

S i i 7) s ol W AN

»

e LR AN R

6. OPERATIONS MANUAL

The following is a summary of steps required to start up
shut down the VRS system: \

e Start Tp l1l1/70 Subsystem
a. ULog On Terminal
b. Bring 0Up Subsystem
¢ Start Up 11/34 Subsystem
a. Power 7p System
b. Boot 11/34
c. Bring MOp Subsystems
"Abort RETREV" Line Clean 0p
Shut down 11/70 Subsystem
Shut down 11/34 Subsystem
"Barge In" On
"Barge In" Off
System Test.

Details of these procedures are given next in this
section. TIf there is a problem, refer to Figure 6-1 which
outlines in flow-chart form procedures for handling problems.

6.1 START TP 11/70 SUBSYSTEM

6.1.1 ULog-on Terminal

the Terminal:

Enter on
CTRL/2
CTRL/C

MCR_ HEL (300,100] (CR]}
PASSWORD (password) [CR]
MCR

11/70 TERMINAL?

CAN YOU GET
"MCR* HIGH ON

Do 11/70
TERMINAL LOG
ON PROCEDURE

Was
'LOG ON'
SUCCESSFUL?

SWITCH ON
BARGE IN

FIGURE 6-1:

WAS 'SYS' L\
SUCCESSFUL Y /]

?

SWITCH ON
BARGE IN

VRS System Trouble Chart

(°Py3u0y) 3xBYY BrqnOag wa3184s syA

‘1-9 JNoIa

SHALSASANS SUA
H108 an Javis

A

NMOQ sWaLSASans
SYA HI09 ONIH®

1

NI asuve
RO NDLIMS

Xy

&'1nd
~8§530Ns 183y
NALSXS SUM

4S3L
WALSAS Oa

¢

WALSASENS ve/t1 [~
dn Jyvis

¢ oL/t No
FA1IOV 11118
AL, SY

NMOQ NaHi anv
40 WILSASHNS
vE/TT ONI¥g

|

NI 3ouvg
NO HOILIMS

HSWED bE/TT NV
on \ 40 NOILVOTONT
ANV F¥amL st

dan NvaE
anNI1 onisn
WAL, JyOo"Y

6~3

HO3dAdS ON ‘¢
dWL 4 NOR 2
430 HOIT WM -7

'

MAKE SURE
'RETREV' IS NOT
ACTIVE ON 11/70

ABO DICT
ABO_VRSOOT

-

T.

IF 'DICT' OR
'VRSQUT' IS
ACTIVE, ABORT IT

START UP
11/34 SUBSYSTEM

i

START OUP
11/7Q SUBSYSTEM

FIGURE 6-~1:

VRS System Trouble Chart (Cont'd.)

- 11/70 poww 2!
CALL 8-202~827<
} 6008 FOR STATUS

BRING DOWN
11/34 SUBSYSTEM

WAIT FOR
11/70 1™
COME 0P

START UP BOTH |
VRS SUBSYSTRMS i

!
P FIGURE 6~1: VRS System Trouble Chart {Cont'd.) }
. i

~ - T
B i

!
L
!;
i
:

DO SYSTEM TEST

CALL FOR HELP

SWITCH OFF
BARGE IN

FIGURE 6-1: VRS System Trouble Chart (Cont'd.)

s

6.1.2 Bring fp Subsystem

6.1.2.1 1Initial Procedure

MCR_ RUN DB7:VRINIT[ESC]
INITIALIZE VRS - START HH:MM:SS EST
CALLING VRSMAP
CALLING VRSPTR
INITIALIZATICY COMPLETE: HH:MM:SS EST
CTRL/C

RN DB7:VRS([ESC]

DD-MMM-YY VRXEC HAS RESTARTED HH:MM:SS EST
AT 1 HH:MM:SS EST
etc.

6.1.2.2 Recovery Procedure

MCR RUN DB7:RECOVER[ESC]
RECOVER VRS - START; HH:MM:SS EST
CALLING VRSMAP
VRS RECOVER COMPLETE: HH:MM:SS EST

CTRL/C

MCR RON DB7:VRS[ESC] etc.

6.1.3 Start NTp 11/34 Subsystem

Power MJp System

11/34 Computer
Switch to DC.ON

Teleterm
Set switches: LOCAL #0-, ON

Jpper two VOTRAX units
Switch ON.

Boot 11/34

6.1.3.2.1. ¥From Fixed Head Dbisk

Depress panel buttons: CTRL/HALT, CTRL/BOOT

Should print 4 octal numbers on terminal)

$L 177462[CR]
$D 177400(CR]
$L 177460 (CR]
$D 5(CR]

$L O(CR]
$S[CRr]

LRT-11XMV03-02
.INS MC,AD,LI,LO
.LOA MC,AD,LI,LO,DP

‘Mn o SRR (TR GO B S

.D 56=2012
+DATE DD-MMM-YY([CR]

' .TIME HH:MM:SS (CR] (GMT)
3 -DATE(CR) (Verification)
3 .TIME[CR] (Verification).

6.1.3.2.2 From CDC Backup Disk

7 Depress panel buttons: CTRL/HALR, CTRL/BOOTSL 1000 (CR]
3 (Should print 4 octal numbers on terminal)

" ’
4

L $L 1000 [CR]
$D 12700 [CR]

—

$D 176712(CR]

$D 12760 (CR]

et

ey

k4 $0 L[CR]

3 $0 12 [CR]

3 $D 105760 [CR]

3 $D 12(CR] i
H . $D 100375 [CR]]
A $D 5040 [CR] o
; . $D 5040 [CR] g

- $D 5040 [CR]
$0 12740(CR]
$D 400 (CR]
$D 12740 [CR]

$D 5(CR]
$0 105710 (CR]
$D 100376 (CR]
$0 5007 (CR]
SUL 1000 [CR]
$s [CR] %
. .RT-11XMV03 4

.INS MC,RF,AD,LI,LO - 3

STRMRT". VIF, Cia SIS

e R

6-9

N A TV v o ¢ e e e

P

.LOA MC,AD,LI,RF,LO

.D 56=2012

.TIME HH:MM:SS{CR] (GMT)

.DATE([CR] (Verification)
.TIME(CR] Verification).

6.1.3.3 8Bring Up Subéystem

6.1.3.3.1 1Initial Procedure

+ DEL VRDATA.DAT(CR]
PILES DELETED :
DK:VRDATA.DAT ? Y[CR]
<R VRS[CR]

VRS VERSION-03X-00

(If the remaining print out does not appear as listed -

below, enter "EXIT[CR]"” on the 11/34 terminal and try *

"R VRS[CR]" again.) o
MCR_ .
MCR HEL (300,100] .

MCR RN RETREV §

INITIALIZATION COMPLETE 1
(At this point, do a "SYS" command on the 11/70
terminal anc check that "RETREV" is running.)

6.1.3.3.2 Recovery Procedure

Same as above (i.e., Section 6.1.2.3.1l) except do not
delete VRDATA.DAT file.

6.1.3.4 Console Commands
There are six console commands available to the
operator which affect the operation of VRS on a
par ticular channel. The commands are typed on the VRS
console in the following format:
.CnnX cr where
nn is the two digit channel specifier (single
digit channels must be preceded by a zero) and X
is the command letter identifier as listed below.
6.1.3.4.1 CnnN
The command turns off the trace function on the
channel nn.
6.1.3.4.2 cnnT
This command allows the trace functions to be
performed for the channel nn.
6.1.3.4.3 CcnnD
This command disables the channel nn:; that is, no
calls will be received on that line.
6.1.3.4.4 cnnR

This command re-enables the channel nn; that is, a
channel that has been disabled will now be able to

receive calls.

e e M i

6.1.3.4.5 cnnX

et i BRI e oS b .

This command de-activates the fifteen-minute time-out
on the line nn.

6.1.3.4.6 cnnA

This command activates the fifteen-minute time-out on
the line nn.

6.1.4 shut Down 11/70 Subsystem

Type the following in the 11/70 terminal:

CRTL/Z
CRTL/C

MCR RUN VRSTOP{ESC]

****yRS EXEC TERMINATING :
VRS--STOP

(NOTE:
line.)

It may take up to 5 minutes to obtain the last

e AR 0 B i v %

6.1.5 Shut pown 11/34 Subsystem

At e m h i oS st .

6.1.5.1 Temporary Procedure

e®
=y

B
FOSVER

Enter the following on the 11/34 terminal:

B RT S _P ~

i

4
N

B O A o s s = -

b

_EXIT[CR]

(All the channel lights should go out.)

6.1.5.2 Final Procedgre

. _EXIT(CR]
-COPY VRDATA.DAT DP:TRmmdd.yyV[CR]
.DIR *.yyVI[CR]
.DEL VRDATA.DAT [CR]
FILES DELETED:
DK:VRDATA.DAT ? Y(CR]

The intention is to save the trace file on the CDC disk
under the file name TRmmdd.yyV where "mm" is the number of the
month, "dd" is the day of the month, and "yy" is the year. It

is suggested that these trace files be periodically archived to
magnetic tape.

‘ 6.1.6 "Barge In" On

1. Set switch on "barge in" phone to activate the message

of interest, i.e., either the "temporary down" or "overnight"
message.

2. Switch on the "barge in" to activate the "barge in"
unit.

3. Call 8-202-347-3222 to check the "barge in" message.

»

6~-13

- —— - —_— e e e e R e T T e

VAT ML b ST il

6.1.7 "“Barge In" Off

1. Switch off "barge in".

2. Call 8-202-347-3222 to check on system response.

6.1.8 System Test

1. Call into system on a local line,.

2. Enter "DCA"™ loc ID and check out all the weather
products.

6.1.9 System Trouble Chart

The intention of this section is to direct the operator to

the appropriate action that should be taken for various system
malfunctions.

s T S AT S M A5 A T MR 2 —
g pA—

7. TUSERS' MANUAL

¢ Any public, business, or home telephone with a 1l2-key
signalling system can be used to access the system, The
conventional rotary dial telephone may be used only for dialing
the access numbers, however, an acoustically-coupled tone
signalling device (in lieu of a Touch-Tone® telephone) can be
employed in conjunction with the rotary dial telephone to enter

e,

the information requests.

7.1 ENTERING DATA 1

To communicate with the computer you must use the keypad in
a way that the computer "understands.” Locations (weather
reporting stations and airports) are uniquely identified by
. three-letter combinations and you enter these three-letter
. identifiers to delineate a single location or a series of i
locations (e.9., a proposed flightpath) for which you desire to
know the weather.

f
3
:

The keyvad does not have enough keys to allow the entry of
an alphabetic character (latter) with a single keystroke. But 1
it is possible to make an unambiguous entry by depressing two

'% keys. You can enter a particular letter by depressing the key
§ on which that letter appears and another key to indicate which
W of the three letters, lst, 2nd, or 3rd. The numeral "1" key ﬂ

indicates the lst letter, the numeral "2" key indicates the 2nd :
? and the numeral "3" key indicates the 3rd. Thus the letter B8

is signalled by depressing the key on which B appears (the

number “2" key) and then the numeral "2" key (2nd letter in the

ey supwpme

¢ group, ABC). The letter C is signalled by depressing the key
- - on which "C" appears and the numeral "3" key (3rd letter in
. group ABC). Por example, DCA is entered as D-l1, C-3, A-1l, as

shown below.

i 7-1

PR
2 3

i il i ik WE Vs o il

§

a)
2~
»
2
!

)

s

5
¥
¢
%
&,
v

. Bt A s i NI o R I

ABC ‘:'DBF(
1 2 :‘B K
GHI JKL MNO
4 5 6
TPRS TOV WXY |
7 8 9
PE
* 0 #
PABG DEF
1 "l 3
GHI JKL MNO
4 5 6
PRS TUV WXY
7 I 8 9
PE
* 0 4
7=2

7 ABC DEF
s L. 2 3
GHI JKL MNO |
4 5 6
PRS| TOV WXY |
7 8 9
PE
* 0 #
ABC [DEF
1 2 [3.
GHI| JKL MNO
4 5 6
PRS TOV WXY
7 8 9
OPE
* 0 #

As shown above, the letters Q and Z and the blank character

are assigned to the numeral "1" key. Q is 1-1, "Blank"” is 1-2
and Z is 1-3. Bach of the twenty-six letters of the alphabet
can be entered in this fashion (two keystrokes) and no
confusion will result. The 'blank' is not used.

NOTE: 1In addition to the 1~ 2- 3- keys for second
keystroke denoting the letter position, left-middle-right keys
of the same row may also be used for a faster keystroke. For
example, the letter 'S' is contained on key seven as shown.

PRS TV WXY
7 8 9

i A e St rmia

O i 4. et il Kt

The user may use the keystrokes 7-9 to denote 'S' since 'S’
is on key seven in the right position thus 7-9 may be used
instead of 7-3. However, the left, middle, or tight second

keystroke must be in the same row.

It does not suffice just to be able to communicate a string
of letters of the alphabet to the computer. You must be able
to tell the computer what you want done with the information
you have provided. At the lower right-hand corner of the
keypad, there is a key imprinted with a "#" symbol. We call
this the 'computer entry' key or, for conciseness, the 'pound’
key. Since this key is not used to transmit letters or
numbers, it creates no confusion to employ it as a control key
to signal an action or a request. Used in conjunction with
other keys, a number of different actions can be signalled.
Other control functions will be explained later.

Some location identifiers use both letter and numerals.
For these entries, it is necessary to use two keystrokes for
each letter or numeral. The context of the pilot-computer
dialogue will often preclude ambiguities and permit simpler
data entry. Numbers can be entered unambiguously by depressing
the 'OPER' key and the appropriate numeral key. The 'OPER' key
is the key representing the numeral '0' (or zero) so that entry
of the numeral '0' involves two actuations of the 'OPER' key.
The numeral 'S' is communicated by depressing 'OPER' and '5'
(as shown below) and the other numerals are similarly
communicated.

7 SN S

At iti

— 2. W4

The procedure described is used only for entering numbers
in three-letter location identifiers with mixed letters and
numbers. For all other numeric entries, single keystrokes for
numbers are required. For example, if the computer 'voice'
requests an altitude or a number of hours (from the present
time), then the numeric entries for these fields may be made
via a single keystroke for each digit of the entry.

7.2 DATA NOT AVAILABLE

When data are nct available, one of the following will i 3
occur:

v e st n s i e =
MM‘ e s <
s A ———— -

) Wrong Identifier - If a three-character entry which does
not constitute a valid location identifier is made
(e.g., ABC), the VRS will read back the characters as

entered. However, when the report reqdested is to be ‘
read out, the VRS will say "ALPHA-BRAVO-CHARLIE... is .
not a location identifier.” , “« B
° No Report for a Given Location - If the location) *
| identifier is a valid one but not a reporting station :
: for the type of report requested, the VRS will say E
"ALPHA-BRAVO-CHARLIE... is not an Hourly Observation i
‘ Station” or "... is not a Terminal Forecast location.” i
g
‘ ® Noncurrent Data - If the location identifier is a valid E
; one but the current data are not available, the VRS will ;
' say (e.g., SBY), "SIERRA-BRAVO-YANKEE... report not E
X available" for report type requested.) é
g NOTE: ® Hourly Observations: Only the latest) !
< available observation will be given provided .
s that the observation is not more than 2 hours) i
; old. Soecial observations will be appended to 1
% last hourly. £
| f
° In this system all reporting stations for
4 weather observations within the continental L
N United States are contained in the data base. §
° Minimum altitude for forecasted Winds Aloft is !
3 approximately 2,000 feet above terrain level.
% ° The system has some time-out functions which ,
1 limit the amount of time an individual can use)
} the system. This feature has been °
;, incorporated to preclude an individual from
! tying up the phone lines for an extended
% period.
j 7-6
?
a— e . e g rraepe T i eSS G sl

The computer must be able to recognize the end of an entry
(i.e., a string of alphabetic, numeric or mixed characters) and
the request that it respond. The computer entry key ('#' key)

' is depressed twice to provide the end-of-entry signal

immediately following each and every field. Thus, to request

weather data for Martinsburg, W. Va. (and vicinity) the

keystroke sequence 'M~1', 'R-2', 'B-2', '#''$' is generated .

‘read back' each item entered so that the

The computer will
:;| correctness of the entry may be verified . The phonetic

: alphabet will generally be used so that the identifier MIV will
¥ be read back as "MIKE" "INDIA" "VICTOR"; CHO will be read back
4 as "CHARLIE" "HOTEL" "OSCAR". For some locations, the actual
name of the airport will be read back. For example, DCA

| (Washington National Airport) will be read back as "Washington

National."

7.3 CONTROL FUNCTIONS

The use of the '#' key was discussed previously in section
3 ¢ 7.2. The '*' (STAR) key is used to stop the computer
response. While in the response mode, if it is necessary to
interrupt the computer voice response, depress the '*' key.
This will halt the voice response until the operator is ready
to proceed. The operator may then order a resumption of voice

O o+ B

response, a repeat, a jump ahead (skip) or a begin over, by

selecting the appropriate keystroke sequence shown below.
Notice that the enter command ‘'#'-'#' is not required after the
control functions containing the '*' (STAR) keystroke.

Sk M, sl

L4
9

REPEAT
JUMP AHEAD

NO 6 # # DELETE * 3
STOP * BEGIN OVER *
GO * 4 '

NOTE: “YES" or "NO" may be entered with a single pound
sign. _

7.4 EXAMPLE OF TYPICAL VRS DIALOGUE

PILOT - pilot dials.

SYSTEM - "HELLO", Greenwich Time is XXXX."

SYSTEM - "Enter Location Identifier.”

PILCT - (Desired location - PIT) P-1l; I-3; T-1; # # -

; SYSTEM - "PAPA", "INDIA", "TANGO" "ENTER NEXT LOCATION" .

PILOT (Desired location - ILG) I-3, L-3, G-1; # #

SYSTEM - "INDIA", "LIMA", "GOLF" "ENTER NEXT LOCATION"

RN Y.

PILOT (If no additional entries, enter ##)

>

]

a SYSTEM - "DO you want hourly surface observations? Answer

§ yes or no."

L

% PILOT - Y; # #

??

g SYSTEM - reads hourlys for PIT, ILG, etc. .
i

1

SYSTEM - "Do you want terminal forecasts? Answer yes Or
no"

7-8

b

piit g

Ul AR

Ly Y

7am,

— il oty B idee iy

s it &

it e

Stwe

v m M .,

PILOT -

SYSTEM -

SYSTEM -

PILOT -

SYSTEM -

PILOT -

SYSTEM -

SYSTEM -

PILOT -

SYSTEM -

SYSTEM -

SYSTEM -

PILOT -

SYSTEM -

Y; # #
reads forecasts for PIT and ILG

"Do you want winds aloft forecasts? Answer yes
or no."

Y; # # i

"How many hours from now? The maximum is
30 hours.

6; # #
"six"

*At what altitude?”

85; (or 8500; no matter) # #

reads winds aloft at requested altitude,
+4000 feet and -4000 feet for each location.

1
“eight five" !.
|
|
|
)
"Do you need more information? Answer yes or no."

Y; & # i

"Enter location identifier, etc."”

7-9/7-10

R It i WA U - omirie +

-

L b B SR M, B S

L]

8. REFERENCES

© . ;
"pDP-1l Peripherals Handbook,® 1975, Digital Equipment
Corp., Maynard MA.

"Ten-Channel Voice Response System, Systems Design Report,"
Unpublished material on file at DOT/TSC. June 1977.

Bell System Technical Reference-Data Set 201C Interface
Specification. Nov. 1973, AT&T NY, NY.

"Bell System Data Communications - Technical Reference -
Data Set 407A - Interface Specifications,” Nov. 1973.
AT&T NY, NY PUB41408.

"RT-11 Software Support Manual," DEC Order No.
DEC-ll-ORPGA-B-d° 1973, 1975, Digital Equipment Corp.,
Maynard MaA.

"Single-Channel Voice Response System Program Documen-
tation, Final Report," FAA-RD-77-177, Vols 1-3, Dec. 1977.

"ren-Channel VRS Processor Design Report (SA, SA Remarks,
FT, FD)," Unpublished material on file at DOT/TSC., Nov.

1977.

"Design Document for the Data Edit Position Software,"
Unpublished material on file at DOT/TSC, Aug. 1977.

RT-11 Advanced Programmers Guide,© 1977, DEC Order No.
AA-5280B-TC, Digital Equipment Corp., Maynard MA.

8-1/8~2

P VY S SO 3 T VOP PR IR SR

P 3

A el

e dcain B s s e

APPENDIX A

PR

POP-11/34® and PDP-11/70® software Module Descriptions

-
1 =

; Page

y ;

' A-1 PDP-11/34 VRS A-2

‘ " a-2 PDP-11/70 VRS | A-121

’) a-3 PDP-11/70 RETREV A-155
A-4 PDP-11/70 VRSOUT a-181
a-5 PDP-11/70 VRSFD A-189
A-6 PDP-11/70 FDRTRV A-191
a-7 PDP-11/70 UDFPRG A-199

A-8 PDP-11/70 VRINIT A-203

B e T

A.1 PDP-11/34® vgs

L

Lo i e et S

MODULE NAME: ADX.SYS

PROGRAM: 11/34 VRS
SOURCE PFILE: ADX.MAC
PIIRPOSE: ADPCM output device driver for 20 channels

o~

CALLING ROUTINES:

. CALLING SBQUENCE: Called by a WRITE request in speak module
4 . — QUEUE. QUEUE pointers are arranged by a trap
] call which executes some code in trap handler,
S| then jumps to subroutine in handler which
' links QUEUE pointers,

1 COMMON: ADCQE |
& R ADLQE :

STUBROIJTINES CALLED: DQUEUE - DE-QUEUE an element }
- OPP - take element off ADX QUEUE list i
_ EQUEUE- QUENES an element
i PUT - put element onto ADX QUEUR list
i SETRPT - turn on interrupts
4 FIINCTION DESCRIPTION: Output: pon - WRITE request:
1. DEQUETES PROM RT-ll QUEUEB
2. QUENES internally one-QUEUE per channel
- 3. Initiates NPR output

On completion of ADPCM write:
4 1. DEQUENES from internal QUEDE
'1 . 2. Transfers element back to RT-11 QUENE
: 3. Requests write completion on ADPCM.

COMMENTS: ' This driver handles data synchonously for each
user by maintaining a separate output queue
> for each user. When a write request is
3 issued, the element is removed (unlinked) from !
\% the RT-1l queue and held until completion of '
the write (speech), when it gets re-linked to ‘

RE-11 queue. Therefore, RT-1ll never sees more 4
than 1 write on the channel at any point in
time.

3
{
i
{ *]
3
i
i

-

VYl Al ol A R Wi S

P s .. A TN

— v ok g

. Mo e

TN ey oy L

MOODULE NAME:

PROGRAM:

SOQURCE PILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STIBROINITINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS :

LIX.SYS
11/34 VRS
LIX.MAC

Input driver for communication between 11/70
and 11/34 by serial line

Called by .READC in background routine during
INIT

Called by .READC in send/receive when
communicating

LICQE:
LILQE:

SINPTR

Monitor CUR's
$PUTBYT

Input: Receives characters from 11/70 and
stores them in user buffer space associated
with channel to which data applies. <CR> is
treated as an end-of-file.

At initialization time, a series of 10 .READC
requests are issued for synchronization.

A-4

a®

L 15N

MODULE NAME:

PROGRAM:
SOURCE FILE:
PURPOSE:

A t———

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

-

LOX.SYS
11/34 VRS

LOX.MAC

SLU device driver for output side of 11/34 to
11/70 communication

Called by WRITE in BACKGROUND module
Called by WRITE in SEND/RECEIVE module

LOLQE
LOCQE

$INPTR
RT-1l1l System Functions
$GTBYT

Output: Functions like a DL-1ll

Receives characters from user buffer or text
string. Transfers one character at a time
under interrupt control at priority 4.

This driver treats <CR>as an end-of-file.

ik

N -

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES AND
CALLING EEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

MCX.SYS
11/34 VRS
MCX .MAC

Touch-Tone® input handler for 20 channels

Qutput - Called by .WRITE in background. This
occurs in response to reception of
STATUS CHARS from data set.

Input - Enabled by setting interrupt enable
bit (BIS #100, @#175630) after
initialization in background routine

MCICQE
MCILQE
MCOCQE
MCOLQE

DEFUSB -~ Define user status block
LVMCON - input character decoder
SIGNAL - signal significant event

Input:

l. Accept chars from VOTRAX unit, check for
and remove SYNC CHAR, separate control
CHARS from data CHARS, if data numeric,
check for legality of numeric data.
Convert 2 numbers into a letter, If
control or status CHAR, signal the event,
if just data, stash in channel buffer

Output:

2. Produces line status changes (answer,

COMMENTS :

hang-up, disconnect)

MCX never issues READ completions to RT-1l.
Instead, it writes the data word directly into
the user buffer, then gives a completion
signal to the background. Causes interrupt
whenever a digit is received.

