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PREFACE

The use of a mathematical computer model to parametrically
determine the effect of different antennas as well as the effect
of hangers, terrain and other scattering objects on ILS per-
formance is very appealing. A complete scenario of parametric
variations can be written to have the computer output the de-
rogation associated with each variation of building positions
building heights, terrain irregularities and different types of
antennas. Unfortunately, it is a good deal easier to write the
scenario than it is to obtain realistic equations of ILS scat-
tering on which the scenario must be based.

In studying previous- attempts to develop such a math model
we find a need to examine very carefully the theoretical foun-
dation of the models. What began as a simple critique of exist-
ing models has in the process been expanded into a careful
analysis of the electromagnetic theory on which the math model
is based. Thus, in addition to a critigue we present in this
report a study of many of the underlying assumptions of the
math model and how the scattering theory is to be integrated
with the ILS signal detection system.

Our aim, then, in this first major report, is to lay the
foundation, through an in depth study of the physics of the
scattering problem, for the generation of a user oriented
computer model which will be used by the FAA to predict ILS
performance under a variety of conditions such as those listed
in the first paragraph above.

xi






SECTION 1. SUMMARY

In the first part of this report, the basic ILS scattering
problem is investigated starting from first principles. Max-
well's equations are first formally integrated using the vector
Green's theorem. The resulting integral equations express the
electric and magnetic fields at an observation point P inside
a volume V in terms of volume integrals over the charge and
current distributions inside V and surface integrals of the
electric and magnetic fields over the surfaces bounding V. The
surface integrals represent contributions to the electromagnetic
fields at P from radiation sources located outside of the volume
V and are identically zero if there are no such external sources.

These integral equations are then applied to the general
problem of electromagnetic scattering. The volume of integra-
tion V is made multiply connected with an interior and an
exterior boundary. The source of the incident radiation (e.g.,
an ILS antenna) is located inside V while the scatterer is
enclosed by the interior boundary of V. Consequently, the
charge and current distributions which constitute the source
of the incident radiation are the only radiation sources in-
terior to V. Under the assumption that the perturbations in
the current and charge distributions of the primary source due
to the presence of the scatterer can be neglected (Approx. No. 1),
the integral equations for the electric and magnetic fields at
an interior point of V are applied. The electromagnetic fields
are represented as sums of the incident fields produced by the
primary source and the scattered fields produced by the induced
currents and charges in the scatterer. It is shown that the
scattered electric and magnetic fields at the observation
point P can be represented as surface integrals of the scattered
fields over the surface of the scatterer.

To obtain approximate solutions to these surface integral
equations for the scattered fields at P, an iterative approach
is adopted. Specifically, from a knowledge of the boundary
conditions which must be satisfied at the surface of the
scatterer, approximate functional relationships among the
scattered fields and the known incident fields are developed
and then substituted into the surface integral equations. The
integrals, which are now expressed in terms of the known in-
cident fields, are then evaluated to produce approximate ex-
pressions for the scattered fields at the observation point.
The functional relationships among the scattered and incident
fields at the surface of the scatterer are extremely complicated
in the case of certain structures, for example, for hollow di-
electric buildings with various internal structure, but very
simple in the case of perfect conductors or buildings with



metal walls (or, to a good approximation, metal rod reinforced
concrete walls). Because of the difficulties of pursuing the
analysis further with non-metal structures and because typical
airport scattering objects are well approximated by perfect
conductors, we assume for this report, that the scattering
objects are perfect conductors (Approx. No. 2).

Application of the boundary conditions for perfect con-
ductors yields a relationship between the scattered magnetic
field at the observation point and the surface integral over
the scatterer of the tangential component of the total (in-
cident plus scattered) magnetic field. To approximate the
total magnetic field on the surface of the conducting scatterer,
we first employ the principles of ray optics. Specifically, we
assume as a first approximation that the total magnetic field
is zero on the side of the scatterer not directly illuminated
by the primary source (Approx. No. 3). This is a good ap-
proximation when diffraction effects may be considered as
second order effects. Diffraction effects may safely be consi-
dered second order when the wavelength of the incident radia-
tion is small compared with the dimensions of the scatterer.
This is the case for scattering from hangers, however, it is
not the case for scattering from aircraft where the localizer
wavelength and fuselage radius are comparable. To treat this
case, special care would have to be taken to check that dif-
fraction remains small; for if it does not, Approximation Number
3 could not be made and an alternative method for relating in-
cident and scattered fields would be needed.

Having assumed that the tangential component of the mag-
netic field is zero on the unilluminated portion of the scat-
terer, it is next necessary to specify it on the illuminated
side. This is done by assuming plane wave reflection (Approx.
No. 4). For distances generally encountered in the ILS problem
this approximation is valid (unless the scatterer dimensions are
comparable to the wavelength in which case, Approximations 3 and
4 will have to be modified).

Since we are interested in the values of the scattered
fields in the far field of the scatterer (the approaching
aircraft being between the outer marker and the far end of the
runway), the integral equations for the fields may be expanded
asymptotically for large values of the distance between scat-
terer and observer (Approx. No. 5); a similar far field ap-
proximation is made for the antenna to scatterer distance. The
Fraunhoffer version of this approximation is used in this report
though the Fresnel approximation which is more accurate (parti-
cularly so for the new very tall hanger structures) has been
obtained and will be used in the computer program.



The application of the above approximations in the analysis
leads to the final expressions shown in Section 2.4, APPROXIMATE
SOLUTIONS TO THE INTEGRAL EQUATIONS OF SCATTERING THEORY,
Equations (2.47) and (2.48) for the scattered electromagnetic
field. These differ from those used by IBM but are basically
the same as the Ohio University expressions. The differences
between the theory presented here and IBM's are discussed in
Sections 2.5 and 2.6, LOCALIZER SIGNAL SCATTERING and COMPARISON
WITH PREVIOUS WORK, where the theory is carefully applied to
localizer signal scattering by a rectangular wall. By means of
this application of the theory to scattering from a rectangular
wall, it is shown how our results reduce to Ohio's if certain
additional approximations relating to reflections from the
ground plane are made in our equations. The differences be-
tween our formulation of the scattering problem and the IBM
formulation are of a fundamental nature. The practical con-
sequences of these differences are shown in an accompanying
graph in which the example used by IBM for scattering from a
vertical rectangular wall is used and the predicted DDM's
compared. It is shown that the differences may often be
significant.

In addition to the analysis of rectangular wall scattering,
we present (Appendix A) the new scattering formula for vertical
triangles and show how to use these when the triangles are ele-
vated as in the case of triangular roof structures and tail
sections of aircraft. [We have also obtained a closed form
solution to the slanted rectangular wall (not previously ob-
tained in the IBM formulation) which should be useful for
calculating reflection from hangers with slanted roofs]. We
also present new closed form solutions for double reflection
between two vertical walls, (Appendix B).

In Section 3, MODELING OF ILS SIGNAL DETECTION, we dgo from
the scattering problem to the signal detection problem, in which
we try to understand how the DDM must be defined in the presence
of multipath, and to develop a reasonable model of the ILS
signal detection system. It is felt that the IBM and Ohio
University expressions for DDM are inadequate for strong multi-
path environments since their expressions are strictly valid
only for single carrier signals when the relative phases of
the received carrier and sidebands are the same. We, therefore,
present a unified model of ILS signal reception which includes
the dephasing of carrier and sideband signals, Doppler effects,
different receiving antenna gain patterns and capture effect
systems. '

To do this, a general expression for the receiver input
current is written down which includes the polarization and
gain vector of the antenna (the gain vector for a small cir-
cular loop receiving antenna is derived in Appendix C). This



is used to help represent the amplified signal, which appears at
the output of the IF stage of the receiver, in terms of the
different transmitted modulation waveforms and the gains and
phase delays associated with the ‘different radiation paths.

This IF signal is then passed to a second detector which gene-
rates an audio frequency signal which is passed through a set

of filters to obtain the relative 90“Hz and 150 Hz amplitudes,
from which the course deviation indication (CDI) may be
determined.

Since the second detector (amplitude modulation detector)
is a nonlinear device, its output reflects interactions between
the intended ILS signal and the spurious signals received due
to multipathing or due to transmission of a secondary carrier.
In order to estimate the relative passage of this output through
the selective 90 Hz and 150 Hz tone filters, Fourier analysis is
used to express the detected audio signal in terms of discrete
frequency components for which well defined transmissivities by
each filter are assumed. The interaction between the course and
clearance signals in the general case of a dual carrier fre-
qguency system gives rise to the much-utilized "capture effect".
Advantage is taken of the large separation between the ILS
signal modulation frequencies and the intercarrier beat (8kHz)
to find an approximate linear expression for the total detected
audio signal in terms of independent course and clearance audio
signals.

The isolated course and clearance signals have the
character of audio outputs from an AM detector generated by
standard single carrier ILS signals, distorted by multi-
pathing. For this single carrier case, a simple relation is
found for the principal components of the detected audio signal
lying within the passbands of the modulation frequency filters.
The analysis in this case is valid in the approximation that
the aggregate of interfering signals is somewhat weaker than
the direct carrier signal - a reasonable condition for any
marginally flyable course.

Doppler modifications of detected signals arise as a con-
sequence of the variation of multipath phase delays which is
implicit with the motion of an airborne receiver. In the
approximation stated immediately above, each received com-
ponent of multipath interference may be characterized by the
relative Doppler shift of its carrier to the direct path
carrier. Sum and difference combinations of modulation and
Doppler frequencies can under certain circumstances give net
frequencies near the filter center frequencies resulting in
possible false signals being passed by the 90 Hz or 150 Hz
filters. With the aircraft approach speeds used today, the
Doppler may, for example, increase the 90 Hz signal to the



point where it passes through the 150 Hz filter, or it may in-
crease the 150 Hz to the extent that it is excluded from the

150 Hz filter. These possibilities are investigated by studying
the frequency response of a narrowband modulation filter and
calculating all significant contributions in each filter output.
Thus, values are obtained for the two detected modulation
amplitudes from which the apparent DDM and CDI are conven-
tionally determined. As a practical matter, it appears that
the Doppler contributions to signal derogation cannot be ne-
glected for aircraft speeds in the vicinity of 200 feet/sec.

and filter bandwidths around 15 cps.

Thus the new model is capable of calculating the detected
audio frequency signal, including Doppler and capture effects,
in the presence of any moderately strong multipath inter-
ference. It may therefore be applied to determination of
the apparent CDI for any conventional localizer or glide
slope system.

Possible depolarization of the electromagnetic field also
had to be investigated. This was done and we found (Appendix D)
that for omni-directional antennas the original horizontal
polarization of the electric field vector is retained, though
the magnetic field vector does undergo a small amount of de-
polarization. However, for dipole antennas, we find depolari-
zation in both the magnetic and electric field vectors which,
for some orientations, cannot be neglected (this is of parti-
cular importance for the glide slope system).

Finally, in Appendix E we append some additional comments
on previous ILS modelling. These include comments on the Ohio
University expression for DDM which assumed no scattered carrier
signal and assumed that both the direct and scattered fields
have identical polarization and phase. We also comment briefly
on IBM's use of diffraction theory (Appendix E) and on a short-
coming of their experimental verification program (Appendix E).



SECTION 2, THE ILS SCATTERING PROBLEM

2.1 INTRODUCTION

Electromagnetic scattering is one of the most important
and most complex topics in classical mathematical physics.
Basically, the problem is to determine the field perturbations
(scattered fields) which result when various obstacles (the
scatterers) are placed in known (incident) electromagnetic
fields. To solve a given scattering problem, one attempts to
find a solution of Maxwell's equations which has the property
that when it is added to the known or incident electromagnetic
field the resulting total field satisfies the appropriate
boundary conditions at the surfaces of the scattering obstacles.
Unfortunately, exact solutions to scattering problems have
been obtained in only a limited number of cases. In this
report, integral equations for the scattered fields will be
developed by directly integrating the electromagnetic field
equations. Approximate solutions to these integral equations
for the case of perfectly conducting scatterers will then be
applied to investigate localizer signal scattering by a flat,
vertical wall. Comparisons will be made with previous work.

2.2 INTEGRATION OF MAXWELL's EQUATIONS

Maxwell's equations in M.K.S. units for a homogeneous,
isotropic medium with permittivity € and permeability u are
given below.

-> - . >

VxxE = iwuH (2.1)
- > > >

VxH = J-iweE (2.2)
> >

V+*H =20 (2.3)
-> ->

V+*E =9p/¢ (2.4)

In Equations (2.1) tnrough (2.4), it has been assumed that all
fields vary harmonically in time as e—iwt, The quantitles

, i, §, and p are, respectively, the electric field, the
magnetic field, the current distribution, and the charge
distribution. Taking the curls of Equations (2.1) and (2.2)
we find that B and H satisfy the following field equations:



-> > > 2+ . -
V x (VXE) - k E = 1wud 5 (2.5)
-> > > 2 > >
V x (VxH) - k H = ¥xJ ’ (2.6)
2 2
where kK = w ey.

