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PREFACE

The Federal Railroad Administration (FRA) is sponsoring
research, development, and demonstration programs to prcvide
improved safety, perfornance, speed, reliabi’ity, and main-
tainability of rail transportation systems at reduced life-
cycle costs. A major portion of these efforts is related

to improvement of the dynamic characteristics of rail vehicles,

track structures, and train consists.

Transportation Systems Center (TSC) is maintaining a cer.ter
for resources to be applied to programs for improved passen-
ger service, improved safety, and more cost-effective freight
service. As part of this effort, TSC is identifying computer
programs, analytic models, and analysis tocols required to
support the FRA objectives. 1n particular. [3C i.- acquiring,
developing, and extending computer prograas to r-crside real-
istic predictions of rail system dynamic pei{ rmance under
field conditions.,

The DYNALIST Program was initially developed for the Department
of Transportation by TRW, Inc. to evaluate the stability of
complex dynamic svstems having up to 50 degrees of freedom.
Under contract to TSC, in support ot the FRA under PPA No.
RR415, Dr. T.K. Hasselman of J.H. Wiggirs Company extended the
DYNALIST Program to piovide a capability for predicting the
response of rail vehicle/track systems to sinusoidal or station-
ary random rail irreqgularities. This report describes the
results of that effort and is contained in two volumes. Volume
I, the Technical Report, documents the thecretical basis of the
program. Volume 11, the User's Manual, Jdescribes use of the
program and includes sample problems.
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1. SUMMARY AND INTRODUCTION
1.1 Summagx

This report presents results of research and computer pro-
gram development on rail vehicle dynamics performed at the
J. H. Wiggins Company during the period February, 1974 to
October, 1974. The work covers the following major areas:

® Development of detailed equations for calculating
acceleration, velocity, and displacement response
at selected locations on a rail vehicle due to sinu-

soidal and/or stationary random track irregularities.

® Development of Fortran response code and plotting

subroutines which implement the above methodology.

® Execution of sample problems to demonstrate use of
the coaputer program for rsil vehicle svstems.

1.2 Introduction

The subject of rail vehicle response to guideway irrequlari-
*ies has been of interest to engineers for many years.

These irreqgularities cause vibratory moticn to be induced in
the cars and their suspension systems. As a result, the
passenger environment may become uncomfortable, wheels and
rails wear more rapidly and in extreme cases, derailment may
occur. All of these problems become more severe as vehicle
speeds increase. For conventional wheel type suspension
systems, the problems are compounded because the increase in
speed is accompanied by the development of a self excited
instability called hunting.



e R R

The dynamic behavior of conventional rail vehicles is unique
among many dynamic systems due to the mechanics of wheel-rail
interaction. Wheels are connected rigidly to the axles and
given a slightly conical geometry so that they tend to "track"
without wearing the flanges against the r~ils. The design
gives rise to the potentially unstable hunting motion. This
consideration, along with the large amounts of damping found
in suspension systems, demands special modeling capabilities
not commonly available. The important dynamic characteristics
are still obtained by solving an eigenvalue problem, but the
eigenvalues and eigenvectors are complex, as opposed to being
real in the classical case. Complex eigenproblem solvers are
generally available but input matrices must be generated by
hand, a rather time-consuming task whenever the system con-
tains more than 10 or 15 degrees of freedom. Furthermore,
computer costs become excessive for larger systems, particu-
larly when parametric studies are made.

Recognizing these limitations, the U. §. Department of Trans-
portation sponsored the development of a general comnputer code
for the modeling gnd analysis of rail vehicles systems. The
methodology was formulated in 1970 and an operational program
was delivered to DOT. Documentation is provided in Reference
(11*. This program was updated in 1973 and given the name DYNALIST
(Dynamics of Articulated Linear Systems). The DYNALIST program
utilizes a subsystems approach to generate complex eigenvalue
and eigenvector characteristics of rail vehicle systems with

up to 50 degrees of freedom.

This report concerns an extension of DYNALIST to enable com-
putation of vehicle response to sinusoidal and stationary
random rail irreqularities. The new version of the program,
called DYNALIST II, includes capabilities for stability as

* Numbers in square brackets designate references listed at
the end of this report.

“
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well as dynamic response analysis based on modal methods.
CalComp plots of vehicle excitation and response charucteris-
tics versus frequency can be generated. Several improvements
in the original part of the program have also been made to
facilitate user convenience and extend the range of applica-
bility to practical problems. Of particular importance are:

® A new capability for direct modal representation of
flexible components such as car bodies. Component
equations of motion may be written in terms of modal
coordinates and subsequently transformed back to the
physical coordinate system for response computation.

® Automatic genaration of the IARANG vector used to
distinguish between dependent and independent coor-
dinates and establish the order of system coordinates.

The DYNALIST II computer program begins by generating a list

of dynamic characteristics for each subsystem or component
treated independently. The list may then be edi-ea to delete
characteristics associated with large eigenvalues. Then com-
ponent data are assembled from the list to form the equations
of motion for the composite system and solved in a reduced
cocrdinate space. The program represents a generalization of
the usual component mode synthesis method used in structural
dynamics. DYNALIST II will accommodate systems subdivided into
components having up to twenty-five degrees of freedom each.
Flexible truck assemblies and car bodies may be treated as
individual components. Only one component of a kind need be
placed on the master component list. The list can be saved on a
permanent file or tape and added to at any time. 1In this way

a variety of building blocks can be stored and combined in
different ways to synthesize a variety of rail vehicle systems.
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Changing truck assemblies, for example, to evaluate the effect
on critical speed or ride quality is a simple matter since the
user need only change the component names on the assembly list,
a subset of the master list.

After assembling the system from the iist of components on file,
the program generates the complex modal characteristics of the
system which may be written onto a permanent file or tape.

A user option provides for termination of the program at this
point, or continuation to the response segnent. A restart
capability is provided.

In the response segment of the program the complex frequency
response at selected ve-icle locations is generated using the
complex modal characteristics previously obtained. The user
then has the option to specify either sinusoidal or random
input characteristics which define vehicle excitation. The
Faasing »f inputs at each axle is compuied on the basis of
user input lag terms which depend on axle spacing and velocity.
Depending on the form of excitation specified, sinusoidal
response or random response is computed and plotted versus
frequency. Random response is computed in the form of a

power spectral density function dependent on frequency. Mean-
square values of response are also computed by integrating the
response PSD functions.

The DYNALIST II program offers the user considerable flexi-
bility in computational methods as well as modeling ability.
The following options are available:

® Direct System Method - System is modeled as a single
component. Complex modes are evaluated directly and
may be truncated for response computation.

® Direct Subsystams Method - System is modeled as an
assembiy of subsystems. However, no subsystem modes

are computea. System modes are computed directly
and may be truncated for response computation.

-4



® Modal Synthesis Method - System is modeled as an

assembly of subsystems. Subsystem or component modes
are generated and these may be truncated prior to
assembling the system. System modes are then generated

and these also may be truncated for response computation.

The remaining chapters of this report describe in detail the

methods of analysis and the example problems which have been
evaluated.



2. THEORETICAL DEVELOPMENT

A formal presentation of the mcdal synthesis procedure 1is
described in this chapter. Coordinate transformiations are
defined using complex modai matrices. The response of the
system to rail irregularities is developed using the fre-
quency response method,

2.1 Discussion of Coordinate Systems

Prior to the derivation of detailed equations which form the

computational basis of DYNALIST II, it will be useful to dis-
cuss the relationship among the various coordinate systems in-
volved. This will serve to introduce some of the notation as

well as provide a general overview of analytical p.socedures.

Six different coordinate systems are used in all. Three of
these define displacements of the system at either the compo-
nent or the system level. The remaining three are state space
coordinate systems which include both velocity and displacement.
The use of state space coordinates is a direct consequence of
reducing the second order differential equations of motion to
first order form. This step is taken to extract the complex
eigenvalies and eigenvectors which are characteristic of rail
vehicle components and systems.

There are two kinds of components which form the building blocks
used to generate DYNALIST models: structural components such

as car bodies and truck frames, whose dynamic characteristics
(eigenvalues and eigenvectors) are real and classical in form;
and the complementary group of all other components such as
truck assemblies and cars which inclwude suspension elements and
rotating machinery. The dynamic characteristics of these com-
ponents are considered to be complex. The latter group of com-
ponents may include some of the former as elesients, e.g., a car



<omponent in a train may include a flexible car body. The
distinction is important with regard to understanding the
input coordinate system, i.e., the coordinate system in

which component equations of motion are initially specified.

The six coordinate systems will be denoted by tha vectors
u, P, 9, x, y, and z. Input is specified in the p coordinate

system. 1In the case of nonrigid structural components, the

equations of motion will be written in modal coordinates.

In this way, a car body, for example, may be represented by
its flexural modes. However, when response is computed,
transformation back to the physical coordinate system, u, is
required to facilitate interpretation. Therefore, the modal
transformation matrix ¢ must also be supplied.

When modeling the more general class of components, equations
of motion may be written in terms of discrete coordinates,
distributed coordinates, or a combination of the two. When
certain p coordinates correspond to physical displacements,
the modal matrix ¢ must embody the appropriate identity re-
lationships. Corresponding elements in the u coordinate sys-
tem will, therefore, have the same meaning.

The component equations of motion are oupled by introducing
equations of constraint which lead to a compatibility matrix B
relating the componer.it coordinates p to a set of generalized
coordinates q for the complete system. The q coordinates are
defined 80 as to preserve all of the original component coor-
dinates which are not on interface boundaries. Then by fixing
the interface boundaries, constrained component modes are com-
puted for the individual components, e.g., single cars of a
train. This leads to the second modal transformation desig-
nated by ¥ which transforms the coordinates from q, through

—— ————— e -
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an intermediate vector x which contains both g ang d, to y.
The matrix ¥ is complex in general. The purpose of this
transformaticn is to further reduce the number of coordinates
required to describe the system by permitting truncation of
the complex component modes. Tinally, the reduced set of
system equations is considered in homogenous form to generate
a set of system modes ¥y which is used to transform the system
state equations in coordinates y to diagonal form in coordi-
nates z. This then is the third modal transformation.

