EEFERERACE copy

REPORT NO. DOT-TSC-0ST-73-24

THE TRANSPORTATION AIR POLLUTION STUDIES (TAPS) SYSTEM

David S. Prerau
Paul J. Downey

MARCH 1974

INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22159

Prepared for

DEPARTMENT OF TRAWSPORTATION

OFFICE OF THE SECRETARY
Office of the Assistant Secretary for
Systems Development and Technology
Washington DC 20590

e R R RRRRRREREEEEE=S———

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

TECHNICAL REPORT STANDARD TITLE PAGFE

1. Report No. 2. Government Accession No.

DOT-TSC-0ST-73-24

]

3. Recipient’s Cotalog No.

4

4. Title and Subtitle

IHE TRANSPORTATION AIR POLLUTION STUDIES
(TAPS) SYSTEM

5. Report Date

March 1974

6. Performing Organization Code

7. Author's)

David S. Prerau, Paul J. Downey

8. Performing Organization Report No

DOT-TSC-0ST-73-24

9. Performing Orgenization Nome ond Address
Department of ‘Iransportation
Transportation Systems Center
Kendall Square
Cambridge MA 02142

10, Work Unit No.

R-3539/05-322

11. Contract or Grant No.

12. Sponsoring Agency Nome and Address . .
Department of Transportation, Office of the

Secretary,
for Systems Development and Technology
Washington DC 20590

Office of the Assistant Secretary

13. Type of Report ond Period Covered
Interim Report
June 1972 - May 1973

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstroct . .
This report describes the

in association with it.

The TAPS Data Base will be
which are required for the TSC
System is a package of computer

and retrieving data.

both tabular and graphical output.

Users guides for both the storage and retrieval programs of the
TAPS System are included as well as examples of how these programs
The report also contains complete listings for the

might be used.
TAPS System.

Transportation Air Pollution Studies
(TAPS) Data Base and the Software System which has been developed

used to store the transportation air
pollution data (including emissions, meteorological and other data)
model validation program.

programs for storing,
The system also contains routines for analyzing
the performance of dispersion models as well as

The TAPS
manipulating

programs to generate

17. Key Words

Air Pollution, Computer Mode,
TAPS, Information Storage and
Retrieval, Statistical Testing,
Data Base

18, Distribution Stotement

DOCUMENT IS AVAILABLE TO THE PUBLIC .
THROUGH THE NATIONAL TECHNICAL |
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22151,

19. Secunty Classif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified

21. No. of Pages 22. Price

124

Form DOT F 1700.7 (s-69)

Section

1‘
2.

TABLE OF CONTENTS

INTRODUCTION. s oo vt eevnnnn. et et e e e e
THE TAPS DATA BASE. ...t iniiiinrneeenennnnnnn...
2.1 Level I, The Site Level........o0ovevunn....
2.2 Level II, The Case Level.........cvuu.....
2.3 Level III, The Parameter Level............
2.4 Level IV, The Data Level.........cnovon....
2.4.1 Single Number Header...............
2.4.2 Vector HeadeT........ovuveununnnn...
2.4.3 Mixed Vector Header................
2.4.4 Matrix Header: 2-Dimensional......
2.4.5 Column Matrix Header: 2-Dimen.....
2.4.6 Grid Header: 2-Dimensional........
2.4.7 Point Value Header: 2- Dimen......
2.4.8 Matrix Header: 3-Dimensional......
2.4.9 Grid Header: 3-Dimensional........
2.4.10 Point Value Header: 3- Dimen......
2.4.11 Non-Uniform Grid Header:
2-Dimensional........ e st
2.4.12 Non-Uniform Grid Header:
3-Dimensional......oevvenrnnnnn. .
2.5 Site Description.......o.eeevenenn... “e
THE TAPS SYSTEM.......... et s ettt et et et eaee e
3.1 System DesCription.......ee.veeeuenneenn...
3.2 System Implementation................... .
3.3 FORMAN......'iviiinnrnnnnnnnnnnn. ot ceeaan .
3.3.1 Site Creation (NSIT)........ Ceeene
3.3.2 Updating Site (USIT) v nnuennnnn
3.3.3 Creating a New Case (NCAS).evun....
3.3.4 Updating a Case (UCAS) e vvvvnnnn. .
3.4 DARES...iuiiiiiiiiniiinnnnnnnnnn, .
3.4.1 General DARES Format...............
3.4.2 Site and Case Specification
(DARE, END) .o vevrnnnnnnnn. .

Data Retrieval (RET and RETA)

iii

Section

TABLE OF CONTENTS (CONT)

3.4.4 Text Card Copying (CARDCOPY).......
3.4.5 Data Card Creation (CARDDATA,
APNDDATA) . e v v eveneoosossncconons
3.4.6 Text Card Overwriting (CARDOVER
APNDOVER) s e v v v n cesesessassesasens
3.5 SMOG..:.eovonncennn i eeecssaseseenesseaaane
3.6 DIMOTE....cocvononason Certessessessrenanens
USER'S GUIDES. . .ccesssesssssossnsoansossasoccesass
4.1 TFORMAN User's Guide....cvceeveaces Ceeaeaen
4,1.1 FORMAN CommandsS.....scosseosecnonas
4.2 DARES User's Guide.....oevenececaenscancns
4.2.1 DARES CommandS.....cccse chesesaeane
SAMPLE TAPS USAGE. ... c.cvvvoencnnses et serees
5.1 Data Storage Using FORMAN........cco0vveen
5.2 Model Input Preparation Using DARES..... .o
SUMMARY . . eceoceosecancnonssonasns crseesennns .
TAPS PROGRAM LISTINGS........ Cetsecssseeseanans

iv

LIST OF ILLUSTRATIONS

Figure
2-1 Data Base Structure............uuoermumnnunnnnnn..
2-2 Level II Structure.........iuuiviimneemnmenennnn..
2-3 Level Il Example.........uuiiuiinnnnennnnnunnnnn.
2-4 Level III Storage StTUCTUTE.......vvemerrneennnn..
2-5 Highway Site Description..............c.oouruunn...
2-6 Two-Section Highway Site........ooiimunnnnnnnnn..
3-1 The TAPS SystemM.....viuiirniinue e eeeennmnnnnn. .
3-2 Command: Level I Entry for Site 28...............
3-3 An Example of NCAS.ttt
3-4 Sample DARES Command Set...........ouevummununnn...

3-5 Typical Model Program Input Produced by DARES
Command Set of 3-4......

Table
2-1 LEVEL I DATA. ittt ittt e e e e e,
2-2 SAMPLE SITE ENTRY . .. tttiitiitinieeennnn.
2-3 LEVEL II1 DATA. .ttt e e e e i

1. INTRODUCTION

The responsibility of the Department of Transportation to
carefully and systematically consider the environmental effects of
its actions and to aid and guide state and local agencies in this
area has been made clear by recent legislation, including the
National Environmental Policy Act of 1969, the Airport and Airways
Development Act, the Mass Transportation Act, the Federal-Aid High-
way Act, and the Clean Air Amendments of 1970. These Acts, as well
as other legislative mandates, require transportation planners,
technologists, and systems developers to consider the environmental
effects of all transportation-related actions. This necessitates
the development of analytic techniques to determine the environ-
mental impact of transportation systems. A vital part of this is
the development of computer models for the estimation of the dis-
persion of transportation-generated air pollution. There is an
immediate need by the Department of Transportation and by state
and local agencies for such models.

With this end in mind the Transportation Systems Center (TSC)
initiated a program aimed at the constructing and testing of com-
puter dispersion models and the analytic techniques used in such
models.

This program encompassed the following steps:
1. State-of-the-Art

2. Model Acquisition

3. Data Acquisition

4. Computer Systems for Model Testing

5. Data Base Design

In response to a questionnaire sent to developers of computer
model programs for air pollution analysis, a report entitled,
""COMPUTER MODELING OF TRANSPORTATION-GENERATED AIR POLLUTION, A
State-of-the-Art Survey,'" Report No. DOT-TSC-0ST-72-20 by Eugene
M. Darling, Jr., was published in June 1972. This report is

e ——

concerned with the types of computer models available, the pollu-
tants measured, the model input and output, and model validation.
Since then, TSC has taken steps to acquire models as well as data
to validate and test these models. Each model developer has been
invited to submit a copy of his programs to TSC for testing and
validation. The Center expects to acquire a sufficient amount of
data to test computer models under a wide variety of meteorological

and geographic conditions.

The Transportation Air Pollution Studies (TAPS) System has
been designed to test and validate transportation air pollution
models. It consists of a set of software routines (FORMAN, DARES,
SMOG, DIMOTE) and a data base. FORMAN and DARES were written to
allow manipulation of data going into and coming out of the data
base. SMOG and DIMOTE are used in the analysis of the model re-
sults. This report is concerned with the design of the data base

and the use of the TAPS system.

2. THE TAPS DATA BASE

The TAPS Data Base was designed as a standard storage struc-
ture for highway and airport air pollution data. It is from this
data base that air pollution model programs are tested, evaluated
and analyzed.

The acquisition of highway air pollution data is not a simple
undertaking and is by no means inexpensive. Once the site has been
selected, receptors must be strategically positioned for each pol-
lutant to be measured; traffic counts and traffic flows must be
obtained; wind speeds, wind directions and background concentrations
of pollutants must be tabulated. Data gathered at different times
and dates vary greatly and should be treated as separate cases.

The data collected at an airport are similar to the highway data
but much more extensive. Not only are most of the highway-type

data pertinent, but additional data such as time vs. operating mode,
arrivals and departures, runway lengths, heating plant emissions,
and plane type are also required.

The data base must be designed to accommodate all data col-
lected. The data themselves present problems. There obviously
are no standard units or format for air pollution data collection
at either highways or airports. Since the air pollution data may
be received from many different agencies, companies, etc., the in-
tegrity of the data has to be maintained while the units and for-
mat must be easily recognizable.

There are additional factors that must be considered in data
base design. For example, the data base should be designed to
minimize redundancy. Also, since it is to be expected that the
data will, in general, be entered into the data base once but will
be retrieved several times, the data base must be designed to em-
phasize ease of retrieval rather than ease of storage.

With the aforementioned criteria in mind, the Transportation
Air Pollution Studies (TAPS) Data Base was designed. Each data-
set in the Data Base is stored in a standard form, the TAPS Standard

Format. To minimize the redundancy inherent in repeating static
site information for several data-sets measured at the same site,
it was decided that the primary division of the Data Base would be
by the site of data-set measurements. Thus all cases of data-sets
measured on the same site are grouped together. For each case,
i.e. for each data-set, the names and the values of each of the
parameters measured must be indicated. Therefore, in the TAPS Data
Base, it was decided that there would be associated with each case
a set of parameter pointers (one pointer for each parameter that
the data-set might have measured), and each pointer would indicate
where the corresponding data were stored.

Based upon the above design decisions, the TAPS Data Base
was designed as a four-level structure. Level I contains the site
and site description data. Level II contains case pointers. Level
III contains parameter definition pointers for both highways and
airports. Level IV is the actual data. See Figure 2-1 for a gen-
eral view of the four-level structure.

2.1 LEVEL I, THE SITE LEVEL

Level I of the Data Base is defined as the Site Level. The
purpose of this level is to define and describe a location at which
air pollution measurements were taken. This level of the Data Base
can be thought of as a summary level. That is, the data represent
a summation of all cases at this site entered in the data base.

This summary also applies to meteorological conditions and pollu-
tants sampled. A brief description of the data that comprise Level
I is presented in Table 2-1. An example of a Level I entry is shown
in Table 2-2.

2.2 LEVEL II, THE CASE LEVEL

Level II of the Data Base is called the Case Level. This
level contains fixed length records of case pointers (disk pointers)
to Level III and is updated as new cases are entered into the Data
Base. Each site, as it is defined in Level I, is assigned a fixed
length record (50 words) in Level II. As more cases are added for

LEVEL I LEVEL II LEVEL III LEVEL IV
THE SITE LEVEL THE CASE LEVEL THE PARAMETER LEVEL THE DATA LEVEL
¥ OF NEXT FREE NEXT FREE NEXT FREE
SITES BLOCK BLOCK BLOCK
SITE CASE ™ PARAMETER DATA
#1 POINTERS POINTERS
\ ~ | DATA
SITE
42 : PARAMETER DATA
PO%ﬁ%ERS POINTERS
DATA
SITE
#3
PARAMETERS DATA
B POINTERS
CASE
POINTERS DATA
PARAMETERS
POINTERS
DATA
DATA
PARAMETER
POINTERS DATA
DATA
PARAMETER |- \
POINTERS DATA
PARAMETER DATA
POINTERS
CASE DATA
POINTERS
SITE DATA
#N DATA
DATA
DATA

Figure 2-1 Data Base Structure

WORD
WORD

WORD

WORD

WORD

WORD
WORD

WORD
WORD

WORD

An example of a

1
2-9

30
31

32-35

TABLE 2-1 LEVEL I DATA

"UWY" for a highway; "APT" for an airport

32 alphanumeric characters jdentifying the location
of the site.

Wind Speed 0-5 mph
" " 5-10 mph
" " 10-20 mph
" " >20 mph

Stability Class
1" 1}

A
B
" 11 C
D
E
F

Pollutant Indicator: Carbon Monoxide
" " Sulphur Dioxide
" " Particulates
" " Nitrogen Oxides
" " Lead
" " Hydrocarbons (Total)
" " Hydrocarbons (Reactive)
" " Aldehydes

Road or Airport Type
Level II Pointer

Site Description Pointer
Number of Case at Site

Unused

LEVEL I entry can be seen in Figure 2-1.

TABLE 2-2 SAMPLE SITE ENTRY*

1. Hwy
2. 1-93
3. STON
4. EHAM
5. MASS.
6.

7.

8.

9.
10. 6
11. 15
12. 2
13. 0
14. 1
15. 1
16. 6
17. 12
18. 0
19. 3
20. 12
21, 2
22, 7
23. 0
24, 1
25. 0
26. 6
27.
28. 2
29 30571
30. 1172
31. 23
32-25. 0

*All numbers are decimal

this site, the record is filled one word per case. An overflow
word accompanies each record. When overflow occurs, the overflow
word is set with a pointer to the next record where case pointers
are stored for this site. Word 1 of Level II contains a pointer
to the first free record in Level II. This pointer is used when
new sites are added to the data base, or an overflow occurs in
Level II. A general view of Level II is shown in Figure 2.2. An
example of Level II is seen in Figure 2.3.

2.3 LEVEL III, THE PARAMETER LEVEL

Level IIT of the Standard Data Base is referred to as the
parameter Level. The purpose of this level is to indicate the ex-
istence, or non-existence, of specified parameters in each data-set
stored in the Standard Data Base. Three types of parameters are
specified in this level: meteorological, emission, and general.

It was found that these three categories were extensive enough to
classify all input data for air pollution model programs surveyed
by TSC.

For each case, 153 consecutive words is reserved on the disk.
This is divided into three Blocks - one for each parameter type.
Block 1 is for Meteorological data, Block 2 is for Emission data,
and Block 3 contains General data. Each Block can contain up to
50 Items (data definition words), plus an overflow word for record
continuation. A pointer to Block 1 is stored is Level II.

Note that only disk address pointers are stored in Level III,
not actual input data. Associated with each Item in each of the
three Blocks is a data definition, If that particular type of data
is defined for this case, a pointer is stored in that word. The
pointer indicates the address where the data can be found on Level
IV. Since air pollution model programs designed for airports
require different inputs than roadway model programs, Level III
definitions will vary, depending on whether a case pertains to
a roadway or an airport site. The storage method and linking
concept will be exactly the same. Table 2-3 lists sample Level
III entries and Figure 2.4 shows the Level III storage structure.

RECORD POINTER

RECORD 1

T T e e e —— e]

ONTINUATION POINTER

RECORD 2

T e e —— e —]

CONTINUATION POINTER

RECORD 3

T e e — — e e

CONTINUATION POINTER

Figure 2-2 Level II Structure

e

e —— e —

17251

RECORD 1

POINTER

1111
20516
3077

RECORD 2

L e — e — — e =

RECORD 3

L - — . — —— ——

RECORD 20

Figure 2-3 Level II Example

10

10.
11.
12.
13.

14,

15.
16.
17.
18.
19,
20.
21.
22.

TABLE 2-3-a LEVEL III - EMISSION BLOCK, HIGHWAY

Source strength

Ground level concentration

Vehicle speed

Type of vehicle

Average number of vehicles of each type per period
Number of cars

Estimated traffic diurnal variation

Percentage of traffic in grid

Roadway and background surface fluxes

Average emission rate

Emission rate/unit area

Grid description

Emission by grid block

Exhaust initial conditions: velocity

Exhaust initial conditions: temperature

Exhaust initial conditions: pollutants

Correction for cold start factors

Distribution of freeway and surface street mileage
Temporal distribution for freeway and surface streets
Rate of emission of species from elevated sources
Correction for variations of emission rates with auto speed

Rate of production of species through chemical reaction

23-50. Currently blank

11

e ———

TABLE 2-3-b LEVEL III - EMISSION BLOCK, AIRPORT

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

Number of sources

Source locations

Source extensions

Source heights

Source emission rates

Source emission time schedule
Diameter of source

Time coordinates of source
Emission factors for aircraft class
Emission factors for modes of operation
Emission factors for surroundings
Emission factors for heating fuels
Emission factors for fuel storage areas
Emission rate per unit area

Heat capacity

Vertical velocity

Ground level concentration
Crosswind distance from source
Alongside distance from:source

Grid description

Distance travelled in grid
Emission by grid block

Aircraft speed

Aircraft mix

Number of aircraft in time period

12

TABLE 2-3-b LEVEL III - EMISSION BLOCK, AIRPORT (CONTINUED)

26. Aircraft arrival and departure

27. Volume flux for each species of pollution

28. Pollutant emission flux for point source

29. Background surface fluxes

30. Exhaust initial conditions: velocity

31. Exhaust initial conditions: temperature

32. Exhaust initial conditions: pollutants

33. Rate of production of species thru chemical reaction

34-50. Currently blank

13

e — ——

e ——————————————— e

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

TABLE 2-3-c LEVEL IIT - METEOROLOGICAL BLOCK, HIGHWAY

Cloud cover

Cloud fraction

Cloud turbulence intensity
Cloud albedo

Stack height

Ceiling height

Inversion height

Mixing height

Distance of mixing height
Diffusion coefficient

Downwind diffusion coefficient
Crosswind diffusion coefficient
Vertical eddy diffusivity
Horizontal eddy diffusivity
Turbulence intensity

Cloud turbulence intensity
Stability class

Plume constant

Richardson's number

Radiosonde data pair

Ambient air temperature

Temperature differences for sea and lak

Average Rural temperatures
Average temperature lapse rate
Temperatures

Air pressure

14

e breeze effects.

TABLE 2-3-c LEVEL III - METEOROLOGICAL BLOCK, HIGHWAY (CONTINUED)

27. Average rural pressure

28. Atmospheric surface pressure
29. Relative humidity

30. Dew Point

31. Sun elevation

32. Solar radiation

33. Mean wind direction

34. Wind variability

35. Wind speed

36. Wind vectors

37. Horizontal winds

38. Wind class frequency

39. Wind variation with altitude
40. Wind shear

41. Wind rose

42-50. Currently blank

15

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

TABLE 2-3-d LEVEL III - METEOROLOGICAL BLOCK, AIRPORT

Cloud cover

Cloud fraction

Cloud turbulence intensity
Cloud albedo

Stack height

Ceiling height

Inversion height

Mixing height

Distance of mixing height
Diffusion coefficient

Downwind diffusion coefficient
Crosswind diffusion coefficient
Vertical eddy diffusivity
Horizontal eddy diffusivity
Turbulence intensity

Cloud turbulence intensity
Stability class

Plume constant

Richardson's number

Radiosonde data pair

Ambient air temperature

Temperature differences for sea and lake breeze effects.

Average rural temperatures
Average temperature lapse rate
Temperatures

Air pressure

16

TABLE 2-3-d LEVEL III - METEOROLOGICAL BLOCK, AIRPORT (CONTINUED)

27. Average rural pressure

28. Atmospheric surface pressure
29. Relative humidity

30. Dew point

31. Sun elevation

32, Solar radiation

33. Mean wind direction

34. Wind variability

35. Wind speed

36. Wind vectors

37. Horizontal winds

38. Wind class frequency

39. Wind variation with altitude
40. Wind shear

41. Wind rose

42-50. Currently blank

17

1.