P

PP T Rt Ve

LR L T

MODULE NAME:

PROGRAM:
SOURCE PILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

INITIALIZATION ROUTIWNES

11/34 VRS

BACRGR.MAC

To allocate memory set up I/0 QUEUES

This is first routine in VRS. entered thru

once only.

all

None

TR, **%
IS, *xw

SP.***%
FlL,ew
DP. ***

"start address START. This code is executed

Parameters defined by PREPIX.MAC

l. Allocates extra QUEUE elements.

2. Allocates space in extended memory for
dictionary.

3. Allocates space in extended memory for
buffers.

4. pDefines extra I/0 channels.

5. Prints version ID.

6. Creates IJSB's one per line.

Then continues to dictionary initialization

a-7

sl aranini

MODILE NAME:

PROGRAM:

SONRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUUBROUTINES CALLED:

FIUNCTION DESCRIPTION:

COMMENTS:

DICTIONARY INITIALIZATION
VRS
BACKGR.MAC

To open channels, read in dictionary and
assure proper communication with 11/70

"Entry point $Fa001l

Code is executed once only.

User Status block parameters

DICT

STRTIM

TRAP TR.QUE
TR.DQE
TR.(JSB

1. Opens. TTy handler.

2. Opens one file per channel for dictionary
reads.

3. Reads dictionary directory blocks into core.

4. Starts VRS clock by loading RT-11 time,

5. Assigns I/O channel numbers to ADPCM.

devices, Touch-Tone® receiver, 11/70 input,

and 11/70 output.

Logs into 11/70 RSX system and runs RETREV.

Prints initialization complete message.

Jumps to BACKGR to await significant events.

6.
7.
8'

buring 11/70 log on, all messages from 1l1/70
are echoed on TTY.

rs g

MODULE NAME:

PROGRAM:

SOURCE FILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:;
STUUBROUTINES CALLED:

FPUNCTION DESCRIPTION:

COMMENTS:

BACKGR

VRS

BACKGR.MAC

Polling loop to check for significant events

Program returns to this module at completion

-of any function.

JMP BACKGR
Parameters defined by PREFPIX.MAC

TRAP TR.SIG
TRAP TR.USB

1. Checks BITMSK and BITMSK+@ POR DEVICES
COMPLETIONS. If no completions, continues
checking.

2. When completion occurs, determines which
channel it was.

3. Uses channel # to determine 1SB address.

4. Jumps to proper completion routine by
vectoring from DONVEC table.

Also prints appropriate error messages upon
detection of errors

P
]
t MODIJLE NAME: DISABL

PROGRAM: 11/34 VRS
b SOURCE FILE: BACKGR.MAC ' -
: PIJRPOSE: Disables a channel .
3

CALLING ROUTINES: DAP -
| CALLING SEQUENCE: RL —= channel # :
g RO —> 0SB ADDR
= JSR PC, DISABL
5 SUBROUTINES CALLED: None
‘ FIINCTION DESCRIPTION: 1. Pushes RO onto the stack.
; 2. Puts channel # into .WRITE parameter block
: DISADW.
: 3. Does a .WRITE to MCX which puts selected
\ channel out of service.

4. Restores RO and returns via RTS PC.

COMMENTS: -
29 -
L]
4
i
§

A-10

MODULE NAME:

PROGRAM:

SOURCE FILE:

P'JRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

ENABLE
11/34 VRS
BACKGR.MAC

Enables Datasets in use by system.

DISCON

None

1. Pushes RO onto the stack.

2. Clears the line timeout flag.

3. Puts channel number into .WRITE parameter
block ENABDW.

4. Does a .WRITE to MCX, which enables one
channel.

5. Restores RO and returns via RTS PC.

i
|
i
i

MODIILE NAME:

) PROGRAM:

: SQURCE PFILE:

'? PIIRPOSE:
- CALLING ROQUTINES:

CALLING SEQYENCE:

COMMON:

SUUBRONTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

NXTCAR

11/34

BACRGR.MAC

Routine decodes consoie commands of the fo-mat

C NN X where NN is a 2-digit channel number.
X is one of the following: N, T, D, R, A, X

This is a read completion routine from TT.

TR.VSB
TTPAR

TRAP TR.USB
PROCN
PROCT
PROCD
PROCR
PROCA
PROCX
PROCCR
PROCLF

1. Pushes R2, R3, R4, and R5 onto the stack.

2. Checks for exit command if so, restores
registers and exits to NXTEXT.

3. Checks for legal channel number. TIf 0K,
resolves NSB address; if error, prints
message and exits to NXTEXT.

4. Checks for legal character from list at
CARCK. Ignores character if not valid.

5. If valid character, vectors to proper
servicing routine. All service routines
exit thru NXTEXT.

‘J

TN

-

et . SRR

- dpps e =

o

MODULE NAME:

PROGRAM:

SQURCE FILE:

PIJRPOSE:

CALLING ROMUTINES:

CALLING SEQIENCE:

COMMON;

SUBROUTINES CALLED:

FUUNCTION DESCRIPTION:

COMMENTS:

NXTEXT
11/34 VRS.
BACKGR.MAC

Exit routine for NXTCAR

NXTCAR PROCR

PROCN PROCA

" PROCT PROCX

PROCD PROCLF
JMP NXTEXT

NXTBUF

None

1. Issues another .READC to TT:
2. Restores saved registers.
3. Bxits from completion via RTS

AT T a1 W

MODULE NAME:

PROGRAM:

SOURCE FILE:

PYJRPOSE:

CALLING ROTTINES:

CALLING SEQUENCE:

COMMON:

SUUBROTTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

PROCA
11/34 VRS.
BACKGR.MAC

Turns on linme timeout for channel specified if
not already on.

NXTCAR

JMP @ VCT-2 (Rl) .

None

1. Sets timeout bit in 0USB.
2. If user on that line, starts a marktime.
3. Exits to NXTEXT.

ol

[

i

il Sl D) o e A oo L MRS

p
?

A

v E

& YR RPN A s s, B Y

MODULE NAME:

PROGRAM:

SOURCE FILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

PONCTION DESCRIPTION:

COMMENTS:

PROCCR
11/34 VRS,
BACKGR.MAC

Treats <CR> -as a valid character, but ignores
it.

_NXTCAR

JMP @ VECT-2 (Rl)

None

1. Returns immediately to NXTEXT.

D

MODULE NAME:

PROGRAM:

SOURCE PFILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STUBRONTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

PROCD
11/34 VRS.
BACKGR.MAC

Disconnects user of channel specified
disables line.

_NXTCAR

JMP @VECT-2 (Rl)

COMMON
TRESET

SIGWAL

1. Causes a hard hang-up.

2. Clears the (SB.

3. Resets the Touch-Tone® line.
4. signals the event via BITMSK.
S. Exits to NXTEXT.

A-16

and

e ik ek o s et m ekt

§
|
|
;

MOOD(JILE NAME:

PROGRAM:

SONRCE FILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STJBROUTINES CALLED:

PROCLF
11/34 VRS
BACKGR.MAC

Treats <LF>-as a valid character but ignores
it.

_NXTCAR

JMP @ VECT-2 (Rl)

None

FINCTION DESCRIPTION: 1. Returns immediately to NXTEXT.

COMMENTS:

-

WPrRNY

i ol el S P M S

3
~
5
K
%
f

e

MODULE NAME:

PROGRAM:

SOURCE PILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :

SUUBRONTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

acen

PROCN
11/34 VRS.
BACKGR.MAC

Turns off trace for channel specified.

NXTCAR

JMP @ VECT-2 (Rl1)

all FL.**% as defined in PREFIX.MAC
S, *xw

MTCLOS

l. Turns off trace.

2. Closes trace statistics file.
3. Exit thru NXTEXT.

13578 LA SNSRI W) AR

3
%
¢
.
}
|
!

MODIJLE NAME:

PROGRAM:

SOURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STIBROUTINES CALLED:

FUUNCTION DESCRIPTION:

COMMENTS:

PROCR
11/34 VRS.
BACKGR.MAC

Resets and enables data set for channel
specified.

_NXTCAR

JMP @ VECT-2 (Rl)

comMMON
TRESET

ENABLE

Initializes the buffers.

Puts a hang-up indicator in status field.
Resets channel. .
Enables the line.

Exits to NXTEXT.

o e o e+ a3 SRR, T g e R, T Y W T

"‘_1;;‘

o R

o &

e SN AP b - iy Y WS F i Miie 1ol 2

kL

‘ *_sj‘fr‘ 5

MODULE NAME:

PROGRAM:

SQURCE FILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STJBROMNTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

i — A S MRS IS A

PROCT
11/34 VRS.
BACKGR.MAC

Lt

Turns on trace for specified channel
NXTCAR .
JMP @ VECT-2 (Rl) N

all PL.*** as defined in PREFIX.MAC
(S, **%*

OPNTR
1. Sets trace but.

2. Opens trace file.
3. Bxits to NXTEX.

PR

s e ARG T

aA-20

:
4
!
:
}
§
{

SERUGN L 2 o T L PR S Bt 2 .-

MODULE NAME:

PROGRAM:
SOURCE FILE:

PIJRPOSE:

CALLING ROMTINES:

CALLING SEQUENCE:

COMMON:

STJBROUTINES CALLED:

PIINCTION DESCRIPTION:

COMMENTS:

PROCX

11/34 VRS.

BACKGR.MAC

Turns off line timeout for channel specified

NXTCAR

‘JMP @ VECT-2 (Rl)

None

1. If timeout is already disabled, exits
immediately. .

ELSE:

2, If timeout is not disabled, timeout by
setting a bit in USB. T1f channel in use,
cancels marktime and exits else exits
immediately.

T

£
MODIJLE NAME: SIGNAL {
PROGRAM: 11/34 VRS ;
1 SOQURCE FILE: BACKGR. MAC
f PIIRPOSE: Given channel number, sets appropriate bit in)
1 - BITMSK or BITMSK+2. ’
1 .
' CALLING ROUTINES: PROCD .
‘ MRKTIM TIMOUU
' SP.DIS MCX.SYS ‘
j CALLING SEQIENCE: JSR PC, SIGNAL ‘
a COMMON: US.CHN ’
' SUBROTJTINES CALLED: None

FONCTION DESCRIPTION: 1. Pushes Rl1, R2, R3 onto the stack.

2. Shifts a 1 into Rl and R2 the same number
of places as the channel number.

3. Puts Rl into BIT™MSK+2 and R2 into BITMSK
via BIS instruction.

4. Restores Rl, R2, R3, and returns.

3
‘,3 COMMENTS: .
¥ ‘ .
¥ 3
5 .
3
’ .
1
i [
4
4
]

A-22

;
'
H
3
¢
,

MOODULE NAME: STRTIM

PROGRAM: 11/34 VRS
SOURCE PILE: BACKGR.MAC
' PIJRPOSE: Starts VRS clock

1 T- CALLING ROUTINES: DICTIONARY INIT.

. . CALLING SEQUENCE: 'JSR PC, STRTIM

j ’ COMMON: TIME, TIME +2

3 SUBROUTINES CALLED: $MLI (Multiply Routine)

: PUNCTICON DESCRIPTION: 1. Gets GMT from TCU-100.

S 2. Converts to seconds since midnight.

2 3. Stores 2-word result in TIME and TIME+2.

4 4. Issues a l-second marktime so next event
X occurs as a completion routine.

MY, o
7

b\ el el el e Shen g

! A-23

AT e ot

b
4
:
§
]
¥
i

il LT

IR AR o5 1ot A

MODILE NAME:

PROGRAM:
SONRCE FILE:

PTTRPOSE:

CALLING ROfJTINES:

CALLING SEQUENCE:

COMMON::

SUBROITINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

TRESET

11/34 VRS

BACKGR.MAC

nconditionally resets all Touch-Tone® lines.

DISCON PROCD PROCR SP.DIS

"JSR PC, TRESET

None

1.
2.

3.

4'

Pushes RO onto the stack.

Puts channel number into write parameter
block TRESDW.

Does a .WRITE to MCX which resets all
channels.

Restores RO, then returns via RTS PC.

MODULE NAME:

PROGRAM:

SOURCE PFILE:

PUYRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

CANCEL
11/34 VRS
DAP.MAC

Deletes last Touch-Tone® input in response to
user command *3

BACKGR

TRAP TR.MOD
SPEAK
CLRTTK

1. Ignores command if user in briefing mode or
being disconnected.
Removes one locid from list if in entry mode.
Deletes response if yes/no.
Speaks "RE-ENTER" to user.
Returns,

MODNLE NAME:

PROGRAM:
SOURCE PFILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROMTINES CALLED:

FINCTION SEXCRIPTION:

COMMENTS:

CLRTTR
11/34 VRS.SAV
DAP.MAC

Enables Touch-Tone® key-ins for specified
channel,

CANCEL RPTSKP

"INVALK SKIP

None

1. Enables Touch-Tone inputs by setting
appropriate bits in 7SB flag word (US.FLG).
2. Exits via RTS PC.

3 MOD!JLE NAME: COMMON

, PROGRAM: 11/34 VRS

5 . SOURCE FILE: DAP.MAC

E . PIURPOSE: Initializers JSB for new user
;) CALLING ROUTINES: RING

E . CALLING SEQUENCE: 'JSR PC, COMMON

;:) COMMON:

SUBROUTINES CALLED: ECHDON
TRAP TR.QUE

PIONCTION DESCRIPTION: 1. Checks if ECHO buffer is in use.
2. Queues an element onto RDQUE.

3. Initializes "JSB PARAMETERS.

.AM .” »

. COMMENTS:

——_— —— - - —————T — - s ovasm 51
MODNLE NAME: DAP)
PROGRAM: 11/34 VRS.SAV 3
SONRCE FILE: DAP.MAC 1
PJRPOSE: Dialogue prompt speaking routine. : ;
CALLING ROMTINES: DAPCOM, BACKGR .

CALLING SEQUENCE:

1 COMMON:
3 SUBROVITINES CALLED: SPEBAR 1
All Sp, *=» special functions, using routine }
specified in TABLE (VECTOR) 1
o FUNCTION DESCRIPTION: 1. Gets pointer to next protocol field.) ﬁ
y- 2. Executes special function before prompt is
1 specified.

3 3. Speaks prompt.
z 4. Jumps to DAP if cycle request else to
BACRGR.

COMMENTS:

R T

PR I P . » g

A-28

LR Tl RN

MODIILE NAME: DAPCOM
PROGRAM: 11/34 VRS
SQURCE PFILE: DAP.MAC
PIIRPOSE: Dialogue protocol cycling routine
'
h CALLING ROUTINES: BACKGR, DAP
. CALLING SEQUENCE: ' !
i COMMON:
2 STTBROUTINES CALLED: SYNTAX
ECHO
3 All SP.*** yvia dialogue TABLE pointers, at
L; vector f
'w FIINCTION DESCRIPTION: 1. Gets cycle pointer from fJS8. i
k 2. Performs special function if any in table
4 before SYNCHK. i
3 3. Performs syntax check: ;
{ 4. Performs special function before echo if '
j entry in table. ‘
'4 5. Bchos response if required. i
: 6. Performs special function before branching :
‘ if entry in table }
' . 7. Gets pointer to next dialogue table- |
R ‘ depending on yes, no or normal response, ?
i . 8. Continues to DAP. E
. COMMENTS: |
o R |
| %

WY s .

o e, \e s

sy e e A

»
U

N

o

s s e 8 RGN ol YN Y ewer
fffff —_ N e WP TR A T LA RNV g h

? MODULE NAME: DECRM
’” PROGRAM: 11/34 VRS.SAV
4 SOURCE FILE: DAP.MAC
PURPOSE: Decrements message unit number during repeat

and recycle.

CALLING ROUTINES: RPTSKP

CALLING SEQUENCE:

W TR v TR TR T

i

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Adds USB BASE ADDRESS TO OFFSET IN RS.
2. Decrements message unit number.

b 3. If resulting message unit number is less

4 than 0, repleces that with 9.

MODULE NAME:

PROGRAM:

SOURCE PILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUUNCTION DESCRIPTION:

COMMENTS:

DISCOWN

11/34 VRS.Sav

DAP.MAC

Disconnects user at end of briefing

BRIEFR

ECHDON RTNQUE COMMON
MRRKTIM CHKREQ RPTREQ
BLDBRF TRESET REPDEC
SEND ENABLE TR.MOD

TR.QUE

1. Cancels channel's TIMEOUT marktime.

2. Interrupts speech in progress.

3. Returng ECHO buffers,

4. Returns QIENE elements.

5. Informs 11/70 of disconect,

6. Performs disconnect.

7. If not a console disconnect (see section
6.1.3.4), enables line.

8. Exits to BACKGR.

MODIILE NAME:

PROGRAM:

SOURCE FILE:

PITRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

ECHO

11/34 VRS.SAV
Echoes user response

DAPCOM

‘JSR PC, ECHO

PREFIX.MAC defined parameters

TRAP TR.DQE
DICT
SPEAK

1. Resolves input string.

2. Dequeues an element from RDQUE.

3. ADDS "..." before phrase for short delay
checks for phonetic echo.

4. Translates phrase by call to DICT.

5. Busy's out echo buffer.

6. Speaks.

Exits via RTS.

A-32

¢t

B | RIS

MODIULE NAME:

PROGRAM:
SOUURCE FILE:

PIJRPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
SUBROUTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

"JSR PC, ECHDON

ECHDON
11/34 VRS
DAP.MAC

Returns dynamic buffers used in echo function

COMMON

PREFPTX.MAC defined parameters

TRAP TR.QUE

1. If in briefing mode echo done flag is
cleared, then QUEUR ELEMENT AT US.SPK is
returned to RDQUE.

2. If in-correction mode, correction flag is
cleared, then QUENE element at 0SS, RCV is
returned to RDQUE.

3. Return via RTS PC.

a |

; MODILE NAME: GO

’3 PROGRAM: 11/34 VRS.SaV

A SONRCE FILE: DAP.MAC

' PUJRPOSE: Resumes briefing in response to user command *4

CALLING ROUTINES: BACRGR By
CALLING SEQUENCE:

2 COMMON:: .
o STIBROUTINES CALLED: TRAP TR.MOD

3 FUNCTION DESCRIPTION: 1. Take a Trace.

e 2. Resume speech only if interrupted by stop

i command.

'l 3. Exit to BACKGR-

3 COMMENTS:

3

$

}

;

b

L

b

A-34

TR v

%
g
1
|
'

SRy AT e srra i

o e e A P N T T L M AR O A % i . T ————

MODULE NAME:

PROGRAM:

SOURCE FILE:

' PURPOSE:
CALLING ROUTINES:

. CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

-

INVALK
11/34 VRS
DAP.MAC

Handles invalid keystroke entries

. BACRGR

TRAP TR. MOD
SPEAK
CLRTTK

1. Puts invalid keystroke flag in status word
of USB.

2. Resets input buffer/

3. Speaks message "invalid entry".

4. Enables more Touch-Tone® inputs.

S. Exits to BACKGR.

A-35

e eaprg

MODULE NAME: MORSPK

PROGRAM: 11/34 VRS.SAV

SOURCE PFILE: DAP.MAC

PIJRPOSE: Checks if more inputs to speak

CALLING ROUTINES: MRKTIM

CALLING SEQUENCE:

COMMON:

STUBROITINES CALLED: TRAP TR. JSB
READ
TYRANT

FUNCTION DESCRIPTION: 1. Saves R2, R3, R4, and RS on stack-
2. Gets 11SB address.
3. T£ more inputs
READS inputs to double buffers
Restores registers
Exits completion routine
If no move inputs, it exits to Backgr.

COMMENTS:

oy aactinegh et il a il AN, .

MODILE NAME:

PROGRAM:

SONRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

‘Marktime completion routine for MRKTIM

_issued by MRKTIM routine

MRRCOM
11/34 VRS
DAP.MAC

Entered at completion of marktime request

STGNAL

1. REsolves USB address.

2. Sets up RETRVN FLAG IN VS.FLG of USB.
3. Signals event by JSR PC, signal.

4. Returns via RTS PC.

et ey

MODULE NAME:

PROGRAM:

SONRCE PILE:

PIIRPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROTTINES CALLED:

FUONCTION DESCRIPTION:

COMMENTS:

MRKTIM
11/34 VRS
DAP.MAC

To wait an interval of time specified by R4

DISCON

None

1. Pops a word off the stack to save in S8
for return address.

2. Stores Rl in 1JSB save area.

3. Gets time parameter from R4 and issues MRKT
request.

4. Returns to polling loop (JMP BACKGR).

et AW i e

MODOLE NAME: NO

PROGRAM: 11/34 VRS

SONRCE FILE: DAP.MAC

PUURPOSE: Sets no response indication in 1sB permanent
. flag bits and line status word.
. This occurs as a result of user answering a

'yes/no query with a no.

CALLING RONUTINES: BACKGR

: CALLING SEQUENCE:

COMMON:

: SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1 Sets appropriate bits in 7S, PER and in Rl.
A* 2. Branches to CHUSB.

3. CHUSB puts Rl into ©9S.STA and returns to
¢ DAPCOM,

COMMENTS:

:
1;,
2
%
{

A il s PR PN Sl

MODULE NAME:

PROGRAM:
SOURCE PILE:

PYRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

PUNCTION DESCRIPTION:

COMMENTS:

NORMATL

11/34 VRS
DAP.MAC

Sets normal response indication in nsB

BACKGR

None

1. Sets appropriate bits in Rl.
2. Puts Rl into VS.STA and returns to DAPCOM.

MODULE NAME:

PROGRAM;

SOURCE FILE:

PUYRPOSE:

CALLING ROMNTINES:

CALLING SEQUENCE:

COMMON:

STUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

PTJTTR

11/34 VRS.SAV
DAP.MAC

Clears out talk required list (TRL)
RING

TRAP TR.DQE
TRAP TR.QUE

1. Calculates TRL list head ADDR.

2. Dequeues an element.

3. Queues element onto RDQUE.

4. TLoops until no elements in TRL, then
returns to BACKGR.

e WA i

o inid i ¥

MODOLE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SIBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

.BACKGR

all FL,**» as defined in PREFIX.MAC
US.*w*
_TR.'*'
ST. L X 2

TRAP TR.MOD

RECYC
11/34 VRS
DAP.MAC

In briefing mode, restarts briefing from
beginning in prompt mode, restarts from “"hello”

1. Puts beginning of protocal indication in
line status field.

2. If in briefing mode, starts at beginning of
briefing by putting message unit #00 in
171S.SPK and executing the repeat function
(JMP REPEAT),

3. If not in briefing mode, re-starts the ’
session by executing the disconnect logic .
(BR DISCON).

A-42

S M k. T uty SNIL ARSI

.y

MODULE NAME:
PROGRAM:
SOURCE FILE:

PURPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

REPEAT
11/34 VRS
DAP.MAC

Repeats last message unit

RPTSKP
TRAP TR.MOD

1. Modifies line status field of USB.

2. If in briefing mode, goes to RPTSKP. 1If
not, waits for completion of speech before
repeating last prompt.

3. Exits to BACKGR

i, el o> D Ao R

MODULE NAME:

PROGRAM:

SQURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBRONTINES CALLED:

FIUNCTION DESCRIPTION:

COMENTS:

RING
11/34
DAP.MAC

Ring indication routine for all channels.

BACKGR

COMMON PITTR
TR.MOD

l. Executes common setup routines,

2, Sets ring indication in 0SB via tR.MOD.
3. Sets up line timeout if not disabled (15
min).

Sets briefing mode to prompt.

Clears out TRL.

Exits to DAP.

DUl
e o

. o' .

.

et A A A A bl . o M IO

MODIILE NAME: RPTREQ (Also REPDEC)

PROGRAM: 11/34 VRS.SAV
SOURCE PILE: DAP.MAC
. PIYRPOSE: Returns elements to RDQUE
{ ' CALLING ROUTINES: DISCON

CALLING SEQIENCE:

COMMON:

k SUBRONTINES CALLED: TRAP TR.QUE

1 FONCTION DESCRIPTION: 1. If entered thru RPTREQ, Qqueues one element,

1 address of which is in RS, to RDQU® and

] exits to BACKGR.

/ : 2. If entered thru REPDEC, queues one element,
address of which is in R4, to RDQUE and
exits to BACKGR.

COMMENTS:

R

e iy

A-45

Lo mdprm e . tn o mmt

o -

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPQSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

RPTSKP
11/34 VRS

DAP.MAC

Routine common to SKIP and REPEAT commands in
briefing mode only

REPEAT

SKIP

JMP RPTSK
BR RPTSKP

All

BLDBRF
SEND

RTNQUE
CHRREQ
CLRTTK
INCREQ

P or

TR . *®*%*
US. *#%
FL.*%*

as defined in PREFIX.MAC

TSTRCV
SENDRT
SPEAK

TR.QUE

1. If briefing done flag is high, ignores
repeat skip, and exits to GO-

2. 1f repeat request, backs up to beginning of
message unit and returns to BACKGR.