Frequency response functions are computed in the z coordinate
system and transformed back through the sequence of previously
defined transformations to the set of u coordinates which are
identified with discrete points on the system.

2.2 Formulation of Component Equations

The method described herein and implemented in the DYNALIST II
computer program is not intended for use in solving real eigen-
problems, although real eigenproblems can be solved using the
complex eigenproblem subroutines contained therein. However,
this is not the intent and would be quite inefficient. There
are many cases in which the user will want to include flex-
ible structural components in his model. As previously stated,
the component equations of motion are entered in terms of the
real component mode coordinates, p, and in addition, the real
component mode transformations ¢ are entered as input %o the

program.

In specifying tke constraint equations which establish component
displacement coupatibility, it is convenient to do so in the
discrete physical coordinate system, u, rather than the modal
coordinates, p. Therefore, cons+raint equations of the form

[G) {u} = {0} . . . . .. .. ... (2-1)
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ar> defined and the matrix ¢ is used to determine the corre-
spoading set of equations

(GI [¢1 {p} = {0} . . . . . . .. (2-2)

It may be pointed out here that the column vectors, ¢j’ which
comprise ¢ need not be complete. Of course, the number of
columns in ¢ will correspond to the number of component mode
coordinates reflected in the vector p which will in general
be equal to or less than the total number of degrees of free-
dom in the physical coordinate system. The point stressed
here, however, is that the vector u need not contain all of
the physical coordinates so that ¢ will have a partial set of
rows as well as a partial set of columns.

What determines the columns and rows to be included in ¢?
Clearly, the coluras in ¢ will correspond to the rigid body,
constraint, and low-order dynamic (normal) modes for the var-
ious components. Three factors determine the particular rows

to be included. First, the rows corresponding to elements

of u involved in the constraint equation (2-1) must be included.
Second, the rows corresponding to the elements of u for which
response is desired ius: be included. Third, rows corres-
ponding to elements of u at which external forces (including
wheel-rail forces) are applied must be included.

For example, consider the train car having a flexible car body
a3 showr in Figurc 2-1. The car body has four modal coordinates
describing its motion: two rigid body modes, pi and pg and two

flexible body modes p§ and pi.

Seven discrete coordinates, ui through ug are also defined.
Coordinates uf through ui will be used in the constraint

R U 4
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equations while ug through u;

putation. 1In other words, lateral response will be computed

are defined for response com-

at both ends and at the center of the car.

The real mode transformations for each of the components are
as follows:

Component 1 ¢ $
—— —A—
(1) 1 o1 )
1 \ 1 plC
1 | 1
Uy 1 , | P2
1 ' h
ujy 1 P
1 ' 1
J Y 1 J Py (
1 ! 1 1F
Ug r I 1 Pg ( f P
1 ! 1
u6 | 1 p6
]
1 1
4y ' 1 Py
]
1 1
u 1 1 p
(e ) | J e )
Component 2 ¢2R ¢2C
N A N ,———-*—-—-\ AR
2 L (] Cc ', 2
ru1 [ 1 Ly/2 11y, rpl H2R
2 1. C Cc 2 f
u, 0 1 1921 %32 lpz
2 _ I c c - 270
uy 1 Ly/2 1¥31 03, | |p3 2c
d 28 . ' C c 2 P
u 0 1 a1 fap | (Pd
2 'c c
ug 1 (Ly + L)/20hg, e,
)
2 c c
Yg 1 0 1961 %g2
]
2 . c c

~11-



compouent 3 ?/\\ ¢ A . Y+~
(93 ) 1 ]1#3 3C
w3 1, 3| [ °
u3 '1 'p-:; 13
u43 | pz
3 ul r ! 1 4 p3 ? P3F
5 ' 5
ug : 1 pg r
ul . 1 p3
. ugJ [ : ! J L pg‘ J

All of these equations are of the form

i e - S & 1)

It is emphasized that the vector pl must be arranged so
that

p . . e o e o e . . . . (2-4)

where le is a vector containing a component's rigid body de-
grees of freedom, pzc contains the constraint degrees of free-
dom and plF contains the free coordinates. The distinction
between rigid body and constraint, and free coordinates is quite
essential to the proper execution of DYNALIST II. The solution
of the component eigenproblem involves only the free coordi-
nates. It may be noted that the 02 matrix for component 2 con-
tains no ¢2F columns and the real normal mode vectors are in-
cluded in ¢2C instead. This is because the computer program



a—

makes a test to determine whether the number of free coordinates,
NFREE, is greater than zero. If NFREE is greater than zero,

a complex eigenproblem is formulated and solved for *+hat com-
ponent. Since complex modes are not required for the car-body
component in the above example, NFREE must equal zero.

It is not necessary to distinguish between ¢R and ®C. Both
could be lumped in a matrix called ¢B as is done in [2].

There is one subtle factor which will emerge later. In de-
fining the compatibility transformation, the independent coordi-
nates must provide a basis for the dependent coordinates. It is
thus helpful to keep clear which coordinates are rigid-body,
constraint and free.

The equations of motion for the %th component in the physical
u coordinate system are considered to be of the form

TR VL L R A fﬁ (€] « v v v v v v o . (2-5)

Introducing a real modal transformation to simplify the modeling
of flexible structural elements or components results in

u = ¢ p . . . . . ' . . . . . . . . . (2-6)
Under this transformation, (2-5) becomes
T T T T
L L 2 .2 L .2 L £ 2 L ') 2
e e A Al S L S I Sl ALy £
or alternatively
m' 5t e Bt o+ Kk pt- f; e e e e e e (227

Component equations of motion are input to DYNALIST II by

specifying the matrices mz, cl and kn in the p-coordinate system.

-13-
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Forces are specified in the u-coordinate system, however,
because it is more convenient to enter forces in the physical
coordinate system and let the computer make the transformation,
£ = ¢Tf .

p u

Now the complex eigenproblem for each component may be con-
sidered. Equation (2-7) may be partitioned so as to separate
the rigwu body, pR, constraint, pC, and free, pF, coordinates
in the manner

h 4
rRR' rc ' _rr | ¥ RTQ rRRlRCl RF” +R
o W - i €
] [P SR B B ey .
mCRl mCC l CF < pc S + CR :ccc : <CF C
- === - = - ---
FR _FC FF F FR FC FF . F
" ' ' 4 \p J sc ! ' J
[} ] L
RR'!' RC! RF R R
rk 'k, k P f
Rt I - _F
+ kCR . xCC | kCF pc - fg
' ' - -
FR FC FF F F
[k kT ke P £ J e e ... (2-8)

The constrained component eigenproblem is obtained by assuming
the le and p’LC coordinates to be fixed, in which case the

homogeneous form of (2-8) becomes

LFF _AF

LFF .2F . LFF .%
mE B 4 UFF BUF  IFF =0 . .. ... . (2-9)

The corresponding first order equations are
L L L
FF! F
o | K0 R
0 '-nfF pF 0. .. (2=10)

-14-
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and the corresponding eigenproblem is

' £ L 2
gFfl—mfF £ kFF' 0 " °
PN N : = --
nFF1 g j o -mfF 3 ,
. (2-11)

2 ¢
where Xj and {wj} are the complex eigenvalues and eigenvectors
of the £th component. It is recognized that one may perform
the partitioning

2
v ]
U
311).:2 = -rp-—J— = - - [-JJ_ -
B
L. 2
3 b A e o . {(2-12)

since solutions of the eigenvalue problem are of the form

U e j . - [ . . . . [ . . . . . . (2-13)

The formulation and solution of the complex component eigen-
problem was introduced here because it follows logically from

the partitioning of Equation (2-8). However, we are not quite
ready to use the results, w; and A%. Furthermore, the con-
straint equations were introduced in (2-1) in order to help
describe the component coordinates. The constraint equations
must be used to derive a compatibility transformation to

effect the mathematical coupling of component equations. It

is desirable that this be done prior to making the complex
component mode transformations in order to perform the operations
in real arithmetic. The following two sections will therefore
consider first the compatibility transformation, and then complex
modal synthesis where the component "free" coordinates are
transformed to complex modal coordinates.

-15~
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2.3 Compatibility Relationships Between Components

Going back to (2-7) one may form a set of equations for the

system in block diagonal form where the
components is i"wlicit in the forces on
Thus

"Uv-u"o o]
These e T
Z

]
(2.}
T NND

Fhe oo
v

.

coupling between
the right-hand side.

J

where N = number of components in the system. Alternatively,

m§+cp+kp=fp..o.o-

Constraint equatiorns in the general form

(Gl{ar = {0}, ... ..

® & e o e o e o (2-14)

. . . Y - Y Y . (2-1)

e+ e 4 e o o . (2=15)

Transformation to the p coordinate system has been written as

AR e e ¥t

B A, o n e e



(Gl{e){p}t = (O} . . . . . . . . ...

where

¢’N

. . (2=2)

. .« (2-16)

Finally, the redundant coordinates in the vector p must

be eliminated by the compatibility constraint equations.

Let

the reordering matrix E partition p so that the dependent
coordinates, ﬁd' appear first, followed by those which are

independent (free) §fj' Thus,

[E]{gg-}........

£

{p} = [E}{p}

and then (2-16) becomes

[G1{¢1 [E){p} = (G){p} = {0}, . . . . .

-, . Ip

Gy cfl{ff-’} = {0}

f

- - =] = - -

{pd} = -[Gd] [Gf]{pf} = [8]{pf} . e .
{p} = [E1{P)} = [E Pl (E] [—é-] (P} = (E1{qi
P P 3, 1] (Pgl = qi. .

where q denotes the generalized coordinates of the

(2-17)

(2-18)

(2-19)

(2-20)

(2-21)

system.