10.
11.
1z,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

TABLE 2-3-e LEVEL III - GENERAL BLOCK

Road elevation

Road cross-section

Road orientation

Receptor coordinates

Receptor calibration factors
Receptor background concentrations
Chemical rate constants

Half-1ife of pollutants in atmosphere
Reaction rate for each mass species
Vegetation absorption coefficient
Diurnal scaling factor

Seasonal scaling factor

Day

Month

Year

Sampling interval

Accuracy of solution

Number of point sources

Type of model

City information

Traffic code

Terrain

Topographic grid height

Isopleth concentration desired
Ground boundary conditions

Starting time

18

TABLE 2-3-e LEVEL III - GENERAL BLOCK (CONTINUED)

27. Ending time

28-50. Currently blank

19

POINTER TO NEXT
AVAILABLE RECORD

UP TO 50 EMISSION POINTERS
TO LEVEL IV DATA

OVERFLOW POINTER

UP TO 50 METEROLOGICAL SITE 1
POINTERS TO LLVEL IV DATA CASE 1

OVERFLOW POINTER

UP TO 50 GENERAL
INPUT POINTERS TO
LEVEL IV DATA

OVERFLOW POINTER J

EMISSION POINTERS

> SITE 1

METEOROLOGICAL POINTERS CASE J

GENERAL POINTERS

Figure 2-4 Level III Storage Structure

20

2.4 LEVEL IV, THE DATA LEVEL

Level IV of the data base is defined as the Data Level. It
is on this level of the four level structure that the actual data
are stored. All data are stored as floating point numbers.

Before describing the storage structure and defining the
type of data stored, a brief comment on the input data themselves
may be in order. As far as can be ascertained, no two air pollu-
tion model programs use the same input data.

Furthermore, not only do models use different types of input
data, but they also generally require different units for the in-
put that they have in common. For example, for pollutant concen-
tration, one model may use parts per million (ppm); another, grams
per cubic meter; and still another, tons. Each unit will be desig-
nated in the Data Base by a specific integer which will be called
the Units Number. There will be a Units Number stored in the Data
Base corresponding to each stored data value or set of values.

Another problem is the form in which data are accumulated.
One data collector may record traffic by the number of cars per
hour, another by cars per lane, another by cars per direction, etc.
Each form will be designated in the Data Base by a specific integer
which will be called the Form Number. There will be a Form Number
stored in the Data Base corresponding to each stored data value or
set of values. The "usual" form of each type of data will be desig-

nated as Form No. 0.

In order to handle these two problems (i.e., the units and the
form of the data), Level IV had to be made flexible while at the
same time maintaining the integrity of the data.

In order to achieve these characteristics, a set of data
headers was designed to precede each data entry in Level IV. The
following header types were found to adequately handle the present
data requirements:

SINGLE NUMBER
VECTOR
MIXED VECTOR

21

MATRIX - 2-DIMENSIONAL

COLUMN MATRIX - 2 DIMENSIONAL
GRID - 2 DIMENSIONAL

POINT VALUES - 2 DIMENSIONAL
MATRIX - 3 DIMENSIONAL

GRID - 3 DIMENSIONAL
POINT VALUES - 3 DIMENSIONAL

NON-UNIFORM GRID - 2 DIMENSIONAL
NON-UNIFORM GRID - 3 DIMENSIONAL

By use of these data headers, data manipulation programs will be
able to convert data from their stored form and units to the form
and units needed by an air pollution model porgram. In this way
one data set can be tested on several models. The data headers

are discussed in detail below.

2.4.1 Single Number Header

This header has the following form:
S

FORM NO.

UNITS NO.

VALUE

The character '"S'" signifies that the value stored is a single num-
ber. The second word is the form number. The third word is the

units number. The fourth word contains the value itself.

EXAMPLE:

10
4534 .2

22

The number 4534.2 is stored in form number 2 (e.g., 8 lane traffic
average) and units 10 (e.g., vehicles per hour)

2.4.2 Vector Header

This header has the following form:

\'
FORM NO.

UNITS NO.

NO. OF ELEMENTS
VALUE
VALUE
VALUE

1
2
3
VALUEn

The character "V" signifies that the data is stored in a vector.
The second word is the form number; the third word, the units num-
ber, the fourth word contains a count of the number of values in
the vector; the next n words contain the values themselves.

EXAMPLE:

2500
1500
1700
1200
3000
2500
2100

2000
23

Eight values for cars per hour per lane are stored in this vector.
The second word is a 1 indicating this form. The third word is a
zero meaning, the data is dimensionless. The fourth word is 8,
indicating the length of the vector.

2.4.3 Mixed Vector Header

This header has the following form:
VM

FORM NO.

NO. OF ELEMENTS

UNITS1

UNITS2

UNITS3

UNITSn

VALUE1

VALUE2

VALUE3

VALUE
n

The characters "VM" signify that the data stored are a mixed vec-
tor (mixed in the sense that several different units have been used);
the second word contains the form; the third word, the number of
elements; the next n words contain the units for the succeeding n

words, which are the n values.

EXAMPLE:

24

1
1

1
16

40
19
10
35
50

A mixed vector of 0 form is six words in length. The next six
words are the units (1,2,2,1,1,1) for the last six values.

2.4.4 Matrix Header: 2-Dimensional

This header has the following form:
M2

FORM NO.

UNITS NO.

NO. OF ROWS

NO. OF COLS.

VALUE 1,1

VALUE 2,1

VALUE N,M

The second and third words contain the form number and units, re-
spectively; the fourth and fifth words contain the number of rows
and number of columns in the matrix; the next N x M words contain
the data.

25

EXAMPLE:

M2

10.6
50.0
22,5
30.
17.
34.0
25.7
26.8
19.0
6.1

A 2 dimensional matrix is stored with 0 form and a unit number 3

(e.g., parts per cubic centimeter); the matrix a 4 x 3.
12 words are the values.

2.4.5 Column Matrix Header: 2-Dimensional

This header has the following form:

c2
FORM NO.
NO. OF ROWS

NO. OF COLS.

UNITS FOR COL1

26

The 1last

UNITS FOR COL2

UNITS FOR COL3

UNITS FOR COL_
VALUE 1,1
VALUE 2,1
VALUE 3,1

VALUE N,M

The characters "C2" signify that the data stored are a column
matrix; the second word is the form; words three and four indicate
the number of rows and columns; the next m words indicate the units
for each column in the matrix; the next N x M words are values of
the matrix elements.

EXAMPLE:
Cc2

7.4
27

10.9

1000.7
1021.0

51.1
106.2
75.1
54.7
2000.480
3126.721

A column matrix is stored with 0 form. The matrix is two rows by
five columns. The units for each column are the next five words
(1,2,4,5,3). The last ten words are the ten matrix values.

2.4.6 Grid Header: 2-Dimensional

This header has the following form:
G2

FORM NO.

UNITS FOR X and Y

NO. OF X's

NO. OF Y's

DELTA X

DELTA Y

Xo

Yo

NO. OF VALUES PER POINT

UNITS

1
UNITS2

28

UNITS,
VALUE (1,1);
VALUE (1,1),
VALUE (1,1),

VALUE (1,1)y
VALUE (2,1)

The characters ''G2" indicate that these data are stored in a 2-
dimensional grid; the second word contains the form number; the
third word, the units number for the X's and Y's; the fourth and
fifth words contain the number of X's and Y's; delta X and delta Y
are the grid increments; Xo, and Y, are the initial X and Y; the
next word contains the number of values stored at each point in
the grid; the next n words contain the units for each value re-
corded at the point; finally, the data values recorded at each

point in the grid are entered.
EXAMPLE:
G2

29

20
10

12
14
10
17
50

12
20
22
20
14
13
12
18
25

30

27
20
19
18

A 2-dimensional grid of form 0 is stored with X and Y units of
type 2. This will be a 2 x 4 grid with a delta X and delta Y of
2. The initial X will be 20 and the initial Y will be 10. There
are three values stored for each grid point. The units for these
three values are 1,3,2. The next 24 numbers are values

recorded at each grid point.

2.4.7 Point Value Header: 2-Dimensional

This header has the following form:
P2

FORM NO.

UNITS FOR X AND Y

NO. OF POINTS

NO. OF VALUES/PT.

UNITS,

UNITS,

VALUE, (D)
VALUE2 (1)

31

VALUE; (2)
, (2)

VALUEy (2)

VALUE, (M)

The characters '"P2'" indicate that the data are stored by a point
value method; next are the form number and the type of units for

X and Y; the following two words contain the number of points (X,Y)
and the number of values recorded at each point; the next n words
contain the units for each of the recorded values; then come X and
Y, followed by the n values recorded at this point. Then, the X
and Y for the next point are followed by its values, and so on.

EXAMPLE :
P2

32

50.7
14.3

7.5
52.6
14.1
20.2
17.5

9.6
35.7
15.4
30.1
17.9
12.1
35.9
14.9
17.1
16.2
20.1
30.1
15.6

A point value array of form 0 is shown with units of type 1 for X
and Y. There are 4 points and there are 3 point values stored for
each point. The units for each of the 3 point values are 1,3,2.
The next 2 words are the X and Y values followed by the 3 corre-
sponding point values. Each of the remaining 3 points is followed
by its associated point values.

33

2.4.8 Matrix Header: 3-Dimensional

This header has the following form:
M3

FORM NO.

UNITS NO.

NO. OF ROWS

NO. OF COLS.

NO. OF LEVELS

VALUE 1,1,1

VALUE 2,1,1

VALUE L,M,N

The characters '"M3" indicate that the data stored is a 3-dimen-
sional matrix. The form and units numbers are the second and third
words; the next 3 words are the number of rows, columns, and levels
(or third dimension) of the matrix; the following (L x M x N) words
are the elements of the matrix.

EXAMPLE:
M3
0
12

100.71
71.5

34

12.6
200.5
17.7
16.2
51.0
19.7
43.2
37.5
22.3
11.6
300.2
66.7

151.2
77.6
81.5
55.5

250.1

220.6

130.6
75.0

A 3-dimensional matrix of form 0 and units 12 is stored in this
array. The matrix has the dimensions 4 x 2 x 3. The last 24 words
contain the elements of the matrix.

35

2.4.9 Grid Header: 3-Dimensional

This header has the following form:
G3
FORM NO.

UNITS FOR X,Y,Z

NO. OF X's
NO. OF Y's
NO. OF Z's
DELTA X
DELTA Y
DELTA Z

X

0
Y

o

yA

NO. OF VALUES PER PT.
UNITS OF VALUE;

UNITS OF VALUE2

UNITS OF VALUE,
VALUE (1,1,1),

VALUE (1,1,1)2

VALUE (1,1,1)
VALUE (2,1,1),

36

VALUE (Nx, Ny, Nz)N

This header is similar to the 2-dimensional grid header discussed
in Section 2.4.6

EXAMPLE:
G3

.05

10.0
15.0
10.0

10
12
50.0
17.5
101.6
90.0

45.1

30.2 37

63.7

18.2
10.5
70.6
51.5
6
12.4
112.4
44 .4
89.7
91.2
175.0
160.2
29.1
22.7

90.4

A 3-dimensional grid contains data with a form 0 and units of type
6 for X,Y, and Z. The grid is 3 x 2 x 2 with delta X, delta Y, and
delta Z of .05, 1.0, and 0.5 respectively. The initial X,Y and Z
are 10.0, 15.0, and 10.0. There are 2 stored values per point.
These unit types are 10 and 12 respectively. The last 24 words are
the data elements recorded.

2.4.10 Point Value Header: 3-Dimensional

This header has the following form:
P3
FORM NO.

UNIT FOR X,Y,Z

38

NO. OF POINTS
NO. OF VALUES PER POINT

UNITSl

UNITS2

VALUE 1 (1)
VALUE 2 (1)

VALUE N (1)

VALUE 1 (2)

VALUE N (2)

39

The characters "P3" indicate that a 3-dimensional point value array
is stored; next are the form number and units number; the follow-
ing words contain the number of points and the number of recorded
values per point respectively. The next n words contain the units
for their associated recorded values. Then each X,Y and Z point

is followed by its n values.

EXAMPLE :

P3

10.4

42.6
100.7
74.6
85.9
15.7
25.9
13.1
74.1
17.2

40

114.
74,
48,
14,
14,
24,
34,

122,
98.

111,

24

34,

.1

1

A point value array

is stored with form 0 and units type 5. There

are four points and three recorded values per point. The units for

the three recorded values are 10, 2, and 6. Following each of the

point coordinates are the three recorded values at this point.

2.4.11 Non-Uniform Grid Header: 2-Dimensional

This header has the following form:

N2
FORM NO.

NO. OF GRIDS

POINTER TO GRID 1

POINTER TO GRID 2

POINTER TO GRID N

41

The characters "N2" indicate that the data stored is a non-uniform
grid of two dimensions; the second and third words contain the form
number; the next n words are pointers to disk addresses where a
2-dimensional grid is stored. See Section 2.4.6 for an explanation
of 2-dimensional grids.

EXAMPLE :

N2

0

6

10157

20635

1045

35627

47025

21772

A non-uniform grid of 2-dimensions is stored in an array of form 0.
There are 6 two-dimensional uniform grids that comprise the non-
uniform grid. The next six words contain the disk addresses where
these grids are stored.

2.4,12 Non-Uniform Grid Header: 3-Dimensional

This header has the following form:
N3

FORM NO.

NO. OF GRIDS

POINTER TO GRID 1

POINTER TO GRID 2

42

POINTER TO GRID N

The characters '"N3" indicate that a non-uniform 3-dimensional grid
is stored in this array; the next word contains the form number;
then comes the number of grids; finally there is a pointer corre-
sponding to the disk address of each component uniform grid. See
Section 2.4.9 for an explanation of 3-dimensional grids.

EXAMPLE:

N3
0
5
21507

4507
75066
33244
41257

A non-uniform grid of three-dimensions is stored in an array of
form 0. There are five 3-dimensional grids that comprise the non-
uniform grid. The next five words contain the disk addresses where
these grids are stored.

2.5 SITE DESCRIPTION

In Level I there exists a pointer to the site description.
This description applies both to the physical structure where the
air pollution sampling was performed and also to the location of
the receptors used in the sampling. The description is defined
initially when the site is created. If another portion of this
site is later entered or if new receptors are added to measure pol-
lution concentrations, the information may be easily added later
(see FORMAN).

For example, Figure 2.5 lists the elements that comprise the
highway site description form number and units are as previously
defined in 2.4. Number of sections indicates the number of highway

43

sections where data sampling has been done. The number of recep-
tors is similarly defined. Next come the end points of the first
section. The next three words are the number of lanes, the high-
way width, and the center strip width. The road type (at-grade,
cut, fill, or viaduct) followed by its parameters (if any) are next.
Words 5-14 are repeated for each section as needed. Finally, the
receptor coordinates are entered. Figure 2.6 shows an example of

a two section highway site.

44

WORD 1 FORM NO.

2 UNITS
3 NUMBER OF SECTIONS
4 NUMBER OF RECEPTORS
5 1ST END POINT X
6 1ST END POINT Y
7 2ND END POINT X
8 2ND END POINT Y
9 NUMBER OF LANES
10 HIGHWAY WIDTH
11 CENTER STRIP WIDTH
%12 ROAD TYPE
%13 ROAD TYPE PARAMETER 1
%14 ROAD TYPE PARAMETER 2
15 X1
16 X1
17 71
18 X2
19 Y2
20 72
XN
YN
N
* ROAD TYPE AT GRADE CUT FILL VIADUCT
T3 0 WIDTH OF CUT HETGHT OF FILL HEICHT OF ROAD
14 0 DEPTH OF CUT 0 0

Figure 2-5 Highway Site Description

45

WORD 1 0
2 3
3 2
4 5
5 0.0
6 500.0
7 0
8 -500.0
9 8
10 140.0
11 30.0
12 1
13 0
14 0
15 0.0
16 500.0
17 0.0
18 1000.00
19 4
20 105.0
21 12.0
22 1
23 0
24 0
25 80.0
26 -200.0
27 1.0
28 80.0
29 100.0
30 1.0
31 80.0
32 300.0
33 1.0
34 80.0
35 600.0
36 1.0
37 80.0
38 900.0
39 1.0

Figure 2-6. Two-Section Highway Site

46

3, THE TAPS SYSTEM

The Transportation Air Pollution Studies (TAPS) System is a
set of computer routines which allows transportation-source air pol-
lution data to be stored in the TAPS Data Base and then used to
validate and evaluate transportation-source air pollution disper-
sion models. Specifically, the TAPS System allows (1) data to be
stored in the TAPS Data Base, and retrieved from it, (2) disper-
sion model programs to be run using the retrieved data as input,
and (3) the resulting output of the model program to be compared
with measured values and with the results of other model programs
to produce an evaluation of the model.

3.1 SYSTEM DESCRIPTION

The TAPS System consists of four parts: FORMAN (The FORmat
MANipulator), DARES (The DAta REtrieval System), SMOG (The Stand-
ard Model Output Generator), and DIMOTE (The DIspersion MOdel
TEster). Briefly, FORMAN stores incoming data in the TAPS Data
Base; DARES retrieves data from the TAPS Data Base in a form
acceptable as input to the model program being evaluated; SMOG
transforms the model program's output to a standard form; and
DIMOTE evaluates the model, using a variety of statistical tests
to compare the program's output with the results obtained by other
model programs and also with the measured values.

The use of the TAPS System is illustrated in Figure 3-1.
Its operation is as follows:

a. Incoming Data-Set

For each new transportation-source air pollution data-
set received:

1. A set of FORMAN commands is written.

2. The FORMAN Processor uses the FORMAN commands and the
new data-set as input, and inserts the data-set into
the TAPS Data Base in standard form.

47

[INCOMING —
FORMAN
DATA-SET (- PROCESSOR

i FORMAN &=
L COMMANDS
DLSCRIBING
DATA-SET

DATA-SET IN
TAPS STANDARD FORM

TAPS
DATA
BASE MEASURED
VALUTS §
OUTPUTS OF
OTHER MODELS
TEST-DATA
DARES
DARES PROCESSOR
COMMANDS g
: DESCRIBING
f INPUT FORM T
MODEL PROGRAM|__ __| TEST-DATA IN
TO BE FORM FOR MODEL INPUT
TESTED
i
[MODEL
| RUN
|
: I
MODEL
| OUT;UT
' SMOG CALL
| DESCRIBING
L OUTPUT FORM
OF MODEL SMOG
]
MODEL OUTPUT IN
STANDARD FORM

SELECTED
DIMOTE
OPTIONS

DIMOTE

MODEL

EVALUATION

Figure 3-1 The TAPS System

48

Incoming Model Programs

For each new transportation-source air pollution disper-
sion model program received:

1. A set of DARES commands is written corresponding to
the program's inputs.

2. A set of SMOG commands is written corresponding to
the model program's output format.

Model Testing

To test a given model program using a selected data-
set from the TAPS Data Base:

1. The DARES Processor is run using the model's DARES
commands as input. It retrieves from the TAPS
Data Base a set of test data (from the selected data-
set) which is in the proper form for input to the
model program.

2. The model is run using the test data produced by the
DARES Processor as input.

3. The SMOG Routine is run using the model's SMOG
commands as input. It converts the model program's
output to a standard output form.

4. Selected DIMOTE Routines are run using the standard
output produced by the SMOG Routine as input.
DIMOTE compares the tested model's output with the
values that were measured and with the outputs pre-
viously produced by other models for the same input
data-set. A variety of statistical tests are em-
ployed.

5. Based on the results of the statistical tests, DIMOTE
produces a set of graphs and tables which provide an
evaluation of the model and a comparison with other
models.

49

3.2 SYSTEM IMPLEMENTATION

The TAPS Data Base is disk-oriented, and thus a third-
generation computer system should be used for the implementation
of the TAPS System programs. Since most models to be tested
were written in FORTRAN IV for the IBM 360 or 370 computers, it
was decided to implement the TAPS System on an IBM 360/75, using
FORTRAN IV. This allows the power of disk storage to be used by
TAPS and also keeps to a minimum the task of converting models
from one computer system to another. The listings of the TAPS
System program are found in Chapter 7.

The individual TAPS routines are discussed in detail below.

3.3 FORMAN

The element of the TAPS System that deals with incoming data
is the FORmat MANipulator, FORMAN. FORMAN's function is to take
any data-set which has been acquired by the Transportation Systems
Center, convert it into TAPS Standard Format, and store it in the
TAPS Data Base.

The Center is receiving highway and airport air pollution
data-sets from many sources. In most cases the data-sets were
originally acquired for use in other projects and therefore are
received in various formats which are tailored to the original
application. Also, various media may be used to transmit the data
to TSC, e.g., punch cards, magnetic tape, computer printouts, or
even handwritten lists. FORMAN allows the user to conveniently
extract the data-set from the medium in which it is received (in
whatever format it is received) and store it in TAPS Standard
Format in the Data Base. The process of converting the data-set
from an arbitrary input form to the TAPS Standard Format is accom-
plished by the FORMAN Processor. A set of FORMAN Commands is
written for each incoming data-set which describes the format of
the data-set in terms of the TAPS Standard Format. This set of
commands is input to the FORMAN Processor along with the data-set.
The FORMAN Processor reads the Commands and enters the data-set
into the TAPS Data Base in TAPS Standard Format as directed by
the Commands.

50

By means of these Commands, the FORMAN Processor can:
a, Create a new Site entry in Level 1I.
b. Update a Site entry.

c. Create, for an already existing Site entry, a new Case
entry in Level II and associated Parameter and Data
entries in Levels III and IV,

d. Update an already existing case by adding or modifying
its parameter and Data entries.