3. If skip request, dumps message unit
pointers, returns QUEUE elements,
re-enables Touch-Tone® inputs and exits by
JMP BRIEFR.

e)

LR Y

e o'

I X.

e e/

E
3
1]
g
3
3
)*
¥

MODULE NAME:

PROGRAM:

SONRCE FILE:

PUURPOSE:

CALLING RO(TINES:

CALLING SEQUENCE:

COMMON:

STUBROUTINES CALLED:

PUUNCTION DESCRIPTION:

COMMENTS:

RTNQUE
11/34 VRS
DAP.MAC

Dequeues all- QUEUE elements from speak QUENE
and returns them to reads QUEUE

'RPTSKP DISCON TOGO

JSR PC, RTNQUE

All TR, ®** defined in PREPIX.MAC
JS, *xw
Sp. ***
PL. *ww
DP. ®**

TRAP TR.DQE
TRAP TR.QUE

1. Determine speak Q address from IS8 address.
2. Dequeues an element.

3. If no element, exit.

4. Queues the element to RDQUE.

5. Go back to step l.

MODULE NAME:
PROGRAM:
SOIIRCE PILE:

PURPOSE:

CALLING RODTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

'BACKRGR
CLRTTK GO
RPTSKP TR. MOD

SRIP
11/34 vRs.sAv
DAP.MAC

Skips to next message unit in response to user
command =5

1. Modifies line status block.

2. Checks if user is in briefing mode. 1f
not, enables Touch-Tone and exits to
BACRGR inputs.

3. Checks if briefing is done, if so ignore

command.,
4. Jumps to RPTSKP to skip report being spoken.

RS, B . NP oSN P e P i W

R A R

MODULE_NAME: STOP

PROGRAM: 11/34 VRS.SAV

SOURCE FILE: DAP.MAC

PURPOSE: Stops briefing in responsé to user command *
t. CALLING ROUTINES: BACKGR

n . -] —
G b S T, T M W s TN
e A o, 7 e LI 0

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR.MOD

PUNCTION DESCRIPTION: 1. Takes a trace,

2. Interrupts speech if in briefing mode.
3. Bxits to BACKGR-

COMMENTS:

*t

A-49

w5

Y Pl o tee

§

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING RONTINES:

CALLING SEQUENCE:

COMMON:

STUBROUTINES CALLED:

PIUNCTION DESCRIPTION:

COMMENTS:

M P i ST S

g S

TIMONN
11/34 VRS.sav
DAP.MAC

Line timeout completion routine

te

RING issues a .MRKT which calls TIMOUU upon e)

_completion

8o

TRAP TR.USB
SIGNAL

1. Determines 1SB addr of offending channel.
2. Sets exit bit in 0SB.

3. Signals event to BACKGR.
4. Returns from completion routine.

A-50

T Vew - &

MODIJLE NAME:

PROGRAM:

SQURCE PFILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUUBROMNTINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

TOGO
11/34 VRS.sav
DAP.MAC

Waits for end of current message, then speaks
timeout message.

'BACKGR

TRAP TR.DQE
TR.QUE

MARKTIM

RTNQUE

PIITTR

SPEAK

SP.DIS

1. Turns off briefing mode.

2. Waits 3 seconds.

3. Dequeues any talk header elements and
returns them to free element pool.

. Also returns user's read header elements to
free pool.

. Returns speak Queue elements.

. Returns TRL Queue elements.

. Speaks timeout message.

. Waits 3 seconds.

. Hangs up on user.

. Returns to polling loop (BACKGR).

Rt e r——

i MODULE NAME: YES
} PROGRAM: 11/34 VRS
SOURCE FILE: DAP .MAC)
PURPOSE: Sets YES response bits in permanent flag and f
line status words of USB -
CALLING ROUTINES: ' BACKGR .

3 CALLING SEQUENCE:

- COMMON:
SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Sets appropriate bits in USPER and in Rl.

{ 2. Branches to CHUSB.
: 3. CHUSB puts Rl into VS.STA and returns to
K DAPCOM.

]

? MODULE NAME: DICT-DICTST

PROGRAM: 11/34 VRS
| SOURCE FILE: VOCAB.MAC .
F + PURPOSE: Translate ASCII text into VRS code pairs ’
: . CALLING ROUTINES: Dictionary initialization in BACKGR.MAC and
k . ECHO in DAP.MAC |
? ’ CALLING SEQUENCE: Call DICTST, which calls DICT as a marktime
e completion routine

COMMON:

SUBROUTINES CALLED: SIGNAL

FUNCTION DESCRIPTION: 1. R2 -~ Address of text string to be
translated.
2. R3 -- Address of word pair
1 word - byte length of translation
2 word ~ address of translation.

COMMENTS : DICTST is called to set a one second marktime
which will call DICT as a completion routine.

A-53

AD=Al02 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/6 17/2 ‘
TWENTY=CHANNEL VOICE RESPONSE SYSTEM.(U)
JUN 81 DOT-TSC-IM.S
UNCLASSIFIED FAA-RD-81-51

u

A

% MODIILE NAME: ALPHA

3 PROGRAM: 11/34 VRS

“ SOUURCE FILE: SPEC.MAC .
PTYRPOSE: Check input buffer characters for proper locid

syntax - alpha-numeric '

CALLING ROUTINES: SYNTAX)
CALLIN SEQUENCE:]

% COMMON: SYNFLG: Flag for lst character check - then

vf '/' will be allowed

; STUBROUTINES CALLED: VALID, INVALA (SYNTAX), ANEX
FUNCTION DESCRIPTION: l. Input: R3 - input buffer pointer,

2. Output: C-Bit set for invalid format.

COMMENTS:

; A-54

- s S RN B AN T

MOD!LE NAME: ASRYNO

PROGRAM: VRS (l1/34)
SO'IRE PILE: SPEC.MAC
PIYRPOSE: Sets error flag if last response not yes.
CALLING ROUTINES: SP.FCT SP.NOT
SP.FER SP.PTR
'SP.LOB SP.PRP
* SP.SYR SP.SAS
CALLING SEQUENCE:

COMMON: FL.YER
UR.PER

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: RO ~ USB address.
2. Output: C-bit set for error return,

COMMENTS : The return address is popped off stack if
error, that is, not a yes response.

T 6

i £ A h ek WA

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBRONTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

"BACKGR

BRIEPR
VRS (l1/34)
SPEC.MAC

Check for phone hang up; if so jumps to
disconnect logic. If not, gets next protocol
address and puts the return address on stack-

Prefix parameters:
FL.TRN
IS.PER
S .DAP
VECTOR
7S.SAl
JS.SA2

DISCON

1, Input: RO - TSB address.
2. Output: Rl - protocol vector address
SP - saved return address. ’

A-56

MODIJLE NAME:

PROGRAM:
SOJRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

CKHNTIM

11/34 VRS

SPEC.MAC

To check input characters are numeric

NUMINP

NINVAL

l. Input: R3 - pointer to character to be
checked,

2. Output: Calls 'NINVAL' if character not
number.

MODIJLE NAME:

PROGRAM:
SOURCE PFILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::

SUBRONTINES CALLED:

PIUNCTION DESCRIPTION:

COMMENTS:

NUMBER

11/34 VRS
SPEC.MAC

Count number of characters process and check
that character is numeric

DAP

SYNFLG: used as character processed flag
NUMPLG: count of characters processed

INVALN (see SYNTAX)

Input: R3 - input buffer pointer.

IR B, Mo S R

o Rk e i

s 53
» W

1 g il Wt NI o S STy

RN, TS Al e Wi

MODULE NAME:

PROGRAM:

SQURCE FILE:

PIYRPOSE:

CALLING RONUTINES:

CALLING SEQUENCE:

COMMON:

STIBRIITINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

CKHNUM
11/34 VRS
SPEC.MAC

To check input characters are numeric

NUMINP

NINVAL

1. Input:

R3 - pointer to character to be

checked,

2. Output:
number.

Calls

A-59

'NINVAL'

if character not

o ————

pyem——————rrt e A

T ———rp————— e S et b A

MODMJLE NAME:

PROGRAM:
SONRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

COMMON:

SYBROUTINS CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

SP.BBL

VRS (11/34)
SPEC.MAC

Enter channel identifier, and briefing mode
into buffer and initialize location flags and
counters

‘SP.LST

1S .BEG PL.LST
JS.TRM FL.PFIR
JS.BRF
7S .CUR
US.RCV
JS.PER

None
1. Input: RO - 1SB address:

2. Output: Channel identifier and briefing
mode entered into buffer.

A-60

MODULE NAME:

PROGRAM:
SOURCE PILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQIENCE:

comMon:

SUBRONTNES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

SP.BRE

VRS (11/34)
SPEC.MAC

Moves the briefing mode into the buffer

DAP

Us.BEG
UJS.IND
1S.BRP
UJS.COR

None

1. Input: RO - USB address

JS.BEG - contains beginning point
for buffer

US.BRP - contains briefing mode.
Output: buffer now contains briefing mode,

N
.

MODILE NAME:

PROGRAM:

SONRCE PFILE:

PIJRPQSE:

CALLING ROUTINES:

CALLING SEQUENCE:

ComMoN:

STTBROITINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

SP.BR1
VRS (11/34)
SPEC.MAC

Check briefing mode input against table of
valid modes ('Prompt,’ ‘Enmode,' 'local’) and
inputs valid mode into buffer

‘DAP

JS.INP

UJS.CUR
JS.8RF

INVALR, SP.BRE

Input: RO 11S8 address.

s e e A TOAEASY, e A S AT O ot s AN i 005 Lol AT AT PN R

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

SP.CAR
VRS (11/34)
SPEC.MAC

1. Calculates number of characters in the
input buffer

.2. Saves the return addresses in the USB JMPS

to NSPLA to send data

SP.CsV
SP.ETA
SP.FTR
SP.LST
SP.WRN

US.CUR
US.BEG
Us.sal
US.SA2

DISPLA

1. Input: RO - USB address.
2. Output: R4 - number of characters.

MODULE NAME: SP.CLa N
PROGRAM: VRS (11/34)
SOURCE PFILE: SPEC.MAC .
PITRPOSE:) Places the terminal identifier in lst buffer .
position and saves the next position as \
current location pointer and last valid input -
pointer '
: CALLING ROUTINES: BLDBRF .
| SP.ENR
3 SP.LST
3 SP.SMD
SP.WRN
* CALLING SEQUENCE:
COMMON:: US.BEG 5
. 1S .TRM ;
Y S .CUR
- JS.IND
g SUUBROUJTINES CALLED: SP.CLR §
: * k
) FUNCTON DESCRIPTION: TInput: RO USB address, . :
3 COMMENTS: .
% .]
3 .
3 H]
3 |
{ |
i
4

A-64

il 4

> TP W, i 90

L SRS POV

P

MODULE NAME:

PROGRAM:

SOURCE PILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQIENCE:

COMMON :

STUBROUTINES CAULLED:

FOUNCTION DESCRIPTION:

COMMENTS:

‘DAP

SP.CLR

VRS (11/34)

SPEC.MAC
Clear the buffer positions not used, that is,

those following the current buffer position as
defined by US.CUR.

.LVBU®
JS.CUR
JS.BEG
None

Input: RO - NSB address.

A-65

MOCTILE NAME: SP.CsVv

: PROGRAM: VRS (11/34)

: SONRCE FILE: SPEC.MAC

i PIYRPOSE: To call SP.CAR for preparation to send message
i CALLING ROUTINES: DAP

l
i CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED: SP.CAR

FUNCTION DESCRIPTION: INPUT: user status block address,

COMMENTS:

A-66

R i San . A g A e

DA ¢ oo AT & U Sl

MODULE NAME: SP.DIS
PROGRAM: 11/34 VRS
SONJRCE FILE: SPEC.MAC
‘ PURPOSE: Initialize 1S8, reset Touch Tone® line, and

disconnect line

CALLING ROUTINES: TOGO

¥ . CALLING SEQUENCE:

COMMON:: 7S .PER
, . 7S.CHN
. FL.DID
US.PLG

STJBROUTINES CALLED: COMMON, TRESET, SIGNAL, BACKGR

FIINCTION DESCRIPTION: 1. Input: RO - JSB address-
2., Output: Rl - channel number.

W andty A

COMMENTS: SP.DDD is same as SP.DIS except for ‘'excessive
time' terminator signal is first set.

‘e

R W RS 3G Al oo df % A R S

s A

AT I MR, PSR e 1

A-67

MOD{LE NAME:
PROGRAM:

SOURCE PFILE:

PORPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:
COMMON;

SUBRQUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

SP.ENR
VRS 11/34
SPEC.MAC

Clear out input buffer, insert 'sSpD0‘' for a
'scan data' request -

DAP

PL.YER
1S.PER
SP.CLa

SP.CLA

Input: RO - S8 address.

, .
'ﬂ“-.'\“ AR S G DN WA e 2 -

~ e

MODJLE NAME:

PROGRAM:

SONRCE PILE:

PIYRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBRONTINES CALLED:

FOUNCTION DESCRIPTION:

COMMENTS:

SP.ETA

11/34 VRS
SPEC.MAC

Clears 6 characters in input buffer and update
17SB input buffer pointer, US.CUR.

DAP

JS.CUR
SP.CAR

Input: R - 8B address-

i
)
i
é
]

it

I CHUT TS S e

MODIILE NAME:
PROGRAM:

SOURCE PILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

SP.FCT
VRS (1l1/34)
SPEC.MAC

For En route.mode, enters Pr's and synopsis
into input buffer

DAP

ASRYNO, RPTYP
Input: R3 input buffer pointer-

bl X'}

3

MODNLE NAME:

PROGRAM:

SOURCE PILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STIBROUTINES CALLED:

PINCTION DESCRIPTION:

COMMENTS:

SP.FDR
VRS (11/34)
SPEC.MAC

To determine if PD's requested, clears C-bit
if yes sets C-bit and sends data if not.

DAP

FL.PHE
118 .7LG

SP.CAR
1. Tnput: RO - 0SB address.

2. Output: C-bit set if PD's not requested
cleared otherwise.

MODOLE NaME:
M
PROGRAM:

SOURCE PILE:

PURPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS::

SP.FER

VRS (11/34)
SPEC.MAC

To add FD-request to output buffer

DAP

US.CUR
7S.INP

ASRYNO

Input: RO - 0OsB address,

R3 - output buffer pointer.

[

L A

MODULE NAME: SP.?TB

PROGRAM: 11/34 VRS
SOURCE FILE:" SPEC.MAC
3 PIJRPOSE: Sets report value to PT, then calls Check B to
\ . check for reports available, none available
. - species none in effect message
- . CALLING ROUTINES: .DAP
'] ' CALLING SEQUENCE:

3
} COMMON:
E‘_

SUBROUTINES CALLED: CHECKB (in SP.SaB)

FUNCTION DESCRIPTION: 1. Input: R2- PT value.
2. Output: R3 - pointer to none in effect
message-

COMMENTS:

MODITLE NAME:
PROGRAM:
SONRCE PFILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:
COMMON:

SUBROUTINES CALLRD:

FUUNCTION DESCRIPTION:

COMMENTS:

SP.HYP

VRS (11/34)

SPEC.MAC

Insert a hyphen into input data

DAP

7S.COR
None
1. Input: RO - 0SB address.

2, Output: R3 - points to current location
pointer (before hyphen).

A-74

A A 5 TP AR AN Dl s o2 3 2 W

MOD/JLE NAME: SP.LOB

PROGRAM: VRS (11/34)
5 SONRCE PILE: SPEC.MAC
& ‘ PIURPOSE: ti?o: Bn route mode; enters SA's, UA's, NO's
: . nto output buffer
‘. : CALLING ROUTINES: DAP
: CALLING SEQUENCE: ’
) COMMON:

SUBROUTINES CALLED: ASKYNO, RPTYP

FIUNCTION DESCRIPTION: 1. Input: R3 - output buffer pointer.
2. OQutput: R3 - output buffer pointer.

COMMENTS:

A-75

AN AT T R e oy

PO

TRy TNy

T W

MODIJLE NAME:
PROGRAM:

SOURCE FILE:

PTRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STJBROUTINES CALLED:

FIUNCTION DESCRIPTTION:

COMMENTS:

SP.LOC
VRS - 11/34
SPEC.MAC

To check if loc entered is valid format and if
10 locs entetred. ’

DAP

0S.INP PL.LST
US.CUR PL.LOC
71S.RCV
171S.PER

INVALK

1. Tnput: RO - NS8 address.
2. Output: US.PER - last loc flag set on 10th
loc
- loc entered flag set if
format valid
US.RCV+2 -« increment total of locs
entered
C-bit - set for abnormal exit -
invalid loc or 10th loc.

it A i

(5]

’af@
{
i

[. VISR RV, gy

L MADRORC ARG e g s/ By

e ——— 2 Vet . P AV A I 70 b AT

'MODMLE NAME:

PROGRAM:

SONRCE PFILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STUBRONTINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

bt i htin el Sl o

SP.LST
VRS (11/34)
SPEC.MAC

Checks if loc entered was last loc and/or
correction mode if not: normal return to DAP,
if yes, the data are sent. If select mode, the
report types are also sent-

DAP

FL.LST RDQUE

1S .PER TR.QUE - QUEUE trap address
FL.COR US.DAP

FL.YER 1JS.BRP

UJS.RCV

UsS.CluR

US.BEG

DISPL2, SP.BBL. SP.CAR, SP.CLA
1. Input - RO - USB address-

2. Output - C-bit set if not local mode
briefing when last location processed.

A-77

Ly O ST R T

{ MODULE NAME: SP.MOD

; PROGRAM: VRS - 11/34

: SOURCE FILE: SPEC.MAC _

E PJRPOSE: Checks if last response a 159 - '!' if yes

sets up for briefing mode query

CALLING ROMTINES: DAP

CALLING SEQUENCE:

COMMON: JS.CIR
NS.DAP

SUBROUTINES CALLED: None

FONCTION DESCRIPTION: 1. Input: RO 0SB address,
2, Output: #2 in dialogue protocol US.DAP-

COMMENTS: This is not used (commented out) while in
prompt mode only.

N

D g e e

b e W e A

O

L s it

MODULE NAME:

. PROGRAM:
: SOURCE FLE:

PJRPOSE:

. CALLING ROUTINES:

CALLING SEQIUENCE:

COMMON:

STJBROTTINES CALLED:

PIUNCTION DESCRIPTION:

COMMENTS:

- e, 0

e P W v
.

SP.SAB

11/34 VRS
SPEC.MAC

Check for sa's available, if not, speak 'none
in effect' message

DAP

JS.RPT
NONEFF
DP.ABN
NS.DAP
FL.DIS
1S.FLG

SPEAK
1. Input:

2. Output:
spoken.

RO - TSB address.
R3 - pointer to message to be

A-79

3 T e o

Tr——

e ——
i,

- WL

MODULE NAME:
PROGRAM:

SONURCE FILE:

PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON;

SUUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

SP.SMD

VRS (11/34)
SPEC.MAC

To determine if briefing mode is
'Prompt’ and points to proper dia

DAP

US.BRF
1S .DAP

SP.CLA

Input:

RO - US8 address-

'Bn route' or

logue.

o

e,

MOD/JLE NAME:

PROGRAM:

SOURCE FILE:

PIIRPOSE:

CALLING RQUTINES:

CALLING SEQUENCE:

COMMON:

STUBRONTINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

l. SP.SYR
2, SP.NOT
3. SP.FTR
4, SP.PRP
5. SP.SAS

11/34 VRS
SPEC.MAC

To put request in output buffer for:

‘1. Synopsis

2. NOTAMS

3. Terminal Forecasts (FT)

4. Pilot REports (7A)

5. Surface observations (SA's)

DAP

ASKYNO, RPTUP

1. Input: R3 - output buffer pointer.
2. Output: R3 - updated output buffer pointer
past inserted request.

—— o T T 3

MODIILE NAME: SP.TIM
PROGRAM: VRS (11/34)
; SOJRCE FILE: SPEC.MAC
5 PHYRPOSE: Gets present time, disablés Touch-Tone® input,
t speaks time, and initializes users buffer,
} CALLING ROUTINES: DAP

CALLING SEQUENCE:

COMMON: Us.sal PL.DIS
Us.FLG
JS.CUR

SUBRONUTINES CALLED: ECHO, COMMON, GETTIM

FIUNCTION DESCRIPTION: Input: RO - 1SB address.

COMMENTS:

Faa s I

s

A-82

RS Y

e e - “'31

MODOLE NAME: SP.WMD

PROGRAM: VRS (11/34)

SONRCE PILE: SPEC.MAC

PIIRPOSE: Checks if briefing mode local if not, i
; returns. If yes, pops return address of
{ s stack, sets dialogue protocol for local and
_ . jumps to DAP,
1 . CALLING ROUTINES: 'DAP
3 '
B . CALULING SEQUENCE:
. 174
; COMMON: US.DAP

7S .8RF

STIBRONTINES CALLED: None

PIINCTION DESCRIPTION: 1. Input: RO - ISB address.
2. Output: 1S.DAP set to 6§ if briefing mode
local.

MODULE NAME:
PROGRAM:

SONRCE PILE:
PUURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

comvoN:

SUBROUTINES CALLED:

PONCTION DESCRIPTION:

coMMENTS:

SP.WRN

VRS (11/34)

SPEC.MAC

Puts briefing mode (En route,

Prompt:
DAP

Us.CrR
US.DAP
1JS.BRF
SP.CLA,

Input:

into.output buffer

SP.CAR

RO -~ 1ISB address.

Select, or

e V' s

MODULE NAME: SYNALT

P AP A T

PROGRAM: (11/34) VRS
SOURCE FILE: SPEC.MAC
PURPOSE: Check altitude input for proper format and

value alt - either greater than 1000 ft or
less than 45999 with either two digit or
4 digit input

® CALLING ROMTINES: .SYNTAX (SPEC.MAC)

CALLING SEQUENCE:

COMMON:

STJBROTITINES CALLED: NUMIN, NINVAL, OKVAL

PIINCTION DESCRIPTION: 1., Input: R3 - input buffer pointer
R4 - No. of characters:
2. Output: Either clear or set C-bit for
valid or invalid syntax.

COMMENTS:

et el AL

B o

MODILE NAME:
PROGRAM:

SOURCE PILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON

STJBRONTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

SYNETA
(l1/34) VRS
SPEC.MAC

Check syntax of BTA (winds) time characters in
input buffer_and adds. '2' for zulu time

SYNTAX (SPEC.MAC)

78.COR - current input pointer
NOMIMP, NINVAL, ORVAL

1. Input: R¢ -~ No. of characters.
R3 -~ pointer to input array.
2. Output: US.COR is updated-

MODULE NAME:

PROGRAM:

' SQURCE PILE:

¢ PIRPOSE:
. CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CAULLED:

FIUNCTION DESCRIPTION:

COMMENTS:

SYNHR
(11/34) VRS
SPEC.MAC

Check hour value input for winds report must
be numeric and less than or equal to 30 hours

SYNTAX

NINVAL, OKVAL, NUMIMP
l. Input: R3 - input buffer pointer
R4 - No. of characters.

2. Output: C-bit: Cleared for valid format
or value set for invalid-

A-87

. RS, R ST PETR T T
I TR AP L s

MODIJLE NAME:

PROGRAM:
SONRCE PILE:

PJRPOSE:

CALLING ROUTINES:

i CALLING SEQUENCE:

COMMON:

oy /i B

. 4
Py

STUBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS::

.INVALN - called by NUMBER (SPEC.MAC)

SYNTAX
(11/34) VRS
SPEC.MAC

Check input buffer characters for appropriate
subroutine to call to. check format

ALPHA DAPCOM YESCK

VALID, INVALY - call by YEBSCK (SPEC.MAC)
INVALT -~ call by WETPCK

SYNPLG - first pass flag
NUMFLG - numeric flag
JSINP

ALPHA, SYNHR, SYNALT, SYNETA, WETPCK, YESCK,
VALID

1. Input: R2 - buffer pointer.
2. Output: C-bit set for invalid format.

Pollowing are 'mini' - routines contained in
Syntax
INVALA sets invalid alpha flag in ST.SNV -
into R3
INVAGLN sets invalid number flag in ST.SNV -
into R3 :]
INVALT sets invalid type flag in ST.SNV -
into R3
INVALY sets invalid Y/N flag in ST.SNY -
into R3
INVALD - modifies the line status flag
according to the above flags that had been
set.

MODULE NAME:

PROGRAM:
SOURCE PILE:

PYYRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

comMON:

SUUBROUTINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

WETPCK

(11/34) VRS

SPEC.MAC

Check input buffer for valid weather type
SYNTAX (SPEC.MAC)

'PL.DHE

Us.FLG
SYNPLAG - hold weather type characters

VALID, INVALT
Input: R3 - input buffer pointer:

Output: If winds report, 'ED'; sets PD flag
in USOFLG"

MODULE NAME: YESCK

; PROGRAM: (11/34) VRS
a SOURCE FILE: SPEC.MAC
r PJRPOSE: Check input buffer for valid yes or no .

response. Prompt must call for 4/N and 4/N
r must be in right format.