Let V be a closed volume in the medium bounded by a regular
surface S. Let and P be vector fields defined at each point
in the medium. The vector Green's theorem for P and O has
the following form:

> > > > > > > >
jr(Q'VxVxP - P-VxVxQ)dv
\'4

> > > > > > A
Jf(PxVxQ - QxVxP).n ds , (2.7)
S

where fi is the unit normal to the surface S and is directed
outward from the volume V.

The integral identity given by Equation (2.7) can be
used to directly integrate the field Equgtigns (2.5) and (2.6).
To begin with, we define the function ¥(r',r) as follows:

L ik|z'-r]
¥(x',r) = e (2.8)

|2 -%|

The two point function ¥ is just the Green's function of the
Helmholtz equation. That is to say, Y satisfies the equation
2 2

(V+k )Y = -4m (¥'-T) , (2.9)
where § (£'-¥) is the Dirac delta function. The vector ' can
be thought of as the position vector relatiye to some origin
0 of an observation point P inside V while r is the position
vector relative to the origin of any source point in V or on
S. Following Stratton,l we first define the vectors B and
appearing in Equation (2.7) as follows:

B = E(7)
6 = ;- \y(;'l-;)

(2.10)

where a is a unit vector in some arbitrary, fixed direction.
Referring to Equations (2.5), (2.9), and (2.10), the following
vector relations hold:



an = V¥xa

> > > ) @ > > > N >

Vx (VxQ) =+ak“y + 4ma § (r'-r) + V(a-VY¥) (2.11)
> > > 2+ . >

Vx(VxP) =k“E + iwud

Substituting these various expressions into the integral
relation (2.7) and integrating with respect to the unprimed
source coordinates, we obtain after a few triyial vector
manipulations the following expression for E(r').

> > lf.""l*"
E(r') = 21 (1quW+ngT)dv (2.12)
l_. N I oy
—4ﬂj.1mu(an)T+(an)xVT+(n°E)VW ds
S

The unit vector a has been dropped from (2.12) since its
orientation is arbitrary and it would simply scalar multiply
both sides of (2.12). Repeating this analysis with P defined
as H(r), the following expression for H(r') is obtained:

> > 1 > >
H(r') = Hf(JxV‘P)dV (2.13)
v

1 L > ~ > > N >
+ an me(an)W—(an)xVW—(n-H)VW]ds
S

Equations (2.12) and (2.13) express the electric and
magnetic field intensities at any point P inside the volume
V in terms of volume integrals over the charges and currents
inside V and surface integrals of the fields over the bounding
surface S. The surface integrals represent the contributions
to £ and H from sources located outside V. These two equations
will be the basis for our treatment of electromagnetic scattering

2.3 INTEGRAL EQUATIONS IN THE THEORY OF ELECTROMAGNETIC
SCATTERING

To begin our discussion of electromagnetic scattering,
consider the geometry depicted in Figure 1. Figure 1 depicts
a multiply connected volume V containing a localized source
of electromagnetic radiation which occupies a volume V; in V.
This source might, for example, be a glide slope or localizer
antenna. The charge and current distributions within Vi will
be denoted by p; and 31 respectively. Elsewhere in V, and
p are assumed to be identically zero. Note that the volume
V is bounded by an interior boundary surface S] and an outer
boundary surface Sy. The volume V; bounded by S is not
included in V. The volume V consists of the region bounded
by So, excluding the interior of S;. To apply Equations (2.12)
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Figure 2.1 - Multiply Connected Region Containing Source

and (2.13) to such a multiply connected region, the surface
integrals must be carried out over both bounding surfaces.

Let us assume that the source occupying the volume Vj in
V is the only source of radiation. Let Eji(r) and Hj (r) denote,
respectively, the electric and magnetic field intensities
produced by this source. The s bscript "i" is used to denote
incident field. The values of Ej and Hj at a point P inside
V are given by the following equations (Egs. (2.12) and (2.13).

> > - >
Ei(r') = 1_1/1iquiW+ 1 inW)dv
4m v €
i
1
l ) ~ A )
-5 S/[lwu (nxﬁi>w+(nxﬁi)x%+(n-Ei)W]ds (2.14)

Jj=o J



and

B, (F') = l_“v/ F, x¥y) av

~ > A > > A > >
(ani)W—(an.)xVW-(n-H-)V%]ds.

i i
J=o0 J (2.15)

Note that in Equations (2.14) and (2.15), the volume integrals
are extended only over the volume Vi occupied by the localized
source since J and p are zero elsewhere in V. Note also that
each equation contains two surface integrals because of the
two surfaces which bound V.

Equations (2.14) and (2.15) represent solutions to the
field Equations (2.5) and (2.6) for the electric and magnetic
field distributions inside the multiply connected region due
to the localized source occupying the volume A in V depicted
in Figure 2.1. Since this localized source is assumed to be
the only source of radiation in the universe, the surface in-
tegrals appearing in Equations (2.14) and (2.15) are in fact
identically zero. To see that this must be so, consider first
the §urface integrals, in Equations (2.14) and (2.15) of
and H{ over the interior boundary S]1. Since S] encloses no
sources (J=0 and =0 in Vi), we_can contract the surface S;
down to a new boundary surface S; which is enclosed by Sj; with-
out adding any new charges or currents to the volume of integra-
tion. Consequently, the only changes in Equations (2.14) and
(2.15) which result from shrinking Sj; down to S] is that the
surface integrals of E; and Hj over Sj are now carried out over
S1. ©Since the electric and magnetic field intensities at P do
not change as a result of this contraction, we must conclude
that the surface integrals over Sj equal the corresponding
surface integrals over S;. But, the values of the surface
integrals im (2.14) and (2.15) of ﬁi and ﬁi over S] can be
made arbitrarily small by simply allowing the surface area
of S; to go to zero. Conseqyently, we can conclude that the
surface integrals of Ei and H;{ over S, appearing in Equations
(2.14) and (2.15) are identically zero. That is to say,

/[iwu(ﬁx'ﬁi)w(ﬁin)xWHﬁ-Ei)W]ds = 0 (2.16)
4 :
1
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and

f[iwe (ﬁin)w—(ﬁxﬁi)xw-(ﬁ-H.)W]ds =0 (2.17)
s, ' 1

A similar argument can be made regarding the surface
integrals of E; and Hj over the outer boundary Sp. Since no
new sources of radiation are added to the volume of integration
by expanding S, to some new surface So (J=0 and p=o0 outside
So) i the surface integrals over S5, must_equal the corresponding
integrals over So. But if the surface So is allowed to
recede to infinity, the surface integrals over So go to zero
because of the following asymptotic properties of electro-
magnetic fields produced by localized sources. !,

-> .
lim rE is finite

r—>c
. A > € %->
lim r|}rxH)+(a) E] =0} . (2.18)
00
>
lim rH is finite (2.19)
r>oo :

€ ;5 A D> -
lim r [(1_1-) (rxE) —H] =0 .
>0

where r=%/r is a unit vector in the direction of ¥. Con-
sequently, we can conclude that the surface integrals of
Eij and Hi over Sy appearing in Equations (2.14) and (2.15)
are identically zero. That is to say,

. ~A > A > > A > >
Jf 1wu(ani)W+(ani)xVW+(n'Ei)VW ds= 0, (2.20)
S
o
and
A > ~A > -> ~ > ->
f[iwe(ani)‘l‘—(ani)xV‘Y—(n'Hi)V‘P]dsE 0. (2.21)
S .
o
Substituting Equations (2.16), (2.17), (2.20) and (2.21)

into Equations_ (2,14) and, (2,15), we obtain the following ex-
pressions for ﬁi(r') and Hj(r'):

> . l__d/“ . > 1 3 (2.22)
E.(r') = AT (1qu£¥+€inW)dv,

1
V.
1
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B (F1) = %?f(jixﬁw)dv i (2.23)
V.
1

Equations (2.22) and (2.23) are the familiar expressions for the
electric and magnetic field intensities produced by localized
sources of radiation in the absence of boundaries.

Suppose now that a scattering object is placed inside
The situation is depicted in

the interior boundary §.
Figure 2.2.

SCATTERER

SOURCE
o Vi Y

ji'pi

Figure 2.2 - Geometry Illustrating the Arrangement of
Source and Scatterer
The scatterer could be composed of a conducting or dielectric
material or a combination of the two. Charges and currents will
be induced in the scatterer by the incident fields Ei and Hj
generated by the primary source of radiation occupying the
volume V; in V. These secopdary sources will in turn radiate
electromagnetic waves. Let Eg(r) and Hg(r) denote, respectively,
the electric and magnetic fields generated by the charges and
currents induced in the scatterer. The subscript "s" is
used' to denote scattered field. The total electric and mag-
netic fields can be represented as follows:

12



1

E(F) = B, (¥) + )
> >

v By

(T)
> > : >
H(r) Hi(r) + HS(r)

The scattered fields ES and ﬁs will of course exert forces
on the charges and currents of the primary source. As a result,
the charge distribution p; and the current distribution 31 will
assume new values which we will denote by p] and Jj, respectively.
However, we will assume that the perturbations of %fiand pi due
to the presence of the scatterer are second order effects and
that they can be ignored. That is to say, we will assume that

(2.24)

>, >
J, = J,
i i
v (2.25)
Pi = P4
These approximations should be very good for scatterers in the
far field of the primary radiator.?2

To calculate the total electric and magnetic fields at a
point P inside V, we simply apply Equations (2.12) and (2.13).
For example the electric field is given by

> >, _ 1 \ > L
E(r') = -4—,]Tf(lqui‘i’+€ pJﬁ‘P) av
V.
1
. 1
- = z / iwy (AxH)y+ (AXE) xVy+ (n-E) VY ds (2.26)
e—d g
j=o 7j

where BE = Ej + Bg and H = Hj + Hg (Eg. (2.24)). Notice that the
localized source occupying the volume Vi is still the only
source of radiation inside V since the scatterer lies in the
volume Vi bounded by S; and this region is excluded from V.
Notice also that we have made use of the approximation (2.25).
According to Equation (2.22), the volume integral a peaging in

Equation (2.26) equals Ej (r'). Consequently, since = Ei + Eg,
the scattered electric field at P is given by
1 N
> > _ ]__- f . ~ > ~ > > ,\.—> >
Es(r ) = an E }wu(ani)w+(ani)xVW+(n Ei)V{lds
Jj=o ]
1l :
“ i z f iwy (AxH Y+ (AxE_) xVy+ (2B )W}ds (2.27)
4T S ] S s
j=o "3t
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where we have made use of Equation (2.24) and have separated
the surface integrals 1nvolv1nq the 1nc1dent and scattered
fields. But the integrals of E; and H over the surfaces Sg
and S have already been shown %o be 1dent1cally zero (Egs.
(2.16) and (2.20)). Furthermore, if the surface Sp is allowed
to recede to infinity, the surface integral over S, of the
scattered fields will go to zero since %s and Hs have the

same asymptotic properties as Bj and Hj (Eqs. (2.18) and (2.19)).
Consgqugntly, we finally arrive at the following expression
for Eg(r'):

> 1 \ = -> -+ A~ > >
Es(r )y = - I 1wu(anS)?+(ﬁxEs)xVW+(n'Es)VW ds
(2.28)

5

Since the surface S, has been allowed to recede to infinity,
Equation (2.28) is valid for any point P 1%1ng outside the
surface S7. The analogous expression for (r’) is

(r') =

g

A > A > > A > >
iwe(ans)w—(ans)xVW—(n-HS)VT ds.
il

N
3

s
(2.29)

In fact, the surface S] can be collapsed down onto the surface
of the scatterer itself so that Equations (2.28) and (2.29)
become valid for all points P outside the body of the scatterer.
This situation is depicted below.

SCATTERER

Henceforth then, it will be un-—
derstood that the surface S; is
S3 the actual surface of the .
scatterer. The unit normal n
which appears in Equations
(2.28) and (2.29) points into
0 the body of the scatterer.

(,}(

' P The integral Equations
(2.28) and (2.29) express the
scattered electromagnetic
fields at an observation point
P in terms of integrals of the

Figure 2.3. Collapsing Surface
S; onto Scatterer
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scattered fields over the surface of the scatterer. These
equations represent first order solutions to the scattering
problem in that they are based upon the approximation that the
charge and current distributions of the primary source are not
changed by the fields generated by the scatterer (Equation
(2.25)). In the next section, useful approximate solutions to
Equations (2.28) and (2.29) will be developed for the case of
perfectly conducting scatterers.

2.4 APPROXIMATE SOLUTIONS TO THE INTEGRAL EQUATIONS OF
SCATTERING THEORY

Approximate solutions to the integral Equations (2.28) and
(2.29) can be obtained by using interative methods. Specifi-
cally, from a knowledge of the boundary conditions which must
be satisfied on the surface of the scagterer S;, approximate
functional relationshipg among Eg and Hg on S] and the known
incident fields E{ and Hi on S] are developed and then substi-
tuted into the integrals in Eguations (2.28) and (2.29). The
integrals aye then evaluated to produce approximate expressions
for Eg and Hg at an observation point P. This procedure is
particularly straightforward for the case of perfectly conduct-
ing scatterers because of the relative simplicity of the
boundary conditions. Henceforth, we will concentrate exclu-
sively upon perfectly conducting scatterers.