Some examples of FORMAN Commands will now be discussed. A
complete description of FORMAN Commands is given in Section 4.1,
the FORMAN User's Guide.

3.3.1 Site Creation (NSIT)

Creating a new Site entry is accomplished by a FORMAN '"NSIT"
command. The FORMAN Commands order is as follows:

a. The 'NSIT' instruction.
b. Two instructions containing data for the Site entry.

c. A set of instructions, each with one number, specifying
the site description.

For example, the command shown in Figure 3-2. will create
a Level I entry for Site 28. The 'HWY' on instruction 2 indicates
that the site is a highway and this is followed by a field of up
to 32 alphanumeric characters which identify the site. This is
followed by four numbers indicating the breakdown of the cases by
wind speed class (e.g., 3 cases of calm, 7 cases of low wind, etc.),
and then by six numbers indicating the number of cases of each
stability class (e.g., 0 cases of stability A, 6 cases of stability
B, etc.)

The third instruction has the number of cases that measure
each of eight pollutants (here all 41 cases measure only carbon
monoxide). The "1" on the third card indicates an at-grade road,
and the '"46" is the number of cards in the site description. The
cards following give details of the site description in the format

51

NSIT 28
HWY RTE 4, PRERAU FREEWAY, DOWNEY CALIF 3 7 22 9 0 6 18 11 51

41 0 0 0 O 0O O 0 1 46

bt
o
(=]

Q1O 1 OO0 OO0 1 OO 1 OOOOoOO

Figure 3-2 Command: Level I Entry for Site 28

52

described in Section 2.1. This is an 8-lane, at-grade, east-west
highway with 11 receptors placed 100 feet (assuming Units No. 13
is '""feet") apart perpendicular to the highway. NSIT will print an
error message if the new site being created is to have the same
number as an already existing site.

3.3.2 Updating Site (USIT)

The USIT Command will update a Level I Site entry. This
allows a previously existing site entry to be partially changed,
bypassing the error indication that would result if the NSIT
Command was used. The use of the USIT Command will be similar to
the NSIT Command as shown in Figure 3.2. USIT will be needed, for
example, if a new case added to a site uses a receptor that had
not previously been entered in the site description. This recep-
tor will be added to the site description using the USIT Command.

3.3.3 Creating a New Case (NCAS)

The NCAS Command will create a new Case (with its associated
Parameter pointer and Data) for a previously created Site. To use
the NCAS Command, the order of the FORMAN input is as follows:

a. The 'NCAS' instruction.
b. A set of data cards from which the data will be extracted.
c. A 'FORMAN' instruction.

d. A set of Insert instructions indicating which data to
extract from the data cards, and where to place them in
the TAPS Data Base.

e. A Header instruction after each Insert instruction that
references a Parameter (by Block and Item number) for
the first time.

An example of the creation of a new case is shown in Figure
3-3. This NCAS command creates a new case (numbered Case 63) for
Site 28.

53

CARD NO. INSTRUCTION

1. NCAS 28 63
2. (X=14.75 29.84 75.6
3 = /3 14 3 29 1150 10* 3.0
<
4. 2)35.0 45.0 42.5 51.0 70.0 60.7
5. (35.0 33.1 17 38
6. _FORMAN
7. ®» [3 7 1* 1 1 1 (8X,F5.2)
(@]
8. = 3 5
=
9. = |2 21 1 1 1 1 (14X,F4.1)
=
10. Z < 0 25
11. E 2 17 1% 1 1 1 (11)
12. 2 112 9
—
13. 1 3 2 6 1 8 (6(F4.1,2X))
14. 3 17 8

Figure 3-3 An Example of NCAS

54

Following the data and the 'FORMAN' instruction are the
Insert instructions. Consider the instruction cards 9 and 10:

2 21 1 1 1 1 (14X,F4.1)
0 25

The "2 21" on card 9 indicates that these insertions will
£ill Block 2, Entry 21 (ambient air temperature) of Level III (of
Site 28, Case 63) with data which are specified by the rest of
card 9 and by card 10. The first "1" indicates that header 1
(Single Number) should be used. The next three 1's indicate the
one value is being read and thus the first and last subscript is
1. The "(14X,F4.1)" indicates that the value is to be found on the
data card (in this instance, card 2) by skipping 14 spaces and
reading a number of FORTRAN Format notation F4.1 (thus 75.6 is
read). The "0 25" on the card 10 indicates that the data are
being stored in Form No. 0 (standard form) and the units are
Units No. 25 (degrees Fahrenheit, for example). Thus, the final
result is that for Site 28 Case 63, there is a pointer in Level III
at Block 2, Entry 21 which points to a Level IV entry. The
Level IV entry has a Single Number Header, and contains the number
75.6 which is in Form No. 0, Units No. 25.

As another example, consider the last pair of Insert Instruc-
tions in Figure 3-3, on cards 13 and 14:

1 3 2 6 1 8 (6(F4.1,2X))
3 17 8

These insertions will fill block 1, Entry 3 (vehicle speed)
with data using header 2 (Vector). The "*" means that data are
read starting from the next data card (here the third data card,
card 4). There are 6 data entries per card and the input is to be
subscripted in the vector from 1 to 8 (thus two values must be
read from the succeeding data card). The card format is (6(F4.1,2X)).
Form No. 3 (speed by lane, say) and Units No. 17 (miles per hour,
say) are used, and there are a total of 8 entries in the vector.

55

3.3.4 Updating a Case (UCAS)

The UCAS Command will update the Level III and Level IV entries
for a specified case. This updating allows new data to be added
to the previously created case. UCAS would be used, for example,
if data for a specific case were to be found throughout the large
data-set. NCAS would be used the first time the data for the case
appeared, and UCAS would be used thereafter. The usage of UCAS
is similar to that of NCAS as shown in Figure 3-3.

3.4 DARES

Data are retrieved from the TAPS Data Base by the DAta REtrie-
val System, DARES. The function of DARES is to retrieve the data
of an air pollution data-set chosen from the Data Base and to pre-
pare these data in a format which can be directly accepted as in-
put by a given air pollution dispersion model being tested.

Since TSC will test each model program obtained using several
of the data-sets stored in the TAPS Data Base, a method is needed
to allow a model to be run using as input the data of any given
data-set in the Data Base. Two alternative methods can be consider-
ed. The first would be to change each model's input commands so
that the model program could read directly from the TAPS Data Base.
The second would be to retrieve the data from the TAPS Data Base
and construct, prior to the running of the model, a set of card
images in the input format expected by the model program. This
latter alternative was chosen for DARES for three reasons: (1) it
is desirable to alter the model program being tested as little as
possible, (2) a more accurate evaluation of the computer time used
by the model can be found if all input retrievals are performed
prior to model run, and (3) error conditions resulting from the
lack of a match between the data requirements of the model and the
data stored in the chosen data-set can be more easily handled util-
izing software fixes or error message printouts.

56

The process of retrieving desired data from a chosen data-
set in the TAPS Data Base and forming them into card images accept-
able to the tested model program is accomplished by the DARES
Processor. For each model program to be tested, a set of DARES
Commands is written describing the expected input cards to the pro-
gram. The DARES Commands describe the data which must be retrieved
from the TAPS Data Base in terms of the standard position where
such data is stored in the Data Base. In addition, the Commands
indicate the position where such data should be placed on a card
image and what other information should be included to form the
card image in the format the program expects.

3.4.1 General DARES Format

The format of the input to the DARES Processor is as follows:
a. A set of Text Cards
b. A set of DARES Commands.

The Text Cards are a set of alphanumeric cards (or card-
images) which contain all the information which should appear on
the model program's input cards, except for the data to be re-
trieved. This includes such things as program titles, alphanumeric
descriptions, and names of variables or vectors where the retrieved
data will be stored by the model program. This information should
be correctly formatted, with blanks or arbitrary symbols occupying
the areas on the cards where the retrieved data should be placed.
DARES can retrieve the data from the Data Base, and produce cards
(or card-images) which overwrite the data in the correct fields of
the Text Cards. DARES can also copy certain Text Cards directly,
and create cards which have only data on them.

The use of the overwriting feature of DARES is especially
convenient when a model program comes with a sample input deck.
The sample input deck can be used as the Text Cards (since this
deck is in correct form for input to the model program), and the
data values for the Site and Case being used for model testing can
be written over the sample input values on the deck. The use of

57

Text Cards also allows the values of any specified variables in the
model program to be set by the DARES user, and not read from the
Data Base.

The various DARES Commands allow the DARES Processor to:

a. Specify the Site and Case from which the data is to be

retrieved.

b. Retrieve specified TAPS Data Base data and place them in
a Data Buffer.

c. Create a model program input by copying a Text Card.
d. Create a model program input card from retrieved data.

e. Create a model program input card by overwriting data
on a copy of a Text Card.

An example of a DARES Command set as input to the DARES Pro-
cessor is shown in Figure 3.4. A typical set of model program in-
put cards produced by the DARES Processor using this Command set
is shown in Figure 3.5. This example will be discussed in the
following sections to illustrate DARES. A complete description of
DARES is given in Section 4.2, the DARES User's Guide.

3.4.2 Site and Case Specification (DARE, END)

Following the set of Text Cards, a DARE Command indicates the
beginning of the DARES Commands. The "DARE" card is followed by a
card which indicates from which Site and Case in the TAPS Data Base
the data will be retrieved. 1In the example in Figure 3.4, the DARE
Command indicates that the first five cards are Text Cards, and
that the data will be retrieved from Site 13, Case 37.

An END Command indicates the end of DARES Commands for the
specified Site and Case. If data from a second Site and Case were
to be retrieved, a DARE Command would follow the first END Command,

and another Site and Case would be indicated.

Note that any Text Cards are allowable until the first DARE
Command is read by the DARES Processor. Thus the "END" on the
fifth card is interpreted as a Text Card, and not a DARES END
Command.

58

Text Cards

DARES Commands

LOGAN INTERNATIONAL AIRPORT

BOSTON
H:

J=14

END

DARE

13 37
CARDCOPY
CARDCOPY
RET 2 8
RETA1 1
RETAZ 35

RET 1 42

CARDCOPY
CARDCOPY
_END

Figure 3-4

N= RH=17.631 EM=
0 12 2 1 1
0 00 1 1

CARDOVERINT 2(2X,110,3X,110)
APNDOVERREAL 1(36X,F5.1)
CARDDATAREAL 4(4(F5.1,1X))
CARDDATAREAL 4(4(F5.1,1X))
CARDDATAREAL 1(F5.1)

4 29 3 1 1

APNDDATAINT 1(6X,14)

Sample DARES Command Set

59

LOGAN INTERNATIONAL AIRPORT

BOSTON

H= 2461 N= 28 RH=17.631 EM=29.3
427.7 384.2 93.1 192.0

135.5 183.3 199.2 82.1

941.4 2317

J=14

END

Figure 3-5 Typical Model Program Input Produced by DARES
Command Set of 3-4

60

3.4.3 Data Retrieval (RET and RETA)

The RET and RETA Commands are used to retrieve data from the
TAPS Data Base. The data is taken from the Site and Case speci-
fied by the last preceding DARE Command.

A Data Buffer is used by RET and RETA to store retrieved data.
The RET Command takes data from the Data Base and puts it in the
Data Buffer starting at the top of the Buffer. The RETA Commands
takes data from the Data Base and adds it to the Buffer, starting
at the end of the data entered by the previous RET or RETA Command.
Both Commands can retrieve all or part of a Data Base vector or
matrix. When this is done, the Buffer is filled in the order re-

trieved.
In the example of Figure 3.4, the first RET Command:
RET 2 8 0 12 2 1 1

retrieves data from Block 2, Item 8 (of Site 13, Case 37). The
form of the data to be retrieved from the TAPS Data Base is to be
Form 0 and the Units are to be Units 12.

If the units of the data stored in the TAPS Data Base differ
from the desired units, then, when the data are retrieved, they are
converted to the desired units specified in the RET Command. Thus,
in the example, if the Units Number stored in 23, which is, for
example, meters, and if the Units No. 12 is feet, then the stored
numbers are multiplied by 3.280840, the conversion from meters to
feet. Similarly if the Form of the Data stored in the TAPS Data
Base differs from the desired Form, then, when the data are re-
trieved, they are converted to the desired Form specified. This
is done by a special Form Conversion subroutine. There must be
such a routine for each specific conversion needed.

The RET Command specifies a Default Option which is exer-
cised either if the data is missing from the Data Base, or if the
specific form conversion subroutine is not found. In the example
Command, the "2" represents the Default Option. This Default
Option can indicate that the DARES run should be aborted, or that
a special action should be taken (e.g., if a data value cannot be
found, use 0.0).

61

The last two numbers of the RET Command indicate the sub-
scripts of the first and last values of a stored vector which
are to be retrieved. In the example command, the retrieval is for
a single value and thus these two subscripts are "1'".

Assuming that Site 13, Case 37, Block 2, Item 8 contains:

S

0

23
7.5E2

(i.e., a single number 7.5E2, in Form No. 0, Units No. 23), then
the RET Command retrieves the number, converts it to Units 12 (by
multiplying by 3.280840), and stores it at the top of the Data
Buffer as 2.46063E3.

The RETA Command functions similarly to the RET Command
except that it adds to the Data Buffer rather than starting at the
top. The first RETA Command of the example of Figure 3-4 will
retrieve data from Site 13, Case 37, Block 1, Item 1. This data
will be added to the Data Buffer directly after the 2.46063E3
that was stored there by the preceding RET Command.

3.4.4 Text Card Copying (CARDCOPY)

The CARDCOPY Command is used to create a model program in-
put card by copying a Text Card. The next Text Card after the one
most recently used by a CARDCOPY or CARDOVER Command is used. (The
first CARDCOPY or CARDOVER Command uses the first Text Card.)

The CARDCOPY Command is used if the model input requires
titles or control cards. For example, the first CARDCOPY Com-
mand of the example in Figure 3-4 will create a copy of the first
model input card as shown in Figure 3-5. The last CARDCOPY Com-

mand of the example is used to create a copy of the last Text Card
(END) which is assumed to be a control card for the model program.

62

The CARDCOPY Command can also be used to set variables to
values independent of the data in the Data Base. Thus, the
next-to-last CARDCOPY Command of the example creates an input
card of "J=14", setting the model program's value of J without
reference to the Data Base.

3.4.5 Data Card Creation (CARDDATA, APNDDATA)

The CARDDATA Command creates a model program input card
from data taken, in order, from the Data Buffer. The APNDDATA
Command appends data to a model program input card that previously
was created by a CARDDATA Command. Each command must specify (1)
the mode, real or integer, in which the data will be placed on the
card, (2) the number of data values to be placed on the card by
the Command, and (3) the format of the placement of the data,
Each command can specify data of only one mode. Therefore, if
data of both modes are to be on the same model program input card,
both a CARDDATA Command and an APNDDATA Command are used, one
for each mode.

In the example of Figure 3-4, the last CARDDATA Command
indicates that a card is to be created with one real value on it,
and the format is to be F5.1. The following APNDDATA Command
appends one integer mode value to the card in form 14 (with the
6X allowing room so the previous piece of data is not overwritten).
The result is the third-from-last line of Figure 3-5.

3.4.6 Text Card Overwriting (CARDOVER, APNDOVER)

The CARDOVER Command is used to create a model program input
card by copying a Text Card and then overwriting designated fields
with data taken, in order, from the Data Buffer. The next Text
Card after the one most recently used by a CARDCOPY or CARDOVER
Command is used. (The first CARDCOPY or CARDOVER Command uses the
first Text Card.)

63

The APNDOVER Command is used to take data, in order, from
the Data Buffer and append them to a model program input card which
was previously created by a CARDOVER Command. This is done by
overwriting the data upon designated fields of the card.

Each of these commands must specify (1) the mode, real or
integer, in which the data will be overwritten on the card, (2)
the number of data values to be placed on the card by the Com-
mand, and (3) the format of the placement of the overwritten
data. As with the CARDDATA and APNDDATA Commands, each command
can specify data of only one mode. Therefore, if data of both
modes is to be on the same model program input card, both a CARD-
OVER and an APNDOVER Command are used, one for each mode.

The use of the CARDOVER and APNDOVER Command is illustrated
in the example of Figure 3-4. The CARDOVER Command takes two
data values from the Data Buffer and overwrites them in integer
mode on a copy of the next Text Card (in this case the third Text
Card). Spaces are skipped in the overwriting to allow the data
to be placed where desired. The resulting card is:

H= 2461 N= 28 RH=17.631 EM=

Note that the overwriting commands place the data where desired,
and in the desired form. For example, the first value in the
Buffer was 2.46063E3 as discussed in Section 3.4.3. CARDOVER
converted this value to I10 format and thus used '2461" to over-
write. Note also that the overwriting Commands can be used to
set variables to values independent of the data in the Data Base,
as here RH is set to 17.631.

The APNDOVER Command of Figure 3-4 will take the card
created by the CARDOVER Command and overwrite data upon it,
this time in real mode. A single F5.1 value is overwritten, and
the resulting card (as shown in Figure 3-5) is:

H= 2461 N= 28 RH=17.361 EM= 29.3

64

3.5 SMOG

Each model program produces its outputs in a form unique to
the particular program. Therefore, in order to be able to analyze
the model's results and to compare them with measured values and
with the results of other models, the outputs of all the model
programs must be put into a standard form. This function is
accomplished by the Standard Model Output Generator, SMOG.

SMOG must be able to perform two operations:
a. Get the calculated values from the model program.

b. Store these values in Standard Form in the TAPS Data
Base.

As with DARES, it is desirable that SMOG require as few
changes to the original model program as possible - preferably

none.

There are two ways a model program can produce its outputs:
(1) it can produce a set of stored values which contain the re-
sults, or (2) it can calculate some values, print or otherwise
use the values, and then destroy or overwrite them. SMOG must
be able to handle model programs using either approach.

For models using the first approach, a call to SMOG can be
made immediately after the termination of the model run and
SMOG can get the calculated results directly from the stored
values of the model program. This requires no change at all to
the model program. For models using the second approach, slight
changes must be made to the model program to allow for the
storage of the calculated results. But even in this case, SMOG's
major operation will take place after the model run, and the
model will be essentially intact, and estimates of model run time
will not be greatly affected.

Once SMOG has the information as to where the calculated
results are stored, SMOG must get them, convert them from what-
ever form they are stored in to TAPS Standard Form, and place
them in the TAPS Data Base, so they can be accessed by DIMOTE.

These operations are similar to those performed by FORMAN and
similar techniques are used. Input commands to SMOG indicate:
(1) the location where the calculated results are stored, (2) the
format in which the results are stored, and (3) the model, and
the site and case for which the results were obtained. The SMOG
Processor will retrieve the results, and store them in Level IV
of the TAPS Data Base, utilizing FORMAN methods. The SMOG Pro-
cessor will also produce a Results Directory which will have an
entry for each model number-site number-case number combination
for which results have been obtained. The entry will contain a
pointer to the location where those results are stored in Level
IV. Using this Results Directory, DIMOTE will be able to find
such items as: (1) the sites and cases which have been run for a
given model, (2) the models that have been run for a site and case,
(3) all the calculated results for a given model, (4) all the
calculated results for a given site and case for various models,
etc.

3.6 DIMOTE

The fourth and final part of the Transportation Air Pollu-
tion Studies Systems is the DIspersion MOdel TEster, DIMOTE.
DIMOTE's function is to take the outputs of the model program runs
(which have been stored in the TAPS Data Base by SMOG) and com-
pare them with each other and with the measured values (which were
stored with the other incoming data for each site and case by
FORMAN). DIMOTE will use several statistical tests for these com-
parisons, and will then produce tables and graphs comparing and
evaluating the different model programs. These results will be
used in the production of reports on model program evaluation,
which is the principal objective of this project.

DIMOTE will employ twdé major types of statistical tests:
Loss Function Tests and Natural Histogram Tests. A Loss Function

can be written in the form:

Ny

D
N S D> kg D F (M(d,1), Cp(d,i)]
d=1 i=1

66

the loss incurred using Model m.

=
i

D = the number of data-sets being used in the evaluation
N = the number of elements in the d-th data-set

the i-th measurement of pollution concentration

made for the d-th data-set

the value calculated by model m corresponding to

=

[o})
-
I

(9]
3
o}
'_l.
I

the i-th measure of pollution concentration made
for the d-th data-set.

a function of the disparity between M(d,i) and
Cm(d,i)

|
Il

Thus L is a measure of the differences between the measured
values and the model calculated values, with Kd's allowing for

selected data-sets to be given more weight. Typical F functions

would' be
a. F = IM'CmI
b. F= M-C)?2
m
c. F =8m% (log C, - log M)2
whereg=g8, C_ > M
pZ Cm <M

DIMOTE will present tables of several different loss functions,
at the user's option, comparing the various models.