Going back to the system of Figure 2-1 to give these transform-

ations physical meaning, one may write the system u and p

coordinates as

+The subscript, f, used here is not to be ccufused with the

superscrip., F, used in (2-8).
coordinates for which complex component modes are
puted.
entire system.
of the "R" and

*C" coordinates.
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The latter denotes component

to be com-

The former denotes all independent coordinates for the
These include all of the "F" as well as some
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1))

. T
{u}:{ui - {“i'“é'""“é'“f'“gr---'ugruf,ug,...,ug}

v ... (2-22)

\

(pl\

p° 11 1 2 2 2 2 3 3 3.T
{P}=ﬁ 3 ?= {pllpzlo-.;palplrp21p3lp4lplrp2'...,ps}

C .. . (2-23)

The constraint matrix, G, of Equation (2-15) connects the three
sets of coordinates in the physical, u, coordinate system. Thus

coordinates ui and u% of component 1 are constrained to move

2
with coordinates ui and uS. Similarly, ui and ug move with u§
and ui. Equation (2-15) may then be written
l{ojojoj0jOo|0|OFL{O[OjO]|OjO|OjO{O|jOfO]0O]|O}|O]|0O
oiliojojojoto(ojof1olojofojojojojo(otofO]O]|O

(Gl{u} =1 4l0jololojojo]olo]{o}1{olo]olo{1|o]o|o]olofo]o | {u} = (O}

ojojojojojojlolojolo|Or1{ojojo|olL{of0fOjO|O]0O

o o o (2-24)

Equation (2-24) contains four rows since there are four physical
constraints. The constraints are converted to the p-system
through (2-16) and then four p-coordinates Ed' are eliminated
through (2-27). It is first necessary, however, to choose
which dep:ndent coordinates to eliminate. One must input this
intormation to DYNALIST Y1 in the vector KDEP, which contains
the numbers of the dependent p-coordinates. This information

is then used to automatically generate the matrix E of (2-17).

The only festricﬁion on defining KCEP is that the submatrix
[ad] in (2-19) be nonsingular since it must Ee inverted to
generate the compatibility transformation, [B}. For n
equations of constraint, the first n columns of G must be
linearly independent.

-18-



In order to generate the system equations of motion, the trans-
formation (2-21) applied to (2-14) yields

Oor alternatively

M§+Cq+xq=fq.............(2-25)
Equation (2-25) represents the system dynamical equations of
motion. A direct numerical solution to this equation is possi-
ble. However, experience with the solution to equations of
this type indicates that when using modal synthesis methods
one gains economic efficiency as well as engineering insight.
The pages which follow discuss the modal synthesis technique
used in DYNALIST II.

2.4 Complex Modal Synthesis

It is recalled from (2-11), from which the complex component

modes are calculated, that it is possible to make the following
coordinate transformation,

L

L
F
{Ji } - f%—, ("
2 Yyt | c e e e e e e e e e e s (2-26)

These transformations may be combined to give

- 1 -
OLF vy
2F v2
{qf} = (pF} =P = v, {n} = [y ) (0}
. .
‘NF v
P | U |
and 1§) = 18} = [y ) 1N} so that

-19-
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a q 0 0 Q!U qRC -
x = {é} - i P AL = Wiy}, . . . .(2-27)
& 0 0 yyA n

Equation (2-25) written in first order form is

[C M] q) , [K o] a] - {fq}
v ol et b3 - 6
or alternatively,

B+ Byx = .. L (2-28)

Introducing the coordinate transformation defined in (2-27)
to (2-28) yields

=T -, =Tn — _ -
'] Axw + ¢ waY = ¥ fx = fy
or alternatively,
A + B = f - [ ] . L] L] * L] L] L] - . L] - . L] 2-29
y? * Byy Y (2-29)

The final system eigenproblem may now be written
. + - [ L[] [ [ - . L[] . - [ ) L] L] . - o
(AYAJ By)vyj 0 (2-30)
whereupon the additional coordinate transformation

Y“l'yz oo.o--o.aoo.o.o-co-(2-31)

applied to (2-29) results in

tThe superscript "RC" is used here to denote.those rigid body .
and constraint coordinates which were not elxminatgd.by constraint
equations, i.e., they are a subset of the vector "pf defined in
(2-17).
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£= A Tf « 4 v v v e .. . (2-32)

Equation (2-32) represents the system dynamical equations
of motion in terms of first order system normal modes of
vibration. The matrix transformations from the complex
system mode coordinates back to the physical coordinate
system follow directly from the application of (2-31),
(2-27), (2-21) and (2-6). Thus it is found that

(u} = [ BNl LY izl oL oo s L L (2732

The differential equations of motion given in (2-32) can be
solved for any specified form of forcing function. 1In the
sections which follow the excitation is considered to be in-
duced by rail irregularities. The analytical form of these
irregularities is assumed to be either sinusoidal or station-
ary random. 1In either case the solution is dependent upon

the system's frequency response function.

2.5 Frequency Response to Rail Irregularities

The frequency response function for a linear system is defined
to be the complex ratio of output over input as a function of
the input frequency. For example, an equation of motion for

a single degree of freedom system may be written
mx(t) + cx(t) + kx(t) = £(t)

Transformation to the frequency domain, @, results in
[(k-2%m) + iQc] X(if) = F(iR)

The complex frequency response function is defined to be
Ho(ig) = ¥l - 1
X FUD ~ (x-g%m +ine
It is a characteristic of the system and is independent of
applied forces.

~21-
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For a base excited system, where a mass is attached to some
movable base by a spring, k, and a dashpot, c, the equation
of motio. is

]
(=]

mX + c(k—*b) + k(x-xb)
or

<

mX + cx + kx = cib + kx,

In this case, transf mation to the frequency domain yields
[ (k-2%m) + ic] x(iq) = (k+ic)X, (i)

Defining the frequency response function as before such that
Hx(in) = x(iQ)/xb(iQ), one obtains

[ (k-2°m) + iqe) H (i2) = k + iqc

The right hand side of the above equation may be written in
the general form

. . iy 2
k + (if2)c = Fo + (19)?1 + (iQ) Fz

where in this case, F2 = 0,

For a multi degree-of-freedom base excited system, the general
iorm of the equations >f motion transformed to the frequency
domain may be written

(k] - 22 mlsialel) (B (i@)} = (B} + ialE} + (1aP(F, )
where Hx(in) denotes the complex frequency response vector,
(k], [m] and {[c] are square matrices and {Fj}, j=0,1,2 is
a vector. It has been assumed that vector of applied forces
is of the form {P}xb(iﬂ) sc that

(F} = (F} + ia (r)) + (im%(F,)
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and
. _ 1 .
{Hx(lﬁ)} = xb ) {x(iq)}

where xb(iﬂ) is a scalar function. The vector {F} is referred
to as a spacial distribution vector while xb(t) is a scalar
time dependent forcing function.

In the rail vehicle problem, the input is through the wheels.
Since the irregularity traversed by one wheel is traversed
by all other wheels at times which depend on wheel spacing,
there is a phase relationship among the input forces. Thus,
even if the vectors {Fl} and {Fz}, above were both null, the
distribution vector would be complex if the time dependent
portion of the forcing function is considered toc be a scalar
function of time describing rail irregularity.

The equations of motion of a rigid wheelset are discussed

in detail in Appendix A. Equation (A-16) and (A-19) show

that in the case of )..teral motion, the rail irregularities
induce forces only at wheelset rotationai coordinates. With
regard to the previous discussion it becomes apparent that
when the response of the rail vehicle system is calculated

due to rail irregularities, only those coordinates correspond-
ing to wheelset rotations will have non-zero force components.
Referring to Figure 2-1, o?e sies ;hat th§ only coordinates

with non-zero forces are Uy uge u4 and ua.

Consider the truck shown in Figure 2-2. Forces will be
transmitted to the system corresponding to the u, and ug
coordinates. It i. apparent that if the vehicle is trans-
lating at a constant speed V and if the wheelsets are sep-
arated by a distance L, then

-23-
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Gf(t) = lateral displacement of rail at time
t for the leading wheelset
and
Gg(t) = lateral displacement of rail at time

t for the trailirg wheelset

are related by

2 = L ... ..

. . » - - . . (2"34)

A meaningful relationship between these displacements follows
after one takes the Laplace transform of (2-34), i.e.

A;‘(s) = / sg(t)eStdt - es‘L/V’A’l“(s). .« . . (2-35)
0

Replacing (s) by (i) yields the following frequency depeandent
relationship:

sptia) = etV 4 (2-36)
An important part of the response relationship for random
irregularities is the complex frequency response Letween
track irregularity and a response coordinate. The track
irregularities provide input forces of the form given in
(A-16) and (A-19), and appear in the fﬁ(t) vector given in
(2-5). The frequency represencation of this force vector

for the truck shown in Figure 2-2 takes the form
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Figure 2-2 Typical Track System
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{Fﬁ(in)}=<

2onLo eiQ(L/V)
Yo

—,. L,.
{?u(lQ}Al(lﬂ) .

L,.
y Al(lﬂ)

4

(2-37)

The complex force distribution vector including the phase

shifts due to transportation lag may be written in the general

form

(Fam} = (FoUa)) + 10(F (i)} + G d(F, 1)

(2-38)

where the subscripts denote zeroth, first and second order
terms as before. The vector {fﬁ(iﬂ)} in Equation (2-37)
corresponds to the {ﬁg(iﬂ)} term in (2-38).
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The equations of motion given in Equation (2-32) may be trans-
formed to the frequency domain resulting in

1

. S P )
(1GI -A)Z2(1iQ) = Az Fz(lﬂ)Al(lﬂ) e e o o e o o (2-39)

or

. Con o=l _
(1QI--A)HZ(1Q) = Az Fz(lQ) D 2 1))
Rearranging (2-40) and using the transformations defined in

nrevious sections one finds that

V]
o P e _
H_(iQ) = (i0r-A) A~LyT{o__ .0 ____ . . . . (2-41)
2 Z Yy T FT-F .
WU¢ Fu(lﬂ)

and the frequency response relationship in the u coordinate
system is according to (2-33),

H, (1Q) = ¢8 WUWYHZ(LQ) s e e e s e e e e ... (2-842)

where

I 0 0

0 0 v,

Yy =

From (2-42) it follows that for any uj coordinate one may write
a corresponding

Hu (i) = frequency response function relating rail

) irregularities and “j coordinate response

The resporise of the vehicle system to sinusoidal or random rail
irreqgularities involves tls use of the system frequency response

-27~-



-\

function. Consideration will next be given to calculating
vehicle response to such excitation.