Consider the integral Equation (2.29) for the scattered
magnetic field intensity:

ﬁs(;') = %F [iwe(ﬁxﬁs)w—(ﬁxﬁs)xﬁw—(ﬁ-ﬁs)$?]ds

S (2.29)

1

For convenience, Equation (2.29) will be modified by making use
of the fact that, as shown earlier the surface integral appear-
ing in (2.29) of the incident fields Ei and Hi is identically

zero (Egq. (2.17)). That is to say,
1 \ ~ > A > A >
0 = I J/.[1we(ani)W—(ani)x§W-(n Hi)§W]ds. (2.30)
Sy

>

Adding Equation (2.30) to (2.29) and recalling that E=E;+Eg and
H+H;+Hg, we obtain the following equation:

15



ﬁs(“f') = i—f[lwe(an)w-(an)xW (A+H)V ‘P]ds, (2.31)
S :
1

where E and H are the total fields on S1. At the surface of a
perfect conductor, the tangential component of the total elec-
tric field and the normal component of the total magnetic field
are identically zero. Mathematically, these boundary conditions
can be expressed as follows:

AxE = 0; (hxE =-AxE.)
s i
N > _ A __A'-F
n H=0; (n Hs— n Hi) (2.32)

Consequently, for a perfect conductor, Equation (2.31) takes
the following simple form:

ﬁs(?:') = - i—ﬂ/ (AxH) x VY ds . (2.33)
S

To approximate (ﬁxﬁ) on the surface of the scatterer, we
first employ the principles of geometrical or ray optics.
According to ray optics, there is a deep shadow region (no
illumination) on the side of the scatterer not directly exposed
to the incident radlatlon from the primary source, In the
shadow region, B and H are identically zero ( s=—§l and Hs=-Hl)
the surface Sj is thus divided up into an illuminated side S+
and a shadow side S_, the two sides being separated by a sharp
shadow boundary I'. This situation is depicted below.

SOURCE

Figure 2.4. Shadow and Illuminated Regions of Scatterer
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If it is assumed that % and H are identically zero on S_, then
Equation (2.33) becomes

> >, _ _]__ A
A (x') = - 77 f (hxH) x Vy ds , (2.34)
=k

where the integral is performed only over the illuminated side
of the scatterer. Finally, to specify (nxH) on Si, the assump-
tion of plane wave reflection from the local infinite tangent
plane is made, That is_to say, at each point Q on S;, it is
assumed that Eg(Q) and ﬁs(Q) have the values of the reflected
fields whicg would exist if a plane electromagnetic wave with
amplitudes Eji (Q) and Hi (Q) were incident upon an infinite,
plane perfectly conducting boundary tangent to S+ at Q. The
boundary condition satisfied by the tangential components of
the incident and reflected magnetic fields when a plane wave is
incident upon an infinite , plane , perfectly conducting
boundary is

ﬁxﬁs=ﬁx’ﬁi, (2.35)

or equivalently,

~ - ~ > - A >
nx H=n x (Hi+HS) - 2(ani) . (2.36)

Assuming that Equation (2.36) is valid at each point on S4,
Equation (2.34) becomes

> >, _ 1_ = >
Hs(r ) = o f(ani) x V¥ ds . (2.37)
Sy

The analogous expression for ES(;') can be obtained by
applying Equation (2.2) which, in the absence of currents, takes
the form

Vx H=- iwe E (2.38)

ubstituting (2.37) into (2.38) the following expression for
s (r') is obtained:

2TWE

B =g x f Gl xtras 2.3
Sy
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where V' acts upon the primed or field point coordinates. Equa-
tion (2.39) can be rewritten by taking the operator V'x inside
the integral and noting that_ V¥ is the only function under the
integral which depends upon r':

E_(E) = - ﬁg/ [(ﬁxﬁi)v'- Ty) - {(ﬁxﬁi)-'v"}w]ds

S, (2.40)

Since V¥ is a function of I;'—fl, the following relationships
hold true:

Ve (V)
ESARIRS

Substituting_the rglations (2.41) into (2.40) and noting that
for r'#r, -V2y =4k ¥ (Eq. (2.9)), we obtain the following
equation for Es(r'):

> -> i 1/2 A > A D>
Es(r') = - % (%) f [(ani)\y+ 1—2 {(ani)'$}V\1’]ds

k
S, (2.42)

Ve (Fy) = - vy

SEARINE (2.41)

where we have made use of the fact that k=w/ye.

We will be primarily concerned with the distributions of
B and in the far field, or Fraynhofer zone of the scatterer.
T8 obtaifi expressions for E_ and H_ in the Fraunhofer zone,
Equations (2.37) and+(2.42)sare exsanded asymptotically for
large values of r'=|r'|. For convenience, let the origin of
coordinates, 0, lie on the surface of the scatterer. Let L
denote some characteristic linear dimension of the scatterer.
The Green's function ¥ is given in Equation (2.8):

JAKITI-E]
\P = -—_+ = . (2-8)
Irl_rl .
Suppose that r'>>L. Then in the denominator of (2.8), |;'—;|
can be approximated very accurately by r'. That is, the varia-

tions in the amplitude of ¥ as r varies over the surface of the
scatterer can be ignored if r'>>L.' More care must be exercised
in approximating the phase of ¥ because of the osgillatory

behavior of the exponential. If r'>>L, then |r'-r| can be

written approximately as follows:
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2 AL >
> A Te 2
|_f'—r| v ' - prer + & -(rzrl:) , (2.43)
2r'
where §'=;'/r' is a unit vector in the direction of r'. In the

Fraunhofer zone, L2/2r' is very small compared to the wavelength
A=2m1/k of the incident radiation so that the quadratic terms in

Equation (2.43) can be ignored in comparison with the other two

terms:

|r'-r| ~ r' - £'.r (Fraunhofer approximation). (2.44)

Combining these amplitude and phase approximations, we may write
down the following asymptotic expression for ¥ for field points
in the radiation zone of the scatterer:

. i R
elkr e—ik(r'-;)

be =0

(2.44)

A similar analysis of 3? and (K-$)§W where A is an arbitrary
vector leads to the following asymptotic expressions:

ikr' o Ao Fife N
Ty = - ik & e~ik(x'-T) 2, (2.45)
RNV = (@-r)E'k S— e : (2.46)

Substituting the asymptotic forms (2.44), (2.45), and
(2.46) into Equations (2.37) and (2.42), we obtain the following

asymptotic or far field expressions for Hs and Es:

i ! 5 AL >
5 (Y = - iz—];e;]fr C P ox f(ﬁxﬁi) e ik (' T) 4o (2,47
S
i i AL
_ﬁs(—f') = %(%)1/2 %]:—r— - T ox|r'x /(ﬁxﬁi)e_ik(r“’r)ds,
s, (2.48)
where we have made use of the identity a x (ng) = (E.g)g - azg

in Equagion (2.48). Notice that the asymptotic expressions for
Hs and Eg in Equations (2.47) and (2.48) are related as
follows:
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1/2
§’xﬁs+(§> _F:s=0
1/2 :
€ - -> _ = -
(U) r' x ES Hs 0 (2.49)

These results are in agreement with the asymptotic relations
given in Equations (2.18) and (2.19).

Equations (2.47) and (2.48) are the basic equations used by
the Ohio University researchers and the TSC group for studying
localizer signal scattering from metallic airport structures.
However, caution must be exercised in applying these equations
since the assumptions upon which they are based are unrealistic
for many applications. Generally speaking, Equations (2.47)
and (2.48) can be applied.with some confidence in situations in
which the wavelength A=27/k of the incident radiation is small
compared with the dimensions of the scatterer. When A is com-
parable to or greater than the dimensions of the scatterer
(length, radius of curvature, etc.), the assumption of a sharp
boundary on the surface of the scatterer separating the illu-
minated side (S;) from the shadow side (S_) breaks down because
of diffraction. The assumption of local plane wave reflection
from the infinite tangent pPlane also breaks down when )\ is com-
parable to or greater than the radius of curvature of the scat-
terer. It would for example, be unwise to attempt to use Equations
(2.47) and (2.48) to study localizer signal scattering from the
fuselages of aircraft since at localizer frequencies, A*10 ft
which is comparable to or greater than the radii of curvature
of all aircraft presently in use. Another fact to be borne in
mind is that Equations (2.47) and (2.48) apply to the Fraunhofer
zone of the scatterer. That is to say, these equations are
based upon the assumption that L2/2r' is very small compared to
a wavelength where L is same characteristic linear dimension of
the scatterer. For very large scatterers, and for observation
points relatively close to the scatterer, this condition may not
be satisfied. One way of circumventing this difficulty is to
divide up the illuminated surface S+ into smaller subsections,
apply Equations (2.47) and (2.48) to each subsection, and then
add up the contributions from the various subsections to get the
total scattered fields. A more direct approach is to simply
retain the quadratic terms in the expansion (2.43) and to express
the scattered fields in terms of Fresnel integrals. This
approach is in fact presently being undertaken at TSC.

In spite of these various restrictions upon the applica-
bility of Equations (2.47) and (2.48), they can provide a great
deal of useful information about scattering phenomena. In the
next section, these equations will be used to treat the problem
of localizer signal scattering by a flat, vertical wall.
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2.5 LOCALIZER SIGNAL SCATTERING

To illustrate the techniques developed in the preceding
section, we will treat the important problem of localizer
signal scattering by a flat, vertical, rectangular wall. The
geometry of the problem is depicted below.

Figure 2.5. Scattering From a Vertical Wall,
Ground Plane Shown

The x-y plane is the ground plane. For simplicity, it is
assumed that the ground is perfectly flat and perfectly con-
ducting. The x-axis represents the center line of the runway.
The z-axis is perpendicular to the ground and points out of the
page. The unit vectors in the x, y, and z directions are de-
noted by ex, ey, and ez respectively. The localizer antenna is
located a distance H above the ground and has coordinates
(0,0,H) relative to the x, y, z coordinate system. H is typi-
cally on the order of 10 feet for the localizer.

In the far field of the localizer antenna, the electric
field can be written as follows:
ikR

eR , (2.50)

E=u Eo £f(o)
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where U is a unit polarization vector, Eg is an amplitude, R is
the distance from the localizer to the field point, and f(¢) is
the horizontal field pattern of the antenna. For an arbitrary
field point with coordinates (x,y,z), R and ¢ are defined as
follows:

R = ‘/x2+y2+ (z-H) X

tan~ ! (1) (2.51)

¢

X

The electric field generated by the localizer is assumed to be
polarized parallel to the ground so that u is given by

4 = Y , (2.52)

where Dy = Vx2+y2 is the horizontal distance from the antenna
to the ?ield point.

To account for reflections from the perfectly conducting
ground plane, an image antenna located at (0,0,-H) is included
in the formulation to cancel the E field of the antenna on the
ground (2z=0). The total incident electric field (direct plus
ground reflected) is given by
. Jkr TRy
E,. =u Eo f(¢) - g (2.53)

1 R Ri

where Rj ='\/x2+y2+(z+H)2 is the distance from the image antenna
to the field point.

Equation (2.53) can be rewritten as follows:

ikR ik (R, -R)
= - e _Re i
E; =u Eo £f(4) = 1 Ri . (2.54)
We now make the assumption of sm evation angles. That is
to say, we will assume that Dp=14/x4+y4 is much greater than the

magnitudes of (z-H) and (z+H). If Dp>>|z-H| and [z+H|, then
Dp®R¥Rj and the factor R/Rj in Equation (2.54) can be set approx-
imately equal to 1. However, the path length difference (Rj-R)
in the exponential must be approximated more accurately because
of the oscillatory behavior of the exponential. To this end,

we expand R and Rj in power series retaining only the two lead-
ing terms:
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(z—H)2

R~ D+ 35 ) (2.55)
p
2
R; % Dy + i%%ﬁl— ) (2.56)
p

Consequently, the path length difference (Rj-R) is given approx-
imately by

. (2.57)

Incorporating these various approximatigns into Equation (2.54),
we obtain the following expression for Ej at field points with
small elevation angles:

N . eikR Zisz/Dp
Ei =1 EO f(9) R 1 -e . (2.58)

The corresponding incident magnetic field ﬁi an be derived
from Equation (2.58) by recalling that E and H have the follow-
ing asymptotic relationship in the far field of a localized
source (Egq. (2.19)):

1/2
A = (%) (ExE) . (2.59)
Consequently, ﬁi is given by
1/2 ikR 2ikzH/D
b = E e _ P A A
H, = (u) E, £(0) & [1 e ] (Rxd) , (2.60)

where ﬁ=§/§ and §=x§x+y§ +(z-H)§z. The magnetic polarization
vector (Rxu) is given by

A [xex+yey+(z-H)e%] [yex-xegl

Rxu-=- R X )
P
R x u EP_ A (Xéx+yé
Rxu-=- 7 €, + (z-H) RDp . (2.61)

The magnitude of the second term in Equation (2.61) is
|z-H|/R = |z-H|/Dp which we are assuming is very small compared
to 1. The magnitude of the first term on the other hand is

approximately equal to 1 when Dp>>|z—H . Consequently R x a
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approximately equals (-e,) for small angles of elevation.
Making this approximation, Equation (2.60) can be rewritten as
follows:

ikR 2ikzH/D

N . c 1/2 e B
Hi =-e, (F) Eo £(d) R 1 -e . (2.62)

It will be assumed that for any point on the vertical wall,
D,>>|z-H| so that Equation (2.62) can be used to accurately
describe the variation of ; over the surface of the scatterer.