The second major type of statistical test employed by
DIMOTE will be the Natural Histogram. The Natural Histogram is a
new, sophisticated statistical technique. It allows an estimate
to be made of

Fo(x,y) = Pr(M > x | C, = x)

i.e., the probability that the measured or actual value is greater
than a certain value (e.g., a standard) given that the calculated
value for model m is a certain value. This type of conditional

67

probability is useful in evaluating models since it allows esti-
mates to be made as to whether a model will work well near a

given standard. Thus, some models may perform better for low
pollution cases, while others may work better for higher pollution
cases. In addition, the Natural Histogram is a valuable tool in
using a model program since it allows an estimate to be made of

the probability that the actual pollution concentration will exceed
the critical value, given that the model program predicted a cer-
tain value. DIMOTE will produce tables of Fm(x,y) for all models
and for selected values of x and y.

In addition to the above, DIMOTE will produce several types
of graphs, for example:

a. Scatter plots of calculated values vs measured values.

b. Frequency distribution plots.

c. Graphs showing results of Loss Function and Natural

Histogram tests.
d. Graphs showing other statistics of interest.

All of the aforementioned DIMOTE functions are handled by
the DIMOTE Routine. The DIMOTE Routine uses the Results Directory
which is produced by SMOG to access values calculated by the
model programs. It accesses measured values directly from the
site and case entries in the TAPS Data Base. DIMOTE then calls
user specified subroutines from a DIMOTE Subroutine Library to
perform the statistics and produce the output tables and graphs.

68

4, USER'S GUIDES

The following are guides for the use of the FORmat MANipu-
lator (FORMAN) and the DAta REtrieval System (DARES). The function,
usage, and format of each command is given.

Note that in the Instruction Format descriptions:
a. The character % is used to represent a blank.

b. All fields are right justified except when specified
otherwise.

4.1 FORMAN USER'S GUIDE

For a given data-set, a set of FORMAN commands is written
specifying the method for converting the data-set to TAPS Standard
Format and for storage in the TAPS Data Base. These commands,
along with the data-set, form the input to the FORMAN Processor
which accomplishes the conversion and storage.

4,1.1 FORMAN Commands

There are five FORMAN Commands:

COMMAND FUNCTION

NSIT Create a new Site entry,

USIT Update a Site entry.

NCAS Create a new Case entry and its associat-

ed Parameter and Data entries.

UCAS Update a Case entry and its associated
Parameter and Data entries.

END End of FORMAN Commands.

Each command is composed of one or more instructions. Each in-
struction comprises one card (or card-image). The first instruc-
tion of each Command has the Command name in the first four
columns of the card.

69

4,1.1.1 NSIT Command

ACTION: Create a Level I entry in the TAPS Data Base.

USAGE: Command can be used unless there already exists a

Level I entry with the same site number as indi-
cated in the command. If a Level I entry already
exists, an error message is produced.

FORM: An "NSIT" instruction

Site entry instruction No. 1

[0 I SR

. Site entry instruction No. 2
4. A set of Site Description instructions

FORMAT OF INSTRUCTIONS:

INSTRUCTION COLUMNS CONTENTS MEANING
NSIT 1-4 NSIT Command call
5-8 integer Site number
Site Entry
No. 1 1-4 HWY% or APT% Highway or Airport
5-36 alphanumerics Site identification
37-40 integer Number of cases with
wind speed< §
41-44 integer Number of cases with
wind speed 5 to 10
45-48 integer Number of cases with
wind speed 10 to 20
49-52 integer Number of cases with
wind speed > 20
53-56 integer Number of cases with
stability A
57-60 integer Number of cases with
stability B
61-64 integer Number of cases with
stability C
65-68 integer Number of cases with
stability D
69-72 integer Number of cases with
stability E
73-76 integer Number of cases with

stability F

70

INSTRUCTION

Site-Entry

No. 2

Site

Description

4.1.1.2 USIT
ACTION:
USAGE:
FORM:

COLUMNS
1-4

5-8

9-12

13-16

17-20

21-24

25-28

29-32

33-36

37-40

1-80

CONTENTS

integer
integer
integer
integer
integer

integer

integer

integer

integer
(1 to &)

integer

one number,
left justified

MEANING

Number of
measuring

Number of
measuring

Number of
measuring

Number of
measuring

Number of
measuring

Number of
measuring
carbons

Number of
measuring
carbons

Number of
measuring

Cases
Co

Cases

SO2

Cases
Particulates
Cases

NOx

Cases

Lead

Cases
Total Hydro-

Cases
Reactive Hydro-

Cases
aldehydes

Road or airport type

Number of

Site Des-

cription instructions

to follow

Each indicates one
number from site des-

cription,
described
2.5.

in order, as
in Section

Update a Level I entry in the TAPS Data Base.

Command can be used only if there already exists

a Level I entry with the same Site number as indi-

cated in the command.

If this Level I entry does

not exist, an error message is produced.

1. A "USIT" instruction.

. Site entry instruction No. 1.

2
3. Site entry instruction No. 2.
4

A set of Site Description instructions.

71

FORMAT OF INSTRUCTIONS:

INSTRUCTION
USIT

Site-Entry
No. 1

Site Entry
No. 2
Site
Description

COLUMNS CONTENTS MEANING
1-4 USIT Command call
5-8 integer Site number
As for NSIT

4,1.1.3 NCAS Command

ACTION:

USAGE :

FORM:

Create a Level II entry and associated Level III
and Level IV entries in the TAPS Data Base.

Command can be used only if there already exists a

Level I entry with the same Site number as indi-

cated in the command, and if there does not exist

a Level II entry for the Site with the same Case

number as indicated in the command, and if there

does not exist a Level II entry for the Site with

the same Case number as indicated in the command.

Otherwise, an error message is produced.

1.

2.
3.
4

An "NCAS" instruction.

A set of data cards containing the data-set.

A "FORMAN" instruction.

A set of Insert instructions (indicating which
data to extract from the data-set and where

to insert them in the TAPS Data Base).

A header instruction after each Insert instruc-
tion that references a Parameter (by Block and
Item number) for the first time. There is a
different Header instruction for each possible
header.

72

FORMAT OF INSTRUCTIONS:

INSTRUCTION COLUMNS CONTENTS MEANING
NCAS 1-4 NCAS Command call

5-8 integer Site number

9-12 integer Case number
Data Card 1-80 any Data as received
FORMAN 1-8 FORMAN% % Indicates beginning of

Insert Instructions.
Insert 1-3 integer (1 to 3 Block number of para-
or -1 to -99) meter if positive. If

negative, number of

Text Cards to be skip-
ped, (in which case

card columns 4-80 should

be blank).
4-6 integer Item number for Parameter.
7-8 integer or %% Integer is header number.
* or % * if command's reference
is to next data-card
(or first card). §% if
reference is to present
data card.
10-11 integer Number of values per
data-card.
12-15 integer First subscript for

storage in vector form.

16-19 integer Last subscript for
storage in vector form
(1 if scalar)

20 R or % R indicates data is in
the form K*M. (This
must be the only data
read by this insert

command) .

21-24 Int% or Real Signifies if data to be
stored is integer or
real mode.

25-80 FORTRAN Format Format on data card of

left justified data to be read. The

nX format is used to
cover up any undesired
characters on card,
indicating the K* part
of K*M data. Format is
enclosed in parentheses,
as is standard.

73

INSTRUCTION COLUMNS CONTENTS MEANING

Header 1-4 integer Form No.
5-8 number Second entry in header.
9-12 number Third entry in header.

if required by header.

13-16 number Fourth entry in header
if required by header.

etc. etc. etc.

4,1.1.4 UCAS Command

ACTION: Update the Level III and Level IV entries associated
with a Level II entry in the TAPS Data Base.

USAGE: Command can be used only if there already exists
a Level I entry and an associated Level II entry
with the same Site and Case numbers as indicated
in the command. Otherwise, an error message is
produced.

FORM: 1. A "UCAS" instruction.

A set of data cards.

A "FORMAN" instruction.

A set of Insert instructions.

Vi BN
e o e e

A header instruction after each.

Insert instruction that references a Parameter for
the first time.

FORMAT OF INSTRUCTIONS:

INSTRUCTION COLUMNS CONTENTS MEANING

UCAS 1-4 UCAS Command call
5-8 integer Site number
9-12 integer Case number

Data card
FORMAN As for NCAS

Insert

74

4.1.1.5 END Command

ACTION: Terminates the FORMAN Processor run.

USAGE : Last command of a command set.

FORM: An END instruction.

FORMAT OF INSTRUCTIONS:

INSTRUCTION COLUMNS CONTENTS MEANING
END 1-4 END% Command call

4.2 DARES USER'S GUIDE

For a given model program, a set of DARES commands is
written specifying the format in which model input card-images
should be formed in order to run the model program. This format
includes the specification of the data required by the model,
(which must be retrieved from the TAPS Data Base). The DARES
commands are input to the DARES Processor, which retrieves the
data from a specified Site and Case in the Data Base and forms
the input card-images for the model program.

4,2.1 DARES Commands

A DARES Command set is comprised of two parts:
1, A set of Text Cards.
2. A set of DARES Commands.

The Text Cards contain text for use with certain DARES
Commands described below. Each of these Commands references the
present Text Card or the next Text Card, with the first Text
Card being considered the first '"next" card.

A data buffer is used by DARES to store retrieved data.
Some DARES Commands are used to retrieve data from the TAPS Data
Base and put them in the Data Buffer, and other DARES Commands
are used to take the data from the Data Buffer and form the cards
(or card-images) which will be used as the input to the model
program.

75

There are nine DARES Commands:

COMMAND FUNCTION

DARE Specify Site and Case numbers from which
data shall be retrieved.

RET Retrieve data from the TAPS Data Base and
place them at the top of the Data Buffer.

RETA Retrieve data from the TAPS Data Base
and add them to the Data Buffer.

CARDCOPY Copy the next Text Card.

CARDDATA Create a card containing data from the
Data Buffer.

CARDOVER Create a card by overwriting designated
fields of a copy of the next Text Card
with data from the Data Buffer.

APNDDATA Append data from the Data Buffer to a
previously created card in designated
fields.

APNDOVER Append data from the Data Buffer to a
previously created card in designated
fields, and overwrite designated fields
with fields from the present Text Card.

END End of commands for the present Site and

Case numbers.

All DARES commands comprise one card (or card-image), with

the exception of the DARE command, which is two cards.

4.2.1.1 DARE Command

ACTION:

USAGE:

Specify Site number and Case number from which
RET and RETA Commands will retrieve data.

The first Command directly following the Text-
If another Site and Case is required in
the same DARES run, the DARE Command is used
again, directly following an END Command.

76

FORM: 1. "DARE"
2. Site and Case

FORMAT OF INSTRUCTIONS:

INSTRUCTION COLUMNS CONTENTS
DARE 1-4 DARE
Site and 1-4 integer
Case

5-8 integer

4.2.1.2 RET Command

MEANING

Command
Site Number

Case Number

ACTION: Retrieve data from the Site and Case in the TAPS
Data Base that was specified by the previous
DARE command. Place the data in the Data Buffer,

in order, starting at the top of the Buffer.

USAGE: Command can be used anywhere between a DARE Command
and an END Command.

FORMAT OF COMMAND:

COLUMNS CONTENTS

RET$%
1,2, or 3

integer

integer

integer

17-18 integer

MEANING

Command call

Level III Block number of data to
be retrieved.

Level III Item number of data to
be retrieved.

Form number of data to be retrieved.
(If Form number of stored data is
different than this, DARES attempts
to convert to Form specified here.)

Units number of data to be re-
trieved. (If Units number stored
is different than this, number re-
trieved data is converted to units
specified here.)

Default Option number. If Form
conversion algorithm is not known
to DARES, or if required data is
missing, DARES takes Default
Option indicated (0-Abort).

77

COLUMNS
19-22

23-26

CONTENTS MEANING

integer Subscript of first data value to
be retrieved from Level IV.

integer Subscript of last data value to
be retrieved from Level IV. (1 if
single number.)

4.2.1.3 RETA Command

ACTION:

USAGE :

Retrieve data from the Site and Case in the TAPS
Data Base that was specified by the previous

DARE Command. Add the data to the Data Buffer, in
order, starting after the data entered by the last
RET or RETA Command.

Command should follow a RET Command or another
RETA Command, with possible intervening CARDDATA,

CARDOVER, CARDCOPY, APNDDATA, or APNDOVER Commands.

FORMAT OF COMMAND:

COLUMNS

1-4
5-26

CONTENTS MEANING

RETA Command call
Same as for

the RET Com-

mand

4,2.1.4 CARDCOPY Command

ACTION:

USAGE:

A model program input card is created by copying
the next Text Card.

Command can be used anywhere between a DARE Com-
mand and an END Command.

FORMAT OF COMMAND:

COLUMNS
1-8

CONTENT MEANING
CARDCOPY Command call

78

4.2.1.5 CARDDATA Command

ACTION: A model program input card is created from data
taken, in order, from the Data Buffer.

USAGE: This Command should follow a RET or RETA Command,
with possible intervening CARDDATA, CARDOVER,
CARDCOPY, APNDDATA, or APNDOVER Commands

FORMAT OF COMMAND:

COLUMNS CONTENT
1-8 CARDDATA
9-12 INT% or REAL
13-16 integer
17-76 FORTRAN Format,

left justified

4.2.1.6 CARDOVER Command

MEANING
Command call

Data mode. Signifies if data to
be put on created card is integer
or real mode. Modes cannot be
mixed on a single Command card.
(If mixed modes are needed, use
APNDDATA Commands following the
CARDDATA Command, still keeping
one mode per command.)

Number of data values for the
Data Buffer to be put on the
created card.

Format of the data placement. The
format is within parentheses, as
is conventional.

ACTION: A model program input card is created by overwriting
designated fields of a copy of the next Text Card
with data taken, in order, from the Data Buffer.

USAGE: This Command should follow a RET or RETA Command,
with possible intervening CARDDATA, CARDOVER,
CARDCOPY, APNDDATA, OR APNDOVER Commands

FORMAT OF COMMAND:

COLUMNS CONTENT
1-8 CARDOVER
9-12 INT% or REAL

MEANING

Command call

Signifies if data to be put on
created card is integer or real

mode. Modes cannot be mixed on a
single Command Card. (If mixed modes

79

COLUMNS CONTENT
13-16 integer
17-76 FORMAN Format,

left justified

4.2.1.7 APNDDATA Command

MEANING

are needed, use APNDOVER Commands
following the CARDOVER Command,
still keeping one mode in Command.)

Number of data values to be put on
the created card.

Format of the data placement to be
overwritten upon a copy of the next
Text Card. Only those card columns
covered by the data will be changed
on the Text Card. The nX format

is used to allow text which is
before or between data values to be
unaltered. The format is within
parentheses, as is conventional.

ACTION: A model program input card previously created by
a CARDDATA Command is appended with data taken, in
order, from the Data Buffer.

USAGE: This Command should follow a CARDDATA Command or
another APNDDATA Command, with possible inter-
vening RET or RETA Commands.

FORMAT OF COMMAND:

COLUMNS CONTENT
1-8 APNDDATA
9-12 INT% or REAL
13-16 integer
17-76 FORMAN Format,

left justified

4.2.1.8 APNDOVER Command

MEANING

Command call

Data mode (integer or real). Modes
cannot be mixed in a single Command.

Number of data values from the
Data Buffer to be put on the created
card.

Format of the data placement, with
nX format used to allow for areas
of the card which have been created
by previous CARDDATA or APNDDATA
Commands.

ACTION: A model program input card previously created by
a CARDOVER Command is appended with data taken,

80

USAGE:

in order, from the Data Buffer, and overwritten
with designated fields from the present Text Card.

This Command should follow a CARDOVER Command or
another APNDOVER Command, with possible inter-
vening RET and RETA Commands.

FORMAT OF COMMAND

COLUMNS CONTENT MEANING
1-8 APNDOVER Command call
9-12 INT% or REAL Data mode (integer or real).
Modes cannot be mixed in a single
command.

13-16 integer Number of data values from the
Data Buffer to be put on created
card.

17-76 FORMAN Format, Format of the data placement to be

left justified overwritten upon the present Text

Card (which has already been modi-
fied by a preceeding CARDOVER and
possibly APNDOVER Commands). Only
those card columns covered by the
data will be changed on the Text
Card,

4,2,1.9 END Command

ACTION:

USAGE :

Signifies the end of the set of commands for the
present Site and Case number.

The last Command of a Command set for each Site
and Case number. As such, it will be followed
directly by a DARE Command, or it will be the last
Command for the run.

FORMAT OF COMMAND:

COLUMNS
1-4

CONTENTS MEANING
END% Command call

81

5. SAMPLE TAPS USAGE

This section contains examples of both FORMAN and DARES
usage. It should be noted that the FORMAN output appears only to
show that the FORMAN input was read and stored correctly.

82

5.1 DATA STORAGE USING FORMAN

COMMAND=NSIT
HWY I-70 BALTIMORE MARYLAND

1 0 0 0 0 0 0] 2

COMMAND=USIT

83

e e —

COMMAND=NCAS
NEXT AVAILABLE UNUSED RECORD Of LEVELS = 2
0

HwY 1=-70 BALTIMORE MARYLAND 1 0 0 1]
1 1] 0 0 [} [} 0 n 2 2 2 1
NEXT AVAILAOLE UNUSED RECORD ON LEVEL2 = 3
LEVEL2 ~ POINTERS TO LEVEL3
2 0)] 0 ¢ 1] 0 u 0 0 9 0 0 Q 0
0 0 0 0 c 0 0 0 0 o 0 0 0 0 0
DATA VALUES COMING IN
18 12,2 18.7 6.1
3 100 200 3p0
17.3 6,7 2.9 10000.7
FORMAN COMMANDS
2 52+ 3 1 3 REAL(10X+3F5.1)
LEVEL3 - POINTLRS T0 LEVELY
EMISSION PGINTER BLOCK
[/ ¢ o o © o ¢ o o o 0o o0 @ O 0
Q 0 L] 0 o 0 [0 0 0 0 0 L] 0
METEOROLOGICAL POINTER BLOCK
6 o o o 3 o © v ©o 0o 0 0 0 0o 0
v © ¢ @ © ©o 0o t o @2 0 0 O []
GENERAL POINTER BLOCK
0] 0 0 0 0 0 1} 0 0 0 0 0 9 0
o o o ©6 o © ¢ o0 o o o0 0 0 0

{ICADER NUMBER

2
HEADER CETAILS
3 5 5
GATA VALUES ON LEVEL4 = THAT IS ON THE STANDARD DATA BASE

0.122000060E 02 0,18699997C 02 0.60999994F 01 0,99999994€E-38 0,99999994E-38

NEXT AVAILABLE UNUSED RECORD ON LEVELY = 35
FORMAN COMMANLIS

1 3 1s 1 1 1 INT (2X.13)

LEVEL3 - POGINTERS TO LEVELH

£MISSION POINTER BLOCK

0 o 35 0 [} 0 0 0 0 0 0 0 0) 0
() 9 1] 0 0 0 0 0 0 0 0 0 [0 Q
MCTEOROLOGICAL POINTER BLOCK
0 [d 0 o 32 b 0) 0 o 0 o 0 0 0
0 92 0 0 o 9 o 0 0 0 0 0 0 0 0
GENERAL MOINTER BLOCK
1} U 0 0 0 0 0 0 0 0 0 0 Q o
0 0 1} 0 0 o 0 0 o 0 0 0 0 0 0
HEALER NUMLER
1
HEACER CETAILS
2
CATA VALUES ON LEVEL4 - THAT IS On THE STANDARD OATA BASE
0.10000000E 03
NLXT AVAILALE UNUSED RECURD ON LEVELY = EL:
FORMAN COMMANDS
212 1+ 1 1 1 REAL(FH4.1)
LEVEL3 - POINTERS TO LEVELY%
EMISSTON PGINTER BLLOCK
0 0 35 0 ¢ 0 0 u 0 0 0 0 0 o o
[0 0] 0 0 4 0 0 a 0 9 0 0
METEOROLOGICAL POINTER BLOCK
0 0 0 0 32 [0) 0 Q o 38 0 0 0
n [[T} o 0 0 0 0 0 0 Q 0 0
GENERAL POINTER BLOCK
Q9 0 [1} o [} 0 o 0 Q 0 0 0 0 0 0
[1] (] 0 0 0 0 0] 0 0 0 0 0 0 0
HEACER NUMBER
1
HLACER CETAILS
1 3
CATA VALUES ON LEVELY4 - THAT IS CN THE ST4NDARD CATA BASE
0.17500000E 02
NEXT AVAILABLE UNUSED RECORD ON LEVELY = 41
FORMAN COMMANDS
3302 2 1 2 REAL(BX F3.142X F3.1)
LEVEL3 - POINTERS TO LEVELY
EMISSION POINTER HLUCK
0 o 35 0 0 '} [0 0 0 0 a Q 0 0
1] 0 0 0 0) 0 0 0 0 0 0
METEOROLOG1CAL POINTER BLOUCK
0 0 0 [/-F] 0 0 1) 0 0 o 38 0 0 0
0 0 0 o 0 0 0 [} 0 o o [0 1] 0
GENERAL POINTER BLOCK
) 0 0 0 0 0 0 0 0 0 0 [0] [}
0 Q o 0 0 0 0 0] 0 0 0 0