CALLING ROUTINES: SYNTAX (SPEC.MAC) 0

CALLING SEQUENCE: ' s
| COMMON USB parameters: ’
3 I PL.YES
: JS.FLG
3 FL.YER
. 1S. PER

FL.NO

SUBROUTINES CALLED: VALID, INVALY (SYNTAX)

PIINCTION DESCRIPTION: 1. Input: RO
R3

Rl

2., Output: R2

R2

17188 address

input buffer pointer
protocol mask pointer,
50 for no response

47 for a yes response,

COMMENTS:

s %«

A-90

MODINLE NAME:

PROGRAM:

SOJRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING_ SEQUENCE:

COMMON:

SUBROUTINES CALLED:

PUNCTION DESCRIPTION:

COMMENTS:

MAP
(11/34) VRS
SPEAK.MAC

Maps 4K memory segmex{ts

4.

READC

HALT

l. saves RO on the stack-

2. Sets up window offsets and maps the region.
3. If error, calls HALT routine which bolts

the processor.
Restores RO and exits.

AW) ay

okt g

=24

-._‘.Y_Jﬁn

MODIULE NAME:

PROGRAM:

SONURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::

SIIBRONTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

READ

11/34 VRS
SPEAK.MAC

Reads data from vocabulary disk

'SPEAKR

JSR PC, READ

3ll TR, **» as defined in PREFIX.MAC
US.***
FL.***
BQ.***

TRAP TR.DQE HALT

TRAP TR.QUE MAP

1. Gets a queue element from £ill pool and
puts it on read list head.

2. Performs mapping if necessary.

3. Issues a ,READC request to disk.

A-92

g - 5 and; o3
. DU ey e BRI NG e 0w R

MODULE NAME:

PROGRAM:

SORCE PILE:

POJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STTBROTTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

READC
(11/34) VRS
SPEAK.MAC

Read completion routine for disk (reading
speech file)

'READ

Called at completion of a .READC request

all TR, **%* as defined in PREFIX.MAC
IS . *x*
PL.**x

MAP

HALT

l. Tf error on previous read, prints error
message:

Calculates 17/SB address.

Saves R2, R3, R4, RS on the stack.

Moves Queue element from read queue to talk
list head.

Maps user into extended memory buffer.
Issues a .WRITE request to ADPCM output
device.

Restores 1SB addregs and saved registers,
enables Touch-Tone? and exits.,

~ [X% - WN

R S 4 [0 gl . 0 T

d s L ATAET - vy PR

MODULE NAME:

PROGRAM:

SQURCE FILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQIJENCE:

COMMON:

SUBROMJTINES CALLED:

PONCTION DESCRIPTION:

COMMENTS:

SPEAKR
(11/34) VRS
SPEAK.MAC

Queue speak buffer and issue reads to disk for
speech data

' SPEAKST

JSP PC, SPEARR

all ST, *** as defined in PREPFPIX.MAC
F‘L. I 2. X ¢
US. L X X4

READ

TYRANT

1. Records speak indication in 1ISB.
2. Queues element onto speak gqueue.
3. BExtracts message fields

4, Tnitiates double-buffered disk reads.
5. Exits,

[P

B

et ——————— —— —— b -

MODILE NAME: SPKST

PROGRAM: 11/34 VRS
SONRCE FILE: SPEAK.MAC
s PYJRPOSE: Sets up speech buffers
CALLING ROUTINES: Completion routine from MARKTIME issued in
. speak module
5 . CALLING SEQUENCE:
- COMMON: all TR.*** as defined in PREPIX.MAC
Us . LR &
FL.***

SUBROUTINES CALLED: TRAP TR.USB
b SPEAKR

Saves R2, R3, R4, RS on the stack.

Gets 11S8 address.

Sets speak indicator in 1USB and executes
speak routine.

Clears speak indicator.

Restores saved registers and returns,

FIUNCTION DESCRIPTION:

1
2
. 3
4
5

COMMENTS:

ki, b L%-W}:'I};fy. 54

i MODULE NAME: TYRANT ;
E PROGRAM: (L1/34) VRS

i SOQURCE FILE: SPEAK.MAC .) g
? PURPOSE: Controls speaking process. Sets lst block f

; address, number of blocks and last words.

] .Returns if end of megsage and not hanging up.
§ Dequeues element from message queue, queues s
g the last message buffer to free pool queue and .
requests next message if end of briefing or

hang up, ia?icates end of briefing and enables
Touch Tone™ Input,

CALLING ROUTINES: MORSPK WRITC SPEAKR

CALLING SEQUENCE:

COMMON:

- USs.lst FL.INT TR.DQE
US.FLG
US .NUM
US.BLK
US.MSG :
US.PER :
US.DMB

SUBROUTINES CALLED: INCREQ
BLDBRF
SENDRT -

.

FUNCTION DESCRIPTION: l. Input: RO - USB address.
2. Output: US.NUM (RO) number of consecutive

blocks.
US.LST (RO) number of words in
last block- .
US.BLK (RO) address of lst block.
US.MJG (R0O) updated pointer for
next speak .pass.
US.FLG (RO) end of talk mode flag
set if end.

COMMENTS:

A-96 :

MODNLE NAME: WRITC

PROGRAM: (11/34) VRS
3 SO'JRCE FILE: SPEAK.MAC
¥ ' PIIRPOSE: Write completion routine for ADPCM output
3) CALLING ROUTINES: _READC
{ * CALLING SEQUENCE: This is completion routine for .WRITC in READC
) . module,
q COMMON::
[all TR, *** as defined in PREFIX.MAC
. Us. L & X 4
; ' Pt“ L 2 X J
11 ST *w*
SUBROUTINES CALLED: TRAP TR.QUE
: TRAP TR.DQE
i TYRANT
d READ
SIGNAL
Q FONCTION DESCRIPTION: 1. If error on write, orints error message.
3 2. Saves R2, R3, R4, RS on the stack.
> 3. Calculates SB address if illegal 1ss
.i - address, prints a message-
4 4. Returns speech element to free pool-
5. Gets next message field and reads from disk. ‘
6. Restores saved registers and exits. i

COMMENTS:

v et ‘Y'«_L.. : y
* e

p——r
-

s ey Ty

s T < it Ly O

MODIILE NAME:

PROGRAM:

SONRCE FILE:

PTJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
SNBRONTINES CALLED:

FONCTION DESCRIPTION:

COMMENTS:

ALARM/ALARMP
11/34
SEND.MAC

Alerts the operator if task RETREV or VREXEC
is not running

RCVER, CLKRPT

1% a processor (VREXEC) alarm, jump to ALARMP.
1. a RETREV alarm, jump to ALARM.

None

Rings the terminal bell 10 times and types one
of the following messages:

1. RETREV NOT RINNING. VRS ABORTING.

2. PROCESSORS NOT RUNNING.
The system exits if message #1 was typed.

™

o AN s, " D W i o s

wdosd

W g AR AR P gy s Rer € o

~ 1y, O

e

MODIJLE NAME:

PROGRAM:

SORCE PFILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
STIBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

BLDBRF
11/34 VRS
SEND.MAC

Composes a demand request

~SPEAK, DISCON, DISPLA, RPTSKP

RO - OUser Status Block pointer
R2 = Demand request type

SP.CLA

Composes a demand request, storing it in the ;
“"current input location” pointed to by word 2 5
of the 17SB, and getting the channel and demand '
request number from the 1SB8. !

—————T

A-99

e e AP S T ST V. WG TRS, ATNETE L T RE TR Frsd % n s = e

P n — -
e et et . R SR — ______.1
- ~=- S —— -

")

MODULE NAME: CHKREQ
PROGRAM: (11/34) VRS

: SOURCE PILE: SEND.MAC

Ei PURPOSE: Check ASCII Channel Number.

] CALLING ROUTINES: - DISCON, RPTSKP

3 CALLING SEQUENCE: RO = points to WSB.

] COMMON::

k- SUUBROUTINES CALLED: = TRAP TR.DQE
FIINCTION DESCRIPTION: Compares the ASCII channel, number in the 1USB

; with the one in an 11/70 receive QUEUE element.

COMMENTS:

' Aiviude

f A-100

. et O nii A S W T A Pt CE g ok AR W IR B

- R

P i A e

o — A AT L HE LT UL, -l TR MO e
%, A ———— - -

LX 2

e il i e DS

MODILE NAME:

PROGRAM:

SOURCE PFILE:

PURPOSE:

CALLING ROTTINES:

CALLING SEQUENCE:
COMMON:
STUUBRONITINES CALLED:

PUNCTION DESCRIPTION:

COMMENTS:

DISPLA
(l1/34) VRS
SEND.MAC

Initiates sends to the 11/70 and fields the
responses

' SPEC

SPEAK, SEND, BLDRF, COMMON

Briefing requests are sent and the address of
the start of the coding which fields the
responses is stored in U.S. RTN (by SEND) for
the channel. This address is returned to from
BACKGR when a read completes later on. when
that happens, the various response formats are
checked for: the message acceptable response,
the diagnostic responses, and the type 2
message unit responses.

A-101

MODULE NAME:

PROGRAM:

IR 4 “'?1"{"!"7 AR

SOURCE FILE:

Ll 20

PURPOSE :
g CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

RCVC

(11/34) VRS

SEND.MAC

Pields data sent from 11/70

.Completion routine for the .READC issued in

module RCVEX
R4 points to FWA of data buffer

SIGNAL, ALARM, DEFUSB, TR.DQE, TR.QUE

Handles the two types of 1ll1/70 messages
queueing them for the appropriate processing.
A validity check is performed and if the
message is not a valid briefing request
acknowledgment not a briefing message unit,
the error path checks for RETREV log-on
echoes, which are sent to the terminal, or for
*]1, indicating a response by RETREV to a poll
nessage sent by the 11/34 every 7 seconds, or
for *2, sent by RETREV if the weather
processors do not wake up every 15 minutes. A
branch is made to ALARM when *2 is received.
When *1 is received a new 20-second MKTM
issued (after cancelling the one in effect).

Ty TR Ty

il 36 intiand

MODIJLE NAME:

PROGRAM:

SONRCE FILE:

PURPOSE:

CALLING ROITINES:

CALLING SEQUENCE:

COMMON:

STJBROUTINES CALLED:

PUNCTION DESCRIPTION:

COMMENTS:

RCVEX
(11/34) VRS
SEND.MAC

Receive protocol for 11/70 to 11/34
communication

RCVC

RCVC completion routine, TR.DQE, TR.QUE

Petches an available QUEUE address and issues
a read with completion on Channel 3.

MODULE NAME: SEND -~ SENDRT
PROGRAM: (11/34) VRS -
SOURCE FILE: SEND.MAC , ’
PURPOSE: Sends a byte string to the 11/70 s
CALLING ROUTINES: DISPLA RPTSKP o
DISCON TSTRCV
1 CALLING SEQUENCE: R3 = pata buffer start address

R4 = Data buffer length
COMMON: SENDC, the completion routine.
N SUBROUTINES CALLED: None

Y FUNCTION DESCRIPTION: Writes a string of bytes to the 11/70 on
channel 4. A checksum is computed and
appended to the data.

1 COMMENTS :

A3 ki Wi

A-104

3

3

MODIILE NAME: INCREQ

g PROGRAM: (11/34) VRS

f, SOURCE FILE: SEND. MAC

3 " .

; . PIYRPOSE: Increment the ASCII message unit number by one.
r E—

. CALLING ROUTINES: 'RPTSKP, SPEAK

CALLING SEQUENCE: RO = User status block pointer
RS = Message unit number USB offset

COMMON:

SUBRONTINES CALLED:

PIINCTION DESCRIPTION: Increments the 4-character ASCIT message unit
number by one.

COMMENTS:

L et mwmame o e a0

MODIJLE NAME:

PROGRAM:

SONRCE PILE:

PNRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :
STIBRONTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

TSTRCV
(11/34) VRS
SEND.MAC

Validity check on message unit data

DAP

R4 points to start of input buffer.

BLDBRF, SEND (SENDRT)

Checks message unit pairs for validity. If
the block number of a pair is invalid, the
briefing request is rebuilt and sent to the
11/70 again.

MODULE NAME:

PROGRAM:
SONNRCE FILE:
PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SIJBROUTINES CALLED:

PIUNCTION DESCRIPTION:

COMMEN'TS:

EXIT

(L1/34) VRS

PURGE.MAC

Exit routine for 11/34 VRS

'BACKGR

NXTEXT sets EXITFL signal for BACKGR when a
Terminal input of 'EXIT' received

TRESET, MRKTIM, DISABLE, STRT

1. Closes o each line channel to ADPCM
hardware and disable each Touch
Tone® line
o Dictionary file.
2. Sends exit message to 11/70 program RETREV
o0 closes input channel to 11/70
o closes output channel to 11/70
o closes Touch-Tone (MCX) channel
o closes ADPCM channels.

MODULE NAME:

PROGRAM:

SOURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SIJBROUTINES CALLED:

FIUNCTION DESCRIPTION:

COMMENTS:

CLRRPT
(11/34) VRS
CLOCR.MAC

Tics the VRS clock and attends to certain
real-time scheduled functions

Completion routine to a l-sec MRKT, issued by

STRTIM and issued each time thereafter by
itself

SNDPO1I
ALARM

When a l-sec MRKT expires, a second is added

to the seconds-past-midnight counter. Every 7
seconds, a poll message (ESC NULL) is sent to
RETREV. Also, a check is made for delays in

11/70 responses (in SNDPOTI).

LAY

b

e T N 2

e

MODIJLE NAME:

PROGRAM:
SOURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

comvoN:
SUBRONTINES CALLED:

FIUNCTION DESCRIPTION:

COMMENTS:

GETTIM
(L1/34) VRS
CLOCK .MAC

Put current time of day into LVMSO Touch-Tone®
input buffer.

SP.TIM

SMLT, $DVI, $ICO

Converts time to ASCII (hhmm) and stores in
Touch-Tone input buffer.

Ry

A-109

6 il S oy M SN 1058

Lk &

DL, . . i, D

S SO AR e et

e ——a e - ©

LIS

it ek

MODULE NAME:

PROGRAM:

SORCE FILE:

PIIRPOSE:

CALLING ROMNTINES:

CALLING SEQUENCE:

COMMON:

STJBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

SovI
(11/34) VRS
CLOCK.MAC

Integer divide routine

GETTIM

R4 = HI order dividend
R3 = LO order dividend
Rl = divisor

RETURNS: R4 = HI order quotient
R3 = LO order quotient

None

Divides a 32-bit dividend by a l6-bit divisor
for a 32-bit quotient.

A-110

el

S ADEYRIN I et

- %,

>e

-

MODIJLE NAME:

PROGRAM:

SOURCE FILE:
PJRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

STTBROMTINES CALLED:

FINCTION DESCRIPTION:

COMMENTS:

$MLT

11/34 VRS
CLOCK.MAC

Integer multiply routine

GETTIM

R4 = HT order multiplicand
R3 = 4O order multiplicand
Rl = multiplier

RETURNS: R4 = HI order product
R3 = LO order product

Multiplies a 32-bit multiplicand by a 1l6-bit
multiplier for 32-bit product.

A-11ll

MODULE NAME: TR.HAN
1 PROGRAM: 11/34 VRS .

SOURCE FILE: TRAP.MAC ,

PIJRPOSE: Handles entry to all TRAP routines ;
: CALLING ROUTINES: 'BACRGR DAP SPEC '
f.{ CALLING SEQUENCE: TRAP TR.*** ‘
COMMON:: ' TR.LST

SIBROMNTINES CALLED: All TRAP routines (TRAP.TR.**¥)

L FIUNCTION DESCRIPTION: l. Gets TRAP code from stack.

2 2. Checks for legal TRAP code-

3. Resolves address of desired TRAP routine,
4. Bnters routine via JSR.

5. On return from routine does error checking.
6. Returns via RTI,

|

COMMENTS:

L Y
.

e Wt~

Y Wiy g sk e

aida

' a-l12

MODIILE NAME:
PROGRAM:

SONRCE FILE:

PTTRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROQUTINES CALLED:

PINCTION DESCRIPTION:

COMMENTS:

TR.MOD (MODULSB)

11/34 VRS

TRAP.MAC

Modifies line status field of 1USB.

RING

TRAP TR.MOD

ALL TR.*** As defined in PREFIX.MAC
IS, *w*
FL.***

Sp . hex

TRACE

1. Places Rl in line status fields

. If input received from 11/70, clears
line timeout flag in clock.

Performs a trace.

Returns.

s N

This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

4

MODULE NAME:
PROGRAM:

SQURCE FILE:
PURPOSE :
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

s
i
3
¥
&

FUNCTION DESCRIPTION:

TR.SIG (SIGMAN)

11/34 VRS

TRAP.MAC

Signal flag modification routine
BACKGR

TRAP TR.SIG

None

1. Moves BITMSK into Rl and clears BITMSK.

2. Moves BITMSK+2 into R2 and clears
BITMSK+2

3. Returns.

This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

MODULE NAME: TR.SPK

PROGRAM: 11/34 VRS

SOURCE FILE: TRAP.MAC

PURPOSE: Executives SPEAK routine

CALLING ROUTINES: SPEAKR

CALLING SEQUENCE: TRAP TR.SPK

COMMON : ' ALL TR.*** as defined in PREFIX.MAC
- US, **w

Sp *n#

DP . L2 2]

SUBROUTINES CALLED: TR.QUE

FUNCTION DESCRIPTION: QUEUES message pointer into SPEAK QUEUE.
Checks to see if done talking. If so,
returns with carry bit clear. 1If

still talking, returns with carry bit
set.

This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

Fs
{
i
]
3
j

el WAl

MODULE NAME:
PROGRAM:

SOURCE PILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

TR.USB (DEFUSE)
11/34 VRS

TRAP.MAC

Calculates USB address from channel % in RO

MCX.SYS

TRAP
all

None

1.

3.

TR.USB

TR.*** ag defined in PREFIX.MAC
US. *e»
FL. hE
sp . L X 22
Dp_ rhd

Checks for legal channel #.retucrns
with C-bit se* if error.

Multiples channel # by 64 and adds
base address of USB.

Returns.

A-116

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

TR.DQE (DQUEUE)

11/34 VRS

QUEUE.MAC

Removes one element from AQUEUE list
BACKGR, DAP, SPEC

MOV #QLIST, R3
TRAP TR.DQE

None

1. Address of a queue list header is
placed in R3.

2. Routine exits with carry bit set if
no elements in list.

3. List header and tail pointer are
adjusted.

4. Routine exits with R4 containing
address of QUEUE element.

This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

o7 I

St

MODULE NAME:
PROGRAM:
SOURCE FILE:

PURPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :
SUBRQUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

TR.QUE (EQUEUE)

11/34 VRS

QUEUE .MAC

Inserts one element into QUEUE list
BACKGR,DAP,SPEC

MOV #QLIST, R3
MOV #ELADDR, R4

TRAP TR.QUE

None

1. Address of QUEUE list reader is placed

2. ;gdgggs of QUEUE element is placed in

3. :g;t reader and tail pointer are
adjusted.

4. Routine exits with carry bit clear.

This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital paramenters.

A-118

[N
o 2

Sy ¢

-

e A g e, | e

.o

MODULE NAME:

PROGRAM:
SQURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

TRACE

11/34 VRS

TRACE.MAC

Creates a statistical data file VRDATA.DAT.

TR.MOD (MODLSB)

Fills a buffer with selected data from the
User Status Block for each briefing
performed and writes it to a revolving
file, VRDATA.DAT, along with a record
pointer block in block 0 and data record
definitions prepended to each briefing's
record. Upon initialization of VRS, if no
file exits on disk, it is created. 1If one
exits but was not concluded during a normal
exit, the file is scanned and a record
pointer block constructed.

a-119

MODULE NAME:

ERTTE .

PROGRAM:

SOURCE FILE:

A SR

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

e MR LRt b

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

TABLE
11/34 VRS
TABLE.MAC

Steps each user channel through the system
dialogue.

DAP

Twice the value in US.DAP (RO) added to the
top address of TABLE (VECTOR) yields the
address of the desired table.

The special function entry points, SP.xxx.
None

For each step of the dialogue protocol
there is a table of pointers and flags as
follows: .
1. A word of flags indicating certain
temporary conditions, and expectations.
2. Address of any special function.
necessary before speaking a prompt.
3. Wait interval before speaking prompt.
4. Wait interval before speaking echo.
S. Flag if to repeat same utterance after
- response,
6. Address of the prompt message units.
7. Address of any special function
necessary to user syntax analysis.
8. Address of masks used in syntax
checking.
9. Address of any special function
necessary before speaking an echo.
10. Address of special function necessary
before branching to next function in
DAP.
11l. Yes or normal response branch vector.
12. No or abnormal response branch vector.
The elements of the tables are
accessed as follows: A constant stored
in some address DP.XXX is added to
current value of Rl to point to the
right table. Another DP.XXX value is
added to point to the desired element
of the table.

A.2 POP-11/70® ygs

A-121

i iatningidd o el ibofons ol

MODULE NAME

PROGRAM:

SOURCE FILE:

PURPOQSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

DICT

VREXEC

VOCAB.MAC

To translate ASCII text to Speech File .
Pointers

START (DICT.MAC) ihterface module f

FORTRV - ASCII text in ATADII .
VSNDRR DICT !

Requires VRSDIC for Global Common

Given the ASCII weather report text, a
binary search is done on a list for each
word to obtain the vocabulary file pointers
and record lengths to be sent to the 11/34
VRS.

*

¢ s

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED:

FUNCTIONAL DESCRIPTION:

COMMENTS:

[

EXTHED
VREXEC
EXTHED.FTN

This subroutine extracts the date/time
group from a header report.

VRSSA, VRSPTR

Call EXTHED (A, ILEN)
where: A = raw data input array
ILEN = length in bytes of raw data array

None

To extract the six-digit header date and
time from the report header passed to it.
Input:
A = A byte array containing the report
header.
ILEN = The length, in bytes, of the
repor t header contained in the array A.

COMMON/ ZULU/HTIME, IRTIM, STIME where
HTIME, IRTIM, and STIME are all
six-byte arrays.

Output:
The six~-digit header date and time
group is placed into the six-byte
array HTIME in the labeled common 2ULU.

MODULE NAME:
PROGRAM:

SOURCE FILE:

PURPQSE:

i CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :
SUBROUTINES CALLED:

SYSTEM ROUTINE REQUIRED:

FUNCTION DESCRIPTION:

LGTNG
VREXEC

This subroutine decodes lighting SA remarks.
VRRMK

Call LGTNG (WORK, WLEN, RMK, RLEN, INDX,
IERR)
where: WORK = raw data word
WLEN = length in bytes of raw
data word
RMK = raw Remarks data array

RLEN = length in bytes of Remarks
raw data array

INDX = current index position in
Remarks raw data array

OERR = error flag

None
INDSTR

To decode lighting remarks which occur in
the Remarks portion of SA reports.
Input:
WORD = A byte array containing the
data word to be decoded.
WLEN = The length, in bytes, of the
data word.
RMK = A byte array containing the SA
Remarks data.
RLEN = The length, in bytes, of the SA
Remarks data.
INDX = The current pointer position
within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDS, NWX
where RLIST = A byte array containing
the decoded Remarks
IRNDX = The current pointer
position within the
decoded remoars data.
NWX = A flag indicating if
weather data were
decoded in the
subroutine VISWX.

A-124

¢ v, s

-»”

-

T RN BN AR g e e oy,

Output:
The decoded lighting phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.
IERR = An error flag which is set if
the lighting remark cannot be decoded.

A-125

T T p———— T

A 3w X

R s

r?,

MODULE NAME:
PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

PCPMOD
VREXEC

This subroutine decodes precipitation SA
remarks relating to hail stone size, ground
fog depth, snow increasing, and
precipitation in inches.

VRRMK

Call PCPMOD (WORD, WLEN, RMK, RLEN, INDX,

IERR)
where: WORD = raw data word
WLEN = length in bytes of raw
- data word
RMK = raw Remarks data array
RLEN = length in bytes of Remarks
raw data array
INDX = current index position in
Remarks raw data array
IERR = error flag

none

SYSTEM _ROUTINE REQUIRED: INDSTR, INUM

FUNCTION DESCRIPTION:

To decode precipitation remarks which occur
in the Remarks portion of SA reports.
Input:
WORD = A byte array containing the
data word to be decoded.
WLEN = The length, in bytes, of the
data word.
RMK = A byte array containing the SA
Remarks data.
RLEN = The length, in bytes, of the SA
Remarks data.
INDX = The current pointer position
within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST = A byte array containing
the decoded Remarks.
IRNDS = The current pointer
position within the
decoded Remarks data.
NWX = A flag indicating if
weather data were decoded
in the subroutine VISWX.