2.6 Sinusoidal Rail Excitation

The evaluation of response to sinusoidal rail irregularities
provides useful insight into the dynamic response characteris-
tics of a rail vehicle system. While a more approp.-iate des-
cription of actual rail irreqularities can be accomplished
using a power spectral density function, it is important for
two basic reasons to consider vehicle response to sinusoidal
irregularities. Historically, rail irregularities have been
described in terms of sinusoidal functions and, therefore,

in order to relate to past work it is beneficial to consider
sinusoidal excitations. Also, human comfort levels are most
often prescribed in terms of sinusoidal environments and may,
therefore, be compared directly to sinusoidal vehicle response.

The description of rail irreqularities in sinusoidal terms
involves relating the amplitude of the sine wave to its wave
length. Early work [ 3] suggested a linear relationship but

for high speed vehicles it has been shown [ 4 5] that a
relationship of the form shown in Figure 2-3 is more appropriate
since longer wavelengths are important. The: moduvlus of the
frequency response of the vehicle is related to the sine wave
amplitude using a frequency response function, i.e.,

IU(if)I - AlH(if)

= o/AMH@GE) « « o o v o o . . (2-43)

where f = Q/2n (Hz.), Q being the circular frequency used
earlier. Recognizing that the wave length is related to the
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vehicle mean forward velocity, V, and sinusoidal irreqularity
frequency, f, one may alternatively write

UG = oV |H (ifﬂ

VI e e e e e L (2-44)

DYNALIST II calculates and plots the modulus of the frequency
response function relating rail irreqularity and coordinate
location. This function is scaled by aJ;7;—to obtain sinusoidal
response amplitude. Values for a are often given for particular

rail system environments. It is a direct measure of rail rough-
ness.

2.7 Random Rail Excitation

The theory of probabilistic structural dynamics has advanced in
recent years to the state where it is now common to model rail
irregularities as a stationary random process. A power spectral
density function of rail irregularity is used to describe the
magnitude of irregularity at various frequencies. a stationary
random process assumes that the rail irregularity is invarient
under a shift in spacial location and that the power spectral
density is only a function of the correlation between irregu-
larities at various spacial separations,

Rail irreqularities are characterized using a spacial power
spectral density function and this function tends to be of the
analytical form

E(F) =KF " ... ....... (2-45)

In most cases it has been found that n is approximately equal
to two. The parameter F is the frequency of irreqularity in



o

cycles/foot, and ¥ is a measure of roughness.

For a vehicle moving at a constant mean forward velocity, V,
the corresponding temporal frequency due to irreqularities is
given by

f=VF cycles /sec + « « « « . . . (2-46)

and, therefore,
E (f) = kv lgm c .. (2-47)

The response excited by this random rail irregularity may be
either acceleration, velocity or displacement depending upon

the form of the selected frequency response function. By defi-
nition, this function relates the input excitation, track
irregularity, to the selected response output. If the frequency
response function is denoted by the general form H (if) then

the variance of the response is

+ o
2
Variance of Response = Hu(if) E(f) 4af
0
+ o
= /Su(f)df
0 e v s e W o (2-48)

where

su(f) * Power spectral density of response
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The variance and power spectral density response at selected
vehicie locations provide information to study many related
problems. For cxample, the intensity of response maxima and
zero crossing can be estimated from su(f). Also, one can make
estimates of the expected fatigue life of structural compo-
nents as well as the protability associated with different
response levels.

Section 2.5 showed that the rail irreqgularity at all wheel
locations was related to a single rail irregularity function,
see (2-38). Therefore, it is sufficient to define a single
power spectral density function for the rail . The phase
relationship discussed in Section 2.5 incorporates all of the
other necessary input information.



3. VERIFICATION AND EXAMPLES
3.1 General

The DYNALIST II computer program based on the theoretical devel-
opment of Chapter 2 was verified by independent computational
means and used to execute a number of example problems. Both
lateral and vertical rail vehicle models were considered. Sta-
bility analyses were made for the lateral models which include
a six degree-of-freedom truck, a 14 d.o.f. car and a 42 d.o.f.
three-car train. Three vehicle velocities were considered. In
addition, response computations were made for the one-car and
three-car lateral models. One-car and three-car vertical models
were also generated and response computations were made for
these configurations. Both sinusoidal and random response com-
putations were made. The models and corresponding stability
and response results are discussed in this chapter.

3.2 Test Problem: Lumped Mass Model

Frequency response computations using DYNALIST II for the four-
degree of freedom lumped mass model shown in Figure 3-1 were
verified using an alternate computer program. An independent
solution was developed based on the Cramer's Rule approach.

This approach recognized that the system frequency response
function can be expressed in terms of the complex variable, s, as

(ms? + fcls + [k]){uu(s)} = {A} (3-1)

where (ml, [cl, (k] (4x4) system mass, damping and

stiffness matrices.
{Hu(')} = (4xl) vector of transfer functions

{2}

i

00017
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£f(t) = sin Qt

Figure 3-1. Pour Degree of Preedom Test Problem



The solution to (3-1) for any element Hu (s) of the vector

J
Hu(s) follows from the use of Cramer's rule wherein one obtains
a ratio of determinates, i.e.,

_ det[N] -
Hu'(s) = aﬁ}w (3-2)

J

In this expression

[mls2 + [cls + [k])

(D]
and

(N] = the matrix [D] but with the jth column re-
placed by {a}.

Equation (3-2) may be written in the alternate form

KH(B-VQ)

= 2 -
Huj(S) = _ﬁTE:T;T (3-2)
n A

where

v, = Lth root of [N], (a zero of the transfer function)
An = nth root of [D), (a pole of the transfer function:

K = root locus gain

A solution for the frequency response function (Hu (i) was
4

obtained by first evaluating the zeros, the poles and the root
locus gain, and then letting 8 = i over a range of frequencies.

The same problem was solved using DYNALIST II wherein the four-
mass system was separated into two components. The first two
masses and first three sets of spring/dashpot pairs comprised
the first component and the remaining two masses comprised the
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second. Complex modes were computed for the first component

and both conjugate pairs were used to generate a complex com-
ponent mode transformation. No modes were computed for the
second component. A constraint equation was supplied to couple
the system together and the resulting homogeneous equations
were solved for the complex system eigenvalues and eigenvectors.
These, in turn, were used to compute frequency response by modal
summation. All of the modes were used. The results from
DYANLIST II compared exactly with those generated by the Cra-
mer's Rule method to within machine accuracy. The modulus of
H, (iQ) is plotted in Figure 3.2. Preparation of input data

for this example problem is discussed in Appendix C.

3.3 Lateral Models

Figure 2-2 shows the lateral model used for a sinale truck.
Six degrees of freedom are noted and Table 3-1 gives the per-
tinent parameters of the truck.

A rigid car body model was used to study single car response.
Figure 3-3(a) shows a schematic of the 14 degree-of-freedom

car denoting 14 physical coordinates. Each truck has 6 coor-
dinates. The car body coordinates are located at the geomet ~
ric center of the body and include both displacement and
rotation. The properties of the two trucks are indentical and
are the same as those discussed in the previous paragraph, see
Table 3-1. The car body was assigned a mass of 1,700 slugs and
a rotational inertia of 1.85 x 106 slug-ftz.

Figure 3-3(b) shows a schematic of the three car system used
in this chapter. Each car is identical to the car discussed
in the preceding paragraph. Note that the cars are attached
using an elastic spring. The three-car model used in the
stability analyses (Section 3.5) also included yaw springs
with a spring rate of 2.5 x 106 ft-1b/rad between the car
bodies.
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TABLE 3-1 PARAMETER VALUES FOR A SINGLE CAR
(LATERAL RESPONSE MODEL)

n
o]
-

Value

Description

Mass Properties
Wheelset Mass my, 60 slugs

Wheelset Moment of Inertia Iw 290 slug-ft2

Truck Mass m, 250 slugs )

Truck Moment of Inertia IT 2800 slug-ft

Car Body Mass mg 1700 slggs

Car Body Morent of Inertia IB 1.85 x 10° slug-ft2
Primary Suspension

Lateral Damping C1 0 1b sec/ft

Lateral Stiffness %) 5 x 10° 1b/ft

Yaw Damping C, 0 ft71b sec/rad

Yaw Stiffness K2 3 x 10" 1lb/rad
Secondary Suspension

Lateral Damping c, 1.55 x 103 1b sec/ft

Lateral Stiffness X5 1.75 x 104 1b/f¢

Yaw Damping Cy 0 £t 1b sec/rad

Yaw Stiffness K, 5 x 10% £t 1b/rad

Other Parameters

Track Gage 2L° S ft
Truck Wheelbase L 8 ft
Mean Wheel Cone Angle xo .025 rad
Wheel Radius X, 1.33 ft
Creep Coefficient F 3 x 10° 1bs
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3.4 Vertical Models

Vertical response studies were made for one and three-car
vehicles. The single car model is shown in Figure 3-4. Spring
stiffness elements are shown and it is noted that damping dash-
pots are locaed in the same positions and in parallel with

the spring except for K See Table 3-2 for parameter values .