0
HEADER NUMBER

2
HEACER CETAILS
3 5 k]
DATA VALUES ON LEVEL4 = THAT IS ON THE STANDARD DATA BASE

0.66999998€ 01 0.28999996E 01 0.99999994E-38 0.99999994E-38 0.99999994E-38

NEXT AVAILABLE UNUSEC RECORD ON LEVELY = 4y
FORNMAN COMMANDS

1171 1 1 1 REAL(18XsF7.1)

LEVEL3 - POINTERS TO LEVELY

tMISSION PCINTER RLOCK

u ¢ 35 [0 4 u 0 Q 0 0 L] 0 0 0
[4 0 0 U 0 0 0 0 1] 0 0 0 0 o
YCTEORDLOGICAL POINTER BLOCK
Q o 0 32 0 o [0 0 0o 38 Q Q [}
0 0 0 1] 0 [\) 0 0 0 0 0 o 0
GENERAL POINTER BLOCK
Q o 0 Q o 0 0 Q a 0 Q 0 0 0 0
o o o 1] o L] o o '] L] 0 1] 0 0 o
84

oo

oo oo

a0

co

co

oo

ce oo

ce

oo oo

ce eo

oo

oo oo

X1

co oo

oo

oo oo

co

oo oo

oo

oo oo

oo

oo

oo

oo oo

oo

co ©o

oo

oo

oo

oo

oo

oo oo

oo

oo

oo

oo

oo

ao

oo o

oo

oo oo

oo

oo oo

oo

oo

co

oo

oo

oo

oo @o

oo

oc

oo

X

oo

oo

oo

oo

oo

oo

X-

oo oo

oo

oo oo

oo

om oo

oo

41

41

HEACER NUMBER

1
HEACER CETAELLS
1 6
UATA VALUES ON LEVELY
0.10000699E 05
NEXT AVAILABLE UNUSED RECURD ON LEVELY =

- THAT IS ON THE STANDARD DATA BASE

47

COMMAND=NSIT
APT MOFFAT,TALBOT+SHAH AIRPORT., KHL 1 o
1] 0 0 o 0 a 0 1 3

COMMAND=USIT

COMMAND=NCAS

NEXT AVAILABLE UNUSED RECORD OK LEVEL3 = 5

APT MOFFAT.TALBOT+SHAH AIRPORT. KKL 1 0 0 0 a 0
1 0 a [0 0 o 1] 1 3 47 1
NEXT AVAILABLE UNUSEC RECURD ON LEVEL2 = 4
LEVEL2 - POINTERS TO LEVEL3
5 0 0 0 0 0 o U 0 0 1] 0 a 0 0
0 o (] o 0 0 0 0 0 0 0 0 0 o 0
DATA VALUES COMING 1IN
2,75, 0.668, 1.17, 0,289+ 0.0695,
AEM(141¢1)=3750040 328044 436040 1400.v
201 2055 6014 1 512 50000
487.¢ 32B.4 U%0.0s 58244
FORMAN COMMANDS

1 3283 1 3 REALIFS«2¢7X1F5.3¢7XeF4.2)
LEVEL3 - POINTERS TO LEVELY
EMISSION POINTER BLOCK

0 07 0 0 0 0 a 0 0 0 0 Q 0 0
0 0 0 2 0 0 0 0 0 Q 0 0

METEOROLOGICAL POINTER BLCCK
0 a 0 0 0 0 0 9 0 0 0 0 0 0
0 0 0] 0 0) 0 0 0

GENERAL POINTER BLOCK

0 o 1 0 0 o 0 0 L) 0 0 c 0
1] 0) 1] 0 u 0 0 0 0 0 0 0

HEACER NUMBER
2

HEACER CETAILS

1 12 11
CATA VALUES ON LEVELY - THAT IS ON THE STANDARD DATA BASE
0.27500000E 01 0.66799998L 00 0.11699991E 01 0.99999994£-38
0.99999994E-38 0,99999994E-38 1,99999994E-38

NEXT AVAILABLE UNUSEC RECORD ON LEVELY = T4
FORMAN COMMANDS
2 72+ 2 1 2 REAL(24XF5,047X+F5.0)
LEVEL3 - POINTERS TO LEVELSH
EMISSION POINTER BLOCK
a g 71 0 1] Q 0 [0 0 1) 0 0 0 0
[v 0 0 Q 0 0) 0 a 0 0
METEOROLOGICAL POINTER BLOCK
[1 bl 0 0 0 0 0
0 v 0 0 [0 0 o 0 Q [o
GENERAL POINTER BLOCK
0 0 0 0 0 o 0 a 4 0 [0
0 0 0 0 0] 1] 0 Q 1] 0 Q Q

4 0
HEACER AUMBER

2
HEACER CETAILS
1 13
DATA VALUES ON LEVELY - THAT 1S OM THE STANDARD DATA BASE
0,32800000£ 0% 0,43600000E 0% 0,59999994F-38 0,99999994E-38

NEXT AVAILABLE UMUSELL RECOKD UN LFVEL4 = 77
FORMAN COMMANDS
3 11 1 1 1 REAL(&0X+F4,.0)
LEVEL3 - PCINTERS TO LEVELY
EMISSION POINTER BLUCK
¢ 07N 0 v 0 o o 0 0 0 0 Q 0 0
0 9 0 0 u 0 0 0 0 0 0 0
METEOROLOGICAL POINTER BLOCK
0 0 o 0 74 G 0 0 0 Q9 0 0
o 0 o 4 0 Q 0 0 0 0 0
GENERAL POINTER BLOCK
77 D 1] 1] 0 0 0 0 0 0 0 0 0 o 0
[H 0 0 Q o 0 2 0 o 0 0 0 0
HEACER AUMEER
1
HEACER CETAILS
11 12
DATA VALUES ON LEVEL% - THAT 1S ON THE STANDARD DATA BASEt
0.12100000E 03
NEXT AVAILABLE UNUSEC RECURD ON LEVELY = ao
FORMAN COMMANDS
317 2¢ 3 2 4 INT (IS¢13X+IUs14X413)
LEVEL3 - POINTERS TO LEVELY
EMISSION POINTER BLOCK
0 [/ Y 0 0 0 0 1] 0 0 Q 0 0 0 0
0 0 0 o 0 o 0 1] 0 [} 0 0 0 0 0
METEOROLOGICAL POINTER BLUCK
0 0 0 0 0 0 74 0 0 0 o 0 0 0 0
0 1) 9 o 0 0 0 o 0 0 o 0 0
GEMERAL POINTER BLOCK
7 1] a 0 0 Q 0 o 0 0 L) 0 0 o Q
Q 0 0 0 0 c 0 0 0 0 0 [Q

HEADER NUMBER

2
HEACER CETAILS
10 20

85

1 0 a 0
0 0 o 0 0 0 0
0 0 [0 0 1]
0.346,
121,
0 [0 0 0 0 0
0 0 4 0 0 0
0 Q 0 1] 0 Q]
[) 0 0 0 0
0

oo
oo
oo
oo
oo
oo

0.99999994E-38 0.99999994E-38

0 [0 4 0 a 0
0 0 0 0 0 0

.0 Q 0 0 0 0 o
0 0) 0 0 0
0 0 0 0 0 0 0
1] 0 0 0 0 o
0 Q 0 0 0 0 o
[] 0 0 0 0 0
] 0 0 a) 0 o
0 0 0 0 0 0
0 o 0 0 0 0 [}
0 0 0 0 0 0
o 0 0 0) 0 o
o 0 1] 0 [1]
0 0 o 0 0 0 o
0 0 0 0 o 0
0 a0 0 0 0 0 o
0 0 0 0 o 0

0,99999994E~38 0.99999994¢ -38

CATA VALUES ON LEVEL4 - THAT 1S ON THE STANDARD DATA BASE
0.99995394E£-38 0,20100000F 03 0,60140000E 04 D.,51200000E 03
0.99999394€~38 0,99999994L-38 G.99999994F-38 0.99999994E-38
0.59999954E-38 0,99999994E-30 (.59999994c~38 0.99999994¢L-38

0,99999994E-38 0,99999994E-3A
0.99999994E-38 0.99999994E-38

0,99999994E-38 0,99999994F-38
0,99999994E-38 0.99999994F-38

NEXT AVAILAMLE UNUSLL HECURD ON LELvVELY = 83
FORNAN (OMMANDS
2 P25 2+ 4 1 YRREAL(17Xe F2.1)
LEVEL3 - FOINTERS TO LEVELY
EVISSION POINTER BLUCK
4 c N 0 0 0 [J u G [n 0 0) o 0 0 0 [} 0 0 9 0 0 0 0 0 0 0
4 a 9 6 0 0 G 0 c [} 0 o 4 0 Y 0 0 0 0 0
METIOROLCSICAL POINTER [LUCK
0 0 0 0 0 74 1] 0 a 0 0 0 0 1] (] 0 0 0 [0 1 0 0 83 0 0 0 0 0
0 0 [0 0 0 0 0 ¢ 0 0 0 0 a 0 0
GENERAL POINTER BLOCK
77 0 0 1] 0 0 1] 0 0 o 0 a 0 0 0 80 0 0 [o 0 0 0 0 a 0 1] 0 [
0 1] 0 0 o 0 0 0 0 a 0 [t} 0 0 0 Q 0 0 0 0 1
HEACER RUMBER
z
HEACER CETAILS
15 10
CATA VALUES ON LEVELY - THAT 1S ON THE STANDARD CATA BASE
0.0 0.0 c.0 0.0 099999994 -38 0.99999994E~-38 0.99999994F-38
NEXT AVAILABLE UNUSLG RECORD ON LEVEL4 = 86
COMMAND=UCAS
DATA VALUES COMING IN
2.75, 0,668, 1.17. 0.289. 0.0695, 043464
2u1 2055 6ul4
FORNAN COMMANDS
3 17 0= 2 4 S REAL(48XFS5.3.6XsFE.4) .

HEACER NuMBER
2

HEALER CETAILS
1u 3 20

OATA VALUES ON LEVELY - THAT IS ON
0.99999994¢-38 0.20100000E 03 0.60140000F 04
0.59999994C~-38 0.99999994E-38 0.99999994E-38
2.99999394E-38 0,99999994C-38 0.99999994F-38

THE STANDARD CATA BASE

0.68999946E -01
0.99999994E-38
0.99999994e-38

NEXT AVAILA3LE UNUSED RECORD ON LEVELY = 86
FORMAN COMWANDS
1 30+« 3 & 8 INT (ISs4XeIH,5Xe14)

HEACER AUVBER

2
HEACER CETAILS
112 11
CAaTA VALUES ON LEVELY - THAT IS ON THE STANDARD CATA BASE
0.27500000€ 01 0.646799993E 00 0.11699991F 01 0.99999994£-38
0.99999994€-38 0,99999994E-38 0.99999994E-38
NEXT AVAILAAGLE UNUSEL RECURD ON LEVELY 86

86

0.34599996E 00 D0.99999994E-38 0.99999994F-38 0.9999999u4fF-38
0,99999994E-38 0.99999994E-38 0,99999994E-38 0.99999994E-36

0.99999994£-38 0.20100000€ 03 0.20550000E O% 0.60140000F 04

5.2 MODEL INPUT PREPARATION USING DARES

DARES INPUT

DARE

1 1
CARDCOPY
CARDCOPY
RET 2 6
RETAl 35
RETA1 33
RETA3 26
RETA3 27
RETA2 11
RETALl 17
CARDOVERINT
CARDCOPY
CARDOVERREAL
APNDOVERINT
CARDOVERINT
CARDCOPY
CARDOVERINT
CARDCOPY
CARDOVERINT
END
/%

QD2O0OO0DD0O00

DARFS QUTPUT

00 1 2
00 1 1
0N 1 1
00 1 1
00 1 4
non 1 1
00 1 1
2(7X914510Xs14)
1(5XsF3el)
1(14Xy12)
1(5Xs1I1)

4(8Xs1153(10X,11))

2(T7TX912+9Xs11)

. *w*ﬁt*#f**t**?w**t*#**i##&k***ﬁ#k#***##*y#qﬁ;u**nmmy¢L!uxu*xurunyn*¢v¢u-

{

EPA DATA FOR SITE #1
DISTFIRUTION (F CARS
Nl= 5200 N2=

4800 - =

"WIND SPEEC AND DIRECTINN

" WS= 4.5 IWD= 42

NL= 8

POLLUTTON CONCENTRATIGNS AT RFECFPTNRS

IPOLl= 2 IPfL2= 1

TRATE= 25 ISTAB= 3

IPOL3= 0

FEMISSION RATE AND STABILITY CLASS

PNL4= 0

****ﬁ**##*************!**kk*w*#k*ﬂi*:gyu*y$*;**w$;*»muynm*yg;**:fnﬁmggmr

87

6. SUMMARY

The purpose of this report is to describe in detail the
design, implementation, and use of the Transportation Air Pollu-
tion Studies (TAPS) System and Data Base. These were designed to
allow the Transportation Systems Center to test, evaluate, and

compare transportation air pollution dispersion models.

The TAPS Data Base, as discussed in Section 2 of this report,
is designed to handle the storage of the large amounts of air
pollution data that will be used by TSC in the testing of the
model programs. The Data Base was designed for ease of retrieval
and identification. It is quite flexible and open-ended. The
Data Base can be expanded to accommodate new data types or data
storage formats without affecting the data previously stored.

These changes could be incorporated with a minimal programming
effort.

The Data Base is a four-level structure. The top level
describes the site of air pollution measurements. The second
level indicates the different cases measured at the site. The
third level indicates which input parameters comprise each case.
The fourth level contains the actual data. The Data Base also
contains results of previous model program runs for comparison
purposes.

The TAPS System is designed to access the TAPS Data Base and
use the data therein to test the air pollution dispersion model
programs. The System, which is discussed in Section 3, consists
of four parts: FORMAN, DARES, SMOG and DIMOTE. FORMAN reformats
the incoming data. DARES retrieves data from the Data Base and
produces input acceptable to a model program being tested. SMOG
puts model program output into a standard form. DIMOTE performs
statistical tests on model outputs to evaluate and compare the models.

The TAPS System has been implemented and is operational. Cur-
rent listings of FORMAN, DARES, SMOG, AND DIMOTE are found in
Section 7. As System usage increases, it is expected that the
programs will be modified and updated. The latest listings of the
TAPS System may be obtained by contacting the authors.

88

N @

7. TAPS PROGRAM LISTINGS

I
i
|
|
I
|
|
|
|
1
!

FORMAN

kkkkkdrkkekrkkekxkk THIS PROGRAM CREATES STANDARD DATA BASE

_ _FORMAN

sXslaXaiainlakslzisNakekaRsReRsResRaRa ks

DEFINE FILE 1 (105:250+L+ID1)
DEFINE FILE 2(500+2104L+1IC2)
DEFINE FILE 3(500:2104L+IC3)
DEFINE FILE 4(500+80+LsID4)

“DEFINE FILE16(500+210+L+ID2A)

DEFINE FILE 15(5004804L+IC15)
DIMENSION VUNITS(100)+X(100)+Y(100)42(100)
DIMENSION MASIND(35)

DIMENSION IPOINT (51)
DIMENSION VVAR(100)
DIMENSION MING(35)

DIMENSION IVAR(100)
DIMENSION VAR(100)
DIMENSION DAT(20) «FRMN(2)
DIMENSION FMT(14)

INTEGER VARN +REAL

INTEGFR SITDIS

I TEGER END

INTEGER CASREF (200)

INTEGER RECH

INTEGER POINT(51)

INTEGER SITE

INTEGER VUNITS

INTEGER DUMY «+&LCK UNITS+FGRWY
ILTEGER BLKSYZ

INTEGER DMYHDR

INTEGER HEADER

ILTEGER CMD,USIT,UCAS
INTEGER SITNUB,CASNUE.SITREF(100)
LOGICAL START

DATA REAL INT/4HREAL «4HINT /
DATA USIT/4HUSIT/

89

% K ok ok Ak koK ok ok ok K Kk kX

CATA NSITLMNCASEND/4HNSIT, 4HNCAS.4HEND /
DATA NSITESINREC2+NREC3/3+242/

DATA NRECH/2/

OATA ASTRIC /1H*/

DATA FRMN/4HFORM 4HAN /

DATA START/.TRUE./

DATA UCAS/4HUCAS/

DATA R/1HR/

INU=S
c
c
c
Cxs FOLLOWING STATEMENTS INITIALIZE THE ASSOCIATED VARIABLE
c FCR EACH OF THE 4 LEVELS AND A DUMMY FILE IN ORDER.
€~ AT THE CONCLUSION OF EACH READ OR WRITE OPERATION, THE
c ASSOCIATED VARIABLE IS SET TO A VALUE THAT POINTS TO THE
c RECORD THAT IMMIDIATELY FOLLOWS THE LAST RECORD TRANSMITTED
c UNLESS OTHERWISE THE ASSOCIATED VARIABLE IS SET TO SOME
c OTHER VALUE AT A PARTICULAR INSTANT IN THE PROGRAM
C
[
c
1D1=1
1D2=1
103=1
ip4=y
1015=1
C
Ce* UNIT NUMBER FOR LEVEL1l FILE
C
LEV1=1
C
~C#* ~UNIT NUMBER FOR LEVEL2 FILE ' -
C
LEV2=2
(' e ———
T*xx UNIT NUMBER FOR LEVEL3 FILE
c
LEV3=3
c
Cx* UNIT NUMBER FOR LEVELY4 FILE
c
LEVUY=Y4
C o
Cx* UNIT NUMBER FOR DUMMY FILE USED WITHIN THE PROGRAM
o
DUMY=15
c
Cxx MAXIMUM NUMBER OF CASE POINTERS TO LEVEL3 IN A FIXED LENGTH
c BLOCK
C
MAXCAS=50
C
Cxx SIZE OF THE FIXED LENGTH BLOCK.ONE MORE THAN THE MAX IMUM
o NUMBER OF CASE POINTERS TO LEVEL3

90

BLKSYZ=MAXCAS+1
LEV2A=16
DO 193 1=1.,100

193 SITREF(I)=0
DO 199 1=1,200

199 CASREF (I)=0

TTTWRITE(LEV1"1) NSITESSITREF
WRITE(LEV2'1) NREC2
WRITE(LEV3*1) NREC3
WRITE(LEV4'1) NRECH
c

Css READ COMMAND AND SITE NUMBER OF A PARTICULAR CASE TO BE
c PROCESSED
c
56 READ(5+100+END=3000) CMD,SITNUB.CASNUB
106 FORPATIAH,214)
WRITE(64+62} CMD
62 FORMAT(1H1s*COMMAND=' A4)

(s RN gl al

% CCEMAKD 1S ANY ONE OF THE FOLLOWING
- CREATING A NEW SITE °*NSIT®
- UPDATING A CREATED SITE ‘USIT®

ﬁ|ﬁﬁﬁﬂﬁﬂﬁﬂ

- CREATING A NEW CASE OF THE CREATED SITE °'NCAS'

- UPGATIMG LEVEL3 BLOCKS FCR DATA POINTERS TO LEVELY4 FOR
EMISSIGNMETEOROLOGICAL AND/OR GENERAL POINTERS FOR A
PARTICULAR CASE ‘UCAS'

IFICKD.EQ,NSIT) G0 TO 1000
IF(CMD.EQ.NCAS) GO TC 2000
IF(CMD.EQ.UCAS) GO TC 2003
IF(CMD.EQ.USIT) GO TO 1001
IFICMp0.EQ.END) GO TG 3000

WRITE(6.46)
6 FORERAT(1X o '%:kkkkkkxkhkhkakrkrkkkkxx ERROR - CHECK DATA FOR THE C
T T XONMAND CARD *®kkkkkkkkkkkkdkkkrkkkkkkhk?)

_sTOP

C#* CREATING A NEW SITE
1000 READ(LEV1'1) NSITESsSITREF
C¥* READ THE NEXT AVAILABLE UNUSED RECORD ON LEVEL2 FILE
 READ(LEV2'1) NREC2
C#x READ THE NEXT AVAILABLE UNUSED RECORD ON LEVEL3 FILE

READ(LEV3*1) NREC3

91

% READ MASTER INDEX FILE - AIRPORT OR HIGHWAY .WIND SPEED

c

c GEOGRAPHICAL CONFIGURATION.POLLUTANTS+NUMBER OF SITE
c DESCRIPTION ENTRIES. ETC.