The length and height of the vertical wall depicted in Fig-
ure 2.5 will be denoted by L and h respectively. The coordi-
nates of the midpoint of the base of the wall will be denoted
by (xl, Yy o). If

_ 2, 2

Pr1 = Y*1tY)
is much greater than L, then the angle subtended by the wall at
the origin of coordinates will be very small. Assuming that
this is the case, f(¢) in Equation (2.62) can be replaced by
f () where w=tan'1(y1/xl) to a very good approximation. In
other words, we can ignore the variation of the horizontal
antenna pattern over the surface of the wall when Dp1>>L,
assuming of course the f(¢) does not vary too rapidgy with ¢.

Let Rj denote the distance from the antenna to the mid
point of the base of the wall:

_ 2 2 2
Rl = 'ﬁﬁ_+ y, + H (2.63)
When R; is much greater than the dimensions of the wall, the
distance R from the antenna to any point P on the wall can be
represented approximately as follows:

A >
R = Rl + R1 . r (2.64)

where ﬁ1=§1/R1, §1=xléx+yl§y-H§z, and ¥ is a vector in the
plane of the wall drawn from the mid point of the base to the
point P. 1In Equation (2.64), the quadratic path length dif-
ference terms have been neglected. Let fi denote a unit
vector parallel to the wall and parallel to the x-y plane
(Fig. 2.5). Using the+point (x1,¥71,0) as a new origin of co-
ordinates, the vector r can be represented as follows:

r =n ﬁ + z éz ’ (2.65)

24



where n is variable ranging from -L/2 to +L/2 and z is just the
elevation of the point P on the wall above the ground. The
vector N can be expressed in terms of ex and ey as follows:

n=cos 6 e, - sin ® ey (2.66)

where 6 is the angle between n and the x-axis (Fig. 2.5). Sub-
stityting (2.66) in (2.65), we obtain the following expression
for r:

> A N ~ A
- — + L] .
r n cos 6 e, n sin 6 ey z e, (2.67)

The path length difference ﬁl-; can now be calculated:

A . X Y i
R . _f =7 ._l cose—__l_ sin®b - Z_H. . (2_68)
1 Rl Rl Rl

Since R1*Dpj (H<<Dp31), X1/R1%%x1/Dp1= cos ¥ and yl/Rlzyl/Dpl=sin V.
Making these approximations, Equation (2.68) becomes:

zH

Dpl

~ ->
R, * r = ncos(6+y) -

1 . (2.69)

Substituting Equation (2.69) into Equation (2.64), we obtain
the following approximate expression for the distance R:

zH
Dpl

R =R, + 1n cos (6+y) - (2.70)

1

In the denominator of Equation (2.62) R can be simply
replaced by Ry and in the factor [1 - e2ikzH/Dp], Dp can be
replaced by Dpl. Incorporating all of these approximatigns into
Equation (2.62), we obtain the following expression for Hi on
the surface of the wall:

ikR
N 1/2 e R
H = e £ E £(y) = elkncos(e+w) +|2i sin k ZH '
i z {u o 1 Dpl

R
(2.71)

The expression for ﬁi given in Equation (2.71) can now be
substituted intQ Equation (2.48) to calculate the scattered
electric field Eg produced by the wall. The origin of co-
ordinates for this integration will be the mid point of the
base ‘of the wall (x;,y;,0).
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Equation (2.48) is reproduced here for ease of reference

1/2 .,
3 ikx! D
> _ ik fu e . oy J/. Ao ~-ik(r'-.r) ds.
ES(r') = 57 (e) T r' x|r' x (ani) e
2

(2.48)

The unit normal vector n points into S+(F1g.2 5). In terms of
the unit vectors ey, ey, and €z, n is given by

n = sin © ex + cos 6 ey (2.72)

Clearly, n X fi; is parallel to n since ﬁi is parallel to ey
(Eq. (2.71)).

The vector r' is drawn from the point (x1,y1,0) to the '
observation point which is of course the location of the re-
ceiving antenna on the aircraft. Let x3, y2, z2 denote the
coordinates of the r celver relative to the x, y, and z axes
respectively. Then r' is given by
-X

> A A A
r' = (x l) e, + (yz—yl) e+ z, ©, - (2.73)

2 Yy z

The magnitude r' of the vector r' is denoted by Ry:

_ _ .2 2 2
2 E R2 = ~J(x2 xl) + (y2 yl) + z5 (2.74)

The horizontal distance of the receiver from the point (xl,yl,o)
is denoted by Dpzz

J(xz-xl)2 + (y2—yl)2 i (2.75)

It is assumed that the elevation angle of T' is very small.
Tha; is to say, it is assumed that Dpy>>z3. The phase term
?'-r appearing in the integral in Equation (2. 48) is given by

(x,-%,) (Yo=Yq) z z
£'.£ = n cos 6 i i n sin 6 ; i 4 = 2 ’ (2.76)
2 2 2
where use has made of Equation (2.67). Since D 2>>2

Consequently, the following approx1mate relatlogshlpg hoEd:

(x,=%) . (x,-%,) _ cos v
R, D,
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(v,mv)) | (¥5m¥p)
2L v 2L --siny , (2.77)
R D
2 p2

where y is the angle between the projection of the vector T
onto the x-y plane and the x-axis (Fig. 2.5). Consequently,
Equation (2.76) can be rewritten as follows:

z z,
Dp2

A

>
‘Y = n cos (y-96) +

(2.78)

The integral in Equation (2.48) can now be evaluated quite
easily. It should be noted that the range of integration of
the variable z is - h < 2z < + h. This range of integration must
be used in order to take into account the image of the wall in
the ground plane. Carrying out the integrations in n
(-L/2<n<+L/2) and z (- h<z<+h), we obtain the following expression
for the total scattered field E (direct plus ground reflected):

1k(Rl+R2)
E = (?'x(?'xﬁ))152243 f(w)e »sinc liE(COS(E)HP)-COS(Y-G)),
s R1R2 2
2z z
* { sinc | kh [BE—-— 53— - sinc | kh Eﬁm + _E_] . (2.79)
pl p2 J pl PZJ
where sinc(x) = sin x/X.

For the low angles of elevatlon which we are assuming, the
triple vector product ' x (¥'xN) can be simplified greatly.
We first expand the triple vector product as follows:

' x (r'xn) = (r'-n) ¥' - n (2.80)
The unit vector ' is given by

(x,-x%,) (Y,=¥Y+) z
_._2..._]_'._.é + ._L..l_.é + _2§ . (2.81)
R2 X R2 Yy R2 z N

K>
i

For small angles of elevation (R2%®Dp2>>2z2), we can ignore the
z-component of ¥' and use Equation (2. 77) to obtain the follow-
ing expression for r'.

A i - _ . A
r' =~ cos y e, sin vy ey (2.82)

Consequently, r'en = cos6 cosy + sin® siny = cos(y-6) (Eq. (2.66)).
Making these approximations in Equation (2.80), we obtain the
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followingAapproximate expression for the polarization vector
r' x (r'xn):

' x (¥'xn) = - sin (Y-e)[sin Y éx + cos ¥ éy] (2.83)
which is of course parallel to the ground plane. The magnitude

of the vector given in Equation (2.83) is just sin (y-6).
Consequently, the magnitude of the scattered field is given by

ik(R1+R2)
_ ikLh & . _ . kL _ _
s f(y) R1R2 sin (y-6) sinc 5 l}os(6+W) cos (y 64
Z z
+sinc | kh 62— - ﬁgﬁ- - sinc |kh BE_ + 52- (2.84)
pl p2 pl p2

For an omnidirectional receiving antenna, the expression given
in Equation (2.84) is the appropriate one to use for calculating
perturbations in the difference in depth of modulation.

2.6 COMPARISON WITH PREVIOUS WORK

The result obtained in the preceding section for the
scattered electric field produced by a flat vertical wall will
now be compared with the solutions to the same problem obtained
by the Ohio University and I.B.M. researchers.

Our Equation (2.84) for Eg does not differ significantly
from the expression obtained by the Ohio University group.
This comes as no surprise since our methods of approach are
almost identical. Their solution is somewhat simpler in that
it does not contain the sinc functions which depend upon the
height of the localizer antenna (H), the height of wall (h),
and the height of the receiver (z3) that appear in Equation
(2.84). Instead, their expression for Eg is simply proportional
to h3 H z3. The fact that the Ohio University solution has a
simpler dependence upon the parameters h, H, and z5 than does
our solution is due to the fact that the Ohio University
researchers used a linear approximation to describe ground re-
flections. Specifically, instead of multiplying the antenna
field pattern by the factor [1 - e21kzH/Dp] to account for
ground reflections (Eq. (2.58)), as we did, the Ohio University
researchers multiplied the antenna field pattern by (2sz/Dp).
That .is, they assumed that (2KzH/Dp) << 1, and essentially ex-
panded [1 - e2ikzH/Dp] in a power series in (2kzH/Dp) retaining
only the first two terms. They made a similar approximation to
describe the reflections of the scattered fields from the
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ground plane. Our expression for Eg in fact reduces to the
Ohio University expression if the sinc functions involving H,
h, and zp appearing in Equation (2.84) are approximated by the
first two terms in their power series expansions. In essence
then, there are no fundamental differences between our treat-
ment of the scattering problem and the Ohio University treat-
ment.

On the other hand, the I.B.M. approach to the problem of
localizer signal scattering by a vertical wall differs funda-
mentally from our approach and that of Ohio University. For
convenience, their approach to the problem will be illustrated
using our equations and notation.

For ease of reference, Equations (2.28) and (2.29) are
reproduced here:

B = - g f e (i v + Gk ) e+ 8B, 99 s,

Sl (2.28)
ta - f [iwe<axﬁsw-<axﬁs>m_<a.ﬁs>w]ds

51 (2.29)

Equations (2.28) and (2.29) express the scattered fields outside
a scatterer in terms of integrals of the scattered fields over
the surface S; of the scatterer. For treating perfectly con-
ducting scatterers, we chose to work with Equation (2.29) since
the integral simplies greatly for a perfect conductor. The
integral in (2.29) was first modified by adding to the right
hand side of (3.29) the corresponding integral of the incident
fields Ej and Hj., Since the surface integral in (2.28) and
(2.29) of E;4 and Hi over S] are identically zero, the left hand
side of (2.29) was unchanged by this adgdition and we obtained
the following modified expression for Hg(r'):

B =L f [iwe(axm-<ﬁxﬁ>;w-<a.ﬁm]ds, 2.3

Sy

where E and H are the total fields on S} (E=Ei+ﬁs,.ﬁ=ﬁi+ﬁs).
The analogous expression for the scattered electric field is:
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-

'E*S(r') = - %'ff [iwu(ﬁxﬁ)‘i’+(ﬁx§)x§\l’+(ﬁ'E)VW]ds (2.85)
S
1

For a perfectly conducting scatterer, the surface S is
divided into an illuminated side S; and a shadow side S_. On
the shadow gide, if is_ assumed as a first approximation that
ESH=0 (Eg=-Ej and Hg=-Hj on S_). With this approximation, the
integrals in (2.31) and (2.85) are extended gnly over the _
illuminated side S; of S;. That is to say, Eg(r') and Hg(r')
are expressed in terms o% surface integrals of the total fields
over s .,

I

Had we chosen to work directly with Equations (2.28) and
(2.29) rather than (2.31) and (2.85) the sape result would have

been obtained. For example, assuming that Eg = - Ej and
Hg = - Hi on S_, Equation (2.28) becomes:
++|__L -_ A > = ,\.-> >
Es(r ) = T -1wu(ans)W+(ans)x$W+(n ES)VW]ds
S
1 -_ ~A > A > A > >
+ Hf lwy (ani)‘P+(ani)x§‘P+(n-Ei)V\P]ds ‘
s -

(2.86)

However, we know that the surface integral of Ei and ﬁi over
the total surface S; is identigally zgro. Consequently, the
surface integral in (2.86) of Ej and H; oyer S_ is the negative
of the corresponding surface integral of E; and H; over S,.
Therefore, Equation (2.86) can be rewritten as follows:

+| _ _ l : A > | A 2> = >
Es(r ) = - 1= hwu (ans)\y+(ans)xWHn-Es)w]ds
s, -

-
1 N A A > -> A >
7 1wu(ani)%+(ani)xVT+(n-Ei) ﬁw] ds
S
+ ‘ (2.87)

Combining thegse two integrals over Sy and recalling that
E=Ej+Eg and H=Hj+Hg, we,are left with a surface integral over
S+ of the total fields E and H.
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The I.B.M. researchers essentially use the same integral
Equations (2.28) and (2.29) to treat the problem of localizer
signal scattering. To obtain an expression for the scattered
electric field produced by a vertical wall, they simply carry
out the integral appearing in (2.28) over the illuminated sur-
face of the wall. That is to say, they use the following
expression for Es(r'):

ES (r') = - Ll;—n [iwu(ﬁxﬁs)w(ﬁx'E’s)x%w(ﬁ.Es)W]ds . (2.88)

Sy

That is to say, instead of integrating the total fields over S,
as we did, they just integrate the gcattered fields. 1In effect,
they ignore the integral of Eg and Hg over S_, the shadgw side
of S;. 1Instead of setting Eg and Hg equal to -Ej and -Hj
respectively on the shadow side S_, they in effect assume that
Eg and Hg are identically zero on S- which is not true.