A-126

g o M .

»

R N AR IR o - G e

A 2l

COMMENTS :

LY 3

e ool eI

AT A X TAAMRA AR RN 2
e At Tt s

Output:

IERR = An error flag which is set if
the precipitation remark cannot
be decoded.

The decoded precipitation phrage is

placed into the RLIST array and IRNDX

is appropriately incremented.

A-127

MODULE NAME:
PROGRAM:
SQURCE FILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::

SUBROUTINES CALLED:
FUNCTION DESCRIPTION:

COMMENTS:

INCREQ
11/34 YRS
SEND.MAC

Increment the ASCII message unit number by
one.,

RPTSKP, SPEAK

RO = User Status Block pointer
RS = Message Unit Number USB offset.

Input:
R7 - USB pointer.
Output: _
US.DMB incremented by one.

aA-128

IR MY IS AN > e S

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

SYSTEM ROUTINE REQUIRED:

FUNCTION DESCRIPTION:

VREXEC

This subroutine decodes SA remarks relating
to pressure.

VRRMK

Call PRES (WORD, WLEN, RMK, RLEN, INDX,
IERR)
where: WORD = raw data word
WLEN = length in bytes of raw
data word
RMK = raw Remarks data array
RLEN = length in bytes of remarks
raw data array
current index position in
remarks raw data array
IERR = error flag

INDX

None
INDSTR, INUM

To decode pressure remarks which occur in
the Remarks portion of SA reports.

Input:
WORD

A byte array containing the
data word to be decoded.
WLEN = The length, in bytes, of the
data word.
RMK = A byte array containing the SA
Remarks data.
RLEN = The length, in bytes, of the SA
Remarks data.
INDX = The current pointer position
within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST= A byte array containing
the decoded Remarks
IRNDX= The current pointer
position within the
decoded Remarks data.
NWX= A flag indicating if
weather data were decoded
in the subroutine VISWX. :

A-129

e i AN " DY . codf ot T R o W il AP

st 4w

3 M M AT ARSI 4%~

COMMENTS :

Output:
The decoded pressure phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.
IERR= An error flag which is set if

the pressure remark cannot be
decoded.

A-130

i

)

S . st e s

MODULE NAME:

PROGRAM:
SOURCE PILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON «
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

RNWY
VREXEC
RNWY .FTN

This subroutine decoded runway visibility
and visual range SA remarks.

VRRMK
Call RNWY (INDX, WORD, LENGTH, ICALL, IKEY,
ING)
where INDX = current position in raw
data array
WORD = current raw data word
LENGTH = length in bytes of data
word
ICALL = 1 for runway visibility
decode, 2 for runway
visual range decode
ING = error flag
None

To decode runway visibility and visual
range remarks which occur in the REmarks
portion of SA reports.
Input:
INDX = The current pointer position
within the SA Remarks data.
WORD = A byte array containing the i
data word to be decoded.
LENGTH = The length, in bytes, of the
data word.
ICALL = 1 for visibility decode, 2 for
visual range decode.
Points to position of 'VV' or
'VR' within the data work being
decoded.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST = A byte array containing
the decoded Remarks.
IRNDX = The current pointer
position within the
decoded Remarks data.
NWX = A flag indicating if
weather data were decoded
in the subroutine VISWX.

IKEY

A-131

COMMENTS :

The decoded runway phrase is placed

into the RLIST array and IRNDX is

appropriately incremented.

ING = An error flag which is set if
the runway remark cannot be
decoded.

A-132

MODULE NAME: RNYCND

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes runway condition SA
; . remarks.
’ CALLING ROUTINES: VRRMK
£
f s CALLING SEQUENCE: _ Call RNYCND (WORD, WLEN, RMK, RLEN, INDX,
’ IERR)

where: WORD = raw data word
WLEN = length in bytes of raw
data word
RMK = raw remarks data array
RLEN = length in bytes of remarks
raw data array
current index position in
remarks raw data array
IERR = error flag

INDX

COMMON:

SUBROQUTINES CALLED: None

SYSTEM ROUTINES REQUIRED:

FUNCTION DESCRIPTION: To decode runway condition remarks which
. occur in the Remarks portion of SA reports.
Input:
WORD = A byte array containing the
data word to be decoded.
WLEN = The length, in bytes, of the
data word.
RMK = A byte array containing the SaA
Remarks data.
RLEN = The length, in bytes, of the SA
Remarks data.
INDX = The current pointer position
within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST = A byte array containing
the decoded Remarks.
IRNDX = The current pointer
position within the
ddecoded Remarks data.
NWX = A flag indicating if
weather data were
i decoded in the
subroutine VISWX.

-

A-133

RIB A gy ws s w

The decoded runway condition phrase is

placed into the RLIST array and IRNDX

is appropriately incremented.

IERR = An error flag which is set if
the runway condition remark
cannot be decoded.

COMMENTS :

MODULE NAME: SKY

PROGRAM: VREXEC
f SOURCE FILE: SKY.FTN
9 PURPOSE: This subroutine extracts and decodes sky
' cover data.
4 »
E ' CALLING ROUTINES: VRSSA
, . CALLING SEQUENCE: Call SKY (A, SKYCVR, ISKILL)
' ' ‘ where A = raw data input array

SKYCVR = decoded sky cover data
ISKILL = flag indicating error in sky
over field.

COMMON :
SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: To extract and decode sky cover data
occurring in the main body of an SA report.
Input:
A = A byte array containing the SA
repor t being decoded.
COMMON/ INDS/IVSTART,IVEND,ISKSTR, ISKEND
where IVSTART = Points to beginning of
the visibility field
in the SA report.
. ' IVEND = Points to the end of
* the visibility field
in the SA report.
ISKSTR = Points to the begin-
. ning of the sky cover
field in the SA report
Points to the end of
the sky cover field in
the SA report.

ISKEND

Output:

SKYCVR = A byte array containing the
decoded sky cover data.

IKILL = An error flag which is set if
the sky cover data cannot be
decoded.

COMMON/ERROR/IERROR (10)

where: IERROR is an integer array

pointing to any errors in the

SA report.
COMMON/ERRPTS/NDXERR, NDXTEX
[where: NDXERR = Number of errors in

IERROR array
NDXTERX = Numper of free text

f “ items
v

¢ COMMENTS:

A

. A-135

L i e — — a ~ ﬂu-*-nnunmﬁﬂi-ilﬂliﬂihﬂl-"

MODULE NAME: SKYRMK

PROGRAM: VREXEC
SOURCE FILE:

PURPOSE: This subroutine decodes SA remarks relating
to sky cover, compass directions, and ’
miscellaneous words. ;
CALLING ROUTINES: VRRMK
-
CALLING SEQUENCE: Call SKYRMK (WORD, LENGTH, RMK, LNRMKS,
INDX, IBAD)

where: WORD = raw data word
LENGTH = length in bytes of raw
data word
RMK = raw remarks data array
LNRMKS = length in bytes of remarks
raw data array
INDX = current index position in
remarks raw data array.
IBAD = error flag

———— W e AL i

-

COMMON ¢

!j‘ SUBROUTINES CALLED: None .
SYSTEM ROUTINE REQUIRED: ILET, INUM ¢
FUNCTION DESCRIPTION: To decode SA Remarks relating to sky cover

and compass directions. :
Input:
WORK = A byte array containing the :

data word to be decoded.
The length, in bytes, of the
data word.
RMK = A byte array containing the SA
Remarks data.
The length in bytes, of the SA
Remarks data.
INDX = The current pointer position
within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST = A byte array containing
the decoded Remarks
IRNDX = The current pointer
position within the
decoded Remarks data. "
NWX = A flag indicating if "
weather data were
decoded in the » |
subroutine VISWX.

LENGTH

LNRMKS

L
y
4
‘!
|
|
o
K
‘

Tawrt

SRR RO T

Output:
The decoded skycover phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.
IBAD = An error flag which is set if
the sky cover remark cannot be
. : decoded.
' COMMENTS:
4
i
{
s |
.. t
. A-137

DERRCSRANG ik it Sl

=~

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

A,

RPN 2 e

3

START
VREXE
DICT.MAC

Interface between the main dictionary ‘
translator, VOCAB.MAC, and VRS

VRINP ‘

VRINP performs a SEND with R (4) set to
indicate weather, winds, or exit (see below) s

DICT

1. Performs a VRCS$ and VSDR$ to receive
and send data stored in array R:
R (4) = Process identifier: exit,
winds, weather.
R (6) = Returned error indicator.
R (7) = Returned data length.
2. Calls DICT, which does the translating.

®» & 4

aA-138 *

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTIONAL DESCRIPTION:

SUBFLD

VREXEC
SUBFLD.FTN

This subroutine extracts the following

items from an SA report:

1. Report location identifier

2. Beginning -nd end points of sky and
visibility/weather fields

3. Temperature, dew point, wind
direction, and speed.

4. Altimeter Setting

S. Remarks starting point

VRSSA

Call SUBFLD (A, ILEN, TEMP, DP, WIND, DIR,
SQLL, GUST, ALTIM, LOC, IGNORE, IK, IRMK)
where: A= raw data input array
ILEN = length in bytes of raw
data array

TEMP = extracted temperature

DP = extracted dew point

WIND = extracted wind velccity

DIR = extracted wind direction

SQLL = extracted wind squall
velocity

GUST = extracted wind gust
velocity

ALTIM = extracted altimeter setting

LOC = location identifier

IGNORE= flag indicating insuffi-
cient data to process

IK = flag indicating error in
report

IRMK = start position of Remarks
in raw data array

None

Besides extracting the items listed above
in the calling sequence, SUBFLD also sets
the following flags in the common area FLGS:
COMMON/FLGS/IWXFLG, IGFLG, IQFLG, ITFLG,
IDFLG, IWFLG, IAFLG, ISPFLG, ICOFLG.,
IAMFLG, IAEST, IWEST, IFRAC, IVIS
of which the following are output in SUBFLD:
IGFLG = A flag which is set if wind gusts
are present,
IQFLG = A flag which is set if squalls
are present.
ITFLG = A flag which is set if temperature
is present.
A-139

ALl TR S I,

T

e

e R IR T

COMMENTS:

IDFLG = A flag which is set
is present.

IWFLG = A flag which is set
is present.

IAFLG = A flag which is set
setting is present,.

ISPFLG = A flag which is set
is a SA Special.

ICOFLG = A flag which is set
is a SA correction,

IAMFLG = A flag which is set

if
if
if
if
if
if

dew point
wind speed
altimeter
the report
the report

the report

is a SA AMOS or AUTOB report.
IAEST = A flag which is get if the

altimeter setting is estimated.
IWEST = A flag which is set if the wind

speed is estimated.

IFRAC = A flag which is set if a
fractional visibility is present.
COMMON/INDS/IVSTRT,IVEND, ISKSTR, ISKEND
where IVSTRT = Points to beginning of the
visibility field in the Sa

report.

IVEND = Points to the end of the
visibility field in the SA

report.

ISKSTR = Points to the beginning of
the sky cover field in the

SA report.

ISKEND = Points to the end of the
sky cover field in the SA

report.

P LA - P

|

r—— e

~e

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

VDATE
VREXEC
VDATE.FTN

Converts the report date (day of month)
into a four digit number representing the
report date in terms of year and day of
year.

VRSOUT, VRERR, VRSPURG

Call VDATE (DAY, DATE)

where: DAY = report day of the month date
in byte format

DATE = 4 digit integer value

representing report date by
year and day of year. Last 3
digits = day of year, First
digit = last digit of current
year, i.e. 1 = 1981

To convert a given day of the month value
into a four digit number representing the
day of the year and year.

Input:

DAY = A 2-byte array containing the
day of the month.

Output:

DATE = An integer variable containing
the 4-digit value representing
the year and day of the year
for the given day of the month.

A-141

e

MODULE NAME: Vis

PROGRAM: VREXEC

SQURCE FILE:

PURPOSE: This subroutine decodes visibility sa
remarks ,

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: ‘ Call VIS (RMK, WORK, LNRMKS, LENGTH, INDX,
ING, IAEND, IRMK)

where: RMK

= raw Remark data array

WORD = raw data word
LNRMKS = length in bytes of Remarks

LENGT

raw data array
length in bytes of raw
data word

H

INDX = current index position in

ING
IAE

Remarks raw data array
= error flag
ND = length in bytes of
translated SA report
contained in byte array
ALIST.

IRMK = start position of Remarks

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INUM, ILET

FUNCTION DESCRIPTION: To decode vi
the Remarks
Input:
RMK =

WORD =

LNRMKS

LENGTH
INDX

IAEND=
IRMK =

COMMON/
where:

in raw SA report.

sibility remarks which occur in
portion of SA report.

A byte array containing the SA

Remarks data.

A byte array containing the

data word to be decoded.

The length, in bytes, of the SA

Remarks data.

The length, in bytes, of the

data word

The current pointer position

within the SA Remarks data.

The length, in bytes, of the

translated main body SA report.

Points to the beginning of

Remarks in the SA report.

RSTUFF/RLIST, IRNDX, NWX

RLIST = A byte array

containing the decoded
Remarks.

A-142

o

3 S tanll:

IRNDX = The current pointer
position within the
decoded Remarks data.

NWX = A flag indicating if
weather data were
decoded in the
subroutine VISWX.

] Output: .

{ ' The -decoded visibility phrase is

> . placed into the RLIST array and IRNDX
: is appropriately incremented..

] ING = An error flag which is set if
3 ' ‘ the visibility remark cannot
4 N be decoded.

K COMMON/ERRPTS/NDXEER, NDXTEX

. where: NDXERR = Number of errors in

3 IERROR array

i ‘ NDXTEX = Number of free text

' items.

COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)

where: FRTEXR = An integer array
which points to
each free text word
in the decoded sa
report data.

FRTEXP = An integer array
which points to
each free text word
in the decoded sa
report data.

¢ COMMENTS:

i b, AT il VR T e s 20 5 ol A

2 g
» o

il

Ttk
it s

- A-143

A AR YOI W~y 5w T

a ey e

MODULE NAME:

PROGRAM:

SQURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

VISWX

VREXEC

VISWX.FTN

This subroutine extracts and decodes the SA
visibility and weather data.

VRSSA .,
Call VISWX (A, MILES, WX, IVKILL) .
where: A = raw data input array

MILES = decoded visibility value
WX = decoded weather data
IVKILL = flag indicating error in

visibility/weather field

None

To extract and decode visibility and
weather data occuring in the main body of
an SA report.
Input:
A = A byte array containing the Sa
report being decoded. -
COMMON/INDS/IVSTRT, IVEND, ISKSTR, .
ISKEND
where: IVSTRT = Points to beginning
of the visibility .
field in the SA -
report.
IVEND = Points to the end
of the visibility
field in the SaA
report.
ISKSTR = Points to the
beginning of the
sky cover field in
the SA report.
ISKEND = Points to the end
of the sky cover
field in the SAa
report.

Qutput:
MILES = Decoded visibility value
WX = A byte array containing the
decoded weather data.
IVRILL = An error flag which is set if
the visibility/weather data
field cannot be decoded.

BN e AN TR

§
b
P4

4 B

L
y
1 4
#
i
1
i

[2]

COMMENTS:

AL

COMMON/FLGS/IWXFLG, IGFLG, IQFLG,
ITFLG, IDFLG, IWFLG, IAFLG, ISPPLG,
ICOFLG, IAMFLG, IAEST, IWEST, IFRAC,
IVIS......0f which the following are
output in VISWX:
IWXFLG = A flag which is set if
weather data were decoded.
IVIS = Points to visibility mileage
- position.
COMMON/ERROR/IERROR (10)
where: IERROR is an integer array
pointing to any errors in the
SA report.
COMMON/ERRPTS/NDXERR, NDXTEX
where: NDXERR = Number of errors in
IERROR array.
NDXTEX = Number of free test
items.

ghiilhianat

i

s it PR TR

A-145

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROQUTINES CALLED:

FUNCTION DESCRIPTION:

VRRMK

VREXEC
VRRMK .FTN

This subroutine extracts SA Remarks and,
based upon Keyword analysis, calls
appropridte subroutines for decoding. 1If
no RKeyword is found, it then determines
whether the data are free text items,
additive data item, PIREP, NOTAM, garbage,
or error.

VREXEC

Call VRRMK (A, ILEN, IRMK, ALIST, IAEND,
IRKILL, NWXPASS
where: A = raw data input array
ILEN = length in bytes of raw data
array
IRMK = start position of Remarks in
raw data array
IRKILL = flag indicating error in
Remarks
IAEND = length in bytes of translated
message in output array ALIST

RNWY, WINDS, VIS, SKYRMK, RNYCND, PCPMOD,
WXMOD, PRES, LGTNG, WETHER

To extract SA Remarks and, based upon
Keyword analysis, call the appropriate
subroutine for decoding.
Input:
A = A byte array containing the SA
report being decoded.
ILEN = The length, in bytes, of the SA
report contained in the array A.
IRMK = Points to the beginning of
Remarks in the SA report.
NWXPASS = A flag indicating if weather
data were decoded in the
subroutine VISWX.
COMMON/CHKLOC/LOC
where: LOC = A byte array containing
the report location
identifier

[]

i

e

b

= N W 3a o

oS

COMMENTS :

OQutput:

ALIST = A byte array containing the
decoded SA report, including
Remarks.

IAEND = The length, in bytes, of the
decoded SA report contained
in ALIST.

IRKILL = An error flag which is set if

. the .Remarks cannot be decoded.

COMMON/RSTUFF/RLIST, IRNDX, NWX

where: RLIST = A byte array

containing the decoded
Remarks.

IRNDX = The current pointer
position within the
decoded Remarks data.

NWX = A flag indicating if
weather data were
decoded in the
subroutine VISWX.

COMMON/ERROR/IERROR (10)

where: TIERROR 1is an integer array

pointing to any erors
in the SA report.

COMMON/ERRPTS/NDXERR, NDXTEX

where: NDXERR= Number of errors in

IERROR array.

NDXTEX= Number of free text

items.

COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)

where: FRTEXR = An integer array

containing pointers
to free text items
in the raw SA
report.

FRTEXP = An integer array
containing pointers
to free text items
in the decoded sa
report.

A-147

MODULE NAME: VRSSA

; PROGRAM: VREXEC
‘ SOURCE FILE: VRSSA.PTN
g PURPOSE: This subroutine receives a SA report from

VREXEC and determines whether or not it is
a SA header or a valid SA report. If it is
a valid report, VRSSA calls the appropriate
routines to decode it, and returns the
decoded SA (excluding SA Remarks) to
VREXEC. It also identifies whether or not
the SA is a special and identifies the
position in the report where Remarks begin,
if any exist.

TR TS TR

Eradatl fashal §
.

CALLING ROUTINES: VREXEC
CALLING SEQUENCE: call VRSSA (ARRAY, ILEN, ALIST, IAEND, LOC,

IHEAD, IGNORE, IKILL, IRMK, XWX, SPCLSA)
where: ARRAY = raw data input array
ILEN = 1length in bytes of raw
data array
ALIST = translated message output
array

IAEND = length in bytes of

translated message
LOC = location identifier

IHEAD = flag indicating whether or
not report was a header

IGNORE = flag indicating
insufficient data to
process

IKILL = flag indicating error in
report

IRMK = start position of Remarks
in raw éata array
XWX = flag indicating whether or
not report contained
weather data
SPCLSA =a flag indicating whether or
not report was a Special

SA.
COMMON:
SUBROUTINE CALLED: EXTHED, SUBFLD, VISWX, SKY
FUNCTION DESCRIPTION: Input:

ARRAY = A byte array containing the
SA report to be analyzed.

ILEN = The length, in bytes, of the
SA report contained in ARRAY.

A-148

&
S

I A e R Nty i, il

ML sy sy

L

e

COMMENTS:

ALIST = A byte array containing the
decoded SA report, not
including Remarks however.

IAEND = The length, in bytes, of the
decoded SA report contained
in apIsrT.

LOC = A byte array containing the

- location identifier for the
SA report.

IREAD = A flag which is set if the
report was a header.

IGNORE = A flag which is set if there
were insufficient data to
process.

IKILL = An error flag which is set if
the SA report cannot be
decoded.

IRMK = Points to the beginning of
Remarks in the SA report.

XWX = A flag indicating if weather
data were decoded in the
subroutine VISWX.

SPCLSA = A flag indicating if the
report was a Special SaA.

COMMON/ ZULU/HTIME, IRTIM, STIME

where: HTIME = A byte array

containing the header
time.

IRTIM = A byte array
containing the report
time.

STIME = A byte array
containing the output
message time.

COMMON/ERROR/ISZRROR (10)

where: IERROR 1is an integer array

pointing to any errors
in the SA report.

COMMON/ERRPTS/NDXERR, NDXTEX

where: NDXERR = Number of errors in

‘ IERROR array

NDXTEX = Number of free text
items.

COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)

where: FRTEXR = An integer array

containing pointers to
free text items in the
raw SA report.

FRTEXP = An integer array
containing pointers to
free text items in the
decoded SA reporct.

A-149

AD=A102 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/6 17/2
TIENTY-CNML VOICE RESPONSE SYSTEM.(U)
DOT-YSC-I!IB

UNCLASSIFIED FAA-RD-g1-51

4.5
-

— - !

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPQOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

WETHER
VREXEC

This subroutine decodes weather SA remarks.

VRRMK

Call WETHER (WORK, LN, INDX, LNRMKS, ING)
where: WORD = raw data word
LN = length in bytes of raw
data word
INDX = current index position in
remarks raw data array
LNRMRS = length in bytes of remarks
raw data array
ING = flag indicating whether or
not a successful weather
decode occurred.

None

SYSTEM ROUTINE REQUIRED: INUM, INDSTR

FUNCTION DESCRIPTION:

To decode weather remarks which occur in

the Remarks portion of SA reports.
Input:
WORD = A byte array containing the
data word to be decoded.
LN x The length, in bytes, of the
data word
INDX = The current pointer position
within the SA Remarks data.
LNRMKS = The length, in bytes, of the SA
Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST = A byte array
containing the decoded
Remarks.

IRNDX = The current pointer
position within the
decoded Remarks data.

NWX = A flag indicating if
weather data were
decoded in the
subroutine VISWX.

Output:
The decoded weather phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.

R TR L ey

B I P e S

L ey W

o e A a Mpntcn b S pk e

ING =

COMMENTS :

e

A-151

An error flag which is set if
the weather remark cannot be
decoded.

oot e S B S A P S B i e s e

4
3 MODULE NAME: WINDS
§ PROGRAM: VREXEC

3 SOURCE FILE:

-f PURPOSE: This subroutine decodes wind SA remarks.
CALLING ROUTINES: VRRMK
CALLING SEQUENCE: Call WINDS (WORD, LENGTH, ING, INDX, RMK,)
LNRMKS)
where: WORK = raw data word
8 LENGTH = length in bytes of raw .
9 data word

ING = error flag

INDX = current index position in
Remarks raw data array

raw REmarks data array
length in bytes of Remarks
raw data array

RMK
LNRMKS

[
|]

PEE

COMMON:

SUBROUTINES CALLED: None

Y T . TP P A Sed £ A7 S g e

SYSTEM ROUTINE REQUIRED: INDSTR, INUM

FUNCTION DESCRIPTION: To decode wind remarks which occur in the |
Remarks portion of SA reports.
Input: ‘
WORD = A byte array containing the’ .
data word to be decoded. v
LENGTE = The length, in bytes, of the *
data word.
INDX = The current pointer position .
within the SA Remarks data.
RMK = A byte array containing the
SA Remarks data,
LNRMKS = The length, in bytes, of the
SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST = A byte array containing
the decoded Remarks
IRNDX = The current pointer
position within the
decoded Remarks data.
- NWX = A flag indicating if
; weather data were
decoded in the

T, e oA e, A kD o 5 Wi Sl TN St RIS i ;.

=

A

subroutine VISWX. ’

Output: -
The decoded wind phrase is placed into

the RLIST array and IRNDX is .

appropriately incremented. .

ING = An error flag which is set if
the wind remark cannot be
decoded. .
COMMENTS :

A-152

T WA gt e

|
i
.!

MODULE NAME:

PROGRAM:
SOURCE FILE:

e e it eyt

PURPOSE:

' CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

SYSTEM ROUTINE REQUIRED:

o

FUNCTION DESCRIPTION:

-
»
L4

iy ot w1 AN e

WXMOD
VREXEC

This subroutine decodes dispersal SA
remarks such as dispersal schedule to
begin/end at {timé] and dispersal
began/ended at [time].