C

C

READ(5,+700) (MASIND(I)I=1+35)
700 FORMAT(9AG.1014/ 12Tu.u4Au)

NCARD=MASIND(29)
ID4=NRECH
NSAVR4=NRECY
WRITE(LEV4*ID4) NCARD
DO 7 I=1+NCARD

TREAD(5+580) SITDIS
WRITE(LEV4*ID4) SITDIS

7 CONTINUE
MASIND(30)=NRECH
NREC4=ID4
WRITE(LEV4*1) NRECH
MASIND(29)=NREC2
MASIND(31)=0
IF(SITREF(SITNUB) «NE.O) GO TO 191
SITREF(SITNUB)=NSITES
ID1=NSITES
NSITES=NSITES+1

WRITE(LEV1®ID1) MASIND
ID2A = (SITNUB-1) * 5 + 1
WRITE(LEV2A'ID2A) CASREF
WRITE(6+63) MASIND

63 FORMAT(1X+9A4+10I4/1%+12I4+4AH)
WRITE(LEV1®1) NSITES+SITREF

c

Cxx* INITIALIZE LEVEL2 PGINTERS

C .
DO 10 I=1.,BLKSYZ
POINT(I)=0

10 CONTINUE

ID2=NREC2
WRITE(LEV2'ID2) POINT
NREC2=1ID2
WRITE(LEV2°'1) NREC2
G0 TG S50

T Cxx* UPDATING A SITE

1001 READ(LEV1*1)NSITESSITREF
IF(SITREFISITNUB) «EG.0) GO TO 197
READ (5,700) M IND
NCARD= MIND(Z29)

“IB4=NSAVRGY ~

WRITE (LEV4*ID4) NCARD
DO 9001 I=1.NCARD
READ (5,700) SITDIS
WRITE (LEv4'ID4) SITDIS

9001 CONTINUE

T IUI=SITREF (SITNUB)

92

22

s ¥sXaXaksllake
*
»

READ (LEV1°'ID1) MASIND
ID1=SITREF(SITNUB)
MING(29)=MASIND(29)
MIND(30)=MASINC(30)
MIND(31)=MASIND(31)
WRITEL(LEV1'ID1) MIND
GO TO S0 °

CREATING A NEW CASE FOR ThE CREATED SITE

READ(LEV3*1) NREC3
ID2A = (SITNUB-1) * 5 + 1

READ(LEV2A'ID2A) CASREF

WRITE (6+22) NREC3

FORMAT (1X+* NEXT AVAILABLE UNUSED RECORD OM LEVEL3 = v,14)
READ(LEV4"1) NRECUY
READ(LEV1'1) NSITESsSITREF
ID1=SITREF (SITNUB)
READ(LEV1*ID1) MASIND
MASIND (31)=MASIND(31)+1
NCASES=MASIND(31)

CASREF (CASNUB)= NCASES

ID2A = (SITNUB-1) * 5 + 1
WRITE(LEV2A'IC2A) CASREF
ID1=SITREF (SITNUB)
WRITE(LEV1*ID1) MASIND
WRITE(6+63) MASIND

" FOLLOWING ~~ STATEMENTS DETERMINE NUMBER OF BLOCKS REQUIRED

FOR LEVEL2 FILE + INITIALIZE BLOCKS IF MORE THAN ONE NEEDED
FOR LEVEL2 FILE « READ AND WRITE ON LEVEL2 FILE APPROPRIATELY

~ IPSV=MASIND(29)

€5

702

NCASES=MASIND(31)

IDEEP=(NCASES-1)/50

ICASE=MOD (NCASES=1+50)+1

IF (IDEEP.EG.0) GO TO 2020

DO 2001 I=1,IDEEP

READ(LEV2*IPSV)POINT

READ(LEV2'1) NREC2

WRITE(6+65) NREC2

FORMAT (1X+ *NEXT AVAILABLE UNUSED RECORD ON LEVEL2 = *+I4)
WRITE(6+702)

FORMAT (1X, *LEVEL2 - POINTERS TO LEVFL3')
WRITE (6466)POINT

66

2001
2020

4000

FORMAT(1X+301%)

IPSV= POINT(51)

CONTINUE

CONTINUE

MAXI=(IDEEP%50)+50
IF(NCASES.EQ.MAXI) GO TO 4000
GO TO 4001

CONTINUE

93

8004

4001

*
»*

[aNeEesEsEnEalgNeXeN el

69

183

184

182
93

POINT(51)=NREC2
WRITE(LEV2'IPSV) POUNT
NREC2=NREC2+1D2-IPSV
DO 8004 I=1,BLKSYZ
POINT(I)=0
WRITE(LEV2*1D2) POINT
WRITE(LEV2'1) NREC2
READ(LFV2*IPSV) POINT
POINT(ICASE)=NREC3
WRITE(LEV2'IPSV) POINT

"READ(LEV2*1) NREC2

ARITE(4.65) NREC2
WRITE(54702)
WRITE(6466)POINT
1D15=1
READ(LEV4*1) NRECH

FOLLOWING STATEMENTS REAC DATA FROM CARDS AND WRITE THEM
ON DUMMY UNIT TILL THE COMMAND IS °*FORMAN®

WRITE(6+67)

FORMAT(1X+*DATA VALUES COMING IN')
READ(INU+S) DAT

FORMAT(20A4)

IF(DAT(1) .NE.FRMN(1)) GO TO &
IF(DAT(2) NE.FRMN(2)) GO TO 4
I1D15=1

GO TO 2

WRITE(6+68) DAT

FORMAT (1X+20A4)
WRITE(DUMY®*ID15) DAT

GO TOo 2002

READ TO WHAT BLOCK GF LEVEL3 THE DATA BELONG - EMISSIGN,
METEOROLOGICAL OR GENERAL +HEADER NUMBERCOMMAND TO READ THE
NEXT DATA CARD(FIRST CARD) OR READ THE PRESENT DATA CARD
FIRST AND LAST SUBSCRIPTS FOR STORAGE IN THE VECTOKk FORM.
REPEAT COMMAND TO READ THE DATA IN THE FORM K#A+THE FORMAT
CONTROL WITH WHICH TO REAL THE DATA VALUES

WRITE(6+69)

FORMAT(1X+*FORMAN COMMANLS?')

READ(5+3) BLCK!ITEM'HEADER'CARDONWORD'IST!IENDIREPT'VARN'FMT
IF(BLCK.LE.O) GO TO 184

GO TO 182

1I015=1D15+1ABS(BLCK)

GO TO 183

WRITE(64+93) BLCK'ITEM'HEALER!CARD'NWORD'IST!IEND!REPTOVARN'FMT
FORMAT(IX.Ilv13.12'A1'I2.214.A1.15Au)

DMYHDR=HEADER

Cxx*x

IF HEADER IS ZEROs THE DATA BELONG TO THE CASE

94

C ALREADY CREATED BEFURE + GO TO STATFMENT NUMBER 206U AND FIND
C THE HEADER NUMBER
c
B S A E i
IF(HEADER.,EQG.0) GO TO 2060
ID4=NRECH
ISAVE=NRECH
WRITE(LEV4'IDY4) HEADER
NREC4=ID4
c
c
Cxx IF HEADER IS NOT EGQUAL TO ZERO+ READ APPROPRIATE HEADER
C DETAILSy FOR EXAMPLEs» HEACER NUMBER 2 HAS FORM NUMBER.,
C UNIT NUMBER AND NUMJER OF VECTORS AND SC ON FOR OTHER HEADERS
c
c

GO TO(500+501¢502¢503+504+¢505¢506+¢507+508+¢509¢510+511) HEADER
500 READ(S+580)FORMUNITS
NELMNT=1
GO TO 550
- 501 READ(5+580)FORM+UNITS«NROWS
NELMNT=NROWS
GO TO S50
502 READ(S5+580)FORM(NROWS
READ(5+590) (VUNITS(I)+I=1.NROWS)
NELMNT=NROWS
GO TO 550 -
503 READ(5+580)FORMsUNITS+NROWS+NCOLS
NELMNT=NROWS*NCOLS
GO T0 550
504 READ(S5«580)FORMyNROWS+NCOLS
READ(5¢590) (VUNITS(I)e+I=1.NCOLS)
NELMNT=NROWS*NCOLS
G0 Y0 550
505 READ(S5+580)FORMyUNITSeNXsNY DX DY o XU YOsNVAL
READ(5+¢590) (VUNITS(1)eI=1+NVAL)
NELMNT=NX*NY
GO TO 550
506 READ(5+580)FORMUNITS NPTS NVAL
READ(5+590) (VUNITS(1)«I=1.NVAL)
READ(S+595) (X(I)esY(I)sI=1+NPTS)
NELMNT=NPTS
GO TO 550
507 READ(S5+581)FORMUNITS+NROWS+NCOLS+NLEVS
NELMNT=NROWS*NCOLS*NLEVS
GO TO 550
508 READ(5¢581)FORMsUNITS oNXeNYsNZsDXeDYsD29X0eY0eZ0sNVAL
READ(S5+590) (VUNITS(I)esI=1sNVAL)
NELMNT=NXxNY=%xN2
GO TO 550
509 READ(S5+580)FORM+UNITS+NPTS+NVAL
READ(5¢590) (VUNITS(I)+I=1+NVAL)
READ(S5+¢596) (X{I)sY(I)sZ(I)eI=1+NPTS)
NELMNT=NPTS
GO TO S50

95

510
511
550
580
590
595
581

596

GO TO 550

GC TO 550

CONTINUE

FORMAT(4I4.2E15,7/72E15.7414)
FORMAT(SI4)

FORMAT (4E£15.7)

FORMAT (S5I443E15,7/3E15.714)

FORMAT(3E15.7)

601
606

oooOMNmOOOn
%*
»*

111

407

401
421

405

FORMATU(IX . 71%)
FORMAT(1X+6E15.7)

FORMAT(IZ3I3¢I2:A1+12+2I4+A1+415A)
GO TO 999
FOLLOWING STATEMENTS FIND HEADER NUMBER FROM LEVELY FILE

FOR A CREATED CASE TO UPDATE THE LEVEL4 FILE(STANDARD DATA BASE)
KNOWING THE SITE NUMBER AND THE CASF NUMBER FOR THE CASE
TO BE UPDATED

Ip1=SITREF(SITNUB)
READ(LEV1*ID1) MASIND

IC2A = (SITNUB-1) * 5 + 1
READ(LEV2A*ID2A) CASREF

IF (CASREF(CASNUB) +EG. 0) GO TO 195
NCASES = CASREF (CASNUB)
IREC2=MASIND(29)
READ(LEV2*IREC2) POINT
IF(POINT(S1).EQ.0) GO TO 407
IREC2=POINT(51)

GO TO 111

IF(BLCK.EG.1) GO TO 401
IF(BLCK.EQ.2) GO TO 402
IF(BLCK.EQe3) GO TO 403
IREC3=POINT(NCASES)
READ(LEV3*IREC3) IPOINT
IF(IPOINT(S51).EQ.0) GO TO 405
iREC3=IPGINT(51)

GO TG 421

IREC3=POINT(NCASES)
IFEC3=IREC3+1REL
READ(LEV3'IREC3) IPUINT
IF(IPOINT(51).EQ.0) GG TG 4uLS
IREC3=IPOINT(51)

GG TO u2e

IREC3=POINT (NCASES)
IREC3=IREC3+2*IREC
READ(LEV3YIREC3) IPUINT
IF(IPOINT(51).EQ.0) GG TO 405
IREC3=IPOINT(51)

GO TC 423

IREC4=IPCINT(ITEM)
READ(LEV4'IREC %) HLADER

96

¥*
*

TEST -IS THIS FIRST DATA (AKD (READ IN BY PEAD STATEMENT NUMBERED
2)

YES - SET START =.FALSt.
NG = TEST 70 READ THE PRESENT RFCORD GR THE NEXT RECURC

[aNaNaNal ol ol el ol

999 IF(START) GO Tu 51
52 IF(CARD,EQ.ASTRIC) ©C Tu b3
IC15=1C15-1

GL TO 53
51 START=.FALSE.
GC TG 52
L
Cxx TEST - DATA COMING IN IS IN THE FOR.- OF K%A
L
53 IF(REPT.NE.R) GO TC 48O
IF(VARN +EQ. INT) GC TG Sut
READ(DUMY*ID1S5,FMT) VAK(IST)
NEX=IST+1
DO 485 I=NEXsIEND
48% VAR(I)=VAR(IST)
6o Tu 11
480 IF(VARN oG« INT) 60O TO 941
GO TO 946
944 READ (CUMY'ID1S+FMT) IVAK(IST)
NEX=IST+1
DO 943 I=NELX.ILND
943 VAR(I)=IVAR(IST)
GO TO 11
941 READ (DUMY'ID15+FMT) (IVAR(I)I=IST IENC)
DO 945 I=IST+IEND
945 VAR(I)=IVAR(I)
GO Tu 11
946 READ (DUMY*ID154FMT) (VAR(I)+I=1ST,IFND)
11 CONTINUE -
IF(DMYHDR.EQG.G) GO TG 85¢
C
C
C*% TEST - IS LEVELY TO EE CREATED
C YES - INITIALIZE LEVEL3 ELOCKS(EMISSICN METEOROLOGICAL AND
C GENERAL)
¢ M0 = 60 TO STATEMENT MUMBER 2061 TC TEST WHICH GF THE AROVE
c THREE BLOCKS THE DATA BELONG TO
c
c
. IF(CMD.NE.NCAS) GO TO 2061
12 DO 35 I=1.BLKSY2
35 IPOINT(I)=0
- ID3=NREC3 »
WRITE(LEV3'ID3) IPOCINT ' T T
c
Cxx NUMBER OF RECORDS REGUIRED FOR EACH OF THE THREE BLOCKS OF
c LEVEL3 FILE
c

97

WRITE(LEV3*ID3) IPOINT
WRITE(LEV3*ID3) IPOLNT
NSAVE=ID3
WRITE(LEV3"1) NSAVE

'

C L] I
C

C*% TEST - DOES DATA BELONG TG EMISSION POINTER

c YES - WRITE POINTER TO LEVELY FILE

c NO - TEST IF DATA BELONGS TO NETEOROLOGICAL POINTER
C

c YES - WRITE POINTER TO LEVELY4 FILE

=3 NO = TEST IF DATA BELGNGS TO GENERAL POINTER
o

C YES - WRITE POINTER TO LEVELY4 FILE

C NO - CHECK DATA FOR VARIABLE 'BLCK®

C

C

d

2061 IF(BLCK.NE.1) GO TO 31
ID3=NREC3
READ(LEV3*ID3) IPOINT
IPOINT(ITEM)=ISAVE
ID3=NREC3
WRITE(LEV3'1D3) IPOINT
GO TO 32

31 IF(BLCK.NE.2) GO TO 33
ID3=NREC3+IREC
READ(LEV3*I03) IPOINT
IPOINT(ITEM)=ISAVE

ID3=NREC3+IREC
WRITE(LEV3'ID3) IPOINT
G0 TO 32
33 IF(BLCK.NE.3) GO TO 3000
ID3=NREC3+2*%IREC
READ(LEV3t1D3) IPOINT
IPOINT(ITEM)=ISAVE
ID3=NREC3+2*IREC
WRITE(LEV3*ID3) IPOINT
32 ID3=NREC3
WRITE(6+71)
71 FORMAT(1X,.°LEVEL3 - POINTERS TO LEVFLY4")
READ(LEV3*ID3) IPOINT
WRITE(64+72)
72 FORMAT(1X.'EMISSION POINTER BLOCK®)
WRITE(6+23) IPOINT
READ(LEV3°ID3) IPOINT
WRITE(6+73)
73 FORNMAT(1Xs "METEOROLOGICAL PCINTER BLOCK?®)
WRITE(6+23) IPOINT
READ(LEV3*ID3) IPOINT
WRITE(67T4)
74 FORMAT(1X.'GENERAL POINTER BLOCK?®)
NRITEQG.23) IPOINT
23 FORMAT (1X,30I4)

98

900
901

902

903

904
905
906
907
908

909

910
911
930

850
75

76

800

801

802

FOLLOWING STATEMENTS+DFPENDING UPON HEADERWRITE HEADER
DETAILS ON LEVEL4 FILE

T04=NRECH _

GO TO(900+901+902,903,904,905,906+907,908+909+910,911) 4HEADER
WRITE(LEV4'ID4)FORMJUNITS

GO TO 930

WRITE (LEVY4*ID4)FORM,UNITS,NROWS

GO TO 930

WRITE (LEV4*ID4)FORM(NROWS

WRITE (LEV4*ID4) (VUNITS(I)+I=1+NROWS)

Go TO 930

WRITE (LEV4*ID4)FORMsUNITS «NROWS +NCOLS

GO TO 930

WRITE(LEVY4*1DY4)FORM¢NROWS«NCOLS

WRITE(LEVY4*ID4) (VUNITS(I)+I=14NCOLS)

Go To 930

WRITE(LEV4'ID4) FORMsUNITSNXoNYsDXsCYeX00YONVAL
WRITE (LEV4*ID4) (VUNITS(I)sI=14NVAL)

GO TO 930

WRITE(LEV4'ID4)FORMsUNITS 'NPTSNVAL
WRITE(LEV4*ID4) (VUNITS(I)sI=14NVAL)

WRITE(LEVAYIDGET (X(TY+Y{IV+I=1+NPTS)

GO TG 930
WRITE(LEVY4*ID4)FORMsUNITS+NROWS+NCOLSNLEVS
GO TO 930

WRITE(LEV4*ID4)FORMUNITS NXsNY«NZeDXeDYsDZoX0+Y0eZ20sNVAL
WRITE(LEV4'IDY) (VUNITS(I)+I=1+NVAL)

GO TO 930
WRITE(LEV4'ID4)FORM+UNITS«NPTS«NVAL
WRITE(LEV4'IDY) (VUNLITS(I)I=1+NVAL)
WRITE(LEVY'IDU) (X(I)aY{I)sZ(I)eI=1+NPTS)
GO TO 930

CONTINUE

CONTINUE

CONTINUE

ID4=NRECH

READ (LEV4'ISAVE)HEALER

WRITE(6475)

FORMAT(1X «'HEADER NUMBER®')

WRITE(6.601) HEADER

WRITE(64+76)

FORMAT (1X*HEADER DETAILS?)

GO T0(800,801,802,8u3,804,805,806,807,808,809,810,811),HEADER
READ (LEVU4'ID4)FORMIUNITS

WRITE(E6+601) FORMyUNITS

NELMNT=1"

GO TO 830

READ (LEV4'ID4)FORMeUNITS«NROWS
WRITE(6+601) FORMyUNITS+NKOWS
NELMNT=NROWS

GO TO 830

READ (LEV4'ID4)FORMNROWS

READ (LEV4°IDY4) (VUNITS(I)+I=14NROWS)

99

803

804

80%

807

809

810
Cxx

811
Cx*

T30 ConTINUL

C
C

L
Cx%k

CE

WRITE(6+601) FURMJ+NKOWS

WRITE(6+601) (VUNITS(I)sI=1+NROWS)
NELMNT=NROWS

GO TO 830

READ (LEV4*ID4)FORM+UNITS.NROWS+NCOLS
WRITE(6+601) FORMsUNITS+NROWS+NCOLS
NELMNT=NROWS*NCOLS

GO To 830

REAC (LEV4'ID4)FORM NROWSWNCGLS

READ (LEV4°ID4)(VUNITS(I)+I=1:NCOLS)

WRITE(6+1601) FORMJNROWSsNCOLS

WRITE(64601) (VUNITS(I)sI=14NCOLS)
MELMNT=NROWS*NCOLS

GO TO 830

READ (LEV4°*ID4) FORMsUNITSNXsNY+DXeDYeX0eY0sNVAL
READ (LEV4*ID4) (VUNLITS(I)+I=14NVAL)

WRITE(6+601) FORMJUNITSNXoNY

WRITE (6+606) DX+DY1X04+YO

WRITE(64+601) FORMUNITS NPTSsNVAL
WRITE(6+601) (VUNITS(I)eI=1sNVAL)
WRITEL(64606) (X(I)eY(I)eI=1sNPTS)
NELMNT=NPTS

GO 70 830

REAU (LEV4*IDY4)FORM+UNITSNROWS+NCOLSNLEVS
WRITE(S+601) FORMsUNITS+NROWS ¢+ NCOLS «NLEVS
MELMNT=MNROWS*NCOLS*NLEVS

GO TOC 330

READ (LEVQ'ID“)FORMQUNITStNXvNY'NZ'anDY'DZ|XO0Y00200NVAL
"READ (LEVGYTID4) (VUNITS(I)+I=14NVAL)
WRITE(S5+601) FORMGUIIITSeNXeNY s Hi2
WRITE(G6«606)EL CDXeDYsDZ2eX04Y0420
AITE iAe601INVAL (VUNITS(I)«I=1eNVAL)
MNELMNT =MX¥HY *NZ

GU TO 830

REAL (LEV4'IDY)FORMUNITS«NPTSeMNVAL

FSAD (LEV4'IDY)(VUNITS(I)HI=1.LVAL)

READ (LEVHYIDY)(XCI)oY(I) 2 Z2(I)eI=1sNPTS)
AXIV1E153:602) FORMGUNITSsNPTSeNVAL

WHRITE 246037 (VUNITS(I)eI=1sHNVAL)
AaNITELZ24006) (XCINaY(1)a2(I)eI=14nNPTS)
MeLmMNT=NPTS

5019 =30

CUNTINUE .