Comparing our result for the magnitude Eg of the scattered
field produced by a vertical wall with the I.B.M. results, we
find that the only real difference between the two expressions is
that whereas our Equation (2.84) contains a factor ([2 sin(y-0)]
to describe the horizontal field pattern of the wall, their
Equation (2.43) contains a corresponding factor Mg which is
given in our angle notation by:

MG = [sin(e+w)+sin(y—6)] cos [y-w-ze] ‘ (2.89)

The effects of this difference on perturbations in the dif-
ference in depth of modulation predicted by the two models can
be very pronounced as can be seen in some of the accompanying
comparative graphs. Figures 2.6 and 2.7 (static and dynamic)
show the difference between the new and old (I.B.M.) formula-
tions. Also, as examples of the dependence of the derogation

on the building size, location and orientation, we show in
Figures 2.8 to 2.18 the microamp deviation of a localizer V-ring
signal that would be received by an aircraft flying the center-
line of the runway in level flight, 50 feet above the ground

as predicted by the new math model for scattering off a vertical
wall,

These Cal Comp generated figures are presented here as
examples of typical output obtained from the computer model
and as examples of one way in which this output can be pre-
sented. In all figures the x-distance is measured from the
Localizer as origin and the y-distance from the centerline
of the runway.
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In Figure 2.8, the microampere deviation calculated along
the runway centerline caused by a 100 foot by 50 foot rectangular
wall situated behind the Localizer and 470 feet from the runway
centerline is shown to increase markedly as the wall is moved
closer to the Localizer. This is expected as more energy is re-
flected back onto the runway in these cases.

Figure 2.9 shows a similar marked increase in the de-
rogation for buildings located closer to, but in front of the
Localizer.

Figures 2.10 and 2.11 show the derogation due to a larger
building, 500 feet by 50 feet, which is located further from the
runway centerline (1000 feet instead of 470 feet). Well beyond
the Localizer in either direction, (-2000 feet or +8250 feet),
there is only negligible derogation, while closer in, at -1000
feet and at +500 feet, the derogation is significant.

The explicit variation of the derogation on the building's
position relative to the runway centerline is shown in Figures
2.12 and 2.13. There is a dramatic increase in the amount of
derogation when the building is placed close to the runway
centerline (e.g., when y=470 feet).

Figures 2.14 and 2.15 show the derogation for different
orientations of the building, both in terms of the magnitude and
the location of the derogation on the runway centerline. As
indicated in the accompanying sketches, the different locations
of the derogation along the runway centerline occur because of
the different specular reflection directions of the various
building orientations.

Finally, in Figures 2.16-2.18, the increase in the de-
rogation with the increase of building size is shown.
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Figure 2.6. Comparison between
the I.B.M. and the new formula-
tion, in the static case for a

vertical flat wall parallel to

the runway.
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SECTION 3. MODELLING OF iLS SIGNAL DETECTION

3.1 INTRODUCTION

In implementing computer prediction of the course
deviation indication (CDI) for complex derogating environ-
ments and arbitrary selection of the localizer and/or glide
slope signal transmitting system, it is desirable to have a
unified approach to the modelling of DDM detection by stan-
dard aircraft ILS receivers. To effectively treat any exist-
ing or future ILS system, a detection model must adequately
account for systems utilizing one or two carrier frequencies,
for arbitrary relative phasing between different signal com-
ponents, variation of receiving antenna gain patterns and
effects of aircraft speed. The models presently in use fall
short of this objective. The I.B.M. code is developed only
for the localizer null reference system; the Ohio glide slope
programs incorporate null reference, sideband reference and
capture effect, but in the latter case the auxilliary car-
rier signal is ignored.3 The Ohio codes are further re-
stricted in applicability to moderate derogations near or
on the glide course centerline, and none of the foregoing
models takes any account of relative Doppler effects.

All in all, the approaches that have been taken in
dealing with signal detection have been somewhat simplistic.
The DDM concept is easily defined in an ideal signal trans-
mission environment, but is much less easily defined in the
presence of strong multipath interference. 1In the general
case, i.e. in a complex multipath environment, it is possible
to represent the radio frequency signal derived by an air-
craft receiver from the total incident radiation field of a
single carrier ILS system by the form:

E(t) = Rel}Ec+Egocos(2ﬂ90t)+El5ocos(2W150t)e_lwct] ,
where wg/2m is the carrier frequency and Ec, E9¢, and E15(
are the complex amplitudes of the carrier and respective

sidebands in the received signal. One may define the differ-
ence in depth of modulation as

DpM = (|E1s0| - |E9q|)/|Ec]|,

but it cannot be assumed (as it has been by I.B.M. and Ohio U)
that it is this quantity that is detected by actual receivers
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operating in complex multipath environments. In fact, the
above defined DDM is detected by receivers of standard de-
sign only when the relative phases of Ec, E9p., and E150 are
all the same. This is in general not true when any signifi-
cant amount of multipath interference is present.

Below we develop a unified model of ILS signal reception
that attempts to reach a higher level of completeness and
correctness for actual receivers than the previously used
models. In the course of the derivation, a number of
approximations are inevitably taken. While it is felt that
these are all reasonably justified, the overall consequences
of the model should be verified by empirical data. The
treatment does illuminate the relative significance for
the detected ILS signal of carrier and sideband dephasing
and of Doppler effects on receiver dynamic response.

3.2 RECEIVER MODEL

Localizer and glide slope signals are assumed to be
detected by heterodyne AM receivers similar in basic design
to the schematic diagram shown in Figure 3.1. The figure
indicates generally how the 90 and 150 Hz modulations are
amplified, detected, and separated and the difference applied
to one of the movements of a cross pointer indicator. The
sum of the 90 and 150 Hz outputs is held constant by an
AGC feedback loop, so that once calibrated, the instrument
gives a faithful readout of the apparent CDI (course deviation
indication) whenever the incident signal radiation exceeds
a minimum level.

The guidance radiation field (localizer or glide slope)
is coupled to the receiver input via an antenna which may
be assumed to have specified directional and polarization
characteristics. Any ‘antenna used in practice may be
treated as a linear system. This fact allows us to consider
the scalar current transmitted to the receiver input load
as the resultant of individual currents generated by various
electromagnetic field components incident on the antenna.
We shall assume that all incident component fields are trans-
verse and harmon}c, and so are adequately described by an
electric vector E and a unit vector k in the direction of
propagation. For a number of such component fields incident
on a specified antenna, the receiver input current can be
expressed in the form: : ’

"Iin = I Ij

1 §(Ry) - By (3.1)
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where §(£) conveys both the "gain" and polarization charxac-
teristics of the antenna for plane waves incident in the di-
rection k.

As an example, it is shown in Appendix C that the gain
vector for a small horizontal circular loop antenna (which
is a reasonable approximation to many aircraft localizer re-
ceiving antennae) takes the form

N

J(k) = ca n xk, (3.2)

where the unit vector A is normal to the plane of the loop
and the maximum gain Ca depends on the area of the loop,
the carrier wavelength, and the impedance of the input cir-
cuit.

The ILS radiation fields to be considered may be
generated by multiple element antennae and/or waveguide
radiators operating on one or two carrier frequencies. In
every case a number of distinct carrier modulations are
radiated, each in a specific spatial pattern. To assure com-
putational accuracy, it will be necessary in some instances
to compute the direct and scattered radiation reaching the
receiver from each source independently; in other cases,
combinations of elements may be treated as point sources
giving rise to certain directional radiation patterns. In
any event, we will consider the individually computed com-
ponents of the received field to represent radiation travelling
approximately by specific point to point paths between the
transmitting antenna and the aircraft. Let a specific modu-
lation waveform be denoted by um (t) and a specific propagation
path be denoted by the subscript p. Then to each component
field computed at the receiving antenna, there corresponds
a component of the amplified signal at the output of the
1.F. stage of the receiver, which can be suitably represented
by the complex form:

Vipp (t) =;ampum(t)e_iwmtei¢l?. (3.3)

Here the terms amp include as factors the relative values

of the initially radiated amplitudes of the particular modu-
lation components m, the antenna gain factor g (kp)«Ep, and
the path attenuation due to field divergence, reflections,
etc. The phase delay of the path p is denoted by ¢p and
thﬁzcarrier frequency associated with the modulation m is

wm/ 2T,

In practice, it is only necessary to consider two dis-
tinct carrier frequencies, W®Wc and wg-lc- Grouping together
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all the modulations of a specific carrier, we may express
Equation (3.3) in the equivalent form:

Vipp (t) = ei¢p e‘iwctzgmpulm(tne‘i(“C"'-‘*C’tz:bnpuZn(t)
m n

- . (3.4)
Here the bnp factors associated with the secondary carrier terms

are exactly analogous to the amp -

Summing this equation over all multipath modes P gives a com-
Plex representation of the total I.F. output signal. This is
passed to the second detector which generates an audio fre-
quency signal

Vap (£) = lngFp(t)l. | (3.5)

Determination of the C.D.I. is based on the relative ampli-
tudes of 90 Hz and 150 Hz components found in this audio sig-~
nal by passing it through selective filters. Denoting the
action of these filters symobolically by the Operators

H90 and H150 (to be defined bresently), we may represent

the outputs of an ILS receiver as

Voo (t) = Hg, [Var (t]] (3.6a)

Viso(t) = Hy5q  [ap(t]] , (3.6b)
Vi50-Vgoq

CDIstatic S _EEQ__EQ.microamperes. (3.7)

In Equation (3.7) the factor Sm is the Cross-pointer sensj-
tivity which has the standard values 387.0 for localizer sig-

nals_and 676.0 for glide slope signals. The magnitudes Viso
and V9 are obtained by rectification of the detected modulation

3.3 ANALYSIS OF THE AUDIO SIGNAL Var(t) -CAPTURE EFFECT

We now seek a reasonably accurate estimate of the re-
ceived 90 Hz and 150 Hz modulations in the general multipath,
capture effect situation. For this we need an exXpression -
for Vap(t) in the form of a Fourier series, and we need
suitable definitions of the filter operators Hggp and Hisp.

that a large range of frequencies may generally be present
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in the audio output of the second detector, instead of
solely the modulation tone frequencies. The action of the
90 and 150 Hz filters on such complex signals must be con-
sidered.

Additional spurious signals occur in reception of
radiation from capture effect transmitting systems near all
harmonics of the 8 kHz carrier separation frequency. This
fact allows a convenient reduction of the audio signal analy-
sis problem, if the capture effect of the detector is treated
first. We follow a procedure suggested in part by Manney®.
The total I.F. output signal may be written as:

Vip(t) = [Al(t)+eiActA2(t)] e~iwct (3.8)
where: ' ‘

AL(E) =) u, (£)) . a 1P

1 =4Las1m mp®

m P
_ i¢

A, (t) -;u?_n(t)%:bnpe P (3.9)
The audio signal (Eq. 3.5) can now be expressed as 1/2

Vap(t) = [[Al(t)|2+[A2(t)[2+2Re(Al(t)A2(t)*e'jAct) 510

Now the scale of the time variation of the complex amplitudes
A1 and A2 is given by the modulation frequencies 90 Hz and
150 Hz or perhaps by the latter frequency shifted by the
upper limit of observed Doppler displacement. In the worst
case for glide slope signal reception, the frequency spectral
range of Aj] and A2 is certainly less than 500 Hz, which can
be considered small compared to Ag/2m = 8 kHz. Accordingly,
we may expand the instantaneous value of Vap(t) in a power
series in exp(iAct), i.e.

e niAct

- 00

In this expression, because of the spectral narrowness of
the factors Vvp(t), :the term primarily contributing fre-
quencies within the passbands of the modulation filters is
Vo(t). This term can be defined by averaging the expression
for vap(t) (Eg. (3.10)) over the phase of exp(iAqt), i.e.