VRRMK

Call WXMOD (WORD, WLEN, RMK, RLEN, INDX,

IERR)
where:

WORD = raw data word

WLEN = length in bytes of raw

RMK =

data word
raw remarks data array

RLEN = 1length in bytes of remarks

raw data array

INDX = current index position in

remarks raw data array

IERR = error flag

None

INDSTR, INUM, ILET

To decode dispersal remarks which occur in

the Remarks
Input:

WORD =

WLEN =

RMK =

RLEN =

INDX =

COMMON/RSTUFF/RLIST, IRNDX, NWX

where:

portion of SA reports.

A byte array containing the
data word to be decoded.

The length, in bytes, of the
data word.

A byte array containing the SA
Remarks data.

The length, in bytes, of the SA
Remarks data.

The current pointer position
within the SA Remarks data.

RLIST = A byte array
containing the
decoded Remarks

IRNDX = The current pointer
position within the
decoded Remarks data.

NWX = A flag indicating if
weather data were
decoded in the
subroutine VISWX.

i Output:
1 The decoded dispersal phrase is placed
b into the RLIST array and IRNDX is
appropriately incremented.
IERR = An error flag which is set if
the dispersal remark cannot be
decoded.
B, COMMENTS : - ’
L5
)
3 .
g .
k)
5 [}
? -
3 -
3
§
g 3
: .
[}
&
r‘ ‘.

j A-154 °

RETREV

®

A.3 PDP-11/70

e,

L)

e

A-155

" A 12 AP s B i M A rhten S At

3 MODULE NAME: ASTDMD

3 PROGRAM: RETREV
SOURCE FILE: RETVER.MAC
PURPOSE: Gets the first M.U requested from Block

' read into CSB ADDS in 'previous report’
3 message if report old)

CALLING ROUTINES:

CALLING SEQUENCE:

- COMMMON: CSB PARAMETERS:

e SCRMUT+LMU $BKVB

i CMU BLOCK

BRM.LN .BKHDR
$BRMIE .MUHDR
SaB $DIAGB
$CRBT

FLAG

PMAD

$CRBTPT

SUBROUTINES CALLED: SENDMU
STIM
DEMAND (DMNDMU RETDMD.MAC)

FUNCTION DESCRIPTION: l. Input: RI-CSB Address.
2. Output: MU requested is put into
11/34 send buffer.

COMMENTS: Must change EMT time addition until system
value given as Greenwich mean time.

PR Py L s, AT,)

~ip

A-156 -

A DR) o o T RN

Pk

$;
i MODULE NAME: ASTVER
b ——
3 PROGRAM: RETREV
) SOURCE FILE: RETVER.MAC
i PURPOSE: Subroutine to verify requested loc from lit
4 block - set report's available mask
: ’ .
4 . CALLING ROUTINES: RDAST :
; CALLING SEQUENCE: . The AST address after a read complete
: . COMMON:: CSB PARAMETERS:
: $LOCPTR ?
2 LOCSIZ ;
: $CRMUT + LMU (Rl) (used as count of locs £
3 at this pt must be less ;
; than 10) .
SAB BRM.ER
. UDMOD $BRIME.
$RPMSK UDBAS
$DIAGP $BKBV
SUBROUTINES CALLED: '
N FUNCTION DESCRIPTION: 1. Input: Address of CSB - RI.]
3 2, OQutput: location verification - @ '
= sign replaces proper loc
? report mask -.
j RPMSK - Dbits set for report types
1 : available. Buffer sent to
3 ‘ last loc - next read issued
3 if not.
E : COMMENTS:
H {
: w
{
yT "
- A-157

L fabg

~

RS

wSe—s s i o

STy A

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE :

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

e e T A s O P 5K 5

BRF 2

RETREV

RETBRF

Process 11/34 Briefing Request #2; Build a
Channel Response Briefing Table (CRBT) of
Blocks for each report per location

requested; send request accepted or error
w/request acknowledgment back to 11/34.

SUSPEN (RETMAN.MAC)
CSB PARAMETERS:

$BRMIE SALT

$CRMUT $LOST

LMU $RLOCS

GMU FLAG, BLOCK, MUNUM

$DIAGB $SAVCB

$DIAGP LOCSIZ2

$CRBT $0B .

$CRBTPT FREEPL ~ free pool

$HOURS (of buffers)
list head

FDBLK

SEND

System: CDTB convert data to binary BSDR$S

1. Input: Briefing Request #2 from 11/34
X F/F/F -n =-n cr
1 2 3 1 2
X = Channel #
FI = report type 1L F = FD
3

request, n = hours, n alt
1 2
2. OQutput: CRBT the FLAG bits for SKIP
type, start of report type,
the BLOCK containing report
requested for loc; the
message unit no. slot (only
lst filled in). These three
words (FLAG, BLOCK, MUNIM)
are filled for each loc per
report block requested.
Rl - CSB address
R3 - input buffer address

.

L e Tt e I

¥

NP P s e e s

S

i

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE :

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

RETREV
RETSUB.MAC

Decrement map for all report blocks listed
in previous briefing table for channel then
clears out the RLOCS table.

SUSPEN (RETMAN.MAC)
DEMAND (RETDMD.MAC)

CSB Parameters:

$CRBT

BLOCK

$LSTLOC

$RLOCS

.NUM No. of report types
#SA SA offset

FDBLK

1. Input Rl - CSB Address.

2, OQutput Map decremented for each olock
in RLOCS table RLOCS table
cleared.

TS e T

A-159

T e N

s a b

MODULE NAME:

PROGRAM:

SQURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

DEMAND

RETREV
RETDMD .MAC

Process all 11/34 demands for message unit
data

SUSPEN: (RETMAN.MAC) - after 1lst input
buffer character is decoded as 's&'
a demand directive

ASTDMD: (send to DMNDMU) RETREV.MAC

CSB PARAMETERS:

$QB $STAG
$DIAGB $BKVB
DIAGP $CRBTPT
$CRBT GMU
BLOCK LMU
ERR.DM MUNUM
$I10ST $MURQ
BRM.CE CRBTSZ
$BRMIE FLAG

GETCSB SYSTEM ROUTINES

QUEUE READ

SUSPEN $CDTB-ASCII-to-BINARY conversion

DBLOCK $CBDMG-Binary-to ASCII conversion

SENDMU $CBDSG-Binary-to signed decimal
magni tude

1. Input: 1Input buffer address.
2. Output: Check buffer for channel number

and demand type key:

A. Hang up demand,

B. Send message unit,

C. 'jump ahead' to message
unit and send,

D. repeat message unit demand.

A. Decrements map values and
returns to 1ll1/34 hangup
acknowledge 'A'.

B. If message unit requested
in core - send 1) channel
$, 2) B-demand type, 3)
message unit data; if
message unit not in core,
proper block is read,
(AST) the stage indicator
is set to 1, and message
is requeued until read
completed.

A-160

C. Checks if MU requested

less than least message
unit (LMU) in core, output
same as for B - demand.

If MU requested greater or
equal, then skip ahead
flag is checked, link flag
checked and proper block
read.

Back~up in CRBT to proper
block requested and block
read (AST), message
requested, stage indicator
set to 1.

Any error in format of demand from 11/34 is
sent back with error diagnostic (ERRTN).

o e Ot i e e

MODULE NAME: DQUEUE

3 PROGRAM: RETREV
g SOURCE FILE: RETSUB.MAC
k PURPOSE: DEQUEUES an element from the CSB QUEUE .
$ list-head.
¥ - Y

CALLING ROUTINES: .
3 CALLING SEQUENCE: RETINI (MAC)

1 SUSPEN - (RETMAN.MAC) ;
TINAST (RETAST.MAC) .
a COMMON: None
{ SUBROUTINES CALLED: None

;1 FUNCTION DESCRIPTION: 1. Input: R3-CSB-QUEUE hold location.

b 2. Output: R3-CSB QUEUE address which now

) holds the next QUEUE link - it

E, no more QUEUE elements CSB head
' and tail QUEUE list head is zero
R4-QUEUE address link.

Sets carry bit if no elements

e

2 QUEUED on list head.
s COMMENTS : -
*®
i H
_3 .
y
3
i
i
*
(‘ 4

A-162

P e e

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

ERRTN
RETREV
RETDMD .MAC

Routine for processing error conditions

DEMAND (RETDMD.MAC)
RETINI - (RETINI.MAC)
RDAST - (RETAST.MAC)
TINAST (RETAST.MAC)

Send system $CBDMG. Binary to ASCII decimal
magni tude

1. Input: Rl - CSB address
R4 Error code buffer
RS Error code number.

2. Output: RO ~ address of translation of
error code,

A-163

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

i CALLING ROUTINES:
; CALLING SEQUENCE:

5 COMMON :

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

EXIT
RETREV

RETMAN.MAC

Performs retrieval exit tasks

SUSPEN -~ if exit flag has been set by
TINPUT upon receiving 11/34 exit directive
RETINI - if error opening or reading UDF
file

.LINE - CSB parameter
INPFDB - UDF-DAT file descriptor block

GETCSB -~ get CSB address

DBLOCK - free blocks in RLOCS

FDBLK - free block allocate for winds.
Data in CRBT - channel response
block table

TINPUT - detach terminal directive

l. . Input: None required.
2. Output: 1) A send directive to
'FDRTRV' task to exit.
2) Map decremented to free
report blocks for all
channels.
3) Close UDF.DAT file.-
4) Cancel all mark-time
requests.
5) Detach terminal.

A-164

om

i, iy) s 7 e ol W

R]

*)

o S B A A e b
o A S s 3 XA A e =

MODULE NAME:

PROGRAM:
SOURCE FILE:
PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON ¢

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

FDBLK
RETREV
RETBRF .MAC

To decrement map values for PD - winds data
blocks in the CRBT

EXIT (RETMAN.MAC)
DBLOCK (RETSUB.MAC)
BRF2 (RETBRF.MAC)

CSB Parameters
$CRBT

BLOCK

FLAG

CRBTS2

None
l. 1Input: Rl - CSB Address.

2. Ouptut: Map values corresponding to FD
Blocks in CRBT are decremented.

A-165

e "

i o DR et

e 3%

o LY Vi
o R o W AP AW SRl W e R

T S TR AR

I YT s

MODULE NAME:
PROGRAM:

SOURCE PILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

-

GETCSB
RETREV
- RETSUB.MAC

Translates binary or ASCII channel number
to its channel status block address

L5

RETINI .MAC RCVAST (RETAST.MAC) »

SUSPEN (RETMAN.MAC) TINAST (RETAST.MAC) .

EXIT (RETMAN.MAC)

DEMAND (RETDMD.MAC)

None

None

l. Input: Rl - the binary or ASCII

channel .

2. OQutput: Rl - the CSB address.

Rl is reserved throughout RETREV to hold

this CSB address. (unless it must be

changed when calling a system routine |

requiring Rl). -
[3
I
[]

&

A-166 "

L
- &

\
3
i
!
?
!
i
1

F

N

MODULE NAME:
PROGRAM:
SOURCE FILE:
PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

MRKAST

RETREV

RETAST.MAC

Set timer to check for data received for
FDRTRV (this is a precautionary measure to
insure all sends from PDRTRV are received

since there are some 11/70 system problems
with the receive AST logic)

System traps to this routine when the mark
time elapses

MARK FLAG
RCVAST

1. Input: None.
2. Output: Resets new mark time.

Uses mark time AST routines MRKTS$S to
continuously check for data received from
‘FDRTRV'.

MODULE NAME:
PRORAM:
SOURCE FILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

OUTSEND

RETREV
RETBRF .MAC

Perform check sum logic on buffer to be sent
to 11/34 and QUEUE the buffer to be sent

SEND (RETBRF .MAC)
SENDMU (RETBRF .MAC)

$I0ST - CSB parameter
TINPUT

1. Input: R2 - Buffer address for data to
be sent.

2. Output: Performs check sum logic and
adds check sum characters to
output buffer.

Outsend kills any pending reads to the
terminal, then outputs the buffer. A
terminal read is then reissued in order to
receive input continuously. The checksum
logic is as follows:

EXAMPLE: et
& | = 46 46
A | = 101 101
LCR | = 15 15
A) initial output 0
buffer 0
164/ B) output buffer
7 with check sum

characters
Figure A is the initial output buffer, with
each character inserted at a byte location.
The output buffer is an acknowledge of a
hangup demand to 11/34. The check sum logic
then appends the two null characters, the
binary sum of the characters, followed by

the number of characters sent, including the
check sum characters - as shown in Example B.

A-168

L Xs 4

A R L LY R g O

W5

»
T USRI K A et A A e

i

L TH

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING SEQUENCE:

coMMON:
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

QUEUE

RETREV
RETSUB.MAC
Add buffer to QUEUE

SUSPEN (RETMAN.MAC)
DEMAND (RETDMD.MAC)
TINAST (RETAST.MAC)

None -
None

1. Input: R3 - QUEUE list head address -
(QUEUE head & tail pointer)
R4 - $QB (Rl) the buffer address
Rl - the CSB address.

2. Output: The QUEUE tail pointer updated
to addition of buffer QUEUED
the last buffer tail pointer
changed to point to added buffer.

A-169

P Y T T e iy s - s i

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

RCVAST
RETREV
RETAST.MAC

AST location for data received from 11/70

programs currently (9/1/78) only from FDRTRV . -

RCVAST is trap location for data received .
from 11/70 programs FDRTRV but is also L
called by MRRAST. (RETAST.MAC) -
CSB parameters
$BRMIE
$SAVCB
BLOCK
CRBTSZ
$DIAGB
FLAG
SEND GETSSB
1. Input: Data block of 4 words queued by
11/70 program FDRTRV word
1 RADS0 'FDR' °]
2 RAD 50 'TRV' name of sender
3 Channel # task
4

Block # of FD report

requested by RETREV.

2. OQutput: Fills block # received into
CRBT BLOCK LOC as pointed to by
$SAVCB
if lst FDBLOCK received, then
the output buffer containing
acknowledge to 11/34 is sent:

e at"

[Xl

ot

5 ¢ i

Sl

»

PR R R W L R R TR S L LT e i

Ly ¥ P

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:
common;

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

RDAST

RETREV
RETAST.MAC

The AST address after a read completes, the
program vectors either for an LIT read for
LOC verification or an UDF report block
read for message units.

AST address after a read on UDF completes

CSB parameters:
$IOST
$STAGE

ERRTN ASTSKP
ASTVER
ASTDMD

1. 1Input: SP contains # characters
transferred on read and the IO status
word in CSB.

2. Output: vectors program to either
ASTVER - verify LOC IDS
ASTDMO - DEMAND request
ASTSKP - skip to next briefing block.

A-171

> AFew o ar= oy

i W § S SN

o

TRV

|
§
!
{
¥
R

e e e

MODULE NAME:
PROGRAM:

SOURCE FILE:

PURPOSE:
CALLING ROUTINES:

CALLING SEQUENCE:

COMMON :

FUNCTION DESCRIPTION:

COMMENTS :

Y

g o P BT T

Retrieval Constant Area

RETREV
RETCON.MAC

Storage area for retrieval program

All routine use the area

a~

The storage areas are:

19: Channel Status Blocks - a block for .

each channel line the block is described in

template file prefix.max (3200 bytes - size

per CSB)

75600 - Freepool list head

75602 - Freepool buffers - (41 buffers)
Free 1 - Free 41
Each buffer has link pointer 1
word plus 25 words

101730 - return QUEUE list head (head &
tail pointer two words)

101736 ~ IO QUEUE list head

101740 - INPFDB - UDF file descriptor block

P .CA

.

A-172

T Y

e T

R

- BT n AIERDIRIDE | itk At otV 9@ ol i SN

;
H
}
M
L
¥
£
H

(R 4

[1 ¥

MODULE NAME:

PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

RETINI.MAC

RETREV

Initialization module for program RETREV

The VRS 11/34 logs onto the 11/70 and runs
RETREV the start address for RETREV IS AT
BEGINNING OF RETINI

Channel status block parameters

$BKVB MRKAST - Mark time AST address
LOCSIZ TINPUT - Terminal QIO address
«BLKHD FREEPL -~ Free pool list head
$CSBIN TINAST - Terminal input AST address
$EVMSK

INPFDB - File Descriptor Block UDF address
CSBADR - Channel status block

PMAD - 'previous message' address

RCVAST - receive AST address

EXIT SYSTEM ROUTINES:
ERRTN WAIT FINIT QIO
GETCSB SRDASS OPNS$M READ

1) Opens UDF.DAT,

2) Gets 'previous report' messasge from
block number given at zero loc in UDF
LIT, stores the messagae for future
use at global address PMAD.

3) Sets receive AST address.
4) Attaches terminal for RETREV task.
S) Issues another terminal read.

6) Jumps to suspend address in main body
code of RETMAN

The channel status block offsets are
defined in the prefix file RETINI.MAC, each
module of RETREV must be compiled with this
module.

A-173

MODULE NAME:

PROGRAM:
SOURCE FILE:

|
i
r

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

Blaah g o L T

RETURN
11/34 VRS.

BACRGR.MAC

Routine to return address
specified in US.RTN

all FL, ***
US.**w
TR. **

TRAP TR-QUE

1. If echo-done bhit is set, return one
element to RDQUE. '

2. In any case, restore Rl from US.SAl.

3. Jumps to address specified in US.RTN
of USB.

A-174

i bt DR W,

L]

1.

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

L iy e R

SEND
RETREV
RETBRF .MAC

Count number of characters in buffer -
insert two null characters insert character
count and buffer address into QIO block

RCVAST (RETAST.MAC)
ERRTN (RETDMD.MAC)
BRF 2 (RETBRF.MAC)

Output:

address of Ql0 parameter block for
output to 1l1/34

(OQutput - QIO$ Output) System: IOKILL -
kill any pending I/0 to terminal OUTSND

1. 1Input: Rl, CSB address
R2, the output buffer address.,
2. Output: The character count and buffer

address in the Q O output block.

A-175

S T N 1§

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON::
SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

SENDMU
RETREV
RETBRF .MAC

1) Compute end-of-send buffer (without
. two null terminator) then
2) Call outsend to perform check sum and
I/0 to 11/34

BRF2 (RETBRF.MAC)
ASTDMD. (RETVER.MAC)
DEMAND (RETDMD.MAC)

Output ~ Address of QIO request block
Output -~ QIO for output to 11/34

1. Input: R2 - output buffer address
R3 - no of characters to send.
2. Output: the output buffer with check
sum characters to be sent by
11/34.

B ncinis acor e sa

R R R T TIeTey " T

&
.

MODULE NAME:
PROGRAM:

SOURCE FILE:

PURPOSE:

CALLING ROUTINES:
CALLING SEQUENCE:

COMMON :

SUBROUTINES CALLED:

PUNCTION DESCRIPTION:

COMMENTS:

SNDAST
RETREV
RETAST.MAC

Send AST address to resume RETREVAL, and
queue next event for channel

11/70 system traps to this address after an
11/70 - 11/34 send completes

CSB parameters:

$IOST

BRM.BY

$BRMIE

$EVNSK

EVENT - event word for channel activity bit
flags

1. 1Input: IO status block from stack
' pointer (computes CSB from
$10ST word,,

2. OQutput: Event word with bit set for
appropriate channel busy
cleared in the channel busy
word $BRMIE.

Saui.

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS :

SUSPEN

RETREV

RETMAN.MAC

Check event flag for channel activity if

yes jump to briefing request routines or ?
demand processing if not suspend

The initialization module calls suspend
initially, after that it is the suspend
address called after each channel activity
has been completed. Demand (RETMAN.MAC)

Channel status block parameters:

$DIAGB BRM,.BY $MODE $BRMIE
$EVMSK .UDMOD $QUEUE .UDBAS
$QB $BKVB $RPMSK $STAGE
$RLOCS $LOCSPTR BRM.ER
EVENT - double word containing bits set
for each channel to be serviced
FREEPL~- address of free pool list head
(head & tail pointer)
GETCSB DEMAND QUEUE SYSTEM ROUTINES
DQUEUE DBLOCK $CATS ®
Inhibits AST processing while checking .

event flags and dequeueing an element.

A-178

L3R 4

A AN AT A i W < s o T A -

MODULE NAME: TINAST
PROGRAM: RETREV
SOURCE FILE: RETAST.MAC
PURPOSE: AST address for terminal read complete
3 . CALLING ROUTINES: -
1 ‘ CALLING SEQUENCE: AST address upon terminal input received
b . . from 11/34
£ .
v COMMON : CSB paramenters:
g FREEPL
g $EVMSK
3 Event - word of channel activity bit flags
t I
{
4
3
‘% .
‘,-" L 4
§ 4
;
S
% < A-l79 i
5 :

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

Exit FL = flag word for exit directive

RSUMS$ RETREV GETCSB
QUEUE DQUEUE ERRTN

l. Input: Buffer queued to terminal by
11/34
2. Output: 1. DEQUEUES buffers for
T par ticular channel if
receive is a hang up
directive
2. Sets exit flag if receive
is an exit directive
3. Issues next terminal
receive for continuous
terminal input.

TINAST performs check sum logic on receive
data and checks it against the received
11/34 check sum characters (see outsend
module for description of check-sum logic).

e oras sttt My NI LIl Gt 8t s

[
e
O
1]
o
>
®
o
~
N
=1
-
J
[« 7]
o]
Dy
bl
<

T ey VR 0aih R VPR S NP g e

o oo} e bR o <o 8 AR VR O S S e e oo y . . __

MODULE NAME: BLCRS
PROGRAM: VRSOUT
SOURCE FILE: BLCR8 .FTN
& PURPOSE: To format the report into message unit
block format
‘ ‘ ¥ 4
o CALLING ROUTINES: VRSOUT .
CALLING SEQUENCE: BLCR8 (ITIM, NMUS, PDICO, IPNDX, IPAIRS,
IFILE, BLOCK) b
g COMMON: ITIM - time of report)
NMS - number of message units in Block
b PLICO - start address of the report in
_ common
IPNDX - pointer to the report array
PDICO
IPAIRS - number of PTR pairs in block
IFITE - report type subfile number
BLOCK - the Block Buffer
SUBROUTINES CALLED: None
. FUNCTION DESCRIPTION: 1. Input: The offset in the ARRAY PDICO
% to the format into block format.
: 2. Output: The report pointers in block
* . format that is 4 message unit ¢
% headers followed by the message
! unit of 27 pointer pairs. :
i -
% COMMENTS: .
‘ - &
A
i
t
»
l" Y
A-182 o

M Sl T T R

#
v
.
a
v

B s o R A il SRS

ad J

MODIJLE NAME:

PROGRAM:

SONRCE FILE:

PIJRPOSE:

CALLING ROMTINES:

CALLING SEQUENCE:

COMMON:

SNBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

IOBLCK

VRSOOT

TOBLCK.FTN

To read/write data'to JDF.DAT
VRSOUT

CALL TOBLCK (FnINC, BLMVM, BLCK)

FUNC - the function to perform
1 = Read
2 = Write

BULNTIM - Block number to be written

BLCK - the buffer to receive the block
read or to be written in the
UOF.DAT depending on the function
requested

System Routines : Read - Write

1. Input: Block number function to
perform buffer for block.

2. Output: The block to HDF. or the block
read into buffer an error flag
is returned in the function
parameter - FONC.

et o e i

g MODILE NAME: NOTAVS
p PROGRAM: VRSOUT
3 SONRCE FILE: NOTAVB, TN ¢
3 PIJRPOSE: .
CALLING ROIITINES: . VRSPIIRG .
L, CALLING SEQNENCE: Call NOTAVB (LOC, IFILE, NOTSBLK) v
. where LOC = location identifier
£ IPILE = 1 value for SA purge, 2
a value for PT purge ;
. NOTBLK = block number where the .
' purge message was :
b written in the UDF ‘
4 COMMON: ;
SUUBROUTINES CALLED: BLCR8, IOBLCK, ACTIV, DICT g
1 FINCTION DESCRIPTION: This subroutine inserts a "Report Not '
k Available"” message for a given locid SA or :
% FT report into the UDF and returns the %
u block number where it was written to the .
calling program, VRSPURG, for insertion in
the LIT. :
COMMENTS: .
%
s
.
i
/ A-184

MODIJLE NAME: SASPEC

PROGRAM: VRSONT
SOURCE FILE: SASPEC.PFTN
‘ -
PIIRPOSE: To append SA specials to the SA report for
the same hour
d CALLING ROUTINES: " VRsOUT
CALLING SEQUENCE: Call SASPEC (MAP, HDOR, KR8, PDICO, NP,
‘ IOuLD, ITIM)
3
COMMON: MAP - the address of the (global common)
} amp array
. HDDR - buffer containing first block of
g current report
4 K8 - the first free block available

(for ichain value)
4 PDICO - the report array
i IOLD = the MJOF block number of current

4 report
i NP - the number of PTR pairs in report
ITIM = the report time
SUBROIMIITINES CALLED: None
: FIINCTION DESCRIPTION: 1. Input: The 3A special report.

2. Output: The report appended to the
current SA report, the

. remaining report is returned

to VRSONT for regqular

processing by 8LCR8 - and

IOBLCK.