I (aemlad HEACER NUMBER 22

CONTIN'IL

wdT 7 v 5em12) HEADER NUMgEr 12

T4 " « 1S HEAJER ZPERC
YES - THE CASE IS ALKEADY CREATED.UPDATE LEVELY4 FILE

CE
Ct

IF NFECESSARY
NO = 'THIS IS A NEW CASE BEING CREATED.ZERO OUT THE

100

CC " SPACE FOR THE PARTICULAR CASE WwITH THE NUMBER
CE l-E'58

IF(DMYHDR.EweD) GO TO 8000
DO 38001 I=1,NELMNT

8001 VVAK(I)=1.E~-38

8000 IF(IST.GT.NELMNT) Gu TO 189
IF(IENCLGTLMNELMNT) GO TO 189

REC4=]ICT4y
IF(DMYHDR.EQe0) READ(LEVL*IDY)(VVAR(I) «I=1«NELMNT)

DO 80u2 I=ISTIEND
8002 VVAK(I)=VAR(I)

ID4=RECY
c
Cxx WRITE DATA VALUES ON LEVELY FILE
C .

WRITE(LEV4*IDY) (VVAR(I)eI=1+NELMNT)
IC4=RECY
READ (LEvU*IDY) (VVAR(I)+I=1 NELMNT)
WHITE(S4TT7)
T7 FuRMaT(1X,*"DATA VALUES OMN LFVELY - THAT IS ON THE STANDARD DATA BA
XSzZ*)
WAITE(5e24)E (VVAR(I)eI=2 oNELMNT)
24 FORMAT(1X+BE15.8)
17 CINTINUL
- TFLLEYRDE Lled) GO T0 185
GrECU=Tos T o
185 AH_TE(LovVu®l) NHECH
' Roan(lLivael)y LURECH
atITL (SeT8) HRECH

78 FoR&AT LY *EXT AVALLARLE ULUSED RECCRD GN LEVELY = ',I4)

c [T ——
C

ot T3 HE NS 2% NEXT CUMMANG

£ TIST = IS COMMAND *SIT®

1
it YOS = KIREAD THE PREVIOUS CARD AND G0 TC STATEMENT NUMBER 50
E N3 - TEST - IS COVMAnD °*USIT®

;[YIS = b al Tt PREvIOUS CARLD %D Gu TO STATEMENT NUMBER 50
£ 9 = TTST = 1S COVMLRD *NCAS?

;f YOS = - &%cAD Ter FRreEvTOUS G20 A0D Gu TO STATEMENT NUKMBER 56
-t N - TTST = L5 COWYAND fJuas®

t Yo~ = e

Tk FEvIlUS CARD QD oL TO STATEMENT NUMBER S0
L2 R

S ToMViiel 'EDe

C Yis oo v 0 Teg Ao llds JrRL ARD 6L TO STATEMENT MUMBER 5C
< "W ST Tl SReVICUS ok RN GO TC STATEMENT NUMBER 2

101

L AL e D1 YT
1ul ~SPwA (A
1F (CMUGCW.NSIT) GO TU 1u2

IF((MUeLW.USLIT) GG TO 102

IF (CMUEWeNCAS) GO TCQ 102

TF(CMO.Lw-UCAS) LG TO 102

1H (LTl el END Yy {0 T 3udu
(IACASPNCE B
-3 Tu ?

102 BACKSHAZE 5 -
G0 TO 5S4)

189 wRITE (£+:187) SITNUt«CASNUB

187 FORMAT(1H1 ' =*sxxe*s=<+#ETHE SPACE PROVIDED ON THE DISK IS NOT ENOU
XGH FOR SITE B *eI6e2Xe*'CASE 8§ *eI6e2X " Roxknsnsx’)

Hi, T 3000

191 4XITL(6+192) SITE

192 FORMAT(1HLl.v#+=#¢«x SITE # *+I6+°1IS ALREADY ON THE DATA BASE. CHEC
XK THE INPUT FOR MASIMND(1) #*xskwxkkkssx?)
o T 2000

195 d%2Tt (A+194%) CASNUB

194 FUKMBT (LHle#&sssxxssx CASE*+I6+2X+*CANNOT BE UPDATEDs AS IT IS
X*T2T YUT CREATED *#xsdxxss«?) - .
52 T2 3hon

197 #RITL (A+198) SITHUE

198 b ORMAT (1 il tenxters sl SITE* s I692Xs *CANNTT BE UPDATED. AS IT IS
X7 YT (RLATED skakexexxn?)

3060 100

3 o

kxxxxxkkhkrheskx DATA RETRIEVAL SYSTEM sxxsksdxkpkkkixkkk

DARES

OO0 0O0O0O000

Cx**#* THIS PROGRAM CREATES DATA DECK FOR TEST MOCEL TO RUN x*xx
Cxxxxxxxxx USING STANDARD DATA BASE CREATED BY FORMAN #*®¥*%kkkxx

(o N o

OARES

sNeNellsNeNaNg!

102

LOGICAL FIRST

LOGICAL START

INTEGER CASREF (200)+CASES

INTEGER ATYPEREAL

INTEGER SITREF (100)

INTEGER HEADER

INTEGER VUNITS(100)

INTEGER POINT(51)

INTEGER DUMY

INTEGER OUT.CASE

INTEGER FORM+CONV14CONV24CONV3DFAULT
INTEGER SITE

DIMENSION STOR(100)+ISTOR(100)
DIMENSION X(100)+Y(100)+2(100)
DIMENSION ADAT(80)

DIMENSION IPOINT(51)+MASIND(35)
DIMENSION DAT(80)+FMT(15)+VAR(100)+IVAR(100)
EQUIVALENCE (STOR.ISTOR)

EQUIVALENCE (POINT,IPOINT)

DATA FIRST/.FALSE./

DATA ID1,ID2+ID3+ID4% /1114141/

DATA START/.TRUE./ .

DATA RET+CARDIEND/4HRET +4HCARD ¢« 4HEND /
DATA INB+ING«OUT/14141/

DATA 18+DARES/2+4HDARE/

DATA RETA+APND+DATA/4HRETA «4HAFND s 4HDATAYZ
DATA OVERCOPY +BLANK/4HOVER 4HCOPY ¢ 4H /
DATA ONEBLK/1H /

DATA INTREAL/BHINT +4HREAL/

DEFINE FILE 1 (105:250+L+IC1)

DEFINE FILE 2(500+210+sL+102)

DEFINE FILE 3(500+¢210+L+ID3)

DEFINE FILE 4(500+804+L+ID4)

DEFINE FILE 8(50+320+L+INB)

DEFINE FILE 9(50+320+L¢IN9)

DEFINE FILE10(504320+L+0UT)

DEFINE FILE15(50+320.+LIDUM)
DEFINE FILE 16(500+210.L+ID2A)
LEV2A=16

I0UT=1

KOUNT=1

c
Cxx
c .

UNIT NUMBER FOR LEVEL 1 FILE
LEV1=1
UNIT NUMBER FOR LEVEL 2 FILE
" LEv2z2

UNIT NUMBER FOR LEVEL 3 FILE

103

LEV3=3

c
Cxx UNIT NUMBER FOR LEVEL 4 FILE
c
LEV4=4
c
Cxx UNIT NUMBERS FOR DUMMY FILES
c
DuMY=11
IDUMY=15
C

C** READ DATA AND WRITE ON UNIT 8 TIL THE COMMAND IS °*DARE’

1 READ(5+100) (DAT(I)sI=1.20)
100 FORMAT(20A4)
IF(DAT(1) ,EQ.DARES) GO TO 200
WRITE(B8*IN8+100)(DAT(I)eI=1,+20)

GO TO 1
200 CONTINUE
INB=1
3 READ(5+100+END=300)(DAT(I)+I=1+20)
C
Cx* WRITE INPUT DATA DECK ON UNIT 9
C
WRITE(9'IN9,100) (DAT(I).I=1,20))
GO 10 3
c
Cx* ZERO OUT ARRAY °‘DAT'
c

300 DO 40 I=1.,80
40 DAT(I)= ONEBLK

INS=1
c
Cx* READ IN SITE NUMBER AND CASE NUMBER
C

1002 READ(9'IN9+3601) SITE.CASE
3601 FORMAT(2I4)

_ ISTOP=0
c
Cx*x READ IN TYPE DEPENDING UPON THE TYPE OF DATA DECK 70 BE
C GENERATED
c

2 READ(9'IN9+3602) TYPE
3602 FORMAT(AY)

C
Cxx BACKSPACING ON UNIT 9 FOR REREADING THE SAME RECORD

IN9=IN9-1

*% TEST - TYPE EQUALS TO °RET’
YES - GO TO STATEMENT NUMBER 1000

OO0 0

104

ooo0coOoOOO0O0O000O0000O00O0O0OO000

3603

aNeoNasNeRaNaNaN el
»*
%*

111
c

NO TEST - TYPE EQUALS TO °*RETA’
YES GO TO STATEMENT NUMBER 1000
N0 = TEST - TYPE EQUALS TO °*CARD®

r

YES - GO TO STATEMENT NUMBER 2000
NO =~ TEST - TYPE EQUALS TO ‘END®

YES = GO TO STATEMENT NUMBER 3000
NO - TEST - TYPE EQUALS TO °*APND®

YES - GO TO STATEMENT NUMBER 5001
NO - READ IN TYPE+COMMAND+TYPE OF VARIABLE(REAL OR INTEGER).
FORMAT CONTROL WITH WHICH TO READ DATA VALUES ETC,

IF(TYPE .EQ. RET) GU TO 1000
IF(TYPE.EQ.RETA) GO TO 1001

IF(TYPE LEG.,CARD) GO TO 2000

IF(TYPE .EG., END) GO TO 3000
IF(TYPE.NE.APND) GO TO 5001
READ(9'IN9+3603) TYPE«CMD+ATYPE +NWORD +FMT
FORMAT (3A4, 144+15A4)

GO TO 51

READ IN TYPEJ.LEVEL3 BLOCK (EMISSION.METEOROLOGICAL

OR GENERAL) ITEM NUMBER OF ONE OF THE LEVEL3 BLOCKS»
CONVERSION FACTORS 1 AND z .DEFAULT FACTOR«FIRST AND LAST
SUBSCRIPTS FOR STORAGE IN THE VECTOR FORM

INI=0

READ(S'IN9+3604) TYPE.+LOC1.LCC2+CONV1«CONV2+DFAULT+ISTIEND
FORMAT (A4 ,11+413+21I44124214)

READ LEVEL 1 FILE(KNOWING THE SITE NUMBER)
READ(LEV1®*1) NSITES.SITREF
ID1=SITREF(SITE)

READ(LEV1*ID1) MASIND

POINTER TO LEVEL 2 FILE

IC2=MASIND(29)

READ LEVEL 2 FILE

ID2A = (SITE =1) *x 5 + 1

READ (LEV2A*ID2A) CASREF

CASES = CASREF (CASE)
READ(LEvV2*ID2) POINT

105

TEST - MORE THAN ONE BLOCK REQUIRED
YES - READ THE REST OF THE BLOCKS
NO - GO TO STATEMENT NUMBER 407 TO READ LEVEL 3 FILE

OO0

IF(POINT(51).EQ.0) GO TO uo07
NEXT2=POINT(51)
ID2=POINT(51)

G0 7O 111
C
c
c
C
Cxx TEST - EMISSION BLOCK
c YES - GO TO STATEMENT NUMBER 401
C NO =~ TEST - METEOROLOGICAL BLOCK
c
C YES - GO TO STATEMENT NUMBER 402
c NO - TEST - GENERAL BLOCK
c
C YES - GO TO STATEMENT NUMBER 403
c NO =~ TEST - WRITE THE ERROR MESSAGE 'CHECK DATA FOR LEVEL 3
c BLOCK .
c
C
C
C
407 IF(LOC1.EQ.1) GO TO 401
___IFQL0C1.EG.2) GO TO 402
IF(LOCl.EQ.3) GO TO 403
WRITE(6.+404)
404 FORMAT(1H1+'ERROR - CHECK DATA FOR LOC1')
STOP
401 ID3=POINT(CASES)
C
Cxx READ LEVEL 3 FILE (EMISSION BLOCK)
c .
421 READ(LEV3°ID3) IPOINT
c
c
c TEST - MORE THAN ONE BLOCK REQUIRED
C YES = READ THE REST OF THE BLOCKS
c NO = GO TO STATEMENT NUMBER 405 TO READ LEVEL 4 FILE
C
c
IF(IPOINT(51).EQ.0) GO TO 405
ID3=IPOINT(51)
GO TO 421
402 ID3=POINT(CASES)
READ(LEV3'ID3) IPOINT
c
Cxx READ LEVEL 3 FILE (METEOROLCGICAL BLOCK)
c
c

106

422 READ(LEV3*ID3) IPOINT

c
C
C TEST - MORE THAN ONE BLOCK REQUIRED
C YES - READ THE REST OF THE BLOCKS
C NO - GO TO STATEMENT NUMBER 405 TO READ LEVEL 4 FILE
(%
C
IF(IPOINT(51).EQ.0) GO TO 405
ID3=IPOINT(51)
GO TO 422
403 IL3=PCINT(CASES)
C

Cxx READ LEVEL 3 FILE (GENERAL RLOCK)

READ(LEV3'ID3) IPUINT
READ(LEV3*ID3) IPOINT
423 READ(LEV3*IC3) IPOINT

C
C
C TEST - MORE THAN ONE BLOCK REGUIRED
C YES = READ THE REST OF THE BLOCKS
c NO =~ GO TO STATEMENT NUMBER 405 TO READ LEVEL 4 FILE
c -
c
IF(IPOINT(51).EQ.,0) GO TO 405
ID3=IPOINT(51)
GO TO 423
405 I1Cu=IPOINT(LOC2)
C
Cxx READ LEVEL 4 FILE (HEADER NUMBER)
c
READ(LEV4*ID4) HEADLR
c

Cx* DEPENDING UPOI; HEADER NUMBER+READ HEADER DETAILS

GO TO (600+60116021603+604+605+606:1607+608¢609¢610+611) HEADER
600 READ (LEV4'IDU4)IFORMWUNITS
WRITE(6+801) FORMUNITS
NELMNT=1
GO TO 630
601 READ (LEV4'IDY)FORNMUNITS+«NROWS
WRITE(6.801) FORMyUNITS+NROWS
NELMNT=NROWS
GO TO 630
602 READ (LEV4'ID4)FORMNROWS
READ (LEV4*IDU4) (VUNITS(I)+I=1+NROWS)
WRITE(6+803) FORMeUNITSes (VUNITS(I)eI=1+NROWS)
MELMNT=NROWS
GO TO 630
603 READ (LEVH*IDY4)FORMUNITSNROWS+NCOLS
WRITE(6+801) FCRM UNITS NKOWS+NCOLS
NELMNT=NROWS#NCOLS
GO TO 630
604 READ (LEVY4'ID4)FORMNROWS.NCOLS

107

READ (LEV4°*ID4) (VUNITS(I)+I=1+NCOLS)
WRITE(6+805) FORMyNROWS+NCOLS+ (VUNITS(I)+I=1.NCOLS)
NELMNT=NROWS*NCOLS
Go TO 630
605 READ (LEVY4'IDY) FORMeUNITS+NXs+NYsDXeDYsX0eYOsNVAL
READ (LEV4*IDH) (VUNITS(I) I=1.NVAL)
WRITE(&6+806) FORMsUNITSoNXeNYsCXeDYoXOo YO NVAL s (VUNITS(I)I=1eNVAL
X)
NELMNT=NX«NY
GO TO 630
606 READ (LEV4°'IDY4)IFORV+UNITS+NPTS.NVAL
READ (LEV4*IDY4) (VUNITS(I)s+I=1+NVAL)
READ (LEV4*IDY4)I(X(I)eY(I)sI=1NPTS)
WRITE(5+4807) FORMsUNITSeNPTSsNVAL« (VUNITS(I}+I=1+NVAL)
X (XCI)eY(I)eI=1eNPTS)
NELMNT=NPTS
GO 70 630
607 READ (LEV4°*ID4)FORM«UNITS+NKOWS+NCOLS NLEVS
WRITE(6+801) FORMUNITSNROWS+NCOLS.NLEVS
NELMNT=NROWS*NCOLS*NLEVS
G0 TO 630
608 READ (LEVY4*IDY4)FORMIUNITSeNXsNYeNZsOXeDYsDZeX0+Y0sZ0oNVAL
READ (LEV4°*IDY4) (VUNITS(I) I=14.NVAL)
WRITE(6+809) FORMUNITSsNXeNY sN2Z+DXeDY+DZeX0eYOeZOWNVAL
X (VUNITS(1)+sI=1+NVAL)
NELMNT=NX*NY#*NZ
GO TO 630
609 READ (LEV4'IDY)IFORMUNITSNPTS«NVAL

READ (LEV4'IDH)(VUNITS(I)+I=1sNVAL)
READ (LEV4'IDH) (X(I)sY(I)eZ(I)sI=1eNPTS)
WRITE(64807) FORMoUNITSoNFTSeNVAL« (VUNITS(I)+I=1sNVAL)»
X (XCI)oaY(I)eZ({I)sI=1WNPTS)
NELMNT=NPTS
GO TO 630
610 CONTINUE
Cxx* WRITE(6+811) HEADER NUMBER 11
611 CONTINUE
Cxx* WRITE(6+812) HEADER NUMBER 12
GO TO 630
630 CONTINUE
801 FORMAT(1X+51I4)
803 FORMAT(1X+2I4+5E15.7)
805 FORMAT(1X+3I4+4E15.7)
806 FORMAT(1X 1 4I4+4E15.7+I4/1X45E15.7)
807 FORMAT(1X+4I4+5E15.7/1Xe4E15.7)
809 FCRMAT(1XeSI4+6E15.7+I4/1X¢5E15.7)

C
Cxx READ VARIABLE VALUES FROM LEVEL 4 FILE
C
READ(LEV4*IDY) (VAR(I)+I=1+NELMNT)
DO 61 I=IST.IEND
INI=INI+1

STOR(CINI)=VAR(I)
61 CONTINUE
GeC TO 2

108

ok TEST - LOGICAL VARIABLE START EGUALS TRUE

YES - GO TO STATEMENT NUNBER 11
NO - WRITE VARIAEBLE °*DAT®' ON UNIT 10

OO0 OO0

2000 IF(START) GO TO 11
WRITE(10°'I0QUT) DAT
I0UT=I0UT+1

11 START=,FALSE.
DO 41 I=1,80
41 DAT(I)= ONEBLK

c
Coax READ ON UNIT 9(TYPE,COMMAND TYPE OF VARIABLE.FORMAT ETC,)

o

READ(9*IN9+3603) TYPECMD+ATYPE +NWORDWFMT

TEST - COMMANCD EQUALS OVER (OVER WRITE COMMAND)
YES - GO TO STATEMENT NUMBER S
NO - TEST - COMMAND EGUALS DATA

* |
*

YES GO TO STATLMENT NUMBER &
NO - TEST - COMMAND EGUALS COPY (COPY COMMAND)

YES - GO TO STATEMENT NUNBER 7
NO WRITE THE ERRCR NMESSAGE °*ERROR - CHECK CMD®

[aNgloNalsNaleNoNeloNeloNalaNeNaNe

IF(CMD.EG.OVER) GO TC 5
IF(CMD.EG, DATA) GC TO 55
IF(CMD.EQ.,COPY) GO TO 7
WRITE(6.+8)

8 FORMAT(1H1+.'ERROR - CHECK CNMD')
501 FORMAT(80A1)

sToP

5 CONTINUE

IF(TYPE.,EQ.CAKD) READ(8'INB+501) DAT

(8]
[

*
*

TEST - VARIABLE TYPE INTEGER
YES - GO TO STATEMENT NUMBER 31
NO -TEST - VARIABLE TYPE REAL

YES - GO TO STATEMENT NUNBER 3¢z
NO - WRITE ERROr MESSAGE 'ERROR - CHECK ATYPE®

OO0OOOO0O00O0MNO0O0n

109

55

20

[eNaloNeoNoNaNe]
*
*

30

CONTINUE

IBGN=ISTOP+1
ISTOP=ISTOP+NWORD
IF(ATYPESEG.INT) GC TO 31
IF(ATYPLCLEG.REAL) GU TO 3¢

WRITE(6433)

FORMAT(1H1+*ERROR = CHECK ATYPE®)

STOP

CONTINUE

CHANGING VARIABLE NAME TO INTEGER VARIABLE NAME

DO 510 I=IBGN+ISTOP

ISTOR(I)=STOR(I)

WRITE (DUMY+FMT) (ISTOR(I)+I=IBGN+ISTOP)
GO TO 34

CONTINUE

WRITE VARIABLE VALUES WITH FORMAT CUNTROL ON DUMY UNIT
WRITE(DUMY+FMT) (STOR(1)+I=IBGNs+ISTOP)