1 2 »
Vg (t) = ﬂfuﬁz\l(t) |2+]a, (t) | 2+2Re (A1 A%e 1“’)] 1723y (3.12)
0
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This integral is easily transformed to:

T/2
Vo (t) = [2(|Al(t)|+|A2(t)|)/m] j; (1-k2sin26)1/2de, (3.13)

where: 2 2
2 = alm©] | © 1/l s ]

The integral on the right of Equation (3. 13) is a complete
elliptic integral of the second kind and is commonly denoted
by E(k):

E(k) = —(1 -}?: m:]* k20 (3.14)
T2 ] (2Rn!)2 2n-1 ’

Thus for the purpose of determining the detected 90 and 150 Hz
modulations, the unfiltered audio signal is to a good approxi-
mation

2
ap(t)® Z(|A; (£) |+]Ay () ) E (k) (3.15)
To put the above expression in usable form, we must
carry the approximation somewhat further. Let the magni-

tude of amplitude A; (t) be the sum of a constant average value
agy and a zero-mean tlme varying function aj (t):

The quantity aj(t) represents the total modulation that

would be detected if the second carrier were completely absent.
Similarly, let

Ay (£) | = agy + ap(t) (3.16b)

Inserting Equations (3.16) into (3.15) and treatlng aj (t)
and a,(t) as small quantities, we obtain an expansion for Vap:
a3 \P/az \¥/a \*

© n o

\ (t)=az:§: 2: ok 2n (—) (=) [—) (3.17)

AF o pgr™o a a a
n=0p=0g4=0r=0 01 02 @

n

Here:’
ap = ap1 t+ ap2
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a(t) = ap(t) + ap(t)
2
kg = 4ap1292/3,
qur =1 . n=0, r=0,1
=0 ; n=0, r>2
2n(2n) ! (xr+2n-2 g

24n (n1)2(n-p) !p! (n-q) !qir!
nil.

After rearrangement we find that the series begins thus:

VAF(t) = agq + ago +‘al(t) + az(t)

. X
+ ‘n(n—l)(aOI-aoz) /2 - na01a02)

* (al(t)/aOl_az(t)/aoz)z/ao]

+ 0k, ah) (3.19)
o~ — 2—
] (a01+a02)(1 a01a02/a0 .o
2 2
+ al(t)(l - a5 /a0 - e

2 2
+ a2(t)(l - a5y /a0 .o
+ ...

summing a finite number of the terms constant and linear in a1 (t)
and a-(t) gives an accurate representation of the audio signal

(t) when the parameter kg<<1l. The convergence of the series
as k»l is not easy to discuss because the modulations of
115 transmissions are quite high (40% in the case of localizer
signals, 80% for glide slope signals). It is suggested that
the accuracy of the model in this range be checked by com-
paring calculated receiver characteristics with data given
by’Manney4.
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3.4 MULTIPATH EFFECTS AND FOURIER EXPANSIONS FOR CARRIER ENVELOPES

It remains to find suitable Fourier expansions for the
separate carrier envelopes |A; (t)| and [A2 (t)|. In a manner
similar to the treatment above of the capture effect, we will
obtain series expansions for the Fourier coefficients of
the desired solution. Again we will not rigorously resolve
questions of convergence, but will rely ultimately on the
agreement found between model predictions and known receiver
characteristics. With this attitude, we consider the "static"
audio signal that would be detected at a specified point in
space by a stationary receiver.

It is useful to transform the expression for the typical
complex amplitude given by Equation (3.9). Advantage is

taken of the fact that each transmitted modulation waveform
Unm(t) can be written as the sum of three Fourier components:

Unm(t) = Unmo fo + unmogp foo(t) + Unml150 f1s50(t) (3.20)

= ;i; Unmg £g(t),

where, for example fo(t) = f9p(t) = cos (2m90t+687), etc.
Thus the complex amplitude for each carrier can be written

i6
A(t) = 2; £o(t) ap e 2. (3.21)
»Q/=

i6 E :§ : i
age v s Unmf amp € ¢p. (3.22)
m p

To develop the most convenient expansion for the modulus of
the right hand side of Equation (3.21) we introduce an arbi-
trary phase constant ¢. Since

i¢
|

2 211/2
[a(t)]| = [(Zfz(t)agcos(eg—¢)) + (Zfy (t)ogsin(6g-¢)) ]
(3.23)

Here

|a] = |ae”

At any particular instant of time it is possible to eliminate
one or other of the squared quantities within the bracket

by the proper choice of ¢$. The square root can then be taken
exactly. The result, however, will have a complicated time
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dependence through the implicit dependence of ¢ on time.

We shall assume that the choice ¢=6g, the phase of the con-
stant term of (3.21), makes the average value of the second
squared term small; on this basis we will use the approximation:

|A(t)| =~ ag + ajcos(61-0g) £y (t) + agpcos(H2-0g) £2(t).
(3.24)

The required phase of the constant amplitude term for each
carrier frequency is given by

-1 ZIupmo @mp Sindg

8o = Tan = ¢[n] (3.25)

%Eunmo Amp cosd)p

In comparing with the notation of the capture effect treat-
ment (Eq. 3.16) and the definitions of the f;,, we have for
each carrier

ap = 9o
a] (t) = oajcos(61-6p)cos(2m90t+3gq)

+ apcos(83-0g)cos(2m1150t+8150) - (3.26)

3.5 DOPPLER EFFECTS

As a landing aircraft moves there are relative changes
in the phases of the various multipath radiation components
of the ILS signals received. The amplitudes of the 90 Hz
and 150 Hz terms of the detected modulation thus vary with
time, and accordingly, each tone acquires a frequency spread.
Since the relative Doppler frequency between direct and
scattered radiation can be as much as 120 Hz in some cases
for typical landing approach speeds, the bandwidth of the
modulation filters becomes important in determining receiver
dynamic response. The effect envisioned here is that certain
greatly Doppler shifted signal components may either be ,
severely damped by one filter or unexpectedly passed by the
other depending on the circumstances of receiver design,
aircraft speed, etc. This is independent of the intentional
RC damping that is always introduced into the cross pointer
indicator circuits.

To evaluate the possible magnitudes of such phenomena,
we consider a particularly simple model for the frequency
response of each modulation filter. Though the characteris-
tics of this filter may differ markedly from those of filters
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in actual receivers, the model is adequate for studying the
general effect of filter bandwidth on receiver rejection of
ILS interference.

The two detected tones which emerge from the modulation
filters were earlier denoted by Vgg(t) and Vygo(t) (Eg. (3.6)).
We now define these more precisely: Let

Voo (£) = f hgg (1) Vap(t-t)dT , (3.27)
(150) 0 (150).

where he (1) is the impulse response function of a narrowband
filter corresponding to center frequency f. Following Middle-
ton-, we represent the narrowband filter by the response
function

he (1) = hg (1) cos (2mET+Y) (3.28)
and we select as the particular "window function"
hg(t) = 2/T 0<1<T
=0 otherwise. (3.28a)

The output of such a filter when driven by a sinusoidal input
A cos (2mfgt+6y) is approximately

Vf(t)tu %sinc[ﬂ(f—fg)T]cos[Zﬂft+62+w+2ﬂ(f2-f)(t-T/ZJ

(3.29)
whenever f+f2>>T'l. The reciprocal of the integration time
T is the nominal filter bandwidth. The phase ¥ is purely
additive and so may be dropped without loss of generality.

To derive results pertaining to the ILS audio signal (Eq. 3.5)
from Equation (3.29), we assume that the phase shifts of
individual multipath components due to aircraft motion lead
to sinusoidal time variations, and we will neglect the time
variation of amplitude coefficients. To this end we may
write Eq. (3.19) as

VAF(t) = Co(a01+a02) + Clal(t) + C2a2 (t) (3.30)

where the C's can be defined in terms of slowly varying am-
plitudes that will be considered constant and the a's (as
defined by Equations (3.22 and 3.26)) will contain typical
terms such as:
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1

7 nm

+ cos (2mf t+8-d, (£) +8p (£))) .

cos(¢p—60)f2(t) %mp(cos(2ﬂf2t+6£+¢p(t)—60(t))

u'nmSLa'mp

This form shows that for each multipath component the audio modu-
lation frequencies are modified by sum and difference combina-
tions with the relative Doppler frequency d/dt(¢p—60). Con-
sidering all combinations of input modulation frequency £y and
Doppler shift which may give net frequencies near the filter
center frequencies f, we find the following significant terms in
the filter outputs Vf(t) (notation will be detailed below) :

1. The average carrier level received by paths with
large Doppler shifts gives rise to a contribution
from each filter

COZZamp (U] mo+u2mo) sinc [(2Trf—q'>+q'>p) T/Z]cos (2mE£T/2+¢-0p) ,
m P

2. The modulation at one frequency modified by a moderate
Doppler shift gives rise to a contribution in the
output of the opposite frequency filter

i b B
z A anZampunmgsinc [{Zmi\ f+épt9) T/2]
n=1 m p _
s COS [2nfgt+6g+2mﬁ fT/2-f_—¢p+¢:I

Here Af is f-fy, and upper and lower signs refer
to filter frequency f=90 Hz and 150 Hz respectively.

3. In the case of equal modulation and filter frequencies
the output contribution is

2 N
2:1 CnELampunmgsinc [(¢—¢p) T/Z] cos (¢-¢p) cos (2mft+dy)
3 m o)

The total detected signal at each modulation frequency
f is the sum of the contributions 1, 2, and 3. It may be
noted that only the phase of 3 is well defined in relation
to the phase of the transmitted modulation. This confronts
us with the final problem of this development: we must
calculate the rectified signal derived from each V£ (t)
which is passed directly to the cockpit panel instruments
to generate the CDI display. A reasonable approximation
can be reached by ignoring the relative phases of contri-
butions 1, 2, and 3 and defining the final ILS signals as
being the r.m.s. envelope of the Vg(t) obtained above. We
thus arrive at the final formula:
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Vg = COZZZ amp2 g unmoz(sinc [(21rf-<f)+$p)T/2]) €
m p =
, . :
1 -s s
+ 7 ;1 CnZZZampzunmgz - (sinc [(2n(f—fg)+¢pi¢)T/2])2
= m p £,7f
+

Zi Cn§ :2 :ampunmﬂ

Again the upper and lower signs refer to filter frequencies of
90 Hz and 150 Hz respectively. As a practical consideration,
each of the terms of Equation (3.31) can be accumulated as

the individual path attenuation factors app are calculated,
except for the coefficients Coz, an, and Gp, the reference
phases (¢ ( = ¢[n]) and Doppler frequencies ¢( = ¢[n]). To
facilitate this method of computation we adopt the approxi-
mation

o s 211/2
* cos (¢p-¢) sinc [(¢p—¢) 'I‘/Z}
fi=f

3.31)

. drR
¢[n] = 2m /2 (3.32)

where R is the instantaneous range of the receiving aircraft
to the transmitting antenna and ) is the carrier wavelength.
The remaining notation of Equation (3.31) is explained in
the following tabulation:

f = modulation filter frequency 90 Hz or 150 Hz.
fo = transmitted modulation frequency, %=1 for
90 Hz, 2=2 for 150 Hz, =0 for constant or
unmodulated carrier terms.
¢p = phase delay of a particular transmission
path p between transmitting element and
receiving antenna.

¢p = time derivative of ¢p -

¢ [n]

approximate phase of the aggregate of direct

and reflected carrier amplitudes at the re-
ceiver relative to the transmitted carrier

phase (defined by Eg. (3.25)). For course signal
n=1 and for clearance signal n=2.

¢ [n]

estimated time derivative of the aggregate
phase ¢[n] (defined by Eq. (3.32)).



T = filter integration time, equal to reciprocal
of filter bandwidth.

Uime = carrier (£=0) or sideband (2=1,2) strength
in the modulated transmission from a par-
ticular element or set of elements m of the
course (n=l) or clearance (nR=2) signal.

Ao = relative amplitude of radiation from an-
P tenna element or array m reaching receiver
by a more or less specifically identified
path p.
Q0
= n 2n
Co = = F'ooo ¥o

o0 a -a
= n 2n = 01702
c Z I‘ooo ko 1 n a
n=0 01

]
= n 2n - ap2-agl
C Z Tooo ¥o L= =

2 = 202
ro_ o k02 = special coefficients (defined in Egs. (3.18)).
%n ~ jz:unmoamp cos(¢p—¢[ﬁ])
m D
The quantities V and V determined by Equation (3.31)

are inserted in Equat%gg (3.7)990 obtain the undamped CDI
which would be generated by a moving ILS receiver. The
"dynamic" CDI, which incorporates the effect of the RC damping
circuit, may be derived from the undamped CDI by the usual
numerical techniques, which are perfectly adequate. A minor
error in the I.B.M. localizer code is that the calculated

ILS data is generated in the order of a takeoff sequence
rather than a landing approach; this causes a slight shift

in the "dynamic" course bends.
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APPENDIX A

SCATTERING FROM A VERTICAL TRIANGLE,
NEW FORMULATION



We use the current distribution method to calculate
the scattered field for an infinitely conductive triangular
surface. The scattered electric far field is (with ground
reflections included) :

ikR2

1 S ~ >
E, = 24K & Ry x Ry x I (A.1)
4 Rp
where
\1/2 ikR1 .
I = -E- 2 e lAn 3 3
I 8(11) NEg £ (¥) Ry fdﬁfdne sin(mg)sin(ng)
(A.2)
where A = k(cosy-sinB)
m = kz3/Ry
n = kh/Dpl

For a right triangle with the base on the ground and the
vertex to the left the integration df is from 0 to hn/B + h/2

and dn is from -B/2 to +B/2. The following result is
obtained (Fig. A-1):*

N k eik (R1+R2) |
Eg = EFBEOf(w) RyR] (Roxk) cosB
3 1 [ei(m—n)h/Z sinc[l(AB+o(m—n)hﬂ
(ra=n) 2 _

_ i (m—n)h/ZSinC[%(AB_g (m—n)h)-'J ]

= [}ei(m+n)h/zsinc %(AB+0(m+n)hﬂ

(m+n)

~i(m+n)h/2_. {1
+ e 51nc[2(AB 0(m+n)h)] ] z (A.3)

For the vertex to the left o=1l.