COMMENTS: If a report currently contains an appendced
report, the time is checked. 1f the new
report is more recent it is written over
the old special, and any remaining linked
blocks are freed - (map value decremented).

[SEEIRRTI

TR e -

MODIJLE NAME:

PROGRAM:

SONRCE FILE:

PIJRPOSE:

CALLING ROUTINES:

- CALLING SEQIENCE:

COMMON:

SUUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

VRSOUT

VRSOOT
VRSOUT.FTN

Receives directive from VRS (processor
executive) to output data to UDF.DAT file

VRSOUT is an installed task wihich is loaded
into memory upon initial
send/request/resume directive from
VRS.VRSOUT then remains suspended until it
receives an exit directive.

VRS global common area

MAP - index to fIDF b.ock usage

PDICN ~ processe. ..gort array (ASSCIT)

PDICO - trans. .ed report array (integer
ptrs)

ATADII - winds data (raw)

ATADIQO -~ winds data (translated)

SEND BLOCK RECSND/R

Rl - sender name in RADSO

R2 - sender name in RADSO

R3 - Report type

R4 - LOC-in RADSO

RS - Translated pairs

R6 - PDICIN length

R7 - Date (day of month in ASCIT)
R8 - Date

R - Time (time - HH-MN in ASCI)
R10~ Time

Rll- Time

R12- Time

BLCRS
LOBLCK
SASPEC

1. 1Input: The received send-block R16

C integers the report to output
in PDICO.

2. Output: The report in block format
chained to addition blocks is
necessary and output to fIDP.

VRSOUT is an installed task installed by
VRSINS.CMD.

A-186

-

R PO YRV e s o

MODULE NAME:

PROGRAM:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

- COMMENTS:

VRSPURG

VRSOOT
VRSPNIRG. PTN

VRSOnT

Call VRSPNIRG

ZULUT™, VDATE, RS50ASC, NOTAVB, ACTIV, DICT

This subroutine purges from the UDF those

SA reports which are more than 2 hours old
and those PT reports that are more than 8

hours old.

A-187/A-188

™ o

el AT

Bosi i, .

A o BRTE > f + et e s

A.5 pPoP-11/70® vRrseD

A-189

....... A ko

v~ e

MODNILE NAME: VRSFD (installed task)

1 PROGRAM: VRSFD
& SONJRCE FILE: VRSFD, PTN .
PIIRPOSE: This program retrieves and processes Winds .

Aloft data from the KCW.DAT file and stores
it, according to a record number
. calculation, in the fJDP for later VRS

) retrieval by FDRTRV.

CALLING ROUTINES: VREXEC
CALLING SEQUENCE: Called through ACTIV
COMMON:
SIJBRONTINES CALLED: GTRPT, IDATE, TOBLCK, EXTSTR, RECEV
.; FUNCTION DESCRIPTION: To extract Winds Aloft data from the
‘ RCW.DAT file and process and store it in
' 4 the UDF for later VRS retrieval by FDRTRV.
_J Input:
X PAR = A 7 integer array passed in the
ACTIV send block containing the .
RCW.DAT file pointers for Winds
Aloft.
Qutput: .
‘ None .
3 COMMEN'TS: : .
}
1
B
4
}
3 ™
{ -
: .
%
E
§
1
!

A-190

N g
S R el A

Loas iy, b i

ot A A
4 FROEP

<o T P PR R ¢

A.6 PpP-11/70® rpRTRV

A-191

T B I TR L

. A s i 4

v

-—

L

K
. 5
[TV o

e sk et it e i =2 Sl . N

b L4

MODULE NAME:
PROGRAM:
SOURCE FILE:
PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

N r AT as 2

FDRTRV (installed task)
FDRTRV

FDRTRV.FTN

To retrieve ATA winds data requested by
RETREV.

RETREV

Called through ACTIV

RSOASC, IDATE, TIME, IOBLCK, SUMMIT, RECEV,
ACTIV, BLCR8, VRECEX, DICT, RETREV

This program is activated upon a Winds
Aloft request from RETREV. Data received
from RETREV consist of the channel number
of the request, altitude requested, number
of hours to departure, RADS0 representation
of the locid, latitude and longitude of the
locid. The program then determines the
appropriate data to obtain from the UDF,
interpolates the data, and creates a voice
response message containing the decoded
results. It then stores the message in the
UDF and returns to RETREV the block number
where it was stored as well as the channel
number of the request.

Input:
R=Al6 integer word array passed in
RECEV where:
R(4) = channel number
R(5) = altitude
R(6) = number of hours to departure
R(7) = RADS0 locid
R(8) = latitude
R(9) = longitude
COMMON/VRSGLB/MAP (10240), PDICIN
(700), PDICO (350) ATADII (l60),
ATADIO (160)
where: MAP = A byte array
representing the status
of the UDF.

PDICIN = A byte array
containing dictionary
input from VRSINP.

PDICO = An integer array
containing dictionary
output corresponding
to PDICIN.

A-192

ATADII = A Dbyte array
containing dictionary
input from PDRTRV.

ATADIO = An integer array
Containing dictionary
output corresponding

to ATADII.
Output:
R = A 16 integer word array passed in
ACTIV

where: R(4) = channel number
R(5) = winds aloft response
message location in upF,

A-193

e i X2 0 P S

MODULE NAME:

PROGRAM:
SOURCE FILE:

PURPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION:

COMMENTS:

IOBLCK
FDRTRV, VRSOUT

TOBLCK.FTN

This subroutine reads or writes a block of
data from or into the UDF.

Call IOBLCK (FUNC, BLNUM, BLCK)
where: FUNC = 1 for read operation, 2
for write operation
BLNUM = block number of data to be
read or written
BLCK = data block

None

This subroutine reads or writes a block of
data from or into the UDF.
Input:

FUNC = 1 for a read operation, 2 for a

write operation
BLNUM = Block number of data to be
read or written

BILCK = Data block to be written.
Output:

BILCK = Data block read.

A-194

(%3

MODULE NAME: SUMMIT
‘ PROGRAM: FDRTRV
3 SOURCE FILE: SUMMIT.FTN
3 PURPOSE: Interpolate Winds Aloft data for a
3 requested geographical position.
< . - .
. CALLING ROUTINES: FDRTRV
CALLING SEQUENCE: Call SUMMIT (LVL, NDAT, SUMT, SUMX, SUMY,
K H MASTER)
¢ . where: LVL = data level required (1, 2
] or 3 value)
& NDAT = pressure level required
within data level }
SUMT = interpolated temperature o
H : value :
" SUMX = interpolated X coordinate]
L value of the wind vector ’
‘ SUMY = interpolated Y coordinate]
. value of the wind vector ¥
3 MASTER = UDF record 9972 containing
{ special flag and time
[values for diagnosing
! invalid data.
‘ COMMON : }
. SUBROUTINES CALLED: IOBLCK, WTFOR3 ;
FUNCTION DESCRIPTION: This subroutine retrieves Wind Aloft data
3 ' for the data level, blocks, and subsquares
] . given in the calling statement and FDSUM
* - labeled common. It then interpolates the

data for the geographical point requested
according to calculated weighting factors
and returns the results to the calling
program FDRTRV.
Input:
LVL = Winds Aloft data level
required (1, 2 or 3 valve) '
NDAT = Pressure level required]
within the data level. :
MASTER = UDF record 9972 containing
special flag and time values
for diagnosing invalid data.
COMMON/FDSUM/ITIME, BKl, BK2, BK3,
BK4, SQl, SQ2, SQ3, SQ4, pTl, PT2,
PT3, PT4, IFOLD, IFUNK, NREAD
’ where: ITIME = Forecast time period
required

ot il e G AR o 2l

o S —ent

q -

- A-195

B

L. .0 SAENNCRATOIRIEC . T ol B M- o X

. g

s RN -

R, RN

COMMENTS:

BK1l
BK2
BK3
BK4
SQl
SQ2
5Q3
sQ4
PT1
PT2
PT3
PT4
IFOLD =

IFUNK =

NREAD =

Output:

Grid blocks required

Subsquares required

Weighting factors of
subsquare points

An error flag which is
set if the current
Winds Aloft data are
too old.

An error flag which is
set if the Winds Aloft
data required are
missing or unknown.
Number of disk reads
required in order to
compute the Winds
Aloft results.

SUMT = Interpolated temperature valve.

SUMX = Interpolated X coordinate of
the wind vector.

SUMY = Interpolated Y coordinate of
the wind vector.

A-196

fa

K i

. .
E e Y

< R e, 2l

i

e oo

ke ake oo T T gy,
'

MODIJLE NAME:
PROGRAM:
SOURCE FILE:
PYJROSE:

CALLING ROMTINES:

CALLING SEQUENCE:

common:

STJIBROUJTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

WTFOR3
FDRTRV
WTFOR3.FTN

This subroutine re-apportions the weighting
factor of a subsquare point having unknown
wind data amongst the three other points in
order to complete interpolation of wind
data within this plane.

SUMMIT

call WTFOR3 (PTLlK, PT2K, PT3K, PTUNK)
where: PT1K = weighting factor of point 1l
PT2K = weighting factor of point 2
PT3K = weighting factor of point 3
PTUNR = weighting factor of point
having unknown data values

None

This subroutine re-apportions the weighting
factor of a subsquare point having unknown
wind data amongst the three other points in
order to complete interpolation of wind
data within this plane.

Input:
PTlK = Weighting factor of point 1.
PT2K = Weighting factor of point 2.
PT3R = Weighting factor of point 3.
PTIUNK = Weighting factor of point
having unknown data values.
Qutput:
PT1K = New weighting factor of point 1.
PT2K = New weighting factor of point 2.

PT3K = New weighting factor of point 3.

A-197/A-198

TN e ek 3l e o e B o o i -

A.7 poP-11/70%® noFPRG

MODILE NAME:
PROGRAM:

SOURCE FILE:

PIIRPOSE:

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FIINCTIQN DESCRIPTION:

COMMENTS:

oy v

JOFPRG
(JOFPRG

UUDFPRG. FTN
TO create the VRS report data file UDF.DAT

Rgn by user to re-create the Nniversal Data
Pile

None

NOMESG, GETADR, WTQIO, IDATE, TIME, GETLOW,
acriv, DICT

This program creates the Nniversal Data
File (UDF) and stores the message, "Report
Not Available®” within each SA and PT report
location. It also inserts the special
message, "Current Report Not Available,
Previous Valid Report Is...." for locid
'$00'. This is a special locid used by VRS
Retrieval,
Input:
COMMON/VRSGLB/MAP (10240Q0), PDICIN
(700), PDICO (350), ATADIT (1l60).,
ATADIO (160)
where: MAP = A byte array
representing the status
of the JDF,
A byte array containing
dictionary input from
NOMESG.
An 1lnteger array
containing dictionary
output corresponding to
PDICIN.
A byte array containing
dictionary input from
FDRTRV.
An integer array
containing dictionary
output corresponding to
ATADIT.

PDICIN

o

PDICO

d

ATADII

ATADIO

Output:
None

A-200

S TA Y

MODIJLE NAME:
PROGRAM:

SONRCE FILE:

» PJRPOSE:

I At e I
"

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:;

SIIBROUTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

NOMESG
JOFPRG
NOMESG. FTN

TO create a 'report not available' report
for given location.

JOFPRG

Call NOMESG (LOC, SAMESG, FTMESG)

Where: LOC = location identifier
SAMESG = block number of SA message
FTMESG = block number of PT message

BLCR8, TIOBUCK, ACTIV, DICT

This subroutine, called by UDFPRG, creates
the message "Report Not Available” for each
SA and PT report locid and the message
"Current Report Not Available, Previous
valid Report Is..."” for locid '$00'. It
returns the block number where each message
is stored to UDFPRG for insertion into the
Locator Index Table.
Input:
LOC = Location identifier.
COMMON/VRSGLB/MAP (10240), PDICIN
(700), PDICO (350), ATADII (160),
ATADIO (160)
where: MAP = A byte array
representing the status
of the MNDF.
A byte array containing
dictionary input from
NOMESG.
PDICO = An integer array
containing dictionary
output corresponding to
PDICIN,
A byte array containing
dictionary input from
FDRTRV.
An integer array
containing dictionary
output corresponding to
ATADITI.
COMMON/TIBLOCX/ITDFBLK
where: NDFBLK = Number of Last JDF
block written.

PDICIN

ATADII

ATADIO

Output:
SAMESG = Block number of SA message.
FTMESG = Block number of PFT message.

A-201/A-202

"y

A-203

(24
(]
z
-
[+ 4
>
©
[=]
~
1)
~
-
[T
(o}
=7}
e o]
<

[3 [N

R R R

CUEE SMTRR~ n x e -

MODNLE NAME:
3 PROGRAM:

SQOIJRCE PFILE:

E : PITRPOSE:

CALLING ROUTINES:

i CALLING SEQIENCE:

CNOMMON:

STIBRONTINES CALLED:

FIINCTION DESCRIPTION:

COMMENTS:

TR R S e -

VRINIT

VRINT
VRINIT.PTN

To initialize the VRS processor data base
map and pointers

Run by user at start-up time

None

TIME, VRSMAP, VRSPTR

This program clears and re-initializes the
VRS data base map based upon current report
information within the UIT and re-sets the
history file pointers for SA's, PT's and
Winds Aloft to their last major
transmission point in the KCW.DAT file.
Input:
COMMON/VRSGLB/MAP (10240), PDICIN
(700), PDICO (350), ATADII (160),
ATADIO (160) of which only MAP is used.
MAP = A byte array representing the
status of the 7UDF,
Qutput:
None

A-204

P i
o o i sy M

Bt ats & i

MODULE NAME: VRSMAP
PROGRAM: VRINIT
SOURCE PIFE; VRSMAP. PTN :
‘_ PIIRPOSE: 1 To initialize the VRS processor data base é
map. §
]1 s CALLING ROUTINES: © VRINIT
;“ ' CALLING SEQUENCE: call VRSMAP (MAP)

where: MAP = 10240 byte map array of
VRS which will be stored
in the global common VRSGLB

1 COMMON:

STJBRONUTINES CALLED: None

A LT PO UM P PR W Y ST

¢ FIUNCTION DESCRIPTION: This subroutine initializes the VRS global
¥ common map. The map contains a byte
' corresponding to each block in the 1DP,
& Por all pre-allocated blocks in the UDF,
i.e., the map, the region table, the ULIT,
. and the wWinds Aloft data blocks, the
corresponding bytes of the map are set to a
. value of one (l). All other bytes are
Y - initialized to -1 to indicate that the
;s blocks are free. The subroutine then scans
g * the Locator Index Table (LIT) and sets the
. bytes for each block containing a report,
i including blocks chained for a report. 1If
: there is a discrepancy for a report block,
N such as a block number out of range, then
1

all the blocks for that locator index for
the report are zeroed.

. Input: 1
N MAP = A byte array representing the ?
{ status of the UDF.
! Qutput:

MAP = A byte array representing the
\ status of the MDF,

L]
e

, A-205

2ok i, b sl

i o TR Ll A <

|

MODIJLE NAME:
PROGRAM:
SQOURCE FILE:

PIJRPOSE:

CALLING ROUTINES:

CALLING SEQMENCE:

COMMON:

SUBROMNTINES CALLED:

FIIUNCTION DESCRIPTION:

COMMENTS:

VRSPTR

VRINIT

VRSPTR. FTV

To initialize the VRS processor data base f
pointers.

VRINIT .

Call VRSPTR

DTELAP, Z7ILjT™M, TIME, GTRPT, EXTHED, EXTSTR

This subroutine re-sets the history file
(SFL.DAT) pointers to the last major
transmission points in KCW.DAT for SA's,
FT's and Winds Aloft. The method used for
each report type is to back-up half a file
size from the current pointer position in
the KCW.DAT file and sequentially read
headers until the calculated desired 3
starting point is found. :
Input:
None
Output:
None

A-206

ittt e N o

APPENDIX B

PDP-ll/34® and PDP-ll/7O® Line Communication

B.1 PDP-11l/34 and PDP-11l/70 Communications Protocol

g During communications among the VRS computer, the

- : PDP-11/34, and the Processor computer the PDP-11/70, errors
L; ' occur in transmitting information over the 1200 BAUD
f

¥

A

asynchronous dedicated line. 1In order to recognize and
eliminate these errors, two validity checks are performed on

- all communications. Appended to each message from the 11/70 to
71 the 11/34 are a check-sum of two digits followed by a character

count of data characters to be transmitted. Before
transmitting the message to the 11/34, Retrieval sums the value
3 of each character to be transmitted. The sixteen bit check-sum
! is added to the transmitted message, along with an 8-bit count
_4 of the number of characters to be transmitted. As each

i character is received by the PDP-11/34, its sum is added to the
} value of the previous characters received in a particular
message. When the message is complete, the check-sum is

L{ ! compared to the check-sum transmitted by the 11/70. The

1 * character count is also compared. If both tests pass, the
11/34 assumes the message is correct. If a heck fails, the
message is dropped on the floor. The 11/34 line timeout
routine would then request the information again as the VRS
software on the 11/34 never sees the errant message.

%

SRS W Yt

The same procedure is followed on transmissions by the
11/34 to the 11/70 with one difference: The terminal handler

4

y recognizes some character values as special, which will

; initiate action by RSX-1lD. As a result, the check-sum
characters transmitted by the 11/34 contain none of these

= ° characters. Instead, the first ten bits of the check-sum are
divided into two five-bit fields and added to octal 40.

%

Y

Likewise, the character count is added to octal 40. This
procedure insures that no control characters are passed to the
RSX~-1l1lD operating system.

In the future,

the software will use a 2400 band

synchronous line using a DMC-1l on the PDP-11/34 and DECNET
software on the PDP-11/70 . The following sections describe
how that communication will proceed. When using DECNET-DDCMP,
the error checks now performed will be deleted as redundant.

B02

ppp-11,/34® --ppP-11/70 ® DECNET (DDCMP)

Channel Type

pata Code

Line Speed

Error Controls

Block Size

ENQ 00000101
SPH - 00000001
STX 00000000
ETB - 00010111
ETX 00000011
SYN - 00020220

Full Dpuplex Synchronous

- ASCII and Transparent Text

2400 Baud

CRC-16 Block Parity. Block
ACK/NAK procedures

194 characters (including framing
characters). Last block is variable in
length up to 194 characters.

DATA LINK CONTROL CHARACTERS

(ASCII)

Octal 5 - Enquiry

Octal 1 - Start of Header

Octal 2 - Start of Text

Octal 27 - End of Transmission Block
Octal 3 - End of Text

Octal 26 - Synchronous Idle

e

-

i
!

IRttt e Bkt
L]

e

ACK - 00000110 Octal 6 - Affirmative Acknowledgment
NAR - 00010101 Octal 25 - Negative Acknowledgment
DLE - 00010000 Octal 20 -~ Data-Link Escape

The first character (ENQ) is an out-of-block (not framed)
character while the remaining characters enable the hardware to
detect the beginning and end of data transmission.

All data transmitted must be preceded by at least three SYN

characters.

Message Formats

A. Data Messages (lst and intermediate blocks)
character #:

1 2 3 4 5 190 191 192 193 194
message:
0 SOH N DLE STX Transparent Text Data DLE ETB BCC

Data Messages (last block)

character #:

1 2 3 4 5 . K K+l K+2 K+3 K+4
message: .
0 SOH N DLE STX Transparent Text Data DLE ETX BCC

where K + 4 = 194
B. Acknowledgment Message

character #: 1 2 3 4 56
message: 0 SOH N ACK/NAK ETX BCC

C. Line Synchronization Messages

0 ENQ

where:

SOH

DLE STX

DLE ETB

DLE ETX

BCC

ACK

NAK

ENQ

Required number of SYN characters
Start of header character

Block sequence number (0-9)-1 ASCII
character

Start of Transparent text characters

End of intermediate transparent text
characters

End of transparent text message characters

Block check characters (CRC-16;
2 characters)

Affirmative acknowledgment character
Negative acknowledgment character

Enquiry character

The block check character (BCC) is used to provide a block
data integrity check. It is a cyclic-redundancy check
(CRC~16)* that uses an arithmetic accumulation that is reset

*See Section B.6.

B-4

4
2
i
!

... 38

ML Y S

Al

e

s @

with the SOH character in the transmission, and restarted with
the character following. Thereafter, all characters in the
transmission up to and including the ETB or ETX character are
included in the CRC calculation. Within blocks of transparent
text, the first DLE character of all two-character DLE

sequences is excluded from the BCC.

B.3 Transparent-Text Mode

This mode permits greater versatility in the range of coded
data that can be transmitted. This is because all data,
including the normally restricted data-link line-control
characters, are treated only as specific bit patterns when
transmitted in transparent mode. Thus, unrestricted coding of
data is permitted for transparent-mode operation. This mode is
particularly useful for transmitting binary data and unique
specialized codes.

Any data-link control characters transmitted during
transparent mode and required to be effective must be preceded
by a DLE. Thus, the following sequences are effective during

transparent-mode operation:

SEQUENCE USE
DLE STX Initiates the transparent mode for the

following block of data.

Terminates a block of transparent data,
returns the data link to ASCII mode, and
calls for a reply.

DLE ETB

;
L]
;
i
;
‘.
-?

DLE ETX Terminates the transparent data, returns the
data link to ASCII mode, and calls for a
reply.

Indicates a "disregard this block of
transparent data" and returns to ASCII mode.

Used when a bit pattern equivalent to DLE
appears with the transparent data to permit
transmission of the DLE as data.

All replies, inquiries, and headers are transmitted in
ASCII mode. Transparent data are received on a
character-by-character basis; thus, character phase is
maintained in the usual manner.

NOTE: ASCII data may also be transmitted in ASCII mode

omitting the DLE character from the data link control
sequences - DLE STX, DLE ETB, DLE ETX, etc.

B.4 General Transmission Procedures

Each data block transmitted and received will be
acknowledged when feasible. The acknowledgment may be a
positive ACK or negative NAK. A positive ACK is sent if the
following conditions are met:

1. The block size is correct.

2. The SOH/STX and ETB/ETX characters are proper (valid
and expected).

3. The BCC is correct.

The block sequence number is correct.

(.

B Y5

*

PR e N

{

e

Bach time a center is forced into a cancel mode during a
transmission regardless of the reason, the ENQ procedure will
be initiated before the next transmission is started.

If the center receives an ENQ after the start of a data
transmission (on input) and prior to an end transmission
character (ETX) it will treat the'iNQ as a cancel transmission
request from the transmitting center.

B.4.1 Output Timing

A center establishes a timeout value of 5.9 seconds for
every block transmitted. If the receiving center does not
acknowledge receipt of the block before the timeout is
detected, an automatic block return procedure is invoked. The
timeout value increases to one minute for ETX blocks with the
same block rerun procedure when a timeout is experienced,

If any of the above conditions are not met, the center will
either transmit a negative acknowledgment (NAK) or refuse to
respond, forcing the transmitting center to rerun the block
when expected acknowledgment is overdue.

B.4.2 Block Acknowledge Procedures

A center will transmit an ACK or NAK reply block for every
block received. The data block ACK/NAK format is the same as
the ENQ response except for the content of the N field. That
is, for data block acknowledgment the N field of the reply
block contains the block number being acknowledged (ACK or NAK)
whereas, for an ENQ response, the N field is always ASCII zero.

B-7

A

B.4.3 Block Rerun Procedures

Data blocks are retransmitted every time a center receives
an NARK acknowledgment from the other center or when no
acknowledgment is received within the allotted time
(5.9 seconds NON~ETX blocks; 60 seconds for ETX blocks). If an
NAK or data timeout occurs three times for the same data block,
the center initiates a cancel and returns to the ENQ
procedure. If a message is retransmitted three times without >
success, it is aborted. When a message abort procedures are)
A used, the center will generate a printout (3NAK) and continue
with the next message available for transmission.

Db ol atar . <R g

ik 4

B.4.4 Block Transmission Procedures

A center will stop transmitting when a persistent error
condition has been detected. When a positive acknowledgment is
received, the center will resume transmission.

B.S Line Synchronization Procedures

A center will initiate an ENQ procedure to determine
circuit viability an operational interface capability with the
other center. The format for the ENQ transmission is:

character #: 1
message: 0 ENQ

where 0 represents the required SYN character sequence.

The SYN characters are followed by a single ASCII ENQ
character. The ENQ sequence is sent at one second intervals *
until two consecutive positive replies are received. After 150
unanswered ENQ'S have Lteen transmitted, the center will

il e A i SERRROAN

generate a printout indicating a possible line problem exists.
The center takes no other action at this time and continues to
ENQ the other center. (It should be noted here that the other § 1
center has a similar responsibility regarding the transmission
and acknowledgment of the ENQ procedure).