3.
It is noted that for the single car problem tlLe system's mass,
stiffness and damping matrices are entered in the p coordinate
system; see Figure 3-4. These matrices are:

T
Ip
e
{m] = mass matrix = IC
Ty
I
i T
(k] = stiffness matrix =
-
L
(le + Kz) 0 K, K, =z 0 0
0 k.2 0 -K 0 0
iy 3
3 3
-K, 0 2K, 0 X, 0
L 2 L
K, 3 Ky 0 (“21‘ + 21(3) K, 3 Ky
L
0 0 K, K, % (21(1 + xz) 0
0 0 0 -K 0 K. L2
3 2] T + Ky
- J
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TABLE 3-2 PARAMETER VALUES FOR A SINGLE CAR
(VERTICAL RESPONSE MODEL)

Description Symbol Value
Mass Properties
Truck Mass mo 250 slugs 5
Truck Moment of Inertia IT 2800 slug-ft
Car Body Mass MC 1700 slugs
Car Bod¥ Moment of 6 2
Inertina I. 1.85 x 10~ slug-ft
Primary Suspension
Stiffness Kl 3 x 105 1b/ft
Damping Cl 2.1 x 104 lb-sec/ft
Secondary Suspension
Stiffness K, 1.86 x 10% 1b/ft
Damping C, 3.0 x 103 lb-sec/ft
Stiffness Ky 4.5 x 10° ft-lb/rad
Other Parameters
Truck Wheelbase LT 8 ft
Truck Centerline
Separation L 83 ft
Car Length L2 100 ft



[~ .
L
2¢, +c, 0 C, ¢, o 0
2

0 c, ,f,ﬁ 0 0 0 0

-c2 0 2c2 0 -c2 0

[c] = dampin matrix = -C L 0 0 C Lz c L 0

plng 27 27 S3
0 0 -, ¢, L a4 o
2 27 172

0 0 0 0 0 c, g'-i
L .

In the p coordinate system the equations of motion are

(M B + el b + (k] p = [c)d + (k)6 C e v e . (3-3)
where § = vertical track irregularity.

Note that the u coordinates are related to the P coordinates,
see Figure 3-4, through the transformation matrix

() [2 a2y 0 0 4 4 (o))
wl |1 2 0 0o o o P,

J sl ]o o 1 ayn 0 o b,
u, ?. 0 0 1 (-L,/2) o 0 .< p‘f
T I L I T
S A /2| |pg)
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Also, the rail irregqgularities are input to the computer pro-
gram in the u coordinate system by the fu(iﬂ) vector as

(ioc K, -
iQL./v iQLL/V
iQCIe LT Kle LT
) 0 0
{Fu(lﬂ)}zﬁ ) 81as)
0 0
iQ cleim‘/V xleif’L/V
iQ(L+L,) /v iQ(L+L,) /v
\ iQCle br K,e b1 J

The three car train model is composed of three identical cars.
Each car has the properties of the car shown in Figure 3-4 and
are as given in Table 3-2. The interface between each two
adjacent cars has a vertical spring and a rotational spring.

3.5 Stability Analysis

DYNALIST II may be used to perform stabiiiij analyses whereby
the eigenvalues and eigenvectors of the system are computed
but no response computations are made. Eigenvalues are of the
complex form

Aj=°j+iwj ........--......(3-4)

The homogenous equations of motion therefore have solutions
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ALt (0 +iw,)¢t
yi(t) =y ed =y ¢ 3773 C e e e e e . (3-5)
j o. o.
J J

where wj may be interpreted as a damped natural frequency and
Cj as a growth rate. The system is considered to be stable if
and only if cj < 0 for all j. In the case of oscillatory modes
whare wj # 0, the undamped natural frequency, Wy .+ and critical

damping ratio, Cj' are related to °j and w. by

j

(] = Yo + w S ® & s s 4 0t s+ e e s e e e e o o (3-6)
°j

&y = oj/woj T T € T8 2

Stability analyses were made for three lateral model config-
urations at three velocities. The models include the Lateral
Truck Model, Figure 2-2; the Lateral Car Model, Figure 3-3;
and the Three-Car Train Model, Figure 3-4. The three velo-
cities were 300, 450, and 600 ft/sec. Eigenvalues computed
for these cases are presented in Tables 3-3 to 3-5. It may
be noted that the critical damping ratios of the truck hunting
modes go from approximately ¢ = .43 at V = 300 ft/sec to

¢ = .08 at V = 600 ft/sec. Eigenvectors corresponding to the
first hunting mode of the single car vehicle are presentad in
Table 3-6 for the three velocities.

3.6 Response Analysis

Response computations were made for both lateral and vertical
vehicle models. Two models were considered in each case, a
singlecar and a three-car model. Random type rail irregular-
ities were input to the lateral models’ and sinusoidal typ:

*Except for the three-car model for which only frequency response
functions were computed.
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rail irregularities were input to the vertical models. Re-
sults of these computations are discussed in this section.

The input power sr ctral density function describing lateral
rail irreqularities is shown ir Figure 3-5. The sloping
portion of the function is given by

E(f) =RVE™2 . . ... (3-8

where K = 1.85 x 10”7 £t? and vV = 450 ft/sec. The low fre-

quency (long wavelength) portion of the spectrum has been
limited somewhat arbitrarily to reflect the tendency of wavi-
ness to be limited at longer wavelengths.

In computing the lateral response of the single car vehicle,
all of the modes werc retained, i.e., the solution is "exact".
Acceleration response functions for three points on the ve-
hicle are plotted in Figures 3-6(a,b) through 3-8(a,b). Sub-
figure (a) of each pair corresponds to frequency response
while subfigure (b) corresponds to power spectral density of
response. Units of acceleration are in ft/secz. Response
points are identified in Table 3-7 which lists RMS accelera-
tion response in g's,

TABLE 3-7 ACCELERATION RESPONSE FOR LATERAL SINGLE CAR MODEL

[

Figure Coordinate Response Point RMS Acceleration
No. No. Identification {(g's)
3-6 11 Car body sway at .0248

attachment point of
trailing truck

3-7 15 Truck sway at center .1590
of mass of trailing
truck frame

3-8 17 Wheelset sway at .1290
center of mass of
trailing wheelset,
trailing truck.
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Lateral acceleration frequency response at three points on the
three-car train was computed by modal synthesis where six con-
jugate pairs of modes were retained fo.- each car. Freguency
response plots are shown in Figures 3-9 through 3-11. Response
points are identified in Table 3-8.

TABLE 3-8 ACCELERATION RESPONSE FOR LATERAL THREE-CAR MODEL

Figure Coordinate Response Point
No. No. Identification
3-9 15 Car body sway of lead-

ing car at coupling
point with middle
car

3-10 33 Car body sway of middle
car at coupling pcint
with trailing car

3-11 43 Car body sway at center
of mass of trailing
car
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Vertical response studies were made using sinusoidal rail
irregularities of amplitude A = avX where a = 4.52 x 1073,
This roughness parameter corresponds to an amplitude of 0.5
inches at a wavelength of 85 ft. Amplitude A is plotted as a

function of frequency f in Figure 3-12.

A special option in the program was developed for computing
response directly for a system without recource to the subsys-
tems approach. This option was used in an attempt to compute
vertical response for the single car vertical model. riowever,
the results appeared to be incorrect and are therefore not
presented. It must be concluded at the present time that a
computational bug still exists in the code implementing this
option and users are cautioned to avoid its use.

Vertical acceleration response was evaluated for tvhe three-
car vertical model, however, and these results appear to be
correct. 1In generating this model, very stiff vertical springs,
K= 7.5 x 107 lb/ft, were used to couple adjacent ends of car
bodies in the train. The intent here was to try to represent
a hinged connection. Consequently, two lightly damped high
frequency car body modes were computed, (37.1 and 45.4 Hz.).
The existance of these modes appears to cause a 3evere vibra-
tional environment in this frequency range. Although such an
environment is unrealistic for real trains, it appears to be
reasonable for the specified model and results are therefore
included. Frequency .. ""nse and corresponding sinusoidal
response plots are shown in Figures 3-13(a,b) through 3-15
(a,b). Table 3-9 lists the peak acceleration in g's exper-
ienced over the frequency range below 25 Hz. (log 25 = 1.40),
for several locations on the vehicle. Response points are
identified therein. Computations were made using all of the
component modes; only four modes for each component occurred
in complex conjugate pairs. The rest were real.

S e
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[

TABLE 3-9

ACCELERATION RESPONSE FOR THE VERTICAL THREE-CAR

MODEL
Figure Coordinate Response Point Peak Accl.
No. No. Identification (g's)
3-13 14 Car body heave, middle .222
car at attachment point
to trailing car.
3-14 24 Car body heave, trailing .280
car, trailing end.
2-15 26 Truck heave, trailing car, 12.60

trailing end of truck.

A very high acceleration level for the truck is noted. 1In

fact, the frequency response curve is observed to foliow the

line |H(iQ)| = 2% over almost all of this range.
indicates that the primary suspension is so stiff that the
truck frame essentialy follows the rail irregularity.
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3.7 Convergence

In Figures 3-9 through 3-11, the high frequency response
characteristics appear to be in error. The vertical dotted
lines show tne lowest frequency of the excluded component
modes. Certainly, one would not expect the approximate re-
sponse solutions to be valid beyord this point. In fact, one
may even question whether the solution is good near the fre-
quency of the highest included mode. Experience with various
modal synthesis procedures applied to classical structural
systems indicates that the accuracy of eigenvalues and @igen-
vectors deteriorates somewhere in the frequency range between
50% and 80% of the range spanned by the included modes [ 6 ).
Thi3s depends greatly on the system, of course, as well as the
procedure being used. As more and more modes are included in
the synthesis, eigenvalues and eigenvectors as well as fre-
quency response tend to become more accurate. The approximate
solutions tend to converge to the "exact" ones, so called be-
cause they include all of the modes, and therefore no truncation
error.

Three distinct problems in convergence have been identified
with regard to the present application. The first one is the
usual one associated with eigenvalue and eigenvector accuracy.
While no particular study of this problem has yet been made,
some feel for the problem can be gained from the results pre-
sented in [1, 2, 7). Further insight in the classical mode
case is provided by (8.