For the case of the vertex to the right the integration
dg is from 0 to ~-hn/B + h/2. The scattered electric field
*Note that the angles y and B defined in Fig. A-1 and used
here for convenience correspond to the angles 7m/2-(6+y) and
T/2-(y-08), respectively, used in Part 2 Sections 5 and 6
of this report.
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Figure A-1l. Geometry for the Scattering from a Vertical Right
Triangle
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Figure A-2. Elevated Triangle
is given by Equation A.3 with o=-1.

For the case of an elevated triangle (Fig. A-2) for
the vertex to the left the integration d¢ is from hy, to

hn/B + h/2 and dn is from B(h,/h - 1/2) to B/2. The result
is then

E, = ;_1Eof(w) RoR] (Ryxk) cosBxI (A.4)
where _
, 1{ 1 eli(mmlh/2 iY1B/2 iY1BC{
I = =-—-— e - )
4 {(m-n) Y,
1 e ilm-n)h/2 iYyB/2 inBc]
- e -e
(m-n) Y,
1 etmmIh/2 1y n/0 iY3BC J
=l e -e
(m+n) Y3
e -e
(m+n) Yy

A-4



. [_sin(m—n)hL . sin(m+n)h£]}_{}iAB/z_eiABc]

2 (m=-n) 2 (m+n) 'JiA
where

h
Y] = A+ 0(m—n)§
Yo, = A - o(m-n)%
Y3 = A + O'(IIH'II)%
Yq = A - o(m+n)%

Cc = hL/h . 1/2

For the vertex to the left o=1.

(A.5)

(A.6)

For the case of the vertex to the right the integration

d£ is from hy to -hn/B + h/2 and dn is from -B/2 to

(A.7)

B(-hr/h + 1/2). The result is given by Equation A.4, with
_ (min) e_i(z;n)h/z[é—inBC_e—inB/Z]
X (mJlm) e'i(zn)h/z [e-iY4BC_e—iY4B/2 }
+

2 (m-n) 2 (m+n) iA

{Tsin(m-n)hL Sin(m+n)hﬁ}iﬂ{é—iABC_e—iAB/Z]

where Y3, Yy, Y3 and Y, are given by Equation'A.6 but with
o=-1. Note that Equation A.7 (with o=-1) is just the complex

conjugate of Equation A.5 with o=l.

These are the new closed form solutions for scattering

from triangular shapes that are to be incorporated into

,the computer program.






APPENDIX B

MULTIPLE SCATTERING FROM VERTICAL RECTANGULAR WALLS,
NEW FORMULATION



In this appendix we treat the multiple scattering of
electromagnetic waves from a set of two vertical rectangular
walls where infinite conductivity is assumed. In the double
reflection study given by I.B.M.® only the reflected field
was used in their equation (2.3). For reflection from a
reflecting rectangular wall, the current distribution method
yields the same result as given by I.B.M. if the total
field is used instead of the reflected field and if the
second line integral in the right side of their equation (2.3)
is included. 1In the following calculation the current dis-
tribution method is used to obtain the new equations for
double reflection.

The electric field at a point on the second wall is
given by (Fig. B-1)*%*

i EELEEEQELQL exp|ik (R1+D +n,siny,)
TR1RZ P 1+Dpsg Ny Yo

Ep

I
* cosB sinc[—g—(51nyl—sinslﬂ]

; i H ) ) H z2
* {sinc|khy|— - = = sinc|khy| 77— 4+ — (B.1)
i Dpl R2 Dpl1 R2

where sinc(x) = sinx/x and where k = 2n/ A

At the second wall the incident magnetic field is
given by

>
Hp = /e/u Ep (-R) (B.2)
and the surface current on the wall is given by

- -> A
Jdpy = 2prn2

152

-2 /mEpﬁz (B.3)

At the receiver the scattered field from the second
wall is given by

> _ diwp exp[ikR3] ~ N .
Bs = 4 R3 R3XR3X.[Uzexp -ik (p*R3)| dnadzy

(B.4)

*Note that the angles y1 and B1 defined in Fig. B-1 and used
here for convenience correspond to the angles 7/2 ~ (8+y)
and m/2 -~ (y-6), respectively, used in Sections 2.5 and 2.6.
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Figure B-1l. Double Reflection from
Rectangular Walls
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Figure B-2. Scattering from the Second Wall

> 7 - .
where p-R3 - n251n82 + 22(23/R3), (B.5)

Denoting the form with the integral by I we have

I = -2 /5T ApiMARL g gy, explik (R14Dp20)] 4 o (B.6)
T Rle20

where (with ground reflection included)

h
1 2 —2i [ ° sinfx inc(kh,| 2 - 22
1 = -2i sin 22(23/R3)] sinc( 1 — - == )
0 | pl p2
- sinc(khy —E— + 22 ) d22
Dp1 Dp2 (B.7)



and where

Lo/

L-f

kL
exp (ikn2 [siny2 -sinB cosBlsinc ——]"(SinYl‘S inBl) dn,
-L2/2 2 2

~ . kL1 ( . . . L2 . .
= cosBqgsinc [T (31nyl—s 1n810)] L2sinc [2—k (smvz-s 1n82)]
(B.8)

The scattered electric field at the receiver from the second
wall is then given by

2

> > oA k )
Es = - 1R3xk ;5L1L2hlEOf(w)

exp(ikER1+Dp20+Rj])
Rle20R3

cosBa

L : L1 . .
cosBlosinc[Egk(sinyZ—sinszﬂ 51nc[5—k(51nyl—s1nsloﬂ

sin(ac)| F+h2 sin(a+B)x C+h2 gin(A-B)x
e T Sax - T Tax
2B _ X _ X
C h2 c h2
2 cos (Ac) | Fth2 cos(A+B)xd C+h2 cos(A-B)x
B ————dx- " dax
2B |C-h, X C-h, X
(B.9)
where
kh kh D H
A = kz3/Ry, B = La L ¢ = =B (B.10)
Dp2  Dp2o Dp1
and where
j‘sin axd (ax)3 (ax)5 (B.11)
= = - + - e .
x o T T 33 5.5¢
and
cos ax (ax) 2 (ax) 4
Jr___i__dx = log(ax) - 3o + rer Tl (B.12)

Combinations of reflections from walls with the lower
edge flush against the ground plane can be used to compute
the reflection from walls whose lower edges are at a height
above the ground plane. The following figures show schema-
tically such a procedure.
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Figure B-3. Elevated Structures

SYMBOLS

R) from antenna to reference point on ground plane at
1st wall.

D 1 from foot of antenna to reference point at lst wall.
f(y) antenna gain factor.

h; height of 1st wall.

L; width of 1st wall.

Y1 angle of incidence at lst wall.

Bl look angle from reference point on 1lst wall to element
of integration on 2nd wall.

Blo look angle from reference point on lst wall to reference
point on 2nd wall.

' ﬁl normal vector at lst wall.

Ry, vector from reference point on lst wall to element
"of integration on 2nd wall.

Dp20 reference point on lst wall to reference point on
2nd wall.



3>
N

= R

=
N

reference point on lst wall to fort of element of
integration on 2nd wall.

width of 2nd wall.

height of 2nd wall.

normal vector at 2nd wall.

unit vector normal to ground plane.
or divided by wavelength.

unit vector along horizontal direction tangent to wall
surface at 2nd wall.

vector from reference point on 2nd wall to the element
of integration

angle of incidence at 2nd wall.
look angle from 2nd wall to receiver.

vector from reference point on 2nd wall to aircraft
receiver.
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APPENDIX C

DERIVATION OF GAIN VECTOR FOR
SMALL CIRCULAR LOOP RECEIVING ANTENNA



N ,We consider a linearly polarized plane wave given by
E = Ege i(ker-wt) incident on a perfectly conducting circular

loop of radius a which is connected to a receiver input im-
pedance 21, (Fig. C-1). The current generated in the load
impedance 71, can be written as

I =vV/(2y + 23), (C.1)

where Z; is the antenna radiation impedance and V is the
net electromotive force (E.M.F. developed in the loop by
the incident field). The E.M.F. is given by the following
development of the basic line integral of E around the
loop:

> ->
v-fi . &
fdAﬁ-ﬁx_E*:
> -

iEO . (nxk) jfr dr d¢ elk"T (C.2)

Here the vector r lies in the plane of the loop and is
perpendicular to the unit vector n. We may replace the
scalar product in the exponential by

> -
k « r =k r sinb cos¢

with the result that the integral reduces to’

a (i in6 s
f r dr f aé e2kr sinb cosd¢
0 -
= 27 fr dr Jo (krsino)
= 27ra2 Jl(ka sinf)/ (ka sinb)
~ a2 (C.3)

The latter approximation is valid whenever a<< )/2m. Using
this result we find that the current delivered to the re-
ceiver can be expressed as

ita? (hxk) +E
iTa“ (nxk)
I = o (C.4)
ZL + Za

Thus the gain-polarization vector of Equation (C.1l) takes
the form
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Figure C-1. Illustration of Circular Loop
Receiving Antenna Problem

..).A A A
g(k) = Cyn x k (C.5)

>
This vector selects the component of E normal to the
vertical plane of incidence and applies a factor of sinb.






APPENDIX D

INVESTIGATION OF DEPOLARIZATION
WITH A DIPOLE ANTENNA:



Calculation of the Polarization of the Electro-Magnetic Field
Due to a Dipole Antenna with Inclusion of Image Reflection
from an Infinitely Conducting Ground Plane

A horizontally polarized electric field vector will remain
horizontally polarized when the observation point is restricted
to lie on the vertical plane through the runway; however, when-
ever the field point is to the side of the runway, the electric
vector develops a tilt, exhibiting a vertical as well as a
horizontal component with a resultant depolarization.

Figure D-1 shows the geometric relationship for the e-m
field radiated from the dipole antenna situated at a height H
above the conductive ground plane. The axis of the dipole
current is along the y direction while the runway is along the
z direction. The electric vector at the field point F is
perpendicular to the radial line rj; and lies in the p}ane

through F and the antenna, namely in the direction FOl

¥

(FIELD POINT)
(x,y,2)

CENTER LINE >
x OF RUNWAY\>

(X-H)

ANTENNA

Figure D.l. Geometric Relationship for Radiation from Dipole

Antenna which is at a Height H above the Ground
Plane



Given 61, 6 and d then ¢1 is determined by
cos ¢l = COS 61 cos 6 (D.1)

when Eg is the magnitude of the direct electric field at F then
the electric field vector Eg is given by

< el 13 ' Vo L 3
Ed = Ed [ 51n61x+cosélcosely c056151n61z] (D.2)
The relations
r, = ‘[dz + (x-H)?
[] ‘
r. = r. tan ¢
1 1l 1 (D. 3)
_ 12 ey 2
Ll = rl (X-H)
1
1
cos 61 = Ll/rl

can be used to calculate cos Gi. Also cos Gi can be calculated
from the relation

cos ¢i / cos 61 (D.4)

cos ei

where

1

o -—
90 ¢l (D.4)
Similarly the field from the antenna image can be obtained
(Fig. D.2):

cosBé?-cosGésineéﬁ] (D.5)

E. = E, -sind ‘X+coss
im im 2 2

The combined field may be written as

E = € d r N Eim
3 2
-iBr, . = 1R
z R(9) [e g -e 2 & ] (D.6)
r d im
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OF RUNWAY \)/

ANTENNA
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Figure D.2. Geometric Relationship for Radiation from Image

In making this approximation for the radiation field we may
imagine that a fictitious antenna is located at the origin
midway between the actual antenna and its image. Geometric
relationships similar to those in Figures D.l and D.2 would
then yield the interpretation of the quantities: ¢, §, r, r',
¢' etc. (Fig. D.3) as mean values.



Utilizing the previous expressions for Ed and Eim we have

-18(r+in’/r)
e ' .

e 1%
I
RIo

'{ﬁ -elBHX/r sinGi + e—lBHx/r sinéé]

- e_lBHX/r coss - cose;]

A [eisHX/r !