The format for the response to the ENQ block is:

character #: 1 2 3 4 5,6
message: 9 SOH N ACK/NAK ETX BCC

All ENQ reply blocks are framed with SOH and ETX control
characters. The rule which governs BCC generation for data
blocks is also valid for reply blocks. The N field is always
an ASCII zero when responding to an ENQ. If the center is not
in an operational mode that would permit a large volume of data
transfers on the circuit, a NAK responds is sent to the ENQ.
The center receiving the NAK response must withhold the
transmission of the next ENQ for thirty seconds.

B.6 Cyclic Redundancy Checking (CRC~16)

Cyclic Redundancy Checking (CRC-16) is a sophisticated
method of block checking a data stream. This type of checking

involves a polynomial division of the data stream by a CRC

polynomial. The 1's and Q0's of the data become the

coefficients of the dividend polynomial while the CRC

polynomial is present at X + X + dX + 1. The division

uses subtraction modulo 2 (no carries) and the remainder serves i.
as the Cyclic Redundancy Check. The receiving station compares ¥
the transmitted remainder with its own computed remainder and
an equal condition indicates that no error has occurred.

1.

2.

i

APPENDIX B REFERENCES j

- . . »
MITRE document entitled "WMSC High Speed Interface :
Procedures,” Dec. 1975,

Digital Data Communications Message Protocol, Dec. 10, 1974.

8-10

X}

Il

APPENDIX C

PDP-11,/70® SOFTWARE FLOW DIAGRAMS

C-1/C-2

preaiage— gy 2

L i AR GO b o

FIGURE C-1:

C-4

VREXEC

- o AR St AL Y

bt 12t s e S

C.2 VRSOUT

LX)

X
r -
CALL BLCRS 10
-CONVERT DICT.
POINTERS IN BLOCK .
PORMAT .
3 CALL IOBICX TO
OUTPUT BLOCK TG
oor
'HASE' LOC ID
(RADSO LOC D
VALUE MOD 233 &
22 = LTTRLY)
READ LIT i
BLOCX FOR LOC
?
GET REPGRT BLX
FROM LIT FOR RPT T .
|)
2 POR DD REPORT
| -
] SEND~RESUME
‘ T0 VRS
! SUSPEND TO
RECEIVE DATA
|
i
:
]
i
" PIGURE C~2: VRSCUT
*
‘l' -
: C=6
1

= B IR
s N A L B e .,i;;.g_,wg.,w.--.-arﬁr._r X

e m T

LR

:
t
¥
4
i
¥
14
f
4

(MAP « @) BLOCKS
FREE (MAPS - 1)

B

e e R]

Gt 1

FIGURE C-2: VRSOUT (Cont'd.)

Gorp
0

<. iy o Xl i S il o b u
»

c-7/C-8

4
)

e — . Ll St A D DT> s A4 67 4P i ot -

R TT N

|
L

C.3 SA PROCESSOR

P SRPENIEE NS, TIOSEPS T P S

INITIALIZE
2ZERO ARRAYS

ARRAY (1)
=]

NO

YES

SUBFLD

VISWX

INSERT
LOC IN
ALIST

INSERT
AT

EXTHED

GET TIME
FROM HEADER

FIGURE C-3: SA PROCESSOR

ol ghada

U P S SRV

B3

¢
E“.
4

YES

NO

TAKE HTIME
TO ALIST

PUT IN ALL
4, ADD '2’

L

TIME INRPT

TAKE STIME
TO ALIST

LAST TWO
DIGITS = 'O’

PUT IN ALL
4 WITH ' ',
ADD ‘GMT'

ADD 'DOT’

INSERT SKYCVR
REMOVE TRAIL
BLKS

REMOVE DOUBLE
BLXS FROM
MILES

INSERT
VISIBILITY
FIELD

FIGURE C-3: SA PROCESSOR (Cont'd.)

YES

INSERT
WX FIELD

NO

QE/»

~ INSERT
TEMP TAG
& TEMP

NO

INSERT
DEW POINT
TAG & DP

NO

é?;/}

)

FIGURE C-3: SA PROCESSOR (Cont'd.)

c-12

YES

INSERT
'PK GUSTS'
TAG

PIGURE C-3:
SA PROCESSOR (Cont'd.’

Sa

'

Ry N

T orhane

RIS o . T

INSERT
'PK SQUALL'
TAG

INSERT
SQUALLS

.

()

HAN

ALTIM

PUT IN
ALTIM TAG

INSERT
ALTIM

SKYFLG
NO LOCFLG

VISFLG
ON?
YES

-

SET IKILL
=0

SET IKILL
-]

FIGURE C-3:

RETURN

Cc=14

)

SA PROCESSOR (Cont'd.)

‘3
{3

o e W e

s "

EXTHED

VIA CALL

INIT.

SET LENGTH

SET INDEX
TO END
OF DATA

FIGURE C-3:

TAKE SYS
YES TIME TO
ZULU COMMON
EXTRACT &
TRANSFER TO
ZULU COMMON
TURN

SA PROCESSOR (Cont'd.)

ey
;
. SUBFLD ENTER VIA CALL
INITIALIZE
BLANK ARRAYS .
| 4 ‘
1
_ LOCATE 1ST
CHAR OF RPT
: GET FOURTH
3 CHARACTER
|
‘ NOTAM. .
3 DO NOT
1! PROCESS ?
‘.’ I 8A I
y ISA I
3
i GET THE
LOCATION ID
4
' SET:
g = IND+4 FIGURE C-3: SA PROCESSOR (Cont'd.) .
g - = IX

C-16

SET SAFLG
MOVE IK TO
END OF ‘'SH'

SET COR FIG
MOVE IK TO END
OF COR
INSERT 'CRCTU'

() P

l 3 I FIGURE C-3: SA PROCESSOR (Cont'd.)

C=-17

— e g

ISKSTR = IX
BEGINNING QF
SKY COVER FIELD

)
'!" NO
' -~
SET PRACFLG l ,

‘1 ICH = IND+1
; :
; 1
! laA ’
{
! PRECEDING /

IS = # OF

CHARC.
i
> 3 ¥ OF = 3 .
WIND PRES

TEMP IS FIRST
INXT = ISLSH -
ISISH = ISLSH-15 | FIGURE C-3: SA PROCESSUR (Cont'd.)
- 'EI:EH‘] ‘

% |4A l c-18

i

IS Tl

Y ot s 9l

R ¢

N RN

~ie s iy N A

:
.
3
'%

M‘“ o AR e np s sl T

FVEND =
ISLSH - IS
INXT = IND

Lat= (INXT-ISISR) -1,
IND=ISISH+L

ITFIG=1
EXTRACT TEMP
FROM A,
PUT IN TEMP

ISISH=INXT
IND=ISISH+1
SAVE OLD LN

FIND NEXT
SLASH WITH

NO HAVE

SLASH

YES

LN= (INXT-ISISE) -]

DP TOO

BIG? (>3)

NO FIGURE C-3: SA PROCESSOR (Cont'd.)

.

EXTRACT D.P.

FOR LN CHAR.
PUT IN DP

IDPFLG = 1

ISISH = INXT
IND = ISLSH+1
INXT = NEXT /

@

3an

LN= (INXT-ISISH) -1

NO 1ST CHAR

= 'gY

YES

INSERT 'ESTD'
IND = IND + 1
LN = IN - 1

P

@

6B

ERROR
>4
1] [} 1] 1]
Q ISISH + 5 G
'G' or 1] .

FIGURE C-3: SA PROCESSOR (Cont'd.)

INDG=ISLSH+5
IGLN:= (INXT~INDG)=
IGFLG=Ll

INSERT VAI
INTO GUST

INDQ=ISLSH+S
TQLNw= (INXT~-INDG)-1
IQFLG=1

EXTRACT VAI
AND PUT
TO SQLL

P

@

NO

g

TAKE FIRST
2 CEARS TO DIR.
DIR(3) = 'O’

GT

36

SUB 50,
SET FLG TO ADD
‘9" TO SPD

INFIG = 1
TAKE LAST TWO
CHARS TO WIND.

IF FLAG ADD 'l'..

et oy Aot S L

FIGURE C-3:

c-21

SA PROCESSOR (Cont'd.)

mmvmm—n-y.ﬁ-,*- A ——

<

B T i v e gy e

' i - o) §
W he il in RO AP

ISLSH=INXT
LN= (INXT~ISLSH)-1

YES HAVE

A NEXT /

NO

ISLSH=INXT+1
INXT=ISLSH+3

INSERT
'ESTIMATED'

NO

isT

SET 1sT
CHAR OF
ALTIM = '3’

CHAR>S

YES

SET 1s7T
CHAR OF ALTIM

= 120

PUT REST of
DIGITS ¥ AaLTM
IAPLG = 1

C-22

P Sy

ERROR

FIGURE C-3:

8a

’

1

SA PROCESSOR (Cont'd.)

MOVE BACK
FROM IVEND TO
FIND BLK

; IVSTRT=(IVEND-1X)
X '

.4*

MOVE BACK FROM
IVSTAT T0 FIND
SKY END

wst T

(IVSTRT-IX)

st .l i R R 4
k)

L ——————

1
{ SET ERROR
| FLAG

(NO PROCESS)
f (=-
!

FIGURE C-3: SA PROCESSOR (Cont'd.)
- -

Y

2

ok . T el &W'-ﬁ .

s =

SR e g L.

FIGURE C~-3:

INITIALIZE
OUTPUT ARRAY,
SXYCVR, TQO ALL

=

MOVE POINTER TO
FIRST NON-BLANK
CHARACTER

DETERMINE
LENGTH OF SKY
RAW DATA IN
b 4

GTH=0

YES

OR > 75?2

EXTRACT RAW SKY
DATA & ASSIGN TO
SKYA ARRAY. SET

INDA INDEX
POINTER
T™ 1.

S

C-24

SA PROCESSOR (Cont'd.)

e seminat e — n

o«

e e

T

. Al kR e N el

o

INDA=INDA+L

¥ itmens g W i e, e hane SR

FIGURE C-3:

Is
SKYA (INDA)
= BLANK?

SA PROCESSOR (Cont'd.)

i AU st

oy

ok

PREVIOUS
M,E,W?

ISBOX=0
SKYCVR="MCIG"
INDA=INDA+1

FIGURE C-3:

SA. PROCESSOR- (Cont'd.)

-

PREVIQUS
M, E, W?

i
}
!
\
¥
i

NO

ISBOX=0
SKYCVR="ECIG*"
INDA=INDA+1

FIGURE C-3: SA PROCESSOR (Cont'd.)

i)

o

B NP

e S, i

M A

R e e .
o ey e A R

YES

NS

SET IMEW2s]
IMEW3=]

PREVIOUS

YES

282

M, E, w?

NO

ISBOX=0
SKYCVR="WCIG"
INDA®INDA+L

FIGURE C-3: sa PROCESSOR (Cont’4q.)

C-28

AR S R S A

SKY COVERw
"VRBL"
INDA=INDA+1

ISBOX=0?

SET 1ISBOX=l
IMEW3=Q
SKYCVR="SKY
v : OBSCD"
INDA=INDA+L

FIGURE C-3: SA PROCESSOR (Cont'd.)

C-29

INDA=LENGTH? XES

NO [7]

2E

PREVIOUS YES
WS (=)Xx?

1 I]
2 .. . 7
] NO

IMEW3=1? YES
ISBOX#0?

7
NO ::

ISBOX=wl

”
ng"g;sg FIGURE C-3: SA PROCESSOR (Cont'd.)

INDA=INDA+2

C-30

PSR ——————

SET X2=0
%
] ' INDA+3 YES
l . > LENG‘I.‘/
T
® - U
SET K1=0

R

®

L scT' ? YES

2N

Gt il 1l 5 B o Nl
Y

Kl=Kl+l

4
g
’
H
1

FIGURE C-3: SA PROCESSOR (Cont'd.)
C=31

27

\2ﬂ

NUMFLG=1? o

e

YES

(J

FIGURE C~3: SA PROCESSOR (Ccnt'd.)

&

C-22

. R

P N

s =

M o e e A e

'BKN' OR ‘'OVC'
AND IMEW3=]1?

SET IMEW3=Q

" ISBOX=Q?

YES l Y I

IF NOT 'CLR',
SET ISBOX=1

K2=1? YES

NO

SKYCVR="THN"
INDA=INDA+L

CONTINUED ON
NEXT PAGE FIGURE C-3: SA PROCESSOR (Cont'd.)

C-33

aich

CONTINUED
SKYCVR=' SCT' .
3 'BKN'
‘ove! .
'CLR'
-
o

{ INDA=INDA+3
X \ SKYCVR="DOT"
*’) '
INDA+2]

,* >LENGTH?

&

‘ NO 7

{ 2F |

‘ SET K=l

{

L]

: FIGURE C-3: SA PROCESSOR (Cont'd.)
i - .
N
|

C-34

AD=A102 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/e 11/2 ‘
DOT-TSC-ISI.S

-CHANEL VOICE RESPONSE SYSTEM.(U)
UNCLASSIFIED FAA=RD-81-51

.
I

¢ i ambe i i At S e

L ke 8 3 o) mamin vt S AL A I o A B gl Al S 0 N S i s bostitard dan

@

YES

SET ICLR=l
'"CLR'?
NO
FIGURE C~3: SA PROCESSOR (Cont'a.)
C-35

ot i SRy Wl b .50 o

NG WLRTY B r i o 1o (R LPV R T CPIIRETARIO s T (G ks e e

5a

YES

NUMD IG=NUMD IG+1

NUMDIG>3? DS

NO

FIGURE C-3: SA PROCESSOR (Cont'Qd.)

C-36

Wi AL 2 30 S e

oS

b A odF vl a0 W .

e i s B W -

NUMDIG=2 AND LAST
DIGIT EQUAL 0. OR 5
™ > 50?
NUMDIG=3 AND LAST

INDA=INDA+1

FIGURE C-3: SA PROCESSOR (Cont'‘d.)

C-37

SKYCVR=N"“HND"

INDA=INDA+L
()
SKYCVR=NN"THSD" 0
INDA=INDA+L
SKYCVR=N"THSD"

INDA=INDA+1

l 6A l

NO KYA (INDA)
=107

I 1 l , YES

INDA=INDA+L -

PIGURE C-3: SA PROCESSOR (Cont'd.)

Y s A, sl fo T 2 Attt

FIGURE C-3: SA_PROCESSOR (Cont'd.)

T g

N R YN,

2 .
1 .
/] .
b

) C.4 SA REMARKS PROCESSOR

oy

. 4
- i ;
C~41

P

ENTER VIA
ODL~-VREXEC

NEXT WORD
ADVANCE IDX

SEARCE FOR
MATCE IN

—LIST OF XEVS ..

l 2 l PIGURE C-4: SA REMARKS PROCESSOR

C-42

5, Y 1 S I XS IR ITTT EATI T W ST Q8 PR R o eI T

s

e v

[

PIGURE C~4: SA REMARKS PROCESSOR
(Cont'd.)
C-43

' , FIGURE C-4: g REMARKS PROCESZOR (Cont'q.)
N’
e C-44

L SUBROUTINE WIND (A, IND, RLIST, IRLEN, ILEN)

’;, VIA QALL

] FROM VREXEC

< mIT.’ .
SET PTRS.
- SET CHAR COUNT

,'i -
.' '
= (D
.i

7y y TEs

INSERT
'PK WDND'

, o,

E GET NEXT

4

-é

1

3

1 "
“ DECCOE AS

' M.

. ADD 'AT’

. INSERT
WIND SPEED
]
: l 2 l FIGURE C-4: SA REMARKS FROCESSOR (Cont'd.)

C=45

EE O SR

'yg.. .

INSERT "WND
VRBL BETWEERN'

GET PIRST
TWO NUMERICS

AS DEGS AND

INSERT ‘AT’
INSERT NUM.

ADD 0.
INSERT
NUM & 'AND’

INSERT DEGS,
‘AT' MPH

GET NEXT
WO NUMERICS

aDD 0.
INSERT NUM.
ADD *DEGS'

C-46

INSERT

f§

FIGURE C-4: SA REMARKS PROCESSOR (Cnnt'd.)

e

X

Bk ol

T TR

ot

o~

INIT
SET PTR
SET CNTR
MARK INDX
TO POS OF
VSRY
GET
PRECEDING
WORD
PRECED SFC
{ VI;RD I
INSERT NO INSERT
'TWR' 'sec’
L -]
V (VRBL) L
?
YBS
DIRECTION YES
INDICATOR
INSERT 'VRBL
!m.
NO 3
INSERT
NUMERIC
INSERT PIGURE C-4: SA REMARKS PROCESSCR
lml (cmt'do)
2:
C=47

INSERT GET DIRECTION,
NUMERIC EXPAND AMD

PIGURE C~4: SA REMARKS PROCESSOR (Cont'd.)

SUBROUTIME RNWY (A, IND, RLIST, ICALL, INDX)

=1 O0R 2

VIA GALL
FROM VRRMK
™IT
SET COUNTS
sET PTR
INSERT
‘RNMAY’
=3 ICALL
?
INSERT
'RCRG'
EXTRACT
NUMERICS
GET EQUIV BR
AC PROM TABLE
AND INSERT
DATA IN
PIELD?
= G
LOOKR 0P
IN CONDITIONS
TABLE
PIGURE C-4: SA REMARKS PROCESSOR
(Cont'd.)
C=49

DESIGMATOR(R,C,L)

INSERT
'vsBY'

ICAIT =1
?
<
DECODE
rEET
pECoDE
MILES
vrr.m\ ™
2
TURN VFLAG OFP.
- ADD 'AND’
SET DX
TO CURRENT
mc oTR

PIGURE C~4: SA REMARKS PROCESSOR (Cont'd.)

C-5¢Q

SUBROUTINE FRZE (A, RLIST, INDX, IRIND, ICALL)]

VIA CALL
FRON VREXEC

)]
;
?
h
1

Q..
.
é
<

. e

o e

PIGURE C-4: SA REMARKS PROCESSOR (Cont'd.)

. C‘SI

*

Bt Al s K e 1S,

DECODE 3
100 T
|
&
'§ msERr
s 'LOWEST LVL'

.
FIGURE C-4: SA REMARKS PROCESSOR (Cont'd.) ;

C-52

P p—r——

;]
L
¢
4
2
3
£
¥

FIGURE C-4: PROCESSOR

- § } PR
(Cont'd.

T e e i e e -

it A%

o s A+ i oA, WU 0 M I N £ e

5 eERT
3 "RATCS®

’i’
i .
q .
4 'IN SNOw*
3 mc
INDX AND
COUNTERS
3
i E FIGURE C~4: SA REMARKS PROCESSOR (Cont'd.) .
!
r

C-54

ke Rt ?

e e ‘ A
i
SUBROUTINE PRES (A, IND, RLIST, INLEN, ILFN) ¢
H
PROM VREXEC '
*
) INIT : TNSERT TDE GRoUP
SET PIRS 'LOWEST PRES' ADD '@
. SIT INDX
{
a GET NEXT INSERT
GET WORD WORD i ’
;‘ HOMERIC wo
? v
§ s
DECODE PREC,
; PRECEDE
H wITE '9°
?
¥
N mSERT
v PRESSURE
4 v
‘ GET NEXT
WORD
4
g T roor M0 [¢
?
vES ﬂ
L.
§' FIGURE C-4: SA REMARKS PROCESSOR (Cont‘'d.)
[3
. c~55%

R v

3
4
2
-

*

»

.

GET ENDING

F, ! MINUTES
&
4
H INSERT
- 'ENDED, TIME,
* GMT'
4

INDICATOR

N P R .
-

| e

¥
4'
]

FIGURE C-4: SA REMARKS PROCESSOR (Cont‘d.)

C.5 FT PROCESSOR

C-59

4 o~ ——-
TV 1 o -SRI e ST AT IR Y DA e

:

et

. e e MR W

2 mm mm
» Em Ble ﬂ
3 g
" mmm
by
L4 zm:
8 nt
i 5
| |

S

FT PROCESSOR
c=-60

SERSTARE L PR L P ER

A a

~———rey ﬂ%% LR iy O R EY ASMTCREARY CT R

FT PROCESSOR (Cont'd.)

FIGURE C-5:

T

:
ﬂ [N
£ mnm j
- m B m m
m»m mh N mmm i Mmm r' w
o

C=62

]
o 1 - ?
a » E I : m m

FT PROCESSOR (Cont'd.)

-
1
(8]
m
(]

FT PROCESSOR (Cont'd.)

FIGURE C-5:
£-64

! . M TE SR W

i

Y G NE v rr o SCAWINR VI UM e T L W S e

TR Y e MR RN L0 TR P TRRAT S w1t N SR

FIGURE C-5: FT PROCESSOR (Cont.d)

C-65

Tl

N T T iR

L)

i K

FIGURE C-5: FT PROCESSOR (Cont'd.)

FT PROCESSOR (Cont'd.)

FIGURE C-5:

o T Al et oAk Sl Y S A A e _ ; . .
prmam——— O e e e m————

e S

- 'Y

3 ADUARS TINE MoCEss TR H
g DITERVAL? . ASs [}
q) (®18y7%,%y? 15,7 o0 cey2 ,
5 ,

: | §
{4
4. ’ gi

N D e dy AR e G
g3
']

PIGURE C-5: PT PROCESSOR (Cont'd.)

T

C=-69

‘
»
2
£
o

FEWs e Agii” i i Sl

A A e A L e A]

M 1O pISITE
0 WY Aay

c-70

FT PROCESSOR (Cont'd.)

FIGURE C-5:

O NEXET TV

N i MR i N,

WL i T P S0 T A W0

3 v PRy
Ve CXRyas .o
B}
L e s ———— e sp van . -
- []
» [

- . - N

Ii 3541

|

il

1g;

C-71

it
ul

PIGURE C-5;: FT PROCESSOR {Cont'd.)

FT PROCESSOR (Cont'd.)

S
g
g

L

L

4

2 T e W R (i S Bl

TWOTLETD WSS ok [g AR T £ YNy AN : R o B B! oty e BATAY B WY R RIE ™

FROM VRS

TRANSMISSION

ANALYZE RQST
FOR FORMAT

S§4

FIGURE C-6:

C=-76

COMMAND DECCDING/DISTRIBUTION

RETREV

-~

ARSI RS NI S

f 3

. SET "BRIEFING

. BUILD® IN
PROGRESS

GET REPORT
TYPE FROM _
DRIVER TABLE ‘

L3 No m
REPORTS

4 DONE

\ ?
3 v

3 CLEAR

> *BRIEF ING"]
X BUILD IN |

4 : PROGRESS ;

i

- fhé)
[S

i

'; RESPONSE BUILDER
. PIGURE C-6: RETREV (Cont'd.)

C=-77

X

'

4 '
a
-
1
ta
Cd

P < N

' vl
- NIRRT WP

bk mar

.
[]
4 g
PROCESS
4 M.U.'S
»
M.U.S,
; TO CHANNEL
) RESP. PILE
Y
RESPONSE BUILDER '
FIGURE C-6: RETREV .
*

c-78

TN W -t

¥
3
'y

et

sEr caawwer | /TASK ABORT \™E5_~gop
INACTIVE |J\ RESPONSE DEMAND
BLDR. ?

SKIP YES | SET DEFERRED
END-BRIEP ING END~BRIEFING
? FPOR RESP.BLDR.

NO

DEMAND RESPONSE

FIGURE C-6: RETREV (Cont'd.)

C-79

DEMAND RESPONSE

.

FIGURE C-6:

RETREV (Cont'd.)

SEND M.U.
s

SENDM
20
RECQOVER M.3.
. - CHARACTER

1
MESSAGE TRANSMISSION TASX E
\-‘

° FPIGURE C-6: RETREV {Cont'aq,)

C-81/c-82

REPORT OF NEW TE£CHNOLOGY

There have been no inventions or important discoveries made during
the performance of this contract. However, the Voice Response System
has been implemented using a unique software design on both the PDP-II/&&Q
and the PDP-11/70 ®

The PDP-11/34 software was designed to run under the single-user
operating system RT-11 and operatiomally to perform as a multi-user (20-
channel) system. This was accomplished by using the RT-11l capability of
asynchronous I/0 with assigned priority. The priority assignment for
each VRS I/0 component was developed for uninterrupted speech on each
channel.

Each channel follows a table-driven protocol using separate storage
areas in memory to maintain channel status after asynchronous I/0 com-
pletion. Improvements were made to the system in upgrading VRS from 10
to 20 channels by taking advantage of the extended memory management of
RT-11 to utilize the 32K of memory added to the system. This involved
the allocation and access of the speech buffers and dictionary in upper
memory. See section 2.2 for the software description.

A single~user/20-channel design has been implemented for the PDP-
11/70 weather retrieval program. See section 2.4.4. It employs separate
storage areas for maintaining channel-briefing status upon completion of
the asynchronous I/0. A unique file system has been designed for storage
and retrieval of the weather reports processed on the PDP-11/70. This
file system allows multi-task (processor and retrieval tasks) access and
update without conflict. It exercises the RSX~-1ll operating system feature
of shared global common areas in memory for the file block map and for
multi-task communications. This system is described in section 2.4.

D-1/D=2

110 Copies