REWIND DUMY UNIT

REWIND DUMY

READ DUMY UNIT AS VARIABLE °*ADAT®

READ{(DUMY,20) ADAT
FORMAT(80A1)
DO 30 I=1,80

TEST - VARIABLE °ADAT' EQUALS BLANK(1 CHARACTER BLANK)
YES = 60 TO STATEMENT NUMBER 30
NO - SET VARIABLE °'DAT®' EQUALS VARIABLE ‘*ADAT'

IF(ADAT(1).EQ.ONEBLK) GO TO 30
DAT(I)=ADAT(I)

CONTINUE

REWIND DUMY

GO TO 2

CONTINUE

IF(TYPE.EQ.CARD) READ(8°*IN8.501) DAT
GO TO 2

WRITE VARIABLE 'DAT® OGN UNIT 10(OUTPUT UNIT)

WRITE(10°'IOUT) DAT
IOUT=I0UT+1
WRITE(6+3500)
WRITE(6.3501)
K=I0uT-1

DO 3600 I=1,K

110

READ(10*I) DAT
WRITE(6+35) DAT
3600 CONTINUE
WRITE (6+3501)
3500 FORMAT(1H1+10X+*DARES OQUTPUT'//)
3501 FORMAT(LX o makok oo ohohok o ko ok ok ok o ok o ok ok o ok ok ook ok ook ok ok ok o o ok ok o o ook ook o o o o o ok o o o
Xesmmkrbmkkmbknikkk?)
35 FCRMAT(1X,80A1)
START=,.TRUE .
TNI=ZING+1
ICUT=1
REAQ(I*ING) CMD
TF{CMD.EC.DARES) GO TC 1002
GO TO 5004
5001 WRITE(6.5002)
5002 FORMAT{(1H1e **kkxxxxkxxx CHECK INPUT FOR VARIABLE TYPE., SHOULD BE O

XNE OF THE FOLLOWING - DARE+RET+RETA+CARD+APNDs OR END *¥kskkkxk?)
5004 STOP
END

111

EREEXERERRE S M 0 6

STANDAREL M O0DEL ouUTPUT

FEEEEEIXBEE

GENERATOR

J AOOCOOMOO0OCOO0OO0O00O

DEFINE FILE 21{(100+30+L+IC1)
DEFINE FItt 221560vitOvtvIn2)
DIMENSION ARKAY(1)

DIMENSION FMTT2Y

INTEGER SITE+CASE

INTEGER—FARRAY

DATA FMT /4H(6E1+4HS.8)/

INTEGER BLOCK

DATA NREC1+NREC2+LEV1sLEV2/ 2+2.21422/
WRITE (LEvV1*1l) NREC1

WRITE (LEV2°*1l) NREC2

REAT tCEVITI WNRECY

IC1=NREC1
WRITE (LEV1°*ID1) NREC2MOCELZSITEVCASE
NREC1=1D1

WRITE (LEV1*1l) NREC1 . T
READ (LEV2°'1) NREC2

LGC-N“E\-‘

WRITE (LEVZ*ID2«FMT) (ARRAY(I)I=1+FARRAY)
NREC2=1D2

WRITE (LEV2'1) NREC2

RETURN

END

A EEERS RN DI w0 T E

SRABFRIWUNY

ISP RSITTUN U ULt

LR

| 3

oOooNoOqocOacoOoOOoMOOoOoOnNnoO A

DEFINE FICE T (1052501017

DEFINE FILEL 2(500+2104L+IC2)

DEFINE FILE 3(S00+2IU.LIT3T
DEFINE FILE 4(500+.804L«ID%)

DEFINE FILET6 (5003210 LVIT2A)
DEFINE FILE 21(100430.L,IC1)

DEFINE FILCE 22(500+100Lv1IDZT
DIMENSION FMT(2)

DATA FMT 74RTBEL+3H5BT7
DIMENSION X(100)+Y(100)+2(100)

DIMENSION ARRAYT Sy S+100TVART Sv S«I00TVVARTIOOT

COMMON/FORSMG/MOGCEL +ON+ND«ARRAY s VAR SF

INTEGERSTTRUBTUASNUBTHLALTERYFURMyUNITOvOLLR

112

INTEGER SITREF(100)+CASREF(200) +MASIND(35)+POINT(51)¢IPOINT(51),
1VUNITS(100)
INTEGER SITE+CASE+SITEN+CASENBLOCK
INTEGER DN(S)NCU S.1007
DATA LEV1S.LEV2S /21.22/
DATA LEVISCEVZILEVZASLEVITLEVY 7172716V 3v9 7
DO 10 I= 1+ S
10 DN(I)=0
40 READ{(5+1+END=3000) MOCEL+SITE+CASE+BLOCK+ITEM
1 FORMAT(SI1H)

T CFr RETHIEVE MEASURED VACUES FROMTHE TAPS DATA BASE
c

—BtEKsBLOEK—
SITNUB=SITE
CASNUB=CASE
REAC (LEV1'1) NSITES.SITREF

2060 IC1=SITREF(SITNUB)
READ(LEV1*ID1) MASIND
1D2A = ¢SITNUB~Y *-5—+-% — - —— e —_—
READ{(LEVZA'IC2A) CASKEF
IF (CASREF (CASNUB) .tLQ@. 0) GO TO 195
NCASES = CASREF (CASNUB)
IREC2=MASIND(2Y)
111 READ(LEVZ2'IREC2) POINT
IF(PORNT(51).£E0.0) GU TO 467 = =
IREC2=POINT(51)
GO TO 111t
407 IF(BLCK.EG.1) GO TC 401
IF{BLCK.EQ.2) GO TO 402
IF(BLCK.EQ.3) GO TG 403
40— IRECI=POINTNCASESY
421 READ(LEV3*IREC3) IPOINT
IF(IPOINT(51).EQ0.0) GO TO #0S
IRECS=IPUINT{S1)
60 TO 421
402 IREC3=POINT(NCASES)
READHLEVI S IRECI T IPOINT T
IREC3=1ID3
422 READ(LEV3*IREC3) IPOIRT
IF(IPOINT(51).EG.0) GO TO 405
IREC3=IPOINT(S1)
GO TO 422

= 3
REAC(LEV3*IREC3) IPOINT
IREC3=1ID3
READ(LEV3*IREC3) IPOINT
IREC3=1D3
423 READ(LEV3*IREC3) IPOINT
-1 HHPOINF S =BG B0 T4 ——m m—m—m————————————————-
IREC3=IPOINT(51)
GO TO 423
405 IKECY4=IPOINT(ITEM)
READ(LEV4*IREC 4) HEADER
GO TU(BO0+801+802+803+804+805+806+807:808+809+810:811)HEADER
800 READ {(LEVH*IDY4IFORMUNITS -
NELMNT=1
WRITE(64601) FORMIUNITS
GO TU 830
801 READ (LEVH4'ICY4)FORMIUNITS NROWS
WRITE(6+601) FORMJ+UNITS«NROKS
—MEEMNTF=NREWS
GO Tu 830
BE2READtLEVH I B I FORMINROWS
: READ (LEV4'IC4)(VUNITS(I)+I=1+NROWS)
WRITE(E+601) FORM.NROWS
WRITE(6+601) (VUNITStI)+I=1+NROWS)
NELMNT=NROWS
GO TG 830
OUS RERU TLEVRTIURTIFURMyUNI TO WRUWS YWLUL S
WRITE(6+601) FORM+UNITSNROWS+NCOLS
NELMNT=NROWS#NTOLS =
GO TO 830
804 READ (LEV4#'ID4)FCRM+NROWS«NCOLS
READ (LEV4'ILH)(VUNITS(I)+I=1+NCOLS)
WRLIL IOy UL T TURMYTNRURNSINLULS
WRITE(6+601) (VUNITS{1)+I=1+NCOLS) [
NELMNT=NROWS#NCOLS

G0 TO 830
80% READ (LEV4*ICYH) FORM UNITS«NX+NY:DX+DY¢X0:YO+NVAL
READ (LEV4*I0Y) (VUNITS(I) I=14NVAL)

~~ RWRITETE«E0IT FORFSUNITSIWXSNT
WRITE (6:606) DX+DYeX0+Y0
WRITE(6+601)NVAL s (VURTTSITT»TZ1ITNVAL)
NELMNT=NX=NY
GO TO 830
806 READ (LEV4°*IDY)FORM+UNITS'NPTSNVAL

READ (LEVH*ICHTIVONITSTITI=TANVALT
READ (LEV4*ID4) I(X(TI)+Y(I)eI=14NPTS)
WRITE(6+601) FORMUNITSYNPTSvNVAL
WRITL(6+601) (VUNITS(I)+I=1+NVAL)
WRITE(6+606) (X{(I}+Y(I}I=1 NFTS)
NELMNT=NPTS

GO TO B3U i
807 READ (LEVH4®*ICY)FCRM+UNITS+NROWS+NCOLSeNLEVS

WRITE{(6+601) FORN UNITS'NROWSsNCOLSNLEVS

NELMNT=NROWS*NCOLS*NLEVS

GO TO 830 -
808 READ (LEV4®IG4)FORMyUNITSeNXsNYsNZeDXsDY¢DZ4X04Y0+2Z0sNVAL

READ tLEVH* ICH FTVUNITS T R I=1NVALY
WRITE(6+601) FORMJUNITSNX+NYNZ
WRITE(6+4606) DX+0YeDZ+X0+Y0+2Z0
WRITE(6+¢601)NVAL (VUNITS(I)I=1aNVAL)
MELMNT=NX*NY#*NZ
GO TU 830

809 READ (LEV4*IDY)IFCRMWUNITSiNPTSTVAL" o ES——
READ (LEV4°IDH) (VUNITS(I)+I=1.NVAL)
READ (LEVH'IDG)(X(I)eY(I)+Z(I)eI=14NPTS)
WRITE(6+601) FORMsUNITS+NPTS+NVAL
WRITE(6+601) (VUNITS(I)+I=1eNVAL)
WRITE(6+606) (X{I)sY(I)s2(I)sI=1eNPTS)
NELMNT=NPTS = ==
GO Tu 830

810 CONTiINUE -
C*x WRITE(6+611) HEACER NUMBER 11
811 CONTINUE
C*» WRITE(6+612) HEACER NUMBER 12
830 CONTINUE
601 FORMAT(1X«714)

60— FORMAT tIXveEYSeTY
READ (LEV4*I0H) (VVAR(I)sI=1.NELMNT)

WRITE(6477)
77 FORMAT(1X+'DATA VALULS ON LEVELY4 = THAT IS ON THE STANDARD DATA BA
XSE*)
WRITEL(64+24) (VVAR(I) ¢« I=1«NELMNT)

24 FORMATtIXBELTSE)
DN (MODEL })=DN(MOCEL) +1
NDD=DN (MODEL)
NO (MUDEL +NCD)=NELMNT
DO SU I=1 NELMNT
VAR (MODEL + NDD+ L }=VVAR(I)}

56 —wRITCt6v 2 VAR tMOUELSREDTIY

C
Ce» RETRIEVE CALCULATEC VACUES FROM THE “SMOG DATA BASE
C
READ(LEV1S*1) NREC1
2 READI(LEV1S'IC1) NRECZvHODLNvSITEN'CASLN

WRITE (6+3 MODELTMODENTSITEVSTTEN VCASEVCASENTNRECTVIDE
3 FURMAT (1H1.814)

1F (MODEL «NE,MODLN) GO TO 20

IF(SITE «NESSITEN) 6C TO 20

IF(CASE «NLC.CASEN) ©C TO 20

READ(LEV2S'NREC2+FMT) (ARRAY (MODEL +NDD+I) s I=1+NELMNT)

WRITE 6724y (ARRAYIMODELTNODTI T v IS TNEEMNTY
GO 70 40

20 IF((ID1-1).GE.NREC1) GO~TO 30— T
GO TO 2

30 WRITE(6.100) MODELSITEVCASE

100 FORMAT(1H1,°*THERE IS NO COMBINATION OF MODEL # *sI4s® SITE # '+I4s

g0 -CASE # *vluvt - ON - THE SMOG DATA BASE®Y
STOP
3000 CONTINUE
WRITE(6+200)}
200 FORMAT(1H1.10X,*MODEL #*+13X.*LOSS*)
DO 70 I=1s S
IF(DN{(I).EQ.0) GC TO 70 s

114

MODEL=1

CALL FLOSS(3+140+1.042.0)

CALL FLOSS(340.0+1.041.0)

CALL FLOSS(4+1.0¢2.0+2.0)
70 CONTINUE

“WREITL t6T205—
202 FORMAT(1H1+10X+*MODEL #'113X+'RANK CORRELATION COEFFICIENT®)
BO—T2 T=1,8
IF(DN{I).EG.O) GO TO 72
MODEL=T

CALL RANKCC
72 CONTINUE
WRITE(E+204)

204 FORMAT tIHIT2X T *NATURAL HISTCGRAM TEST ™Y
DO 74 I=1.5
IF(DN(I).EG,D) GG TO 7%
MODEL=1
CALL NATHIS
74 CONTINUE

60 TO199-
195 WRITL{6+196) CASESITE
196 FORMAT(1H1,*CASE # *4I4.,* OF SITE ® LD L X0
1TA BASE")
199 STOP
END

IS NOT ON THE TAPS DA

JUDI’\UU?:“L rLGGG‘lrI 'HLrﬂ"'DLIRi'DE?:‘"
COMMON/FORSMG/MOCEL +UNsND+ARRAY s VAR o F
REAL LOS(5)

DIMENSION ARKAY(Sy 5+100)¢VAR(S5y 54+100)
INTEGER UN(5)

DIMENSION ND(S+100)

LOLT=UNTMUCTELDY)

IVAL= ND(MGDEL.ISET)
IVALT=0

FF=0,.

DO 1 I=1.ISET

DO 2 J=1+1IvAL

U TU T Tov6 7 IvIFY

4 F=ABS(ARRAY (MODEL +I+J)=VAR(MODEL +I+J))
GO TO 50

] F=SGNT((ARRAY(MODEL'IvJ)-VAR(MODELvI'J))*tZ)
GO TO 30 - =

6 F=(AL0610(ARRAY(HODELvIvd))-ALOGIO(VAR(MODEL.I.J)))tt2

TV ARRATINCGUE L R T I G T VAR OMODEL T I 6O TO 10
IF (ARRAY (MODEL +I+¢J)oLT.VARINMUDEL I+vJ)) GO TO 20

10 BETA=BETA1
GO TO 4¢
20 BETA=BETA2 i =

40 F=BETA*(VAR(MODEL+I+J)}*#ALPHA *F
- GO TO S0

7 F=(AL0610(ARRAY(MODEL-I'J))-ALOGID(VAR(HODEL-IvJ)))tt?

S0 CONTINUE
FFFF+F
2 CONTIRUE

IVALT=IVALT+IVAL

I CTUNTINUE
RIVALT=IVALT
LOS (MODEL)=FF/RIVALT
WRITE (64206) MODELLOS(MODEL)
200 FORMAT(1HDs 10X+I&% 1+ 9XSEISBT —
RETURN

|)13

SUBROUTINE RANKEE

COMMON/FORSMG/MODEL-DN'ND'ARRAY'VAR'F

DIMENSION ARRAY(5o5vIO0TT“VﬁR1S'511ﬁﬁ11‘VﬁtﬂﬁTT?TTﬁﬂT‘

INTEGER DN(5)
DIMENSTION ND(S+100)
ISET=DN{MOCEL}

T IVAT=NO(MOCEL S ISETY

R=0.

IVALT=0

00 1 K=1.ISET

DO 2 u=1.IVAL
VALRAY(1+J)=VAR(MODEL +KvdJ)

VALRAT 2 v I =ARRAY IMODEL TR+
2 CONTINUE
IND1=1

115

100

30

70

60

80

IND2=2
CONTINUE
ISORT=IVAL-1

—IMON=T"
0O 60 I=1+ISORT

IF (VALRAY{INC1+T+1F ETSVACRAT (INDLWTIT 60 TO70—
G0 TO 60

SAVE=VALRAY (IND1+1)

VALRAY (IND1+I)=VALRAY(IND1+1+1)

VALRAY (IND1.T#I7= SAVE
SAV=VALRAY(IND2:1)
VALRAY{IND2+TJ=VALRAY CINDZT¥17
VALRAY LIND2+1+1)=SAV

IMON=TIFON+1

IX=1

TORTINUE

IF (IMON.EQ.1) GO TO 80

ISORT=1IX == — ==
GO T0 50

IF (IND2.E@.1) GO TO 1I0 S

DO 90 I=1.1VAL

90" VALRAYTISIT=I

110

120

[

200

n

100

S0

70

~ =t

60

80

90

IND1=2

IND2=1

GO Tu 100
CONTINUE

DO 120 I=1.IVAL

R=R+(VALRAY(1|I)-FLOETTT7T"2"'“—“_——“
IVALT=IVALT+IVAL

CONTINUE

RIVALT=IVALT

R=R/RIVALT

WRITE(6+200) MODELWR

FORMAT (THO +1TXSTH T 2IXRETS BT
RETURN

END

SUBRUUT ENE -NMAFHES ~— — —
COMNUN/FORSMG/NODEL-UN'NDvARRAYvVAR'F

DIMENSION ARRAY(5¢54100) 1 VAR({S5:5+¢100) VALRAY(24100)
DIMENSION FROBA(10+10)+PROBB(10+100)

INTEGER LN(5)

REAL LEVELS(2+10)

DIMENSION NDtS1680)

DIMENSION F(10)+NS{10)+NT(10)
I1SET=DN{MOCEL)

IVAL=ND (MOLEL + ISET)

D0 1 N=1.ISET

DO 2 J=1.IVAL

VALRAY (1 e Jy=VARIMODEL vN v I
VALRAY(Z.J):ARRAY(MODEL'N'J)
CONTINUE

IND1=1

IND2=2

CONTINUE

ISoRI=EVALTT— ——
1MON=1

DO 60 I=14ISORT

IF (VALRAY{IND1,I+1).LT.VALRAY(IND1:1)) GO TO 70
60 T0 60

SAVE=VALRAY(IND1+I)

VkLRA*fINDtTIr-vuLnul!xwuivxvil —
VALRAY LIND1+I+1)=SAVE

SAV=VALRAY(IND2+1)
VALRAY(IND2-I)=VALRAY(INDZ'101)

VALRAY (INDZ+141)=SAV

IMON=IMON+1

CONTINUE

IF (IMON.EQ.1) GO TO 80
ISORT=IX
60 TO 50
CONTINUE

pe 99 H=1vi0— —
LEVELS(IND1+K)=VALRAY(IND1+1)+ (FLOAT(K)/II.)'(VALRAY(INDleVAL)-
X VALRAY(INC1.1))

CONTINUE

IF(INC2,.£@.1) GO TO 110

IND1=2

116

InD2=1
60 T0 100

110 E=1./FLOAT(25IVAL)
VALRAY (2+IVAL+1)=VALRAY (2, IVAL) + VALRAY(24IVAL)/10000.
DO 200 L=1,10
SSLEVELS(1.L)
1$=0 - =T
DO 290 K=1.IVAL

—ISTISY————————

NT(IS)=1
NS(IS)=0
IF (VALRAY(14K)4GT.S) NS(IS)=1

210 FLOTNS=NSI{TS)
FLOTNT=NT(1S)
PUIST=FLUITNS/FLUITNI
IF(IS.EQ.1) GO TG 290
IF(P(IS).GT.(P(IS-11+E)) GO TO 290
NS(IS=1)=NS(IS-1)+NS(IS)
NT(IS=1)=NT(IS-1)+NT(IS)
1S=1s-1

S LU TU 21U

290 CONTINUE

WRITE(64300) LEVELS(1vL]LEVELS(2VE)
300 FORMAT(1HO+2Xe2F10.4)

D0 302 M=1,IS

WRITE(6¢304) PIM)INSIM) I NT(NM)

SO FORMAT (I OX S F IO X T IO X7IT0)
302 CONTINUE

La=1

IEND=0

00 800 M=1,TS

ISTART=IEND+1

IENUSITNUFNT UMY

DO 380 I=ISTART.IEND

PROUBB (L IT=P (MY
360 IF(L2.6T.10) GO TO 380
IF(LEVELST2+L2) LTSVALRAY (27 I T s ORCLEVELS T2 L) GE . VALRAY (2 IF I —

X GO TO 380

FRUBARTL L2T=FTHT)
L2=L2+1
GO TO 360
380 CONTINUE
400 CONTINUE
DO 500 M=1,IVAL

WRITE 67502 VALRAY tZTM YT PROBB LMY
502 FORMAT(4X+F15.643XsF744)
500 CONTINUE

DO 600 M=1,10

WRITE(6+602) LEVELS(24M) PRUBA(L M)
602 FORMAT(U4XsF15.6+3X¢F7.4)
BUDCONTINUE™ — '_
200 CONTINUE

1 CONTINUE
RETURN
END

117