The other two problems concern the conver jence of frequency re-
sponse. One may anticipate at least one of these problems from
the strange high frequency behavior exhibited in Figures 3-9 to
3-11 where acceleration frequency response has been plotted.
Figures 3-16 (a, b, c) show plots of displacement frequency

=72~
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response for the leading truck frame center of mass on the
lateral car modell Figure 3-16(a) shows the "exact" solution
obtained by including all of the modes. Figures 3-16 (b) and
3-16 (c) show frequency response computed for the same coordi-
nate but with truncated mode snlutione. Each truck was mod-
eled as a component of the system. Figure 3-16 (b) represents

a solution where four out of six conjugate mairs of truck modes
were included for each truck and Figure 3-16 (c) represents a
solution where only three out of the six were included. Both

of these truncated mode solutions show significant error in

the high frequency range. 1In both cases, the highest frequency
mode included was 12.53 Hz (corresponding fo w = 78,72 and

log (12.53) = 1.10). 1In Figure 3-16(b) the lowest frequency
mode excluded was 45.49 Hz (w = 285.8 and log (45.49) = 1.66).
In Figure 3-16(c) the lowest frequency mode excluded was 1.17 Hz
(w = 7.373 and log (1.17) = .0695). From Table 3-4 (V = 450
ft/sec) one observes that (b) corresponds to inclusion of the
lowest four pairs of eigenvalues (ranked by modulus) while (c)
correspoands to inclusion of the lowest three pairs. Although
the fourth pair has a very low frequency, it is almost critically
damped. Thus, the modulus of its eigenvalue is larger than that
of the mode wits a frequency of 12.53 Hz.

The high frequency portion of the resyonse spectrum is not the
only place of interest. One of the most striking differences
among the three plots is in the low frequency rejion where the
frequency response function levels off. 1In moving from Figure
3.16 (a) to Figure 3.16 (c), one may observe that the "static"
response (also call:d the Bode Gain) drops progressively lower
than the correct value of unity. This result was somewhat sur-
prising at first, since the appearance of qugtion (2~41) seems
to suggest that the contribution of higher order modes to the
total frequency response diminishes with the reciprocal of the

In this case, the wheelset Yaw¥ equations corresponded to (A-18)
of Appendix A instead of (A-19). This accounts for the notch
which occurs at a frequency of 6.2 Hz. and is probably re-
sponsible for the way the high frequency response takes off

in the truncated mode solutions. The § term in (A-18) has
negligible effect in the low frequency range.
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eigenvalues A. Further consideration reveals, however, that
the "static" response is quite independent of the eigenvalues
and should be obtained by other means.

For example, one may consider a simple two-degree-of-freedom
spring mass system which is base excited by a sinusoidal dis-
placement function §(t). Two classica! modos may be derived
for this system. If one attempts to predict the low frequency
response of the system by considering only one of the two modes,
his solution will clearly be in error unless the eigenvector
associated with the first mode exhibits the same displacement
for both masses. Otherwise, the two masses will displace by
different amounts and nne knows on physical grounds that both
masses will tend to move with the base as the excitation fre-
quency approaches zero.

The solution of this problem is straightforward. One may eval-
uate the low frequency response cf the system based Lpon a
direct solution of the equations where the acceleration and
velocity terms are neglected. The low frequency modal solu-
tion may be subtracted from this leaving a residual. This
residual response represents the lcw frequency contribution by
all of the unused modes. It may be added to the frequency
response functions as a constant over tne entire frequency range
of interest. Such a grocedure was proposed in | 9,10], for
example.

Formally, one may recall Equation (2-25). Transformation to
the frequency domain results in

K-02M+3i Q) Hy @) = F (d2) . .(3-9)
where

Fq (19 =8 ¢ F_(1M. ... . (3-10)
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and Fu (i Q) is of the form given by (2-37). Neglecting terms
in (3-9) which contaia Q, one obtains

KH =F = gF ST F. . . e e e .. "3-11)

Hy =o Bk TBTOTF L. (3-12)
u u
[0} o]

The residual contribution of the unused modes to the response
at low frequencies is then

H“R = Huo - Hu (i Q)lQ >0 * o+ - o+ s (3-13)
where Hu (i Q) is given by (2-42). Adding this rgsidual term
to Hu (i 2) should result in an approximatation, Hu (i Q), to
the "exact" frequency response function which is accurate at
all frequencies below some cut-off point which then would de-
pend on eigenvalue separation, i.e.,

H, (i Q) = H, (i @) + H“R e e o v v . (3-14)
The modification Suggested by (3-14) is not included in the
present version of DYNALIST II. In cases where elements of the
vector H“o are known to be unity, it is relatively easy to com-
pensate for the residual error in one's interpretation of re-
sults. However, for some models this will not be the case. An
example is the lateral truck model shown in Figure 2-2 which

is "tied to ground® through lateral and yaw springs. In this
case, low frequency displacements will not be unity. 1In situ-
ations such as this, it is recommended that modal truncation

be used only with appropriate caution,

In general, further study is required in order to take proper
advar*age of the modal truncation option. 1In any application
it must first be determined whether the desired system eigen-
values and eigenvectors have been obtained to within an accept-~
able deqree of accuracy. Then, assuming that the low frequency
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problem is corrected, an upper limit on the range of accurate
frequency response must be established. As one additional
step, it must be determined whether the RMS response integra-
ted over this range has converged to an upper limit if this

measure of response is to be used in the case of random rail
irregularities.



4. CONCLUSIONS AND RECOMMENDATIONS

The original DYNALIST computer program for dynamic analysis of
rail vehicle systems has been modified and extended in the

new version, DYNALIST II. In addition to computing the com-
Plex system eigenvalues and eigenvectors for stability analyses,
DYNALIST II offers the capability for computation of vehicle
response to either sinusoidal or random track irregularities.

4.1 Conclusions

As a result of this development effort, a number of conclusions
may be drawn. These conclusions are briefly summarized in tne
paragraphs which follow.

Two major modifications have been made in the original part
of the program. The first modification was to change the in-
put coordinate space from u to P to facilitate the modeling of
flexible structurai elements and/or components. Whereas the
user previously had to enter component equations of motion in
the physical discrete coordinate space u, he may now enter
component equations of motion in modal form and use the ¢
transformation to revert back to the physical coordinates

for interpretation of output. This represents a significarnt
improvement in that very complicated structural elements can
now be included in the model without having to input complete
finite element mass and stiffness matrices. Only portions
of the real eigenvectors associated with response points,
attachment points and forcing function inputs need be in-
cluded in ¢.

The other modification has resulted in automating the genera-
tion of the coordinate reordering vector IARANG. The user need



only specify which of the redundant coordinates are to be
eliminated by the constraint equations. 1In the past, the
need to input this vector did pose some pi:oblems for the

inexperienced user.

In formulating the response capability, & special kind of fre-
quency response function was defined. Normally, frequency re-
sponse is interpreted as a characteristic of the system between
two s)ecified points on the system. In the case of rail vehi-
cles, track inputs occur everywhere the system contacts the
guideway so that frequency response associated with any parti-
cular contact point is not particularly meaningful. Since the
inputs at each contact point are phased due to different parts
of the vehicle traversing the same irreqularities at different
times, the force "distribution" is not of the classical form.
However, the distribution is independent of quiaeway parameters
so that a meaningful frequency response function between a sca-
lar function defining guideway irregularity and any point on
the system can be defined. This function is computed in the
response portion of the program and can be plotted as well as
printed.

Frequency response functions representing normalized response

at selected vehicle locations are used in evaluating both sine
and random response. Sine response is computed from a track
roughness parameter. The variation of sine amplitude with
wavelength is predetermined. Random response is computed from
an input power spectral density describing the distribution of
amplitude with frequency. The power spectral density of vehi-
cle response may be plotted as well as printed, and the func-
tion is integrated over a specified frequency range to determine
RMS response.
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A number of example problems were developed to demonstrate
the program. Both vertical and lateral models are included.
Vehicleés consisting of a single traincar and several cars
coupled together have been modeled. Stability and response

analyses were made. Results of *hese analyses have been
summarized.

As with any new computer program intended for general usage,
some problems were encountered in running the examples. The
two main problems are of a general nature and users should be
aware of them so that they may be avoided. Both of the prob-
lems are numerical and are problem dependent. The first prob-
lem involves the occurrence of repeated roots, i.e. identical
or nearly identical eigenvalues. When components of the sys-
tem are identical and virtually isolated from each cther by
very weak coupling, numerical problems may occur in the
eigenvalue/eigenvector subroutines. The problems encountered
to date have been circumvented by perturbing system parameters
by a small amount, say less than one percent, so that repeated
roots do not occur.

The other problem has to do with the convergence of approximate
solutions resulting from modal truncation. Three separate
problems related to convergence were described in Section 3.7.
The problems may be overcome by appropriate selection of com-
ponent modes. At the present time, no foolproof guidelines can
be provided. The user nust either avoid modal truncation, or
through hic experience with a particular problem, make his own
judgment as to which modes to select. This subject is beyond
the scope of the present effort but is certainly deserving of
further research.



Recommendations

Based on experience cained with DYNALIST II to date, the

following recommendations are made with reqgard to the future

use and continued development of the program.

Users should be aware of the two basic numerical
problems identified so far, i.euhf&e repeated
roots problem and the convergence zroblem when
modal truncation is used. When modal {runcation

is not used, convergence is not a problem.

A detailed examination of the eigenvalue/eigen-
vector subroutines should be made to determine
to what extent certain numerical problioms can

be eliminated by adding more sophisticated logic
to the computational procedures. Appropriate
modification to the code should be made.

A means for testing the validity of computed
eigenvalues and eigenvectors should be developed.
An orthogonality check using the derived eigen-
vectors and input coefficient matrices is one
possible means.

The procedure developed in Section 3.7 for
elim . nating the low frequency convergence prob-
lem should be implemented in the DYNALIST II code.

The other twc convergence problems should be studied
in depth with the objectives of providing reliable
guidelines for selection of component modes, evalua-
tion of resulting solution accuracy, and, if
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possible, development of automatic convergence

subroutines which complement the existing pro-
gram.

The improvements and extended capabilities incorporated in
DYNALIST II are believed to represent a major advance in the
state~of-the-art of rail vehicle dynamic analysis. It is
expected that specific user feedback will be very helpful

in charting the continuing development of this program.



- APPENDIX A -

EQUATIONS OF MOTION FOR A RIGID WHEELSET

A.l Description of System

Figure A-1 shows a single wheel-axle system. Imagine two

sets of unit vectors; él and é2’ are fixed to the rail and

i1 and 32 are fixed to the axle. Two coordinates, Py and Py
define the position of the axle with respect to the rail at
any instant of time. These coordinates are:
P, = lateral displacement of axle from the center
line of the rail system.

P, = rotatioa (radians) of the axle with respect
to the rails.