] 1
cos6l cosel

- . .
+ z _etBHX/x coséi sinei + e—lBHx/r cosGé sineé]

(D.7)

Since'sinéi = (X-H)/rl, and siné) = (X+H)/r3, approximating rl
and r by r' we obtain for the perpendicular component of g

-iB(r+%H2/r)

El— e

12
Rlg

. Z[dJX/r') sin (BHX/r) + (H/r') cos (BHX/rﬂ (D.8)

Likewise the other components of the electric field and the com-
ponents of the magnetic field are obtained by a similar approxi-

mation. Using

1.2
—ig (r+Ea2/x)
o = B} o 2 (D.9)

the result is:

E = ZGOZ[—i(X/r')sin(BHX/r) + (H/r')cos(BHX/r'ﬂ X
+ i cosé8'sin(BHX/r) Gli " (D.10)
where
ﬁl = cosb' y - sind' z (D.11)
(Fig. 'D.3)
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Figure D.3. Geometric Scheme for the Approximation
of a Fictitious Antenna Located at Origin



The approximations of cos8] and cos§y by coss' and cos6i and
cos6y by cosf' were used in computing the previous expression,
Equation D.10.

The magnetic field at the field point F can be calculated
from the equation

=a 3 ~ ~ -1 A ~
b= —2 [elBHX/r(derl) - e lBm‘/r(}z.lmxrz)] (D.12)
vu/e
where
r, = 51n61x + cosGl cosely + cosGl 51nelz (D.13)

and an analogous expression exists for 22. Carrying out the
calculations and using the equations

sind. = X-H . X-H
1 ri r'
and sj_n(S' = >.E+—Ii ~ }_(ili
2 ré r'
and cosGl = gf > <3
r r
1
~a . d
00552 = T, o etc. (D.14)
we obtain
5 . 2a0 i . ' . R
H = —cos8' cosd gin(® +8) 1 sin (BHX/x) | X
Ju/e

+cos$ Ei(x/r')sin(BHX/r) + (H/r')cos(BHX/rﬂi32

+cosG'[i(X/r)sin(BHX/r) = (H/r)cos(BHX/r)} GL§

(D.15)



where

s
I

2 = 85inb y - cosp 3

G
|
n
'—l
o]
D
<>
+
Q
(o]
n
D
N

(D.16)

U2 = Uy is in the general direction from G to o' a horizon-
tal transverse component; sin (g +6) = 1, U, is approximately

which corresponds to the transverse term in our Equation (D.10)

-igr [ ~
E = 3L[x(—ieH—’r‘) + U (—g] (D.18)

The vertical term is the same as that calculateq in our Equation
D.15, except for a factor cos$§' coss. The longitudinal term in
Equation[llﬁcorresponds to the real part of the Uy, term in our
Equation D.15, but we have an additional imaginary part to this
term. Also there is an additional complex horizontal component

s

U2 in our Equation D.15.

H = 10' - antenna height

X

100' - vertical distance of observation point
A= 10" - wavelength

d = 1000' - horizontal distance to observation point



The following table gives the results for several values of the
angle ¢ (between the antenna axis and the radius to the field

point). (The antenna axis is perpendicular to the runway.)
TABLEID.l.

¢ (DEG) VERTICAL / HORIZONTAL

20 0.293

30 0.175

45 0.1

60 0.058

90 0

We also considered a set of possible numerical parameters
for the case of the glide slope dipole antenna:

H = 30'
X = 50
A.= 3!
d = 500°'.

With the above inputs we calculated the ratio of the vertical
component of the electric vector to the horizontal component as
a function of the angle 6 for both the field radiated from the
antenna and that from the antenna image.* Our results are below:

TABLE D.2.
VERTICAL / HORIZONTAL
REAL IMAGE
8 (DEG) ANTENNA ANTENNA
20 .11 .43
30 .07 .28
45 .04 .16
60 .02 .09

-We see that a dipole localizer, (Table D.1l), would lead to
significant depolarization. For ¢ = 20° we see that the ratio
of the vertical to horizontal component of electric field

*§ and ¢ are the angles as shown in Figure D.3.
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reaches 30%, a non-negligible depolarization.

For a glide slope dipole, (Table D.2), we likewise see
possibly significant depolarizations. For 6 = 30°. The ratio
of the vertical to horizontal component of the electric field
for the image antenna is 28%, again a non-negligible amount of
depolarization.

Of course, for any real case, the actual antenna pattern
must be used to determine the magnitude of the effect. What
this analysis has shown, is that potentially serious depolariza-
tions may occur with dipole antennas.



APPENDIX E

ADDITIONAL COMMENTS ON PREVIOUS ILS
MATH MODELLING WORK



INTRODUCTION

Our main critique of previous ILS mathematical models is
contained in the body of this report as part of the analysis
and development of an ILS scattering and signal detection model.
Here we append several additional comments on previous ILS work
which, collected in one section, should help highlight some
additional limitations of the models.

LOCALIZER

Two localizer problems have been treated by Ohio University
1) the reflection from large hangers, and 2) reflection from
large aircraft. Computer programs were written for these two
cases to predict the course bending of the localizer signal
(these computer programs, however, are not in as convenient a
form as those of I.B.M.),

In deriving the scattered field from a hanger the following
assumptions were made by Ohio University (as clearly stated by
them) '

Flat perfectly conducting terrain

Small elevation angles

. The hanger wall as part of an infinite wall
. Localizer field fully focused at hanger wall

=W N

With these assumptions, Ohio University derived the scattered
field by calculating the current density distribution on the
wall, as discussed previously in Section 2. The current density
J is given by

-> ~ >
J=nxH (E.1)

where = unit vector normal to the wall

Ty B

total magnetic field at the wall

ﬁi + ﬁr the vector sum of incident
and reflected magnetic fields.

Their application of assumption (2) leads to course bending pre-
dictions which are independent of the height of the receiving
aircraft. This assumption may yield erroneous results. For



example, from equations 1 and 3 (Ref.8) the factors 28yd/r; and
28yh/ro were evidently obtained by power series expansions of the
exponential. The complete expression in fact would lead to the
factors:

2 sin(Byd/rjy) and 2 sin(Byh/rj)

respectively, as shown in Section 2 Equation 2.71, and dis-
cussed in Section 2.6. The variation of derogation with re-
ceiver height which follows from retention of the complete sine
functions has been confirmed in experimental data taken by IBM
at NAFEC.

Another limitation of the Ohio University calculation is
that a definition of DDM is used which is strictly valid only
when the received direct and scattered carriers are in phase
and the amplitude of the derogating component is relatively
small. This was mentioned in Section 3 and it is perhaps
worthwhile to discuss this in greater detail here.

The difficulty in properly treating DDM arises from a mis-
conception about the meaning of "depth of modulalation" in the
general case where carrier and sideband signals are combined
with arbitrary relative phase. For a carefully adjusted antenna
array, the transmitted carrier and sideband signals are always
nearly perfectly "in phase" or "out of phase", i.e. the ampli-
tude peaks of the unmodulated carrier occur simultaneously with
peaks or minima of the sideband signal. For such a case, the
maximum amplitude of the combined signal can be expressed as
the sum of the average carrier amplitude and the peak sideband
amplitude C+S, while the minimum is expressed by the difference
C-S (assuming C > S). The depth of modulation can be given an
obvious definition

DM

1/2 Maximum-Minimum) /Average
= §/C (E=2)

and where modulations at 90 Hz and 150 Hz are being compared, the
"difference in depth of modulation" is simply

DDM = (S;50-S90)/C (E-3)
In terms of the usual notation for the carrier signal modulation

component E, and the "sidebands only" amplitude Eg, we have for
a null reference signal system

C = Eo/m
m = modulation factor (= .2 for N.R.
localizers)



s = Eo + Eg

150
S99 = Ec - Es
DDM = 2m Eg/E. , (E-4)

which is applicable when the total carrier and sideband signals
are exactly in phase or out of phase.

However, for an aircraft exactly on the center of the
glidepath any difference in amplitude of the 90 Hz and 150 Hz
modulations comes from the scattered component of the radiation
received. This component varies through all possible relative
phases with the direct signal as the aircraft proceeds along
its trajectory. In this situation a generalization of our
above definition of depth of modulation is

DM = 1/2 ||c+s| - |c-s]||/|c] (E-5)
where now C and S are complex signal amplitudes with arbitrary
relative phase. (This is not quite the operational definition
implied by our analysis in Section 3, but it would lead to the

same final approximate results.) For example, the DM value for
150 Hz modulation is

DMygg = 1/2 | | Ec+m(EC+Es)I - E.-m (Ec+Es)||/|Ec| + (E-6)
while the wvalue for 90 Hz is
DMgg = 1/2 || E_+m(Ec-Es)| - | E -m(Ec-Eg)l|/|Ec] (E-7)

Here Ec and Eg are complex sums of direct and scattered ampli-
tudes, i.e.

Ec = BEgg t+ Egg
(E-8)
Eg = Egg *+ Egs
The difference DM]53~DMgg is an appropriate definition of DDM.
This difference is to be compared with

DDMg=m (|E.+Eg| - |E¢-Egl)/|Eg| (E-9)

which has been adopted by both IBM ‘and Ohio. In order to further

reduce the expression, Ohio makes the following assumptions:



1. Egg = 0

2. |Ec+EqgtEg+Egs| = |Ec*Eggl + |Es+Egg

(E-10
3. IES+ESS| = |Eg| + |Eggl )

which, in general, are not valid. Assumption 1 implies no scat-
tered field from the carrier signal. Assumptions 2 and 3 imply

that direct and scattered fields have identical phase, which is

not true. By this stratagem they are able to obtain a relation

for DDM equivalent to the "in phase" definition

DDM = 2m |Eg|/|Ec] (E-11)

TERRAIN (Refs. 12, 13, 14, 15)

In the past several years, derogation of the glide slope
due to different terrain problems has been studied by the Ohio
group. In calculating the reflected field from the ground,
Ohie'University considered an element of area of ground and
related the reflgcted fields to both the electric and magnetic
current sheets, J and M by

> >
J =n X Hy
M=-nxt
D r (E-12)
> .
where J = electric current sheet
M = magnetic current sheet
n = unit vector normal to the surface
ﬁr = reflected magnetic field
Er = reflected electric field.

The radiated fields at the observation point are thus determined
by both the electric and the magnetic currents, with the re-
flected fields related to the incident fields by

Ey = Rh Ej

where Rh is the reflection coefficient.




The resultant scattered field at the observation point is the sum
of the contributions from all elementary ground areas. Two major
computer programs were written. One determines the Fresnel zone
sizes providing the size of the elemental reflecting area for in-
tegration purposes while the other computes the DDM readings for
the following types of terrain:

1. Flat terrain: Flat terrain extended beyond the first
Fresnel zone. The computation time for this type of
terrain is very short.

2. Limited flat terrain: The extent of the flat terrain
falls short of the first Fresnel zone. Integration
time is long.

3. Hillside: The terrain in front of the glide slope is
non-flat.

There are two sub-groups:

1. Uniform terrain: The contour of the hillside runs
perpendicular to the runway center line.

2. Non-uniform terrain: The contour of the hillside
runs non-perpendicular to the runway center line.

Both 1 and 2 require long computer runs.

In general, it takes hours to compute the DDM whenever a
fairly complex terrain exists. Additionally, verification of
the program (Reference 12) has not been good. Much additional
work is needed in developing a useful mathematical model of
terrain scattering.

DIFFRACTION

Diffraction effects are best treated with Keller's geo-
metrical theory of diffraction as I.B.M. has, in fact, done.
However, a few cautionary remarks are in order.

Since diffraction effects to some degree are already taken
into account in the iterative solution used for the scattered
field, it is not clear that it is correct to simply add this
field to the Keller field to obtain the correct total scattered
field.

Further, a singularity appears in the asymptotic solutions
of the Keller theory when applied to the transition between the
illuminated and un-illuminated regions. The effects of this
singularity on the validity of the solutions near the geometric
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shadow must be investigated in order to determine the limits of
validity of the solutions to the ILS scattering problem. This
has yet to be done.

EXPERIMENTAL VERIFICATION

The math model computes the DDM on the centerline of the
runway. However, experimentally, the DDM is obtained off the
centerline. This is so because the pilot flies the DDM = 0
path which would coincide with the runway centerline only in
the absence of derogation. Because of derogation, the DDM = 0
path is off the centerline of the runway.

In order to relate the math model's prediction of DDM over
the centerline of the runway with experiment, a theodolite
tracking is performed which gives the distance between the
aircrafts actual path and the runway centerline. However, in
order to make the comparison, the theodolite distance measure-
ments must be related to the slope of the DDM, that is, to the
variation of DDM with distance off the centerline. Since the
DDM = 0 flight path which the pilot takes may often require
excessive flight maneuvers, the resulting actual flight path
either might not coincide with a DDM = 0 path or may make a
valid determination of the slope impossible.

In order to compare theory and experiment, it would be
better to obtain the DDM on the centerline directly. This can
be‘done by flying directly over the centerline as guided by the
theodolite. In this way, DDM readings from the aircraft's in-
struments could be compared directly with the math model's
prediction of DDM over the runway centerline.