The following parameters are also used in this appendix:

r, = nominal radius of each wheel

V = Mean foiward velo~ity of axle

Ao = cone angle (radians) of each wheel
A.2 Velocities ot Wheels

wWhen the axle is rolling straight down the rails and P, =P, = 0
then each wheel rotates with the same anqular velocity,ug, and
the radius of the wheel which is in contact with the rail is the
nominal radius of the wheel, L. As the axle displaces from ‘:his
central position the contact radius either increases or decreases.
The change in radius is a function of the lateral displacement and
the wheel's cone angle, i.e. Xopl. Since the angular velocity of
the rigid wheelset 1is a constant, w_, it then follows that the

o
rollinc velocities of the wheels are:



K130w099 3003U0D TYWY-TIIYM JO OTIPWdYSS *T-V aanbrd

135733HM

NOI LOW
Y 31030

30
NOI1J34IQ

A~2



<>
1

R%

<>
]

Rr

The unit vector
ments P, and P,

A

rolling velocity of the left wheel

Jo (left contact radius)

Yo (ro + Aopl) 32

rolling velocity of the right wheel
We (right contact radius)

wolfo = AoP1) £2

systems are such that for small displace-
it follows that:

~ ~

1 = Pe) + &

and therefore

Veg =

and

Rr

_wo

~

A

N +
(moropz)el + 'uo(ro + Aopl)e2 + 0 N

>

(kg = %oPp) (Pyey + e))

A

N +
(woropz)e1 + wo(ro - Aopl)e2 + 0 e,

In the above equations, 0% denotes the neglected higher

order terms in Py and P,-

The previous discussion pertains to the rolling velocity

of each wheel.

When creep occurs, the actual velocities are

slightly different than the rolling velocities. The actual

wheel velocities are,

v

fl

AL

and

actual velocity of the left wheel

(bl)él + V- Lobz)éz

(a-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)
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Ar actual velocity of the right wheel

(pyley + (V4 Lpyle, (A-7)

If the actual and rolling velocities of each whee) were
identical, then there would be no creep forces applied to
the wheels. When the two velocities are not the same, c:ieep

forces are develored.

A.3 Creep Forces on a Wheelset

The creep forces acting on a wheel are yroportional to the
difference between the actual and rnlling velocities of the
wheel. It is customary to write this relationship in the

following way:

; = creep force =-f (ﬁctual Velocity - Rolling Velocitv)(a_s)

Mean Forward Velocity

where f denotes the creep coefficient.

The creep forces acting on the wheelset follow from the
substitution of (A-4) to (A-7) in (A-8), i.e.

~

Fy = creep force on left wheel
= - (£/V) [pye; + (V - L pyle; - w T Pyey
- %§r° + xopl)ezl
= - £/V lp; - Vp2]e1 + £/VIL_p, + v(xo/rm)plle2 (A-9)
Fr = creep force on rlght wheel

- £/V Ip - szlel - £/VIL P, + v(xo/ro)plle2 (a-10)
where by definition

V = wOrO (A-11)
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A.4 Equations of Motion - No Rail lrregqularities

The forces due to creep which act on the axle are given in
(A-9) and (A-10). With the mass and mass moment of inertia
(about its center) of the axle denoted by M and I, it follows
directly that the scalar dynamical equations of motion are:

MB) = ~£/VIp, - Vp,] - £/V[p, - Vp,]

or
M, (€) + (2£/V)p, (£) = (2f)p,(t) = 0 (A-12)
and
1p, =-fL/VIL P, + V(A /r, ) p,]
=L /VIL P, + V(A /r)p,]
or

) 2f %\ 2fL )
Ipz(t) H—v— pz(t) t\— pl(t) =0 (A-13)
o)

Examination of (A-12) and (A-13) shows that coupling exists
between the two coordinates through the displacement terms.
No coupling exists between the acceleration and velocity terms.

A.S Equations of Motion - Rail. Irreqularities

Equations (A-12) and (A-13) reflect the homogeneous differen-
tial equations of motion for motion down a straight rail. Fig-
ure A-2 shows schematically the rail irregularity with the

coordinates
§ = lateral displacement of rail irregularity

§' = d8§ /dx = slope of rail irregularity

A-5
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In general, irregularities of the two rails are not the same.
There may be some degree of correlation, particularly at larger
wavelengths, but the irreqularities are not identical. 1In any
case, the irreqularities may be represented as the sum of two
functions, one symmetric with respect to the nominal centerline

of the track, and the other antisymmetric. Since the symmetric

rail irregularities induce no lateral motion, only the antisymmetric

function need be considered for the lateral model. This arqu-
ment justifies the representation of rail irregularities in
terms of an irregular centerline, as shown in Figure A-2.

In order to derive equations of motion for a wheelset in the

case of irreqular rails, creep forces are considered to depend

on the relative motion between wheels and rails. Equation (A-12)

is therefore written
Mp, + 5 (Py - 8) - 2f (p, - 6') =0 (A-14)

From the relationship

v _ A8 _ as dx _ & _
s_d’—x_ﬁa't_:'ﬁ (A-15)

Equation(A-14) is seen to reduce to

Mp, + %; p, - 2fp, = 0 (A-16)

which is identical to (A-12).

To write Equation (A-13) in terms of relative wheel-to-wheel
motion, one must be careful in the direct application of formal

substitution which leads to

Ip, + 3%;5 (p, - 5') + 35;%19 (py - 8) =0 (A-17)

Recognizing that

S SR NCE N Y

one would find
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1p, + (=2 )5 +<_ o °>p1 =< i >5 + <—r° °Js (a-18)
Yo \Y o

and conclude that in the case of cylindrical wheels where A =0,

an irregular track excites wheelset motion. This is known to be
untrue.

Some insight may be gained by contemplating the design of a test
facility to simulate wheel-rail interaction. Suppose, first,
that two circumferential rails are welded to a cylindrical drum
which rotates about its axis fixed in a horizontal plane. 1If
the drum spins at a constant rate, and a wheelset is placed on
top of the rails, and constrained so that it cannot move forward
or backward, but only in the lateral and yaw directions, the con-
dition of a wheelset moving along straight track is simulated.
The equations of motion for the wheelset would be given by (A-12)
and (A-13).

If the drum were made to move with an oscillatory lateral motion
8 (t) without yawing, then the equations of motion would be given
by (A-14) and (A-17) with the § and &' terms both set equal to
zero. Clearly, this motion of the drum does not simulate a wavy
track because § appears in the equation containing pl, whereas,
in the case of a wavy track, (A-16) applies.

If the drum were a given a yaw degree of freedom in addition to
lateral and spin, and the yaw angle §' (t) were synchronized
with é(t) in an attempt to simulate wavy track, then the wheel-
set equations of motion would be given by (A-16) and (A-18) .
Since it has already been concluded that these equations do not
represent a wheelset rolling on wavy track because the wheelset
is forced when Ao = 0, this type of drum motion must not simu-
late wavy track either.
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In order to properly simulate the wavy track condition, one
shculd be able to pass a planar surface over the rails on the
moving drum in such a way that no slip (or creep) occurs at
the contact points. This, of course, requires that one more
degree of frewdom be added to the drum, differential spin be-
tween the two rails. Then the motion is analoJous to that

of the rear wheels of an automobile zig-zaging down a straight
road. The differential allows the rear wheels to turn at
different rates as the car turns. Without the differential,
the tires would tend to creep on the pavement, giving rise to

creep forces and causing the tires to wear.

Returning to the problem of writing equations of motion for a
wheelset on irregqular track, one can now see that another term
must be included in (A-17) to account for track curvature,

6" = 1/p where p is defined to be the "instantaneous" radius of
curvature at some point on the track. The creep force on the

right wheel in the é2 direction is therefore

ﬁr'éz = - f_\I;Q I‘;z - (é' - ‘EI)I

However, since

it follows that
-fL_ .
~ _ o

and similarly for the left wheel

~ ~ .

. - fLo
Fop "2 P2
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Finally then, for the case of a wheelset rolling on irregular
rails with a centerline displacement given by &(t),
of motion are

the equations

N 2f y\ - .
Mp, + (V)Pl - (Zf) P, =0 (a-16)
. 2
2fL°\ . 2fL_\ 2fL )
Ipp + ( °> P, + < = °) Py = [ —22); (A-19)
v r° ro

Thus, when Ao = 0, the wheelset is not excited. These equations
agree with those presented in [11]).

In retrospect, this circuitous derivation of creep forces in

the case of irreqular rails might be shortcut by developing a
more suitable definition of creep.

A-10
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- APPENDIX B -~

(aC - 6600 TO DEC SYSTEM - 10 CONVERSION AND
CALCOMP PLOTTER COMPATIBILITY

The DYNALIST II computer program is currently operational on
a Control Data Corp. 6600 computer system. Briefly, DYNALIST
II requires a large amount of core (200K Octal) to compile
and run. It uses available core space efficiently by using
an Overlay structure. By saving the Overlay structure on a
permanent file it is possible to run the program using less
than 160 K Octal of core. The program requires three working
tapes or disks in addition to those required by the standard
input, output and plotting devices.

The Digital Equipment DEC System - 10 computer system currently
installed at DOT-TSC has over 250 K Octal core memory available
to the user. This is more than enough to compile and run
DYNALIST II using any Overlay loading technique. DYNALIST II
uses rain, primary and secondary overlays. The configuration
of these is shown in Figure B-1. Figure B-1 should demonstrate
the feasibility of running this program on the DEC System - 10
The DEC System - 10 currently has three disk drives which is
the minimum number needed to run the program efficiently. A
list of possible considerations in the conversion from a CDC
6600 to a DEC System - 10 is given below.

B-1. It will not be possible to run DYNALIST II in double
precision since DYNALIST II uses complex arithmetic.
The DEC System -10 does not have double precision -
complex variables nor does it allow mixed mode arith-
metic between complex and double precision variables.

B-2. Operating in single precision, mixed mode arithmetic
should cause no problems:



s o e+ o e

OVERLAY DESIGNATION

(0,0)

(1.0)

(2,0) (3,0) (4,0) ls,0)(6,0)

(2.1)(z.z)xiz.s)i(z.n)(z.s) (4,1))(4,2)

Figure B-1

DYNALIST II Overlay Structure
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B-10.

All library subroutines required are available on the
DEC System - 10.

DYNALIST II uses six-character subroutine and variable
names which is standard in FORTRAN IV. These would have
to be shortened only if an incompatibility exists with
regard to the DEC System - 10 Fortran compiler.

The DEC System - 10 accepts only 5-character Hollerith
variables whereas the 'DC - 6600 accepts l0-character
Hollerith variables. This should affect only the title
card.

Return statements in primary and secondary overlays and
in subroutines may have to be replaced by transfers to
the End statement.

DYNAL1ST II uses Tape 5 as input Tape 6 as output and
Tape 10, Tape 11 and Tape 12 as working files. These
may have to be renumbered.

Program cards may have to be changed or deleted.

DYNALIST II uses multiply-subscripted arrays in the
same subroutines. This may cause problems.

If the DEC System - 10 on line CalComp Plotter routines

are used, the following changes must be made in Overlay (4,2)

B-10.1. Eliminate CALL FACTOR (SIZE) and delete plot
reduction option.

B-10.2. BAccount for lack of 999. continuation feature
in the NUMBER routine.

B-10.3. SCALE routine must be changed and made compat-
ible with AXIS routine.

B~10.4 A CALL PLOTS statement must be added to dimen-
sion a plotting buffer.



B-11. If the off-line Standard CalComp Plotter is used,
only the CALL PLOTS statement need be added.

B-12. To use the CalComp log-log plotting routine the FREQ
array will have to be converted back to an arithmetic
scale, but not before being used in any CALL to
SUBROUTINE MSR.

The arrays UPZD, TRACK and AMP need not be converted to a
logarithmic scale but may be left in their arithmetic form.
Note that the response program operates by using a constant
frequency increment on a logarithmic scale and that this
should not be altered.



- APPENDIX C -
SAMPLE PROBLEM

DYNALIST input data for the four degree-of-freedom lumped mass
model described in Section 3.2 is derived in this appendix.

All data begin in column 2. See User's Manual.
Title Card -

Card 1: LUMPED MASS MODEL

Generate Comprnent Data

Namelist block START contains four parameters as indicated in
Section IV of the User's Manual. All parameters must be assigned
values unless default options are desired or earlier entries

have been made. The first step in solving a DYNALIST problem

is to create a component data file. This is done in Segment 1

of the program which is called by specifying NTYPE = 1. Assum-
ing that a new data file is to be created, the user will set
NEWTAP = 0. No intermediate printout is desired so IFOUT = 0.

If IRESP is not specified, it will default to 0. Thus, Card 2
becomes

Card 2: SSTART NTYPE = 1,NEWTAP = 0, IFOUT = 0,$

Having entered Segment 1, the parameters in Namelist Block
COMPO must be specified. The first call to Segment 1 will
generate the first component on the data file which is defined
in accordance with Figure 3-1. This component may be designated
by the "name” COMNAM = 1.00. The automatic matrix generator
will not be used. Therefore IGEN = 0. Three coordinates,

NU = 3, are required to define the motion of Component 1. One
is the "constraint” coordinate which will attach to mass #3

and the other two define motion of masses #1 and #2 and are
considered to be "free" coordinates. No rigid body coordinates
are required. Namelist Block COMPO is initiated with the card

C-1
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Card 3: SCOMPO

Namelist parameters in this block may now be specified in any
order. Thus we choose

Card 4: COMNAM=1.00,IGEN=0,NU=3,NCON=1,NRIGS=0,NFREE=2,

Coefficient matrices are entered in the p-coordinate system
which in this case is chosen to represent physical coordinates
so that the matrix PHI can be an identity matrix.

Card 5: PHI(1,1)=1,PHI(2,2)=1,PHI(3,3)=1,
All coefficient matrices are symmetric so the user may specify
Card 6: ISYMC=1,1ISYMK=1,

The mass, damping and stiffness matrices for Component 1 are
found from Figure 3-1 to be

(o 0 o]
m=]10 1 o

0 0 1

.01 0 -.01
c = 0 .04 -,02

:'001 -002 l03

1 0 -1
k=10 2 -1
-1 -1 2
The constraint coordinate must come first followed by the free

coordinates which are ordered as mass #1 followed by mass $2.
Thus the next three cards are

card 7: AMASS(2,2)=1, AMASS (3,3)=1,

Card 8: DAMP(1,1)=.01, DAMP(2,2)=.04, DAMP(1,3)=-.01,-.02,.03,
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Card 9: STIFF(1,1)=1, STIFF(2,2)=2, STIFF(1,3)=-1,-1,2,

This completes Namelist Block COMPO for Component 1. The
namelist block is terminated by the card

Card 10: S$END

Component 2 data are placed on the data file in a similar fash-
ion by entering Segment 1 again. This time NEWTAP = 1 since
the data are to be placed on the same data file.

Card 11: $START NTYPE=1,NEWTAP=1,IFOUT=0,$

Data for Component 2 are entered again in Namelist Block
COMPO. As before, the equations are entered in the physical
coordinate system. Two coordinates are required, NU = 2. No
component modes will be computed in this case so NFREE = 0.
The user may choose to define the two coordinates as either
rigid body or constraint coordinates; say he chooses the for-
mer. Then NCON = 0, NRIGS = 2. Thus

Card 12: COMNAM=2.00, IGEN=0,NU=2,NCON=0,NRIGS=2,NFREE=0,
Card 13: PHI(1,1)=1,PHI(2,2)=1,

If the coordinates are ordered sc as to place mass #3 followed
by mass #4, the coefficient matrices for Component 2 are

m = [.5 0 ]
0 «3
cC = 001 -.01]
-.01 .01

B
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The next four cards are therefore

Card 14: ISYMC=1,ISYMK=1,

Card 15: AMASS(1,1)=.5,AMASS(2,2)=.3,

Card 16: DAMP(1,1)=.01, DAMP(1,2)=-.01,.01,
Card 17: STIFF(1,1)=1, STIFF(1,2)=-1,1,

The COMPO data block is terminated by

Card 18: SEND

Component Mode Truncation

Component modes may be truncated by entering Segment 2. This
is accomplished by specifying NTYPE=2 in Namelist Block START

Card 19: S$START NTYPE=2,IFOUT=0,$

Editing information is supplied in Namelist Block EDITT. The
number of first order modes to be retained for each component

is entered in the vector NMODE2 while the mode numbers for each
component are entered in columns of the matrix MODES. Component
1 has 2 second order degrees of freedom and therefore has ¢
first order modes. The user may wish to retain all of them.

No modes were computed for Component 2 so none can be retained.
The user will thus specify

Card 20: SEDITT
Card 21: NMODE2(l1)=4,0,
Card 22: MODES(1,1)=1,2,3,4,

Card 23: SEND
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Synthesis

Upon completion of modal editing, the synthesis operation is
performed to couple the components together and compute system
modes. This is done in Segmant 3 which is called by specifying
NTYPE=3 in Namelist Block START. 1FOUT has already been set
equal to zero and does not have to be respecified. Since fre-
quency response is to be computed, the user will set IRESP=l.

Card 24: S$START NTYPE=3,IRESP=1,$

The number of components in the system is two so NCOMP=2. The
identification of components and their order is specified by
setting PRENAM(1)=1,2. There will be one constraint equation
so NROWG = 1. If coordinate #1 of Component 1 is defined to
be the dependent ccordinate to be eleminated, then KDEP = 1.
The u-coordinate vector for the system is

r ul}
S 1
Y ol
u 2
2 1
{u}={15 =<u3
“4 ui
| Ys o2
: 2

The two components are connected by specifying the compatibility
constraint

1. 2 - =
uy uy or u, u, 0

Therefore the user will specify G(1,1)=1,0,0,-1.
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This information is entered in Namelist Block SYN.
Card 25: $SYN

Card 26: NCOMP=2,PRENAM=1,2,NROWG=1,KDEP (1)=1,
Card 27: G(1,1)=1,0,0,-1,

Card 28: SEND

Response Computation

Response computations are made in Segment 4 by entering NTYPE=4
in Namelist Block START.

Card 29: S$START NTYPE=4,$

Data are entered in Namelist Block SHAKE. The lower limit of
the frequency range is .01 Hz and is specified by OMIN=.01.

The upper limit of 1000 Hz is specified by OMAX=1000. Two
hundred frequency response points are computed by specifying
NSTEP=200. 1In order to compute acceleration frequency response,
specify KIND=2. Force is input at only one coordinate so NAXLE
=1, Since the end mass is associated with coordinate ug (rte
that coordinate numbering is different than in Figure 3-1 due
to the extra constraint coordinate), LAXLE(l)=5. The magnitude
of the force is unity and is entered as FORCO(l)=l. The vector
FORCO is used rather than FORC1 or FORC2 because it is not
desired to multiply by (iR) or (iR)2. Since force is applied
at only one point, phasing is of no concern; therefore PHASE

may be ignored. It is desired to evaluate the frequency re-
sponse of only the end mass, ug, so that NLOOK=1 ani LOOK=S5.

If neither sine response nor random response computations are
desired and the user wishes to plot frequency response, then
IPLOT=1 and NPLOT(l)=5. For notebook size plots (8 inch)

set SIZE=8. The cards comprising Namelist Block SHAKE are
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Card 30: SSHAKE

Card 31: OMIN=.01,0MAX=1000,NSTEP=200,
Card 32: KIND=2,NAXLE=1,LAXLE(1l)=5,
Card 33: FORCO(1)=1,NLOOK=1,LOOK(1)=5,
Card 34: IPLOT=1,NPLOT(1)=5,SIZE=8,
Card 35: S$END

Terminate Execution

Execution is terminated by specifying NTYPE=5 in Namelist Block
START

Card 36: S$START NTYPE=S,$
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- APPENDIX D -

REPORT OF INVENTIONS

In accordance with the patent rights clause of the terms and
conditions of this contract, and after a comprehensive review

of the work performed, it was found that no new inventions,

discoveries, or improvements of inventions were made.
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